WO2021200567A1 - 無線通信システム、制御装置及び制御方法 - Google Patents

無線通信システム、制御装置及び制御方法 Download PDF

Info

Publication number
WO2021200567A1
WO2021200567A1 PCT/JP2021/012613 JP2021012613W WO2021200567A1 WO 2021200567 A1 WO2021200567 A1 WO 2021200567A1 JP 2021012613 W JP2021012613 W JP 2021012613W WO 2021200567 A1 WO2021200567 A1 WO 2021200567A1
Authority
WO
WIPO (PCT)
Prior art keywords
bbu
control
control device
wireless
connection destination
Prior art date
Application number
PCT/JP2021/012613
Other languages
English (en)
French (fr)
Inventor
信秀 野中
達樹 奥山
聡 須山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP21780677.7A priority Critical patent/EP4132218A4/en
Publication of WO2021200567A1 publication Critical patent/WO2021200567A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present disclosure relates to wireless communication systems, control devices and control methods.
  • LTE Long Term Evolution
  • FAA FutureRadioAccess
  • 5G 5thgenerationmobilecommunication system
  • 5G + 5thgenerationmobilecommunication system
  • New-RAT RadioAccessTechnology
  • NR Radio
  • BS cooperation technology for linking transmission operation or reception operation between a plurality of base stations (BS: Base Station) is being studied.
  • One of the purposes of this disclosure is to realize appropriate control of BS cooperation.
  • the wireless communication system includes a wireless device that transmits a signal to a terminal, a BB control device that connects to the wireless device and executes base band (BB) processing of the signal, and the BB control device.
  • BB base band
  • the base station # 2 corresponding to cell # 2 is used. Due to the interference, the throughput of the terminal (UE: User Equipment) wirelessly connected to the base station # 1 may decrease.
  • Boundaries between two or more cells may correspond, for example, overlapping areas between areas corresponding to each cell.
  • the boundary between two or more cells may be referred to as the "cell edge" or "cell boundary”.
  • a wireless unit that transmits and receives radio signals
  • a baseband unit BBU
  • a central unit that is connected to the BBU and controls the BBU and RU ( Separation with CU) is considered.
  • the BBU may be referred to as, for example, a baseband (BB) controller, a baseband aggregator, a CBBU (centralized baseband unit), or a REC (radio equipment controller).
  • the RU may be referred to as, for example, a wireless device, an RRH (remote radio head), or a RE (radio equipment).
  • the CU may be referred to as, for example, a host controller.
  • the connection between the BBU and the CU is called the backhaul (BH).
  • BH backhaul
  • a wired cable such as an optical fiber cable is used for BH.
  • the connection between the BBU and the RU is referred to, for example, the front hole (FH).
  • FH front hole
  • a wired cable such as an optical fiber cable is used for FH.
  • the communication device including the BBU and the RU may be referred to as a "base station (BS)", and the communication device including the CU, the BBU, and the RU may be referred to as a "base station”. (BS) ”may be referred to.
  • the BS cooperation technology in which a plurality of BSs cooperate to transmit and / or receive is applied.
  • FIG. 1 is a diagram showing an example of BS cooperation technology.
  • FIG. 1 shows an example of four BS cooperation technologies of coordinated scheduling (CS), coordinated beamforming (CB), joint transmission (JT), and dynamic point selection (DPS).
  • CS coordinated scheduling
  • CB coordinated beamforming
  • JT joint transmission
  • DPS dynamic point selection
  • FIG. 1 for an exemplary UE located at the boundary between cell # 1 corresponding to RU # 1 and cell # 2 corresponding to RU # 2, or a UE located in any of the cells.
  • the BS cooperation technology to be executed is shown.
  • the BS cooperation technology may be referred to as a cooperative operation.
  • the four BS cooperation technologies may be referred to as four cooperative operation patterns (types).
  • scheduling is performed cooperatively between base stations.
  • scheduling includes resource allocation.
  • two or more UEs located at cell boundaries are assigned different resources from each other.
  • the CU is. Scheduling including resource allocation is performed for the UE existing in cell # 1 or cell # 2. Then, based on the scheduling determined by the CU, the RU # 1 connected to the BBU # 1 and the RU # 2 connected to the BBU # 2 transmit a signal to the UE.
  • BBU # y connected to a certain CU # x may be described as BBU under CU # x.
  • the RU # z is a RU under the BBU # y and a RU under the CU # x. It may be described (x, y and z are non-negative integers).
  • CU # x may be described as a device higher than BBU # y and RU # z
  • BBU # y may be described as a device higher than RU # z.
  • # x, # y and # z may correspond to identifiers for identifying CU, BBU and RU, respectively.
  • the CU allocates frequency resource f1 to UE # 1 and frequency resource f2 to UE # 2. To assign.
  • the UE # 1 receives the signal from the RU # 1, the influence of the interference by the signal transmitted from the RU # 2 can be avoided.
  • CB beamforming is performed in cooperation between base stations.
  • the signal transmission of the beam that interferes is restricted (stopped) with respect to the UE located at the cell boundary.
  • stopping the signal transmission of the beam that causes interference may be referred to as nulling.
  • the CU CB is controlled. Then, based on the control of the CU, the RU # 1 connected to the BBU # 1 and the RU # 2 connected to the BBU # 2 form a beam and transmit a signal to the UE.
  • RU # 1 and RU # 2 transmit signals using the same frequency resource f1. Then, in the signal transmission to the UE # 1 located at the cell boundary, the RU # 2 does not perform the signal transmission (referred to as "nulling").
  • the UE # 1 receives the signal from the RU # 1, the influence of the interference by the signal transmitted from the RU # 2 can be avoided.
  • CS and CB may be collectively referred to as CSCB.
  • beam control in CB can be regarded as an example of scheduling in CS.
  • CSCB may be applied, for example, when RU # 1 and RU # 2 corresponding to cells # 1 and cell # 2 are under the same CU.
  • JT a plurality of base stations cooperate with each other, and a plurality of base stations transmit signals to one UE.
  • JT may be applied, for example, when RU # 1 and RU # 2 corresponding to cells # 1 and cell # 2 are under the same BBU.
  • the BBU connected to RU # 1 and RU # 2 has channel state information including the channel estimation value of the downlink channel with respect to UE # 1 from RU # 1 and RU # 2. (Channel state information (CSI)) is acquired.
  • the BBU outputs a signal subjected to precoding processing or the like based on CSI to RU # 1 and RU # 2.
  • RU # 1 and RU # 2 use the same frequency resource f1 to coordinately transmit signals to UE # 1.
  • DPS Downlink Packet Control Protocol
  • a plurality of base stations cooperate with each other, and one base station having good conditions among the plurality of base stations transmits a signal to the UE.
  • DPS may be applied, for example, when RU # 1 and RU # 2 corresponding to cells # 1 and cell # 2 are under the same CU.
  • the CU determines that RU # 1 is a preferable RU for signal transmission to UE # 1 rather than RU # 2. Then, under the control of the CU, the RU # 1 transmits a signal to the UE # 1 even though the UE # 1 exists in the cell # 2. In this case, RU # 2 stops signal transmission.
  • CSCB and DPS are applied to a UE existing at a cell boundary between a plurality of cells when a plurality of RUs corresponding to the plurality of cells are RUs under the same CU. It's okay.
  • CSCB, DPS and JT may be applied.
  • the BS cooperation technology may not be applicable at the cell boundary, or the BS cooperation technology that can be applied at the cell boundary may be limited.
  • the applicability of the BS cooperation technology will be described with reference to FIG.
  • FIG. 2 is a diagram showing an example of a system configuration.
  • the network shown in FIG. 2 includes eight RUs of RU # 1 to RU # 8, BBU # 1 to BBU # 4, and CU # 1 to CU # 2.
  • RU # 1 to RU # 8 each form a cell.
  • the cell corresponding to RU # i i is an integer of 1 or more and 8 or less
  • cell # i the cell corresponding to RU # i (i is an integer of 1 or more and 8 or less) may be described as cell # i.
  • cell boundary i-j the cell boundary between cell #i and cell #j adjacent to cell #i (j is an integer of 1 or more and 8 or less different from i) is described as "cell boundary i-j".
  • the range where the two cells overlap may correspond to the cell boundary.
  • BBU # 1 is connected to RU # 1 and RU # 2.
  • RU # 1 and RU # 2 are devices under BBU # 1.
  • BBU # 2 connects with RU # 3 and RU # 4.
  • RU # 3 and RU # 4 are devices under BBU # 2.
  • BBU # 3 connects with RU # 5 and RU # 6.
  • RU # 5 and RU # 6 are devices under BBU # 3.
  • BBU # 4 connects with RU # 7 and RU # 8.
  • RU # 7 and RU # 8 are devices under BBU # 4.
  • CU # 1 is connected to BBU # 1 and BBU # 2.
  • BBU # 1 and BBU # 2 are devices under CU # 1.
  • CU # 2 connects with BBU # 3 and BBU # 4.
  • BBU # 3 and BBU # 4 are devices under CU # 2.
  • CU # 1 and CU # 2 are connected to the core network (core NW).
  • RU # 1 and RU # 2 are RUs under the same CU (CU # 1) and under the same BBU (BBU # 1). Therefore, CSCB, DPS, and JT may be applied in the BS cooperation technology for UE # 1 existing at the cell boundary (cell boundary 1-2) between cell # 1 and cell # 2.
  • CSCB, DPS, and JT may be applied in BS cooperation technology for UEs existing at cell boundary 3-4, cell boundary 5-6, and cell boundary 7-8. ..
  • RU # 2 and RU # 3 are under the same CU (CU # 1). Therefore, CSCB and DPS are applied in the BS cooperation technology for UE # 2 existing at the cell boundary (cell boundary 2-3) between cell # 2 and cell # 3.
  • RU # 2 is under the control of BBU # 1
  • RU # 3 is under the control of BBU # 2.
  • RU # 2 and RU # 3 are RUs under BBU that are different from each other. Therefore, JT is not applied in the BS cooperation technology for UE # 2.
  • CSCB and DPS may be applied in the BS cooperation technology for UEs existing at cell boundary 6-7, but JT is not applied.
  • RU # 4 is a RU under the control of CU # 1
  • RU # 5 is a RU under the control of CU # 2.
  • RU # 4 and RU # 5 are RUs under different CUs.
  • RU # 4 is under the control of BBU # 2
  • RU # 5 is under the control of BBU # 3.
  • RU # 4 and RU # 5 are RUs under BBU that are different from each other. Therefore, CSCB, DPS, and JT are not applied in the BS cooperation technology for UE # 3 existing at the cell boundary (cell boundary 4-5) between cell # 4 and cell # 5.
  • FIG. 3 is a diagram showing an example of the configuration of the wireless communication system 1 according to the present embodiment.
  • eight RUs of RU # 1 to RU # 8 four BBUs of BBU # 1 to BBU # 4, CU # 1 to CU # 2, and a control device 10 are used. included.
  • the respective numbers and connection relationships of CU, BBU and RU are examples, and the present disclosure is not limited thereto.
  • RU # 1 to RU # 8 each form a cell.
  • the cell corresponding to RU # i i is an integer of 1 or more and 8 or less
  • cell # i the cell corresponding to RU # i (i is an integer of 1 or more and 8 or less) may be described as cell # i.
  • cell boundary i-j the cell boundary between cell #i and cell #j adjacent to cell #i (j is an integer of 1 or more and 8 or less different from i) is described as "cell boundary i-j".
  • the range where the two cells overlap may correspond to the cell boundary.
  • BBU # 1 is connected to RU # 1 and RU # 2.
  • BBU # 2 connects with RU # 2, RU # 3 and RU # 4.
  • BBU # 3 connects with RU # 5 and RU # 6.
  • BBU # 4 connects with RU # 6, RU # 7 and RU # 8.
  • BBU # 2 connects to RU # 2 and BBU # 4 connects to RU # 6.
  • connection between RU # 2 and BBU # 1 and the connection between RU # 2 and BBU # 2 may be dynamically switched.
  • the connection destination BBU of RU # 2 may be dynamically switched.
  • RU # 2 may be under the control of BBU # 1 or may be under the control of BBU # 2.
  • RU # 2 and RU # 3 are RUs under the same BBU (BBU # 2).
  • RU # 2 and RU # 3 are RUs under the same BBU (BBU # 2)
  • the BS cooperation technology for UE # 2 existing at the cell boundary 2-3 may be used.
  • CSCB, DPS, and JT may be applied.
  • connection between RU # 6 and BBU # 3 and the connection between RU # 6 and BBU # 4 may be dynamically switched.
  • the connection destination BBU of RU # 6 may be dynamically switched.
  • RU # 6 may be under the control of BBU # 3 or may be under the control of BBU # 4.
  • RU # 6 and RU # 7 are RUs under the same BBU (BBU # 4).
  • the BS linkage technology for the UE existing at the cell boundary 6-7 is CSCB. , DPS, and JT may be applied.
  • CU # 1 is connected to BBU # 1, BBU # 2, and BBU # 3.
  • CU # 2 connects with BBU # 3 and BBU # 4. Further, CU # 1 and CU # 2 are connected to the core network.
  • FIGS. 2 and 3 The difference between FIGS. 2 and 3 is that CU # 1 is connected to BBU # 3.
  • the connection between BBU # 3 and CU # 1 and the connection between BBU # 3 and CU # 2 may be dynamically switched.
  • the connection destination CU of BBU # 3 may be dynamically switched.
  • BBU # 3 may be under the control of CU # 1 or may be under the control of CU # 2.
  • BBU # 2 and BBU # 3 are BBUs under the same CU (CU # 1).
  • the wireless communication system 1 shown in FIG. 3 has a configuration in which the connection destination of one RU can be switched in a plurality of BBUs and a configuration in which the connection destination of one BBU can be switched in a plurality of CUs. Has.
  • the present disclosure is not limited to the example of the system configuration shown in FIG.
  • the connection between RU # 2 and BBU # 1 and the connection between RU # 2 and BBU # 2 may be dynamically switched.
  • the connection between RU # 7 and BBU # 3 and RU # may be dynamically switched.
  • the connection between BBU # 2 and CU # 1 and BBU # 2 may be dynamically switched.
  • the number of RUs, the number of BBUs, the number of CUs, and the connection state between the devices are not limited to the example of the system configuration shown in FIG. Further, for example, a certain BBU may have a configuration in which the CU of the connection destination can be switched from among three or more CUs. Alternatively, a certain RU may have a configuration in which the connection destination BBU can be switched from among three or more BBUs.
  • the control device 10 of FIG. 3 has a receiving unit 101, a control unit 102, and a transmitting unit 103.
  • the control device 10, CU # 1 and CU # 2 are connected to each other via a core network.
  • the control device 10 is typically capable of communicating with the CU, BBU, and RU of the wireless communication system 1.
  • the receiving unit 101 receives information from a device (for example, CU) in the system and outputs it to the control unit 102.
  • the information received by the receiving unit 101 may include, for example, information regarding the position of the UE.
  • the control unit 102 controls to switch the connection destination of the RU among a plurality of BBUs and / or to switch the connection destination of the BBU among a plurality of CUs. For example, the control unit 102 controls to switch the connection destination of the CU to which the BBU is connected and / or the BBU to which the RU is connected. For example, the control unit 102 determines the CU to which the BBU connects and / or the CU to which the RU connects, depending on the cell boundary in which the UE exists. The control unit 102 outputs control information indicating the determined connection destination to the transmission unit 103.
  • the transmission unit 103 outputs the control information determined by the control unit 102.
  • the output destination of the transmission unit 103 may be at least one BBU or at least one CU.
  • the transmission unit 103 may output control information to a configuration for switching the connection destination.
  • control device 10 is a device connected to the core network, but the present disclosure is not limited to this.
  • the control device 10 may be directly connected to any one of the CU, BBU, and RU of the wireless communication system 1.
  • the configuration of the control device 10 may be mounted in any one of the CU, BBU, and RU of the wireless communication system 1.
  • the configuration of the control device 10 may be mounted in a configuration (for example, a switch) for switching the connection destination.
  • a suitable BS linkage technology can be applied to the UE existing at the cell boundary.
  • CSCB, DPS, and JT can be applied to UEs existing at cell boundaries 2-3 and cell boundaries 6-7
  • CSCBs can be applied to UEs existing at cell boundaries 4-5.
  • DPS are applicable. Since such a flexible BS cooperation technology can be used, the throughput at the cell boundary can be improved.
  • the method of switching the connection destination BBU of the RU and the method of switching the connection destination CU of the BBU are not particularly limited. An example of these switching methods will be described below.
  • FIG. 4 is a diagram showing a first example of the connection destination switching method of the system configuration in the present embodiment.
  • FIG. 4 as in FIG. 3, eight RUs of RU # 1 to RU # 8, four BBUs of BBU # 1 to BBU # 4, CU # 1 to CU # 2, and a control device 10 are shown. Is included. Then, FIG. 4 includes switches (hereinafter referred to as “SW”) # 1 to switches (SW) # 3.
  • SW switches
  • SW # 1 is provided between BBU # 3 and CU # 1 and CU # 2.
  • SW # 1 switches the connection destination CU of BBU # 3 between CU # 1 and CU # 2.
  • SW # 2 is provided between RU # 2 and BBU # 1 and BBU # 2.
  • SW # 2 switches the connection destination BBU of RU # 2 between BBU # 1 and BBU # 2.
  • SW # 3 is provided between RU # 6 and BBU # 3 and BBU # 4.
  • SW # 3 switches the connection destination BBU of RU # 6 between BBU # 3 and BBU # 4.
  • SW # 1 to SW # 3 switch their connection destinations under the control of the control device 10.
  • SW # 1 to SW # 3 may switch the connection destination based on the control information acquired from the control device 10.
  • connection destination BBU of the RU can be switched and the connection destination CU of the BBU can be switched.
  • the control device 10 determines whether or not to switch the connection destination in each of SW # 1 to SW # 3 based on the position of the UE. Then, the control device 10 may transmit control information indicating the connection destination to each of SW # 1 to SW # 3. The control device 10 may determine whether or not to perform a cooperative operation with respect to the UE, and may determine whether or not to switch the connection destination based on the determination result. For example, even if the UE exists at the cell boundary, if the UE is not coordinated, the control device 10 may determine that the connection destination is not switched. Alternatively, the control device 10 may decide whether or not to switch the connection destination according to the type of the coordinated operation to be executed even when the UE performs the coordinated operation.
  • the control device 10 may decide not to switch the connection destination of SW # 2 to BBU # 2. Further, for example, when JT is applied to UE # 2, the control device 10 may decide to switch the connection destination of SW # 2 to BBU # 2.
  • the flexible BS cooperation technology can be used by switching the connection destination of the RU and the connection destination of the BBU by the SW, so that the throughput at the cell boundary can be improved.
  • the configuration of the control device 10 may be included in any one of the SWs.
  • SW # 1 may include a configuration of a control device 10 that controls switching of a connection destination of BBU # 3.
  • the control device 10 included in SW # 1 does not have to control to switch the connection destination of the device other than BBU # 3.
  • the configuration of the control device 10 that controls to switch the connection destination of RU # 2 is included in SW # 2
  • the configuration of the control device 10 that controls to switch the connection destination of RU # 6 is included in SW # 3. May be included.
  • the control device 10 included in SW # 2 does not have to control to switch the connection destination of the device other than RU # 2
  • the control device 10 included in SW # 3 is a device other than RU # 6. It is not necessary to control the connection destination.
  • FIG. 5 is a diagram showing a second example of the connection destination switching method of the network configuration in the present embodiment.
  • FIG. 5 similarly to FIG. 3, eight RUs of RU # 1 to RU # 8, four BBUs of BBU # 1 to BBU # 4, CU # 1 to CU # 2, and a control device 10 are shown. Is included.
  • FIG. 5 shows an example of switching the connection destination via the network on the host device side.
  • BBU # 3 when switching the connection destination CU of BBU # 3 from CU # 2 to CU # 1, BBU # 3 connects to CU # 1 via CU # 2 and the core network.
  • RU # 2 when switching the connection destination BBU of RU # 2 from BBU # 1 to BBU # 2, RU # 2 connects to BBU # 2 via BBU # 1 and CU # 1.
  • connection destination BBU of RU # 6 when the connection destination BBU of RU # 6 is switched from BBU # 3 to BBU # 4, RU # 6 connects to BBU # 4 via BBU # 3 and CU # 2.
  • control device 10 determines whether or not to switch the connection destination based on the position of the UE. Then, the control device 10 may transmit the control information indicating the connection destination to the device to be switched and the device located higher than the device.
  • control device 10 may determine whether or not to perform cooperative operation with respect to the UE, and determine whether or not to switch the connection destination based on the determination result. For example, even if the UE exists at the cell boundary, if the UE is not coordinated, the control device 10 may determine that the connection destination is not switched. Alternatively, the control device 10 may decide whether or not to switch the connection destination according to the type of the coordinated operation to be executed even when the UE performs the coordinated operation.
  • the functions of a plurality of devices may be integrated, or the functions of a certain device may be included in the functions of another device.
  • FIG. 6 is a diagram showing an example of functional division in the present embodiment.
  • FIG. 6 shows RU # 1 to RU # 8.
  • CU # 1 and CU # 2 each have a BBU function.
  • BBU # x the function of BBU possessed by CU # 1
  • BBU # y the function of BBU possessed by CU # 2
  • RU # 1 to RU # 4 are under the control of CU # 1 and under the control of BBU # x. Therefore, for example, the UE existing at the cell boundary 1-2 (for example, UE # 1 in FIG. 6), the UE existing at the cell boundary 2-3 (for example, UE # 2 in FIG. 6), and the cell boundary 3- CSCB, DPS and JT may be applied to the UE existing in 4.
  • RU # 5 to RU # 8 are under the control of CU # 2 and under the control of BBU # y. Therefore, for example, CSCB, DPS, and JT may be applied to the UE existing at the cell boundary 5-6, the UE existing at the cell boundary 6-7, and the UE existing at the cell boundary 7-8.
  • CU # 1 may be connected to CU # 2 via the core network.
  • BBU # x and BBU # y may be regarded as subordinates of the same CU # 2.
  • CSCB and DPS may be applied to the UE existing at the cell boundary 4-5 (for example, UE # 3 in FIG. 6).
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (component) that functions transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • control device 10, CU, BBU, RU, UE, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the device according to the embodiment of the present disclosure.
  • the control device 10, CU, BBU, RU, and UE described above are physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be done.
  • control device can be read as a circuit, device, unit, etc.
  • the hardware configuration of the control device 10 may be configured to include one or more of the devices shown in FIG. 3, or may be configured not to include some of the devices.
  • Each function in the control device 10, CU, BBU, RU, and UE is calculated by the processor 1001 by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and is performed by the communication device 1004. It is realized by controlling communication and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • the above-mentioned control unit 102 and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 102 of the control device 10 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the control devices 10, CU, BBU, RU, and UE are microprocessors, digital signal processors (DSPs: Digital Signal Processors), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). ) And the like, and a part or all of each functional block may be realized by the hardware.
  • DSPs Digital Signal Processors
  • ASICs Application Specific Integrated Circuits
  • PLDs Program Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by notification information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (New Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize and extend based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, a memory), or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • Information, signal The information, signals, etc. described in the present disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base station wireless base station
  • Base Station Wireless Base Station
  • NodeB Wireless Base Station
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head)).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of a base station and a mobile station may be referred to as a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal may have the functions of the above-mentioned base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the terminal described above.
  • determining and “determining” as used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment, calculation, computing, processing, deriving, investigating, looking up, search, inquiry. (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing for example, accessing data in memory
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first”, “second”, etc. does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "means”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • One aspect of the present disclosure is useful, for example, in a wireless communication system.
  • Control device 101 Receiver 102 Control 103 Transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムは、端末へ信号を送信する無線装置と、無線装置と接続し、信号のベースバンド処理を実行するBB制御装置と、BB制御装置と接続し、BB制御装置を制御する上位制御装置と、を備え、1つの無線装置の接続先が複数のBB制御装置の中で切り替えられる構成、及び/又は、1つのBB制御装置の接続先が複数の上位制御装置の中で切り替えられる構成を有する。

Description

無線通信システム、制御装置及び制御方法
 本開示は、無線通信システム、制御装置及び制御方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。
一般社団法人情報技術委員会、「TR-1079 第5世代移動体通信システムのフロントホールにおける光アクセスに関する技術報告書」、第1.0版、2019年5月30日
 NRのような無線通信システムでは、複数の基地局(BS:Base Station)の間で送信動作又は受信動作を連携させるBS連携技術が検討されている。
 本開示の目的の一つは、適切なBS連携の制御を実現することにある。
 本開示の一態様に係る無線通信システムは、端末へ信号を送信する無線装置と、前記無線装置と接続し、前記信号のベースバンド(BB)処理を実行するBB制御装置と、前記BB制御装置と接続し、前記BB制御装置を制御する上位制御装置と、を備え、1つの前記無線装置の接続先が複数の前記BB制御装置の中で切り替えられる構成、及び/又は、1つの前記BB制御装置の接続先が複数の前記上位制御装置の中で切り替えられる構成を有する。
 本開示によれば、適切なBS連携の制御を実現できる。
BS連携技術の例を示す図である。 システム構成の一例を示す図である。 実施の形態に係る無線通信システムの構成の一例を示す図である。 実施の形態におけるシステム構成の接続先切替方法の第1の例を示す図である。 実施の形態におけるシステム構成の接続先切替方法の第2の例を示す図である。 本実施の形態における機能分担の例を示す図である。 本開示の一実施の形態に係る装置のハードウェア構成の一例を示す図である。
 以下、図面を適宜参照して、実施の形態について説明する。本明細書の全体を通じて同一要素には、特に断らない限り、同一符号を付す。添付の図面と共に以下に記載される事項は、例示的な実施の形態を説明するためのものであり、唯一の実施の形態を示すためのものではない。例えば、実施の形態において動作の順序が示された場合、動作の順序は、全体的な動作として矛盾が生じない範囲で、適宜に変更されてもよい。
 複数の実施形態及び/又は変形例を例示した場合、或る実施形態及び/又は変形例における一部の構成、機能及び/又は動作は、矛盾の生じない範囲で、他の実施形態及び/又は変形例に含まれてもよいし、他の実施形態及び/又は変形例の対応する構成、機能及び/又は動作に置き換えられてもよい。
 また、実施の形態において、必要以上に詳細な説明は省略する場合がある。例えば、説明が不必要に冗長になること、及び/又は、技術的な事項又は概念が曖昧になることを回避して当業者の理解を容易にするために、公知又は周知の技術的な事項の詳細説明を省略する場合がある。また、実質的に同一の構成、機能及び/又は動作についての重複説明を省略する場合がある。
 添付図面および以下の説明は、実施の形態の理解を助けるために提供されるものであって、これらによって請求の範囲に記載の主題を限定することは意図されていない。また、以下の説明で使われる用語は、当業者の理解を助けるために他の用語に適宜に読み替えられてもよい。
 <本開示に至った知見>
 増加する移動通信トラヒックに対応するため、通信速度及び通信容量を向上させる技術が望まれる。
 例えば、或る基地局(BS:Base Station)#1に対応するセル#1と、セル#1と隣り合うセル#2との間の境界では、セル#2に対応する基地局#2からの干渉によって、基地局#1と無線接続する端末(UE:User Equipment)におけるスループットが低下する場合がある。2つ以上のセルの間の境界は、例えば、各セルに相当するエリアの間で重複するエリアに対応してよい。2つ以上のセルの間の境界は、「セル端」又は「セル境界」と称されてよい。
 セル端でのスループットを向上させるために、複数のBSが連携して送信及び/又は受信を行うBS連携技術が検討されている。
 また、基地局の機能を含む無線通信の機能を複数の装置(例えば、ユニット)に分離する機能分担について検討される。例えば、無線信号の送受信を行う無線ユニット(RU)と、RUと接続し、ベースバンドの信号処理を担うベースバンドユニット(BBU)と、BBUと接続し、BBUとRUとを制御するセントラルユニット(CU)とに分離することが検討される。
 BBUは、例えば、ベースバンド(BB)制御装置、ベースバンド集約装置、CBBU(centralized baseband unit)、あるいはREC(radio equipment controller)と称されてもよい。また、RUは、例えば、無線装置、RRH(remote radio head)、又は、RE(radio equipment)と称されてもよい。CUは、例えば、上位制御装置と称されてもよい。
 BBUとCUとの間の接続は、バックホール(BH)と称される。例えば、BHには、光ファイバケーブルのような有線ケーブルが用いられる。BBUとRUとの間の接続は、例えば、フロントホール(FH)と称される。例えば、FHには、光ファイバケーブルのような有線ケーブルが用いられる。
 なお、上述した機能分担を行う構成において、BBUとRUとを含む通信装置が「基地局(BS)」と称されてもよいし、CU、BBU、及び、RUを含む通信装置が「基地局(BS)」と称されてもよい。
 上述した機能分担を行う構成において、複数のBSが連携して送信及び/又は受信を行うBS連携技術が適用される。
 図1は、BS連携技術の例を示す図である。図1には、coordinated scheduling(CS)、coordinated beamforming(CB)、joint transmission(JT)、及び、dynamic point selection(DPS)の4つのBS連携技術の例が示される。図1では、例示的に、RU#1に対応するセル#1とRU#2に対応するセル#2との間の境界に位置するUE、または、いずれかのセル内に位置するUEに対して実行されるBS連携技術が示される。なお、BS連携技術は、協調動作と称されてもよい。また、4つのBS連携技術は、4つの協調動作のパターン(種類)と称される場合がある。
 CSでは、基地局間で協調してスケジューリングを行う。ここで、スケジューリングには、リソース割当が含まれる。例えば、CSでは、スケジューリングにおいて、セル境界に位置する2以上のUEには、互いに異なるリソースが割り当てられる。
 例えば、図1の例では、RU#1がBBU#1に接続し、RU#2がBBU#2に接続し、BBU#1とBBU#2とがCUに接続するシステム構成において、CUが、セル#1又はセル#2に存在するUEに対して、リソース割当を含むスケジューリングを行う。そして、CUによって決定されたスケジューリングに基づいて、BBU#1に接続するRU#1と、BBU#2に接続するRU#2とが、UEに対して信号を送信する。
 なお、以下では、或るCU#xと接続するBBU#yは、CU#xの配下のBBUと記載される場合がある。また、或るRU#zがBBU#yと接続し、BBU#yがCU#xに接続する場合、RU#zは、BBU#yの配下のRU、及び、CU#xの配下のRUと記載される場合がある(x、y及びzは、非負整数)。また、この場合、CU#xはBBU#y及びRU#zの上位の装置と記載され、BBU#yは、RU#zの上位の装置と記載される場合がある。なお、#x、#y及び#zは、それぞれ、CU、BBU及びRUを識別するための識別子に相当してよい。
 例えば、図1のCSの例では、セル境界に位置するUE#1及びUE#2に対するスケジューリングにおいて、CUは、UE#1に対して周波数リソースf1を割り当て、UE#2に対して周波数リソースf2を割り当てる。このようなスケジューリングによって、UE#1は、RU#1から信号を受信する場合に、RU#2から送信される信号による干渉の影響が回避できる。
 CBでは、基地局間で協調してビームフォーミングを行う。例えば、CBでは、セル境界に位置するUEに対して、干渉となるビームの信号送信を制限(停止)する。ここで、干渉となるビームの信号送信の停止は、ヌリング(nulling)と称されてもよい。
 例えば、図1のCBの例では、RU#1がBBU#1に接続し、RU#2がBBU#2に接続し、BBU#1とBBU#2とがCUに接続するネットワークにおいて、CUが、CBの制御を行う。そして、CUの制御に基づいて、BBU#1に接続するRU#1と、BBU#2に接続するRU#2とが、ビームを形成し、UEに対して信号を送信する。
 例えば、図1のCBの例では、RU#1とRU#2とが、互いに同じ周波数リソースf1を用いて、信号送信を行う。そして、セル境界に位置するUE#1に対する信号送信では、RU#2は、信号送信を行わない(「ヌリング」とする)。このようなビーム制御によって、UE#1は、RU#1から信号を受信する場合に、RU#2から送信される信号による干渉の影響が回避できる。
 なお、CSとCBとは、纏めて、CSCBと称される場合がある。また、CBにおけるビーム制御は、CSにおけるスケジューリングの一例と捉えてよい。CSCBは、例えば、セル#1とセル#2とに対応するRU#1とRU#2とが、同じCUの配下である場合に適用されてよい。
 JTでは、複数の基地局が協調動作し、複数の基地局が1つのUEに対して信号送信を行う。JTは、例えば、セル#1とセル#2とに対応するRU#1とRU#2とが、同じBBUの配下である場合に適用されてよい。
 例えば、図1のJTの例では、RU#1とRU#2とに接続するBBUが、RU#1とRU#2とから、UE#1に対する下りリンクチャネルのチャネル推定値を含むチャネル状態情報(channel state information(CSI))を取得する。BBUは、CSIに基づくプリコーディング処理等を施した信号をRU#1とRU#2とに出力する。RU#1とRU#2とは、例えば、同じ周波数リソースf1を用いて、UE#1に対して協調して信号送信を行う。
 DPSでは、複数の基地局が協調動作し、複数の基地局の中で条件が良い1つの基地局が、UEに信号を送信する。DPSは、例えば、セル#1とセル#2とに対応するRU#1とRU#2とが、同じCUの配下である場合に適用されてよい。
 例えば、図1の例では、CUが、RU#2よりもRU#1の方がUE#1に対する信号送信において好ましいRUであると判断する。そして、CUの制御により、UE#1がセル#2内に存在するにも関わらず、RU#1がUE#1に信号を送信する。この場合、RU#2は、信号送信を停止する。
 上述したBS連携技術において、複数のセル間のセル境界に存在するUEに対して、当該複数のセルに対応する複数のRUが同一のCUの配下のRUである場合、CSCB及びDPSが適用されてよい。
 また、上述したBS連携技術において、複数のセル間のセル境界に存在するUEに対して、当該複数のセルに対応する複数のRUが同一のBBUの配下のRUである場合、CSCB、DPS及びJTが適用されてよい。
 上述したBS連携技術では、ネットワーク構成によっては、セル境界においてBS連携技術が適用できない場合、及び、セル境界において適用し得るBS連携技術が制限される場合がある。以下、BS連携技術の適用の可否について図2を参照して説明する。
 図2は、システム構成の一例を示す図である。ここで、図2に示すネットワークには、RU#1~RU#8の8つのRUと、BBU#1~BBU#4と、CU#1~CU#2とが含まれる。
 RU#1~RU#8は、それぞれ、セルを形成する。以下、RU#i(iは、1以上8以下の整数)に対応するセルは、セル#iと記載される場合がある。また、セル#iと、セル#iに隣接するセル#j(jは、iと異なる1以上8以下の整数)との間のセル境界は、「セル境界i―j」と記載される場合がある。例えば、図2では、2つのセルが重なりあう範囲が、セル境界に対応してよい。
 BBU#1は、RU#1及びRU#2と接続する。別言すると、RU#1及びRU#2は、BBU#1の配下の装置である。BBU#2は、RU#3及びRU#4と接続する。別言すると、RU#3及びRU#4は、BBU#2の配下の装置である。BBU#3は、RU#5及びRU#6と接続する。別言すると、RU#5及びRU#6は、BBU#3の配下の装置である。BBU#4は、RU#7及びRU#8と接続する。別言すると、RU#7及びRU#8は、BBU#4の配下の装置である。
 CU#1は、BBU#1及びBBU#2と接続する。別言すると、BBU#1及びBBU#2は、CU#1の配下の装置である。CU#2は、BBU#3及びBBU#4と接続する。別言すると、BBU#3及びBBU#4は、CU#2の配下の装置である。また、CU#1及びCU#2は、コアネットワーク(コアNW)と接続する。
 図2に示すシステム構成において、例えば、RU#1とRU#2とは、同一のCU(CU#1)の配下であり、かつ、同一のBBU(BBU#1)の配下のRUである。そのため、セル#1とセル#2との間のセル境界(セル境界1-2)に存在するUE#1に対するBS連携技術では、CSCB、DPS、及び、JTが適用されてよい。
 セル境界1-2と同様に、セル境界3-4、セル境界5-6、及び、セル境界7-8に存在するUEに対するBS連携技術では、CSCB、DPS、及び、JTが適用されてよい。
 また、図2に示すシステム構成において、例えば、RU#2とRU#3とは、同一のCU(CU#1)の配下である。そのため、セル#2とセル#3との間のセル境界(セル境界2-3)に存在するUE#2に対するBS連携技術では、CSCB及びDPSが適用される。一方で、RU#2はBBU#1の配下であり、RU#3はBBU#2の配下である。別言すると、RU#2とRU#3とは、互いに異なるBBUの配下のRUである。そのため、UE#2に対するBS連携技術では、JTが適用されない。
 セル境界2-3と同様に、セル境界6-7に存在するUEに対するBS連携技術では、CSCB及びDPSが適用されてよいが、JTが適用されない。
 また、図2に示すシステム構成において、例えば、RU#4は、CU#1の配下のRUであり、RU#5は、CU#2の配下のRUである。別言すると、RU#4とRU#5とは、互いに異なるCUの配下のRUである。また、RU#4はBBU#2の配下であり、RU#5はBBU#3の配下である。別言すると、RU#4とRU#5とは、互いに異なるBBUの配下のRUである。そのため、セル#4とセル#5との間のセル境界(セル境界4-5)に存在するUE#3に対するBS連携技術では、CSCB、DPS、及び、JTが適用されない。
 図2に例示したように、システム構成によっては、セル境界に存在するUEに対して、適したBS連携技術が適用できない可能性がある。
 そこで、本開示の一態様では、適切なBS連携技術(協調動作)が適用されるためのシステム構成と当該システムでの制御について説明する。
 (一実施の形態)
 <無線通信システムの構成>
 図3は、本実施の形態に係る無線通信システム1の構成の一例を示す図である。図3に示す無線通信システム1は、RU#1~RU#8の8つのRUと、BBU#1~BBU#4の4つのBBUと、CU#1~CU#2と、制御装置10とが含まれる。なお、CU、BBU及びRUのそれぞれの数及び接続関係は、一例であり、本開示はこれに限定されない。
 RU#1~RU#8は、それぞれ、セルを形成する。以下、RU#i(iは、1以上8以下の整数)に対応するセルは、セル#iと記載される場合がある。また、セル#iと、セル#iに隣接するセル#j(jは、iと異なる1以上8以下の整数)との間のセル境界は、「セル境界i―j」と記載される場合がある。例えば、図3では、2つのセルが重なりあう範囲が、セル境界に対応してよい。
 BBU#1は、RU#1及びRU#2と接続する。BBU#2は、RU#2、RU#3及びRU#4と接続する。BBU#3は、RU#5及びRU#6と接続する。BBU#4は、RU#6、RU#7及びRU#8と接続する。
 図2と図3との相違点は、BBU#2がRU#2と接続する点、及び、BBU#4がRU#6と接続する点である。
 例えば、RU#2とBBU#1との接続、及び、RU#2とBBU#2との接続は、動的に切り替えられてよい。別言すると、RU#2の接続先BBUは、動的に切り替えられてよい。図3に示すシステム構成において、RU#2はBBU#1の配下であってもよいし、BBU#2の配下であってもよい。例えば、RU#2の接続先BBUがBBU#2である場合、RU#2とRU#3とは、同一のBBU(BBU#2)の配下のRUである。
 図3に示すシステム構成において、RU#2とRU#3とが、同一のBBU(BBU#2)の配下のRUである場合、セル境界2-3に存在するUE#2に対するBS連携技術では、CSCB、DPS、及び、JTが適用されてよい。
 また、例えば、RU#6とBBU#3との接続、及び、RU#6とBBU#4との接続は、動的に切り替えられてよい。別言すると、RU#6の接続先BBUは、動的に切り替えられてよい。図3に示すシステム構成において、RU#6はBBU#3の配下であってもよいし、BBU#4の配下であってもよい。例えば、RU#6の接続先BBUがBBU#4である場合、RU#6とRU#7とは、同一のBBU(BBU#4)の配下のRUである。
 図3に示すシステム構成において、RU#6とRU#7とが、同一のBBU(BBU#4)の配下のRUである場合、セル境界6-7に存在するUEに対するBS連携技術では、CSCB、DPS、及び、JTが適用されてよい。
 図3に示すシステム構成において、CU#1は、BBU#1、BBU#2及びBBU#3と接続する。CU#2は、BBU#3及びBBU#4と接続する。また、CU#1及びCU#2は、コアネットワークと接続する。
 図2と図3との相違点は、CU#1がBBU#3と接続する点である。例えば、BBU#3とCU#1との接続、及び、BBU#3とCU#2との接続は、動的に切り替えられてよい。別言すると、BBU#3の接続先CUは、動的に切り替えられてよい。図3に示すシステム構成において、BBU#3は、CU#1の配下であってもよいし、CU#2の配下であってもよい。例えば、BBU#3の接続先CUがCU#1である場合、BBU#2とBBU#3とは、同一のCU(CU#1)の配下のBBUである。
 また、図3に示すシステム構成において、BBU#2とBBU#3とが同一のCU(CU#1)の配下のBBUである場合、セル境界4-5に存在するUE#3に対するBS連携技術では、CSCB、及び、DPSが適用されてよい。
 上述のように、図3に示す無線通信システム1は、1つのRUの接続先が複数のBBUの中で切り替えられる構成、及び、1つのBBUの接続先が複数のCUの中で切り替えられる構成を有する。
 なお、本開示は、図3に示すシステム構成の例に限定されない。例えば、RU#2とBBU#1との接続、及び、RU#2とBBU#2との接続が、動的に切り替えられる代わりに、RU#3とBBU#1との接続、及び、RU#3とBBU#2との接続が、動的に切り替えられてもよい。また、RU#6とBBU#3との接続、及び、RU#6とBBU#4との接続が、動的に切り替えられる代わりに、RU#7とBBU#3との接続、及び、RU#7とBBU#4との接続が、動的に切り替えられてもよい。また、BBU#3とCU#1との接続、及び、BBU#3とCU#2との接続が動的に切り替えられる代わりに、BBU#2とCU#1との接続、及び、BBU#2とCU#2との接続が動的に切り替えられてよい。
 また、RUの数、BBUの数、CUの数、及び、装置間の接続状態は、図3に示すシステム構成の例に限定されない。また、例えば、或るBBUが、3つ以上のCUの中から、接続先のCUを切り替えられる構成であってもよい。あるいは、或るRUが、3つ以上のBBUの中から、接続先のBBUを切り替えられる構成であってもよい。
 図3の制御装置10は、受信部101、制御部102及び送信部103を有する。制御装置10とCU#1とCU#2とは、コアネットワークを介して互いに接続される。制御装置10は、例示的に、無線通信システム1のCU、BBU及びRUと通信可能である。
 受信部101は、システム内の装置(例えば、CU)から情報を受信し、制御部102へ出力する。受信部101が受信する情報には、例えば、UEの位置に関する情報が含まれてよい。
 制御部102は、RUの接続先を、複数のBBUの中で切り替える制御、及び/又は、BBUの接続先を、複数のCUの中で切り替える制御を行う。例えば、制御部102は、BBUが接続するCU及び/又はRUが接続するBBUの接続先を切り替える制御を行う。例えば、制御部102は、UEが存在するセル境界に応じて、BBUが接続するCU及び/又はRUが接続するCUを決定する。制御部102は、決定した接続先を示す制御情報を、送信部103へ出力する。
 送信部103は、制御部102によって決定した制御情報を出力する。例えば、送信部103の出力先は、少なくとも1つのBBU、または、少なくとも1つのCUであってよい。あるいは、送信部103は、接続先を切り替える構成に制御情報を出力してもよい。
 なお、図3に示す無線通信システム1では、制御装置10が、コアネットワークに接続する装置である例を示したが、本開示はこれに限定されない。制御装置10は、無線通信システム1のCU、BBU、及び、RUのいずれか1つと直接接続してもよい。あるいは、制御装置10の構成が、無線通信システム1のCU、BBU、及び、RUのいずれか1つの中に搭載されてもよい。あるいは、制御装置10の構成が、接続先を切り替える構成(例えば、スイッチ)に搭載されてもよい。
 図3に示すシステム構成によって、セル境界に存在するUEに対して、適したBS連携技術が適用できる。例えば、図3において、セル境界2-3及びセル境界6-7に存在するUEに対して、CSCB、DPS、及び、JTが適用でき、セル境界4-5に存在するUEに対して、CSCB及びDPSが適用できる。このように柔軟なBS連携技術が使用できるため、セル境界でのスループットを向上できる。
 なお、図3に示すシステム構成において、RUの接続先BBUの切替方法及びBBUの接続先CUの切替方法については、特に限定されない。以下では、これらの切替方法の例を説明する。
 図4は、本実施の形態におけるシステム構成の接続先切替方法の第1の例を示す図である。
 図4には、図3と同様に、RU#1~RU#8の8つのRUと、BBU#1~BBU#4の4つのBBUと、CU#1~CU#2と、制御装置10とが含まれる。そして、図4には、スイッチ(以下、「SW」と記載)#1~スイッチ(SW)#3とが含まれる。
 SW#1は、BBU#3と、CU#1及びCU#2との間に設けられる。SW#1は、BBU#3の接続先CUを、CU#1とCU#2との間で切り替える。
 SW#2は、RU#2と、BBU#1及びBBU#2との間に設けられる。SW#2は、BBU#1とBBU#2との間で、RU#2の接続先BBUを切り替える。
 SW#3は、RU#6と、BBU#3及びBBU#4との間に設けられる。SW#3は、BBU#3とBBU#4との間で、RU#6の接続先BBUを切り替える。
 例えば、SW#1~SW#3は、制御装置10の制御によって、接続先を切り替える。例えば、SW#1~SW#3は、制御装置10から取得する制御情報に基づいて、接続先を切り替えてよい。
 図4に示す構成によって、RUの接続先BBUの切替、及び、BBUの接続先CUの切替を行うことができる。
 例えば、制御装置10が、UEの位置に基づいて、SW#1~SW#3のそれぞれにおいて、接続先を切り替えるか否かを決定する。そして、制御装置10は、SW#1~SW#3のそれぞれに対して、接続先を示す制御情報を送信してよい。なお、制御装置10は、UEに対して協調動作を行うか否かを判定し、判定結果に基づいて、接続先を切り替えるか否かを決定してもよい。例えば、UEがセル境界に存在した場合でも、当該UEに対して協調動作を行わない場合には、制御装置10は、接続先を切り替えない、と判定してよい。あるいは、制御装置10は、当該UEが協調動作を行う場合でも、実行される協調動作の種類に応じて、接続先を切り替えるか否かを決定してもよい。
 例えば、図4において、UE#2に対してCSCB又はDPSが適用される場合、制御装置10は、SW#2の接続先をBBU#2に切り替えない、と決定してよい。また、例えば、UE#2に対してJTが適用される場合、制御装置10は、SW#2の接続先をBBU#2に切り替える、と決定してよい。
 図4に示すように、RUの接続先及びBBUの接続先をSWによって切り替える構成によって、柔軟なBS連携技術が使用できるため、セル境界でのスループットを向上できる。
 なお、図4に示すように、RUの接続先及びBBUの接続先をSWによって切り替える構成において、制御装置10の構成が、いずれか少なくとも1つのSWに含まれてもよい。例えば、図4において、BBU#3の接続先を切り替える制御を行う制御装置10の構成が、SW#1に含まれてよい。この場合、SW#1に含まれる制御装置10は、BBU#3以外の装置の接続先を切り替える制御を行わなくてよい。同様に、RU#2の接続先を切り替える制御を行う制御装置10の構成が、SW#2に含まれ、RU#6の接続先を切り替える制御を行う制御装置10の構成が、SW#3に含まれてよい。この場合、SW#2に含まれる制御装置10は、RU#2以外の装置の接続先を切り替える制御を行わなくてよく、SW#3に含まれる制御装置10は、RU#6以外の装置の接続先を切り替える制御を行わなくてよい。
 図5は、本実施の形態におけるネットワーク構成の接続先切替方法の第2の例を示す図である。
 図5には、図3と同様に、RU#1~RU#8の8つのRUと、BBU#1~BBU#4の4つのBBUと、CU#1~CU#2と、制御装置10とが含まれる。
 図5では、上位装置側のネットワークを介して、接続先を切り替える例が示される。
 例えば、BBU#3の接続先CUをCU#2からCU#1へ切り替える場合、BBU#3は、CU#2及びコアネットワークを介して、CU#1へ接続する。
 例えば、RU#2の接続先BBUをBBU#1からBBU#2へ切り替える場合、RU#2は、BBU#1及びCU#1を介してBBU#2へ接続する。
 また、例えば、RU#6の接続先BBUをBBU#3からBBU#4へ切り替える場合、RU#6は、BBU#3及びCU#2を介してBBU#4へ接続する。
 例えば、制御装置10が、UEの位置に基づいて、接続先を切り替えるか否かを決定する。そして、制御装置10は、接続先を示す制御情報を、切り替えの対象となる装置、及び、当該装置よりも上位に位置する装置に送信してよい。
 なお、制御装置10は、UEに対して協調動作を行うか否かを判定し、判定結果に基づいて、接続先を切り替えるか否かを決定してもよい。例えば、UEがセル境界に存在した場合でも、当該UEに対して協調動作を行わない場合には、制御装置10は、接続先を切り替えない、と判定してよい。あるいは、制御装置10は、当該UEが協調動作を行う場合でも、実行される協調動作の種類に応じて、接続先を切り替えるか否かを決定してもよい。
 なお、上述した無線通信システム1の一部において、複数の装置の機能が集約されたり、あるいは、或る装置の機能が別の装置の機能に含まれたり、といった機能分担が行われてよい。
 図6は、本実施の形態における機能分担の例を示す図である。
 図6には、RU#1~RU#8が示される。図6では、CU#1及びCU#2が、それぞれ、BBUの機能を有する。以下、CU#1が有するBBUの機能は、BBU#xと記載され、CU#2が有するBBUの機能は、BBU#yと記載される。
 この場合、RU#1~RU#4は、CU#1の配下であり、かつ、BBU#xの配下である。そのため、例えば、セル境界1-2に存在するUE(例えば、図6のUE#1)、セル境界2-3に存在するUE(例えば、図6のUE#2)、及び、セル境界3-4に存在するUEに対して、CSCB、DPS及びJTが適用されてよい。
 また、この場合、RU#5~RU#8は、CU#2の配下であり、かつ、BBU#yの配下である。そのため、例えば、セル境界5-6に存在するUE、セル境界6-7に存在するUE、及び、セル境界7-8に存在するUEに対して、CSCB、DPS及びJTが適用されてよい。
 なお、図6の構成において、CU#1は、コアネットワークを介してCU#2と接続してもよい。この接続によって、例えば、BBU#xとBBU#yとは、同一のCU#2の配下と捉えてよい。この場合、セル境界4-5に存在するUE(例えば、図6のUE#3)に対して、CSCB、及び、DPSが適用されてよい。
 (ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における制御装置10、CU、BBU、RU、UEなどは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、本開示の一実施の形態に係る装置のハードウェア構成の一例を示す図である。上述の制御装置10、CU、BBU、RU、UEは、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。制御装置10のハードウェア構成は、図3に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 制御装置10、CU、BBU、RU、UEにおける各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部102などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御装置10の制御部102は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の受信部101及び送信部103などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、制御装置10、CU、BBU、RU、UEは、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (情報の通知、シグナリング)
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 (適用システム)
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(New Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 (処理手順等)
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 (基地局の動作)
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 (入出力の方向)
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 (情報、信号)
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 (「システム」、「ネットワーク」)
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 (パラメータ、チャネルの名称)
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 (基地局(無線基地局))
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 (端末)
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 (基地局/移動局)
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局が有する機能を端末が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
 (用語の意味、解釈)
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 (態様のバリエーション等)
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 本特許出願は、2020年3月27日に出願した日本国特許出願第2020-058858号に基づきその優先権を主張するものであり、日本国特許出願第2020-058858号の全内容を本願に援用する。
 本開示の一態様は、例えば、無線通信システムに有用である。
 10 制御装置
 101 受信部
 102 制御部
 103 送信部

Claims (6)

  1.  端末へ信号を送信する無線装置と、
     前記無線装置と接続し、前記信号のベースバンド(BB)処理を実行するBB制御装置と、
     前記BB制御装置と接続し、前記BB制御装置を制御する上位制御装置と、
     を備え、
     1つの前記無線装置の接続先が複数の前記BB制御装置の中で切り替えられる構成、及び/又は、1つの前記BB制御装置の接続先が複数の前記上位制御装置の中で切り替えられる構成を有する、
     無線通信システム。
  2.  前記切り替えられる構成は、スイッチである、
     請求項1に記載の無線通信システム。
  3.  前記端末が第1の前記無線装置に対応するエリアと第2の前記無線装置に対応するエリアとの境界に存在し、前記第1の無線装置と前記第2の無線装置とが、同一の前記BB制御装置の配下ではない場合、
     前記第1の無線装置は、前記第1の無線装置が接続する第1の前記BB制御装置及び第1の前記上位制御装置を介して、前記第2の無線装置が接続する第2の前記BB制御装置と接続する、
     請求項1に記載の無線通信システム。
  4.  前記端末が第1の前記無線装置に対応するエリアと第2の前記無線装置に対応するエリアとの境界に存在し、前記第1の無線装置が接続する第1の前記BB制御装置と前記第2の無線装置が接続する第2の前記BB制御装置とが、同一の前記上位制御装置の配下ではない場合、
     前記第1のBB制御装置は、前記第1のBB制御装置が接続する第1の前記上位制御装置を介して、前記第2のBB制御装置が接続する第2の前記上位制御装置と接続する、
     請求項1に記載の無線通信システム。
  5.  端末へ信号を送信する無線装置と、前記無線装置と接続し、前記信号のベースバンド(BB)処理を実行するBB制御装置と、前記BB制御装置と接続し、前記BB制御装置を制御する上位制御装置と、を含む無線通信システムにおいて、1つの前記無線装置の接続先を、複数の前記BB制御装置の中で切り替える制御、及び/又は、1つの前記BB制御装置の接続先を、複数の前記上位制御装置の中で切り替える制御を行う制御部と、
     前記制御部における切り替え制御に関する制御情報を、前記無線通信システムに対して送信する送信部と、
     を備える制御装置。
  6.  制御装置が、
     端末へ信号を送信する無線装置と、前記無線装置と接続し、前記信号のベースバンド(BB)処理を実行するBB制御装置と、前記BB制御装置と接続し、前記BB制御装置を制御する上位制御装置と、を含む無線通信システムにおいて、1つの前記無線装置の接続先を、複数の前記BB制御装置の中で切り替える制御、及び/又は、1つの前記BB制御装置の接続先を、複数の前記上位制御装置の中で切り替える制御を行い、
     前記切り替え制御に関する制御情報を、前記無線通信システムに対して送信する、
     制御方法。
PCT/JP2021/012613 2020-03-27 2021-03-25 無線通信システム、制御装置及び制御方法 WO2021200567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21780677.7A EP4132218A4 (en) 2020-03-27 2021-03-25 WIRELESS COMMUNICATION SYSTEM, CONTROLLER, AND CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058858A JP7576401B2 (ja) 2020-03-27 2020-03-27 無線通信システム
JP2020-058858 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021200567A1 true WO2021200567A1 (ja) 2021-10-07

Family

ID=77919846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012613 WO2021200567A1 (ja) 2020-03-27 2021-03-25 無線通信システム、制御装置及び制御方法

Country Status (3)

Country Link
EP (1) EP4132218A4 (ja)
JP (1) JP7576401B2 (ja)
WO (1) WO2021200567A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108315A (ja) * 2015-12-10 2017-06-15 Kddi株式会社 無線アクセスネットワークの管理装置及びプログラム
WO2018198178A1 (ja) * 2017-04-25 2018-11-01 富士通株式会社 基地局装置、無線通信システム、及び無線部切替方法
JP2020058858A (ja) 2019-12-27 2020-04-16 株式会社コナミデジタルエンタテインメント ゲーム制御装置、ゲームシステム及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614274B2 (ja) * 2010-12-21 2014-10-29 富士通株式会社 無線通信システム
JP2015061248A (ja) * 2013-09-20 2015-03-30 株式会社日立製作所 基地局、無線通信システム、及び無線通信方法
KR20180092734A (ko) * 2017-02-10 2018-08-20 한국전자통신연구원 통신 네트워크에서 통신 노드의 동작 방법
WO2019187163A1 (ja) * 2018-03-30 2019-10-03 富士通株式会社 通信制御装置、無線装置、および無線通信システム
EP3618518B1 (en) * 2018-08-28 2022-11-30 Mitsubishi Electric R&D Centre Europe B.V. Method for wireless network management and network node for implementing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108315A (ja) * 2015-12-10 2017-06-15 Kddi株式会社 無線アクセスネットワークの管理装置及びプログラム
WO2018198178A1 (ja) * 2017-04-25 2018-11-01 富士通株式会社 基地局装置、無線通信システム、及び無線部切替方法
JP2020058858A (ja) 2019-12-27 2020-04-16 株式会社コナミデジタルエンタテインメント ゲーム制御装置、ゲームシステム及びプログラム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"TR-1079 Technical report of optical access technologies applying 5G mobile fronthaul", TELECOMMUNICATION TECHNOLOGY COMMITTEE, vol. l.O, 30 May 2019 (2019-05-30)
HUAWEI: "Positioning architecture", 3GPP DRAFT; R3-195596 CR TO 38.401 ON POS CU-DU ARCHITECTURE, vol. RAN WG3, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 4, XP051792629 *
NTT DOCOMO, INC.: "New SID on inter-gNB coordination for NR", 3GPP DRAFT; RP-200088, vol. TSG RAN, 11 March 2020 (2020-03-11), pages 1 - 7, XP051865094 *
See also references of EP4132218A4
UMESH ANIL : "Standardization trends toward open and intelligent radio access networks : overview of O-ran fronthaul specifications ", NTT DOCOMO TECHNICAL JOURNAL, vol. 27, no. 1, 1 April 2019 (2019-04-01), JP, pages 43 - 55, XP009539698 *
YU TSUKAMOTO, HARUHISA HIRAYAMA, SHINOBU NAMBA, KOSA NISHIMURA: "Demonstration of Two-Level Scheduling for RAN Slicing in Multi-CU/DU Architecture", IEICE TECHNICAL REPORT, vol. 119, no. 101 (CS2019-42), 1 January 2019 (2019-01-01), JP , pages 133 - 136, XP009536157, ISSN: 2432-6380 *

Also Published As

Publication number Publication date
EP4132218A4 (en) 2024-04-17
JP7576401B2 (ja) 2024-10-31
JP2021158602A (ja) 2021-10-07
EP4132218A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP7084497B2 (ja) 無線ノード、及び、無線通信方法
WO2020230201A1 (ja) ユーザ装置及び基地局装置
JPWO2020170405A1 (ja) ユーザ装置及び基地局装置
WO2021157090A1 (ja) 端末及び通信方法
JPWO2020070898A1 (ja) ユーザ端末、無線基地局、及び、無線通信方法
WO2020250395A1 (ja) 無線通信ノード及び無線通信方法
WO2020246185A1 (ja) 端末及び基地局
WO2020235318A1 (ja) ユーザ装置及び基地局装置
WO2021140673A1 (ja) 端末及び通信方法
WO2021199415A1 (ja) 端末及び通信方法
WO2021140677A1 (ja) 端末及び通信方法
WO2021149110A1 (ja) 端末及び通信方法
WO2021186721A1 (ja) 無線通信ノード及び端末
WO2021140674A1 (ja) 端末及び通信方法
WO2021193832A1 (ja) 制御装置、無線通信システム及び制御方法
WO2020194638A1 (ja) ユーザ装置及び基地局装置
WO2022153507A1 (ja) 無線通信ノード及び無線通信方法
WO2022029947A1 (ja) 端末、基地局装置、及びフィードバック方法
WO2022079868A1 (ja) 端末、及び基地局
JP7296461B2 (ja) 基地局装置、端末、及び送信方法
WO2021200567A1 (ja) 無線通信システム、制御装置及び制御方法
WO2022153511A1 (ja) 無線通信ノード及び無線通信方法
JP7553204B2 (ja) 端末、基地局、通信システム、及び通信方法
WO2022029946A1 (ja) 端末、基地局装置、及びフィードバック方法
WO2021140676A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021780677

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021780677

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE