WO2021200859A1 - Electrode and biosensor using same - Google Patents

Electrode and biosensor using same Download PDF

Info

Publication number
WO2021200859A1
WO2021200859A1 PCT/JP2021/013381 JP2021013381W WO2021200859A1 WO 2021200859 A1 WO2021200859 A1 WO 2021200859A1 JP 2021013381 W JP2021013381 W JP 2021013381W WO 2021200859 A1 WO2021200859 A1 WO 2021200859A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
holes
hole
diameter
biosensor
Prior art date
Application number
PCT/JP2021/013381
Other languages
French (fr)
Japanese (ja)
Inventor
ダニエル ポポビッチ
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2022512233A priority Critical patent/JPWO2021200859A1/ja
Publication of WO2021200859A1 publication Critical patent/WO2021200859A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]

Definitions

  • the present invention relates to an electrode and a biosensor using the electrode.
  • a dry electrode When a dry electrode is used for a sensor that detects biological signals such as electrocardiography (ECG) waveforms, pulse waves, electroencephalograms, and myoelectric signals, the electrodes are exposed on the surface of the sensor and the electrodes are brought into direct contact with the skin to make the living body. Measure the potential. At this time, it is required that the electrodes are in stable contact with the skin. It is known that an electrode is placed on the surface of a biocompatible polymer substrate and attached to the skin to detect data (see, for example, Patent Document 1).
  • the contact impedance is higher than that of a wet electrode using gel or the like, and efficient noise removal is a technical issue.
  • noise can be removed to some extent by digital signal processing, it cannot be completely removed. This is because noise generated at the same frequency as the peak waveform in the signal cannot be removed by digital processing.
  • An object of the present invention is to provide an electrode configuration that reduces noise and detects a stable signal waveform, and a biosensor using the electrode configuration.
  • an electrode made of a polymer material is The conductive layer containing the polymer material and One or more holes penetrating the conductive layer in the thickness direction, Have, The electrode has an area of 80 mm 2 or more, and the distance from the end of the conductive layer to the nearest hole and the distance between adjacent holes are at least 2.7 mm.
  • the inventor includes (1) the area of the entire electrode and (2) the design of the holes formed in the electrode (number, size, and arrangement of holes) in order to suppress noise and obtain a stable biological signal. ), Found to optimize.
  • the area of the electrode and the design of the holes formed determine the width of the conductive path created in the electrode during measurement.
  • the width of the conductive path is defined as the distance from the edge of the electrode to the nearest hole and / or the distance between adjacent holes. When the width of the conductive path is appropriate, the signal detection sensitivity is good and an accurate signal waveform can be obtained.
  • the number, size, and arrangement of holes formed in the electrode also affects the stability of contact between the electrode and the skin.
  • the adhesive layer enters the holes of the electrodes to improve the adhesion to the skin.
  • the contact impedance that is, noise is suppressed.
  • FIG. 1 is a schematic view of a biological sensor 100 to which the electrode 10 of the embodiment is applied.
  • FIG. 1A is a top view and FIG. 1B is a bottom view.
  • the surface on which the biosensor 100 is arranged is defined as the XY plane, and the thickness direction of the biosensor 100 is defined as the Z direction.
  • the biosensor 100 has a package 101 that includes a front surface 102 and a back surface 103.
  • the front surface 102 is the outermost surface of the top cover of the package 101
  • the back surface 103 is the attachment surface for attaching the biosensor 100 to the living body.
  • the electronic component 150 is housed in the space 104 inside the package 101 of the biosensor 100.
  • the electronic component 150 includes a microprocessor, a memory, a battery, and the like mounted on a circuit board. Programmable integrated circuits and logic devices may be implemented as needed.
  • the electrode 10 is exposed on the back surface 103 of the package 101.
  • the electrode 10 is connected to the electronic component 150 by the wiring 160.
  • the electrode 10 functions as a probe and comes into contact with the skin during measurement to detect a biological signal.
  • the biological signal detected by the electrode 10 is processed by the electronic component 150 and recorded in the memory for a certain period of time.
  • biometric information is acquired in a single channel using a pair of electrodes 10, but the present invention is not limited to this example.
  • Two differential electrode pairs and one ground electrode may be used, or two or more pairs of electrodes may be used to acquire biometric information in a multi-channel manner.
  • the front surface of the electrode 10 is exposed on the back surface 103 of the package 101.
  • a wearable sensor is realized by attaching the biosensor 100 to the living body on the back surface 103 where the electrode 10 is exposed.
  • the electrode 10 is made of a polymer material.
  • the polymer material is superior in flexibility, oxidation resistance, etc. as compared with the metal material, and is suitable for direct contact with the skin.
  • the electrode 10 can be formed of, for example, a conductive composition containing a conductive polymer and a binder resin.
  • polythiophene polyacetylene, polypyrrole, polyaniline, polyphenylene vinylene, one of these, or a combination of two or more thereof can be used.
  • polythiophene compounds especially polystyrene sulfonic acid (poly4-styrene sulfonate; PEDOT-PSS doped with PSS) is used.
  • the content of the conductive polymer is preferably 0.20 parts by mass to 20 parts by mass, and more preferably 2.5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the conductive composition. , 3.0 parts by mass to 12 parts by mass is more preferable.
  • the content of the conductive polymer is in the range of 0.20 parts by mass to 20 parts by mass with respect to the conductive composition, high conductivity, toughness, and flexibility can be imparted to the conductive composition. ..
  • the binder resin may be a water-soluble polymer or a water-insoluble polymer, but in the embodiment, the water-soluble polymer is used from the viewpoint of compatibility with other components contained in the conductive composition.
  • the water-soluble polymer contains a polymer (hydrophilic polymer) that is completely insoluble in water and has hydrophilicity.
  • a hydroxyl group-containing polymer or the like can be used as the water-soluble polymer.
  • saccharides such as agarose, polyvinyl alcohol (PVA), modified polyvinyl alcohol, or a copolymer of acrylic acid and sodium acrylate can be used. These may be used alone or in combination of two or more. Among these, polyvinyl alcohol or modified polyvinyl alcohol is preferable, and modified polyvinyl alcohol is more preferable.
  • the content of the binder resin is preferably 5 parts by mass to 140 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and 20 parts by mass to 70 parts by mass with respect to 100 parts by mass of the conductive composition. It is more preferably parts by mass.
  • the content of the binder resin is in the range of 5 parts by mass to 140 parts by mass with respect to the conductive composition, excellent conductivity, toughness, and flexibility can be imparted to the conductive composition.
  • the conductive composition may contain at least one of a cross-linking agent and a plasticizer.
  • Crosslinkers and plasticizers impart toughness and flexibility to the conductive composition.
  • “Toughness” refers to the property of having both strength and elongation. Flexibility refers to the property of being able to suppress the occurrence of damage such as breakage at the bent portion even when the electrode 10 which is a cured product of the conductive composition is bent.
  • cross-linking agents or plasticizers In addition to cross-linking agents or plasticizers, surfactants, softeners, stabilizers, leveling agents, antioxidants, hydrolysis inhibitors, leavening agents, thickeners, colorings, as needed, in conductive compositions Agents, fillers and the like may be included in appropriate proportions.
  • the electrode 10 has the above-mentioned conductive layer 11 of the polymer material and one or more holes 15 penetrating the conductive layer 11.
  • a polymer mixed with conductive nanopowder such as carbon, Ag, Ni, or a polymer mixed with carbon nanotubes (CNT) I and silver (Ag) nanotubes. , Carbon nanobud (CNB) and the like may be mixed.
  • At least one of the size and shape of the electrode 10, the number of holes 15, the size, and the arrangement of the electrode 10 is optimal so that the electrode 10 can stably contact the skin for a certain period of time and detect a biological signal with high sensitivity and low noise. Designed in range. The optimum range of these parameters will be described later.
  • FIG. 2 shows an example of a hole 15 formed in the electrode 10.
  • the shape of the hole 15 does not matter as long as the electrode 10 has an area of a certain value or more and the minimum distance between the hole 15 and the hole 15 is a certain value or more. It may be a circular hole 15 as shown in FIG. 2A, or an elliptical, oval, or oval hole 15 as shown in FIG. 2B. It may be a polygonal hole 15 as shown in FIG. 2C.
  • the polygon is not limited to a hexagon, and may be another polygon such as a quadrangle, a pentagon, or an octagon.
  • the diameter of the hole 15 formed in the electrode 10 is set to 3 mm or more and 8 mm or less, as will be described later. This is because within this range, the adhesive layer adheres to the skin through the holes 15 and the contact between the electrode 10 and the skin can be maintained.
  • the diameter of the hole 15 is preferably 5 mm or more and 8 mm or less. From the viewpoint of widening the width of the conductive path formed on the electrode 10 at the time of measurement, it is desirable that the diameter of the hole is 5 mm or more and 6 mm or less.
  • the size and shape of the holes 15 formed in the electrode 10 do not necessarily have to be the same. If the diameter in the above range or the total opening area of the holes 15 is secured in a certain range, the shapes shown in FIGS. 2A to 2C and other shapes are mixed. May be good. In the case of a polygon, the diameter shall be the distance from one vertex to the opposite vertex or side. In the case of an ellipse or an oval, the diameter is the average of the minor and major.
  • the thickness of the electrode 10 can be appropriately designed as long as the holes 15 can be formed, have sufficient strength, and are easy to handle. As an example, the thickness is 0.1 ⁇ m to 100 ⁇ m.
  • FIG. 3 shows a state when the biosensor 100 is used.
  • the back surface 103 of the biosensor 100 is pressed against and attached to the skin 20 of the person to be measured.
  • the biosensor 100 may have a base material 110 that holds the electronic component 150 as part of the package 101.
  • the electronic component 150 may be mounted on the surface 110a side of the base material 110 via an insulating layer, and a wiring 160 extending from the electronic component 150 may be formed.
  • a pressure-sensitive adhesive layer 25 is provided on the back surface 110b of the base material 110, and the electrode 10 is held by the pressure-sensitive adhesive layer 25.
  • the pressure-sensitive adhesive layer 25 and the electrode 10 may be protected by a release paper or the like when the biosensor 100 is not in use.
  • the biosensor 100 When the back surface 103 of the package 101 of the biosensor 100 is pressed against the skin 20 during use, the biosensor 100 is fixed to the skin 20 by the pressure-sensitive adhesive layer 25.
  • the electrode 10 exposed on the back surface 103 is also directly pressed against the skin 20.
  • the electrode 10 is provided with a hole 15 whose size or diameter is designed within a predetermined range.
  • the pressure-sensitive adhesive layer 25 adheres to the skin 20 through the holes 15. By adhering the pressure-sensitive adhesive layer 25 to the skin 20 through the holes 15, it is possible to prevent the electrode 10 from floating from the skin 20 and peeling off. By stabilizing the contact between the electrode 10 and the skin, it is possible to reduce noise caused by the contact impedance and stably detect the biological signal.
  • FIG. 4 is a schematic diagram of a setup for evaluating the effect of electrode size on the biological signal waveform.
  • FIG. 4A is a side view of the setup, and
  • FIG. 4B is a bottom view.
  • the electrode sample 10S is held by the pressure-sensitive adhesive tape 250, and a part of the contact surface 111 of the electrode sample 10S with the skin is covered with the insulating layer 22.
  • the effective area of the electrode sample 10S is changed by changing the area of the region covered by the insulating layer 22.
  • the electrode sample 10S is connected to the ECG monitor with a conductive hook 21.
  • the electrode sample 10S is formed to a thickness of 25 ⁇ m using the above-mentioned PEDOT-PSS.
  • One side of the rectangular electrode sample 10S is fixed to the length L, and the width W of the adjacent side is made variable.
  • FIGS. 5A-5J show signal waveforms acquired using electrode samples 10S of various sizes.
  • (a) is an ECG waveform and
  • (b) is a fast Fourier transform (FFT) spectrum thereof.
  • the horizontal axis of the ECG waveform is time (seconds), and the vertical axis is electric potential.
  • the horizontal axis of the FFT spectrum is frequency, and the vertical axis is magnitude.
  • the ECG waveform alone cannot evaluate the hidden noise generated at the same frequency as the peak. Therefore, the state of noise is observed in the FFT spectrum.
  • the width W of the electrode sample 10S is set to 0 mm, and the area of the electrode is zero. Since the entire electrode sample 10S is covered with the insulating layer 22 and is not in contact with the living body, the ECG waveform cannot be detected, and only noise is detected. Even in the FFT spectrum, only noise is present and no periodic signal peak appears.
  • the electrode sample 10S is in contact with the skin only in a very narrow area.
  • the ECG waveform including the PQRST wave has been obtained, the position of the waveform is shifted up and down, and the influence of respiration is remarkable.
  • the baseline has fluctuated, showing the effects of body movements.
  • the baseline is represented by a line connecting the beginning of the P wave to the beginning of the next P wave.
  • the U wave which is a small wave that should appear after the T wave, is not observed.
  • the U wave is used to determine diseases such as hypokalemia (when the peak direction is the same as the T wave), hypertension, and cardiomyopathy (when the peak direction is opposite to the T wave), and the detection of the U wave is ECG. It is one of the important elements of diagnosis. Looking at the FFT spectrum, some periodic peaks appear, but it is buried in the noise immediately after the measurement and biometric information cannot be obtained. The range of 0 to 0.5 Hz of the FFT is generally associated with baseline variability, and the paceline is also unstable when there is a lot of noise in this region.
  • the vertical shift of the ECG waveform (effect of respiration) is small, but the baseline is not stable and a clear U wave is not observed.
  • some periodic signals (SIG) are observed, but the noise (N) is large with respect to the signal (SIG), and the signal-to-noise ratio (SNR) is low. Too much.
  • the effect of respiration is less than in FIG. 5B, but the baseline is not stable and no clear U wave is observed.
  • some periodic signals (SIG) are observed in the FFT spectrum, the SNR is small and sufficiently reliable biometric information cannot be obtained.
  • the baseline has begun to stabilize and the effects of respiration are lessened.
  • a small U wave is observed after the T wave.
  • a periodic signal (SIG) is observed in the FFT spectrum, and the SNR is improved compared to FIG. 5D. If the electrode size is 80 mm 2 , the ECG waveform can be detected stably.
  • the baseline is stable and the effect of respiration is small.
  • the U wave is stably observed.
  • a high SNR is obtained in the FFT spectrum.
  • the baseline is stable and there is almost no effect of respiration. After the T wave, the U wave is clearly observed. A high SNR is obtained in the FFT spectrum.
  • the width W of the electrode sample 10S is set to 10 mm, 12 mm, and 14 mm, respectively.
  • the baseline is stable and there is almost no effect of respiration. After the T wave, a U wave is clearly observed, and a high SNR is obtained in the FFT spectrum.
  • FIG. 6 is a table summarizing the measurement results of FIGS. 5A to 5J.
  • the leftmost column is the electrode size (W ⁇ Lmm 2 )
  • the second column from the left is the difference between the maximum and minimum potentials of the ECG waveform (peak-to-valley)
  • the third column from the left is the baseline. Stability, rightmost column shows SNR.
  • the area of the electrode is 3 ⁇ 20 mm 2 or less, the baseline of the ECG waveform is uneasy and there is a lot of noise. It is considered that this is because the contact area between the electrode and the skin is insufficient.
  • the area of the electrode By setting the area of the electrode to 4 ⁇ 20 mm 2 or more, the baseline of the ECG waveform is stabilized and the U wave is observed. In addition, the noise is reduced and a sufficient SNR can be obtained. From this, it is desirable that the area of the entire electrode used in the biosensor 100 is 80 mm 2 or more. However, if the size of the electrode 10 is too large, it hinders the miniaturization of the sensor and the noise picked up becomes large.
  • the size of the electrode 10 is preferably 80 mm 2 or more and 280 mm 2 or less, more preferably 80 mm 2 or more and 200 mm 2 or less.
  • the ECG waveform is measured in a resting state using the electrode sample 10S in which the hole 15 is not formed. That is, the ECG waveform is measured with only the outer circumference of the electrode sample 10S fixed to the skin with the pressure-sensitive adhesive tape 250.
  • the biological sensor 100 that performs ECG measurement, twisting or bending of the body affects the adhesiveness between the electrode 10 and the skin.
  • the adhesion to the skin is maintained not only on the four sides of the electrode 10 but also in the inner region of the electrode 10. Is desirable. Below, the optimum hole design for bringing the pressure-sensitive adhesive layer 25 into contact with the skin through the holes 15 formed in the electrode 10 will be examined.
  • FIG. 7 is a schematic view of an electrode sample 10S for evaluating the number and size of holes 15 formed in the electrode 10. Similar to FIG. 4, a part of the contact surface of the electrode sample 10S with the skin is covered with the insulating layer 22, and the ECG signal is measured via the hook 21. The area of the electrode sample 10S is fixed to L ⁇ W mm 2 , and the number and size of the holes 15 formed in the conductive layer 11 are changed.
  • the conductive layer 11 is formed of PEDOT-PSS, and the holes 15 are formed as circular holes.
  • the area of the electrode sample 10S is fixed to 20 ⁇ 14 mm 2 , the diameter of the holes 15 is changed in the range of 3 mm to 6 mm, and the number of holes 15 is changed in the range of 1 to 5.
  • the number of holes 15 is one.
  • the number of holes 15 is one, if the holes 15 are arranged in the center of the conductive layer 11, the adhesion between the skin and the electrode 10 is stable.
  • the minimum width Pmin is 5.5 mm.
  • the minimum width Pmin is 4.5 mm.
  • the minimum width Pmin is 4 mm.
  • the minimum width Pmin of the conductive path needs to be at least 2.7 mm. Therefore, when there is one hole 15, the diameter ⁇ of the hole 15 may be 8 mm. In this case, the minimum width Pmin is 3 mm, and a sufficient conductive path is formed around the hole 15.
  • the number of holes 15 is two.
  • the diameter ⁇ of the hole 15 is changed to 3 mm, 5 mm, and 6 mm.
  • the minimum width Pmin is 14/3 mm (about 4.7 mm).
  • the minimum width Pmin is 10/3 mm (about 3.3 mm).
  • the minimum width Pmin is 8/3 mm (about 2.74 mm).
  • the number of holes 15 is four.
  • the number of holes 15 is five.
  • the diameter ⁇ is 3 mm
  • the distance between the holes 15 adjacent to each other in the short side direction is 8/3 mm (about 2.7 mm).
  • (C) in FIG. 7 it is difficult to form a hole 15 having a diameter ⁇ of 5 mm or more.
  • the ECG waveform and its FFT spectrum are measured using the electrode samples 10S shown in FIGS. 7A to 7D.
  • FIG. 8 is an ECG waveform when the diameter ⁇ of the hole 15 is 3 mm.
  • A of FIG. 8 shows the ECG waveform when the hole 15 is not formed as a reference.
  • B (C), (D), and (E) are ECG waveforms when the number of holes 15 having a diameter of 3 mm is changed to 1, 2, 4, and 5. be.
  • the baseline is slightly deviated.
  • the signal potential itself is also low. This is because the number of holes 15 is small, and the contact area between the pressure-sensitive adhesive layer and the skin cannot be sufficiently secured. It is considered that the electrode sample 10S is lifted from the skin.
  • the ECG waveform is stable because the total hole area increases.
  • FIG. 9 is an FFT spectrum of FIGS. 8A to 8E.
  • the SNR is good and the signal is observed with low noise.
  • the SNR is decreased.
  • the number of holes 15 is increased on condition that the minimum width Pmin of the conductive path generated in the electrode 10 is maintained at a certain value or more. It is desirable to increase the total hole area.
  • FIG. 10 is an ECG waveform when the diameter ⁇ of the hole 15 is 5 mm.
  • (A) of FIG. 10 shows the ECG waveform when the hole 15 is not formed as a reference.
  • FIG. 10B is an ECG waveform when the number of holes 15 is one
  • FIG. 10C is an ECG waveform when the number of holes 15 is two.
  • the baseline is stable and the waveform positions are aligned. It is considered that this is because the contact area between the pressure-sensitive adhesive layer and the skin is secured, and the electrode sample 10S is stably held on the skin.
  • FIG. 11 is an FFT spectrum of FIGS. 10A to 10C.
  • the SNR is good in both (B) and (C) of FIG. 10, and the SNR is particularly good when the number of holes 15 is two. From this result, it is expected that a stable ECG signal can be obtained with low noise even when the diameter of the hole 15 is set to 8 mm, for example. This is because a wide contact area is secured in the hole 15, and a sufficient conductive path is secured in the conductive layer 11.
  • FIG. 12 is an ECG waveform when the diameter ⁇ of the hole 15 is 6 mm.
  • (A) of FIG. 12 shows the ECG waveform when the hole 15 is not formed as a reference.
  • FIG. 12B is an ECG waveform when the number of holes 15 is one
  • FIG. 12C is an ECG waveform when the number of holes 15 is two.
  • the baseline is stable and the waveform positions are aligned, but in FIG. 12C, the baseline fluctuates and the signal waveform is also small. It is considered that this is because the total area occupied by the holes 15 is too large and the signal detection area becomes small.
  • FIG. 13 is an FFT spectrum of FIGS. 12A to 12C.
  • the SNR in FIG. 13 (B) is good, but the SNR in FIG. 13 (C) is low. Therefore, the SNR is particularly good when the number of holes 15 is two.
  • FIG. 14 is an evaluation result of the influence of the holes 15 formed in the electrode 10 on the ECG waveform.
  • the leftmost column shows the number of holes 15, the second column from the left shows the diameter of the holes 15, the third column from the left shows the effect of breathing on the ECG waveform, and the rightmost column shows the effect of body movement on the ECG signal. ..
  • the minimum width Pmin of the conductive path is 2.8 mm.
  • the minimum width Pmin of the conductive path is 2.7 mm.
  • the diameter range of the hole 15 is larger than 2 mm, preferably 8 mm or less, more preferably 3 mm or more and 8 mm or less, and further preferably 5 mm or more and 6 mm or less. Since the hole 15 is not limited to a circle, the area of the hole, for example 4 mm 2 or more, 50.5 mm 2 or less, more preferably, 7 mm 2 or more and 50.5 mm 2 or less.
  • FIG. 15 is another evaluation result of the influence of the holes formed in the electrodes on the stability of measurement.
  • the biosensor 100 was attached and the ECG waveform was measured all day long in a normal state.
  • the wearable biosensor 100 When the wearable biosensor 100 is realized, it may sweat depending on the season, and depending on the measurement, the sensor may be continuously attached to the skin for a certain period of time.
  • the measurement state is evaluated by changing the monitoring time and the skin condition using the sample of FIG. 7.
  • the leftmost column is the diameter of the hole 15, and the second column from the left is the minimum width (Pmin) of the conductive path.
  • the monitoring time is set to 1 day and 7 days, and the measurement result is evaluated when the skin condition is normal and when sweating, respectively.
  • the double circle indicates that the measurement result is good, that is, a stable ECG waveform is obtained with low noise.
  • the cross mark indicates a case where noise is high and a good ECG waveform cannot be obtained.
  • the triangular mark indicates a case where noise is mixed, but an ECG waveform can be obtained relatively stably.
  • the hole 15 having a diameter of 3 mm is arranged with the minimum width Pmin of the conductive path set to 3 mm (for example, the arrangement of (C) in FIG. 7), it is stable if it is measured for one day in a normal state.
  • the ECG waveform is obtained.
  • the measurement result becomes worse.
  • the lower limit of the diameter of the hole 15 may be 2 mm for measurement in a normal state for about one day, but the diameter of the hole is 3 mm or more for measurement during sweating and long-term measurement. Is also desirable.
  • FIG. 16 shows an example of the planar shape of the electrode 10.
  • the planar shape of the electrode 10 is not limited to a rectangle, and various shapes can be taken as long as holes 15 having an appropriate diameter are formed in the electrode 10 having an appropriate size.
  • the electrode 10 is not limited to the rectangular, elliptical, and D-shaped electrodes shown in FIG. 16, and any shape applicable to the biosensor 100 such as a circle, a semicircle, an oval, and a polygon can be adopted.
  • the electrode 10 having the D-shaped or elliptical conductive layer 11 of FIG. 16 widens the area of the conductive layer 11 in accordance with the arc of the package 101 when both ends of the package 101 of the biosensor 100 are arcuate. Can be taken.
  • the area of the entire electrode 10 including the conductive layer 11 and the hole 15 is 80 mm 2 or more, and the minimum width Pmin of the conductive path formed on the electrode 10 at the time of measurement is at least 2.7 mm. desirable.
  • the electrode 10 By designing the electrode 10 in this way, the adhesion between the biological sensor 100 and the skin can be maintained, and the biological signal can be stably measured with low noise over a certain period of time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The present invention provides an electrode constitution that enables noise reduction and detection of stable signal waveforms, and a biosensor using the same. This electrode, in which a polymer material is used, comprises a conductive layer containing the polymer material and one or more holes, said holes penetrating through the conductive layer in the thickness direction. The area of the electrode is 80 mm2 or greater and the distance from an end of the conductive layer to the nearest hole and the distance between adjacent holes are 2.7 mm or longer.

Description

電極、及びこれを用いた生体センサElectrodes and biosensors using them
 本発明は、電極、及びこれを用いた生体センサに関する。 The present invention relates to an electrode and a biosensor using the electrode.
 心電(ECG:electrocardiography)波形、脈波、脳波、筋電信号等の生体信号を検知するセンサに乾式電極を用いる場合、センサの表面に電極を露出させ、皮膚に直接電極を接触させて生体電位を計測する。このとき、電極が安定して皮膚と接触していることが求められる。生体適合性のあるポリマー基板の表面に電極を配置し、皮膚に貼り付けてデータを検出する構成が知られている(たとえば、特許文献1参照)。 When a dry electrode is used for a sensor that detects biological signals such as electrocardiography (ECG) waveforms, pulse waves, electroencephalograms, and myoelectric signals, the electrodes are exposed on the surface of the sensor and the electrodes are brought into direct contact with the skin to make the living body. Measure the potential. At this time, it is required that the electrodes are in stable contact with the skin. It is known that an electrode is placed on the surface of a biocompatible polymer substrate and attached to the skin to detect data (see, for example, Patent Document 1).
 乾式電極の場合、ジェル等を用いる湿式電極と比べて接触インピーダンスが高く、効率的なノイズ除去が技術課題となる。デジタル信号処理により、ある程度までノイズを除去することができるが、完全にノイズを除去することはできない。信号中のピーク波形と同じ周波数で発生するノイズは、デジタル処理では除去できないからである。 In the case of a dry electrode, the contact impedance is higher than that of a wet electrode using gel or the like, and efficient noise removal is a technical issue. Although noise can be removed to some extent by digital signal processing, it cannot be completely removed. This is because noise generated at the same frequency as the peak waveform in the signal cannot be removed by digital processing.
 本発明は、ノイズを低減し、安定した信号波形を検出する電極の構成と、これを用いた生体センサを提供することを目的とする。 An object of the present invention is to provide an electrode configuration that reduces noise and detects a stable signal waveform, and a biosensor using the electrode configuration.
 本発明のひとつの側面では、高分子材料を用いた電極は、
 前記高分子材料を含む導電層と、
 前記導電層を厚さ方向に貫通する1つ以上の孔と、
を有し、
 前記電極は80mm以上の面積を有し、前記導電層の端部から最も近い孔までの距離、及び隣接する孔間の距離は少なくとも2.7mmである。
In one aspect of the present invention, an electrode made of a polymer material is
The conductive layer containing the polymer material and
One or more holes penetrating the conductive layer in the thickness direction,
Have,
The electrode has an area of 80 mm 2 or more, and the distance from the end of the conductive layer to the nearest hole and the distance between adjacent holes are at least 2.7 mm.
 上記の構成により、ノイズを低減し、安定した信号波形を検出することができる。 With the above configuration, noise can be reduced and a stable signal waveform can be detected.
実施形態の電極が適用される生体センサの一例を示す模式図である。It is a schematic diagram which shows an example of the biological sensor to which the electrode of an embodiment is applied. 電極に形成される孔の例を示す図である。It is a figure which shows the example of the hole formed in an electrode. 生体センサの使用時の状態を示す図である。It is a figure which shows the state at the time of use of a biological sensor. 生体波形に対する電極サイズの影響を評価するセットアップの模式図である。It is a schematic diagram of the setup which evaluates the influence of the electrode size on the biological waveform. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズを変えて測定した信号波形である。It is a signal waveform measured by changing the electrode size. 電極サイズがECG波形に及ぼす影響の評価結果である。This is an evaluation result of the influence of the electrode size on the ECG waveform. 電極に設けられる孔の数とサイズを評価するサンプルの模式図である。It is a schematic diagram of the sample which evaluates the number and size of a hole provided in an electrode. 孔の径が3mmのサンプルで測定したECG波形である。It is an ECG waveform measured with a sample having a hole diameter of 3 mm. 図8のECG波形のFFTスペクトルである。It is an FFT spectrum of the ECG waveform of FIG. 孔の径が5mmのサンプルで測定したECG波形である。It is an ECG waveform measured with a sample having a hole diameter of 5 mm. 図10のECG波形のFFTスペクトルである。It is an FFT spectrum of the ECG waveform of FIG. 孔の径が6mmのサンプルで測定したECG波形である。It is an ECG waveform measured with a sample having a hole diameter of 6 mm. 図12のECG波形のFFTスペクトルである。It is an FFT spectrum of the ECG waveform of FIG. 電極に形成される孔がECG波形に及ぼす影響の評価結果である。This is an evaluation result of the influence of the holes formed in the electrodes on the ECG waveform. 電極に形成される孔が測定の安定性に及ぼす影響の別の評価結果である。Another evaluation result of the effect of the holes formed in the electrodes on the stability of the measurement. 電極形状の例を示す図である。It is a figure which shows the example of the electrode shape.
 発明者は、ノイズを抑制して生体信号を安定して得るために、(1)電極全体の面積と、(2)電極に形成される孔の設計(孔の数、サイズ、及び配置を含む)、を最適化することを見いだした。電極の面積と、形成される孔の設計によって、測定時に電極に生成される導電パスの幅が決まる。導電パスの幅は、電極のエッジから最も近い孔までの距離、及び/または、隣接する孔と孔の間の距離と定義される。導電パスの幅が適切であると、信号検出感度が良好で、正確な信号波形を得ることができる。電極に形成される孔の数、サイズ、及び配置は、電極と皮膚との接触の安定性にも影響する。後述するように、生体センサが皮膚に押しあてられたときに、電極の孔に接着層が入り込んで、皮膚との密着性を高めるからである。電極と皮膚の密着性が向上すると、接触インピーダンス、すなわちノイズが抑制される。 The inventor includes (1) the area of the entire electrode and (2) the design of the holes formed in the electrode (number, size, and arrangement of holes) in order to suppress noise and obtain a stable biological signal. ), Found to optimize. The area of the electrode and the design of the holes formed determine the width of the conductive path created in the electrode during measurement. The width of the conductive path is defined as the distance from the edge of the electrode to the nearest hole and / or the distance between adjacent holes. When the width of the conductive path is appropriate, the signal detection sensitivity is good and an accurate signal waveform can be obtained. The number, size, and arrangement of holes formed in the electrode also affects the stability of contact between the electrode and the skin. This is because, as will be described later, when the biosensor is pressed against the skin, the adhesive layer enters the holes of the electrodes to improve the adhesion to the skin. When the adhesion between the electrode and the skin is improved, the contact impedance, that is, noise is suppressed.
 以下では、ノイズを抑制して安定した信号波形を得るために、電極の面積、及び、電極に形成される孔の最適な設計を検討する。 In the following, in order to suppress noise and obtain a stable signal waveform, the area of the electrode and the optimum design of the holes formed in the electrode will be examined.
 図1は、実施形態の電極10が適用される生体センサ100の模式図である。図1の(A)は上面図、(B)は底面図である。生体センサ100が配置される面をX-Y面、生体センサ100の厚さ方向をZ方向とする。生体センサ100は、表面102と裏面103を含むパッケージ101を有する。表面102は、パッケージ101のトップカバーの最表面であり、裏面103は生体センサ100を生体に貼り付ける貼り付け面となる。 FIG. 1 is a schematic view of a biological sensor 100 to which the electrode 10 of the embodiment is applied. FIG. 1A is a top view and FIG. 1B is a bottom view. The surface on which the biosensor 100 is arranged is defined as the XY plane, and the thickness direction of the biosensor 100 is defined as the Z direction. The biosensor 100 has a package 101 that includes a front surface 102 and a back surface 103. The front surface 102 is the outermost surface of the top cover of the package 101, and the back surface 103 is the attachment surface for attaching the biosensor 100 to the living body.
 生体センサ100のパッケージ101の内部の空間104に、電子部品150が収容されている。電子部品150は、回路基板上に実装されたマイクロプロセッサ、メモリ、バッテリー等を有する。必要に応じて、プログラマブルな集積回路やロジックデバイスが実装されていてもよい。 The electronic component 150 is housed in the space 104 inside the package 101 of the biosensor 100. The electronic component 150 includes a microprocessor, a memory, a battery, and the like mounted on a circuit board. Programmable integrated circuits and logic devices may be implemented as needed.
 パッケージ101の裏面103に、電極10が露出している。電極10は、配線160によって電子部品150に接続されている。電極10はプローブとして機能し、測定時に皮膚と接触して生体信号を検知する。電極10で検知された生体信号は、電子部品150で処理され、一定期間にわたってメモリに記録される。 The electrode 10 is exposed on the back surface 103 of the package 101. The electrode 10 is connected to the electronic component 150 by the wiring 160. The electrode 10 functions as a probe and comes into contact with the skin during measurement to detect a biological signal. The biological signal detected by the electrode 10 is processed by the electronic component 150 and recorded in the memory for a certain period of time.
 図1の例では、一対の電極10を用いて、シングルチャネルで生体情報が取得されるが、この例に限定されない。2つの差動の電極対と、1つのグランド電極を用いてもよいし、2対以上の電極を用いてマルチチャネルで生体情報を取得してもよい。いずれの場合も、電極10の表面は、パッケージ101の裏面103に露出する。電極10が露出する裏面103で生体センサ100を生体に貼り付けることで、ウエアラブルなセンサが実現する。 In the example of FIG. 1, biometric information is acquired in a single channel using a pair of electrodes 10, but the present invention is not limited to this example. Two differential electrode pairs and one ground electrode may be used, or two or more pairs of electrodes may be used to acquire biometric information in a multi-channel manner. In either case, the front surface of the electrode 10 is exposed on the back surface 103 of the package 101. A wearable sensor is realized by attaching the biosensor 100 to the living body on the back surface 103 where the electrode 10 is exposed.
 電極10は、高分子材料で形成されている。高分子材料は、金属材料と比較して、柔軟性、耐酸化性などに優れ、皮膚との直接接触に適している。電極10は、たとえば、導電性高分子とバインダー樹脂を含む導電性組成物で形成することができる。 The electrode 10 is made of a polymer material. The polymer material is superior in flexibility, oxidation resistance, etc. as compared with the metal material, and is suitable for direct contact with the skin. The electrode 10 can be formed of, for example, a conductive composition containing a conductive polymer and a binder resin.
 導電性高分子として、ポリチオフェン、ポリアセチレン、ポリピロール、ポリアニリン、ポリフェニレンビニレン、これらのうちの一種類、または二種類以上の組み合わせ等を用いることができる。一例として、ポリチオフェン化合物、特に、生体との接触インピーダンスがより低く、高い導電性を有する点から、ポリ3、4-エチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(ポリ4-スチレンサルフォネート;PSS)をドープしたPEDOT-PSSを用いる。 As the conductive polymer, polythiophene, polyacetylene, polypyrrole, polyaniline, polyphenylene vinylene, one of these, or a combination of two or more thereof can be used. As an example, polythiophene compounds, especially polystyrene sulfonic acid (poly4-styrene sulfonate; PEDOT-PSS doped with PSS) is used.
 導電性高分子の含有量は、導電性組成物100質量部に対して、0.20質量部~20質量部であることが好ましく、2.5質量部~15質量部であることがより好ましく、3.0質量部~12質量部であることがさらに好ましい。導電性高分子の含有量が、導電性組成物に対して0.20質量部~20質量部の範囲内であれば、導電性組成物に高い導電性、強靱性、及び柔軟性を付与できる。 The content of the conductive polymer is preferably 0.20 parts by mass to 20 parts by mass, and more preferably 2.5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the conductive composition. , 3.0 parts by mass to 12 parts by mass is more preferable. When the content of the conductive polymer is in the range of 0.20 parts by mass to 20 parts by mass with respect to the conductive composition, high conductivity, toughness, and flexibility can be imparted to the conductive composition. ..
 バインダー樹脂は、水溶性高分子でも水不溶性高分子でもよいが、導電性組成物に含まれる他の成分との相溶性の観点から、実施形態では、水溶性高分子を用いる。水溶性高分子は、水には完全に溶けず、親水性を有する高分子(親水性高分子)を含む。水溶性高分子として、ヒドロキシル基含有高分子等を用いることができる。ヒドロキシル基含有高分子として、アガロース等の糖類、ポリビニルアルコール(PVA)、変性ポリビニルアルコール、又はアクリル酸とアクリル酸ナトリウムとの共重合体等を用いることができる。これらは、一種単独で用いてもよいし、二種以上併用してもよい。これらの中でも、ポリビニルアルコール、又は変性ポリビニルアルコールが好ましく、変性ポリビニルアルコールがより好ましい。 The binder resin may be a water-soluble polymer or a water-insoluble polymer, but in the embodiment, the water-soluble polymer is used from the viewpoint of compatibility with other components contained in the conductive composition. The water-soluble polymer contains a polymer (hydrophilic polymer) that is completely insoluble in water and has hydrophilicity. As the water-soluble polymer, a hydroxyl group-containing polymer or the like can be used. As the hydroxyl group-containing polymer, saccharides such as agarose, polyvinyl alcohol (PVA), modified polyvinyl alcohol, or a copolymer of acrylic acid and sodium acrylate can be used. These may be used alone or in combination of two or more. Among these, polyvinyl alcohol or modified polyvinyl alcohol is preferable, and modified polyvinyl alcohol is more preferable.
 バインダー樹脂の含有量は、導電性組成物100質量部に対して、5質量部~140質量部であることが好ましく、10質量部~100質量部であることがより好ましく、20質量部~70質量部であることがさらに好ましい。バインダー樹脂の含有量が、導電性組成物に対して、5質量部~140質量部の範囲内であれば、導電性組成物に優れた導電性、強靱性、及び柔軟性を付与できる。 The content of the binder resin is preferably 5 parts by mass to 140 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and 20 parts by mass to 70 parts by mass with respect to 100 parts by mass of the conductive composition. It is more preferably parts by mass. When the content of the binder resin is in the range of 5 parts by mass to 140 parts by mass with respect to the conductive composition, excellent conductivity, toughness, and flexibility can be imparted to the conductive composition.
 導電性組成物に、架橋剤及び可塑剤のうちの少なくとも一方が含まれていてもよい。架橋剤と可塑剤は、導電性組成物に強靱性と柔軟性を付与する。「強靱性」は、強度と伸度を併せ持つ性質をさす。柔軟性は、導電性組成物の硬化物である電極10を屈曲した場合でも、屈曲部に破断等の損傷の発生を抑制できる性質をさす。 The conductive composition may contain at least one of a cross-linking agent and a plasticizer. Crosslinkers and plasticizers impart toughness and flexibility to the conductive composition. "Toughness" refers to the property of having both strength and elongation. Flexibility refers to the property of being able to suppress the occurrence of damage such as breakage at the bent portion even when the electrode 10 which is a cured product of the conductive composition is bent.
 架橋剤、または可塑剤の他に、必要に応じて、導電性組成物に界面活性剤、軟化剤、安定剤、レベリング剤、酸化防止剤、加水分解防止剤、膨張剤、増粘剤、着色剤、充填剤等が適切な割合で含まれてもよい。 In addition to cross-linking agents or plasticizers, surfactants, softeners, stabilizers, leveling agents, antioxidants, hydrolysis inhibitors, leavening agents, thickeners, colorings, as needed, in conductive compositions Agents, fillers and the like may be included in appropriate proportions.
 電極10は、上述した高分子材料の導電層11と、導電層11を貫通する1つ以上の孔15を有する。電極10の材料として、上述した導電性高分子の他に、ポリマーにカーボン、Ag、Niなどの導電性ナノパウダーを混合したものや、ポリマーに、カーボンナノチューブ(CNT)I、銀(Ag)ナノチューブ、カーボンナノバッド(CNB)等を混合したものを用いてもよい。電極10が一定期間にわたって安定して皮膚と接触し、高感度かつ低ノイズで生体信号を検知するように、電極10の大きさと形状、孔15の数、サイズ、配置の少なくともひとつは、最適な範囲に設計されている。これらのパラメータの最適な範囲については、後述する。 The electrode 10 has the above-mentioned conductive layer 11 of the polymer material and one or more holes 15 penetrating the conductive layer 11. As the material of the electrode 10, in addition to the above-mentioned conductive polymer, a polymer mixed with conductive nanopowder such as carbon, Ag, Ni, or a polymer mixed with carbon nanotubes (CNT) I and silver (Ag) nanotubes. , Carbon nanobud (CNB) and the like may be mixed. At least one of the size and shape of the electrode 10, the number of holes 15, the size, and the arrangement of the electrode 10 is optimal so that the electrode 10 can stably contact the skin for a certain period of time and detect a biological signal with high sensitivity and low noise. Designed in range. The optimum range of these parameters will be described later.
 図2は、電極10に形成される孔15の例を示す。電極10が一定以上の面積を有し、孔15と孔15の間の最小距離が一定値以上であるならば、孔15の形状は問わない。図2の(A)のように円形の孔15であってもよいし、図2の(B)のように、楕円形、長円、卵型などの孔15であってもよい。図2の(C)のように多角形の孔15でもよい。多角形は六角形に限定されず、四角形、五角形、八角形など、その他の多角形でもよい。 FIG. 2 shows an example of a hole 15 formed in the electrode 10. The shape of the hole 15 does not matter as long as the electrode 10 has an area of a certain value or more and the minimum distance between the hole 15 and the hole 15 is a certain value or more. It may be a circular hole 15 as shown in FIG. 2A, or an elliptical, oval, or oval hole 15 as shown in FIG. 2B. It may be a polygonal hole 15 as shown in FIG. 2C. The polygon is not limited to a hexagon, and may be another polygon such as a quadrangle, a pentagon, or an octagon.
 電極10に形成される孔15の径は、後述するように、3mm以上、8mm以下に設定される。この範囲であれば、孔15を介して接着層が皮膚に接着し、電極10と皮膚との接触を維持できるからである。発汗時や長期間にわたって(たとえば1週間)生体センサ100を用いる場合は、孔15の径が5mm以上、8mm以下であるのが好ましい。測定時に電極10に形成される導電パスの幅を広くとる観点も合わせると、孔の径は5mm以上、6mm以下であることが望ましい。 The diameter of the hole 15 formed in the electrode 10 is set to 3 mm or more and 8 mm or less, as will be described later. This is because within this range, the adhesive layer adheres to the skin through the holes 15 and the contact between the electrode 10 and the skin can be maintained. When the biosensor 100 is used during sweating or for a long period of time (for example, one week), the diameter of the hole 15 is preferably 5 mm or more and 8 mm or less. From the viewpoint of widening the width of the conductive path formed on the electrode 10 at the time of measurement, it is desirable that the diameter of the hole is 5 mm or more and 6 mm or less.
 電極10に形成される孔15のサイズ、形状は必ずしも同じである必要はない。上述した範囲の径、または孔15のトータルの開口面積が一定範囲に確保されるのであれば、図2の(A)~(C)に示される形状や、それ以外の形状が混在していてもよい。多角形の場合、径は一つの頂点から向かい合う頂点または辺までの距離を差すものとする。楕円形または長円の場合、径は短径と長径の平均とする。電極10の厚さは、孔15の形成が可能で、かつ十分な強度を有し、取扱いやすい厚さであれば、適宜設計することができる。一例として、厚さ0.1μm~100μmとする。 The size and shape of the holes 15 formed in the electrode 10 do not necessarily have to be the same. If the diameter in the above range or the total opening area of the holes 15 is secured in a certain range, the shapes shown in FIGS. 2A to 2C and other shapes are mixed. May be good. In the case of a polygon, the diameter shall be the distance from one vertex to the opposite vertex or side. In the case of an ellipse or an oval, the diameter is the average of the minor and major. The thickness of the electrode 10 can be appropriately designed as long as the holes 15 can be formed, have sufficient strength, and are easy to handle. As an example, the thickness is 0.1 μm to 100 μm.
 図3は、生体センサ100の使用時の状態を示す。生体センサ100の裏面103は、被測定者の皮膚20に押し当てられ、貼り付けられる。生体センサ100は、パッケージ101の一部として、電子部品150を保持する基材110を有していてもよい。一例として、基材110の表面110a側に、絶縁層を介して電子部品150が搭載され、電子部品150から延びる配線160が形成されてもよい。 FIG. 3 shows a state when the biosensor 100 is used. The back surface 103 of the biosensor 100 is pressed against and attached to the skin 20 of the person to be measured. The biosensor 100 may have a base material 110 that holds the electronic component 150 as part of the package 101. As an example, the electronic component 150 may be mounted on the surface 110a side of the base material 110 via an insulating layer, and a wiring 160 extending from the electronic component 150 may be formed.
 基材110の裏面110bに、感圧接着層25が設けられ、感圧接着層25によって電極10が保持されている。感圧接着層25と電極10は、生体センサ100の非使用時には、剥離紙等で保護されていてもよい。 A pressure-sensitive adhesive layer 25 is provided on the back surface 110b of the base material 110, and the electrode 10 is held by the pressure-sensitive adhesive layer 25. The pressure-sensitive adhesive layer 25 and the electrode 10 may be protected by a release paper or the like when the biosensor 100 is not in use.
 使用時に、生体センサ100のパッケージ101の裏面103が皮膚20に押し付けられると、生体センサ100は、感圧接着層25によって、皮膚20に固定される。裏面103で露出する電極10も、直接、皮膚20に押し当てられる。電極10には、サイズまたは径が所定の範囲に設計された孔15が配置されている。生体センサ100が皮膚に押し付けられると、感圧接着層25は孔15を介して、皮膚20に接着する。感圧接着層25が孔15で皮膚20に接着することで、電極10が皮膚20から浮き上がって剥離することを抑制できる。電極10と皮膚との接触が安定することで、接触インピーダンスに起因するノイズを低減し、生体信号を安定して検知することができる。 When the back surface 103 of the package 101 of the biosensor 100 is pressed against the skin 20 during use, the biosensor 100 is fixed to the skin 20 by the pressure-sensitive adhesive layer 25. The electrode 10 exposed on the back surface 103 is also directly pressed against the skin 20. The electrode 10 is provided with a hole 15 whose size or diameter is designed within a predetermined range. When the biosensor 100 is pressed against the skin, the pressure-sensitive adhesive layer 25 adheres to the skin 20 through the holes 15. By adhering the pressure-sensitive adhesive layer 25 to the skin 20 through the holes 15, it is possible to prevent the electrode 10 from floating from the skin 20 and peeling off. By stabilizing the contact between the electrode 10 and the skin, it is possible to reduce noise caused by the contact impedance and stably detect the biological signal.
 <電極10のサイズを最適化する評価分析>
 図4は、生体信号波形に対する電極サイズの影響を評価するセットアップの模式図である。図4の(A)は、セットアップの側面図、図4の(B)は底面図である。感圧接着テープ250で電極サンプル10Sを保持し、電極サンプル10Sの皮膚との接触面111の一部を、絶縁層22で覆う。絶縁層22によって覆われる領域の面積を変えることで、電極サンプル10Sの有効面積を変化させる。
<Evaluation analysis for optimizing the size of the electrode 10>
FIG. 4 is a schematic diagram of a setup for evaluating the effect of electrode size on the biological signal waveform. FIG. 4A is a side view of the setup, and FIG. 4B is a bottom view. The electrode sample 10S is held by the pressure-sensitive adhesive tape 250, and a part of the contact surface 111 of the electrode sample 10S with the skin is covered with the insulating layer 22. The effective area of the electrode sample 10S is changed by changing the area of the region covered by the insulating layer 22.
 電極サンプル10Sは、導電性のフック21でECGモニタに接続されている。電極サンプル10Sは、上述したPEDOT-PSSを用いて厚さ25μmに形成されている。長方形の電極サンプル10Sの一辺を長さLに固定し、隣接する辺の幅Wを可変にする。評価実験では、長さLを20mmに固定し(L=20mm)、幅Wを0mm~14mmの範囲で変化させる。このセットアップでは、電極面積の最適な範囲を見積もるために、電極サンプル10Sに孔は形成されていない。 The electrode sample 10S is connected to the ECG monitor with a conductive hook 21. The electrode sample 10S is formed to a thickness of 25 μm using the above-mentioned PEDOT-PSS. One side of the rectangular electrode sample 10S is fixed to the length L, and the width W of the adjacent side is made variable. In the evaluation experiment, the length L is fixed at 20 mm (L = 20 mm), and the width W is changed in the range of 0 mm to 14 mm. In this setup, no holes are formed in the electrode sample 10S in order to estimate the optimum range of electrode area.
 図5A~図5Jは、様々なサイズの電極サンプル10Sを用いて取得された信号波形を示す。図5A~図5Jを通して、(a)はECG波形、(b)はその高速フーリエ変換(FFT)スペクトルである。ECG波形の横軸は時間(秒)、縦軸は電位である。FFTスペクトルの横軸は周波数、縦軸は大きさ(Magnitude)である。ECG波形のみでは、ピークと同じ周波数で発生した隠れノイズを評価することができない。そこで、FFTスペクトルでノイズの状態を観察する。 5A-5J show signal waveforms acquired using electrode samples 10S of various sizes. Through FIGS. 5A to 5J, (a) is an ECG waveform and (b) is a fast Fourier transform (FFT) spectrum thereof. The horizontal axis of the ECG waveform is time (seconds), and the vertical axis is electric potential. The horizontal axis of the FFT spectrum is frequency, and the vertical axis is magnitude. The ECG waveform alone cannot evaluate the hidden noise generated at the same frequency as the peak. Therefore, the state of noise is observed in the FFT spectrum.
 図5Aで、電極サンプル10Sの幅Wは0mmに設定され、電極の面積はゼロである。電極サンプル10Sの全体が絶縁層22で覆われ生体と接触していないので、ECG波形を検出することができず、雑音だけが検知される。FFTスペクトルでもノイズのみが存在し、周期的な信号ピークが現れない。 In FIG. 5A, the width W of the electrode sample 10S is set to 0 mm, and the area of the electrode is zero. Since the entire electrode sample 10S is covered with the insulating layer 22 and is not in contact with the living body, the ECG waveform cannot be detected, and only noise is detected. Even in the FFT spectrum, only noise is present and no periodic signal peak appears.
 図5Bで、電極サンプル10Sの幅Wは1mmに設定され、電極の面積は1×20=20mmである。電極サンプル10Sは、きわめて細い領域でしか皮膚と接触していない。PQRST波を含むECG波形は得られているが、波形の位置が上下にシフトし、呼吸の影響が顕著である。また、ベースラインが変動し、体動の影響が現れている。ベースラインは、P波の始まりから、次のP波の始まりを結んだ線で表される。さらに、T波の後に現れるはずの小さな波であるU波が観察されない。U波は、低カリウム症や(T波と同じピーク方向のとき)、高血圧、心筋症など(T波と逆向きのピーク方向のとき)の疾患の判定に用いられ、U波の検出はECG診断のひとつの重要な要素である。FFTスペクトルを見ると、いくつかの周期的なピークは現れるが、測定直後のノイズに埋もれて生体情報を得ることができない。FFTの0~0.5Hzの範囲は、一般にベースラインの変動と関連し、この領域のノイズが大きいときは、ペースラインも不安定である。 In FIG. 5B, the width W of the electrode sample 10S is set to 1 mm, and the area of the electrode is 1 × 20 = 20 mm 2 . The electrode sample 10S is in contact with the skin only in a very narrow area. Although the ECG waveform including the PQRST wave has been obtained, the position of the waveform is shifted up and down, and the influence of respiration is remarkable. In addition, the baseline has fluctuated, showing the effects of body movements. The baseline is represented by a line connecting the beginning of the P wave to the beginning of the next P wave. Furthermore, the U wave, which is a small wave that should appear after the T wave, is not observed. The U wave is used to determine diseases such as hypokalemia (when the peak direction is the same as the T wave), hypertension, and cardiomyopathy (when the peak direction is opposite to the T wave), and the detection of the U wave is ECG. It is one of the important elements of diagnosis. Looking at the FFT spectrum, some periodic peaks appear, but it is buried in the noise immediately after the measurement and biometric information cannot be obtained. The range of 0 to 0.5 Hz of the FFT is generally associated with baseline variability, and the paceline is also unstable when there is a lot of noise in this region.
 図5Cで、電極サンプル10Sの幅Wは2mmに設定され、電極の面積は2×20=40mmである。このときも電極サンプル10Sのサイズは不十分である。図5Bと比較するとECG波形の上下シフト(呼吸の影響)は少なくなっているが、ベースラインが安定せず、明確なU波が観察されない。FFTスペクトルで、いくつかの周期的な信号(SIG)が観察されるが、信号(SIG)に対して雑音(N)が大きく、信号対雑音比(SNR:Signal-to-Noise Ratio)が低すぎる。 In FIG. 5C, the width W of the electrode sample 10S is set to 2 mm, and the area of the electrode is 2 × 20 = 40 mm 2 . At this time as well, the size of the electrode sample 10S is insufficient. Compared with FIG. 5B, the vertical shift of the ECG waveform (effect of respiration) is small, but the baseline is not stable and a clear U wave is not observed. In the FFT spectrum, some periodic signals (SIG) are observed, but the noise (N) is large with respect to the signal (SIG), and the signal-to-noise ratio (SNR) is low. Too much.
 図5Dで、電極サンプル10Sの幅Wは3mmに設定され、電極の面積は3×20=60mmである。図5Cと同様に、呼吸の影響は図5Bよりも少ないが、ベースラインが安定せず、明確なU波が観察されない。FFTスペクトルで、いくつかの周期的な信号(SIG)が観察されるが、SNRが小さく、十分に信頼可能な生体情報を得ることができない。 In FIG. 5D, the width W of the electrode sample 10S is set to 3 mm, and the area of the electrode is 3 × 20 = 60 mm 2 . Similar to FIG. 5C, the effect of respiration is less than in FIG. 5B, but the baseline is not stable and no clear U wave is observed. Although some periodic signals (SIG) are observed in the FFT spectrum, the SNR is small and sufficiently reliable biometric information cannot be obtained.
 図5Eで、電極サンプル10Sの幅Wは4mmに設定され、電極の面積は4×20=80mmである。図5Eでは、ベースラインが安定し始め、呼吸の影響がより少なくなっている。また、T波の後に小さなU波が観察されている。FFTスペクトルで、周期的な信号(SIG)が観察され、SNRは図5Dよりも改善されている。電極サイズが80mmあれば、ECG波形を安定して検出することができる。 In FIG. 5E, the width W of the electrode sample 10S is set to 4 mm, and the area of the electrode is 4 × 20 = 80 mm 2 . In FIG. 5E, the baseline has begun to stabilize and the effects of respiration are lessened. Also, a small U wave is observed after the T wave. A periodic signal (SIG) is observed in the FFT spectrum, and the SNR is improved compared to FIG. 5D. If the electrode size is 80 mm 2 , the ECG waveform can be detected stably.
 図5Fで、電極サンプル10Sの幅Wは5mmに設定され、電極の面積は5×20=100mmである。図5Eでは、ベースラインが安定であり、呼吸の影響が小さい。T波の後に、安定してU波が観察されている。FFTスペクトルで、高いSNRが得られている。 In FIG. 5F, the width W of the electrode sample 10S is set to 5 mm, and the area of the electrode is 5 × 20 = 100 mm 2 . In FIG. 5E, the baseline is stable and the effect of respiration is small. After the T wave, the U wave is stably observed. A high SNR is obtained in the FFT spectrum.
 図5Gで、電極サンプル10Sの幅Wは7mmに設定され、電極の面積は7×20=140mmである。図5Fではベースラインが安定であり、呼吸の影響がほとんどない。T波の後に、明確にU波が観察されている。FFTスペクトルで、高いSNRが得られている。 In FIG. 5G, the width W of the electrode sample 10S is set to 7 mm, and the area of the electrode is 7 × 20 = 140 mm 2 . In FIG. 5F, the baseline is stable and there is almost no effect of respiration. After the T wave, the U wave is clearly observed. A high SNR is obtained in the FFT spectrum.
 図5H、図5I、及び図5Jで、電極サンプル10Sの幅Wは、それぞれ、10mm、12mm、14mmに設定されている。電極の面積は、10×20=200mm、12×20=240mm、及び14×20=280mmである。図5H~図5Jのいずれにおいても、ベースラインが安定であり、呼吸の影響がほとんどない。T波の後に、明確にU波が観察され、FFTスペクトルで高いSNRが得られている。 In FIGS. 5H, 5I, and 5J, the width W of the electrode sample 10S is set to 10 mm, 12 mm, and 14 mm, respectively. The area of the electrodes is 10 × 20 = 200 mm 2 , 12 × 20 = 240 mm 2 , and 14 × 20 = 280 mm 2 . In all of FIGS. 5H to 5J, the baseline is stable and there is almost no effect of respiration. After the T wave, a U wave is clearly observed, and a high SNR is obtained in the FFT spectrum.
 図6は、図5A~図5Jの測定結果をまとめた表である。左端のカラムは電極サイズ(W×Lmm)、左から2番目のカラムは、ECG波形の最大電位と最小電位の差(peak-to-valley)、左から3番目のカラムは、ベースラインの安定性、右端のカラムはSNRを示す。 FIG. 6 is a table summarizing the measurement results of FIGS. 5A to 5J. The leftmost column is the electrode size (W × Lmm 2 ), the second column from the left is the difference between the maximum and minimum potentials of the ECG waveform (peak-to-valley), and the third column from the left is the baseline. Stability, rightmost column shows SNR.
 電極の面積が3×20mm以下では、ECG波形のベースラインが不安的で、雑音が多い。これは、電極と皮膚との接触面積が不十分であるからと考えられる。電極の面積を4×20mm以上とすることで、ECG波形のベースラインが安定し、U波が観察される。また、雑音が小さくなり、十分なSNRが得られる。ここから、生体センサ100で用いられる電極全体の面積は、80mm以上が望ましい。ただし、電極10のサイズがあまりに大きいと、センサの小型化の妨げになり、ピックアップされるノイズも大きくなる。電極10のサイズは、好ましくは、80mm以上、280mm以下、より好ましくは、80mm以上、200mm以下である。 When the area of the electrode is 3 × 20 mm 2 or less, the baseline of the ECG waveform is uneasy and there is a lot of noise. It is considered that this is because the contact area between the electrode and the skin is insufficient. By setting the area of the electrode to 4 × 20 mm 2 or more, the baseline of the ECG waveform is stabilized and the U wave is observed. In addition, the noise is reduced and a sufficient SNR can be obtained. From this, it is desirable that the area of the entire electrode used in the biosensor 100 is 80 mm 2 or more. However, if the size of the electrode 10 is too large, it hinders the miniaturization of the sensor and the noise picked up becomes large. The size of the electrode 10 is preferably 80 mm 2 or more and 280 mm 2 or less, more preferably 80 mm 2 or more and 200 mm 2 or less.
 図5A~図5Jでは、孔15が形成されていない電極サンプル10Sを用いて、安静な状態でECG波形を測定している。すなわち、電極サンプル10Sの外周だけが感圧接着テープ250で皮膚に固定された状態で、ECG波形が測定されている。一方、日常生活では体動があり、ECG測定をする生体センサ100の場合、胴体のねじりや屈曲が電極10と皮膚の間の接着性に影響する。日常生活で、一定期間(たとえば24時間、またはそれ以上)にわたってECG信号を測定するには、電極10の四辺だけでなく、電極10の内側の領域でも、皮膚との接着性が維持されていることが望ましい。以下で、電極10に形成された孔15を介して感圧接着層25を皮膚に接触させる最適な孔設計を検討する。 In FIGS. 5A to 5J, the ECG waveform is measured in a resting state using the electrode sample 10S in which the hole 15 is not formed. That is, the ECG waveform is measured with only the outer circumference of the electrode sample 10S fixed to the skin with the pressure-sensitive adhesive tape 250. On the other hand, in daily life, there is body movement, and in the case of the biological sensor 100 that performs ECG measurement, twisting or bending of the body affects the adhesiveness between the electrode 10 and the skin. In order to measure the ECG signal for a certain period of time (for example, 24 hours or more) in daily life, the adhesion to the skin is maintained not only on the four sides of the electrode 10 but also in the inner region of the electrode 10. Is desirable. Below, the optimum hole design for bringing the pressure-sensitive adhesive layer 25 into contact with the skin through the holes 15 formed in the electrode 10 will be examined.
 <孔15の最適設計のための評価分析>
 図7は、電極10に形成される孔15の数とサイズを評価する電極サンプル10Sの模式図である。図4と同様に、電極サンプル10Sの皮膚との接触面の一部を絶縁層22で覆って、フック21を介してECG信号を測定する。電極サンプル10Sの面積をL×Wmmに固定し、導電層11に形成される孔15の数とサイズを変える。導電層11は、PEDOT-PSSで形成され、孔15は、円形の孔として形成される。
<Evaluation analysis for optimal design of hole 15>
FIG. 7 is a schematic view of an electrode sample 10S for evaluating the number and size of holes 15 formed in the electrode 10. Similar to FIG. 4, a part of the contact surface of the electrode sample 10S with the skin is covered with the insulating layer 22, and the ECG signal is measured via the hook 21. The area of the electrode sample 10S is fixed to L × W mm 2 , and the number and size of the holes 15 formed in the conductive layer 11 are changed. The conductive layer 11 is formed of PEDOT-PSS, and the holes 15 are formed as circular holes.
 具体的には、電極サンプル10Sの面積を20×14mmに固定し、孔15の径を3mm~6mmの範囲で変え、孔15の数を1個~5個の範囲で変える。図7の(A)で、孔15の数は1個である。孔15の数が1つの場合、導電層11の中央に孔15を配置すると、皮膚と電極10の接着が安定する。 Specifically, the area of the electrode sample 10S is fixed to 20 × 14 mm 2 , the diameter of the holes 15 is changed in the range of 3 mm to 6 mm, and the number of holes 15 is changed in the range of 1 to 5. In FIG. 7A, the number of holes 15 is one. When the number of holes 15 is one, if the holes 15 are arranged in the center of the conductive layer 11, the adhesion between the skin and the electrode 10 is stable.
 孔15が1つの場合、孔15の径φを、3mm、5mm、6mmと変える。測定時に電極サンプル10Sに形成される導電パスの最小幅Pminは、導電層11の長辺(L=20mm)のエッジから孔15の輪郭までの距離となる。孔15の径φが3mmのとき、最小幅Pminは5.5mmである。径φが5mmのとき、最小幅Pminは4.5mmである。径φが6mmのときは、最小幅Pminは4mmである。後述するように、導電パスの最小幅Pminは、少なくとも2.7mmが必要なので、孔15が1つの場合、孔15の径φは8mmであってもよい。この場合、最小幅Pminは3mmとなり、孔15の周囲に十分な導電パスが形成される。 When there is one hole 15, the diameter φ of the hole 15 is changed to 3 mm, 5 mm, and 6 mm. The minimum width Pmin of the conductive path formed in the electrode sample 10S at the time of measurement is the distance from the edge of the long side (L = 20 mm) of the conductive layer 11 to the contour of the hole 15. When the diameter φ of the hole 15 is 3 mm, the minimum width Pmin is 5.5 mm. When the diameter φ is 5 mm, the minimum width Pmin is 4.5 mm. When the diameter φ is 6 mm, the minimum width Pmin is 4 mm. As will be described later, the minimum width Pmin of the conductive path needs to be at least 2.7 mm. Therefore, when there is one hole 15, the diameter φ of the hole 15 may be 8 mm. In this case, the minimum width Pmin is 3 mm, and a sufficient conductive path is formed around the hole 15.
 図7の(B)で、孔15の数は2個である。孔15の数が2個の場合、電極サンプル10Sの長軸方向に2つの孔15を均等に配置するのが、接着性の観点から望ましい。孔15の径φを、3mm、5mm、6mmと変える。測定時に電極サンプル10Sに形成される導電パスの最小幅Pminは、導電層11の短辺(W=14mm)のエッジから孔15の輪郭までの距離、及び/または、隣接する孔15の間の距離である。径φが3mmのとき、最小幅Pminは14/3mm(約4.7mm)である。径φが5mmのとき、最小幅Pminは10/3mm(約3.3mm)である。径φが6mmのときは、最小幅Pminは8/3mm(約2.74mm)である。 In (B) of FIG. 7, the number of holes 15 is two. When the number of holes 15 is two, it is desirable to evenly arrange the two holes 15 in the long axis direction of the electrode sample 10S from the viewpoint of adhesiveness. The diameter φ of the hole 15 is changed to 3 mm, 5 mm, and 6 mm. The minimum width Pmin of the conductive path formed in the electrode sample 10S at the time of measurement is the distance from the edge of the short side (W = 14 mm) of the conductive layer 11 to the contour of the hole 15 and / or between the adjacent holes 15. The distance. When the diameter φ is 3 mm, the minimum width Pmin is 14/3 mm (about 4.7 mm). When the diameter φ is 5 mm, the minimum width Pmin is 10/3 mm (about 3.3 mm). When the diameter φ is 6 mm, the minimum width Pmin is 8/3 mm (about 2.74 mm).
 図7の(C)で、孔15の数は4個である。4個の孔15を電極サンプル10Sに均等に配置すると、縦と横に2つずつ配置される。短辺(W=14mm)に沿った方向にも2つの孔15が配置されるので、測定時に電極サンプル10Sに形成される導電パスの最小幅Pminは、導電層11の短辺(W=14mm)のエッジから孔15の輪郭までの距離、及び/または、短軸方向で隣接する孔15の間の距離である。径φが3mmのときは、最小幅Pminは8/3mm(約2.7mm)である。 In (C) of FIG. 7, the number of holes 15 is four. When the four holes 15 are evenly arranged in the electrode sample 10S, two holes are arranged vertically and two horizontally. Since the two holes 15 are also arranged along the short side (W = 14 mm), the minimum width Pmin of the conductive path formed in the electrode sample 10S at the time of measurement is the short side (W = 14 mm) of the conductive layer 11. ) To the contour of the hole 15 and / or the distance between adjacent holes 15 in the minor axis direction. When the diameter φ is 3 mm, the minimum width Pmin is 8/3 mm (about 2.7 mm).
 孔15の数が4つのときは、径φが5mm以上の孔15を形成するのが困難になる。短軸方向で隣接する孔15同士が近接しすぎて、信号を検知するのに十分な幅の導電パスを確保することができないからである。電極サンプル10Sの強度も低下する。 When the number of holes 15 is 4, it becomes difficult to form holes 15 having a diameter φ of 5 mm or more. This is because the adjacent holes 15 in the short axis direction are too close to each other, and it is not possible to secure a conductive path having a width sufficient for detecting a signal. The strength of the electrode sample 10S also decreases.
 図7の(D)で、孔15の数は5個である。5個の孔15を電極サンプル10Sに均等に配置すると、中央に1つ、周囲に4つが配置される。測定時に電極サンプル10Sに形成される導電パスの最小幅Pminは、導電層11の短辺(W=14mm)のエッジから孔15の輪郭までの距離、及び/または、隣接する孔15の間の距離である。径φが3mmのときは、短辺方向で隣接する孔15と孔15の間隔は8/3mm(約2.7mm)である。図7の(C)と同じ理由で、径φが5mm以上の孔15を形成することは困難である。 In (D) of FIG. 7, the number of holes 15 is five. When the five holes 15 are evenly arranged in the electrode sample 10S, one is arranged in the center and four are arranged in the periphery. The minimum width Pmin of the conductive path formed in the electrode sample 10S at the time of measurement is the distance from the edge of the short side (W = 14 mm) of the conductive layer 11 to the contour of the hole 15 and / or between the adjacent holes 15. The distance. When the diameter φ is 3 mm, the distance between the holes 15 adjacent to each other in the short side direction is 8/3 mm (about 2.7 mm). For the same reason as (C) in FIG. 7, it is difficult to form a hole 15 having a diameter φ of 5 mm or more.
 孔15が5つの場合、対角方向で隣接する孔15と孔15の間の距離が、短辺方向のPminとほぼ同程度に狭くなる。電極サンプル10Sの全体で見た場合、図7の(C)のほうが導電パスの幅が広く、かつ、機械的な強度も強い。 When there are five holes 15, the distance between the diagonally adjacent holes 15 and the holes 15 is as narrow as Pmin in the short side direction. When viewed as a whole of the electrode sample 10S, (C) in FIG. 7 has a wider conductive path and stronger mechanical strength.
 図7の(A)~(D)の電極サンプル10Sを用いて、ECG波形とそのFFTスペクトルを測定する。 The ECG waveform and its FFT spectrum are measured using the electrode samples 10S shown in FIGS. 7A to 7D.
 図8は、孔15の径φが3mmのときのECG波形である。図8の(A)は、参照として、孔15が形成されていないときのECG波形を示す。図8の(B)、(C),(D),及び(E)は、径φが3mmの孔15の数を1個、2個、4個、5個と変えたときのECG波形である。 FIG. 8 is an ECG waveform when the diameter φ of the hole 15 is 3 mm. (A) of FIG. 8 shows the ECG waveform when the hole 15 is not formed as a reference. 8 (B), (C), (D), and (E) are ECG waveforms when the number of holes 15 having a diameter of 3 mm is changed to 1, 2, 4, and 5. be.
 図8の(B)と(C)では、ベースラインがわずかに振れている。(C)では、信号の電位自体も低い。これは、孔15の数が少なく、感圧接着層と皮膚との接触面積を十分にとることができず。電極サンプル10Sが皮膚から浮き上がるためと考えられる。図8の(D)と(E)では、トータルの孔面積が増えるため、ECG波形が安定している。 In FIGS. 8B and 8C, the baseline is slightly deviated. In (C), the signal potential itself is also low. This is because the number of holes 15 is small, and the contact area between the pressure-sensitive adhesive layer and the skin cannot be sufficiently secured. It is considered that the electrode sample 10S is lifted from the skin. In FIGS. 8D and 8E, the ECG waveform is stable because the total hole area increases.
 図9は、図8の(A)~(E)のFFTスペクトルである。図8の(D)と(E)ではSNRが良好で、低ノイズで信号が観察されている。図8の(B)と(C)は、SNRが低下している。 FIG. 9 is an FFT spectrum of FIGS. 8A to 8E. In FIGS. 8 (D) and 8 (E), the SNR is good and the signal is observed with low noise. In FIGS. 8B and 8C, the SNR is decreased.
 図8と図9から、直径が3mmの孔15を設ける場合は、電極10に生成される導電パスの最小幅Pminが一定値以上に維持されることを条件として、孔15の数を増やしてトータルの孔面積を増やすことが望ましい。 From FIGS. 8 and 9, when the holes 15 having a diameter of 3 mm are provided, the number of holes 15 is increased on condition that the minimum width Pmin of the conductive path generated in the electrode 10 is maintained at a certain value or more. It is desirable to increase the total hole area.
 図10は、孔15の径φが5mmのときのECG波形である。図10の(A)は、参照として、孔15が形成されていないときのECG波形を示す。図10の(B)は、孔15の数が1つのときのECG波形、図10の(C)は、孔15の数が2つのときのECG波形である。図10の(B)と(C)の双方で、ベースラインが安定し、波形の位置も揃っている。これは、感圧接着層と皮膚との接触面積が確保され、電極サンプル10Sが皮膚に安定して保持されるためと考えられる。 FIG. 10 is an ECG waveform when the diameter φ of the hole 15 is 5 mm. (A) of FIG. 10 shows the ECG waveform when the hole 15 is not formed as a reference. FIG. 10B is an ECG waveform when the number of holes 15 is one, and FIG. 10C is an ECG waveform when the number of holes 15 is two. In both (B) and (C) of FIG. 10, the baseline is stable and the waveform positions are aligned. It is considered that this is because the contact area between the pressure-sensitive adhesive layer and the skin is secured, and the electrode sample 10S is stably held on the skin.
 図11は、図10の(A)~(C)のFFTスペクトルである。SNRは図10の(B)と(C)の双方で良好であり、特に孔15の数が2個のときのSNRが良好である。この結果から、たとえば、孔15の径を8mmにした場合も、安定したECG信号が低ノイズで得られることが予想される。孔15で広い接触面積が確保され、かつ導電層11に十分な導電パスが確保されるからである。 FIG. 11 is an FFT spectrum of FIGS. 10A to 10C. The SNR is good in both (B) and (C) of FIG. 10, and the SNR is particularly good when the number of holes 15 is two. From this result, it is expected that a stable ECG signal can be obtained with low noise even when the diameter of the hole 15 is set to 8 mm, for example. This is because a wide contact area is secured in the hole 15, and a sufficient conductive path is secured in the conductive layer 11.
 図12は、孔15の径φが6mmのときのECG波形である。図12の(A)は、参照として、孔15が形成されていないときのECG波形を示す。図12の(B)は、孔15の数が1つのときのECG波形、図12の(C)は、孔15の数が2つのときのECG波形である。図12の(B)で、ベースラインが安定し波形の位置も揃っているが、図12の(C)では、ベースラインが変動し、信号波形も小さい。これは、孔15が占めるトータルの面積が大きすぎて、信号検出面積が少なくなるためと考えられる。 FIG. 12 is an ECG waveform when the diameter φ of the hole 15 is 6 mm. (A) of FIG. 12 shows the ECG waveform when the hole 15 is not formed as a reference. FIG. 12B is an ECG waveform when the number of holes 15 is one, and FIG. 12C is an ECG waveform when the number of holes 15 is two. In FIG. 12B, the baseline is stable and the waveform positions are aligned, but in FIG. 12C, the baseline fluctuates and the signal waveform is also small. It is considered that this is because the total area occupied by the holes 15 is too large and the signal detection area becomes small.
 図13は、図12の(A)~(C)のFFTスペクトルである。図13の(B)でSNRが良好であるが、図13の(C)のSNRは低い。り、特に孔15の数が2個のときのSNRが良好である。 FIG. 13 is an FFT spectrum of FIGS. 12A to 12C. The SNR in FIG. 13 (B) is good, but the SNR in FIG. 13 (C) is low. Therefore, the SNR is particularly good when the number of holes 15 is two.
 図14は、電極10に形成される孔15がECG波形に及ぼす影響の評価結果である。左端のカラムは孔15の数、左から2番目のカラムは孔15の径、左から3番目のカラムはECG波形への呼吸の影響、右端のカラムはECG信号への体動の影響を示す。 FIG. 14 is an evaluation result of the influence of the holes 15 formed in the electrode 10 on the ECG waveform. The leftmost column shows the number of holes 15, the second column from the left shows the diameter of the holes 15, the third column from the left shows the effect of breathing on the ECG waveform, and the rightmost column shows the effect of body movement on the ECG signal. ..
 孔の数とサイズの変化は、ECG波形への呼吸の影響には関係しない。ベースラインの変動に関しては、孔15の径を大きくすることで、ベースラインが安定する。 Changes in the number and size of holes are not related to the effect of respiration on the ECG waveform. Regarding the fluctuation of the baseline, the baseline is stabilized by increasing the diameter of the hole 15.
 図7のサンプルで、直径3mmの孔を3つ縦に並べた場合、導電パスの最小幅Pminは2.8mmである。直径8mmの孔を1つ形成した場合、導電パスの最小幅Pminは3.0mmであり、直径6mmの孔15を2つ配置したとき(Pmin=2.7mm)よりも広い導電パスが得られる。直径2mmの孔を8個、均等になるように配置すると、導電パスの最小幅Pminは2.7mmである。図14の評価と併せると、孔15の径の範囲は2mmより大きく、8mm以下が好ましく、より好ましくは、3mm以上、8mm以下、さらに好ましくは、5mm以上、6mm以下である。孔15は円形に限定されないので、孔の面積は、たとえば4mm以上、50.5mm以下、より好ましくは、7mm以上、50.5mm以下である。 In the sample of FIG. 7, when three holes having a diameter of 3 mm are arranged vertically, the minimum width Pmin of the conductive path is 2.8 mm. When one hole with a diameter of 8 mm is formed, the minimum width Pmin of the conductive path is 3.0 mm, and a wider conductive path than when two holes 15 with a diameter of 6 mm are arranged (Pmin = 2.7 mm) can be obtained. .. When eight holes having a diameter of 2 mm are arranged evenly, the minimum width Pmin of the conductive path is 2.7 mm. When combined with the evaluation of FIG. 14, the diameter range of the hole 15 is larger than 2 mm, preferably 8 mm or less, more preferably 3 mm or more and 8 mm or less, and further preferably 5 mm or more and 6 mm or less. Since the hole 15 is not limited to a circle, the area of the hole, for example 4 mm 2 or more, 50.5 mm 2 or less, more preferably, 7 mm 2 or more and 50.5 mm 2 or less.
 図15は、電極に形成される孔が測定の安定性に及ぼす影響の別の評価結果である。図4では、平常の状態で1日中、生体センサ100を貼付してECG波形を測定した。ウエアラブルな生体センサ100を実現する場合、季節によっては汗をかくことがあり、また測定によっては、一定期間連続してセンサを皮膚に貼付する場合もある。 FIG. 15 is another evaluation result of the influence of the holes formed in the electrodes on the stability of measurement. In FIG. 4, the biosensor 100 was attached and the ECG waveform was measured all day long in a normal state. When the wearable biosensor 100 is realized, it may sweat depending on the season, and depending on the measurement, the sensor may be continuously attached to the skin for a certain period of time.
 図15では、図7のサンプルを用いて、モニタ時間と皮膚の状態を変えて測定状態を評価する。左端のカラムは孔15の径、左から2番目のカラムは導電パスの最小幅(Pmin)である。右端のカラムでは、モニタ時間を1日と7日に設定し、それぞれで皮膚の状態が正常なときと、発汗しているときで測定結果を評価する。二重丸は、測定結果が良好なとき、すなわち、安定したECG波形が低ノイズで得られていることを示す。クロスマークは、ノイズが高く良好なECG波形が得られない場合を示す。三角マークは、ノイズが混入するが、比較的安定してECG波形が得られる場合を示す。 In FIG. 15, the measurement state is evaluated by changing the monitoring time and the skin condition using the sample of FIG. 7. The leftmost column is the diameter of the hole 15, and the second column from the left is the minimum width (Pmin) of the conductive path. In the rightmost column, the monitoring time is set to 1 day and 7 days, and the measurement result is evaluated when the skin condition is normal and when sweating, respectively. The double circle indicates that the measurement result is good, that is, a stable ECG waveform is obtained with low noise. The cross mark indicates a case where noise is high and a good ECG waveform cannot be obtained. The triangular mark indicates a case where noise is mixed, but an ECG waveform can be obtained relatively stably.
 直径が2mmの孔15を、導電パスの最小幅Pminを2mmに設定して配置したときは、正常状態で、1日の測定であれば、安定したECG波形が得られる。しかし、汗をかいた状態や、7日間の測定では、良好な測定結果が得られない。 When the hole 15 having a diameter of 2 mm is arranged with the minimum width Pmin of the conductive path set to 2 mm, a stable ECG waveform can be obtained if the measurement is performed for one day in a normal state. However, good measurement results cannot be obtained in a sweaty state or in the measurement for 7 days.
 直径が3mmの孔15を、導電パスの最小幅Pminを3mmに設定して配置したとき(たとえば、図7の(C)の配置)は、正常状態で、1日の測定であれば、安定したECG波形が得られる。しかし、汗をかいた状態や、7日間の測定では、測定結果が悪くなる。 When the hole 15 having a diameter of 3 mm is arranged with the minimum width Pmin of the conductive path set to 3 mm (for example, the arrangement of (C) in FIG. 7), it is stable if it is measured for one day in a normal state. The ECG waveform is obtained. However, in a sweaty state or in the measurement for 7 days, the measurement result becomes worse.
 直径が2mmと3mmの孔で、クロスマークの評価のうち、アスタリスクが1つのものは、強い発汗の後、30分で感圧接着層と皮膚の界面で剥がれが生じ、測定ができなくなった。アスタリスクが2つのものは、乾式の電極と皮膚の界面に湿気が蓄積され、感圧接着剤と皮膚との接触が徐々に損なわれ多物を示す。 Holes with diameters of 2 mm and 3 mm, with one asterisk in the cross mark evaluation, peeled off at the interface between the pressure-sensitive adhesive layer and the skin 30 minutes after strong sweating, making measurement impossible. In the case of two asterisks, moisture accumulates at the interface between the dry electrode and the skin, and the contact between the pressure-sensitive adhesive and the skin is gradually impaired, indicating a large number of substances.
 図15の結果から、正常状態での1日程度の測定であれば、孔15の径の下限は2mmでもよいが、発汗時の測定、長期の測定のためには、孔の径は3mmよりも大きいことが望ましい。 From the results of FIG. 15, the lower limit of the diameter of the hole 15 may be 2 mm for measurement in a normal state for about one day, but the diameter of the hole is 3 mm or more for measurement during sweating and long-term measurement. Is also desirable.
 図16は、電極10の平面形状の例を示す。電極10の平面形状は矩形に限定されず、適切なサイズの電極10に、適切な径の孔15が形成される限り、様々な形状をとることができる。図16に示される矩形、楕円形、D字型の電極10に限定されず、円形、半円形、長円、多角形など生体センサ100に適用し得る任意の形状を採用できる。 FIG. 16 shows an example of the planar shape of the electrode 10. The planar shape of the electrode 10 is not limited to a rectangle, and various shapes can be taken as long as holes 15 having an appropriate diameter are formed in the electrode 10 having an appropriate size. The electrode 10 is not limited to the rectangular, elliptical, and D-shaped electrodes shown in FIG. 16, and any shape applicable to the biosensor 100 such as a circle, a semicircle, an oval, and a polygon can be adopted.
 図16のD字型や楕円形の導電層11を有する電極10は、生体センサ100のパッケージ101の両端が円弧になっているときに、パッケージ101の円弧に合わせて導電層11の面積を広くとることができる。いずれの形状でも、導電層11と孔15を含めた電極10全体の面積は80mm以上であり、測定時に電極10に形成される導電パスの最小幅Pminは、少なくとも2.7mmであることが望ましい。 The electrode 10 having the D-shaped or elliptical conductive layer 11 of FIG. 16 widens the area of the conductive layer 11 in accordance with the arc of the package 101 when both ends of the package 101 of the biosensor 100 are arcuate. Can be taken. In any shape, the area of the entire electrode 10 including the conductive layer 11 and the hole 15 is 80 mm 2 or more, and the minimum width Pmin of the conductive path formed on the electrode 10 at the time of measurement is at least 2.7 mm. desirable.
 このように電極10を設計することで、生体センサ100と皮膚の密着性を維持し、一定期間にわたって生体信号を低ノイズで安定して測定することができる。 By designing the electrode 10 in this way, the adhesion between the biological sensor 100 and the skin can be maintained, and the biological signal can be stably measured with low noise over a certain period of time.
 この出願は、2020年3月30日に日本国特許庁に出願された特許出願第2020-059648号を優先権の基礎とし、その全内容を含むものである。 This application is based on patent application No. 2020-059648 filed with the Japan Patent Office on March 30, 2020, and includes the entire contents thereof.
 10 電極
 10S 電極サンプル
 11 導電層
 15 孔
 20 皮膚
 25 感圧接着層
 100 生体センサ
 101 パッケージ
 102 表面
 103 裏面
 104 空間
 110 基材
 150 電子部品
 160 配線
 250 感圧接着テープ
 Pmin 導電パスの最小幅
10 Electrode 10S Electrode sample 11 Conductive layer 15 Hole 20 Skin 25 Pressure-sensitive adhesive layer 100 Biosensor 101 Package 102 Front surface 103 Back surface 104 Space 110 Base material 150 Electronic components 160 Wiring 250 Pressure-sensitive adhesive tape Pmin Minimum width of conductive path
特開2012-10978号公報Japanese Unexamined Patent Publication No. 2012-10978

Claims (7)

  1.  高分子材料を用いた電極であって、
     前記高分子材料を含む導電層と、
     前記導電層を厚さ方向に貫通する1つ以上の孔と、
    を有し、
     前記電極は80mm以上の面積を有し、
     前記導電層の端部から最も近い孔までの距離、及び隣接する孔間の距離は少なくとも2.7mmである、
    電極。
    An electrode made of a polymer material
    The conductive layer containing the polymer material and
    One or more holes penetrating the conductive layer in the thickness direction,
    Have,
    The electrode has an area of 80 mm 2 or more and has an area of 80 mm 2 or more.
    The distance from the end of the conductive layer to the nearest hole and the distance between adjacent holes is at least 2.7 mm.
    electrode.
  2.  前記孔の直径は2mmよりも大きく、8mm以下である、請求項1に記載の電極。 The electrode according to claim 1, wherein the diameter of the hole is larger than 2 mm and 8 mm or less.
  3.  前記孔の直径は、3mm以上、8mm以下である、請求項2に記載の電極。 The electrode according to claim 2, wherein the diameter of the hole is 3 mm or more and 8 mm or less.
  4.  前記孔の面積は、7mm以上、50.5mm以下である請求項1乃至3のいずれか一項に記載の電極。 Area of the holes, 7 mm 2 or more, the electrode according to any one of claims 1 to 3 is 50.5 mm 2 or less.
  5.  前記電極の平面形状は、矩形、円、楕円、長円、半円、D型を含む、請求項1乃至4のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 4, wherein the planar shape of the electrode includes a rectangle, a circle, an ellipse, an oval, a semicircle, and a D type.
  6.  請求項1乃至5のいずれか一項に記載の電極と、
     前記電極の第1の面に配置される感圧接着層と、
     前記電極に接続される電子部品と、
    を有する生体センサ。
    The electrode according to any one of claims 1 to 5,
    A pressure-sensitive adhesive layer arranged on the first surface of the electrode and
    Electronic components connected to the electrodes
    Biosensor with.
  7.  前記生体センサは生体への貼り付け面を有し、
     前記電極の前記第1の面と反対側の第2の面は、前記貼り付け面で露出している、請求項6に記載の生体センサ。
    The biosensor has a surface to be attached to the living body and has a surface to be attached to the living body.
    The biosensor according to claim 6, wherein the second surface of the electrode opposite to the first surface is exposed on the sticking surface.
PCT/JP2021/013381 2020-03-30 2021-03-29 Electrode and biosensor using same WO2021200859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512233A JPWO2021200859A1 (en) 2020-03-30 2021-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-059648 2020-03-30
JP2020059648 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200859A1 true WO2021200859A1 (en) 2021-10-07

Family

ID=77927481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013381 WO2021200859A1 (en) 2020-03-30 2021-03-29 Electrode and biosensor using same

Country Status (2)

Country Link
JP (1) JPWO2021200859A1 (en)
WO (1) WO2021200859A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237059A (en) * 2014-09-25 2014-12-18 日本電信電話株式会社 Bioelectrode and biosignal measurement device
JP2018186958A (en) * 2017-04-28 2018-11-29 日東電工株式会社 Sheet for biological sensor
JP2020142014A (en) * 2019-03-08 2020-09-10 日東電工株式会社 Electrode and biological sensor
JP2020146452A (en) * 2019-03-08 2020-09-17 日東電工株式会社 Biological sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237059A (en) * 2014-09-25 2014-12-18 日本電信電話株式会社 Bioelectrode and biosignal measurement device
JP2018186958A (en) * 2017-04-28 2018-11-29 日東電工株式会社 Sheet for biological sensor
JP2020142014A (en) * 2019-03-08 2020-09-10 日東電工株式会社 Electrode and biological sensor
JP2020146452A (en) * 2019-03-08 2020-09-17 日東電工株式会社 Biological sensor

Also Published As

Publication number Publication date
JPWO2021200859A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
ES2621013T3 (en) Biomedical sensor system and method of detecting a variable signal in time
JP5536040B2 (en) Electrode set
TWI574013B (en) Probe card, probe structure and method for manufacturing the same
US20150313499A1 (en) Electrode patch for measuring electrical signal from body and physiological signal measurement apparatus using the same
JP2012187435A (en) Radial electrode array
JP3227593B2 (en) Multi sensor
WO2018198456A1 (en) Sheet for biosensor
US5566672A (en) Biomedical electrode
WO2021200859A1 (en) Electrode and biosensor using same
KR101990894B1 (en) Carbon nanotube composite electrode using vacuum suction
US11336034B2 (en) Electrode and cable connections in electrocardiography systems
CN111430060B (en) Silk flexible electrode for electrocardio monitoring and manufacturing method thereof
JP7222905B2 (en) Stick-on biosensor
TW201838588A (en) Laminate for biosensor and biosensor
CN116035554A (en) Electrode belt and electrode assembly for electrical impedance imaging
JP3418813B2 (en) Adhesive pad for electrode
JPH07204278A (en) Tactile sensor and body inserting medical instrument having the sensor
WO2021200245A1 (en) Biosensor
TWI638640B (en) Integrated electrocardiogram electrode patch
CN216386863U (en) Three-electrode microsensor for blood glucose monitoring
JP3458039B2 (en) Body fat percentage measurement electrode
WO2018198569A1 (en) Biosensor
CN204671156U (en) A kind of electrode for detecting ECG signal
JPH02211122A (en) Sensor body for muscle measurement device
EP1016372A1 (en) Electrode for ECG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779745

Country of ref document: EP

Kind code of ref document: A1