WO2021140673A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2021140673A1
WO2021140673A1 PCT/JP2020/000767 JP2020000767W WO2021140673A1 WO 2021140673 A1 WO2021140673 A1 WO 2021140673A1 JP 2020000767 W JP2020000767 W JP 2020000767W WO 2021140673 A1 WO2021140673 A1 WO 2021140673A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
scheduling
base station
carrier
Prior art date
Application number
PCT/JP2020/000767
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/000767 priority Critical patent/WO2021140673A1/ja
Priority to US17/791,118 priority patent/US20230044495A1/en
Publication of WO2021140673A1 publication Critical patent/WO2021140673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • Non-Patent Document 1 NR (New Radio) (also called “5G”), which is the successor system to LTE (Long Term Evolution), the requirements are a large-capacity system, high-speed data transmission speed, low delay, and simultaneous operation of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
  • NR-DSS Dynamic Spectrum Sharing
  • the LTE system avoids the resources used to transmit the cell-specific reference signal or control signal, and the remaining resources are used to transmit the NR system signal.
  • NR-DSS aims at strengthening PDCCH (Physical Downlink Control Channel) for cross-carrier scheduling, for example.
  • PDCCH Physical Downlink Control Channel
  • a method of scheduling a PDSCH (Physical Downlink Shared Channel) or a PUSCH (Physical Uplink Shared Channel) of a primary cell or a primary secondary cell by a PDCCH of a secondary cell is being studied.
  • a method of scheduling a plurality of cells of PDSCH or PUSCH by using a primary cell, a primary secondary cell, or a secondary cell PDCCH using a single DCI (Downlink Control Information) is being studied.
  • the present invention has been made in view of the above points, and an object of the present invention is to support scheduling of a plurality of cells by a single control information in a wireless communication system.
  • a terminal having a control unit for identifying a single or a plurality of carriers to be scheduled is provided.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and later methods (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, NR-PDCCH, NR-PDSCH, NR-PUCCH, NR-PUSCH and the like.
  • NR- even if it is a signal used for NR, it is not always specified as "NR-".
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram showing a configuration example (1) of a wireless communication system according to an embodiment of the present invention.
  • the base station 10 and the terminal 20 are included.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be a plurality of each.
  • the terminal 20 may be referred to as a "user device”.
  • the wireless communication system in the present embodiment may be called an NR-U system.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and frequency domain, the time domain may be defined by slots or OFDM symbols, and the frequency domain may be defined by subbands, subcarriers or resource blocks.
  • the base station 10 transmits control information or data to the terminal 20 by DL (Downlink), and receives control information or data from the terminal 20 by UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
  • SCell Secondary Cell
  • PCell Primary Cell
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control information or data from the base station 10 on the DL and transmits the control information or data to the base station 10 on the UL, thereby providing various types provided by the wireless communication system. Use communication services.
  • M2M Machine-to-Machine
  • FIG. 2 is a diagram showing a configuration example (2) of the wireless communication system according to the embodiment of the present invention.
  • FIG. 2 shows a configuration example of a wireless communication system when NR-DC (NR-Dual connectivity) is executed.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • the base station 10A and the base station 10B are each connected to the core network 30.
  • the terminal 20 communicates with both the base station 10A and the base station 10B.
  • the cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • NR-DSS aims at strengthening PDCCH for cross-carrier scheduling, for example.
  • a method of scheduling a PDSCH (Physical Downlink Shared Channel) or a PUSCH (Physical Uplink Shared Channel) of a primary cell or a primary secondary cell by a PDCCH of a secondary cell is being studied.
  • a method of scheduling a PDSCH of a plurality of cells using a single DCI (Downlink Control Information) by a primary cell, a primary secondary cell, or a PDCCH of the secondary cell is being studied.
  • FIG. 3 is a sequence diagram for explaining an example of signaling in the embodiment of the present invention.
  • the base station 10 may transmit system information including a specific IE (Information Element) to the terminal 20.
  • the base station 10 may individually transmit RRC (Radio Resource Control) signaling including a specific IE to the terminal 20. Either step S1 and step S2 may be executed, or the execution order may be reversed.
  • the specific IE may be, for example, at least one of SIB1 (System Information Block 1), another SIB, servingCellConfig, and the like.
  • SIB1 System Information Block 1
  • another SIB servingCellConfig
  • the terminal 20 executes scheduled communication with the base station 10.
  • FIG. 4 is a diagram showing an example of cross-carrier scheduling.
  • the DCI transmitted from the base station 10 to the terminal 20 via the PDCCH of CC # 1 for example, the PDSCH of CC # 2 and CC # 3 is cross-carrier scheduled.
  • the cross-carrier scheduling is an example of scheduling a plurality of cells with a single control information.
  • the PDSCH of CC # 3 is cross-carrier scheduled by the DCI transmitted from the base station 10 to the terminal 20 via the PDCCH of CC # 1.
  • the cross-carrier scheduling is an example of single-cell scheduling with a single control information. Further, as shown in FIG.
  • the PDSCHs of CC # 3 and CC # 4 are cross-carrier scheduled by the DCI transmitted from the base station 10 to the terminal 20 via the PDCCH of CC # 1.
  • the cross-carrier scheduling is an example of scheduling a plurality of cells with a single control information.
  • the scheduled PDSCH may be replaced with the scheduled PUSCH.
  • CIF Carrier indicator field
  • PCell primary cell
  • SCell secondary cell
  • PDSCH and PUSCH of the secondary cell are always scheduled by the PDCCH in another serving cell.
  • the cross-carrier scheduling of the PDSCH of a plurality of cells by the base station 10 and the terminal 20 as shown in FIG. 4 is not specified how to support using a single DCI. Further, whether or not to support a method of dynamically switching between scheduling of a single cell by a single control information and scheduling of a plurality of cells by a single control information, and the method have not been specified.
  • FIG. 5 is a diagram for explaining an example (1) of scheduling in the embodiment of the present invention.
  • Table 1 interprets the CC # 1 corresponding to the scheduling cell as shown in FIG. 5, and the CIF bit field for scheduling for the CC # 2, CC # 3, CC # 4 and CC # 5 corresponding to the scheduled cell. It is a table which shows an example of.
  • “cell”, “carrier”, “component carrier (CC)” or “serving cell” may or may not be distinguished from each other.
  • the scheduled cells are CC # 2 and CC # 3. Further, as shown in FIG. 5, when the CIF bit field is “100”, the scheduled cell is CC # 3. Further, as shown in FIG. 5, when the CIF bit field is "010", the scheduled cells are CC # 4 and CC # 5. All of the scheduling examples shown in FIG. 5 are cross-carrier scheduling.
  • the scheduled carrier is CC # 1.
  • Scheduling in which the scheduling carrier and the scheduled carrier are the same may be called self-carrier scheduling.
  • a part of the CIF bit field may be made to correspond to self-carrier scheduling, or a carrier scheduled by a plurality of scheduling target cells specified by a part of the CIF bit field may be included (example: CC # 1 + CC). # 2, etc.).
  • the scheduled cell is CC # 2.
  • the scheduled cell is CC # 4.
  • the scheduled cell is CC # 5.
  • the value "111" of the CIF bit field is a reserved value and may not normally be used.
  • the upper layer may classify the scheduled carriers into groups and signal information indicating the correspondence between each code point of the CIF as shown in Table 1 and the group.
  • the group may be composed of two carriers, one carrier, or three or more carriers.
  • the maximum bit length of the CIF may be 3 bits or more.
  • scheduling for a single cell for example, scheduling for CC # x or CC # y
  • scheduling for multiple cells for example, scheduling for CC # x and CC # y
  • Dynamic switching can be realized.
  • the upper layer may be an RRC (Radio Resource Control) layer or a MAC (Media Access Control) layer.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the base station 10 may signal the terminal 20 with information indicating the correspondence between each code point of the CIF and the group as shown in Table 1. Further, for example, the base station 10 may signal the terminal 20 with information regarding the CIF and the scheduled group in step S1 or step S2 shown in FIG.
  • FIG. 6 is a diagram showing an example (1) of an information element in the embodiment of the present invention.
  • FIG. 6 is an example of parameters related to cross-carrier scheduling in the upper layer.
  • “other” is selected, and “schedulingCellId”, that is, the index of the cell to be scheduled, and “cif-InSchedulingCell”, that is, the index of the scheduled cell are set.
  • “schedulingCellId” and "cif-InSchedulingCell” may have the same value.
  • the base station 10 may signal the parameters shown in FIG. 6 to the terminal 20 in step S1 or step S2 shown in FIG.
  • FIG. 7 shows an example of scheduling when the parameters shown in FIG. 6 are set to CC # x and CC # y.
  • FIG. 7 is a diagram for explaining an example (2) of scheduling in the embodiment of the present invention. Since the parameter “schedulingCellId” shown in FIG. 6 is “1", CC # 1 is the cell scheduled in FIG. 7. Further, since the parameter "cif-InSchedulingCell” shown in FIG. 6 is "2", when the CIF bit field is "2", that is, "010" in binary notation, CC # as shown in FIG. x and CC # y are scheduled.
  • the terminal 20 when the terminal 20 receives a DCI containing a CIF in the cell to be scheduled, two cells are scheduled if the CIF is associated with the two scheduled cells. ..
  • scheduling for a plurality of cells for example, scheduling for CC # x and CC # y
  • the number of cells in which "schedulingCellId" and "cif-InSchedulingCell" have the same value may be 3 or more.
  • FIG. 8 is a diagram for explaining an example (3) of scheduling in the embodiment of the present invention.
  • the parameter shown in FIG. 6 is set to CC # x, if the CIF is "000" as shown in FIG. 8, the scheduling cell CC # 1 may be scheduled.
  • FIG. 9 is a diagram for explaining an example (4) of scheduling in the embodiment of the present invention.
  • the scheduling cell CC # 1 and the scheduled cell specified by the "cif-InSchedulingCell" will be It may be scheduled.
  • the CIF is "010" as shown in FIG. 9, CC # 1 and CC # x may be scheduled.
  • the operation of specifying a single or a plurality of scheduling target cells by the above-mentioned CIF is also an operation of specifying a BWP in each of a single or a plurality of scheduling target cells in a field for specifying a BWP (Bandwidth part).
  • the upper layer may classify a combination of BWPs of a single cell or a plurality of cells as a group, and may signal information indicating the correspondence between each code point of the BWP bit field and the group. Further, for example, the upper layer may signal the BWP bit field and information about the group to the terminal 20. Further, each code point of the BWP bit field may specify the same BWP index in a plurality of cells.
  • Table 2 is a table showing examples of BWP bit fields.
  • the BWP bit field "00" corresponds to BWP # 0 of the first CC and BWP # 0 of the second CC.
  • the BWP bit field "01” corresponds to BWP # 0 of the first CC and BWP # 1 of the second CC.
  • the BWP bit field "10” corresponds to BWP # 1 of the first CC and BWP # 0 of the second CC.
  • the BWP bit field "11” corresponds to BWP # 1 of the first CC and BWP # 1 of the second CC.
  • Table 3 is a table showing other examples of BWP bit fields.
  • the BWP bit field "00" corresponds to BWP # 0 of the first CC and BWP # 0 of the second CC. Further, the BWP bit field "01" corresponds to BWP # 1 of the first CC and BWP # 1 of the second CC. Further, the BWP bit field "10” corresponds to BWP # 2 of the first CC and BWP # 2 of the second CC. Further, the BWP bit field "11” corresponds to BWP # 3 of the first CC and BWP # 3 of the second CC.
  • the BWP index may be "information specifying a serving cell (for example, cell ID) and information indicating a BWP-ID set in the serving cell", or "cell ID and DL-BWP-". It may be "information indicating ID / UL-BWP-ID” or "information indicating a cell ID and firstActiveDownlinkBWP (for example, a flag indicating firstActiveDownlinkBWP-Id or firstActiveDownlinkBWP)". It may be "bandwidth-part”. Further, the number of BWP indexes associated with each BWP bit field is not limited to 1: 2 shown in Table 2 or Table 3, and may be 1: 1, 1: 3, 1: 4 or 1: 5 or more. .. Further, the association between the BWP bit field and one or more BWP indexes as shown in Table 2 or Table 3 may be added, updated or deleted by the upper layer.
  • the new interpretation of CIF may be applied depending on the settings of the upper layer. For example, it may be decided whether or not to apply the new interpretation of CIF based on the settings of the scheduled cell and / or the search space of the scheduled cell. For example, if the searchspace ID (searchSpaceId) is the same between a single scheduled cell and a scheduled cell, the CIF may be interpreted as cross-single carrier scheduling for scheduling a single carrier. For example, when the search space ID is the same between a plurality of scheduled cells and cells to be scheduled, the CIF may be interpreted as cross-carrier scheduling for scheduling a plurality of carriers. As another example, the new interpretation of CIF may be applied depending on the settings of the new higher layer. For example, the base station 10 may signal the settings related to the search space and the search space ID to the terminal 20 in step S1 or step S2 shown in FIG.
  • searchSpaceId searchSpaceId
  • FIG. 10 is a diagram showing an example (2) of an information element in the embodiment of the present invention.
  • the upper layer may support the operation in which self-carrier scheduling and cross-carrier scheduling coexist. For example, in a CC with a certain timing, PDSCH reception and / or PUSCH transmission may be scheduled only by either self-carrier scheduling or cross-carrier scheduling. That is, the terminal 20 may assume that PDSCH reception and / or PUSCH transmission in a CC is scheduled by either self-carrier scheduling or cross-carrier scheduling.
  • FIG. 10 is an example of parameters related to cross-carrier scheduling in the upper layer.
  • both "own” and “other” are set.
  • “cif-Presence” is “true”
  • “schedulingCellId” is "CC # 1”
  • "cif-InSchedulingCell” is "2”.
  • the base station 10 may signal the parameters shown in FIG. 10 to the terminal 20 in step S1 or step S2 shown in FIG.
  • An example of scheduling when the parameter shown in FIG. 10 is set to CC # x is shown in FIGS. 11 and 12.
  • FIG. 11 is a diagram for explaining an example (5) of scheduling in the embodiment of the present invention.
  • CC # x causes CC # x to self-carrier as shown in FIG. It may be scheduled.
  • FIG. 12 is a diagram for explaining an example (6) of scheduling in the embodiment of the present invention.
  • CC # 1 crosses CC # x as shown in FIG. Carrier scheduling may be used.
  • single DCI may be replaced with “two or more DCIs”.
  • the base station 10 can schedule a single cell or a plurality of cells to the terminal 20 by cross-carrier scheduling by a single DCI. Further, the base station 10 can specify the BWP in a single cell or a plurality of cells to the terminal 20 by a single DCI.
  • the base station 10 and the terminal 20 include a function of carrying out the above-described embodiment.
  • the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
  • FIG. 13 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention.
  • the base station 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 13 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmission unit 110 has a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. Further, the transmission unit 110 transmits a message between network nodes to another network node.
  • the receiving unit 120 includes a function of wirelessly receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, reference signal and the like to the terminal 20. In addition, the receiving unit 120 receives a message between network nodes from another network node.
  • the transmitting unit 110 and the receiving unit 120 may be combined to form a communication unit.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads the setting information from the storage device as needed.
  • the content of the setting information is, for example, information required for DSS technology and cross-carrier scheduling.
  • the control unit 140 controls the DSS technology as described in the embodiment. In addition, the control unit 140 controls the cross-carrier scheduling.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 14 is a diagram showing an example of the functional configuration of the terminal 20 according to the embodiment of the present invention.
  • the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 14 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmission unit 210 has a function of creating a transmission signal from transmission data and wirelessly transmitting the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station 10. Further, for example, the transmission unit 210 connects the other terminal 20 to PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. Etc., and the receiving unit 220 receives the PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • the transmitting unit 210 and the receiving unit 220 may be combined to form a communication unit.
  • the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, information required for DSS technology and cross-carrier scheduling.
  • the control unit 240 controls the DSS technology in the terminal 20 as described in the embodiment. In addition, the control unit 240 controls the cross-carrier scheduling.
  • the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 13 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 14 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray® disc), a smart card, a flash memory (eg, a card, a stick, a key drive), a floppy® disc, a magnetic strip, and the like.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the receiving unit that receives the first information for setting the scheduling and the second information for executing the scheduling from the base station, the first information, and the first information.
  • a terminal is provided that has a control unit that identifies a plurality of carriers to be scheduled based on the single second information.
  • the base station 10 can schedule a single or a plurality of cells to the terminal 20 by cross-carrier scheduling by a single DCI. That is, in a wireless communication system, it is possible to support single or multiple cell cross-carrier scheduling with a single control information.
  • the control unit may specify one or more carriers associated with a field that specifies a carrier included in the second information.
  • the base station 10 can schedule a single or a plurality of cells to the terminal 20 by cross-carrier scheduling by a single DCI based on the setting by the upper layer.
  • the control unit may specify a single carrier or a plurality of carriers corresponding to the same index set in the field for designating the carriers included in the second information.
  • the base station 10 can schedule a single or a plurality of cells to the terminal 20 by cross-carrier scheduling by a single DCI based on the setting by the upper layer.
  • the first aspect of the present invention wherein the control unit identifies a carrier to which a field for designating a carrier included in the second information is associated and a carrier that has received the second information based on the first information.
  • Terminal the base station 10 can schedule a single or a plurality of cells to the terminal 20 by cross-carrier scheduling by a single DCI based on the setting by the upper layer.
  • the control unit may specify a carrier having the same search space ID as the carrier that received the second information as a single carrier or a plurality of carriers scheduled.
  • the base station 10 can schedule a single or multiple cells to the terminal 20 by cross-carrier scheduling with a single DCI based on the search space ID.
  • a receiving procedure for receiving the first information for setting the scheduling and the second information for executing the scheduling from the base station, the first information, and the single first information is provided in which the terminal executes a control procedure for identifying a single or a plurality of carriers scheduled based on the information of 2.
  • the base station 10 can schedule a single or a plurality of cells to the terminal 20 by cross-carrier scheduling by a single DCI. That is, in a wireless communication system, it is possible to support single or multiple cell cross-carrier scheduling with a single control information.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node.
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, it is clear that it can be done by at least one of (but not limited to, MME, S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example,). , Comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • GNB gNodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”
  • Terms such as “cell group,” “carrier,” and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the above-mentioned user terminal.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transmitter / receiver.
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be in time units based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • RRC signaling or system information is an example of the first information.
  • DCI is an example of the second information.
  • PDSCH or PUSCH is an example of a channel.
  • CIF is an example of a field that specifies a carrier.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、スケジューリングを設定する第1の情報及びスケジューリングを実行する第2の情報を基地局から受信する受信部と、前記第1の情報及び単一の前記第2の情報に基づいて、スケジューリングされる単一もしくは複数のキャリアを特定する制御部とを有する。

Description

端末及び通信方法
 本発明は、無線通信システムにおける端末及び通信方法に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 既存のLTEシステムと同一帯域でNRシステムを運用するケースでは、周波数利用効率を向上させるため、既存のLTEシステムとNRシステムを同一帯域で共存させるNR-DSS(Dynamic Spectrum Sharing)が検討されている(例えば非特許文献2)。NR-DSSでは、例えば、LTEシステムでセル固有参照信号又は制御信号の送信に使用するリソースを避け、残りのリソースを使用してNRシステムの信号を送信する。
 また、NR-DSSは、例えば、クロスキャリアスケジューリングのためのPDCCH(Physical Downlink Control Channel)の強化を目的とする。例として、セカンダリセルのPDCCHによって、プライマリセル又はプライマリセカンダリセルのPDSCH(Physical Downlink Shared Channel)又はPUSCH(Physical Uplink Shared Channel)をスケジューリングする方法が検討されている。また他の例として、プライマリセル、プライマリセカンダリセル又はセカンダリセルのPDCCHによって、複数セルのPDSCH又はPUSCHを単一DCI(Downlink Control Information)を使用してスケジューリングする方法が検討されている。
3GPP TS 38.300 V15.7.0 (2019-09) 3GPP TSG RAN Meeting #86 RP-193260 (2019-12)
 複数セルにおける各PDSCHを単一のDCIを使用してスケジューリングする方法がサポートされていなかった。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、単一の制御情報による複数セルのスケジューリングをサポートすることを目的とする。
 開示の技術によれば、スケジューリングを設定する第1の情報及びスケジューリングを実行する第2の情報を基地局から受信する受信部と、前記第1の情報及び単一の前記第2の情報に基づいて、スケジューリングされる単一もしくは複数のキャリアを特定する制御部とを有する端末が提供される。
 開示の技術によれば、無線通信システムにおいて、単一の制御情報による単一もしくは複数セルのスケジューリングをサポートすることができる。
本発明の実施の形態における無線通信システムの構成例(1)を示す図である。 本発明の実施の形態における無線通信システムの構成例(2)を示す図である。 本発明の実施の形態におけるシグナリングの例を説明するためのシーケンス図である。 クロスキャリアスケジューリングの例を示す図である。 本発明の実施の形態におけるスケジューリングの例(1)を説明するための図である。 本発明の実施の形態における情報要素の例(1)を示す図である。 本発明の実施の形態におけるスケジューリングの例(2)を説明するための図である。 本発明の実施の形態におけるスケジューリングの例(3)を説明するための図である。 本発明の実施の形態におけるスケジューリングの例(4)を説明するための図である。 本発明の実施の形態における情報要素の例(2)を示す図である。 本発明の実施の形態におけるスケジューリングの例(5)を説明するための図である。 本発明の実施の形態におけるスケジューリングの例(6)を説明するための図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH、NR-PDCCH、NR-PDSCH、NR-PUCCH、NR-PUSCH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
 図1は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。なお、端末20を「ユーザ装置」と呼んでもよい。また、本実施の形態における無線通信システムは、NR-Uシステムと呼ばれてもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はスロット又はOFDMシンボルで定義されてもよいし、周波数領域は、サブバンド、サブキャリア又はリソースブロックで定義されてもよい。
 図1に示されるように、基地局10は、DL(Downlink)で制御情報又はデータを端末20に送信し、UL(Uplink)で制御情報又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御情報又はデータを基地局10から受信し、ULで制御情報又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。
 図2は、本発明の実施の形態における無線通信システムの構成例(2)を示す図である。図2は、NR-DC(NR-Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるように、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワーク30に接続される。端末20は基地局10Aと基地局10Bの両方と通信を行う。
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。後述する動作は、図1と図2のいずれの構成で行ってもよい。
 ここで、NR-DSSは、例えば、クロスキャリアスケジューリングのためのPDCCHの強化を目的とする。例として、セカンダリセルのPDCCHによって、プライマリセル又はプライマリセカンダリセルのPDSCH(Physical Downlink Shared Channel)又はPUSCH(Physical Uplink Shared Channel)をスケジューリングする方法が検討されている。また他の例として、プライマリセル、プライマリセカンダリセル又はセカンダリセルのPDCCHによって、複数セルのPDSCHを単一DCI(Downlink Control Information)を使用してスケジューリングする方法が検討されている。
 図3は、本発明の実施の形態におけるシグナリングの例を説明するためのシーケンス図である。図3に示されるように、ステップS1において、基地局10は、特定のIE(Information Element)を含むシステム情報を端末20に送信してもよい。あるいは、ステップS2において、基地局10は、特定のIEを含むRRC(Radio Resource Control)シグナリングを個別に端末20に送信してもよい。ステップS1及びステップS2は、いずれかが実行されてもよいし、実行順が逆であってもよい。特定のIEとは、例えば、SIB1(System Information Block 1)、他のSIB、servingCellConfig等のうち少なくともひとつであってもよい。ステップS3において、基地局10は、DCIによって端末20に複数セル又は単一セルのPDSCH又はPUSCHをスケジューリングする。ステップS4において、端末20はスケジューリングされた通信を基地局10と実行する。
 図4は、クロスキャリアスケジューリングの例を示す図である。図4に示されるように、CC#1のPDCCHを介して基地局10から端末20に送信されるDCIによって、例えば、CC#2及びCC#3のPDSCHがクロスキャリアスケジューリングされる。当該クロスキャリアスケジューリングは、単一の制御情報による複数セルのスケジューリングの例である。また、図4に示されるように、CC#1のPDCCHを介して基地局10から端末20に送信されるDCIによって、例えば、CC#3のPDSCHがクロスキャリアスケジューリングされる。当該クロスキャリアスケジューリングは、単一の制御情報による単一セルのスケジューリングの例である。また、図4に示されるように、CC#1のPDCCHを介して基地局10から端末20に送信されるDCIによって、例えば、CC#3及びCC#4のPDSCHがクロスキャリアスケジューリングされる。当該クロスキャリアスケジューリングは、単一の制御情報による複数セルのスケジューリングの例である。以下、スケジューリングされるPDSCHは、スケジューリングされるPUSCHに置換されてもよい。
 クロスキャリアスケジューリングにおいて、CIF(Carrier indicator field)が使用される。CIFは、サービングセルのPDCCHが他のサービングセルのリソースをスケジューリングする際、スケジューリング対象となるサービングセルを指定するために用いられる。ただし、従来技術において、以下1)-3)に示される制限が存在する。
1)クロスキャリアスケジューリングで、プライマリセル(PCell)をスケジューリングすることはできない。すなわち、プライマリセルは、常に自身のPDCCHによってスケジューリングされる。
2)あるセカンダリセル(SCell)にPDCCHが設定される場合、当該セカンダリセルは、常に自身のPDCCHによってスケジューリングされる。
3)あるセカンダリセルにPDCCHが設定されない場合、当該セカンダリセルのPDSCH及びPUSCHは、常に他のサービングセルにおけるPDCCHによってスケジューリングされる。
 ここで、図4に示されるような基地局10及び端末20による複数セルのPDSCHのクロスキャリアスケジューリングは、単一のDCIを使用してどのようにサポートするか規定されていなかった。また、単一の制御情報による単一セルのスケジューリングと、単一の制御情報による複数セルのスケジューリングとを、動的に切り替える方法をサポートするか否か、またその方法が規定されていなかった。
 そこで、無線通信システムにおいて、単一の制御情報による複数セルのクロスキャリアスケジューリングをサポートする方法を提案する。また、単一の制御情報による単一セルのスケジューリングと、単一の制御情報による複数セルのスケジューリングとを、動的に切り替える方法を提案する。
 図5は、本発明の実施の形態におけるスケジューリングの例(1)を説明するための図である。DCIによって通知されるCIFの解釈を新たに定義してもよい。表1は、図5のようなスケジューリングするセルに対応するCC#1、スケジューリングされるセルに対応するCC#2、CC#3、CC#4及びCC#5に対するスケジューリングを行うCIFビットフィールドの解釈の例を示す表である。以下、「セル」、「キャリア」、「コンポーネントキャリア(CC)」又は「サービングセル」は、相互に置換されてもよいし、区別されなくてもよい。
Figure JPOXMLDOC01-appb-T000001
 図5に示されるように、CIFビットフィールドが「001」の場合、スケジューリングされるセルは、CC#2及びCC#3となる。また、図5に示されるように、CIFビットフィールドが「100」の場合、スケジューリングされるセルは、CC#3となる。また、図5に示されるように、CIFビットフィールドが「010」の場合、スケジューリングされるセルは、CC#4及びCC#5となる。図5に示されるスケジューリングの例は、いずれもクロスキャリアスケジューリングである。
 その他、表1に示されるように、CIFビットフィールドが「000」の場合、スケジューリングされるキャリアは、CC#1となる。スケジューリングするキャリアとスケジューリングされるキャリアとが同一のスケジューリングをセルフキャリアスケジューリングと呼んでもよい。このように、CIFビットフィールドの一部をセルフキャリアスケジューリングに対応させてもよいし、CIFビットフィールドの一部で指示する複数のスケジューリング対象セルがスケジューリングするキャリアを含んでもよい(例:CC#1+CC#2など)。また、表1に示されるように、CIFビットフィールドが「011」の場合、スケジューリングされるセルは、CC#2となる。また、表1に示されるように、CIFビットフィールドが「101」の場合、スケジューリングされるセルは、CC#4となる。また、表1に示されるように、CIFビットフィールドが「110」の場合、スケジューリングされるセルは、CC#5となる。なお、表1に示されるように、CIFビットフィールドの値「111」は、予約されている値であり、通常は使用されなくてもよい。
 上位レイヤは、スケジューリングされるキャリアをグループに分類し、表1に示されるようなCIFの各コードポイントと、当該グループとの対応を示す情報をシグナリングしてもよい。なお、グループは、2キャリアから構成されてもよいし、1キャリアから構成されてもよいし、3キャリア以上から構成されてもよい。CIFの最大ビット長は、3ビット以上であってもよい。上述のようなCIFを使用することにより、単一セルに対するスケジューリング(例えば、CC#x又はCC#yに対するスケジューリング)と、複数セルに対するスケジューリング(例えば、CC#x及びCC#yに対するスケジューリング)との動的な切り替えが実現できる。例えば、上位レイヤは、RRC(Radio Resource Control)レイヤであってもよいし、MAC(Media Access Control)レイヤであってもよい。例えば、基地局10は、図3に示されるステップS1又はステップS2において、表1に示されるようなCIFの各コードポイントと当該グループ間の対応を示す情報を端末20にシグナリングしてもよい。また、例えば、基地局10は、図3に示されるステップS1又はステップS2において、CIF及びスケジューリングされるグループに関する情報を端末20にシグナリングしてもよい。
 図6は、本発明の実施の形態における情報要素の例(1)を示す図である。図6は、上位レイヤにおけるクロスキャリアスケジューリングに係るパラメータの例である。図6において、「other」が選択されており、「schedulingCellId」すなわちスケジューリングするセルのインデックス及び「cif-InSchedulingCell」すなわちスケジューリングされるセルのインデックスが設定される。最大2セルにおいて、「schedulingCellId」及び「cif-InSchedulingCell」がそれぞれ同一の値であってもよい。例えば、基地局10は、図3に示されるステップS1又はステップS2において、図6に示されるパラメータを端末20にシグナリングしてもよい。図6に示されるパラメータが、CC#x及びCC#yに設定された場合のスケジューリングの例を図7に示す。
 図7は、本発明の実施の形態におけるスケジューリングの例(2)を説明するための図である。図6に示されるパラメータ「schedulingCellId」が「1」であるため、図7においてCC#1がスケジューリングするセルとなる。さらに、図6に示されるパラメータ「cif-InSchedulingCell」が「2」であるため、CIFビットフィールドが「2」すなわち2進数表記で「010」である場合、図7に示されるように、CC#x及びCC#yがスケジューリングされる。
 図6及び図7に示されるように、端末20が、スケジューリングするセルにおいてCIFを含むDCIを受信したとき、当該CIFが2つのスケジューリングされるセルに関連付けられている場合2つのセルがスケジューリングされる。ここで、上述のようなCIFを使用することにより、複数セルに対するスケジューリング(例えば、CC#x及びCC#yに対するスケジューリング)が実現できる。なお、「schedulingCellId」及び「cif-InSchedulingCell」がそれぞれ同一の値であるセルの数は、3以上であってもよい。
 図8は、本発明の実施の形態におけるスケジューリングの例(3)を説明するための図である。図6に示されるパラメータがCC#xに設定されるとき、図8に示されるようにCIFが「000」である場合、スケジューリングするセルであるCC#1がスケジューリングされてもよい。
 図9は、本発明の実施の形態におけるスケジューリングの例(4)を説明するための図である。図6に示されるパラメータがCC#xに設定されるとき、CIFが0より大である場合、スケジューリングするセルであるCC#1と、「cif-InSchedulingCell」によって指定されるスケジューリングされるセルが、スケジューリングされてもよい。例えば、図9に示されるようにCIFが「010」である場合、CC#1及びCC#xがスケジューリングされてもよい。
 なお、上述のCIFにより単一もしくは複数のスケジューリング対象となるセルを指定する動作は、BWP(Bandwidth part)を指定するフィールドにおいて単一もしくは複数のスケジューリング対象セルそれぞれでのBWPを指定する動作にも適用されてもよい。すなわち、上位レイヤは、単一もしくは複数セルのBWPの組み合わせをグループとして分類し、BWPビットフィールドの各コードポイントと当該グループ間の対応を示す情報をシグナリングしてもよい。また、例えば、上位レイヤは、BWPビットフィールド及び当該グループに関する情報を端末20にシグナリングしてもよい。また、BWPビットフィールドの各コードポイントは、複数のセルにおいて同一のBWPインデックスを指定してもよい。表2は、BWPビットフィールドの例を示す表である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、BWPビットフィールド「00」は、第1CCのBWP#0及び第2CCのBWP#0に対応する。また、BWPビットフィールド「01」は、第1CCのBWP#0及び第2CCのBWP#1に対応する。また、BWPビットフィールド「10」は、第1CCのBWP#1及び第2CCのBWP#0に対応する。また、BWPビットフィールド「11」は、第1CCのBWP#1及び第2CCのBWP#1に対応する。
 表3は、BWPビットフィールドの他の例を示す表である。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、BWPビットフィールド「00」は、第1CCのBWP#0及び第2CCのBWP#0に対応する。また、BWPビットフィールド「01」は、第1CCのBWP#1及び第2CCのBWP#1に対応する。また、BWPビットフィールド「10」は、第1CCのBWP#2及び第2CCのBWP#2に対応する。また、BWPビットフィールド「11」は、第1CCのBWP#3及び第2CCのBWP#3に対応する。
 なお、例えば、BWPインデックスは、「サービングセルを指定する情報(例えば、セルID)及び当該サービングセルに設定されているBWP-IDを示す情報」であってもよいし、「セルIDとDL-BWP-ID/UL-BWP-IDを示す情報」であってもよいし、「セルIDとfirstActiveDownlinkBWPを意図する情報(例えば、firstActiveDownlinkBWP-Id又はfirstActiveDownlinkBWPを示すフラグ)」であってもよいし、「initial downlink bandwidth-part」であってもよい。また、BWPビットフィールドごとに関連付けられるBWPインデックスの数は、表2又は表3に示される1対2に限られず、1対1、1対3、1対4又は1対5以上のいずれでもよい。また、表2又は表3に示されるようなBWPビットフィールドと1又は複数のBWPインデックスとの関連付けは上位レイヤによって追加、更新又は削除されてもよい。
 なお、CIFの新たな解釈は、上位レイヤの設定に依存して適用されてもよい。例えば、スケジューリングされるセル及び/又はスケジューリングするセルのサーチスペースの設定に基づいて、CIFの新たな解釈を適用するか否かが決定されてもよい。例えば、サーチスペースID(searchSpaceId)が単一のスケジューリングされるセル及びスケジューリングするセル間で同一の場合、CIFは単一キャリアをスケジューリングするクロスキャリアスケジューリング(cross single carrier scheduling)として解釈されてもよい。例えば、サーチスペースIDが複数のスケジューリングされるセル及びスケジューリングするセル間で同一の場合、CIFは複数キャリアをスケジューリングするクロスキャリアスケジューリング(cross multiple carrier scheduling)として解釈されてもよい。他の例として、CIFの新たな解釈は、新たな上位レイヤの設定に依存して適用されてもよい。なお、例えば、基地局10は、図3に示されるステップS1又はステップS2において、サーチスペース及びサーチスペースIDに係る設定を端末20にシグナリングしてもよい。
 図10は、本発明の実施の形態における情報要素の例(2)を示す図である。上位レイヤは、セルフキャリアスケジューリング及びクロスキャリアスケジューリングが共存する動作をサポートしてもよい。例えば、あるタイミングのあるCCにおいて、PDSCH受信及び/又はPUSCH送信は、セルフキャリアスケジューリング又はクロスキャリアスケジューリングのいずれかのみによりスケジューリングされてもよい。すなわち、端末20は、あるCCにおけるPDSCH受信及び/又はPUSCH送信が、セルフキャリアスケジューリング及びクロスキャリアスケジューリングのいずれかでスケジューリングされることを想定してもよい。
 図10は、上位レイヤにおけるクロスキャリアスケジューリングに係るパラメータの例である。図10において、「own」及び「other」の両方が設定されており、例えば、「cif-Presence」は「true」、「schedulingCellId」は「CC#1」、「cif-InSchedulingCell」は「2」が設定される。例えば、基地局10は、図3に示されるステップS1又はステップS2において、図10に示されるパラメータを端末20にシグナリングしてもよい。図10に示されるパラメータが、CC#xに設定された場合のスケジューリングの例を図11及び図12に示す。
 図11は、本発明の実施の形態におけるスケジューリングの例(5)を説明するための図である。CC#x上で送信される制御情報に含まれるCIFビットフィールドが「0」すなわち2進数表記で「000」である場合、図11に示されるように、CC#xによりCC#xがセルフキャリアスケジューリングされてもよい。
 図12は、本発明の実施の形態におけるスケジューリングの例(6)を説明するための図である。CC#1上で送信される制御情報に含まれるCIFビットフィールドが、「2」すなわち2進数表記で「010」である場合、図12に示されるように、CC#1によりCC#xがクロスキャリアスケジューリングされてもよい。
 なお、上述の実施例において、「単一DCI」は、「2以上のDCI」に置換されてもよい。
 上述の実施例により、基地局10は、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。また、基地局10は、単一のDCIによって端末20に単一もしくは複数セルにおけるBWPを指定することができる。
 すなわち、無線通信システムにおいて、単一の制御情報による単一もしくは複数セルのクロスキャリアスケジューリングをサポートすることができる。
 (機能構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局10>
 図13は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図13に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を有する。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を無線で受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号及び参照信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。送信部110及び受信部120を合わせて通信部としてもよい。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、DSS技術及びクロスキャリアスケジューリングに必要となる情報等である。
 制御部140は、実施例において説明したように、DSS技術に係る制御を行う。また、制御部140は、クロスキャリアスケジューリングに係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <端末20>
 図14は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図14に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図14に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する機能を有する。受信部220は、各種の信号を無線で受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。送信部210及び受信部220を合わせて通信部としてもよい。
 設定部230は、受信部220により基地局10又は端末20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、DSS技術及びクロスキャリアスケジューリングに必要となる情報等である。
 制御部240は、実施例において説明したように、端末20におけるDSS技術に係る制御を行う。また、制御部240は、クロスキャリアスケジューリングに係る制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図13及び図14)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図13に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図14に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記録媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、スケジューリングを設定する第1の情報及びスケジューリングを実行する第2の情報を基地局から受信する受信部と、前記第1の情報及び単一の前記第2の情報に基づいて、スケジューリングされる複数のキャリアを特定する制御部とを有する端末が提供される。
 上記の構成により、基地局10は、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。すなわち、無線通信システムにおいて、単一の制御情報による単一もしくは複数セルのクロスキャリアスケジューリングをサポートすることができる。
 前記制御部は、前記第1の情報に基づいて、前記第2の情報に含まれるキャリアを指定するフィールドが関連付けられる1以上のキャリアを特定してもよい。当該構成により、基地局10は、上位レイヤによる設定に基づいて、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。
 前記制御部は、前記第1の情報に基づいて、前記第2の情報に含まれるキャリアを指定するフィールドに設定される同一のインデックスに対応する単一もしくは複数のキャリアを特定してもよい。当該構成により、基地局10は、上位レイヤによる設定に基づいて、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。
 前記制御部は、前記第1の情報に基づいて、前記第2の情報に含まれるキャリアを指定するフィールドが関連付けられるキャリアと、前記第2の情報を受信したキャリアとを特定する請求項1記載の端末。当該構成により、基地局10は、上位レイヤによる設定に基づいて、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。
 前記制御部は、前記第2の情報を受信したキャリアとサーチスペースIDが同一であるキャリアをスケジューリングされる単一もしくは複数のキャリアであると特定してもよい。当該構成により、基地局10は、サーチスペースIDに基づいて、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。
 また、本発明の実施の形態によれば、スケジューリングを設定する第1の情報及びスケジューリングを実行する第2の情報を基地局から受信する受信手順と、前記第1の情報及び単一の前記第2の情報に基づいて、スケジューリングされる単一もしくは複数のキャリアを特定する制御手順とを端末が実行する通信方法が提供される。
 上記の構成により、基地局10は、単一のDCIによるクロスキャリアスケジューリングによって端末20に単一もしくは複数セルをスケジューリングすることができる。すなわち、無線通信システムにおいて、単一の制御情報による単一もしくは複数セルのクロスキャリアスケジューリングをサポートすることができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、RRCシグナリング又はシステム情報は、第1の情報の一例である。DCIは、第2の情報の一例である。PDSCH又はPUSCHは、チャネルの一例である。CIFは、キャリアを指定するフィールドの一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    コアネットワーク
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  スケジューリングを設定する第1の情報及びスケジューリングを実行する第2の情報を基地局から受信する受信部と、
     前記第1の情報及び単一の前記第2の情報に基づいて、スケジューリングされる単一もしくは複数のキャリアを特定する制御部とを有する端末。
  2.  前記制御部は、前記第1の情報に基づいて、前記第2の情報に含まれるキャリアを指定するフィールドが関連付けられる単一もしくは複数のキャリアを特定する請求項1記載の端末。
  3.  前記制御部は、前記第1の情報に基づいて、前記第2の情報に含まれるキャリアを指定するフィールドに設定される同一のインデックスに対応する単一もしくは複数のキャリアを特定する請求項1記載の端末。
  4.  前記制御部は、前記第1の情報に基づいて、前記第2の情報に含まれるキャリアを指定するフィールドが関連付けられるキャリアと、前記第2の情報を受信したキャリアとを特定する請求項1記載の端末。
  5.  前記制御部は、前記第2の情報を受信したキャリアとサーチスペースIDが同一であるキャリアをスケジューリングされる単一もしくは複数のキャリアであると特定する請求項1記載の端末。
  6.  スケジューリングを設定する第1の情報及びスケジューリングを実行する第2の情報を基地局から受信する受信手順と、
     前記第1の情報及び単一の前記第2の情報に基づいて、スケジューリングされる単一もしくは複数のキャリアを特定する制御手順とを端末が実行する通信方法。
PCT/JP2020/000767 2020-01-10 2020-01-10 端末及び通信方法 WO2021140673A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/000767 WO2021140673A1 (ja) 2020-01-10 2020-01-10 端末及び通信方法
US17/791,118 US20230044495A1 (en) 2020-01-10 2020-01-10 Terminal and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000767 WO2021140673A1 (ja) 2020-01-10 2020-01-10 端末及び通信方法

Publications (1)

Publication Number Publication Date
WO2021140673A1 true WO2021140673A1 (ja) 2021-07-15

Family

ID=76788552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000767 WO2021140673A1 (ja) 2020-01-10 2020-01-10 端末及び通信方法

Country Status (2)

Country Link
US (1) US20230044495A1 (ja)
WO (1) WO2021140673A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220210800A1 (en) * 2020-12-31 2022-06-30 Alireza Babaei Wireless Device and Wireless Network Processes for Enhanced Scheduling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11985643B2 (en) * 2020-04-10 2024-05-14 Qualcomm Incorporated DCI design for multi-cross carrier scheduling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522948A (ja) * 2010-03-11 2013-06-13 エルジー エレクトロニクス インコーポレイティド 制御チャネルの割当方法及びそのための装置
JP2016213902A (ja) * 2016-09-16 2016-12-15 株式会社Nttドコモ 無線通信方法、無線基地局及びユーザ端末

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522948A (ja) * 2010-03-11 2013-06-13 エルジー エレクトロニクス インコーポレイティド 制御チャネルの割当方法及びそのための装置
JP2016213902A (ja) * 2016-09-16 2016-12-15 株式会社Nttドコモ 無線通信方法、無線基地局及びユーザ端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "New WID on NR Dynamic spectrum sharing (DSS", 3GPP TSG RAN MEETING #86 RP-193260, 12 December 2019 (2019-12-12), pages 1 - 4, XP051840390, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/TSG_RAN/TSG_RAN/TSGR_86/Docs/RP-193260.zip> [retrieved on 20200707] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220210800A1 (en) * 2020-12-31 2022-06-30 Alireza Babaei Wireless Device and Wireless Network Processes for Enhanced Scheduling

Also Published As

Publication number Publication date
US20230044495A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2020194760A1 (ja) ユーザ装置及び基地局装置
WO2020230201A1 (ja) ユーザ装置及び基地局装置
WO2021157090A1 (ja) 端末及び通信方法
WO2021152860A1 (ja) 端末及び通信方法
WO2020194636A1 (ja) ユーザ装置
WO2021140673A1 (ja) 端末及び通信方法
JPWO2020170405A1 (ja) ユーザ装置及び基地局装置
WO2021140674A1 (ja) 端末及び通信方法
WO2022009288A1 (ja) 端末、基地局及び通信方法
WO2020235318A1 (ja) ユーザ装置及び基地局装置
WO2021149246A1 (ja) 端末、基地局及び通信方法
WO2021149110A1 (ja) 端末及び通信方法
JP7073529B2 (ja) 端末、基地局及び通信方法
WO2020157873A1 (ja) ユーザ装置及び基地局装置
WO2021140677A1 (ja) 端末及び通信方法
WO2020246185A1 (ja) 端末及び基地局
WO2022079781A1 (ja) 端末、基地局及び通信方法
WO2022029947A1 (ja) 端末、基地局装置、及びフィードバック方法
WO2021161477A1 (ja) 端末及び通信方法
US12016035B2 (en) User equipment and base station device
WO2020157874A1 (ja) ユーザ装置及び基地局装置
WO2020161824A1 (ja) ユーザ装置及び基地局装置
JPWO2020170445A1 (ja) ユーザ装置及び基地局装置
WO2021140676A1 (ja) 端末及び通信方法
WO2021161455A1 (ja) 端末、及び能力情報送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP