WO2021200931A1 - 通信装置および通信方法 - Google Patents

通信装置および通信方法 Download PDF

Info

Publication number
WO2021200931A1
WO2021200931A1 PCT/JP2021/013507 JP2021013507W WO2021200931A1 WO 2021200931 A1 WO2021200931 A1 WO 2021200931A1 JP 2021013507 W JP2021013507 W JP 2021013507W WO 2021200931 A1 WO2021200931 A1 WO 2021200931A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
unit
frequency band
communication
information
Prior art date
Application number
PCT/JP2021/013507
Other languages
English (en)
French (fr)
Inventor
良太 山田
宏道 留場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2021200931A1 publication Critical patent/WO2021200931A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless

Definitions

  • the present invention relates to a communication device and a communication method.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-67357 filed in Japan on April 3, 2020, the contents of which are incorporated herein by reference.
  • one of the targets is to realize ultra-large capacity communication by using a frequency band higher than the frequency band (frequency band) used in the 4th generation mobile communication system.
  • an object of the present invention is a base station apparatus capable of improving frequency utilization efficiency or throughput even in an environment where interference due to beamforming occurs. And to provide a communication method.
  • the configuration of the communication device and the communication method according to the present invention in order to solve the above-mentioned problems is as follows.
  • the communication device includes a communication unit and a control unit, and the communication unit communicates in the first frequency band, or in the first frequency band and the second frequency band, and the control unit. Controls to communicate in the first communication protocol when communicating in the first frequency band, and in the second communication protocol when communicating in the first frequency band and the second frequency band. Control to communicate.
  • the second frequency band has a higher frequency than the first frequency band.
  • the communication device includes a carrier sense unit that performs carrier sense with a predetermined beam width, performs carrier sense in all directions in the first frequency band, and is more than omnidirectional in the second frequency band.
  • the communication method includes a step of communicating in the first frequency band, or the first frequency band and the second frequency band, and a first in the case of communicating in the first frequency band. It has a step of controlling communication by a communication protocol and controlling communication by a second communication protocol when communicating in the first frequency band and the second frequency band.
  • the communication system in the present embodiment includes a base station device (transmission device, cell, transmission point, transmission antenna group, transmission antenna port group, component carrier, eNodeB, transmission point, transmission / reception point, transmission panel, access point) and a terminal device (transmission device, cell, transmission point, transmission antenna group, transmission antenna port group). It includes a terminal, a mobile terminal, a receiving point, a receiving terminal, a receiving device, a receiving antenna group, a receiving antenna port group, a UE, a receiving point, a receiving panel, and a station).
  • a base station device connected to a terminal device is called a serving cell.
  • the base station device and the terminal device in the present embodiment can communicate in a licensed frequency band (license band) and / or a license-free frequency band (unlicensed band).
  • X / Y includes the meaning of "X or Y”. In this embodiment, “X / Y” includes the meaning of "X and Y”. In this embodiment, “X / Y” includes the meaning of "X and / or Y”.
  • FIG. 1 is a diagram showing an example of a communication system according to the present embodiment.
  • the communication system in this embodiment includes a base station device 1A and a terminal device 2A.
  • coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the terminal device 2A is also referred to as a terminal device 2.
  • the following uplink physical channels are used in the uplink wireless communication from the terminal device 2A to the base station device 1A.
  • the uplink physical channel is used to transmit the information output from the upper layer.
  • ⁇ PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH is used to transmit uplink control information (UCI).
  • the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgement) (ACK / NACK) for the downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK or HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink.
  • the uplink control information includes a scheduling request (Scheduling Request: SR) used for requesting a resource of the uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) that specifies a suitable spatial multiplex, a precoding matrix index PMI (Precoding Matrix Indicator) that specifies a suitable precoder, and a channel quality index CQI that specifies a suitable transmission rate.
  • CSI-RS Reference Signal, reference signal
  • resource index CRI CSI-RS Resource Indicator
  • the channel quality index CQI (hereinafter, CQI value) may be a suitable modulation method (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band (details will be described later), and a coding rate.
  • the CQI value can be an index (CQIIndex) determined by the change method or the coding rate.
  • the CQI value can be set in advance by the system.
  • the CRI indicates a CSI-RS resource having a suitable reception power / reception quality from a plurality of CSI-RS resources.
  • the rank index and the recording quality index can be determined in advance by the system.
  • the rank index and the pre-recording matrix index can be an index determined by the spatial multiples and the pre-recording matrix information.
  • the CQI value, PMI value, RI value, and a part or all of the CRI value are also collectively referred to as a CSI value.
  • PUSCH is used to transmit uplink data (uplink transport block, UL-SCH).
  • the PUSCH may also be used to transmit ACK / NACK and / or channel state information along with uplink data. Further, PUSCH may be used to transmit only uplink control information.
  • PUSCH is also used to send RRC messages.
  • the RRC message is information / signal processed in the radio resource control (RRC) layer.
  • PUSCH is used to transmit MAC CE (Control Element).
  • MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the level of power headroom.
  • PRACH is used to send a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: ULRS) is used as an uplink physical signal.
  • the uplink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer (PHY layer).
  • the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
  • DMRS is related to the transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses DMRS to perform PUSCH or PUCCH propagation path correction.
  • SRS is not associated with the transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses SRS to measure uplink channel status.
  • the following downlink physical channels are used in the downlink wireless communication from the base station device 1A to the terminal device 2A.
  • the downlink physical channel is used to transmit the information output from the upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH is used to notify the master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in terminal devices.
  • PCFICH is used to transmit information indicating a region used for PDCCH transmission (for example, the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols).
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, code word) received by base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the upper layer of the received ACK / NACK.
  • ACK / NACK is ACK indicating that the data was correctly received, NACK indicating that the data was not received correctly, and DTX indicating that there was no corresponding data. Further, when PHICH for the uplink data does not exist, the terminal device 2A notifies the upper layer of ACK.
  • PDCCH and EPDCCH are used to transmit downlink control information (DCI).
  • DCI downlink control information
  • a plurality of DCI formats are defined for the transmission of downlink control information. That is, the fields for downlink control information are defined in DCI format and mapped to information bits.
  • the DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined.
  • the DCI format for downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • the DCI format for the uplink the DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the DCI format for the uplink includes uplink control information such as information on the resource allocation of the PUSCH, information on the MCS for the PUSCH, and a TPC command for the PUSCH.
  • the DCI format for the uplink is also referred to as an uplink grant (or uplink assignment).
  • the DCI format for the uplink can be used to request (CSI request) the channel state information (CSI; Channel State Information; also referred to as reception quality information) of the downlink.
  • CSI channel state information
  • reception quality information channel state information
  • the DCI format for the uplink can also be used to indicate the uplink resource that maps the channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • channel state information reporting can be used to indicate an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel status information report can be used for mode setting (CSI report mode) for periodically reporting channel status information.
  • the channel state information report can be used to set an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel status information report can be used for setting a mode (CSI report mode) in which channel status information is reported irregularly.
  • the channel state information report can be used to set an uplink resource for reporting semi-persistent CSI.
  • the channel state information report can be used for the mode setting (CSI report mode) for semi-permanently reporting the channel state information.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal device feeds back to the base station device.
  • Types of channel state information reporting include wideband CSI (eg Wideband CQI) and narrowband CSI (eg Subband CQI).
  • the terminal device When the PDSCH resource is scheduled using the downlink assignment, the terminal device receives the downlink data on the scheduled PDSCH. Further, when the PUSCH resource is scheduled by using the uplink grant, the terminal device transmits the uplink data and / or the uplink control information by the scheduled PUSCH.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is also used to transmit system information block type 1 messages.
  • the system information block type 1 message is cell-specific (cell-specific) information.
  • the PDSCH is also used to send system information messages.
  • the system information message includes a system information block X other than the system information block type 1.
  • System information messages are cell-specific information.
  • PDSCH is used to send RRC messages.
  • the RRC message transmitted from the base station device may be common to a plurality of terminal devices in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • PDSCH is used to transmit MAC CE.
  • the RRC message and / or MAC CE is also referred to as a higher layer signaling.
  • PDSCH can be used to request downlink channel state information.
  • the PDSCH can also be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report can be used to indicate an uplink resource that periodically reports channel state information (PeriodicCSI).
  • PeriodicCSI channel state information
  • the channel status information report can be used for mode setting (CSI report mode) for periodically reporting channel status information.
  • wideband CSI for example, Wideband CSI
  • narrowband CSI for example, Subband CSI
  • Broadband CSI calculates one channel state information for the system bandwidth of the cell.
  • the narrowband CSI divides the system band into predetermined units and calculates one channel state information for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DLRS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used by the terminal device to synchronize the downlink frequency domain and time domain. Further, the downlink reference signal is used by the terminal device to correct the propagation path of the downlink physical channel. For example, the downlink reference signal is used by the terminal device to calculate the downlink channel state information.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal; cell-specific reference signal), URS (UE-specific Reference Signal; terminal-specific reference signal, terminal device-specific reference signal) related to PDSCH, and EPDCCH.
  • CRS Cell-specific Reference Signal
  • URS UE-specific Reference Signal
  • terminal-specific reference signal terminal device-specific reference signal
  • EPDCCH EPDCCH.
  • DMRS Demodulation Reference Signal
  • NZP CSI-RS Non-Zero Power Channel State Information-Reference Signal
  • ZP CSI-RS Zero Power Channel State Information-Reference Signal
  • CRS is transmitted in the entire band of the subframe and is used for demodulating PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the URS associated with the PDSCH is transmitted in the subframes and bands used by the URS to transmit the associated PDSCH and is used by the URS to perform demodulation of the associated PDSCH.
  • the URS related to PDSCH is also called DMRS or downlink DMRS.
  • the EPDCCH-related DMRS is transmitted in the subframe and band used to transmit the EPDCCH associated with the DMRS.
  • DMRS is used to demodulate the EPDCCH associated with DMRS.
  • the resources of NZP CSI-RS are set by the base station device 1A.
  • the terminal device 2A measures a signal (measures a channel) using NZP CSI-RS.
  • NZP CSI-RS is used for beam scanning for searching a suitable beam direction, beam recovery for recovering when the received power / reception quality in the beam direction deteriorates, and the like.
  • the resources of ZP CSI-RS are set by the base station apparatus 1A.
  • the base station device 1A transmits ZP CSI-RS with zero output.
  • the terminal device 2A measures the interference in the resource supported by the NZP CSI-RS.
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • MBSFN RS is transmitted in the entire band of the subframe used for PMCH transmission.
  • MBSFN RS is used to demodulate PMCH.
  • PMCH is transmitted at the antenna port used for transmission of MBSFN RS.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink physical signal.
  • the uplink physical channel and the uplink physical signal are generically also referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are generically also referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • the channel used in the MAC layer is called a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • a transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and coding processing is performed for each code word.
  • the base station device can integrate and communicate with a plurality of component carriers (CC; Component Carrier) for wider band transmission with respect to the terminal device that supports carrier aggregation (CA).
  • CC component carriers
  • CA carrier aggregation
  • one primary cell PCell; Primary Cell
  • SCell Secondary Cell
  • a master cell group MCG; Master Cell Group
  • SCG Secondary Cell Group
  • the MCG consists of a PCell and optionally one or more SCells.
  • the SCG is composed of a primary SCell (PSCell) and optionally one or more SCells.
  • the base station device can communicate using a wireless frame.
  • a wireless frame is composed of a plurality of subframes (subsections).
  • the radio frame length can be 10 milliseconds (ms) and the subframe length can be 1 ms.
  • the radio frame is composed of 10 subframes.
  • the slot is composed of 7 or 14 OFDM symbols. Since the OFDM symbol length can change depending on the subcarrier interval, the slot length can also be changed at the subcarrier interval.
  • minislots are composed of fewer OFDM symbols than slots. Slots / minislots can be scheduling units. In the terminal device, slot-based scheduling / mini-slot-based scheduling can be known from the position (arrangement) of the first downlink DMRS. In slot-based scheduling, the first downlink DMRS is fixed at the 3rd or 4th symbol of the slot. In minislot-based scheduling, the first downlink DMRS is placed on the first symbol of the scheduled data (resource).
  • the base station device / terminal device can communicate in a licensed band or an unlicensed band.
  • the base station device / terminal device has a license band of PCell and can communicate with at least one SCell operating in the unlicensed band by carrier aggregation. Further, the base station device / terminal device can communicate in dual connectivity, in which the master cell group communicates in the license band and the secondary cell group communicates in the unlicensed band. Further, the base station device / terminal device can communicate only with the PCell in the unlicensed band. Further, the base station device / terminal device can communicate by CA or DC only in the unlicensed band.
  • the license band becomes PCell, and the cells (SCell, PSCell) of the unlicensed band are assisted and communicated by, for example, CA, DC, etc., which is also called LAA (Licensed-Assisted Access).
  • LAA Licensed-Assisted Access
  • the communication between the base station device / terminal device only in the unlicensed band is also called unlicensed-standalone access (ULSA).
  • ULSA unlicensed-standalone access
  • LA license access
  • LA license access
  • FIG. 2 is a schematic block diagram showing the configuration of the base station device 1A in the present embodiment.
  • the base station apparatus 1A transmits and receives to and from the upper layer processing unit (upper layer processing step) 101, the control unit (control step) 102, the transmission unit (transmission step) 103, and the reception unit (reception step) 104. It includes an antenna 105 and a carrier sense unit (carrier sense step) 106.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103 includes a coding unit (coding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, and a radio. It is configured to include a transmission unit (radio transmission step) 1035.
  • the receiving unit 104 includes a wireless receiving unit (radio receiving step) 1041, a multiple separation unit (multiple separation step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). ResourceControl: RRC) Layer processing is performed. Further, the upper layer processing unit 101 generates information necessary for controlling the transmission unit 103 and the reception unit 104, and outputs the information to the control unit 102.
  • MAC medium access control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio ResourceControl
  • the upper layer processing unit 101 receives information about the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal device transmits its function to the base station device as a signal of the upper layer.
  • the information about the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device has been introduced and tested for the predetermined function.
  • whether or not to support a predetermined function includes whether or not the introduction and testing of the predetermined function have been completed.
  • the terminal device when the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether or not the predetermined function is supported. If the terminal device does not support a predetermined function, the terminal device does not send information (parameter) indicating whether or not the predetermined function is supported. That is, whether or not to support the predetermined function is notified by whether or not to transmit information (parameter) indicating whether or not to support the predetermined function. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 bit of 1 or 0.
  • the radio resource control unit 1011 generates downlink data (transport block), system information, RRC message, MAC CE, etc. arranged in the downlink PDSCH, or acquires them from an upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103, and outputs other information to the control unit 102.
  • the wireless resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are assigned, the coding rate of the physical channels (PDSCH and PUSCH), the modulation method (or MCS), the transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • the scheduling unit 1012 generates information used for scheduling physical channels (PDSCH and PUSCH) based on the scheduling result.
  • the scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the upper layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the upper layer processing unit 101, and outputs the downlink control information to the transmission unit 103.
  • the control unit 102 controls the carrier sense unit 106 to perform the carrier sense and acquire the channel occupancy time (or the channel transmission permission time). Further, the control unit 102 controls the transmission unit 103 so as to transmit a resource reservation signal, a transmission signal, or the like after the carrier sense is successful.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, the downlink control information, and the downlink data input from the upper layer processing unit 101. And modulated, the PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signals are multiplexed and transmitted to the terminal device 2 via the transmit / receive antenna 105.
  • the coding unit 1031 uses block coding, convolution coding, turbo coding, and LDPC (low density parity check: Low density) for the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101.
  • parity check Coding is performed using a predetermined coding method such as coding or Polar coding, or coding is performed using a coding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 sets the coding bits input from the coding unit 1031 to BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16QAM (quadrature amplitude modulation), 64QAM, 256QAM, or the like. Alternatively, modulation is performed by the modulation method determined by the radio resource control unit 1011.
  • the downlink reference signal generation unit 1033 refers to a sequence known to the terminal device 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station device 1A. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated symbol of each modulated channel, the generated downlink reference signal, and the downlink control information. That is, the multiplexing unit 1034 arranges the modulated symbol of each modulated channel, the generated downlink reference signal, and the downlink control information in the resource element.
  • the radio transmission unit 1035 generates an OFDM symbol by performing an inverse fast Fourier transform (IFFT) on a multiplexed modulation symbol or the like, and adds a cyclic prefix (CP) to the OFDM symbol as a base.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 according to the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. ..
  • the radio receiver 1041 converts the uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so as to be properly maintained.
  • the level is controlled, and based on the in-phase component and the quadrature component of the received signal, quadrature demodulation is performed, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiver 1041 removes the portion corresponding to the CP from the converted digital signal.
  • the radio reception unit 1041 performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, extracts a signal in the frequency domain, and outputs the signal to the multiplex separation unit 1042.
  • FFT fast Fourier transform
  • the multiplex separation unit 1042 separates the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signals. This separation is performed based on the radio resource allocation information included in the uplink grant that the base station device 1A determines in advance by the radio resource control unit 1011 and notifies each terminal device 2.
  • the multiple separation unit 1042 compensates for the propagation paths of PUCCH and PUSCH. Further, the multiplex separation unit 1042 separates the uplink reference signal.
  • the demodulation unit 1043 performs inverse discrete Fourier transform (IDFT) on PUSCH, acquires modulation symbols, and for each of the modulation symbols of PUCCH and PUSCH, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. in advance.
  • IDFT inverse discrete Fourier transform
  • the received signal is demodulated by using the modulation method that is determined or that the own device notifies each of the terminal devices 2 in advance by the uplink grant.
  • the decoding unit 1044 sets the demodulated PUCCH and PUSCH coding bits at a predetermined coding method, or at a coding rate that the own device notifies the terminal device 2 in advance by an uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing unit 101. When the PUSCH is retransmitted, the decoding unit 1044 performs decoding using the coding bits held in the HARQ buffer input from the upper layer processing unit 101 and the demodulated coding bits.
  • the carrier sense unit 106 performs carrier sense and acquires the channel occupancy time (or channel transmission permission time).
  • FIG. 3 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment.
  • the terminal device 2A has an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, and a channel state. It includes an information generation unit (channel state information generation step) 205, a transmission / reception antenna 206, and a carrier sense unit (carrier sense step) 207.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes a coding unit (coding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio. It is configured to include a transmission unit (radio transmission step) 2035.
  • the receiving unit 204 includes a wireless receiving unit (radio receiving step) 2041, a multiple separation unit (multiple separation step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs the uplink data (transport block) generated by the user's operation or the like to the transmission unit 203.
  • the upper layer processing unit 201 includes a medium access control (MAC) layer, a packet data integration protocol (PacketDataConvergence Protocol: PDCP) layer, a radio link control (RadioLink Control: RLC) layer, and a radio resource control (RadioLink Control: RLC) layer. RadioResourceControl: RRC) Layer processing is performed.
  • MAC medium access control
  • PDCP PacketDataConvergence Protocol
  • RLC radio link control
  • RadioLink Control RadioResourceControl: RRC
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the wireless resource control unit 2011 manages various setting information of the own terminal device. Further, the radio resource control unit 2011 generates information arranged in each channel of the uplink and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 acquires the setting information related to the CSI feedback transmitted from the base station device and outputs it to the control unit 202.
  • the radio resource control unit 2011 acquires the information for carrier sense in the unlicensed band transmitted from the base station device and outputs it to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines the scheduling information. Further, the scheduling information interpretation unit 2012 generates control information for controlling the receiving unit 204 and the transmitting unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • the control unit 202 generates a control signal that controls the reception unit 204, the channel state information generation unit 205, and the transmission unit 203 based on the information input from the upper layer processing unit 201.
  • the control unit 202 outputs the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203 to control the reception unit 204 and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 so as to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
  • the control unit 202 controls the carrier sense unit 207 when it is necessary to transmit after the carrier sense. Further, the control unit 202 calculates an energy detection threshold value from the transmission power, bandwidth, and the like, and outputs the energy detection threshold value to the carrier sense unit 207.
  • the reception unit 204 separates, demodulates, and decodes the reception signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and transmits the decoded information to the upper layer processing unit 201. Output.
  • the radio receiver 2041 converts the downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. Is quadrature demodulated based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiver 2041 removes a portion corresponding to the CP from the converted digital signal, performs a fast Fourier transform on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • the multiplex separation unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal, respectively. Further, the multiplex separation unit 2042 compensates the channels of PHICH, PDCCH, and EPDCCH based on the estimated value of the channel of the desired signal obtained from the channel measurement, detects the downlink control information, and causes the control unit 202. Output. Further, the control unit 202 outputs the PDSCH and the channel estimated value of the desired signal to the signal detection unit 2043.
  • the signal detection unit 2043 detects the signal using the PDSCH and the channel estimated value, and outputs the signal to the upper layer processing unit 201.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the upper layer processing unit 201, and performs PUCCH,
  • the PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
  • the coding unit 2031 performs coding such as convolutional coding, block coding, turbo coding, LDPC coding, and Polar coding of the uplink control information or uplink data input from the upper layer processing unit 201.
  • the modulation unit 2032 modulates the coding bits input from the coding unit 2031 by a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel. ..
  • the uplink reference signal generation unit 2033 has a physical cell identifier (referred to as physical cell identity: PCI, Cell ID, etc.) for identifying the base station device 1A, a bandwidth for arranging the uplink reference signal, and an uplink grant. Based on the cyclic shift notified in, the value of the parameter for the generation of the DMRS sequence, etc., a series obtained by a predetermined rule (expression) is generated.
  • PCI physical cell identity
  • Cell ID Cell ID
  • the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmitting antenna port. That is, the multiplexing unit 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • the radio transmission unit 2035 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs OFDM modulation, generates an OFDMA symbol, adds CP to the generated OFDMA symbol, and bases it. Generates a band digital signal, converts the baseband digital signal to an analog signal, removes excess frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, outputs it to the transmit / receive antenna 206, and transmits it. ..
  • IFFT inverse fast Fourier transform
  • the carrier sense unit 207 performs carrier sense using an energy detection threshold value or the like, and acquires a channel occupancy time (or a channel transmission permission time).
  • terminal device 2 can perform modulation of the SC-FDMA system as well as the OFDMA system.
  • ultra-wideband transmission utilizing high frequency bands is desired.
  • For transmission in the high frequency band it is necessary to compensate for path loss, and beamforming is important.
  • an ultra-dense network in which base station devices are arranged at high density (Ultra-dense) network) is valid.
  • the base station equipment is arranged at a high density, although the SNR (Signal to Noise Power Ratio) is greatly improved, there is a possibility that strong interference due to beamforming will occur. Therefore, in order to realize ultra-large capacity communication for all terminal devices in a limited area, interference control (avoidance, suppression) in consideration of beamforming is required.
  • a centralized control station capable of controlling a plurality of base station devices can control interference by appropriately controlling the radio resources (time, frequency or spatial layer) and beam direction of each base station device.
  • the number of base station devices managed by the centralized control station increases, such as in an ultra-high density network, there is a problem that the complexity of interference control increases significantly. Therefore, a technique capable of interference control is desired when there is no centralized control station or when there is no centralized control station but complicated operation is not performed.
  • FIG. 4 shows an example of a communication system according to the present embodiment.
  • the communication system shown in FIG. 4 includes base station devices 3A, 3B, 3C, and terminal devices 4A, 4B, and 4C.
  • 3-1A, 3-1B, and 3-1C illustrate the range of carrier sense observed by the base station devices 3A, 3B, and 3C, respectively.
  • 3-2A, 3-2B, and 3-2C show beamforming transmitted by the base station devices 3A, 3B, and 3C to the terminal devices 4A, 4B, and 4C, respectively.
  • Each base station device observes interference signals (radio resource usage status) from adjacent base station devices / terminal devices / communication devices, and sends signals to a range or direction in which interference received from the surroundings or interference given to the surroundings is weak. Send.
  • Each base station device performs LBT (Listen Before Talk) to evaluate whether or not other communication devices are communicating (idle or busy) by carrier (channel) sense before transmission.
  • LBT Listen Before Talk
  • carrier sense is performed in consideration of beamforming. When the carrier sense is successful with the signal observed (received) at a certain beam width, the transmission period can be acquired only within the range of the beam width.
  • the beam width is the width of the main beam (main lobe), and is, for example, the angle width (half width) at which the gain is 3 dB lower than the maximum value of the beam gain (antenna gain).
  • the beam width includes the direction of the main beam.
  • beamforming with a certain beam width may be defined (specified). For example, the maximum beam gain of the side lobe outside the beam width or the difference (ratio) between the maximum beam gain within the beam width and the maximum beam gain outside the beam width satisfies the standard.
  • each base station device can perform beamforming with reduced interference with each other.
  • the base station device / terminal device of the present embodiment can communicate in a licensed band or an unlicensed band.
  • the beam width that succeeds in carrier sense is also called the acquired beam width.
  • the acquired beam width includes the direction of the main beam having a beam width that has succeeded in carrier sense. It is desirable that the received beam and the transmitted beam have reciprocity (correspondence). Therefore, the carrier sense considering beamforming may be performed when there is a reciprocity (correspondence) between the received beam and the transmitted beam.
  • the base station device can transmit a data signal or the like with a narrower beam width as long as it is within the acquired beam width.
  • the base station device cannot transmit by beamforming with the main beam directed outside the acquired beamwidth.
  • a suitable beam direction may be searched by beam scanning.
  • the desired signal power can be improved while reducing the interference, so that the throughput can be improved.
  • beamforming may cause side lobes outside the acquired beam width. Therefore, the beamforming permitted within the acquired beam width may be defined (defined).
  • the definition (regulation) is that, for example, the maximum beam gain of the side lobe outside the acquired beam width or the difference (ratio) between the maximum beam gain within the acquired beam width and the maximum beam gain outside the acquired beam width satisfies the standard. Is.
  • the base station device / terminal device can occupy the channel for a certain period of time.
  • the maximum value of the period during which a channel can be occupied is called MCOT (Maximum Channel Occupancy Time).
  • MCOT Maximum Channel Occupancy Time
  • Data priority can be expressed by priority class (channel access priority class).
  • the priority classes are indicated by 1, 2, 3, and 4 in descending order of priority.
  • the maximum value of the random period required for LBT may change depending on the priority class.
  • the random period is the product of a random positive integer below the contention window and the slot period (for example, 9 microseconds).
  • a random positive integer less than or equal to the contention window size is also called a counter in carrier sense (LBT).
  • CWS may change depending on the priority class, transmission error rate, and the like.
  • the slot period is considered to be idle. Otherwise, the slot period is considered busy. And if you become idle in as many slots as there are counters, your career sense is considered successful.
  • the slot period may vary depending on the frequency band (frequency bandwidth, carrier frequency), and the slot period can be shortened in the high frequency band.
  • the period for determining idle / busy may change for each slot depending on the frequency band (frequency bandwidth, carrier frequency). That is, in the high frequency band, when it is determined to be idle, the period during which the observed (detected) power is less than the energy detection threshold value can be shortened.
  • the subcarrier interval representing the slot period may change depending on the frequency band (frequency bandwidth, carrier frequency)
  • the subcarrier interval representing the slot period may change for each frequency band. In order to shorten the slot period in the higher frequency band, the subcarrier interval representing the slot period becomes wider in the higher frequency band.
  • the license band When communicating in the licensed band, the same operation as in the unlicensed band is possible, but it is not always necessary to occupy the channel after LBT.
  • the license band it may be allowed that a plurality of communication devices communicate at the same time to some extent in order to maintain flexibility. Therefore, in the license band, it is possible to acquire a period (channel transmission permission period) in which the LBT gives the right to transmit in the channel.
  • the maximum value of the channel transmission permission period is also called (MATT: Maximum allowing transmission time).
  • the channel occupancy period and the channel transmission permission period are also collectively referred to as a transmission period.
  • the base station device can use the energy detection threshold value to determine whether or not another communication device is communicating at the time of carrier sense.
  • the base station apparatus can set the energy detection threshold value so as to be equal to or less than the maximum energy detection threshold value. Since beamforming obtains beam gain, beam gain can be considered in the energy detection threshold when beamforming is assumed. For example, the offset value XdB due to beamforming can be the difference between the gain of the main beam and the gain of the side lobes. At this time, the threshold value obtained by raising the energy detection threshold value by X dB becomes the energy detection threshold value in consideration of the beam gain. Increasing the energy detection threshold improves the success probability of carrier sense, but it is unlikely that the interference power will increase significantly because the area that causes interference due to beamforming becomes smaller.
  • X is 0 dB.
  • the maximum value of the offset value XdB due to beamforming can be set to a different value depending on the frequency band (frequency bandwidth, carrier frequency) with which the base station apparatus 1A communicates.
  • the offset value XdB by beamforming may be calculated based on the equivalent isotropic radiated power (EIRP: Equivalent isotopically radiated power) including the transmission power of the base station apparatus 1A. Whether the base station device 1A sets the offset value XdB due to beamforming based on the antenna gain or the EIRP depends on the frequency band (frequency bandwidth, carrier frequency) with which the base station device 1A communicates. ) Can be determined.
  • EIRP Equivalent isotopically radiated power
  • FIG. 5 is a simple flowchart according to the present embodiment.
  • the base station apparatus receives (observes) the surrounding communication status with a reception beam having a certain beam width and beam direction, and the carrier sense unit 106 performs carrier sense using the received signal (observation signal) (step 1).
  • the carrier sense unit 106 determines whether or not the carrier sense is successful (step 2). If the carrier sense is not successful (NO in step 2), the process returns to step 1, and the carrier sense unit 106 performs carrier sense using another beam width or beam direction. If the carrier sense is successful (YES in step 2), the transmission unit 103 transmits by beamforming within the acquired beam width.
  • the beam gain becomes higher. In this case, if the beam directions match, strong interference will occur. Therefore, the maximum value of the beam gain used for transmission is shared (specified) between the base station devices. As a result, it is possible to avoid generating a remarkably strong interference signal. Further, although the maximum value of the beam gain is not shared (specified) between the base station devices, the maximum value of the sum of the beam gain and the transmission power may be shared (specified). This may increase the beam gain, but decrease the transmission power accordingly, and it is possible to avoid generating a remarkably strong interference signal. The sum of the beam gain and the transmission power can also be the EIRP described above.
  • the centralized control station can transmit the number of peripheral base station devices and the density of base station devices between the base station devices.
  • the base station device has a mechanism for sharing the number of peripheral base station devices and the density of the base station devices among the base station devices.
  • the base station device can determine a suitable beam width based on the number of surrounding base station devices and the density of the base station devices. Further, the maximum beam width that can be acquired may be defined by the number of base station devices in the vicinity and the density of the base station devices. In addition, the base station apparatus may specify the maximum beam width that can be acquired by the period for switching the beam (or the longest period during which the switching of the beam must be completed). Further, the base station device can acquire a signal based on a communication method other than the communication method set in the own device based on whether or not a signal based on the communication method set in the own device may exist in the frequency channel with which the own device communicates. Maximum beam width may be specified.
  • the base station device can transmit with a suitable beam width within the acquired beam width, but the adjacent base station device does not improve the interference reduction effect unless the acquired beam width is known. Therefore, it is necessary for the adjacent base station device to know the beam width acquired by a certain base station device.
  • the base station device broadcasts control information including the acquired beam width, the direction of the gain maximum value of the acquired beam width, and a part or all of the channel occupancy period / channel transmission permission period to the surrounding base station devices by carrier sense. Can be done.
  • the adjacent base station apparatus can receive the control information and preferentially perform carrier sense in the beam direction having a high possibility of being vacant, so that the efficiency is improved.
  • the base station apparatus may transmit the resource reservation signal within the acquired beam width and other than the beam width for transmitting the data signal. The beam direction transmitting the resource reservation signal will not succeed in carrier sense, and the adjacent base station device will not be able to use that direction.
  • the present invention is not limited to this, and can be similarly applied to the terminal device.
  • a suitable beam direction can be searched by beam scanning.
  • a synchronization signal or CSI-RS is used for beam scanning.
  • the synchronization signal is transmitted in units of the synchronization signal block (SS block).
  • the SS block includes a primary synchronization signal (PSS; Primary synchronization signal), a secondary synchronization signal (SSS; Secondary synchronization signal), and PBCH. Up to two SS blocks are included per slot.
  • a plurality of SS blocks can be arranged within a timing range (window) of, for example, 5 ms.
  • the timing range (window) is also called a synchronization signal occasion (SS occupation).
  • the timing range (window) is transmitted periodically.
  • the maximum number that can be arranged in the timing range (window) may change depending on the subcarrier interval.
  • the position of the timing range (window) and / or the position of the SS block within the timing range (window) is indicated by DMRS and / or PBCH.
  • the position of the timing range (window) is indicated by, for example, a radio frame number (SFN; System frame number) indicating the number of the radio frame.
  • SFN System frame number
  • the period of the timing range (window) is indicated by the signal of the upper layer from the base station apparatus.
  • the position of the range (window) of 5 ms in SCell may be indicated by the signal of the upper layer from the base station apparatus.
  • the base station When multiple SS blocks arranged in the timing range (window) are beamformed and transmitted in different beam directions, and the terminal device reports an SS block having suitable reception power / reception quality, the base station is used.
  • the device can know the beam direction suitable for the terminal device.
  • the terminal device may report the index of the SS block in order to indicate the SS block having a suitable reception power / reception quality for the base station device, or the radio corresponding to the SS block having a suitable reception power / reception quality. Random access preambles may be sent on the resource.
  • the synchronization signal may be transmitted without carrier sense in the license band, but carrier sense is required in the unlicensed band. If the carrier sense fails, it may not be possible to transmit the synchronization signal at the desired timing. In this case, the base station apparatus may skip the transmission of the SS block outside the channel occupancy period.
  • the base station apparatus when only the SS block is transmitted and the channel occupancy period is equal to or less than a certain standard (for example, 1 ms), the base station apparatus sends the SS block after LBT for a fixed period (for example, 25 microseconds or 8 microseconds). Can be sent. If the channel occupancy period exceeds a certain standard (for example, 1 ms), the base station apparatus can transmit the SS block after LBT for a random period.
  • the above-mentioned reference for the fixed period and the channel occupancy period can be set to different values depending on the frequency band in which the base station apparatus communicates. For example, the base station apparatus can set different fixed period and channel occupancy time criteria for the 5 GHz band frequency band and the 60 GHz band frequency band.
  • the criteria for the fixed period and channel occupancy set for each frequency band are not limited to specific values, but as the frequency increases, the criteria for the fixed period and channel occupancy period may be set shorter. Suitable. Further, the standard of the fixed period and the channel occupancy period can be set by the same mathematical formula for each frequency band. For example, assuming that the predetermined frame period is A and the slot period is B, the fixed period is expressed by a mathematical formula of A + B or A + 2 ⁇ B, and the values of A and B are set to different values for each frequency band. Can be done. Further, the base station apparatus 1A can also perform LBT during a time period during which the SS block in the timing range (window) is not transmitted. Further, the reference of the fixed period and the channel occupancy period can be set based on the subcarrier interval of the signal transmitted by the base station apparatus 1A.
  • Communication protocols are procedures and conventions for devices on a network to communicate with each other.
  • Communication protocols include, for example, TCP (Transmission Control Protocol) and UDP (User Datagram Protocol), which are transport layer protocols.
  • TCP enables highly reliable communication because it establishes a session (connection) and controls retransmission.
  • the retransmission control communication is performed while confirming whether or not the transmission side (for example, the base station device) and the reception side (for example, the terminal device) can correctly receive the signal, which increases the overhead and makes it difficult to achieve high-speed transmission.
  • TCP or UDP does not establish a session (connection), so although it lacks reliability, high-speed transmission is possible if the conditions are met. Since the wireless propagation environment changes from moment to moment, efficient transmission is possible by selecting TCP or UDP, or a communication protocol based on TCP or UDP according to the wireless propagation environment.
  • the TCP or TCP-based communication protocol is also referred to as a first communication protocol
  • the UDP or UDP-based communication protocol is also referred to as a second communication protocol.
  • the communication protocol targeted by this embodiment is not limited to the above example.
  • a communication protocol selected based on a prerequisite application such as HTTP (HyperText Transfer Protocol) or FTP (File Transfer Protocol) used in combination with the above TCP is also included.
  • switching the communication protocol can be performed by different communication protocols, and also includes switching a plurality of protocols that are the same protocol but to which different setting values are applied.
  • TCP is used for communication in the low frequency band (for example, 5 GHz band)
  • UDP is used for communication in the high frequency band (for example, 60 GHz band).
  • the propagation environment is stable, so there is a high possibility that the throughput will be high even with TCP.
  • UDP has a higher throughput than TCP. Since the propagation environment is unstable in the high frequency band, there is a possibility that it will be used as CA or DC with the low frequency band.
  • TCP is used for communication in a low frequency band such as the 5 GHz band
  • UDP is used for communication in the 5 GHz band and 60 GHz band.
  • the 5 GHz band communication, the 60 GHz band communication, and the 5 GHz band and 60 GHz band communication change temporally depending on the communication status of peripheral devices. In this way, efficient communication is possible by selecting a suitable communication protocol according to the propagation environment.
  • the base station device / terminal device can switch the communication protocol when the frequency band used changes. For example, if the terminal device uses the first communication protocol in the first frequency band and a communication link in the second frequency band is also obtained, the terminal device is second in the second frequency band. When using the communication protocol of, the terminal device also uses the second communication protocol in the first frequency band. That is, the base station device / terminal device according to the present embodiment can change the communication protocol to be used based on the frequency band (radio resource) that can be newly set for the communication of the own device.
  • the base station device / terminal device switches the frequency band in the lower layers such as the MAC layer and the PHY layer (switching the frequency band such as Fast session transfer (FST) in which the trigger frame is transmitted / received).
  • the communication protocol can be switched when the operation is performed and the communication cell set in CA is activated or deactivated).
  • the base station device / terminal device can set a priority in a selectable frequency band (radio resource), and can switch the communication protocol when a frequency band having a high priority is newly set.
  • a selectable frequency band radio resource
  • the communication protocol set by the already set frequency band can be used as the communication protocol.
  • the base station device / terminal device can switch the communication protocol by the carrier sense method.
  • the carrier sense method is, for example, the acquired beamwidth.
  • the acquired beam width is wide, it is transmitted in a wide direction, so it is not easily affected by obstacles, and it can be said that the propagation environment and the interference situation do not change significantly.
  • the acquired beam width is narrow, transmission is performed with narrow beamforming, so that it is easily affected by a shield and the propagation environment becomes unstable. Therefore, if the acquired beam width is wide, TCP is used for communication, and if the acquired beam width is narrow, UDP is used for efficient communication. Whether or not the acquired beam width is wide may be determined by whether or not the acquired beam width is in all directions.
  • the base station device / terminal device determines that the acquired beam width is wide and communicates by TCP.
  • the base station device / terminal device determines that the acquired beam width is narrow and communicates by UDP.
  • the acquired beam width may change depending on the frequency band. For example, in communication of 5 GHz band or less, the acquired beam width is omnidirectional, and in a high frequency band such as 60 GHz band, the acquired beam width is omnidirectional or narrower than all directions.
  • the base station device / terminal device can switch the communication protocol according to the observation results of the surroundings. For example, the terminal device measures RSSI (Received Signal Strength Indicator) in a predetermined period and reports it to the base station device.
  • the base station device estimates the amount of interference in the vicinity and whether or not there is a communication device in the vicinity from the observation result of the base station device and the observation result of the terminal device.
  • the base station device / terminal device communicates by TCP when the estimated amount of interference is small or there is no communication device in the vicinity, and when it is large, it communicates by UDP.
  • the amount of interference can be, for example, a period (ratio) in which the observed RSSI exceeds the carrier sense energy detection threshold within a predetermined period.
  • the base station device / terminal device can switch the communication protocol depending on the magnitude of the carrier sense energy detection threshold.
  • the energy detection threshold becomes smaller, only the communication device farther away becomes the interference source, the interference becomes weaker, and the propagation environment becomes better.
  • the energy detection threshold becomes large, a closer communication device can become an interference source, so that strong interference is stochastically received. Therefore, if the base station device / terminal device communicates by TCP when the carrier sense is performed by the first energy detection threshold value and by UDP when the carrier sense is performed by the second energy detection threshold value, efficient communication can be achieved. It will be possible.
  • the lower layer such as the physical layer and the MAC layer and the upper layer such as the transport layer can send and receive information to each other.
  • the information transmitted from the lower layer to the upper layer includes at least one of the propagation environment and carrier sense information of each frequency band.
  • the propagation environment of each frequency band includes channel measurements, interference measurements, and some or all of the block error rate.
  • the channel measurement includes RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), or distribution of received power.
  • RSRQ is determined based on the ratio of RSRP to RSSI.
  • Interference measurements include RSSI.
  • the block error rate is an error rate of a transport block or a code block, and is obtained by, for example, the ratio of ACK and NACK of HARQ.
  • the carrier sense information includes the channel occupancy rate (acquisition rate) and the acquisition beam width.
  • the channel occupancy rate indicates the ease of acquiring a channel at the time of carrier sense or the degree of congestion of the frequency band.
  • the channel occupancy rate is the ratio of the idle state to the busy state at the time of carrier sense.
  • the carrier sense information can be information for each energy detection threshold value.
  • the information transmitted from the upper layer to the lower layer includes the priority of each frequency band.
  • the information transmitted from the upper layer to the lower layer includes the requirements for the information (bitstream) to be transferred to the lower layer.
  • the requirements include an average transfer rate, a maximum delay time, an average delay time, and the like.
  • the upper layer and the lower layer can share the parameters possessed by each. For example, when a plurality of access categories are defined in the MAC layer which is a lower layer, the upper layer and the lower layer select which access category the lower layer selects according to the requirements input from the upper layer. Can be arranged in advance. This also means that the upper layer can directly specify the parameters of the lower layer (according to the above example, the access category of the MAC layer).
  • the first access category guarantees a maximum delay time of 100 ms
  • the second access category guarantees a maximum delay time of 10 ms.
  • the upper layer transfers a bit stream that requires a maximum delay time of 50 ms to the lower layer
  • the upper layer can select a second access category.
  • the lower layer it is also possible for the lower layer to convey to the upper layer the access categories that the lower layer can select.
  • the cycle (boundary) at which the upper layer switches the communication protocol can be aligned with the lower layer.
  • the upper layer can switch the communication protocol in the transmission cycle of the RRC signaling of the lower layer.
  • the base station apparatus / terminal apparatus according to the present embodiment is time-synchronized between the upper layer and the lower layer. That is, the base station apparatus / terminal apparatus according to the present embodiment can exchange signals associated with time synchronization between the upper layer and the lower layer, and which layer is the layer (primary layer) that leads the time synchronization. But it doesn't matter.
  • base station devices are synchronized with each other via GPS or the like, but the base station device / terminal device according to the present embodiment is provided by a server (cloud server, mobile edge server) that manages applications. It is also possible to manage the time synchronization of each layer.
  • server cloud server, mobile edge server
  • the frequency band used by the device (base station device, terminal device) according to the present embodiment is not limited to the licensed band and the unlicensed band described so far.
  • the frequency band targeted by this embodiment is not actually used for the purpose of preventing interference between frequencies even though the license for use for a specific service is given by the country or region.
  • Frequency bands called white bands for example, frequency bands assigned for television broadcasting but not used in some regions
  • white bands for example, frequency bands assigned for television broadcasting but not used in some regions
  • the program that operates on the device according to the present invention may be a program that controls the Central Processing Unit (CPU) or the like to operate the computer so as to realize the functions of the embodiments according to the present invention.
  • the program or the information handled by the program is temporarily stored in a volatile memory such as Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the program for realizing the function of the embodiment according to the present invention may be recorded on a computer-readable recording medium. It may be realized by loading the program recorded on this recording medium into a computer system and executing it.
  • the "computer system” as used herein is a computer system built into a device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another recording medium that can be read by a computer. Is also good.
  • each functional block or various features of the device used in the above-described embodiment can be implemented or executed in an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • the general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit. Further, when an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, one or more aspects of the present invention can also use a new integrated circuit according to the technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • the present invention is suitable for use in communication devices and communication methods.
  • the present invention can be used, for example, in communication systems, communication devices (for example, mobile phone devices, base station devices, wireless LAN devices, or sensor devices), integrated circuits (for example, communication chips), programs, and the like. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信部と制御部を備え、前記通信部は、第1の周波数帯、又は前記第1の周波数帯及び第2の周波数帯で通信し、前記制御部は、前記第1の周波数帯で通信する場合に第1の通信プロトコルで通信するように制御し、前記第1の周波数帯及び前記第2の周波数帯で通信する場合に第2の通信プロトコルで通信するように制御する。

Description

通信装置および通信方法
 本発明は、通信装置および通信方法に関する。
 本願は、2020年4月3日に日本に出願された特願2020-67357号について優先権を主張し、その内容をここに援用する。
 第5世代移動無線通信システム(5Gシステム)に関する研究・開発活動が盛んに行なわれている。国際標準化機関である国際電気通信連合 無線通信部門(International Telecommunication Union Radio communications Sector:ITU-R)より、5Gシステムの標準方式(International mobile telecommunication - 2020 and beyond:IMT-2020)に関するビジョン勧告が報告されている(非特許文献1参照)。
 通信システムがデータトラフィックの急増に対処していく上で、周波数資源の確保は重要な課題である。そこで5Gでは、第4世代移動通信システムで用いられた周波数バンド(周波数帯域)よりも高周波数帯を用いて超大容量通信を実現することがターゲットの1つとなっている。
 しかしながら、高周波数帯を用いる無線通信では、パスロスが問題となる。パスロスを補償するために、多数のアンテナによるビームフォーミングが有望な技術となっている(非特許文献2参照)。
"IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU-R M.2083-0, Sept. 2015. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless system," IEEE Commun. Mag., vol.52, no. 2, pp. 186-195, Feb. 2014.
 しかしながら、特に複数の基地局装置を備える通信システム又は複数の通信機器と共存する通信システムにおいて、多数のアンテナによるビームフォーミングは、所望の送信電力は向上するものの、ビームフォーミングによる強い干渉信号が確率的に生じてしまうという問題がある。
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、ビームフォーミングによる干渉が生じる環境であっても、周波数利用効率又はスループットを向上することが可能な基地局装置及び通信方法を提供することにある。
 上述した課題を解決するために本発明に係る通信装置及び通信方法の構成は、次の通りである。
 本発明の一態様に係る通信装置は、通信部と制御部を備え、前記通信部は、第1の周波数帯、又は前記第1の周波数帯及び第2の周波数帯で通信し、前記制御部は、前記第1の周波数帯で通信する場合に第1の通信プロトコルで通信するように制御し、前記第1の周波数帯及び前記第2の周波数帯で通信する場合に第2の通信プロトコルで通信するように制御する。
 本発明の一態様に係る通信装置において、前記第2の周波数帯は前記第1の周波数帯よりも高周波数である。
 本発明の一態様に係る通信装置において、所定のビーム幅でキャリアセンスするキャリアセンス部を備え、前記第1の周波数帯では全方向にキャリアセンスし、前記第2の周波数帯では全方向よりも狭い範囲にキャリアセンスする。
 本発明の一態様に係る通信方法は、第1の周波数帯、又は前記第1の周波数帯及び第2の周波数帯で通信するステップと、前記第1の周波数帯で通信する場合に第1の通信プロトコルで通信するように制御し、前記第1の周波数帯及び前記第2の周波数帯で通信する場合に第2の通信プロトコルで通信するように制御するステップと、を有する。
 本発明の一態様によれば、通信方式を適切に制御することによって、周波数利用効率又はスループットを向上することが可能となる。
本実施形態に係る通信システムの例を示す図である 本実施形態に係る基地局装置の構成例を示すブロック図である 本実施形態に係る端末装置の構成例を示すブロック図である 本実施形態に係る通信システムの例を示す図である 本実施形態に係るフローチャート例を示す図である
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB、送信ポイント、送受信ポイント、送信パネル、アクセスポイント)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE、受信ポイント、受信パネル、ステーション)を備える。また端末装置と接続している(無線リンクを確立している)基地局装置をサービングセルと呼ぶ。
 本実施形態における基地局装置及び端末装置は、免許が必要な周波数帯域(ライセンスバンド)及び/又は免許不要の周波数帯域(アンライセンスバンド)で通信することができる。
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2Aを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また、端末装置2Aを端末装置2とも称する。
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indicator)などが該当する。
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。
 前記CRIは、複数のCSI-RSリソースから受信電力/受信品質が好適なCSI-RSリソースを示す。
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記CQI値、PMI値、RI値及びCRI値の一部又は全部をCSI値とも総称する。
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層(PHY層)によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)が含まれる。
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel;報知チャネル)
・PCFICH(Physical Control Format Indicator Channel;制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel;HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel;下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel;拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel;下りリンク共有チャネル)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)シンボルの数)を指示する情報を送信するために用いられる。
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI;Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 例えば、チャネル状態情報報告は、半永続的なチャネル状態情報(semi-persistent CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、半永続的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えばWideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(PeriodicCSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えばWideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。
 ここで、下りリンク参照信号には、CRS(Cell-specific Reference Signal;セル固有参照信号)、PDSCHに関連するURS(UE-specific Reference Signal;端末固有参照信号、端末装置固有参照信号)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Channel State Information - Reference Signal)、ZP CSI-RS(Zero Power Channel State Information - Reference Signal)が含まれる。
 CRSは、サブフレームの全帯域で送信され、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信され、URSが関連するPDSCHの復調を行なうために用いられる。なお、PDSCHに関連するURSをDMRS、下りリンクDMRSとも呼ぶ。
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)を行なう。またNZP CSI-RSは、好適なビーム方向を探索するビーム走査やビーム方向の受信電力/受信品質が劣化した際にリカバリするビームリカバリ等に用いられる。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、NZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。
 また、キャリアアグリゲーション(CA; Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC; Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell;Primary Cell)及び1または複数のセカンダリセル(SCell;Secondary Cell)がサービングセルの集合として設定される。
 また、デュアルコネクティビティ(DC; Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG; Master Cell Group)とセカンダリセルグループ(SCG; Secondary Cell Group)が設定される。MCGはPCellとオプションで1又は複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1又は複数のSCellから構成される。
 基地局装置は無線フレームを用いて通信することができる。無線フレームは複数のサブフレーム(サブ区間)から構成される。フレーム長を時間で表現する場合、例えば、無線フレーム長は10ミリ秒(ms)、サブフレーム長は1msとすることができる。この例では無線フレームは10個のサブフレームで構成される。
 またスロットは、7又は14個のOFDMシンボルで構成される。OFDMシンボル長はサブキャリア間隔によって変わり得るため、サブキャリア間隔でスロット長も代わり得る。またミニスロットは、スロットよりも少ないOFDMシンボルで構成される。スロット/ミニスロットは、スケジューリング単位になることができる。なお端末装置は、スロットベーススケジューリング/ミニスロットベーススケジューリングは、最初の下りリンクDMRSの位置(配置)によって知ることができる。スロットベーススケジューリングでは、スロットの3番目又は4番目のシンボルに最初の下りリンクDMRSが固定される。またミニスロットベーススケジューリングでは、スケジューリングされたデータ(リソース)の最初のシンボルに最初の下りリンクDMRSが配置される。
 基地局装置/端末装置はライセンスバンド又はアンライセンスバンドで通信することができる。基地局装置/端末装置は、ライセンスバンドがPCellとなり、アンライセンスバンドで動作する少なくとも1つのSCellとキャリアアグリゲーションで通信することができる。また、基地局装置/端末装置は、マスターセルグループがライセンスバンドで通信し、セカンダリセルグループがアンライセンスバンドで通信する、デュアルコネクティビティで通信することができる。また、基地局装置/端末装置は、アンライセンスバンドにおいて、PCellのみで通信することができる。また、基地局装置/端末装置は、アンライセンスバンドのみでCA又はDCで通信することができる。なお、ライセンスバンドがPCellとなり、アンライセンスバンドのセル(SCell、PSCell)を、例えばCA、DCなどでアシストして通信することを、LAA(Licensed-Assisted Access)とも呼ぶ。また、基地局装置/端末装置がアンライセンスバンドのみで通信することを、アンライセンススタンドアロンアクセス(ULSA;Unlicensed-standalone access)とも呼ぶ。また、基地局装置/端末装置がライセンスバンドのみで通信することを、ライセンスアクセス(LA;Licensed Access)とも呼ぶ。
 図2は、本実施形態における基地局装置1Aの構成を示す概略ブロック図である。図7に示すように、基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と送受信アンテナ105、キャリアセンス部(キャリアセンスステップ)106を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力などを決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。また制御部102は、キャリアセンス後に送信する必要がある場合、キャリアセンス部106を制御してキャリアセンスを行い、チャネル占有時間(又はチャネル送信許可時間)を獲得する。また制御部102は、キャリアセンスに成功した後、リソース予約信号や送信信号等を送信するように送信部103を制御する。
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2に信号を送信する。
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化、LDPC(低密度パリティチェック:Low density parity check)符号化、Polar符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)などを基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をデジタル信号に変換する。
 無線受信部1041は、変換したデジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部1042に出力する。
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置2に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。
 キャリアセンス部106は、キャリアセンスを行い、チャネル占有時間(又はチャネル送信許可時間)を獲得する。
 図3は、本実施形態における端末装置2の構成を示す概略ブロック図である。図7に示すように、端末装置2Aは、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、チャネル状態情報生成部(チャネル状態情報生成ステップ)205と送受信アンテナ206、キャリアセンス部(キャリアセンスステップ)207を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(PacketData Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。
 無線リソース制御部2011は、基地局装置から送信されたCSIフィードバックに関する設定情報を取得し、制御部202に出力する。
 無線リソース制御部2011は、基地局装置から送信されたアンライセンスバンドにおけるキャリアセンスのための情報を取得し、制御部202に出力する。
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、チャネル状態情報生成部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、チャネル状態情報生成部205および送信部203に出力して受信部204、および送信部203の制御を行なう。
 制御部202は、チャネル状態情報生成部205が生成したCSIを基地局装置に送信するように送信部203を制御する。
 制御部202は、キャリアセンス後に送信する必要がある場合、キャリアセンス部207を制御する。また制御部202は、送信電力や帯域幅などからエネルギー検出閾値を算出し、キャリアセンス部207に出力する。
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置1Aから受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をデジタル信号に変換する。
 また、無線受信部2041は、変換したデジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行い、周波数領域の信号を抽出する。
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。
 信号検出部2043は、PDSCH、チャネル推定値を用いて、信号検出し、上位層処理部201に出力する。
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置1Aに送信する。
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報又は上りリンクデータを畳み込み符号化、ブロック符号化、ターボ符号化、LDPC符号化、Polar符号化等の符号化を行う。
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。
 上りリンク参照信号生成部2033は、基地局装置1Aを識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。
 多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast FourierTransform: IFFT)して、OFDM方式の変調を行い、OFDMAシンボルを生成し、生成されたOFDMAシンボルにCPを付加し、ベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。
 キャリアセンス部207は、エネルギー検出閾値などを用いてキャリアセンスを行い、チャネル占有時間(又はチャネル送信許可時間)を獲得する。
 なお、端末装置2はOFDMA方式に限らず、SC-FDMA方式の変調を行うことができる。
 超高精細映像伝送など、超大容量通信が要求される場合、高周波数帯を活用した超広帯域伝送が望まれる。高周波数帯における伝送は、パスロスを補償することが必要であり、ビームフォーミングが重要となる。また、ある限定されたエリアに複数の端末装置が存在する環境において、各端末装置に対して超大容量通信が要求される場合、基地局装置を高密度に配置した超高密度ネットワーク(Ultra-dense network)が有効である。しかしながら、基地局装置を高密度に配置した場合、SNR(信号対雑音電力比:Signal to noisepower ratio)は大きく改善するものの、ビームフォーミングによる強い干渉が到来する可能性がある。従って、限定エリア内のあらゆる端末装置に対して、超大容量通信を実現するためには、ビームフォーミングを考慮した干渉制御(回避、抑圧)が必要となる。
 例えば、基地局装置間で協調(連携)して干渉制御することが有効である。これは複数の基地局装置を制御できる集中制御局が、各基地局装置の無線リソース(時間、周波数又は空間レイヤ)やビーム方向を適切に制御することで、干渉を制御することができる。しかしながら、超高密度ネットワークのように、集中制御局が管理する基地局装置の数が増加すると、干渉制御の複雑さが大幅に増加するという問題がある。そこで、集中制御局がない場合、もしくは、集中制御局があっても複雑な動作はしない場合において、干渉制御可能な技術が望まれる。
 本実施形態では、各基地局装置が自律分散的に干渉制御する例を説明する。図4は、本実施形態に係る通信システムの例を示す。図4に示した通信システムは、基地局装置3A、3B、3C、端末装置4A、4B、4Cを備える。また、3-1A、3-1B、3-1Cはそれぞれ基地局装置3A、3B、3Cが観測したキャリアセンスの範囲を図示したものである。また、3-2A、3-2B、3-2Cはそれぞれ基地局装置3A、3B、3Cが端末装置4A、4B、4Cに送信するビームフォーミングを図示したものである。各基地局装置は、隣接基地局装置/端末装置/通信装置からの干渉信号(無線リソース使用状況)を観測し、周囲から受ける干渉や周囲に与える干渉が弱い範囲や方向に対して、信号を送信する。各基地局装置は、伝送前にキャリア(チャネル)センスによって、他の通信機器が通信しているか否か(アイドルかビジーか)を評価するLBT(Listen Before Talk)をする。なお、本実施形態では、ビームフォーミングによる干渉を問題としているため、ビームフォーミングを考慮したキャリアセンスを行う。あるビーム幅で観測(受信)した信号でキャリアセンスに成功した場合、そのビーム幅の範囲内に限り送信期間を獲得できる。なおビーム幅はメインビーム(メインローブ)の幅であり、例えば、ビーム利得(アンテナ利得)の最大値から利得が3 dB下がる角度幅(半値幅)である。なお、ビーム幅はメインビームの方向を含む。また、あるビーム幅のビームフォーミングが定義(規定)されてもよい。例えば、ビーム幅外のサイドローブの最大ビーム利得又はビーム幅内の最大ビーム利得とビーム幅外の最大ビーム利得との差(比)が基準を満足することである。さらに、ビーム利得の最大利得から3dB下がる角度から、最大ビーム利得の方向とは逆の方向へ所定の角度以上に離れた角度方向のサイドローブ(又はバックローブ)のビーム利得と、ビーム幅内のビーム利得との差(比)が基準を満足することである。これにより、各基地局装置は、互いに与える干渉が低減されたビームフォーミングをすることができる。なお、本実施形態の基地局装置/端末装置は、ライセンスバンド又はアンライセンスバンドで通信することができる。なお、キャリアセンスに成功したビーム幅を獲得ビーム幅とも呼ぶ。なお、獲得ビーム幅はキャリアセンスに成功したビーム幅のメインビームの方向を含む。なお、受信ビームと送信ビームに相反性(対応)があることが望ましい。従って、ビームフォーミングを考慮したキャリアセンスは、受信ビームと送信ビームに相反性(対応)がある場合に行われても良い。
 基地局装置は、獲得ビーム幅以内であれば、データ信号などをより狭いビーム幅で送信することができる。言い換えると、基地局装置は、獲得ビーム幅の外側にメインビームを向けたビームフォーミングで送信することはできない。好適なビーム方向はビーム走査で探索すればよい。これにより、干渉を低減しつつ、所望信号電力を向上させることができるため、スループットを向上させることができる。なお、一般に、ビームフォーミングは獲得ビーム幅の外側にサイドローブが生じる可能性がある。従って、獲得ビーム幅内で認められるビームフォーミングが定義(規定)されてもよい。その定義(規定)は、例えば、獲得ビーム幅外のサイドローブの最大ビーム利得又は獲得ビーム幅内の最大ビーム利得と獲得ビーム幅外の最大ビーム利得との差(比)が基準を満足することである。
 アンライセンスバンドで通信する場合、そのチャネルをアイドルと判断してキャリアセンスに成功すると、基地局装置/端末装置はある期間チャネルを占有できる。チャネルを占有できる期間(チャネル占有期間)の最大値は、MCOT(Maximum Channel Occupancy Time)と呼ぶ。また、MCOTはデータの優先度によって変わる。データの優先度は優先度クラス(チャネルアクセスプライオリティクラス)で表現することができる。優先度クラスは、優先度が高い順に、1、2、3、4で示される。また、優先度クラスによってLBTに必要なランダムな期間の最大値も変わり得る。なお、ランダムな期間は、コンテンションウィンドウ以下のランダムな正の整数とスロット期間(例えば9マイクロ秒)との積となる。また、コンテンションウィンドウサイズ(CWS)以下のランダムな正の整数をキャリアセンス(LBT)におけるカウンタとも呼ぶ。CWSは優先度クラスや伝送誤り率などで変わる可能性がある。また、スロット期間の中で少なくとも所定の期間(例えば4マイクロ秒)で、観測(検出)した電力がエネルギー検出閾値未満となれば、そのスロット期間はアイドルと考慮される。そうでなければ、そのスロット期間はビジーと考慮される。そして、カウンタ数だけのスロットでアイドルとなれば、キャリアセンスは成功と考慮される。なお、スロット期間は周波数バンド(周波数帯域幅、キャリア周波数)によって変わってよく、高周波数帯の方がスロット期間を短くすることができる。また、周波数バンド(周波数帯域幅、キャリア周波数)によって、スロット単位でアイドル/ビジーを判断する期間が変わっても良い。つまり、高周波数帯の方が、アイドルと判断する際に、観測(検出)した電力がエネルギー検出閾値未満となる期間は短くすることができる。
 なおライセンスバンドでは、スロット期間はサンプリング間隔に基づく時間単位tsやOFDMシンボル数で表現されても良い。tsはサブキャリア間隔をSCS、FFTサイズをNFFTとすると、ts=(1/(SCS×NFFT))となる。例えば、スロット期間は、1OFDMシンボルや256tsと表現される。なお、OFDMシンボル数で表現する場合、例えば、0.25OFDMシンボル、0.5OFDMシンボルのように、分数で表現してもよい。なお、OFDMシンボル長やtsはサブキャリア間隔に基づくため、スロット期間を表現するためのサブキャリア間隔は決まっていても良い。また、スロット期間は周波数バンド(周波数帯域幅、キャリア周波数)で変わっても良いため、周波数バンド毎にスロット期間を表すサブキャリア間隔が変わっても良い。高周波数帯になるほどスロット期間を短くするために、高周波数帯になるほどスロット期間を表すサブキャリア間隔は広くなる。
 ライセンスバンドで通信する場合、アンライセンスバンドと同様の動作も可能であるが、LBT後に必ずしもチャネルを占有しなくてもよい。ライセンスバンドでは、柔軟性を保つために、ある程度複数の通信機器が同時に通信することは認められても良い。従って、ライセンスバンドでは、LBTによってそのチャネルにおける送信する権利が与えられる期間(チャネル送信許可期間)を獲得できる。チャネル送信許可期間の最大値は(MATT: Maximum allowing transmission time)とも呼ぶ。なお、チャネル占有期間、チャネル送信許可期間を総称して送信期間とも呼ぶ。
 基地局装置は、キャリアセンスの際に、他の通信装置が通信を行っているか否かを判断するためにエネルギー検出閾値を用いることができる。基地局装置は、最大エネルギー検出閾値以下となるようにエネルギー検出閾値を設定することができる。ビームフォーミングはビーム利得が得られるため、ビームフォーミングを想定する場合、エネルギー検出閾値にビーム利得を考慮することができる。例えば、ビームフォーミングによるオフセット値X dBはメインビームの利得とサイドローブの利得の差とすることができる。このとき、エネルギー検出閾値をX dB上げた閾値がビーム利得を考慮したエネルギー検出閾値となる。エネルギー検出閾値を上げることは、キャリアセンスの成功確率が向上するが、ビームフォーミングにより干渉を与える面積が狭くなるため、著しく干渉電力が上がる可能性は低い。なお、ビームフォーミングを想定しない場合又はビームパターンが全方向の場合、Xは0 dBとなる。なお、ビームフォーミングによるオフセット値X dBは、基地局装置1Aが通信を行なう周波数バンド(周波数帯域幅、キャリア周波数)によって、その最大値は異なる値に設定されることができる。また、ビームフォーミングによるオフセット値X dBは、基地局装置1Aの送信電力も含めた等価等方放射電力(EIRP:Equivalent isotopically radiated power)に基づいて計算されてもよい。基地局装置1Aが、ビームフォーミングによるオフセット値X dBを、アンテナ利得に基づいて設定するか、EIRPに基づいて設定するかは、基地局装置1Aが通信を行なう周波数バンド(周波数帯域幅、キャリア周波数)によって決定することができる。
 図5は、本実施形態に係る簡易フローチャートである。基地局装置はあるビーム幅及びビーム方向を持つ受信ビームで周囲の通信状況を受信(観測)し、キャリアセンス部106が受信信号(観測信号)を用いてキャリアセンスする(ステップ1)。キャリアセンス部106は、キャリアセンスに成功したか否かを判断する(ステップ2)。キャリアセンスに成功しなかった場合(ステップ2でNOの場合)、ステップ1に戻り、キャリアセンス部106は、別のビーム幅又はビーム方向を用いてキャリアセンスする。キャリアセンスに成功した場合(ステップ2でYESの場合)、送信部103は獲得ビーム幅内のビームフォーミングで送信する。
 獲得ビーム幅内でさらに狭いビーム幅で送信する場合、ビーム利得は高くなる。この場合、ビーム方向が合ってしまうと強い干渉となってしまう。そこで、基地局装置間で送信に用いるビーム利得の最大値を共有(規定)する。これにより、著しく強い干渉信号が生じることを避けることができる。また、基地局装置間でビーム利得の最大値は共有(規定)しないが、ビーム利得と送信電力の和の最大値は共有(規定)してもよい。これは、ビーム利得を上げて良いが、それに応じて送信電力を下げることになり、著しく強い干渉信号が生じることを避けることができる。なお、ビーム利得と送信電力の和は、先に説明したEIRPとすることもできる。
 なお、獲得ビーム幅が広い場合、送信期間を獲得する確率が下がり、獲得ビーム幅が狭い場合、送信期間を獲得しやすいが獲得ビーム幅内に端末装置がいる確率も減ってしまう。効率的に動作させるため、キャリアセンスに好適なビーム幅が必要である。ビーム幅は、基地局装置の数や密度が要因となりうる。基地局装置の数や密度が増えるにつれてビーム幅を狭くし、基地局装置の数や密度が減るにつれてビーム幅を広くすると、効率的である。このため、集中制御局は、基地局装置間で周辺の基地局装置数や基地局装置密度を伝達することができる。または、基地局装置は、基地局装置間で周辺の基地局装置数や基地局装置密度を共有するための仕組みを持っている。このとき、基地局装置は、周辺の基地局装置数や基地局装置密度によって、好適なビーム幅を判断することができる。また、周辺の基地局装置数や基地局装置密度によって、獲得可能な最大ビーム幅が規定されてもよい。また、基地局装置は、ビームを切り替える周期(もしくは、ビームの切り替えを完了しなければならない最長の期間)によって、獲得可能な最大ビーム幅が規定されてもよい。また、基地局装置は、自装置に設定されている通信方式以外の通信方式に基づいた信号が、自装置が通信を行なう周波数チャネルに存在する可能性があるか否かに基づいて、獲得可能な最大ビーム幅が規定されてもよい。
 基地局装置は、獲得ビーム幅内で好適なビーム幅で送信が可能であるが、隣接基地局装置は、獲得ビーム幅を知らないと干渉低減効果は上がらない。そのため、ある基地局装置が獲得したビーム幅を隣接基地局装置が知る必要がある。基地局装置はキャリアセンスによって獲得ビーム幅、獲得ビーム幅の利得最大値の方向、及び、チャネル占有期間/チャネル送信許可期間の一部又は全部を含む制御情報を周辺の基地局装置にブロードキャストすることができる。この場合、隣接基地局装置は、制御情報を受信し、空いている見込みの高いビーム方向を優先してキャリアセンスすることができるため、効率が向上する。また、基地局装置は獲得ビーム幅内で、データ信号を送信するビーム幅以外でリソース予約信号を送信してもよい。リソース予約信号を送信しているビーム方向は、キャリアセンスに成功しないことになり、隣接基地局装置はその方向は使えないことになる。
 なお、上述のビームフォーミングを考慮したキャリアセンスに基づく干渉制御は、基地局装置について説明したが、本発明はこれに限らず、端末装置にも同様に適用可能である。
 獲得ビーム幅内で各端末装置にビームフォーミングをする場合、好適なビーム方向はビーム走査によって探索できる。ビーム走査は、例えば同期信号やCSI-RSが用いられる。同期信号は同期信号ブロック(SSブロック)を単位として送信される。SSブロックは、プライマリ同期信号(PSS;Primary synchronization signal)、セカンダリ同期信号(SSS; Secondary synchronization signal)、PBCHを含む。SSブロックは1スロット当たり最大2つまで含む。SSブロックは例えば5 msのタイミング範囲(窓)内に複数配置することができる。タイミング範囲(窓)は同期信号オケージョン(SS occasion)とも呼ぶ。タイミング範囲(窓)は周期的に送信される。タイミング範囲(窓)内に配置可能な最大数はサブキャリア間隔で変わってもよい。タイミング範囲(窓)の位置及び/又はタイミング範囲(窓)内のSSブロックの位置は、DMRS及び/又はPBCHによって示される。タイミング範囲(窓)の位置は、例えば無線フレームの番号を示す無線フレーム番号(SFN; System frame number)で示される。また、タイミング範囲(窓)の周期は基地局装置から上位層の信号で示される。またSCellにおける5 msの範囲(窓)の位置は、基地局装置から上位層の信号で示されてもよい。タイミング範囲(窓)内に複数配置されたSSブロックに対して、異なるビーム方向でビームフォーミングして送信し、端末装置から好適な受信電力/受信品質となるSSブロックを報告されると、基地局装置はその端末装置にとって好適なビーム方向を知ることができる。端末装置は基地局装置に好適な受信電力/受信品質となるSSブロックを示すために、SSブロックのインデックスを報告しても良いし、好適な受信電力/受信品質となるSSブロックに対応する無線リソースでランダムアクセスプリアンブルを送信しても良い。
 なお、上述のキャリアセンスに基づく干渉制御において、ライセンスバンドでは、キャリアセンスしないで同期信号を送信しても良いが、アンライセンスバンドでは、キャリアセンスが必要となる。キャリアセンスに失敗すると、所望のタイミングで同期信号を送信できない可能性がある。この場合、基地局装置は、チャネル占有期間から外れたSSブロックの送信をスキップしてもよい。
 また、SSブロックのみを送信する場合で、チャネル占有期間がある基準(例えば1 ms)以下である場合、基地局装置は、固定期間(例えば25 マイクロ秒又は8マイクロ秒)のLBT後にSSブロックを送信できる。チャネル占有期間がある基準(例えば1 ms)を超える場合、基地局装置はランダムな期間のLBT後にSSブロックを送信できる。なお、上述した固定期間やチャネル占有期間の基準は、基地局装置が通信を行なう周波数バンドによって異なる値に設定されることができる。例えば、基地局装置は、5GHz帯の周波数バンドと、60GHz帯の周波数バンドと、で異なる固定期間およびチャネル占有期間の基準を設定することができる。周波数バンド毎に設定される固定期間やチャネル占有期間の基準は、特定の値に限定されるものではないが、周波数が高くなるにつれて、固定期間やチャネル占有期間の基準は短く設定されることが好適である。また、周波数バンド毎に同じ数式で、固定期間やチャネル占有期間の基準が設定されることができる。例えば、所定のフレーム期間をA、スロット期間をBとすると、固定期間は、A+Bや、A+2×Bの数式で表現され、AおよびBの値が、周波数バンド毎に異なる値に設定されることができる。また、基地局装置1Aは、タイミング範囲(窓)のSSブロックを送信していない時間期間において、LBTを実施することも可能である。また、固定期間やチャネル占有期間の基準は、基地局装置1Aが送信する信号のサブキャリア間隔に基づいて設定されることも可能である。
 また、上位レイヤの通信プロトコルを考慮することによって、効率的な通信が可能となる。通信プロトコルはネットワーク上の機器が互いに通信するための手順や規約である。通信プロトコルには、例えばトランスポート層のプロトコルであるTCP(Transmission Control Protocol)やUDP(User Datagram Protocol)がある。TCPは、セッション(コネクション)を確立すること、再送制御をすることなどから、信頼性の高い通信が可能となる。しかしながら、例えば再送制御は送信側(例えば基地局装置)と受信側(例えば端末装置)で正しく受信できたか否かの確認をしながら通信するため、オーバーヘッドが増え、高速伝送の達成が難しい。一方、UDPはセッション(コネクション)を確立しないため、信頼性には欠けるものの、条件が揃えば、高速伝送が可能となる。無線伝搬環境は、時々刻々と変化するため、無線伝搬環境に応じてTCPやUDP、又はTCPやUDPをベースとした通信プロトコルを選択することで、効率の良い伝送が可能となる。なお、本実施形態では、TCPやTCPベースの通信プロトコルを第1の通信プロトコル、UDPやUDPベースの通信プロトコルを第2の通信プロトコルとも呼称する。なお、本実施形態が対象とする通信プロトコルは上記例に限定されない。例えば上記TCPとセットで使用されるHTTP(HyperText Transfer Protocol)やFTP(File Transfer Protocol)といった、前提となるアプリケーションに基づいて選択される通信プロトコルも含まれる。また、通信プロトコルを切り替えるということは、異なる通信プロトコルで行われることもできるし、同じプロトコルであるものの、異なる設定値が適用される複数のプロトコルを切り替えることも含む。
 例えば、比較的低い周波数帯では、ビーム幅が狭いビームフォーミングを使う可能性は低いため、伝搬状況や干渉状況は安定している。一方、ビーム幅が狭いビームフォーミングを用いる高い周波数帯では、遮蔽物の影響などがあるため、伝搬環境や干渉状況は著しく変化する。このとき、映像ストリーミングなどのリアルタイム伝送を考える。リアルタイム伝送では、所定の遅延時間で要求される伝送レート(例えば映像データのビットレート)を実現し続けなければならない。特に高精細映像の場合、高信頼伝送と高速伝送の両方が必要になる。従って、低い周波数帯(例えば5 GHz帯)での通信はTCPを用い、高い周波数帯(例えば60 GHz帯)での通信はUDPを用いる。低い周波数帯における通信では、伝搬環境は安定しているため、TCPでも高スループットになる可能性が高い。一方、高い周波数帯における通信では、伝搬環境は不安定のため、TCPよりもUDPの方が、高スループットが得られる可能性が高い。なお、高い周波数帯では伝搬環境は不安定のため、低周波数帯とCA又はDCされて利用される可能性がある。この場合、5 GHz帯などの低い周波数帯における通信はTCPを用い、5 GHz帯及び60 GHz帯における通信はUDPを用いる。なお、5 GHz帯の通信と60 GHz帯の通信と5 GHz帯及び60 GHz帯の通信は周辺機器の通信状況で時間的に遷移する。このように、伝搬環境に応じて好適な通信プロトコルを選択することで、効率の良い通信が可能となる。
 また、基地局装置/端末装置は、使用される周波数帯に変化が生じた場合、通信プロトコルを切り替えることができる。例えば、端末装置が第1の周波数バンドにおいて第1の通信プロトコルを用いている状態で、さらに第2の周波数バンドにおける通信リンクも得られたとして場合、端末装置は第2の周波数バンドにおいて第2の通信プロトコルを用いる場合、端末装置は第1の周波数バンドにおいても第2の通信プロトコルを用いる。すなわち、本実施形態に係る基地局装置/端末装置は、自装置の通信に新たに設定可能となる周波数バンド(無線リソース)に基づいて、使用する通信プロトコルを変更することができる。例えば、基地局装置/端末装置は、MAC層およびPHY層等の下位レイヤにおいて、周波数バンドを切り替える動作が行われる(トリガーフレームの送受信が行われる、Fast session transfer(FST)等の周波数バンドを切り替える動作が行われる、CAで設定される通信セルのアクティベートもしくはデアクティベートが行われる)場合に、通信プロトコルを切り替えることができる。
 基地局装置/端末装置は、選択可能な周波数バンド(無線リソース)に優先度を設定し、優先度が高い周波数バンドが新たに設定された場合、通信プロトコルを切り替えることができる。一方で、優先度が低い周波数バンドが新たに設定された場合、通信プロトコルは、既に設定された周波数バンドによって設定されていた通信プロトコルを用いることができる。
 また、基地局装置/端末装置は、キャリアセンスの方法によって、通信プロトコルを切り替えることができる。キャリアセンスの方法は、例えば、獲得ビーム幅である。獲得ビーム幅が広い場合、広い方向に伝送されるため、遮蔽物などの影響を受けにくく、伝搬環境や干渉状況は大きく変化しないと言える。獲得ビーム幅が狭い場合、狭いビームフォーミングで伝送することになるため、遮蔽物の影響を受けやすく、伝搬環境は不安定になる。従って、獲得ビーム幅が広い場合はTCPで通信し、獲得ビーム幅が狭い場合はUDPで通信すれば、効率の良い通信が可能となる。なお、獲得ビーム幅が広いか否かは、獲得ビーム幅が全方向か否かで判断してもよい。つまり、獲得ビーム幅が全方向の場合、基地局装置/端末装置は、獲得ビーム幅が広いと判断し、TCPで通信する。獲得ビーム幅が全方向以外の場合、基地局装置/端末装置は、獲得ビーム幅が狭いと判断し、UDPで通信する。なお、獲得ビーム幅は周波数帯によって変わっても良い。例えば、5GHz帯以下の通信では獲得ビーム幅は全方向、60GHz帯のような高周波数帯では獲得ビーム幅は全方向又は全方向よりも狭い範囲とする。
 また、基地局装置/端末装置は、周辺の観測結果によって、通信プロトコルを切り替えることができる。例えば、端末装置は所定の期間にRSSI(受信信号強度;Received Signal Strength Indicator)を測定し、基地局装置に報告する。基地局装置は、自身の観測結果と端末装置の観測結果から、周辺の干渉量や周辺に通信機器が存在するか否かを推定する。基地局装置/端末装置は、推定された干渉量が小さい又は周辺に通信機器が存在しない場合、TCPで通信し、大きければUDPで通信する。干渉量は、例えば所定の期間内で、観測したRSSIがキャリアセンスのエネルギー検出閾値を超えた期間(比率)とすることができる。
 また、基地局装置/端末装置は、キャリアセンスのエネルギー検出閾値の大小によって、通信プロトコルを切り替えることができる。ここで、第1のエネルギー検出閾値と、第1のエネルギー検出閾値よりも大きい第2のエネルギー検出閾値の2つのエネルギー検出閾値があるとする。エネルギー検出閾値が小さくなると、より離れた通信機器のみが干渉源となり、干渉は弱くなり伝搬環境は良くなる。エネルギー検出閾値が大きくなると、より近くの通信機器が干渉源となり得るため、確率的に強い干渉を受信してしまう。従って、基地局装置/端末装置は、第1のエネルギー検出閾値でキャリアセンスした場合にTCPで通信し、第2のエネルギー検出閾値でキャリアセンスした場合にUDPで通信すれば、効率の良い通信が可能となる。
 また、通信プロトコルを適切に切り替えるために、物理層やMAC層などの下位レイヤとトランスポート層などの上位レイヤは、互いの情報を送受信できることが望ましい。下位レイヤから上位レイヤに伝送する情報は、各周波数バンドの伝搬環境、キャリアセンス情報の少なくとも1つが含まれる。各周波数バンドの伝搬環境は、チャネル測定値、干渉測定値、ブロック誤り率の一部又は全部が含まれる。チャネル測定値は、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、又は受信電力の分散を含む。RSRQはRSRPとRSSIの比に基づいて求められる。干渉測定値はRSSIを含む。ブロック誤り率は、トランスポートブロックや符号ブロックの誤り率であり、例えばHARQのACKとNACKの比率で求められる。キャリアセンス情報は、チャネル占有率(獲得率)、獲得ビーム幅を含む。チャネル占有率は、キャリアセンスしたときのチャネルの獲得しやすさ又はその周波数バンドの混雑度を示す。例えば、チャネル占有率は、キャリアセンスしたときのアイドル状態とビジー状態の比率である。また、複数のエネルギー検出閾値が設定されている場合、キャリアセンス情報は、エネルギー検出閾値ごとの情報とすることができる。また上位レイヤから下位レイヤに伝送する情報は、各周波数バンドの優先度が含まれる。
 上位レイヤから下位レイヤに伝送する情報には、下位レイヤに転送する情報(ビットストリーム)に対する要求条件が含まれる。要求条件には、平均転送速度、最大遅延時間、平均遅延時間等が含まれる。上位レイヤと下位レイヤは、それぞれが保有するパラメータを共有することができる。例えば、下位レイヤであるMAC層において、複数のアクセスカテゴリーが定義されている場合、上位レイヤと下位レイヤは、上位レイヤから入力される要求条件に応じて、下位レイヤがどのアクセスカテゴリーを選択することを予め取り決めておくことができる。このことは上位レイヤが下位レイヤのパラメータ(上記例によればMAC層のアクセスカテゴリー)を直接指定できることも意味している。例えば、下位レイヤにおいて、2つのアクセスカテゴリーが定義されており、第1のアクセスカテゴリーは最大遅延時間として100msを保証するのに対して、第2のアクセスカテゴリーは最大遅延時間として10msを保証する場合、上位レイヤは、下位レイヤに対して、最大遅延時間50msを要求するビットストリームを転送する場合に、上位レイヤは第2のアクセスカテゴリーを選択することが可能である。翻って、下位レイヤが上位レイヤに対して、下位レイヤが選択可能なアクセスカテゴリーを伝えることも可能である。
 上位レイヤが通信プロトコルを切り替える周期(境界)は下位レイヤに揃えることが可能である。例えば、上位レイヤは下位レイヤのRRCシグナリングの送信周期で、通信プロトコルを切り替えることができる。このことは、本実施形態に係る基地局装置/端末装置は上位レイヤと下位レイヤとで時刻同期がとられていることを意味している。すなわち、本実施形態に係る基地局装置/端末装置は、時刻同期に関連付けられた信号を上位レイヤおよび下位レイヤでやり取りすることが可能であり、時刻同期を主導するレイヤ(プライマリレイヤ)はどのレイヤでも構わない。通常、セルラーネットワークにおいては、基地局装置同士がGPS等を通じて同期をとっているが、本実施形態に係る基地局装置/端末装置は、アプリケーションを管理するサーバ(クラウドサーバ、モバイルエッジサーバ)によって、各レイヤの時刻同期が管理されることも可能である。
 なお、本実施形態に係る装置(基地局装置、端末装置)が使用する周波数バンドは、これまで説明してきたライセンスバンドやアンライセンスバンドには限らない。本実施形態が対象とする周波数バンドには、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンド(ホワイトスペース)と呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、これまで特定の事業者に排他的に割り当てられていたものの、将来的に複数の事業者で共用することが見込まれる共用周波数バンド(ライセンス共有バンド)も含まれる。
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明は、通信装置および通信方法に用いて好適である。本発明は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
1A、3A、3B、3C 基地局装置
2A、4A、4B、4C 端末装置
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送受信アンテナ
106 キャリアセンス部
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 チャネル状態情報生成部
206 送受信アンテナ
207 キャリアセンス部
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部

Claims (4)

  1.  通信部と制御部を備え、
     前記通信部は、第1の周波数帯、又は前記第1の周波数帯及び第2の周波数帯で通信し、
     前記制御部は、前記第1の周波数帯で通信する場合に第1の通信プロトコルで通信するように制御し、前記第1の周波数帯及び前記第2の周波数帯で通信する場合に第2の通信プロトコルで通信するように制御する、通信装置。
  2.  前記第2の周波数帯は前記第1の周波数帯よりも高周波数である、
     請求項1に記載の通信装置。
  3.  所定のビーム幅でキャリアセンスするキャリアセンス部を備え、
     前記第1の周波数帯では全方向にキャリアセンスし、
     前記第2の周波数帯では全方向よりも狭い範囲にキャリアセンスする、
     請求項1に記載の通信装置。
  4.  第1の周波数帯、又は前記第1の周波数帯及び第2の周波数帯で通信するステップと、
     前記第1の周波数帯で通信する場合に第1の通信プロトコルで通信するように制御し、前記第1の周波数帯及び前記第2の周波数帯で通信する場合に第2の通信プロトコルで通信するように制御するステップと、を有する通信方法。
PCT/JP2021/013507 2020-04-03 2021-03-30 通信装置および通信方法 WO2021200931A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067357A JP2023078486A (ja) 2020-04-03 2020-04-03 通信装置および通信方法
JP2020-067357 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021200931A1 true WO2021200931A1 (ja) 2021-10-07

Family

ID=77928886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013507 WO2021200931A1 (ja) 2020-04-03 2021-03-30 通信装置および通信方法

Country Status (2)

Country Link
JP (1) JP2023078486A (ja)
WO (1) WO2021200931A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143336A (ja) * 2016-02-08 2017-08-17 日本電信電話株式会社 通信装置及びその制御方法並びにプログラム、並びに通信システム
JP2018530194A (ja) * 2015-08-06 2018-10-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) リスニングベースの送信のための方法および装置
JP2019062505A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 通信装置および通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530194A (ja) * 2015-08-06 2018-10-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) リスニングベースの送信のための方法および装置
JP2017143336A (ja) * 2016-02-08 2017-08-17 日本電信電話株式会社 通信装置及びその制御方法並びにプログラム、並びに通信システム
JP2019062505A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 通信装置および通信方法

Also Published As

Publication number Publication date
JP2023078486A (ja) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2019156085A1 (ja) 基地局装置、端末装置および通信方法
US11038567B2 (en) Adaptive autonomous uplink communication design
WO2019111619A1 (ja) 端末装置、基地局装置および通信方法
JP6843110B2 (ja) 端末装置、基地局装置及び通信方法
JP6904938B2 (ja) 端末装置および通信方法
US20210314780A1 (en) Methods and apparatus for performing beam-directional channel sensing in a wireless communication system
WO2019130810A1 (ja) 基地局装置、端末装置および通信方法
JP6933785B2 (ja) 端末装置および通信方法
US20190394798A1 (en) Base station apparatus, terminal apparatus, and communication method
JP7085347B2 (ja) 基地局装置、端末装置および通信方法
WO2019156082A1 (ja) 通信装置および通信方法
WO2019065189A1 (ja) 基地局装置、端末装置および通信方法
US20210051502A1 (en) Base station apparatus, terminal apparatus, and communication method
WO2020003897A1 (ja) 基地局装置、端末装置および通信方法
WO2019130847A1 (ja) 基地局装置、端末装置および通信方法
US20200382967A1 (en) Base station apparatus and communication method
WO2020004070A1 (ja) 通信装置および通信方法
US20200220680A1 (en) Base station apparatus, terminal apparatus, and communication method
WO2019031507A1 (ja) 通信装置および通信方法
WO2019031552A1 (ja) 基地局装置および通信方法
WO2019111589A1 (ja) 基地局装置、端末装置および通信方法
KR20210134357A (ko) 비면허 대역에서 전송을 수행하기 위한 채널 액세스 방법 및 이를 이용하는 장치
WO2019111590A1 (ja) 基地局装置、端末装置および通信方法
WO2021200931A1 (ja) 通信装置および通信方法
JP2022061551A (ja) 端末装置、基地局装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP