WO2021200371A1 - Spun-bonded non-woven cloth - Google Patents

Spun-bonded non-woven cloth Download PDF

Info

Publication number
WO2021200371A1
WO2021200371A1 PCT/JP2021/011886 JP2021011886W WO2021200371A1 WO 2021200371 A1 WO2021200371 A1 WO 2021200371A1 JP 2021011886 W JP2021011886 W JP 2021011886W WO 2021200371 A1 WO2021200371 A1 WO 2021200371A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
woven fabric
based polymer
roll
heat
Prior art date
Application number
PCT/JP2021/011886
Other languages
French (fr)
Japanese (ja)
Inventor
竹光洋樹
山中崇弘
小出現
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021516827A priority Critical patent/JPWO2021200371A1/ja
Publication of WO2021200371A1 publication Critical patent/WO2021200371A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a spunbonded non-woven fabric.
  • Spunbond unemployed cloth made of polyolefin, especially polypropylene spunbond unemployed cloth is widely used mainly for sanitary materials because it is low cost and has excellent flexibility.
  • the sheath component of the composite fiber contains substantially 1 to 10% by mass of 1-octene as a copolymer of ethylene and 1-octene. It is disclosed that a linear low-density polyethylene having a density of 0.900 to 0.940 g / cm 3 , a melt index value of 5 to 45 g / 10 minutes, and a heat of fusion of 25 cal / g or more is used. (See Patent Document 1).
  • a polyethylene composition containing 100% by weight or less of ethylene-derived units and less than 20% by weight of 1 or more ⁇ -olefin comonomer-derived units, wherein the density of the polyethylene composition is 0.920 to 0.970 g. in the range of / cm 3, a molecular weight distribution (Mw / Mn) in the range is 1.70 to 3.5 in the range melt index value is 0.2 ⁇ 1000 g / 10 min, a molecular weight distribution (Mz / The spinnability is improved by using a polyethylene composition in which Mw) is in the range of less than 2.5 and the vinyl unsaturatedity is less than 0.1 vinyl per 1000 carbon atoms present in the main chain of the composition. (See Patent Document 2).
  • Patent Document 1 describes that the frequency of yarn breakage is low, the single yarn fineness reached in the examples is 3.0 denier (estimated average single fiber diameter 21.3 ⁇ m), which is suitable for sanitary materials. As a spunbonded non-woven fabric, the fiber diameter is large and the texture is inferior. In Patent Document 1, fibers of 3.0 denier or less have not been obtained, and it cannot be said that the spinnability is satisfactory as a non-woven fabric for sanitary materials. Further, the heat treatment temperature (heat adhesion temperature) of the non-woven fabric is in the range of 90 to 110 ° C. However, since the heat adhesion is usually weak in the above temperature range, fluffing is likely to occur, and the problem of heat adhesion can be solved. No.
  • the single yarn fineness reached in the examples is 3.0 denier, which is a large fiber diameter and inferior in texture as a spunbonded non-woven fabric for sanitary materials.
  • fibers of 3.0 denier or less have not been obtained, and it cannot be said that the spinnability is satisfactory as a non-woven fabric for sanitary materials.
  • an object of the present invention is to provide a non-woven fabric having good spinnability / thermal adhesiveness, excellent production stability, and excellent texture in view of the above problems.
  • the spunbonded non-woven fabric of the present invention is composed of fibers containing a polyethylene-based polymer, and the polyethylene-based polymer is a copolymer of ethylene and an ⁇ -olefin having 3 to 5 carbon atoms, and is a polymerization component of the polyethylene-based polymer.
  • the content of ⁇ -olefin in the above is 0.10 to 5.0 mol%, and the pressure-bonding ratio of the non-woven fabric is 8 to 19%.
  • the ⁇ -olefin is 1-butene.
  • the content of ⁇ -olefin is 0.10 to 3.0 mol%.
  • the pressure-bonding ratio of the nonwoven fabric is 8 to 14%.
  • the spunbonded non-woven fabric of the present invention is composed of fibers containing a polyethylene-based polymer, and the polyethylene-based polymer is a copolymer of ethylene and an ⁇ -olefin having 3 to 5 carbon atoms, and is a polymerization component of the polyethylene-based polymer.
  • the content of ⁇ -olefin in the above is 0.10 to 5.0 mol%, and the pressure-bonding ratio of the non-woven fabric is 8 to 19%.
  • the polyethylene-based polymer used in the present invention is a copolymer of ethylene and an ⁇ -olefin having 3 to 5 carbon atoms, and more preferably a copolymer of ethylene and 1-butene.
  • the number of carbon atoms of the ⁇ -olefin is 6 or more, the molecular chains are liable to be entangled at the time of melting, which leads to the occurrence of thread breakage. Further, since the length of the side chain becomes long, the crystallinity of the polyethylene-based polymer is lowered, and the non-woven fabric has a texture inferior to the silky feel of the fiber surface.
  • the content of ⁇ -olefin in the polymerization component of the polyethylene-based polymer used in the present invention is 0.10 to 5.0 mol% or less, preferably 0.10 to 4.0 mol, in the polyethylene-based polymer. % Or less, more preferably 0.10 to 3.0 mol% or less.
  • the content of ⁇ -olefin is more than 5.0 mol%, there are many side chain branches, and the molecular chains are liable to be entangled at the time of melting, which leads to the occurrence of yarn breakage.
  • the crystallinity decreases and the amorphous component having a low melting point increases, it becomes easy to wrap around the roll during thermal adhesion, so that thermal adhesion cannot be performed at a temperature at which fluffing of the non-woven fabric can be suppressed. It cannot be used as a sanitary material. Further, the crystallinity is lowered, so that the non-woven fabric has a texture inferior to the silky feel of the fiber surface. On the other hand, if the content of the ⁇ -olefin is less than 0.10 mol%, the crystallinity becomes too high, and the non-woven fabric has a hard texture and cannot be used as a sanitary material. In addition, crystallization is extremely easy to proceed during spinning, which makes it difficult for the yarn to be thinned, which leads to yarn breakage when trying to obtain fine fibers that are flexible and have excellent uniformity.
  • the ⁇ -olefin species and ⁇ -olefin contents in the polymerization component of the polyethylene-based polymer can be calculated, for example, from the peak position and peak area ratio detected by a nuclear magnetic resonance apparatus (NMR).
  • NMR nuclear magnetic resonance apparatus
  • the density of the polyethylene-based polymer used in the present invention is preferably 0.935 to 0.965 g / cm 3 , and more preferably 0.945 to 0.965 g / cm 3 .
  • the density is 0.935 g / cm 3 or more, since there are few amorphous components having a low melting point, it becomes difficult to wrap around the roll during heat bonding. Therefore, it becomes easy to perform thermal adhesion at a temperature at which fluffing of the non-woven fabric can be suppressed, and it tends to be suitable for use as a sanitary material. Further, by increasing the crystallinity, it becomes easy to obtain a non-woven fabric having a texture having a sufficient smooth feeling on the fiber surface.
  • the density is 0.965 g / cm 3 or less, the crystallinity is unlikely to be too high, and a non-woven fabric having a soft texture is likely to be obtained, so that a material suitable as a sanitary material can be easily obtained.
  • the ethylene component of the polyethylene-based polymer used in the present invention is not particularly limited, but for example, (1) petroleum-derived ethylene obtained by high-temperature thermal decomposition of naphtha, (2) vegetable ethanol obtained from sugar cane and the like are compared. Examples thereof include biobase-derived ethylene obtained by dehydration at a low temperature. Of these, the bio-based ethylene of (2) is preferable because of the growing interest in environmental consideration in the market in recent years.
  • the proportion of biobase-derived carbon atoms in the non-woven fabric is preferably 20% or more. If it is 20% or more, the amount of CO 2 reduction will be large and the contribution to the environment will be large.
  • the proportion of carbon atoms derived from the biobase is measured based on the ASTM D6866 method.
  • ASTM D6866 method it is possible to know from the amount of radioisotope of a carbon atom whether the component is derived from a biobase or a petroleum-derived resource. If all the carbon atoms are derived from the biobase, the ratio of carbon atoms derived from the biobase is 100%.
  • the melting point of the polyethylene-based polymer used in the present invention is preferably 60 to 180 ° C, more preferably 80 to 160 ° C, and even more preferably 100 to 140 ° C.
  • the melting point is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher.
  • the melting point is preferably 180 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 140 ° C. or lower, it becomes easier to cool the yarn discharged from the mouthpiece, and fusion between fibers is suppressed and stable. It becomes easier to spin the yarn.
  • the polyethylene-based polymer used in the present invention may be a mixture of two or more types of polyethylene-based polymers.
  • the fibers used in the spunbonded nonwoven fabric of the present invention may further contain other olefin resins, thermoplastic elastomers, etc. in addition to the polyethylene copolymer. Above all, from the viewpoint of imparting flexibility, it is preferable to contain a low crystallinity polyethylene-based elastomer.
  • the content is preferably 20% by mass or less, more preferably 15% by mass, in 100% by mass of the fiber in order to fully express the characteristics of the polyethylene-based polymer. It is as follows. Further, in order to fully exert the effect of imparting flexibility, the content is preferably 5% by mass or more.
  • the polyethylene-based polymer used in the present invention includes antioxidants, weather stabilizers, light-resistant stabilizers, antistatic agents, antifoaming agents, antiblocking agents, lubricants, and nucleating agents as long as the effects of the present invention are not impaired. , Additives such as pigments, and other polymers can be added as needed.
  • the melt flow rate of the polyethylene-based polymer used in the present invention (hereinafter, may be referred to as MFR) is preferably 5 to 150 g / 10 minutes, more preferably 10 to 120 g / 10 minutes, still more preferably. Is 10 to 100 g / 10 minutes.
  • MFR is 10 g / 10 minutes or more, the viscosity at the time of melting becomes low, and the followability to thinning at the time of spinning is improved, so that yarn breakage is less likely to occur and stable production is facilitated.
  • the MFR is 150 g / 10 minutes or less, the molecular weight is large and the strength of the fiber is high, so that it is easy to have a strength that can withstand practical use.
  • the MFR of the polyethylene-based polymer refers to a value measured at a temperature of 190 ° C. and a load of 2.16 kg in accordance with ASTM D1238.
  • the polyethylene-based polymer may be, for example, a polymer synthesized by a general Chigra natta catalyst, or a polymer synthesized by a single-site active catalyst typified by metallocene.
  • the fibers containing the polyethylene-based polymer constituting the spunbonded nonwoven fabric of the present invention preferably have an average single fiber diameter of 6.5 to 19.5 ⁇ m.
  • the average single fiber diameter preferably 7.5 ⁇ m or more, and more preferably 8.5 ⁇ m or more.
  • deterioration of spinnability is prevented, and a stable and high-quality spunbonded non-woven fabric is produced. It will be easier.
  • the average single fiber diameter to 19.5 ⁇ m or less, preferably 19.0 ⁇ m or less, and more preferably 18.5 ⁇ m or less, a spunbonded nonwoven fabric having improved flexibility and high uniformity can be obtained. It will be easier.
  • the fiber containing the polyethylene-based polymer described above preferably has a single fiber diameter CV value of 7% or less.
  • CV value of the single fiber diameter is dominated by the back pressure of the spinneret, the yarn cooling condition, and the uniformity of the drawing condition, and can be controlled by appropriately adjusting these.
  • a composite fiber in which the polyethylene-based polymer is combined with at least one polyolefin-based resin or polyester-based resin can be used.
  • the composite form of the composite fiber include composite forms such as a concentric sheath type, an eccentric sheath type, and a sea island type. Above all, it is preferable to use a concentric sheath type composite form because it has excellent spinnability and fibers can be uniformly bonded to each other by heat bonding.
  • olefin-based monomer for obtaining a polyolefin-based resin other than the polyethylene-based polymer used in the case of forming a composite fiber those having 3 to 10 carbon atoms are preferably used, and specifically, propylene and 1-butene. , 1-Pentene, 1-Hexane, 4-Methyl-1-pentene, 1-octene and the like. These can be used alone or in combination of two or more.
  • polypropylene is preferably used from the viewpoint of strength and flexibility of the non-woven fabric, and a copolymer of polypropylene and another ⁇ -olefin is also preferably used.
  • polypropylene is used as the above-mentioned polyolefin resin
  • polyester-based resin examples include polyethylene terephthalate, polybutylene terephthalate, polylactic acid, and copolymers with these resins.
  • the MFR of polypropylene is preferably 1 to 1000 g / 10 minutes, more preferably 10 to 500 g / 10 minutes, and even more preferably 20 to 250 g / 10 minutes. By setting the MFR in the range of 1 to 1000 g / 10 minutes, stable spinning is facilitated, orientation crystallization is facilitated, and high-strength fibers are easily obtained.
  • the polypropylene MFR refers to a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238.
  • Polypropylene may be a polymer synthesized by a general Chigra natta catalyst, or may be a polymer synthesized by a single-site active catalyst typified by metallocene.
  • the mass ratio of the polyethylene polymer to the other polyolefin resin or polyester resin is preferably 90/10 to 10/90.
  • the mass ratio of the polyethylene-based polymer is preferably 90/10 to 10/90.
  • the fiber containing the polyethylene polymer constituting the spunbonded nonwoven fabric of the present invention may contain a fatty acid amide compound having 23 or more and 50 or less carbon atoms in order to improve slipperiness and flexibility.
  • the rate of movement of the fatty acid amide compound to the fiber surface can be adjusted by the number of carbon atoms of the fatty acid amide compound contained in the fiber containing the polyethylene polymer.
  • the number of carbon atoms of the fatty acid amide compound is preferably 23 or more, and more preferably 30 or more, the fatty acid amide compound is suppressed from being excessively exposed on the fiber surface, and the spinnability and processing stability are excellent. , It becomes easy to maintain high productivity.
  • the number of carbon atoms of the fatty acid amide compound is preferably 50 or less, more preferably 42 or less, the fatty acid amide compound can easily move to the fiber surface, and the spunbonded nonwoven fabric can be easily provided with slipperiness and flexibility. Become.
  • fatty acid amide compounds having 23 or more and 50 or less carbon atoms include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
  • fatty acid amide compounds having 23 or more and 50 or less carbon atoms tetradocosanoic acid amide, hexadokosanoic acid amide, octadokosanic acid amide, nervonic acid amide, tetracosaentapenic acid amide, heric acid amide, ethylenebislauric acid amide, Methylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisstearic acid amide, hexamethylene hydroxystearic acid amide, distearyl adipic acid Examples thereof include amides, distearyl sebacic acid amides, ethylene bisoleic acid amides, ethylene biserucic acid amides, and hexamethylene bisoleic acid amides, and these can be used in combination
  • ethylene bisstearic acid amide is particularly preferable. Since ethylene bisstearic acid amide has excellent thermal stability, thermal decomposition is unlikely to occur even if melt spinning is performed. Therefore, by using a polyethylene-based copolymer containing an ethylene bisstearic acid amide, it becomes easy to obtain a spunbonded nonwoven fabric having excellent slipperiness and flexibility while maintaining high productivity.
  • the content of the fatty acid amide compound in the fiber containing the polyethylene-based polymer is preferably 0.01 to 5.0% by mass.
  • the content of the fatty acid amide compound is preferably 0.01 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, and further preferably 0.1 to 1.0% by mass. , Appropriate slipperiness and flexibility can be imparted while maintaining spinnability.
  • the content referred to here is the mass of the fatty acid amide compound contained in the fiber containing the polyethylene-based polymer constituting the spunbonded nonwoven fabric of the present invention, specifically, the entire resin constituting the fiber containing the polyethylene-based polymer. Say a percentage. For example, even when the fatty acid amide compound is added only to the sheath portion component constituting the core-sheath type composite fiber, the content ratio to the total amount of the core-sheath component is calculated.
  • the MFR of the spunbonded non-woven fabric of the present invention is preferably 5 to 150 g / 10 minutes or less, which is the same as the reason in the range of MFR of the polyethylene-based polymer described above.
  • the MFR is more preferably 10 g / min or more, still more preferably 15 g / 10 min or more, and more preferably 120 g / 10 min or less, still more preferably 100 g / 10 min or less.
  • the MFR of the spunbonded non-woven fabric is measured based on ASTM D-1238 (method A) under the conditions of a load of 2.16 kg and a temperature of 190 ° C.
  • the apparent density of the spunbonded nonwoven fabric of the present invention is preferably 0.05 to 0.35 g / cm 3.
  • the apparent density is preferably 0.35 g / cm 3 or less, more preferably 0.30 g / cm 3 or less, and further preferably 0.25 g / cm 3 or less, the fibers are tightly packed and spunbonded. The flexibility of the non-woven fabric is less likely to be impaired.
  • an apparent density preferably between 0.05 g / cm 3 or more, more preferably set to 0.08 g / cm 3 or more, more preferably by a 0.10 g / cm 3 or more, the generation of fuzz or delamination It becomes easy to obtain a spunbonded non-woven fabric having mechanical strength and handleability that can be suppressed and can withstand practical use.
  • the basis weight of the spunbonded nonwoven fabric of the present invention is preferably 10 to 100 g / m 2.
  • the basis weight is preferably 10 to 100 g / m 2.
  • By setting the basis weight to preferably 10 g / m 2 or more, more preferably 13 g / m 2 or more, and further preferably 15 g / m 2 or more, it becomes easy to obtain a spunbonded non-woven fabric having mechanical strength that can be put into practical use. ..
  • the basis weight to preferably 100 g / m 2 or less, more preferably 50 g / m 2 or less, and further preferably 30 g / m 2 or less, appropriate flexibility suitable for use as a non-woven fabric for sanitary materials can be obtained. It becomes easy to obtain the spunbonded non-woven fabric to have.
  • the thickness of the spunbonded nonwoven fabric of the present invention is preferably 0.05 to 1.5 mm. By setting the thickness to preferably 0.05 to 1.5 mm, more preferably 0.08 to 1.0 mm, still more preferably 0.10 to 0.8 mm, flexibility and appropriate cushioning properties are provided, and hygiene is provided.
  • the spunbonded non-woven fabric for materials it can be a spunbonded non-woven fabric particularly suitable for use in disposable diaper applications.
  • the fluff grade of the spunbonded non-woven fabric of the present invention is preferably 3.0 grade or higher.
  • the fluff grade is 3.0 grade or higher, pilling or breakage of the non-woven fabric is unlikely to occur, so that the material can be suitably used as a sanitary material. Furthermore, since it is sufficiently adhered, even slight fluffing is unlikely to occur, and it is easy to obtain a non-woven fabric having an excellent surface smoothness.
  • the average flexural rigidity B of the spunbonded non-woven fabric of the present invention by the KES method is preferably 0.001 gf ⁇ cm 2 / cm or more and 0.03 gf ⁇ cm 2 / cm or less.
  • KAWABATA EVALUATION SYSTEM KAWABATA EVALUATION SYSTEM
  • the average flexural rigidity B by the KES method is preferably 0.02 gf ⁇ cm 2 / cm or less, more preferably 0.017 gf ⁇ cm 2 / cm or less, and further preferably 0.015 gf ⁇ cm 2 / cm or less.
  • sufficient flexibility can be easily obtained.
  • the average bending rigidity B by the KES method is extremely low, the handleability may be inferior. Therefore, the average bending rigidity B is preferably 0.001 gf ⁇ cm 2 / cm or more.
  • the average flexural rigidity B according to the KES method can be adjusted by the basis weight, single fiber diameter, and thermocompression bonding conditions (compression rate, temperature, and linear pressure).
  • the coefficient of friction MIU of the spunbonded non-woven fabric of the present invention is preferably 0.2 or less, more preferably 0.15 or less, and even more preferably 0.13 or less. By setting the friction coefficient MIU in such a range, the slipperiness of the surface of the non-woven fabric is likely to be improved, and the spunbonded non-woven fabric having a better feel to the touch can be obtained. On the other hand, the coefficient of friction MIU is preferably 0.05 or more, more preferably 0.08 or more, and further preferably 0.1 or more.
  • the coefficient of friction MIU by the KES method can be controlled by adjusting the average single fiber diameter, the fiber dispersity, the crystallinity of the polyolefin resin, and the like, or by adding a lubricant to the polyolefin resin.
  • the spunbonded non-woven fabric of the present invention is a long-fiber non-woven fabric manufactured by the spunbond (S) method.
  • S spunbond
  • a spunbond method, a flash spinning method, a wet method, a card method, an airlaid method and the like can be generally mentioned, but the spunbond method is excellent in productivity and mechanical strength and is short. It is possible to suppress fluffing and fiber shedding that are likely to occur with fibrous non-woven fabrics. Further, it is preferable to laminate a plurality of layers of the spunbond (S) non-woven fabric layer with SS, SSS and SSSS because productivity and formation uniformity are improved.
  • the spunbond method first, the molten thermoplastic resin is spun from the spinneret as long fibers, which is suction-stretched with compressed air by an ejector, and then the fibers are collected on a moving net to form a non-woven fiber web. .. Further, the obtained non-woven fiber web is heat-bonded to obtain a spunbonded non-woven fabric.
  • the shape of the spinneret and the ejector various shapes such as a round shape and a rectangular shape can be adopted.
  • the combination of a rectangular base and a rectangular ejector is possible because the amount of compressed air used is relatively small and the energy cost is excellent, the threads are less likely to be fused or scratched, and the threads can be easily opened. It is preferably used.
  • the polyethylene-based polymer is melted in an extruder, weighed and supplied to a spinneret, and spun as long fibers.
  • the spinning temperature when the polyethylene-based polymer is melted and spun is preferably 180 to 270 ° C, more preferably 190 to 260 ° C, and even more preferably 200 to 250 ° C.
  • the spun long fiber yarn is then cooled.
  • the method of cooling the spun yarn include a method of forcibly blowing cold air on the yarn, a method of naturally cooling at the atmospheric temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. Etc., or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
  • the cooled and solidified yarn is towed and stretched by the compressed air injected from the ejector.
  • the spinning speed is preferably 1500 to 6500 m / min, more preferably 2000 to 6500 m / min, and even more preferably 2500 to 6500 m / min.
  • the obtained long fibers are collected on a moving net and made into a non-woven fiber web.
  • the non-woven fiber web it is also preferable to temporarily bond the non-woven fiber web with a thermal flat roll from one side of the net. By doing so, it is possible to prevent the surface layer of the non-woven fiber web from being turned over or blown off during transportation on the net, resulting in deterioration of the texture, and from collecting the threads to thermocompression bonding. Transportability can be improved.
  • the intended non-woven fabric can be obtained by integrating the obtained non-woven fiber webs by heat bonding.
  • a heat embossed roll in which the upper and lower roll surfaces are engraved (concavo-convex parts), one roll has a flat (smooth) surface, and the other roll has a flat surface.
  • Thermal bonding methods using various rolls such as thermal embossing rolls consisting of rolls with engraved surfaces (uneven parts) and thermal calendar rolls consisting of a pair of upper and lower flat (smooth) rolls, and horns Examples thereof include a method such as ultrasonic bonding in which heat welding is performed by ultrasonic vibration.
  • it is highly productive mechanical strength is given by the partial heat-bonded part, and the texture and touch unique to non-woven fabric can be maintained by the non-bonded part.
  • thermocompression bonding effect can be easily obtained, and the engraving (concavo-convex part) of one embossed roll is difficult to be transferred to the surface of the other roll. Is preferable.
  • the pressure-bonding ratio of the spunbonded nonwoven fabric of the present invention is 8 to 19%, preferably 8 to 16%, and more preferably 8 to 14%. If the pressure-bonding ratio exceeds 19%, thermal adhesion becomes excessive, and in thermal adhesion of fibers made of ethylene-based polymers having a low melting point, wrapping around embossed rolls frequently occurs, making stable fabric production difficult. Furthermore, due to excessive adhesion, the texture becomes hard and unsuitable as a sanitary material.
  • the crimping ratio here means the area ratio of the adhesive part to the entire spunbonded non-woven fabric. Specifically, when heat-bonding with a pair of uneven rolls, the spunbonded non-woven fabric of the portion (adhesive portion) where the convex portion of the upper roll and the convex portion of the lower roll overlap and come into contact with the non-woven fiber web. It refers to the ratio to the whole. Further, in the case of heat-bonding between a roll having irregularities and a flat roll, it means the ratio of the convex portion of the roll having irregularities to the entire spunbonded non-woven fabric of the portion (adhesive portion) in contact with the non-woven fiber web. Further, in the case of ultrasonic bonding, it refers to the ratio of the portion (adhesive portion) to be heat-welded by ultrasonic processing to the entire spunbonded non-woven fabric.
  • the convex portion of the upper roll and the convex portion of the lower roll do not overlap each other.
  • Examples thereof include a method of adjusting the area of the portion that comes into contact with the woven fiber web, and a method of adjusting the area of the convex portion of the roll having unevenness in the case of heat-bonding the roll having unevenness with a flat roll.
  • the shape of the bonded portion by thermal embossing roll or ultrasonic bonding a circular shape, an elliptical shape, a square shape, a rectangular shape, a parallelogram, a rhombus shape, a regular hexagonal shape, a regular octagonal shape, or the like can be used. Further, it is preferable that the adhesive portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the spunbonded nonwoven fabric. By doing so, it is possible to reduce variations in the mechanical strength of the spunbonded non-woven fabric.
  • the linear pressure of the heat embossing roll at the time of heat bonding is preferably 50 to 500 N / cm.
  • the linear pressure of the roll is preferably 50 N / cm or more, more preferably 100 N / cm or more, and further preferably 150 N / cm or more, a spunbonded non-woven fabric having mechanical strength that can be appropriately heat-bonded and put into practical use. Is easy to obtain.
  • the linear pressure of the heat embossed roll to preferably 500 N / cm or less, more preferably 400 N / cm or less, and further preferably 300 N / cm or less, it is used as a spunbonded non-woven fabric for sanitary materials, especially for disposable diapers. It is possible to obtain an appropriate degree of flexibility suitable for use in.
  • thermocompression bonding may be performed by a thermal calendar roll composed of a pair of upper and lower flat rolls before and / or after thermal bonding by the above thermal embossing roll.
  • a pair of upper and lower flat rolls is a metal roll or an elastic roll having no unevenness on the surface of the roll, and a metal roll and a metal roll may be paired, or a metal roll and an elastic roll may be paired.
  • the elastic roll here is a roll made of a material having elasticity as compared with a metal roll. Examples of the elastic roll include so-called paper rolls such as paper, cotton and aramid paper, and resin rolls made of urethane-based resin, epoxy-based resin, silicon-based resin, polyester-based resin and hard rubber, and a mixture thereof. Be done.
  • the spunbonded non-woven fabric of the present invention has high productivity, flexibility, and excellent surface texture of the non-woven fabric, and can be suitably used for sanitary material applications such as disposable disposable diapers and napkins.
  • sanitary material applications such as disposable disposable diapers and napkins.
  • the sanitary materials it can be particularly preferably used for the back sheet of disposable diapers.
  • Average single fiber diameter ( ⁇ m) Randomly collect 10 small piece samples from the spunbonded non-woven fabric, take a surface photograph of 500 to 1000 times with a microscope, measure the width of 100 fibers, 10 fibers from each sample, and measure the width of 100 fibers from the average value. The average single fiber diameter ( ⁇ m) was calculated.
  • the spinning speed is based on the following formula.
  • -Spinning speed (m / min) (10000 x [single hole discharge amount (g / min)]) / [average single fiber fineness (dtex)].
  • Fluff grade A 130 mm x 200 mm test piece was collected from a spunbonded non-woven fabric, and using a Japan Society for the Promotion of Science type fastness tester, there was no load, and on the friction element side, Linley cloth-No. for heavy packaging. .. Using 314 cloth adhesive tape, it was operated 50 times, the state of fluffing was observed, and evaluation was performed according to the following fluff grade criteria.
  • the fluff grade is preferably 3.0 grade or higher.
  • Average flexural rigidity B (gf ⁇ cm 2 / cm) of spunbonded non-woven fabric by KES method The average flexural rigidity B value of the spunbonded non-woven fabric was measured by a standard test by the KES method. First, three test pieces having a width of 200 mm ⁇ 200 mm were sampled in the vertical direction (longitudinal direction of the non-woven fabric) and the horizontal direction (width direction of the non-woven fabric), and 1 cm using a KES-FB2 bending characteristic tester manufactured by Kato Tech Co., Ltd.
  • Friction coefficient MIU (-) of spunbonded non-woven fabric by KES method The coefficient of friction MIU of the spunbonded non-woven fabric was measured by a standard test by the KES method. Three test pieces having a width of 200 mm ⁇ 200 mm are collected from the spunbonded non-woven fabric at equal intervals in the width direction of the spunbonded non-woven fabric. The test piece is set on the sample table, and the surface of the test piece is scanned with a contact friction element (material: ⁇ 0.5 mm piano wire (20 pieces in parallel), contact area: 1 cm 2) to which a load of 50 gf is applied, and the friction coefficient is measured. Was measured.
  • Friction coefficient MIU Friction coefficient
  • the ⁇ -olefin is 1-butene, and the content of ⁇ -olefin in the polymer component is 5.0 mol%. It is composed of an ethylene-1-butene copolymer having an MFR of 30 g / 10 minutes and a density of 0.945 g / cm 3 .
  • -Polyethylene polymer (E) It is composed of an ethylene-1-butene copolymer in which the ⁇ -olefin is 1-butene and the content of the ⁇ -olefin in the polymer component is 0.10 mol%, the MFR is 30 g / 10 minutes, and the density is 0.960 g / cm 3 .
  • a certain polyethylene-based polymer ⁇ Polyethylene-based polymer (H): It is composed of an ethylene-1-pentene copolymer in which the ⁇ -olefin is 1-pentene and the content of the ⁇ -olefin in the polymer component is 3.0 mol%, the MFR is 30 g / 10 minutes, and the density is 0.946 g / cm 3 .
  • -Polyethylene polymer (J) It is composed of an ethylene-1-octene copolymer in which the ⁇ -olefin is 1-octene and the content of the ⁇ -olefin in the polymer component is 3.0 mol%, the MFR is 30 g / 10 minutes, and the density is 0.935 g / cm 3 .
  • Example 1 The polyethylene-based polymer (A) was melted by an extruder, and the yarn spun at a spinning temperature of 240 ° C., a pore diameter of 0.40 mm, and a single-hole discharge rate of 0.55 g / min was cooled and solidified. After that, a non-woven fiber web made of polyethylene-based polymer filaments was obtained by pulling and stretching the ejector with compressed air having a pressure of 0.40 MPa with a rectangular ejector and collecting the mixture on a moving net. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
  • the obtained non-woven fiber web was embossed with a metal flat roll on the lower roll with a crimping ratio of 16% and a metal polka dot pattern engraved on the upper roll.
  • the thermal bonding temperature of the spunbonded non-woven fabric having a grain size of 30 g / m 2 was examined under the condition of a linear pressure of 30 N / cm.
  • the embossed roll there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 2 Using the polyethylene-based polymer (A) as the sheath component and the polyolefin-based resin (L) as the core component, they are melted by separate extruders, and the mass of the sheath component and the core component is increased by a concentric core sheath cap.
  • a spunbonded non-woven fabric made of polyethylene-based polymer long fibers was obtained by the same method as in Example 1 except that the mixture was weighed and spun so that the ratio was 50:50. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
  • Example 3 Regarding the spinnability of the spunbonded non-woven fabric made of polyethylene-based polymer long fibers by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (B), the number of yarn breaks was 0. It was good at / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 140 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 4 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (C). Regarding spinnability, the number of yarn breaks was as good as 1.5 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 134 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 5 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (H). Regarding spinnability, the number of yarn breaks was as good as 1.5 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 134 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 6 The obtained non-woven fiber web is used as an embossed roll with a crimping ratio of 11%, which is made of metal and has a polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossed rolls composed of a metal flat roll is used on the lower roll.
  • a spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
  • Example 7 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (D). Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 8 The obtained non-woven fiber web is used as an embossed roll with a crimping ratio of 11%, which is made of metal and has a polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossed rolls composed of a metal flat roll is used on the lower roll.
  • a spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 7 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
  • Example 9 The obtained non-woven fiber web is used as an embossed roll with a crimping ratio of 14%, which is made of metal and has a polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossed rolls composed of a metal flat roll is used on the lower roll.
  • a spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
  • Example 10 The obtained non-woven fiber web is embossed with a metal polka dot pattern engraved on the upper roll with a pressure bonding ratio of 8%, and a pair of upper and lower thermal embossed rolls composed of metal flat rolls are used on the lower roll.
  • a spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 140 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 11 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (E). Regarding spinnability, the number of yarn breaks was as good as 2.0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 142 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 1.
  • Example 1 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (I). Regarding spinnability, yarn breakage occurred more than 5.0 times / ton, and spinnability was poor. When the embossed roll was adhered, fluffing of the sheet was observed, and when the temperature condition of the embossed roll was raised to 130 ° C., wrapping around the roll occurred frequently and the sheet could not be collected.
  • the polyethylene-based polymer was the polyethylene-based polymer (I).
  • Example 2 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 2 except that the polyethylene-based polymer was the polyethylene-based polymer (I). Regarding spinnability, the number of yarn breaks was 2.5 times / ton, which was poor. During heat bonding of the embossed roll, fluffing of the sheet was observed, and when the temperature condition of the embossed roll was raised to 130 ° C., wrapping around the roll occurred frequently and it was difficult to collect the sheet.
  • Example 3 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (J). Regarding spinnability, the number of yarn breaks was 4.2 times / ton, which was poor. At the time of heat bonding of the embossed roll, fluffing was observed under the condition that the heat bonding temperature was 130 ° C. , The heat adhesion was poor.
  • the coefficient MIU was measured and evaluated. The results are shown in Table 2.
  • Example 4 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (K). Regarding spinnability, yarn breakage occurred more than 5.0 times / ton, and spinnability was poor. During heat bonding of the embossed roll, fluffing of the sheet was observed, and when the embossed roll temperature was raised to 128 ° C., wrapping around the roll occurred frequently, making it difficult to collect the sheet.
  • K polyethylene-based polymer
  • Example 5 The obtained non-woven fiber web is embossed with a metal polka dot pattern engraved on the upper roll with a crimping ratio of 7%, and a pair of upper and lower thermal embossed rolls composed of metal flat rolls are used on the lower roll.
  • a spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat bonding of the embossed roll, fluffing was observed under the condition that the heat bonding temperature was 142 ° C. , The heat adhesion was poor.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 2.
  • Example 6 The obtained non-woven fiber web is embossed with a metal polka dot pattern engraved on the upper roll with a pressure bonding ratio of 20%, and a pair of upper and lower thermal embossed rolls composed of metal flat rolls are used on the lower roll.
  • a spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
  • the sheet was taken off to the embossed roll by 5 cm or more, which was inferior in heat-bonding property.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 2.
  • Example 7 A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (F). Regarding spinnability, the number of yarn breaks was 2.9 times / ton, which was poor. At the time of heat bonding of the embossed roll, there is no fluffing under the condition that the heat bonding temperature is 142 ° C. , The heat adhesion was poor.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 2.
  • Example 8 A spunbonded nonwoven fabric made of polyolefin long fibers was obtained by the same method as in Example 1 except that the polyolefin resin (L) was used instead of the polyethylene polymer.
  • the number of yarn breaks is as good as 0 times / ton, and when the embossed roll is heat-bonded, no fluffing is observed under the condition that the heat-bonding temperature is 138 ° C. It was not taken off, and the heat adhesion was good.
  • the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method was measured and evaluated. The results are shown in Table 2.
  • the polyethylene-based polymers of Examples 1 to 11 are copolymers of ethylene and ⁇ -olefins having 3 to 5 carbon atoms, and the content of ⁇ -olefins is 0.10 to 5 in the polymerized components of the polyethylene-based polymers.
  • the non-woven fabric having a pressure ratio of 0.0 mol% and an embossing roll of 8 to 19% had good spinnability / thermal adhesion, and had high flexibility / smoothness on the surface.
  • the fluff resistance was also good.
  • the spunbonded non-woven fabrics of Examples 6 and 8 were excellent in all of spinnability / heat adhesion / fluff resistance / flexibility / surface smoothness, and were particularly suitable as sanitary materials.
  • the ⁇ -olefins shown in Comparative Examples 1 to 8 have 6 or more carbon atoms, the content of the ⁇ -olefin in the polymerization component is less than 0.10 mol%, or the polyethylene-based polymer exceeds 5 mol%, and the pressure-bonding ratio is 7%.
  • the spunbonded non-woven fabric having the following or 20% or more is not only inferior in at least one of spinnability / thermal adhesiveness and low production stability as compared with the non-woven fabric of the present invention, but also has flexibility / surface smoothness. It was low.
  • the spunbonded nonwoven fabric made of a polyolefin-based polymer other than the polyethylene-based polymer is superior in spinnability / thermal adhesiveness as compared with the nonwoven fabric of the present invention, but has further lower flexibility / smoothness on the surface. there were.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The purpose of the present invention is to provide a non-woven cloth in which spinning properties and heat-fusing properties are both excellent, and which has superior production stability and superior texture. To achieve this purpose, this spun-bonded non-woven cloth is configured from fibers including a polyethylene polymer, the polyethylene polymer being a copolymer of ethylene and a C3-5 α-olefin, the α-olefin content of the polymer component in the polyethylene polymer being 0.10-5.0 mol%, and the compression rate of the non-woven cloth being 8-19%.

Description

スパンボンド不織布Spun bond non-woven fabric
 本発明は、スパンボンド不織布に関するものである。 The present invention relates to a spunbonded non-woven fabric.
 ポリオレフィンからなるスパンボンド不職布、特にポリプロピレンスパンボンド不職布は低コストで柔軟性に優れるため、衛生材料用途を中心に幅広く用いられている。 Spunbond unemployed cloth made of polyolefin, especially polypropylene spunbond unemployed cloth, is widely used mainly for sanitary materials because it is low cost and has excellent flexibility.
 ポリオレフィンスパンボンド不織布の特徴である柔軟性をより高める技術もこれまでに多くの検討がなされている。その中で弾性率がポリプロピレンよりも低い、ポリエチレンを用いる検討がなされている。 Many studies have been conducted on the technology to further enhance the flexibility, which is a feature of polyolefin spunbonded non-woven fabrics. Among them, the use of polyethylene, which has a lower elastic modulus than polypropylene, has been studied.
 ポリエチレンを使用したスパンボンド不織布の課題として、ポリエチレンの紡糸性が悪く、糸切れが生じやすいためシート欠点が多いこと、融点が低く熱接着時の適正温度範囲が狭いため、熱接着が甘いと毛羽立ちの発生、強いと風合いの悪化が生じることが挙げられる。 The problems with spunbonded non-woven fabrics using polyethylene are that polyethylene has poor spinnability and is prone to thread breakage, resulting in many sheet defects. If it is strong, the texture will deteriorate.
 紡糸性を向上し、風合いが良好なポリエチレン系重合体を含む不織布を得る技術に関して、複合繊維の鞘成分にエチレンと1-オクテンとのコポリマーで1-オクテンを実質的に1~10質量%含有し、密度が0.900~0.940g/cm、メルトインデックス値が5~45g/10分であり、融解熱が25cal/g以上である直鎖状低密度ポリエチレンを用いることが開示されている(特許文献1参照)。 Regarding the technique for obtaining a non-woven fabric containing a polyethylene-based polymer having improved spinnability and a good texture, the sheath component of the composite fiber contains substantially 1 to 10% by mass of 1-octene as a copolymer of ethylene and 1-octene. It is disclosed that a linear low-density polyethylene having a density of 0.900 to 0.940 g / cm 3 , a melt index value of 5 to 45 g / 10 minutes, and a heat of fusion of 25 cal / g or more is used. (See Patent Document 1).
 また、100重量%以下のエチレン由来単位と20重量%未満の1又はそれ以上のα-オレフィンコモノマー由来単位を含むポリエチレン組成物であって、前記ポリエチレン組成物の密度が0.920~0.970g/cmの範囲であり、分子量分布(Mw/Mn)が1.70~3.5の範囲であり、メルトインデックス値が0.2~1000g/10分の範囲であり、分子量分布(Mz/Mw)が2.5未満の範囲であり、ビニル不飽和が、前記組成物の主鎖に存在する炭素原子1000個当たり0.1ビニル未満である、ポリエチレン組成物を用いることで紡糸性を改善する技術も開示されている(特許文献2参照)。 Further, a polyethylene composition containing 100% by weight or less of ethylene-derived units and less than 20% by weight of 1 or more α-olefin comonomer-derived units, wherein the density of the polyethylene composition is 0.920 to 0.970 g. in the range of / cm 3, a molecular weight distribution (Mw / Mn) in the range is 1.70 to 3.5 in the range melt index value is 0.2 ~ 1000 g / 10 min, a molecular weight distribution (Mz / The spinnability is improved by using a polyethylene composition in which Mw) is in the range of less than 2.5 and the vinyl unsaturatedity is less than 0.1 vinyl per 1000 carbon atoms present in the main chain of the composition. (See Patent Document 2).
特公平07-103507号公報Special Fair 07-103507 Gazette 特表2011-527723号公報Japanese Patent Publication No. 2011-527723
 しかしながら、特許文献1では、糸切れ頻度が少ないとの記載があるが、実施例で到達している単糸繊度は3.0デニール(推定平均単繊維径21.3μm)であり、衛生材料向けスパンボンド不織布としては繊維径が太く、風合いに劣るものである。特許文献1では、3.0デニール以下の繊維は得られておらず、衛生材料向け不織布として満足のいく紡糸性であるとはいえない。また、不織布の熱処理温度(熱接着温度)は90~110℃の範囲であるが、通常、上記温度範囲では熱接着が甘いため、毛羽立ちが発生しやすく、熱接着性の課題についても解決できていない。 However, although Patent Document 1 describes that the frequency of yarn breakage is low, the single yarn fineness reached in the examples is 3.0 denier (estimated average single fiber diameter 21.3 μm), which is suitable for sanitary materials. As a spunbonded non-woven fabric, the fiber diameter is large and the texture is inferior. In Patent Document 1, fibers of 3.0 denier or less have not been obtained, and it cannot be said that the spinnability is satisfactory as a non-woven fabric for sanitary materials. Further, the heat treatment temperature (heat adhesion temperature) of the non-woven fabric is in the range of 90 to 110 ° C. However, since the heat adhesion is usually weak in the above temperature range, fluffing is likely to occur, and the problem of heat adhesion can be solved. No.
 また、特許文献2では、実施例で到達している単糸繊度は3.0デニールであり、衛生材料向けスパンボンド不織布としては繊維径が太く、風合いに劣るものである。特許文献2では、3.0デニール以下の繊維は得られておらず、衛生材料向け不織布として満足のいく紡糸性であるとはいえない。 Further, in Patent Document 2, the single yarn fineness reached in the examples is 3.0 denier, which is a large fiber diameter and inferior in texture as a spunbonded non-woven fabric for sanitary materials. In Patent Document 2, fibers of 3.0 denier or less have not been obtained, and it cannot be said that the spinnability is satisfactory as a non-woven fabric for sanitary materials.
 そこで本発明の目的は、上記の課題に鑑み、紡糸性/熱接着性がいずれも良好で生産安定性に優れると共に、風合いに優れた不織布を提供することにある。 Therefore, an object of the present invention is to provide a non-woven fabric having good spinnability / thermal adhesiveness, excellent production stability, and excellent texture in view of the above problems.
 本発明のスパンボンド不織布は、ポリエチレン系重合体を含む繊維で構成され、ポリエチレン系重合体がエチレンと炭素数3~5のα-オレフィンとの共重合体であり、ポリエチレン系重合体の重合成分におけるα-オレフィンの含有量が0.10~5.0mol%であって、不織布の圧着率が8~19%である。 The spunbonded non-woven fabric of the present invention is composed of fibers containing a polyethylene-based polymer, and the polyethylene-based polymer is a copolymer of ethylene and an α-olefin having 3 to 5 carbon atoms, and is a polymerization component of the polyethylene-based polymer. The content of α-olefin in the above is 0.10 to 5.0 mol%, and the pressure-bonding ratio of the non-woven fabric is 8 to 19%.
 本発明のスパンボンド不織布の好ましい態様によれば、α-オレフィンが1-ブテンである。 According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the α-olefin is 1-butene.
 本発明のスパンボンド不織布の好ましい態様によれば、α-オレフィンの含有量が0.10~3.0mol%である。 According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the content of α-olefin is 0.10 to 3.0 mol%.
 本発明のスパンボンド不織布の好ましい態様によれば、不織布の圧着率が8~14%である。 According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the pressure-bonding ratio of the nonwoven fabric is 8 to 14%.
 本発明によれば、紡糸性/熱接着性がいずれも良好で生産安定性に優れると共に、風合いに優れた不織布を提供することができる。 According to the present invention, it is possible to provide a non-woven fabric having good spinnability / thermal adhesiveness, excellent production stability, and excellent texture.
 本発明のスパンボンド不織布は、ポリエチレン系重合体を含む繊維で構成され、ポリエチレン系重合体がエチレンと炭素数3~5のα-オレフィンとの共重合体であり、ポリエチレン系重合体の重合成分におけるα-オレフィンの含有量が0.10~5.0mol%であって、不織布の圧着率が8~19%である。 The spunbonded non-woven fabric of the present invention is composed of fibers containing a polyethylene-based polymer, and the polyethylene-based polymer is a copolymer of ethylene and an α-olefin having 3 to 5 carbon atoms, and is a polymerization component of the polyethylene-based polymer. The content of α-olefin in the above is 0.10 to 5.0 mol%, and the pressure-bonding ratio of the non-woven fabric is 8 to 19%.
 このようにすることで、紡糸性/熱接着性がいずれも良好で生産安定性に優れると共に、風合いに優れた不織布を得られる。なお、本発明において、生産安定性に優れるとは、紡糸性、熱接着性がいずれも良好であることを指す。 By doing so, it is possible to obtain a non-woven fabric having good spinnability / thermal adhesiveness, excellent production stability, and excellent texture. In the present invention, excellent production stability means that both spinnability and thermal adhesion are good.
 以下、詳細について説明する。 The details will be explained below.
 [ポリエチレン系重合体]
 本発明で用いられるポリエチレン系重合体は、エチレンと炭素数3~5のα-オレフィンとの共重合体であり、より好ましくはエチレンと1-ブテンの共重合体である。
α-オレフィンの炭素数が6以上となると、溶融時の分子鎖の絡み合いが生じやすくなり、糸切れの発生につながる。また、側鎖の長さが長くなるため、ポリエチレン系重合体の結晶化度が低下し、繊維表面のさらさら感に劣る風合いの不織布となる。さらには、低融点となる非晶成分が増加することで、熱接着時にロールに巻き付きやすくなるため、不織布の毛羽立ちを抑制可能な温度で熱接着を行うことが出来ず、衛生材料として使用できないものとなってしまう。
[Polyethylene polymer]
The polyethylene-based polymer used in the present invention is a copolymer of ethylene and an α-olefin having 3 to 5 carbon atoms, and more preferably a copolymer of ethylene and 1-butene.
When the number of carbon atoms of the α-olefin is 6 or more, the molecular chains are liable to be entangled at the time of melting, which leads to the occurrence of thread breakage. Further, since the length of the side chain becomes long, the crystallinity of the polyethylene-based polymer is lowered, and the non-woven fabric has a texture inferior to the silky feel of the fiber surface. Furthermore, since the amount of amorphous components having a low melting point increases, it becomes easier to wrap around the roll during thermal bonding, so that thermal bonding cannot be performed at a temperature that can suppress fluffing of the non-woven fabric, and it cannot be used as a sanitary material. Will be.
 本発明で用いられるポリエチレン系重合体の重合成分におけるα-オレフィンの含有量は、ポリエチレン系重合体中に、0.10~5.0mol%以下であり、好ましくは、0.10~4.0mol%以下、さらに好ましくは0.10~3.0mol%以下である。α―オレフィンの含有量が5.0mol%より多くなると、側鎖分岐が多く、溶融時の分子鎖の絡み合いが生じやすくなり、糸切れの発生につながる。また、結晶化度が低下し、低融点となる非晶成分が増加することで、熱接着時にロールに巻き付きやすくなるため、不織布の毛羽立ちを抑制可能な温度で熱接着を行うことが出来ず、衛生材料として使用できないものとなる。さらには、結晶化度が低下することで、繊維表面のさらさら感に劣る風合いの不織布となる。一方、α-オレフィンの含有量が0.10mol%より少なくなると、結晶化度が高くなりすぎ、風合いの固い不織布となり、衛生材料として使用できないものとなってしまう。また、紡糸時に極度に結晶化が進みやすくなることで糸が細化しづらくなり、柔軟でかつ均一性に優れた細い繊維を得ようとする場合に糸切れの発生につながる。 The content of α-olefin in the polymerization component of the polyethylene-based polymer used in the present invention is 0.10 to 5.0 mol% or less, preferably 0.10 to 4.0 mol, in the polyethylene-based polymer. % Or less, more preferably 0.10 to 3.0 mol% or less. When the content of α-olefin is more than 5.0 mol%, there are many side chain branches, and the molecular chains are liable to be entangled at the time of melting, which leads to the occurrence of yarn breakage. In addition, since the crystallinity decreases and the amorphous component having a low melting point increases, it becomes easy to wrap around the roll during thermal adhesion, so that thermal adhesion cannot be performed at a temperature at which fluffing of the non-woven fabric can be suppressed. It cannot be used as a sanitary material. Further, the crystallinity is lowered, so that the non-woven fabric has a texture inferior to the silky feel of the fiber surface. On the other hand, if the content of the α-olefin is less than 0.10 mol%, the crystallinity becomes too high, and the non-woven fabric has a hard texture and cannot be used as a sanitary material. In addition, crystallization is extremely easy to proceed during spinning, which makes it difficult for the yarn to be thinned, which leads to yarn breakage when trying to obtain fine fibers that are flexible and have excellent uniformity.
 ポリエチレン系重合体の重合成分中のα-オレフィン種およびα-オレフィン含有量は、例えば、核磁気共鳴装置(NMR)による検出ピーク位置およびピーク面積比率から算出することが出来る。 The α-olefin species and α-olefin contents in the polymerization component of the polyethylene-based polymer can be calculated, for example, from the peak position and peak area ratio detected by a nuclear magnetic resonance apparatus (NMR).
 本発明で用いられるポリエチレン系重合体の密度は、0.935~0.965g/cmであることが好ましく、より好ましくは、0.945~0.965g/cmである。密度が0.935g/cm以上であると、低融点となる非晶成分が少ないため、熱接着時にロールに巻き付きにくくなる。そのため、不織布の毛羽立ちを抑制可能な温度で熱接着を行いやすくなり、衛生材料として好適に使用できるものとなりやすい。さらには、結晶化度が上昇することで、十分な繊維表面のさらさら感を有する風合いの不織布が得られやすくなる。一方、密度が0.965g/cm以下であると、結晶化度が高くなり過ぎにくく、風合いの柔らかい不織布となりやすく、衛生材料として好適なものが得られやすくなる。 The density of the polyethylene-based polymer used in the present invention is preferably 0.935 to 0.965 g / cm 3 , and more preferably 0.945 to 0.965 g / cm 3 . When the density is 0.935 g / cm 3 or more, since there are few amorphous components having a low melting point, it becomes difficult to wrap around the roll during heat bonding. Therefore, it becomes easy to perform thermal adhesion at a temperature at which fluffing of the non-woven fabric can be suppressed, and it tends to be suitable for use as a sanitary material. Further, by increasing the crystallinity, it becomes easy to obtain a non-woven fabric having a texture having a sufficient smooth feeling on the fiber surface. On the other hand, when the density is 0.965 g / cm 3 or less, the crystallinity is unlikely to be too high, and a non-woven fabric having a soft texture is likely to be obtained, so that a material suitable as a sanitary material can be easily obtained.
 本発明に用いられるポリエチレン系重合体のエチレン成分としては、特に限定されないが、例えば、(1)ナフサの高温熱分解によって得られる石油由来エチレン、(2)サトウキビ等から得られる植物性エタノールを比較的低温で脱水して得られるバイオベース由来エチレンなどが挙げられる。中でも、近年の市場の環境配慮に対する関心の高まりから、(2)のバイオベース由来エチレンが好ましい。 The ethylene component of the polyethylene-based polymer used in the present invention is not particularly limited, but for example, (1) petroleum-derived ethylene obtained by high-temperature thermal decomposition of naphtha, (2) vegetable ethanol obtained from sugar cane and the like are compared. Examples thereof include biobase-derived ethylene obtained by dehydration at a low temperature. Of these, the bio-based ethylene of (2) is preferable because of the growing interest in environmental consideration in the market in recent years.
 バイオベース由来エチレンをエチレン成分として含むポリエチレンを使用する場合、不織布におけるバイオベース由来の炭素原子割合は20%以上であることが好ましい。20%以上であると、CO削減量が大きくなり、環境への寄与が大きくなる。 When polyethylene containing biobase-derived ethylene as an ethylene component is used, the proportion of biobase-derived carbon atoms in the non-woven fabric is preferably 20% or more. If it is 20% or more, the amount of CO 2 reduction will be large and the contribution to the environment will be large.
 バイオベース由来の炭素原子割合は、ASTM D6866法に基づき、測定される。なお、ASTM D6866法では、炭素原子の放射性同位体量から当該成分がバイオベース由来のものであるか、石油由来資源由来のものであるかを知ることが出来る。炭素原子が全てバイオベース由来である場合、バイオベース由来の炭素原子割合は100%となる。 The proportion of carbon atoms derived from the biobase is measured based on the ASTM D6866 method. In the ASTM D6866 method, it is possible to know from the amount of radioisotope of a carbon atom whether the component is derived from a biobase or a petroleum-derived resource. If all the carbon atoms are derived from the biobase, the ratio of carbon atoms derived from the biobase is 100%.
 本発明で用いられるポリエチレン系重合体の融点は、60~180℃であることが好ましく、より好ましくは80~160℃であり、さらに好ましくは100~140℃である。融点を好ましくは60℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。また、融点を好ましくは180℃以下、より好ましくは160℃以下、さらに好ましくは140℃以下とすることにより、口金から吐出された糸条を冷却しやすくなり、繊維同士の融着を抑制し安定した紡糸が行いやすくなる。 The melting point of the polyethylene-based polymer used in the present invention is preferably 60 to 180 ° C, more preferably 80 to 160 ° C, and even more preferably 100 to 140 ° C. By setting the melting point to preferably 60 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher, it becomes easy to obtain heat resistance that can withstand practical use. Further, by setting the melting point to preferably 180 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 140 ° C. or lower, it becomes easier to cool the yarn discharged from the mouthpiece, and fusion between fibers is suppressed and stable. It becomes easier to spin the yarn.
 本発明で用いられるポリエチレン系重合体は、2種以上のポリエチレン系重合体の混合物であってもよい。 The polyethylene-based polymer used in the present invention may be a mixture of two or more types of polyethylene-based polymers.
 本発明のスパンボンド不織布に用いられる繊維は、ポリエチレン系共重合体の他にさらに、その他のオレフィン系樹脂や熱可塑性エラストマー等を含んでもよい。中でも、柔軟性付与の観点から、低結晶性のポリエチレン系エラストマーを含むことが好ましい。その他のオレフィン系樹脂や熱可塑性エラストマー等を含む場合の含有量は、ポリエチレン系重合体の特性を十分に発現させるため、繊維100質量%中に20質量%以下が好ましく、より好ましくは15質量%以下である。また、前記の柔軟性付与の効果を十分に発揮するためには、前記含有量は5質量%以上であることが好ましい。 The fibers used in the spunbonded nonwoven fabric of the present invention may further contain other olefin resins, thermoplastic elastomers, etc. in addition to the polyethylene copolymer. Above all, from the viewpoint of imparting flexibility, it is preferable to contain a low crystallinity polyethylene-based elastomer. When other olefin-based resin, thermoplastic elastomer, etc. are contained, the content is preferably 20% by mass or less, more preferably 15% by mass, in 100% by mass of the fiber in order to fully express the characteristics of the polyethylene-based polymer. It is as follows. Further, in order to fully exert the effect of imparting flexibility, the content is preferably 5% by mass or more.
 本発明で用いられるポリエチレン系重合体には、本発明の効果を損なわない範囲で、酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、滑剤、核剤、顔料等の添加物、他の重合体を必要に応じて添加することができる。 The polyethylene-based polymer used in the present invention includes antioxidants, weather stabilizers, light-resistant stabilizers, antistatic agents, antifoaming agents, antiblocking agents, lubricants, and nucleating agents as long as the effects of the present invention are not impaired. , Additives such as pigments, and other polymers can be added as needed.
 本発明で用いられるポリエチレン系重合体のメルトフローレート(以下、MFRと記載する場合がある)は、5~150g/10分であることが好ましく、より好ましくは10~120g/10分、更に好ましくは、10~100g/10分である。MFRが10g/10分以上であると、溶融時の粘度が低くなり、紡糸時に、細化への追従性が向上するため、糸切れが発生しにくくなり、安定した生産を行いやすくなる。一方、MFRが150g/10分以下であると、分子量が大きく、繊維の強度が高くなるため、実用に耐えうる強度を有しやすくなる。なお、ポリエチレン系重合体のMFRは、ASTM D1238に準拠して、190℃の温度で、荷重2.16kgで測定した値を指す。 The melt flow rate of the polyethylene-based polymer used in the present invention (hereinafter, may be referred to as MFR) is preferably 5 to 150 g / 10 minutes, more preferably 10 to 120 g / 10 minutes, still more preferably. Is 10 to 100 g / 10 minutes. When the MFR is 10 g / 10 minutes or more, the viscosity at the time of melting becomes low, and the followability to thinning at the time of spinning is improved, so that yarn breakage is less likely to occur and stable production is facilitated. On the other hand, when the MFR is 150 g / 10 minutes or less, the molecular weight is large and the strength of the fiber is high, so that it is easy to have a strength that can withstand practical use. The MFR of the polyethylene-based polymer refers to a value measured at a temperature of 190 ° C. and a load of 2.16 kg in accordance with ASTM D1238.
 ポリエチレン系重合体は、例えば、一般的なチーグラナッタ触媒により合成されるポリマーでもよく、また、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーでもよい。 The polyethylene-based polymer may be, for example, a polymer synthesized by a general Chigra natta catalyst, or a polymer synthesized by a single-site active catalyst typified by metallocene.
 [ポリエチレン系重合体を含む繊維]
 本発明のスパンボンド不織布を構成する、ポリエチレン系重合体を含む繊維は、平均単繊維径が6.5~19.5μmであることが好ましい。平均単繊維径を6.5μm以上とし、好ましくは7.5μm以上とし、より好ましくは8.5μm以上とすることにより、紡糸性の低下を防ぎ、安定して品質の良いスパンボンド不織布を生産しやすくなる。一方、平均単繊維径を19.5μm以下とし、好ましくは19.0μm以下とし、より好ましくは18.5μm以下とすることにより、柔軟性を向上させ、かつ均一性の高いスパンボンド不織布が得られやすくなる。
[Fiber containing polyethylene polymer]
The fibers containing the polyethylene-based polymer constituting the spunbonded nonwoven fabric of the present invention preferably have an average single fiber diameter of 6.5 to 19.5 μm. By setting the average single fiber diameter to 6.5 μm or more, preferably 7.5 μm or more, and more preferably 8.5 μm or more, deterioration of spinnability is prevented, and a stable and high-quality spunbonded non-woven fabric is produced. It will be easier. On the other hand, by setting the average single fiber diameter to 19.5 μm or less, preferably 19.0 μm or less, and more preferably 18.5 μm or less, a spunbonded nonwoven fabric having improved flexibility and high uniformity can be obtained. It will be easier.
 上記のポリエチレン系重合体を含む繊維は、単繊維径のCV値が7%以下であることが好ましい。単繊維径のCV値を好ましくは7%以下とし、より好ましくは6%以下とし、さらに好ましくは5%以下とすることにより、表面にざらつき感が生じることを防ぎ、均一性の高いスパンボンド不織布が得られやすくなる。単繊維径のCV値には、紡糸口金の背圧や糸冷却条件、延伸条件の均一性が支配的であり、これらを適切に調整することにより制御することができる。 The fiber containing the polyethylene-based polymer described above preferably has a single fiber diameter CV value of 7% or less. By setting the CV value of the single fiber diameter to preferably 7% or less, more preferably 6% or less, and further preferably 5% or less, it is possible to prevent the surface from becoming rough and to have a highly uniform spunbonded non-woven fabric. Is easy to obtain. The CV value of the single fiber diameter is dominated by the back pressure of the spinneret, the yarn cooling condition, and the uniformity of the drawing condition, and can be controlled by appropriately adjusting these.
 また、上記のポリエチレン系重合体を含む繊維は、ポリエチレン系重合体と少なくとも1種のポリオレフィン系樹脂もしくはポリエステル系樹脂とを組み合わせた複合型繊維を用いることができる。複合型繊維の複合形態としては、例えば、同心芯鞘型、偏心芯鞘型および海島型などの複合形態が挙げられる。中でも、紡糸性に優れ、熱接着により繊維同士を均一に接着させることができることから、同心芯鞘型の複合形態とすることが好ましい。 Further, as the fiber containing the polyethylene-based polymer described above, a composite fiber in which the polyethylene-based polymer is combined with at least one polyolefin-based resin or polyester-based resin can be used. Examples of the composite form of the composite fiber include composite forms such as a concentric sheath type, an eccentric sheath type, and a sea island type. Above all, it is preferable to use a concentric sheath type composite form because it has excellent spinnability and fibers can be uniformly bonded to each other by heat bonding.
 複合型繊維とする場合に用いられるポリエチレン系重合体以外のポリオレフィン系樹脂を得るためのオレフィン系モノマーとしては、炭素数3~10のものが好ましく用いられ、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキサン、4-メチル-1-ペンテン、1-オクテンなどが挙げられる。これらは1種類単独でも、2種類以上を組み合わせて用いることができる。なかでも、不織布の強度と柔軟性の観点から、ポリプロピレンを用いることが好ましく、ポリプロピレンと他のα-オレフィンとの共重合体も好ましく用いられる。 As the olefin-based monomer for obtaining a polyolefin-based resin other than the polyethylene-based polymer used in the case of forming a composite fiber, those having 3 to 10 carbon atoms are preferably used, and specifically, propylene and 1-butene. , 1-Pentene, 1-Hexane, 4-Methyl-1-pentene, 1-octene and the like. These can be used alone or in combination of two or more. Among them, polypropylene is preferably used from the viewpoint of strength and flexibility of the non-woven fabric, and a copolymer of polypropylene and another α-olefin is also preferably used.
 上記のポリオレフィン系樹脂としてポリプロピレンを用いる場合、スパンボンド不織布を衛生材料用不織布等として用いる場合の強度の観点から、ホモポリプロピレンを用いることが好ましい。 When polypropylene is used as the above-mentioned polyolefin resin, it is preferable to use homopolypropylene from the viewpoint of strength when the spunbonded non-woven fabric is used as a non-woven fabric for sanitary materials.
 一方、上記のポリエステル系樹脂としては、ポリエチレンテレフタレートやポリブチレンテレフタレート、ポリ乳酸およびこれらの樹脂との共重合体が挙げられる。 On the other hand, examples of the polyester-based resin include polyethylene terephthalate, polybutylene terephthalate, polylactic acid, and copolymers with these resins.
 ポリプロピレンのMFRは、1~1000g/10分であることが好ましく、10~500g/10分であることがより好ましく、20~250g/10分であることがさらに好ましい。MFRを1~1000g/10分の範囲とすることにより、安定した紡糸を行いやすくなり、かつ配向結晶化が進みやすくなり、高い強度の繊維が得られやすくなる。ポリプロピレンのMFRは、ASTM D-1238に準拠して、温度が230℃で、荷重2.16kgで測定した値を指す。 The MFR of polypropylene is preferably 1 to 1000 g / 10 minutes, more preferably 10 to 500 g / 10 minutes, and even more preferably 20 to 250 g / 10 minutes. By setting the MFR in the range of 1 to 1000 g / 10 minutes, stable spinning is facilitated, orientation crystallization is facilitated, and high-strength fibers are easily obtained. The polypropylene MFR refers to a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with ASTM D-1238.
 ポリプロピレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよく、また、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーでもよい。 Polypropylene may be a polymer synthesized by a general Chigra natta catalyst, or may be a polymer synthesized by a single-site active catalyst typified by metallocene.
 複合型繊維として用いる場合、ポリエチレン系重合体とその他のポリオレフィン系樹脂もしくはポリエステル系樹脂との質量比率は、90/10~10/90であることが好ましい。ポリエチレン系重合体の質量比率を10質量%以上とすることにより、十分な柔軟性/熱接着性が得られやすくなる。ポリオレフィン系樹脂の質量比率を10質量%以上とすることにより、衛生材料用不織布として使用する上で十分な強度が得られやすくなる。 When used as a composite fiber, the mass ratio of the polyethylene polymer to the other polyolefin resin or polyester resin is preferably 90/10 to 10/90. By setting the mass ratio of the polyethylene-based polymer to 10% by mass or more, sufficient flexibility / thermal adhesiveness can be easily obtained. By setting the mass ratio of the polyolefin resin to 10% by mass or more, it becomes easy to obtain sufficient strength for use as a non-woven fabric for sanitary materials.
 本発明のスパンボンド不織布を構成する、ポリエチレン系重合体を含む繊維には、滑り性や柔軟性を向上させるために、炭素数23以上50以下の脂肪酸アミド化合物が含有されていてもよい。 The fiber containing the polyethylene polymer constituting the spunbonded nonwoven fabric of the present invention may contain a fatty acid amide compound having 23 or more and 50 or less carbon atoms in order to improve slipperiness and flexibility.
 ポリエチレン系重合体を含む繊維に含まれる脂肪酸アミド化合物の炭素数により、脂肪酸アミド化合物の繊維表面への移動速度を調整することができる。脂肪酸アミド化合物の炭素数を好ましくは23以上とし、より好ましくは30以上とすることにより、脂肪酸アミド化合物が過度に繊維表面に露出することを抑制し、紡糸性と加工安定性に優れたものとし、高い生産性を保持しやすくなる。一方、脂肪酸アミド化合物の炭素数を好ましくは50以下とし、より好ましくは42以下とすることにより、脂肪酸アミド化合物が繊維表面に移動しやすくなり、スパンボンド不織布に滑り性と柔軟性を付与しやすくなる。 The rate of movement of the fatty acid amide compound to the fiber surface can be adjusted by the number of carbon atoms of the fatty acid amide compound contained in the fiber containing the polyethylene polymer. By setting the number of carbon atoms of the fatty acid amide compound to preferably 23 or more, and more preferably 30 or more, the fatty acid amide compound is suppressed from being excessively exposed on the fiber surface, and the spinnability and processing stability are excellent. , It becomes easy to maintain high productivity. On the other hand, when the number of carbon atoms of the fatty acid amide compound is preferably 50 or less, more preferably 42 or less, the fatty acid amide compound can easily move to the fiber surface, and the spunbonded nonwoven fabric can be easily provided with slipperiness and flexibility. Become.
 炭素数23以上50以下の脂肪酸アミド化合物の例としては、飽和脂肪酸モノアミド化合物、飽和脂肪酸ジアミド化合物、不飽和脂肪酸モノアミド化合物、および不飽和脂肪酸ジアミド化合物などが挙げられる。 Examples of fatty acid amide compounds having 23 or more and 50 or less carbon atoms include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
 具体的には、炭素数23以上50以下の脂肪酸アミド化合物として、テトラドコサン酸アミド、ヘキサドコサン酸アミド、オクタドコサン酸アミド、ネルボン酸アミド、テトラコサエンタペン酸アミド、ニシン酸アミド、エチレンビスラウリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルセバシン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、およびヘキサメチレンビスオレイン酸アミドなどが挙げられ、これらは複数組み合わせて用いることもできる。 Specifically, as fatty acid amide compounds having 23 or more and 50 or less carbon atoms, tetradocosanoic acid amide, hexadokosanoic acid amide, octadokosanic acid amide, nervonic acid amide, tetracosaentapenic acid amide, heric acid amide, ethylenebislauric acid amide, Methylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisstearic acid amide, hexamethylene hydroxystearic acid amide, distearyl adipic acid Examples thereof include amides, distearyl sebacic acid amides, ethylene bisoleic acid amides, ethylene biserucic acid amides, and hexamethylene bisoleic acid amides, and these can be used in combination of two or more.
 中でも、エチレンビスステアリン酸アミドが特に好ましい。エチレンビスステアリン酸アミドは熱安定性に優れているため、溶融紡糸を行っても熱分解が起こりにくい。そのため、エチレンビスステアリン酸アミドを含有するポリエチレン系共重合体を用いることにより、高い生産性を保持しながら、滑り性や柔軟性に優れたスパンボンド不織布が得られやすくなる。 Among them, ethylene bisstearic acid amide is particularly preferable. Since ethylene bisstearic acid amide has excellent thermal stability, thermal decomposition is unlikely to occur even if melt spinning is performed. Therefore, by using a polyethylene-based copolymer containing an ethylene bisstearic acid amide, it becomes easy to obtain a spunbonded nonwoven fabric having excellent slipperiness and flexibility while maintaining high productivity.
 ポリエチレン系重合体を含む繊維中の脂肪酸アミド化合物の含有量は、0.01~5.0質量%であることが好ましい。脂肪酸アミド化合物の含有量を好ましくは0.01~5.0質量%とし、より好ましくは0.1~3.0質量%とし、さらに好ましくは0.1~1.0質量%とすることにより、紡糸性を維持しながら適度な滑り性と柔軟性を付与することができる。 The content of the fatty acid amide compound in the fiber containing the polyethylene-based polymer is preferably 0.01 to 5.0% by mass. By setting the content of the fatty acid amide compound to preferably 0.01 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, and further preferably 0.1 to 1.0% by mass. , Appropriate slipperiness and flexibility can be imparted while maintaining spinnability.
 ここでいう含有量とは、本発明のスパンボンド不織布を構成するポリエチレン系重合体を含む繊維、具体的には、ポリエチレン系重合体を含む繊維を構成する樹脂全体に含まれる脂肪酸アミド化合物の質量パーセントをいう。例えば、芯鞘型複合繊維を構成する鞘部成分のみに脂肪酸アミド化合物を添加する場合でも、芯鞘成分全体量に対する含有割合を算出する。 The content referred to here is the mass of the fatty acid amide compound contained in the fiber containing the polyethylene-based polymer constituting the spunbonded nonwoven fabric of the present invention, specifically, the entire resin constituting the fiber containing the polyethylene-based polymer. Say a percentage. For example, even when the fatty acid amide compound is added only to the sheath portion component constituting the core-sheath type composite fiber, the content ratio to the total amount of the core-sheath component is calculated.
 [スパンボンド不織布]
 本発明のスパンボンド不織布のMFRは、上述のポリエチレン系重合体のMFRの範囲における理由と同じく、5~150g/10分以下であることが好ましい。MFRは、より好ましくは10g/分以上、さらに好ましくは15g/10分以上であり、かつ、より好ましくは120g/10分以下、さらに好ましくは100g/10分以下である。
[Spanbond non-woven fabric]
The MFR of the spunbonded non-woven fabric of the present invention is preferably 5 to 150 g / 10 minutes or less, which is the same as the reason in the range of MFR of the polyethylene-based polymer described above. The MFR is more preferably 10 g / min or more, still more preferably 15 g / 10 min or more, and more preferably 120 g / 10 min or less, still more preferably 100 g / 10 min or less.
 スパンボンド不織布のMFRは、ASTM D-1238(A法)に基づき、荷重が2.16kgで、温度が190℃の条件で測定される。 The MFR of the spunbonded non-woven fabric is measured based on ASTM D-1238 (method A) under the conditions of a load of 2.16 kg and a temperature of 190 ° C.
 本発明のスパンボンド不織布の見かけ密度は、0.05~0.35g/cmであることが好ましい。見かけ密度を好ましくは0.35g/cm以下とし、より好ましくは0.30g/cm以下とし、さらに好ましくは0.25g/cm以下とすることにより、繊維が密にパッキングしてスパンボンド不織布の柔軟性が損なわれにくくなる。一方、見かけ密度を好ましくは0.05g/cm以上とし、より好ましくは0.08g/cm以上とし、さらに好ましくは0.10g/cm以上とすることにより、毛羽立ちや層間剥離の発生を抑え、実用に耐え得る機械的強度や取り扱い性を備えたスパンボンド不織布が得られやすくなる。 The apparent density of the spunbonded nonwoven fabric of the present invention is preferably 0.05 to 0.35 g / cm 3. By setting the apparent density to preferably 0.35 g / cm 3 or less, more preferably 0.30 g / cm 3 or less, and further preferably 0.25 g / cm 3 or less, the fibers are tightly packed and spunbonded. The flexibility of the non-woven fabric is less likely to be impaired. On the other hand, an apparent density preferably between 0.05 g / cm 3 or more, more preferably set to 0.08 g / cm 3 or more, more preferably by a 0.10 g / cm 3 or more, the generation of fuzz or delamination It becomes easy to obtain a spunbonded non-woven fabric having mechanical strength and handleability that can be suppressed and can withstand practical use.
 本発明のスパンボンド不織布の目付は、10~100g/mであることが好ましい。目付を好ましくは10g/m以上とし、より好ましくは13g/m以上とし、さらに好ましくは15g/m以上とすることにより、実用に供し得る機械的強度のスパンボンド不織布が得られやすくなる。一方、目付を好ましくは100g/m以下、より好ましくは50g/m以下、さらに好ましくは30g/m以下とすることにより、衛生材料用の不織布としての使用に適した適度な柔軟性を有するスパンボンド不織布が得られやすくなる。 The basis weight of the spunbonded nonwoven fabric of the present invention is preferably 10 to 100 g / m 2. By setting the basis weight to preferably 10 g / m 2 or more, more preferably 13 g / m 2 or more, and further preferably 15 g / m 2 or more, it becomes easy to obtain a spunbonded non-woven fabric having mechanical strength that can be put into practical use. .. On the other hand, by setting the basis weight to preferably 100 g / m 2 or less, more preferably 50 g / m 2 or less, and further preferably 30 g / m 2 or less, appropriate flexibility suitable for use as a non-woven fabric for sanitary materials can be obtained. It becomes easy to obtain the spunbonded non-woven fabric to have.
 本発明のスパンボンド不織布の厚みは、0.05~1.5mmであることが好ましい。厚みを、好ましくは0.05~1.5mm、より好ましくは0.08~1.0mm、さらに好ましくは0.10~0.8mmとすることにより、柔軟性と適度なクッション性を備え、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適したスパンボンド不織布とすることができる。 The thickness of the spunbonded nonwoven fabric of the present invention is preferably 0.05 to 1.5 mm. By setting the thickness to preferably 0.05 to 1.5 mm, more preferably 0.08 to 1.0 mm, still more preferably 0.10 to 0.8 mm, flexibility and appropriate cushioning properties are provided, and hygiene is provided. As the spunbonded non-woven fabric for materials, it can be a spunbonded non-woven fabric particularly suitable for use in disposable diaper applications.
 本発明のスパンボンド不織布の毛羽等級は、3.0級以上であることが好ましい。毛羽等級が3.0級以上であると、毛玉の発生、もしくは不織布の破損が起こりにくいため、衛生材料として好適に使用することができる。さらには、十分に接着されているため、微少な毛羽立ちも発生しにくく、表面のさらさら感に優れた不織布が得られやすい。 The fluff grade of the spunbonded non-woven fabric of the present invention is preferably 3.0 grade or higher. When the fluff grade is 3.0 grade or higher, pilling or breakage of the non-woven fabric is unlikely to occur, so that the material can be suitably used as a sanitary material. Furthermore, since it is sufficiently adhered, even slight fluffing is unlikely to occur, and it is easy to obtain a non-woven fabric having an excellent surface smoothness.
 本発明のスパンボンド不織布のKES法(KAWABATA EVALUATION SYSTEM)による平均曲げ剛性Bは、0.001gf・cm/cm以上0.03gf・cm/cm以下であることが好ましい。KES法による平均曲げ剛性Bを好ましくは0.02gf・cm/cm以下、より好ましくは0.017gf・cm/cm以下、さらに好ましくは0.015gf・cm/cm以下とすることにより、特に、衛生材料用のスパンボンド不織布として用いる場合に、十分な柔軟性が得られやすくなる。また、KES法による平均曲げ剛性Bが極端に低い場合には取り扱い性に劣る場合があるため、平均曲げ剛性Bは0.001gf・cm/cm以上であることが好ましい。KES法による平均曲げ剛性Bは、目付、単繊維径および熱圧着条件(圧着率、温度および線圧)によって調整することができる。 The average flexural rigidity B of the spunbonded non-woven fabric of the present invention by the KES method (KAWABATA EVALUATION SYSTEM) is preferably 0.001 gf · cm 2 / cm or more and 0.03 gf · cm 2 / cm or less. By setting the average flexural rigidity B by the KES method to preferably 0.02 gf · cm 2 / cm or less, more preferably 0.017 gf · cm 2 / cm or less, and further preferably 0.015 gf · cm 2 / cm or less. In particular, when used as a spunbonded non-woven fabric for sanitary materials, sufficient flexibility can be easily obtained. Further, when the average bending rigidity B by the KES method is extremely low, the handleability may be inferior. Therefore, the average bending rigidity B is preferably 0.001 gf · cm 2 / cm or more. The average flexural rigidity B according to the KES method can be adjusted by the basis weight, single fiber diameter, and thermocompression bonding conditions (compression rate, temperature, and linear pressure).
 本発明のスパンボンド不織布の摩擦係数MIUは0.2以下であることが好ましく、0.15以下であることがより好ましく、0.13以下であることがさらに好ましい。摩擦係数MIUをかかる範囲とすることにより、不織布表面の滑り性が向上しやすくなり、肌触りがより良好なスパンボンド不織布とすることができる。一方、摩擦係数MIUは、0.05以上であることが好ましく、0.08以上であることがより好ましく、0.1以上であることがさらに好ましい。摩擦係数MIUをかかる範囲とすることにより、滑剤を過度に添加して紡糸性が悪化したり、糸条をネットに捕集する際に糸条が滑り地合が悪化したりすることを防止しやすくなる。KES法による摩擦係数MIUは、平均単繊維径や繊維分散度、ポリオレフィン系樹脂の結晶化度などを調整したり、ポリオレフィン系樹脂に滑剤を添加したりすることにより制御することができる。 The coefficient of friction MIU of the spunbonded non-woven fabric of the present invention is preferably 0.2 or less, more preferably 0.15 or less, and even more preferably 0.13 or less. By setting the friction coefficient MIU in such a range, the slipperiness of the surface of the non-woven fabric is likely to be improved, and the spunbonded non-woven fabric having a better feel to the touch can be obtained. On the other hand, the coefficient of friction MIU is preferably 0.05 or more, more preferably 0.08 or more, and further preferably 0.1 or more. By setting the coefficient of friction MIU to such a range, it is possible to prevent the spunability from being deteriorated due to excessive addition of a lubricant, and the yarns from slipping and the texture to be deteriorated when the yarns are collected on the net. It will be easier. The coefficient of friction MIU by the KES method can be controlled by adjusting the average single fiber diameter, the fiber dispersity, the crystallinity of the polyolefin resin, and the like, or by adding a lubricant to the polyolefin resin.
 [スパンボンド不織布の製造方法]
 次に、本発明のスパンボンド不織布を製造する方法の好ましい態様について、具体的に説明する。
[Manufacturing method of spunbonded non-woven fabric]
Next, a preferred embodiment of the method for producing the spunbonded nonwoven fabric of the present invention will be specifically described.
 本発明のスパンボンド不織布は、スパンボンド(S)法により製造される長繊維不織布である。不織布の製造方法として、一般にはスパンボンド法、フラッシュ紡糸法、湿式法、カード法およびエアレイド法等を挙げることができるが、スパンボンド法は、生産性や機械的強度に優れている他、短繊維不織布で起こりやすい毛羽立ちや繊維の脱落を抑制することができる。また、スパンボンド(S)不織布層を、SS、SSSおよびSSSSと複数層積層することにより、生産性や地合均一性が向上するため好ましい。 The spunbonded non-woven fabric of the present invention is a long-fiber non-woven fabric manufactured by the spunbond (S) method. As a method for producing a non-woven fabric, a spunbond method, a flash spinning method, a wet method, a card method, an airlaid method and the like can be generally mentioned, but the spunbond method is excellent in productivity and mechanical strength and is short. It is possible to suppress fluffing and fiber shedding that are likely to occur with fibrous non-woven fabrics. Further, it is preferable to laminate a plurality of layers of the spunbond (S) non-woven fabric layer with SS, SSS and SSSS because productivity and formation uniformity are improved.
 スパンボンド法では、まず溶融した熱可塑性樹脂を紡糸口金から長繊維として紡出し、これをエジェクターにより圧縮エアで吸引延伸した後、移動するネット上に繊維を捕集して不織繊維ウェブ化する。さらに得られた不織繊維ウェブに熱接着処理を施し、スパンボンド不織布が得られる。 In the spunbond method, first, the molten thermoplastic resin is spun from the spinneret as long fibers, which is suction-stretched with compressed air by an ejector, and then the fibers are collected on a moving net to form a non-woven fiber web. .. Further, the obtained non-woven fiber web is heat-bonded to obtain a spunbonded non-woven fabric.
 紡糸口金やエジェクターの形状としては、丸形や矩形等、種々の形状のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なくエネルギーコストに優れること、糸条同士の融着や擦過が起こりにくく、糸条の開繊も容易であることから、矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。 As the shape of the spinneret and the ejector, various shapes such as a round shape and a rectangular shape can be adopted. Among them, the combination of a rectangular base and a rectangular ejector is possible because the amount of compressed air used is relatively small and the energy cost is excellent, the threads are less likely to be fused or scratched, and the threads can be easily opened. It is preferably used.
 本発明では、ポリエチレン系重合体を押出機において溶融し、計量して紡糸口金へと供給し、長繊維として紡出する。ポリエチレン系重合体を溶融し紡糸する際の紡糸温度は、180~270℃であることが好ましく、より好ましくは190~260℃であり、さらに好ましくは200~250℃である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、より優れた紡糸性を得ることができる。 In the present invention, the polyethylene-based polymer is melted in an extruder, weighed and supplied to a spinneret, and spun as long fibers. The spinning temperature when the polyethylene-based polymer is melted and spun is preferably 180 to 270 ° C, more preferably 190 to 260 ° C, and even more preferably 200 to 250 ° C. By setting the spinning temperature within the above range, a stable molten state can be obtained and more excellent spinning properties can be obtained.
 紡出された長繊維の糸条は、次に冷却される。紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸温度および雰囲気温度等を考慮して適宜調整して採用することができる。 The spun long fiber yarn is then cooled. Examples of the method of cooling the spun yarn include a method of forcibly blowing cold air on the yarn, a method of naturally cooling at the atmospheric temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. Etc., or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。 Next, the cooled and solidified yarn is towed and stretched by the compressed air injected from the ejector.
 紡糸速度は、1500~6500m/分であることが好ましく、より好ましくは2000~6500m/分であり、さらに好ましくは2500~6500m/分である。紡糸速度を1500~6500m/分とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、高い機械的強度の長繊維を得ることができる。 The spinning speed is preferably 1500 to 6500 m / min, more preferably 2000 to 6500 m / min, and even more preferably 2500 to 6500 m / min. By setting the spinning speed to 1500 to 6500 m / min, high productivity can be obtained, orientation and crystallization of fibers can be advanced, and long fibers having high mechanical strength can be obtained.
 続いて、得られた長繊維を、移動するネット上に捕集して不織繊維ウェブ化する。 Subsequently, the obtained long fibers are collected on a moving net and made into a non-woven fiber web.
 本発明では、不織繊維ウェブに対して、ネット上でその片面から熱フラットロールを当接して仮接着させることも好ましい。このようにすることにより、ネット上を搬送中に不織繊維ウェブの表層がめくれたり吹き流れたりして地合が悪化することを防いだり、糸条を捕集してから熱圧着するまでの搬送性を改善することができる。 In the present invention, it is also preferable to temporarily bond the non-woven fiber web with a thermal flat roll from one side of the net. By doing so, it is possible to prevent the surface layer of the non-woven fiber web from being turned over or blown off during transportation on the net, resulting in deterioration of the texture, and from collecting the threads to thermocompression bonding. Transportability can be improved.
 続いて、得られた不織繊維ウェブを、熱接着により一体化することにより、意図するスパンボンド不織布を得ることができる。 Subsequently, the intended non-woven fabric can be obtained by integrating the obtained non-woven fiber webs by heat bonding.
 不織繊維ウェブを熱接着により一体化する方法としては、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱接着する方法や、ホーンの超音波振動により熱溶着させる超音波接着などの方法が挙げられる。なかでも、生産性に優れ、部分的な熱接着部で機械的強度を付与し、かつ非接着部で不織布ならではの風合いや肌触りを保持することができることから、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、または片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロールを用いることが好ましい。 As a method of integrating the non-woven fiber web by heat bonding, a heat embossed roll in which the upper and lower roll surfaces are engraved (concavo-convex parts), one roll has a flat (smooth) surface, and the other roll has a flat surface. Thermal bonding methods using various rolls, such as thermal embossing rolls consisting of rolls with engraved surfaces (uneven parts) and thermal calendar rolls consisting of a pair of upper and lower flat (smooth) rolls, and horns Examples thereof include a method such as ultrasonic bonding in which heat welding is performed by ultrasonic vibration. Among them, it is highly productive, mechanical strength is given by the partial heat-bonded part, and the texture and touch unique to non-woven fabric can be maintained by the non-bonded part. Use a heat embossed roll with uneven parts) or a combination of a roll with a flat (smooth) surface on one roll and a roll with engraving (uneven parts) on the surface of the other roll. Is preferable.
 熱エンボスロールの表面材質としては、十分な熱圧着効果が得られやすく、かつ片方のエンボスロールの彫刻(凹凸部)が他方のロール表面に転写しにくいため、金属製ロールと金属製ロールを対にすることが好ましい。 As the surface material of the heat embossed roll, a sufficient thermocompression bonding effect can be easily obtained, and the engraving (concavo-convex part) of one embossed roll is difficult to be transferred to the surface of the other roll. Is preferable.
 本発明のスパンボンド不織布の圧着率は、8~19%であり、好ましくは8~16%、より好ましくは、8~14%である。圧着率が19%を超えると、熱接着が過剰となり、融点が低いエチレン系重合体からなる繊維の熱接着においては、エンボスロールへの巻き付きが多発し安定製布困難となってしまう。さらには、接着過剰に伴い、風合いが固く衛生材料として不適なものとなってしまう。一方、圧着率が、8%未満となると、熱接着が弱く、スパンボンド不織布として実用に供し得る機械的強度が得られないことに加え、毛羽立ちやすく、衛生材料として用いるのに不適なものとなってしまう。 The pressure-bonding ratio of the spunbonded nonwoven fabric of the present invention is 8 to 19%, preferably 8 to 16%, and more preferably 8 to 14%. If the pressure-bonding ratio exceeds 19%, thermal adhesion becomes excessive, and in thermal adhesion of fibers made of ethylene-based polymers having a low melting point, wrapping around embossed rolls frequently occurs, making stable fabric production difficult. Furthermore, due to excessive adhesion, the texture becomes hard and unsuitable as a sanitary material. On the other hand, when the pressure-bonding ratio is less than 8%, the thermal adhesion is weak, the mechanical strength that can be practically used as a spunbonded non-woven fabric cannot be obtained, and the fluff is easily fluffed, which makes it unsuitable for use as a sanitary material. It ends up.
 ここでいう圧着率とは、接着部がスパンボンド不織布全体に占める面積割合のことをいう。具体的には、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織繊維ウェブに当接する部分(接着部)のスパンボンド不織布全体に占める割合のことをいう。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織繊維ウェブに当接する部分(接着部)のスパンボンド不織布全体に占める割合のことをいう。また、超音波接着する場合は、超音波加工により熱溶着させる部分(接着部)のスパンボンド不織布全体に占める割合のことをいう。 The crimping ratio here means the area ratio of the adhesive part to the entire spunbonded non-woven fabric. Specifically, when heat-bonding with a pair of uneven rolls, the spunbonded non-woven fabric of the portion (adhesive portion) where the convex portion of the upper roll and the convex portion of the lower roll overlap and come into contact with the non-woven fiber web. It refers to the ratio to the whole. Further, in the case of heat-bonding between a roll having irregularities and a flat roll, it means the ratio of the convex portion of the roll having irregularities to the entire spunbonded non-woven fabric of the portion (adhesive portion) in contact with the non-woven fiber web. Further, in the case of ultrasonic bonding, it refers to the ratio of the portion (adhesive portion) to be heat-welded by ultrasonic processing to the entire spunbonded non-woven fabric.
 本発明のスパンボンド不織布の圧着率を上記範囲とする方法としては、例えば、一対の凹凸を有するロールにより熱接着する場合において、上側ロールの凸部と下側ロールの凸部とが重なって不織繊維ウェブに当接する部分の面積を調整する方法や、凹凸を有するロールとフラットロールにより熱接着する場合において、凹凸を有するロールの凸部の面積を調整する方法などが挙げられる。 As a method of setting the pressure-bonding ratio of the spunbonded nonwoven fabric of the present invention within the above range, for example, when heat-bonding is performed by a roll having a pair of irregularities, the convex portion of the upper roll and the convex portion of the lower roll do not overlap each other. Examples thereof include a method of adjusting the area of the portion that comes into contact with the woven fiber web, and a method of adjusting the area of the convex portion of the roll having unevenness in the case of heat-bonding the roll having unevenness with a flat roll.
 熱エンボスロールや超音波接着による接着部の形状としては、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。また接着部は、スパンボンド不織布の長手方向(搬送方向)と幅方向にそれぞれ一定の間隔で均一に存在していることが好ましい。このようにすることにより、スパンボンド不織布の機械的強度のばらつきを低減することができる。 As the shape of the bonded portion by thermal embossing roll or ultrasonic bonding, a circular shape, an elliptical shape, a square shape, a rectangular shape, a parallelogram, a rhombus shape, a regular hexagonal shape, a regular octagonal shape, or the like can be used. Further, it is preferable that the adhesive portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the spunbonded nonwoven fabric. By doing so, it is possible to reduce variations in the mechanical strength of the spunbonded non-woven fabric.
 熱接着時の熱エンボスロールの線圧は、50~500N/cmとすることが好ましい。ロールの線圧を好ましくは50N/cm以上とし、より好ましくは100N/cm以上とし、さらに好ましくは150N/cm以上とすることにより、適度に熱接着させ実用に供しうる機械的強度のスパンボンド不織布が得られやすくなる。一方、熱エンボスロールの線圧を好ましくは500N/cm以下とし、より好ましくは400N/cm以下とし、さらに好ましくは300N/cm以下とすることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。 The linear pressure of the heat embossing roll at the time of heat bonding is preferably 50 to 500 N / cm. By setting the linear pressure of the roll to preferably 50 N / cm or more, more preferably 100 N / cm or more, and further preferably 150 N / cm or more, a spunbonded non-woven fabric having mechanical strength that can be appropriately heat-bonded and put into practical use. Is easy to obtain. On the other hand, by setting the linear pressure of the heat embossed roll to preferably 500 N / cm or less, more preferably 400 N / cm or less, and further preferably 300 N / cm or less, it is used as a spunbonded non-woven fabric for sanitary materials, especially for disposable diapers. It is possible to obtain an appropriate degree of flexibility suitable for use in.
 また本発明では、スパンボンド不織布の厚みを調整することを目的に、上記の熱エンボスロールによる熱接着の前および/あるいは後に、上下一対のフラットロールからなる熱カレンダーロールにより熱圧着を施すことができる。上下一対のフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。また、ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質からなるロールのことである。弾性ロールとしては、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂および硬質ゴム、およびこれらの混合物からなる樹脂製のロールなどが挙げられる。 Further, in the present invention, for the purpose of adjusting the thickness of the spunbonded nonwoven fabric, thermocompression bonding may be performed by a thermal calendar roll composed of a pair of upper and lower flat rolls before and / or after thermal bonding by the above thermal embossing roll. can. A pair of upper and lower flat rolls is a metal roll or an elastic roll having no unevenness on the surface of the roll, and a metal roll and a metal roll may be paired, or a metal roll and an elastic roll may be paired. Can be used. Further, the elastic roll here is a roll made of a material having elasticity as compared with a metal roll. Examples of the elastic roll include so-called paper rolls such as paper, cotton and aramid paper, and resin rolls made of urethane-based resin, epoxy-based resin, silicon-based resin, polyester-based resin and hard rubber, and a mixture thereof. Be done.
 本発明のスパンボンド不織布は、生産性が高く、柔軟性、不織布の表面風合いに優れており、使い捨て紙おむつやナプキンなどの衛生材料用途に好適に利用することができる。衛生材料のなかでも、特に紙おむつのバックシートに好適に利用することができる。 The spunbonded non-woven fabric of the present invention has high productivity, flexibility, and excellent surface texture of the non-woven fabric, and can be suitably used for sanitary material applications such as disposable disposable diapers and napkins. Among the sanitary materials, it can be particularly preferably used for the back sheet of disposable diapers.
 次に、実施例に基づき、本発明の不織布とその製造方法について、具体的に説明するが、本発明はこれに限定されない。 Next, the non-woven fabric of the present invention and the method for producing the same will be specifically described based on Examples, but the present invention is not limited thereto.
 (評価方法)
 (1)紡糸性
 生産量1トンあたりの糸切れ回数をカウントし、次の基準で判定した。AおよびBの判定を合格とし、C、Dの判定を不合格とした。
A:糸切れ回数が0.5回/トン以下である。
B:糸切れ回数が0.5回/トンより多く2.0回/トン以下である。
C:糸切れ回数が2.0回/トンより多く5.0回/トン以下である。
D:糸切れ回数が5.0回/トンより多い。
(Evaluation method)
(1) Spinnability The number of yarn breaks per ton of production was counted and judged according to the following criteria. The judgments of A and B were passed, and the judgments of C and D were rejected.
A: The number of thread breaks is 0.5 times / ton or less.
B: The number of thread breaks is more than 0.5 times / ton and 2.0 times / ton or less.
C: The number of thread breaks is more than 2.0 times / ton and 5.0 times / ton or less.
D: The number of thread breaks is more than 5.0 times / ton.
 (2)熱接着性
 エンボスロール出のシート状態を観察し、シートの毛羽が立たない温度まで昇温した時のエンボスロールへのシートとられ状態から、次の基準で判定した。AおよびBの判定を合格とし、C、Dの判定を不合格とした。
A:エンボスへのシートとられがない。
B:エンボスへのシートとられがあるも3cm以下。
C:エンボスへのシートとられがあり3cmより長い
D:エンボスロールへ巻き付きが発生する。
(2) Heat Adhesive The sheet state of the embossed roll was observed, and the sheet was taken on the embossed roll when the temperature was raised to a temperature at which the sheet did not fluff, and the judgment was made according to the following criteria. The judgments of A and B were passed, and the judgments of C and D were rejected.
A: There is no sheet to emboss.
B: There is a sheet for embossing, but it is 3 cm or less.
C: There is a sheet to be embossed, and it is longer than 3 cm. D: Wrapping occurs on the embossed roll.
 (3)平均単繊維径(μm)
 スパンボンド不織布から、ランダムに小片サンプル10個を採取し、マイクロスコープで500~1000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の繊維の幅を測定し、平均値から平均単繊維径(μm)を算出した。
(3) Average single fiber diameter (μm)
Randomly collect 10 small piece samples from the spunbonded non-woven fabric, take a surface photograph of 500 to 1000 times with a microscope, measure the width of 100 fibers, 10 fibers from each sample, and measure the width of 100 fibers from the average value. The average single fiber diameter (μm) was calculated.
 (4)単繊維径のCV値(%)
 上記の平均単繊維径測定時に測定した計100本の繊維の幅から、単繊維径の標準偏差(μm)を算出し、次の式により単繊維径のCV値(%)を算出した。
・単繊維径のCV値(%)=単繊維径の標準偏差(μm)/平均単繊維径(μm)×100
 (5)紡糸速度(m/分)
 上記の平均単繊維径と使用するポリオレフィン系樹脂の固体密度から、長さ10,000m当たりの質量を平均単繊維繊度(dtex)として、小数点以下第二位を四捨五入して算出した。平均単繊維繊度と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を算出した。
・紡糸速度(m/分)=(10000×[単孔吐出量(g/分)])/[平均単繊維繊度(dtex)]。
(4) CV value (%) of single fiber diameter
The standard deviation (μm) of the single fiber diameter was calculated from the width of a total of 100 fibers measured at the time of measuring the average single fiber diameter, and the CV value (%) of the single fiber diameter was calculated by the following formula.
-CV value (%) of single fiber diameter = standard deviation (μm) of single fiber diameter / average single fiber diameter (μm) x 100
(5) Spinning speed (m / min)
From the above average single fiber diameter and the solid density of the polyolefin resin used, the mass per 10,000 m in length was calculated as the average single fiber fineness (dtex) by rounding off to the second decimal place. Based on the average single fiber fineness and the discharge amount of resin discharged from the single hole of the spinneret (hereinafter abbreviated as single hole discharge amount) (g / min) set under each condition, the spinning speed is based on the following formula. Was calculated.
-Spinning speed (m / min) = (10000 x [single hole discharge amount (g / min)]) / [average single fiber fineness (dtex)].
 (6)スパンボンド不織布の目付(g/m
 スパンボンド不織布の目付は、JIS L1913:2010「一般不織布試験方法」の6.2「単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m当たりの質量(g/m)で表した。
(6) Metsuke of spunbonded non-woven fabric (g / m 2 )
The texture of the spunbonded non-woven fabric is based on 6.2 "Mass per unit area" of JIS L1913: 2010 "General non-woven fabric test method", and 3 test pieces of 20 cm x 25 cm are collected per 1 m of sample width and standard. weigh each mass (g) in the state, representing the average value in 1 m 2 per mass (g / m 2).
 (7)毛羽等級
 スパンボンド不織布から、130mm×200mmの試験片を採取し、日本学術振興会型の堅牢度試験器を用いて、荷重無し、摩擦子側には、リンレイクロス-重梱包用No.314布粘着テープを使用し、50回動作させて毛羽立ちの様子を観察し、以下の毛羽等級判定基準にて評価を行った。なお、毛羽等級は3.0級以上であることが好ましい。
(7) Fluff grade A 130 mm x 200 mm test piece was collected from a spunbonded non-woven fabric, and using a Japan Society for the Promotion of Science type fastness tester, there was no load, and on the friction element side, Linley cloth-No. for heavy packaging. .. Using 314 cloth adhesive tape, it was operated 50 times, the state of fluffing was observed, and evaluation was performed according to the following fluff grade criteria. The fluff grade is preferably 3.0 grade or higher.
 4.0級、毛羽立ちがない。 4.0 grade, no fluff.
 3.5級、小さな毛玉ができはじめる程度に毛羽立ち
 3.0級、小さな毛玉が複数ある。
3.5 grade, fluffing to the extent that small pills begin to form 3.0 grade, there are multiple small pills.
 2.5級、大きな毛玉がはっきりと見える。 2.5 grade, large pills are clearly visible.
 2.0級、試験片が薄くなるほど損傷。 2.0 grade, the thinner the test piece, the more damaged it is.
 1.0級、試験片に穴あき発生。 1.0 grade, there was a hole in the test piece.
 (8)スパンボンド不織布の柔軟性(点)
 スパンボンド不織布の柔軟性の官能評価を行い、柔軟性に優れるものを5点、劣るものを1点として5段階の絶対評価で点数をつけた。これを10名で行い平均点を柔軟性(点)とした。
(8) Flexibility of spunbonded non-woven fabric (points)
The sensory evaluation of the flexibility of the spunbonded non-woven fabric was carried out, and a score was given by an absolute evaluation on a 5-point scale, with 5 points being excellent in flexibility and 1 point being inferior. This was done by 10 people and the average score was defined as flexibility (points).
 (9)スパンボンド不織布のKES法による平均曲げ剛性B(gf・cm/cm)
 KES法による標準試験で、スパンボンド不織布の平均曲げ剛性B値を測定した。まず、タテ方向(不織布の長手方向)とヨコ方向(不織布の幅方向)で幅200mm×200mmの試験片を各3枚採取し、カトーテック社製KES-FB2曲げ特性試験機を用いて、1cmの間隔のチャックに試料を把持して、1cm間隔のチャックに試料を把持して、曲率-2.5~+2.5cm-1の範囲で、0.50cm-1の変形速度で純曲げ試験を行い、測定した値を平均し、小数点以下第四位を四捨五入して平均曲げ剛性B値を求めた。
(9) Average flexural rigidity B (gf · cm 2 / cm) of spunbonded non-woven fabric by KES method
The average flexural rigidity B value of the spunbonded non-woven fabric was measured by a standard test by the KES method. First, three test pieces having a width of 200 mm × 200 mm were sampled in the vertical direction (longitudinal direction of the non-woven fabric) and the horizontal direction (width direction of the non-woven fabric), and 1 cm using a KES-FB2 bending characteristic tester manufactured by Kato Tech Co., Ltd. gripping the sample chuck spacing, grip the sample chuck 1cm intervals in the range of curvature -2.5 ~ + 2.5 cm -1, a pure bending test at a deformation rate of 0.50 cm -1 The measured values were averaged, and the fourth decimal place was rounded off to obtain the average flexural rigidity B value.
 (10)スパンボンド不織布のさらさら感(点)
 スパンボンド不織布の触感の官能評価を行い、表面のさらさら感に優れるものを5点、劣るものを1点として5段階の絶対評価で点数をつけた。これを10名で行い平均点をさらさら感(点)とした。
(10) Smooth feeling (points) of spunbonded non-woven fabric
The sensory evaluation of the tactile sensation of the spunbonded non-woven fabric was carried out, and a score was given by an absolute evaluation on a 5-point scale, with 5 points being excellent in the smoothness of the surface and 1 point being inferior. This was done by 10 people, and the average score was taken as a smooth feeling (point).
 (11)スパンボンド不織布のKES法による摩擦係数MIU(―)
 KES法による標準試験で、スパンボンド不織布の摩擦係数MIUを測定した。
スパンボンド不織布から幅200mm×200mmの試験片を、スパンボンド不織布の幅方向等間隔に3枚採取する。試験片を試料台にセットし、50gfの荷重をかけた接触摩擦子(素材:φ0.5mmピアノ線(20本並列)、接触面積:1cm)で試験片の表面を走査して、摩擦係数を測定した。以上の測定を、すべての試験片の縦方向(不織布の長手方向)と横方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第四位を四捨五入し、摩擦係数MIUとした。
(11) Friction coefficient MIU (-) of spunbonded non-woven fabric by KES method
The coefficient of friction MIU of the spunbonded non-woven fabric was measured by a standard test by the KES method.
Three test pieces having a width of 200 mm × 200 mm are collected from the spunbonded non-woven fabric at equal intervals in the width direction of the spunbonded non-woven fabric. The test piece is set on the sample table, and the surface of the test piece is scanned with a contact friction element (material: φ0.5 mm piano wire (20 pieces in parallel), contact area: 1 cm 2) to which a load of 50 gf is applied, and the friction coefficient is measured. Was measured. The above measurements were performed in the vertical direction (longitudinal direction of the non-woven fabric) and the horizontal direction (width direction of the non-woven fabric) of all the test pieces, and the average deviations of these 6 points in total were averaged and rounded to the fourth decimal place. , Friction coefficient MIU.
 (共重合体・樹脂)
 それぞれの実施例、比較例においては、以下の共重合体、樹脂を用いた。
(Copolymer / Resin)
In each of the examples and comparative examples, the following copolymers and resins were used.
 ・ポリエチレン系重合体(A):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が3.0mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.950g/cmであるポリエチレン系重合体
 ・ポリエチレン系重合体(B):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が1.0mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.955g/cmであるポリエチレン系重合体
 ・ポリエチレン系重合体(C):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が5.0mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.945g/cmであるポリエチレン系重合体
 ・ポリエチレン重合体(D):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が2.0mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.953g/cmであるポリエチレン系重合体。
-Polyethylene polymer (A):
The α-olefin is 1-butene, and the content of α-olefin in the polymer component is 3.0 mol%. It is composed of an ethylene-1-butene copolymer with an MFR of 30 g / 10 minutes and a density of 0.950 g / cm 3 . A certain polyethylene-based polymer-Polyethylene-based polymer (B):
The α-olefin is 1-butene, and the content of α-olefin in the polymer component is 1.0 mol%. It is composed of an ethylene-1-butene copolymer having an MFR of 30 g / 10 minutes and a density of 0.955 g / cm 3 . A certain polyethylene-based polymer-Polyethylene-based polymer (C):
The α-olefin is 1-butene, and the content of α-olefin in the polymer component is 5.0 mol%. It is composed of an ethylene-1-butene copolymer having an MFR of 30 g / 10 minutes and a density of 0.945 g / cm 3 . A certain polyethylene-based polymer-Polyethylene polymer (D):
It is composed of an ethylene-1-butene copolymer in which α-olefin is 1-butene and the content of α-olefin in the polymer component is 2.0 mol%, MFR is 30 g / 10 minutes, and density is 0.953 g / cm 3 . A polyethylene-based polymer.
 ・ポリエチレン重合体(E):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が0.10mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.960g/cmであるポリエチレン系重合体
 ・ポリエチレン重合体(F):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が0.05mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.962g/cmであるポリエチレン系重合体
 ・ポリエチレン系重合体(H):
α-オレフィンが1-ペンテン、重合成分におけるα-オレフィンの含有量が3.0mol%のエチレン-1-ペンテン共重合体からなる、MFRが30g/10分、密度が0.946g/cmであるポリエチレン系重合体
 ・ポリエチレン系重合体(I):
α-オレフィンが1-ブテン、重合成分におけるα-オレフィンの含有量が7.0mol%のエチレン-1-ブテン共重合体からなる、MFRが30g/10分、密度が0.930g/cmであるポリエチレン系重合体。
-Polyethylene polymer (E):
It is composed of an ethylene-1-butene copolymer in which the α-olefin is 1-butene and the content of the α-olefin in the polymer component is 0.10 mol%, the MFR is 30 g / 10 minutes, and the density is 0.960 g / cm 3 . A certain polyethylene-based polymer ・ Polyethylene polymer (F):
The α-olefin is 1-butene, and the content of α-olefin in the polymer component is 0.05 mol%. It is composed of an ethylene-1-butene copolymer with an MFR of 30 g / 10 minutes and a density of 0.962 g / cm 3 . A certain polyethylene-based polymer ・ Polyethylene-based polymer (H):
It is composed of an ethylene-1-pentene copolymer in which the α-olefin is 1-pentene and the content of the α-olefin in the polymer component is 3.0 mol%, the MFR is 30 g / 10 minutes, and the density is 0.946 g / cm 3 . A certain polyethylene-based polymer-Polyethylene-based polymer (I):
It is composed of an ethylene-1-butene copolymer in which α-olefin is 1-butene and the content of α-olefin in the polymer component is 7.0 mol%, MFR is 30 g / 10 minutes, and density is 0.930 g / cm 3 . A polyethylene-based polymer.
 ・ポリエチレン系重合体(J):
α-オレフィンが1-オクテン、重合成分におけるα-オレフィンの含有量が3.0mol%のエチレン-1-オクテン共重合体からなる、MFRが30g/10分、密度が0.935g/cmであるポリエチレン系重合体
 ・ポリエチレン系重合体(K):
α-オレフィンが1-オクテン、重合成分におけるα-オレフィンの含有量が7.0mol%のエチレン-1-オクテン共重合体からなる、MFRが30g/10分、密度が0.928g/cmであるポリエチレン系重合体
 ・ポリオレフィン系樹脂(L):
融点が163℃、MFRが30g/10分のホモポリマーからなるポリプロピレン樹脂。
-Polyethylene polymer (J):
It is composed of an ethylene-1-octene copolymer in which the α-olefin is 1-octene and the content of the α-olefin in the polymer component is 3.0 mol%, the MFR is 30 g / 10 minutes, and the density is 0.935 g / cm 3 . A certain polyethylene-based polymer ・ Polyethylene-based polymer (K):
It is composed of an ethylene-1-octene copolymer in which the α-olefin is 1-octene and the content of the α-olefin in the polymer component is 7.0 mol%, the MFR is 30 g / 10 minutes, and the density is 0.928 g / cm 3 . A certain polyethylene-based polymer-polyolefin-based resin (L):
A polypropylene resin composed of a homopolymer having a melting point of 163 ° C. and an MFR of 30 g / 10 minutes.
 (実施例1)
 ポリエチレン系重合体(A)を押出機で溶融し、紡糸温度が240℃で、孔径φが0.40mmで、単孔吐出量が0.55g/分で紡出した糸条を、冷却固化した後、矩形エジェクターでエジェクターの圧力を0.40MPaとした圧縮エアによって牽引、延伸し、移動するネット上に捕集してポリエチレン系重合体長繊維からなる不織繊維ウェブを得た。紡糸性については、糸切れ回数が0回/トンと良好であった。
(Example 1)
The polyethylene-based polymer (A) was melted by an extruder, and the yarn spun at a spinning temperature of 240 ° C., a pore diameter of 0.40 mm, and a single-hole discharge rate of 0.55 g / min was cooled and solidified. After that, a non-woven fiber web made of polyethylene-based polymer filaments was obtained by pulling and stretching the ejector with compressed air having a pressure of 0.40 MPa with a rectangular ejector and collecting the mixture on a moving net. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton.
 引き続き、得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率16%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて、線圧が30N/cmの条件下にて、目付が30g/mのスパンボンド不織布の熱接着温度を検討した。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。 Subsequently, the obtained non-woven fiber web was embossed with a metal flat roll on the lower roll with a crimping ratio of 16% and a metal polka dot pattern engraved on the upper roll. Using a roll, the thermal bonding temperature of the spunbonded non-woven fabric having a grain size of 30 g / m 2 was examined under the condition of a linear pressure of 30 N / cm. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例2)
 ポリエチレン系重合体(A)を鞘成分、ポリオレフィン系樹脂(L)を芯成分として用い、それぞれ別々の押出機で溶融し、同心芯鞘口金にて前記の鞘成分と前記の芯成分との質量比が50:50となるように計量して紡糸したこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 2)
Using the polyethylene-based polymer (A) as the sheath component and the polyolefin-based resin (L) as the core component, they are melted by separate extruders, and the mass of the sheath component and the core component is increased by a concentric core sheath cap. A spunbonded non-woven fabric made of polyethylene-based polymer long fibers was obtained by the same method as in Example 1 except that the mixture was weighed and spun so that the ratio was 50:50. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例3)
 ポリエチレン系重合体をポリエチレン系重合体(B)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を140℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 3)
Regarding the spinnability of the spunbonded non-woven fabric made of polyethylene-based polymer long fibers by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (B), the number of yarn breaks was 0. It was good at / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 140 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例4)
 ポリエチレン系重合体をポリエチレン系重合体(C)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が1.5回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を134℃とした条件にて毛羽立ちは無く、エンボスロールへのシート取られは3cm以下であり、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 4)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (C). Regarding spinnability, the number of yarn breaks was as good as 1.5 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 134 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例5)
 ポリエチレン系重合体をポリエチレン系重合体(H)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が1.5回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を134℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られは3cm以下であり、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 5)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (H). Regarding spinnability, the number of yarn breaks was as good as 1.5 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 134 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例6)
 得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率11%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて熱接着したこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 6)
The obtained non-woven fiber web is used as an embossed roll with a crimping ratio of 11%, which is made of metal and has a polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossed rolls composed of a metal flat roll is used on the lower roll. A spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例7)
 ポリエチレン系重合体をポリエチレン系重合体(D)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 7)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (D). Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例8)
 得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率11%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて熱接着したこと以外は、実施例7と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 8)
The obtained non-woven fiber web is used as an embossed roll with a crimping ratio of 11%, which is made of metal and has a polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossed rolls composed of a metal flat roll is used on the lower roll. A spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 7 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例9)
 得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率14%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて熱接着したこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 9)
The obtained non-woven fiber web is used as an embossed roll with a crimping ratio of 14%, which is made of metal and has a polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossed rolls composed of a metal flat roll is used on the lower roll. A spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., no sheet was taken off from the embossed roll, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例10)
 得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率8%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて熱接着したこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を140℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られは3cm以下であり、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 10)
The obtained non-woven fiber web is embossed with a metal polka dot pattern engraved on the upper roll with a pressure bonding ratio of 8%, and a pair of upper and lower thermal embossed rolls composed of metal flat rolls are used on the lower roll. A spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 140 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (実施例11)
 ポリエチレン系重合体をポリエチレン系重合体(E)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が2.0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を142℃とした条件において毛羽立ちは無く、エンボスロールへのシート取られは3cm以下であり、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表1に示す。
(Example 11)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (E). Regarding spinnability, the number of yarn breaks was as good as 2.0 times / ton. At the time of heat-bonding the embossed roll, there was no fluffing under the condition that the heat-bonding temperature was 142 ° C., the sheet was taken to the embossed roll to 3 cm or less, and the heat-bonding property was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 1.
 (比較例1)
 ポリエチレン系重合体をポリエチレン系重合体(I)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れが5.0回/トンより多く発生し、紡糸性不良であった。エンボスロールの接着時には、シートの毛羽立ちが見られ、エンボスロール温度条件を130℃まで昇温すると、ロールへの巻き付きが多発しシート採取不可能であった。
(Comparative Example 1)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (I). Regarding spinnability, yarn breakage occurred more than 5.0 times / ton, and spinnability was poor. When the embossed roll was adhered, fluffing of the sheet was observed, and when the temperature condition of the embossed roll was raised to 130 ° C., wrapping around the roll occurred frequently and the sheet could not be collected.
 (比較例2)
 ポリエチレン系重合体をポリエチレン系重合体(I)としたこと以外は、実施例2と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が2.5回/トンと不良であった。エンボスロールの熱接着時には、シートの毛羽立ちが見られ、エンボスロール温度条件を130℃まで昇温すると、ロールへの巻き付きが多発しシート採取困難であった。
(Comparative Example 2)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 2 except that the polyethylene-based polymer was the polyethylene-based polymer (I). Regarding spinnability, the number of yarn breaks was 2.5 times / ton, which was poor. During heat bonding of the embossed roll, fluffing of the sheet was observed, and when the temperature condition of the embossed roll was raised to 130 ° C., wrapping around the roll occurred frequently and it was difficult to collect the sheet.
 (比較例3)
 ポリエチレン系重合体をポリエチレン系重合体(J)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が4.2回/トンと不良であった。エンボスロールの熱接着時には、熱接着温度を130℃とした条件において毛羽立ちが見られたものの、エンボスロールへのシート取られはすでに5cmあり、毛羽立ちが見られない条件での熱接着は不可能と、熱接着性の悪いものであった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表2に示す。
(Comparative Example 3)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (J). Regarding spinnability, the number of yarn breaks was 4.2 times / ton, which was poor. At the time of heat bonding of the embossed roll, fluffing was observed under the condition that the heat bonding temperature was 130 ° C. , The heat adhesion was poor. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 2.
 (比較例4)
 ポリエチレン系重合体をポリエチレン系重合体(K)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れが5.0回/トンより多く発生し、紡糸性不良であった。エンボスロールの熱接着時には、シートの毛羽立ちが見られ、エンボスロール温度を128℃まで昇温すると、ロールへの巻き付きが多発し、シート採取困難であった。
(Comparative Example 4)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (K). Regarding spinnability, yarn breakage occurred more than 5.0 times / ton, and spinnability was poor. During heat bonding of the embossed roll, fluffing of the sheet was observed, and when the embossed roll temperature was raised to 128 ° C., wrapping around the roll occurred frequently, making it difficult to collect the sheet.
 (比較例5)
 得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率7%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて熱接着したこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を142℃とした条件において毛羽立ちが見られたものの、エンボスロールへのシート取られはすでに5cmあり、毛羽立ちが見られない条件での熱接着は不可能と、熱接着性の悪いものであった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表2に示す。
(Comparative Example 5)
The obtained non-woven fiber web is embossed with a metal polka dot pattern engraved on the upper roll with a crimping ratio of 7%, and a pair of upper and lower thermal embossed rolls composed of metal flat rolls are used on the lower roll. A spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat bonding of the embossed roll, fluffing was observed under the condition that the heat bonding temperature was 142 ° C. , The heat adhesion was poor. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 2.
 (比較例6)
 得られた不織繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた圧着率20%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて熱接着したこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であった。エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちは無いものの、エンボスロールへのシート取られは5cm以上であり、熱接着性に劣るものであった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表2に示す。
(Comparative Example 6)
The obtained non-woven fiber web is embossed with a metal polka dot pattern engraved on the upper roll with a pressure bonding ratio of 20%, and a pair of upper and lower thermal embossed rolls composed of metal flat rolls are used on the lower roll. A spunbonded non-woven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that it was heat-bonded using. Regarding spinnability, the number of yarn breaks was as good as 0 times / ton. At the time of heat-bonding the embossed roll, although there was no fluffing under the condition that the heat-bonding temperature was 138 ° C., the sheet was taken off to the embossed roll by 5 cm or more, which was inferior in heat-bonding property. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 2.
 (比較例7)
 ポリエチレン系重合体をポリエチレン系重合体(F)としたこと以外は、実施例1と同じ方法により、ポリエチレン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が2.9回/トンと不良であった。エンボスロールの熱接着時には、熱接着温度を142℃とした条件において毛羽立ちは無いものの、エンボスロールへのシート取られはすでに5cmあり、毛羽立ちが見られない条件での安定した熱接着は不可能と、熱接着性の悪いものであった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表2に示す。
(Comparative Example 7)
A spunbonded nonwoven fabric made of polyethylene-based polymer filaments was obtained by the same method as in Example 1 except that the polyethylene-based polymer was the polyethylene-based polymer (F). Regarding spinnability, the number of yarn breaks was 2.9 times / ton, which was poor. At the time of heat bonding of the embossed roll, there is no fluffing under the condition that the heat bonding temperature is 142 ° C. , The heat adhesion was poor. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 2.
 (比較例8)
 ポリエチレン系重合体の代わりにポリオレフィン系樹脂(L)としたこと以外は、実施例1と同じ方法により、ポリオレフィン系重合体長繊維からなるスパンボンド不織布を得た。紡糸性については、糸切れ回数が0回/トンと良好であり、エンボスロールの熱接着時には、熱接着温度を138℃とした条件において毛羽立ちが見られず、毛羽立ちは無く、エンボスロールへのシート取られも見られず、熱接着性は良好であった。得られたスパンボンド不織布について、平均単繊維径、単繊維径のCV値、紡糸速度、毛羽等級、風合い(柔軟性)、KES法による平均曲げ剛性B、風合い(さらさら感)、KES法による摩擦係数MIUを測定して評価した。結果を表2に示す。
(Comparative Example 8)
A spunbonded nonwoven fabric made of polyolefin long fibers was obtained by the same method as in Example 1 except that the polyolefin resin (L) was used instead of the polyethylene polymer. Regarding spinnability, the number of yarn breaks is as good as 0 times / ton, and when the embossed roll is heat-bonded, no fluffing is observed under the condition that the heat-bonding temperature is 138 ° C. It was not taken off, and the heat adhesion was good. For the obtained spunbonded non-woven fabric, the average single fiber diameter, the CV value of the single fiber diameter, the spinning speed, the fluff grade, the texture (flexibility), the average bending rigidity B by the KES method, the texture (smooth feeling), and the friction by the KES method. The coefficient MIU was measured and evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~11のポリエチレン系重合体がエチレンと炭素数3~5のα-オレフィンとの共重合体であり、α-オレフィンの含有量がポリエチレン系重合体の重合成分において0.10~5.0mol%であり、エンボスロールの圧着率が8~19%である不織布は、紡糸性/熱接着性が良好であり、高い柔軟性/表面のさらさら感を有していた。また、耐毛羽立ち性も良好であった。特に、実施例6、8のスパンボンド不織布は、紡糸性/熱接着性/耐毛羽立ち性/柔軟性/表面のさらさら感、全てにおいて良好であり、衛生材料として特に好適なものであった。 The polyethylene-based polymers of Examples 1 to 11 are copolymers of ethylene and α-olefins having 3 to 5 carbon atoms, and the content of α-olefins is 0.10 to 5 in the polymerized components of the polyethylene-based polymers. The non-woven fabric having a pressure ratio of 0.0 mol% and an embossing roll of 8 to 19% had good spinnability / thermal adhesion, and had high flexibility / smoothness on the surface. In addition, the fluff resistance was also good. In particular, the spunbonded non-woven fabrics of Examples 6 and 8 were excellent in all of spinnability / heat adhesion / fluff resistance / flexibility / surface smoothness, and were particularly suitable as sanitary materials.
 一方、比較例1~8に示すα-オレフィンの炭素数が6以上、重合成分におけるα-オレフィンの含有量が0.10mol%未満、もしくは5mol%を超えるポリエチレン系重合体、圧着率が7%以下、もしくは、20%以上であるスパンボンド不織布は、本発明の不織布と比較し、紡糸性/熱接着性の少なくとも一方が悪く生産安定性が低いだけでなく、柔軟性/表面のさらさら感も低いものであった。また、ポリエチレン系重合体以外のポリオレフィン系重合体からなるスパンボンド不織布は、本発明の不織布と比較し、紡糸性/熱接着性には優れるものの、柔軟性/表面のさらさら感が更に低いものであった。 On the other hand, the α-olefins shown in Comparative Examples 1 to 8 have 6 or more carbon atoms, the content of the α-olefin in the polymerization component is less than 0.10 mol%, or the polyethylene-based polymer exceeds 5 mol%, and the pressure-bonding ratio is 7%. The spunbonded non-woven fabric having the following or 20% or more is not only inferior in at least one of spinnability / thermal adhesiveness and low production stability as compared with the non-woven fabric of the present invention, but also has flexibility / surface smoothness. It was low. Further, the spunbonded nonwoven fabric made of a polyolefin-based polymer other than the polyethylene-based polymer is superior in spinnability / thermal adhesiveness as compared with the nonwoven fabric of the present invention, but has further lower flexibility / smoothness on the surface. there were.

Claims (4)

  1.  ポリエチレン系重合体を含む繊維で構成され、ポリエチレン系重合体がエチレンと炭素数3~5のα-オレフィンとの共重合体であり、ポリエチレン系重合体の重合成分におけるα-オレフィンの含有量が0.10~5.0mol%であって、不織布の圧着率が8~19%である、スパンボンド不織布。 It is composed of fibers containing a polyethylene-based polymer, and the polyethylene-based polymer is a copolymer of ethylene and α-olefin having 3 to 5 carbon atoms, and the content of α-olefin in the polymerization component of the polyethylene-based polymer is high. A spunbonded non-woven fabric having a pressure-bonding ratio of 0.10 to 5.0 mol% and a non-woven fabric having a pressure-bonding ratio of 8 to 19%.
  2.  α-オレフィンが1-ブテンである、請求項1に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1, wherein the α-olefin is 1-butene.
  3.  α-オレフィンの含有量が0.10~3.0mol%である、請求項1または2に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1 or 2, wherein the α-olefin content is 0.10 to 3.0 mol%.
  4.  不織布の圧着率が8~14%である、請求項1~3のいずれかに記載のスパンボンド不織布。 The spunbonded non-woven fabric according to any one of claims 1 to 3, wherein the crimping ratio of the non-woven fabric is 8 to 14%.
PCT/JP2021/011886 2020-03-31 2021-03-23 Spun-bonded non-woven cloth WO2021200371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516827A JPWO2021200371A1 (en) 2020-03-31 2021-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-062549 2020-03-31
JP2020062549 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200371A1 true WO2021200371A1 (en) 2021-10-07

Family

ID=77927473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011886 WO2021200371A1 (en) 2020-03-31 2021-03-23 Spun-bonded non-woven cloth

Country Status (3)

Country Link
JP (1) JPWO2021200371A1 (en)
TW (1) TW202142756A (en)
WO (1) WO2021200371A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355866A (en) * 1999-04-13 2000-12-26 Chisso Corp Nonwoven fabric made of conjugated filament yarn and absorptive article using the same
JP2002053615A (en) * 1999-06-17 2002-02-19 Mitsui Chemicals Inc Ethylene (co)polymer and its use
JP2002096432A (en) * 2000-09-21 2002-04-02 Mitsui Chemicals Inc Moisture permeable film/non-woven fabric composite
JP2003049353A (en) * 2001-08-07 2003-02-21 Idemitsu Unitech Co Ltd Nonwoven fabric, method for producing nonwoven fabric and water-absorbing article
JP2008274445A (en) * 2007-04-06 2008-11-13 Idemitsu Unitech Co Ltd Nonwoven fabric composition and spunbond nonwoven fabric
JP2018053412A (en) * 2016-09-30 2018-04-05 東レ株式会社 Polyethylene spun-bonded nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355866A (en) * 1999-04-13 2000-12-26 Chisso Corp Nonwoven fabric made of conjugated filament yarn and absorptive article using the same
JP2002053615A (en) * 1999-06-17 2002-02-19 Mitsui Chemicals Inc Ethylene (co)polymer and its use
JP2002096432A (en) * 2000-09-21 2002-04-02 Mitsui Chemicals Inc Moisture permeable film/non-woven fabric composite
JP2003049353A (en) * 2001-08-07 2003-02-21 Idemitsu Unitech Co Ltd Nonwoven fabric, method for producing nonwoven fabric and water-absorbing article
JP2008274445A (en) * 2007-04-06 2008-11-13 Idemitsu Unitech Co Ltd Nonwoven fabric composition and spunbond nonwoven fabric
JP2018053412A (en) * 2016-09-30 2018-04-05 東レ株式会社 Polyethylene spun-bonded nonwoven fabric

Also Published As

Publication number Publication date
TW202142756A (en) 2021-11-16
JPWO2021200371A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TWI723008B (en) Nonwoven fabric laminate, stretch nonwoven fabric laminate, fiber product, absorbent product and sanitary mask
JP5670475B2 (en) Spunbond nonwoven fabric laminate
JP6615202B2 (en) Spunbond nonwoven fabric and sanitary material
JP7283386B2 (en) spunbond nonwoven fabric
JPWO2018139523A1 (en) Spunbond nonwoven fabric
JP2023126282A (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, and hygiene mask
JP7247884B2 (en) spunbond nonwoven fabric
JP2022132044A (en) Spun-bonded nonwoven fabric, and core-sheath type conjugate fiber
JP7035360B2 (en) Spunbond non-woven fabric
WO2019088135A1 (en) Spunbonded nonwoven fabric
JP7138197B2 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
JP3844390B2 (en) Non-woven fabric laminate
JP7173021B2 (en) LAMINATED NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME
KR20210094670A (en) Spunbond nonwoven fabric, manufacturing method of spunbond nonwoven fabric, embossed roll
WO2021200371A1 (en) Spun-bonded non-woven cloth
JP7040122B2 (en) Spunbond non-woven fabric
WO2019021809A1 (en) Crimped fiber, spunbonded nonwoven fabric, and method for manufacturing these
JP7172250B2 (en) spunbond nonwoven fabric
WO2024128229A1 (en) Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fiber product, absorbent article, mask, and poultice
JP7409524B2 (en) spunbond nonwoven fabric
JP2023131245A (en) Spun-bonded non-woven fabric
WO2023090200A1 (en) Spunbond nonwoven fabric
JP2023089703A (en) Spun-bonded nonwoven fabric and hygiene material
JP2020196962A (en) Spun-bonded nonwoven fabric
WO2022181591A1 (en) Spun-bonded nonwoven fabric and sheath-core type composite fiber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516827

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781390

Country of ref document: EP

Kind code of ref document: A1