WO2021200303A1 - Method for producing plant body, method for producing natural rubber, method for producing pneumatic tire, and method for producing rubber product - Google Patents

Method for producing plant body, method for producing natural rubber, method for producing pneumatic tire, and method for producing rubber product Download PDF

Info

Publication number
WO2021200303A1
WO2021200303A1 PCT/JP2021/011569 JP2021011569W WO2021200303A1 WO 2021200303 A1 WO2021200303 A1 WO 2021200303A1 JP 2021011569 W JP2021011569 W JP 2021011569W WO 2021200303 A1 WO2021200303 A1 WO 2021200303A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
plant
natural rubber
shoot
medium
Prior art date
Application number
PCT/JP2021/011569
Other languages
French (fr)
Japanese (ja)
Inventor
明里 岡田
カモルチャット チャルンチタレー
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN202180021219.8A priority Critical patent/CN115279174A/en
Publication of WO2021200303A1 publication Critical patent/WO2021200303A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/38Euphorbiaceae, e.g. Poinsettia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present invention relates to a method for producing a plant, a method for producing natural rubber, a method for producing a pneumatic tire, and a method for producing a rubber product.
  • Natural rubber (a type of polyisoprenoid) currently used in industrial rubber products is used to cultivate rubber-producing plants such as Hevea brasiliensis of the family Spurge and Ficus elastica, a mulberry plant. It is obtained by biosynthesizing natural rubber with the mammary tube cells of the plant and manually collecting the natural rubber from the plant.
  • Hevea brasiliensis At present, the only source of industrial natural rubber is Hevea brasiliensis. It is also widely used in large quantities in various applications as a main raw material for rubber products.
  • Hevea brasiliensis is a plant that can grow only in limited areas such as Southeast Asia and South America. Furthermore, it takes about 7 years for Hevea brasiliensis to become an adult tree from which rubber can be collected from tree planting, and the season in which rubber can be collected may be limited. In addition, the period during which natural rubber can be collected from mature trees is limited to 20 to 30 years.
  • Hevea brasiliensis is used as a rootstock after seedlings are grown and grown by sowing, and the seedlings are grown by grafting the buds obtained from the cloned seedlings to the rootstock.
  • the scion is not a true cloned seedling because it can be affected by the rootstock.
  • micropropagation as a method for growing cloned seedlings using tissue culture.
  • seedlings are grown by aseptic tissue culture. Specifically, tissues such as buds and stem tips collected from an individual plant to be propagated are cultured to induce shoots, and finally shoots are rooted to obtain seedlings. This technique yields true cloned seedlings.
  • the present invention solves a new problem found by the present inventors, a method for producing a plant body capable of producing a plant body from a shoot-derived seedling of a woody plant with high productivity, and a natural method using the production method. It is an object of the present invention to provide a method for producing rubber, a method for producing a pneumatic tire, and a method for producing a rubber product.
  • tissue culture As a method for growing cloned seedlings using tissue culture, in addition to the method using shoots as described above, tissues such as buds and stem tips collected from individual plants to be grown are cultivated. There is also a method of inducing callus, proliferating the induced callus, dividing the propagated callus into a plurality of callus, and redifferentiating each divided callus to obtain a seedling.
  • the seedlings obtained by this method tend to form taproots, and there is no problem that root growth (particularly, taproot formation) is not sufficient like the shoot-derived seedlings of woody plants. Therefore, the major problem of root growth and growth delay is a problem peculiar to shoot-derived seedlings of woody plants. That is, the above-mentioned new problem found by the present inventors is a problem peculiar to shoot-derived seedlings of woody plants.
  • shoot-derived seedlings of woody plants are transferred to pots containing soil.
  • Soil cultivation is carried out, but by hydroponics of young plants derived from shoots of woody plants, rooting, root development, and above-ground growth are promoted compared to soil cultivation, and young plants are cultivated.
  • the present invention was completed by finding that the growth of a plant is greatly promoted and a plant can be produced with high productivity from a shoot-derived seedling of a woody plant.
  • the present invention relates to a method for producing a plant body, which comprises a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant.
  • the temperature of the nutrient solution is preferably 20 to 36 ° C.
  • the amount of dissolved oxygen in the nutrient solution is preferably 2 to 20 ppm.
  • the initial pH of the nutrient solution is preferably 5.6 to 5.8.
  • the pH of the nutrient solution it is preferable to maintain the pH of the nutrient solution at 5.0 to 6.5.
  • the hydroponic cultivation step it is preferable to cultivate in an illuminance environment where the illuminance at the position of the leaves under bright conditions is 5000 lpx or more.
  • the height of the above-ground part of the seedling is preferably 1 m or less.
  • the shoot is a shoot of a plant belonging to the genus Hevea.
  • the shoot is a Hevea brasiliensis shoot.
  • the present invention also includes a plant manufacturing process for producing a plant by the method for producing a plant.
  • the present invention relates to a method for producing natural rubber, which includes a natural rubber manufacturing process for producing natural rubber using a plant obtained by a plant manufacturing process.
  • the present invention also includes a step of producing natural rubber by the method for producing natural rubber, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and molding a raw tire from the kneaded product.
  • the present invention relates to a method for producing a pneumatic tire, which includes a raw tire forming step and a vulcanization step of vulcanizing the raw tire.
  • the present invention also includes a step of producing natural rubber by the method for producing natural rubber, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and molding a raw rubber product from the kneaded product.
  • the present invention relates to a method for producing a rubber product, which includes a process for forming a raw rubber product and a vulcanization step for vulcanizing the raw rubber product.
  • the method for producing a plant of the present invention includes a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant, the plant can be productively produced from a shoot-derived seedling of a woody plant. ..
  • the method for producing natural rubber of the present invention includes a plant body production step for producing a plant body by the method for producing a plant body, natural rubber can be produced with high productivity.
  • the method for producing a pneumatic tire of the present invention includes a step of producing natural rubber by the method for producing natural rubber, the pneumatic tire can be produced with high productivity.
  • the method for producing a rubber product of the present invention includes a step of producing a natural rubber by the method for producing a natural rubber, the rubber product can be produced with high productivity.
  • Example 1 It is a figure which shows the result of Example 1 and Comparative Example 1. It is a photograph showing an example of the state of the above-ground part. It is a photograph showing an example of the state of the root. It is a photograph which shows the result of Example 2.
  • the method for producing a plant of the present invention includes a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant.
  • a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant As a result, rooting, root development, and above-ground growth are promoted, and the growth of seedlings is greatly promoted, and the productivity of plants from shoot-derived seedlings of woody plants is increased as compared with soil cultivation. Can be manufactured well.
  • soil cultivation is performed on shoot-derived seedlings of woody plants and the growth tends to be poor, the seedlings that tend to grow poorly can be cultivated by switching to hydroponics. , Improvement of growth is seen.
  • the method for producing a plant of the present invention may include other steps as long as it includes a hydroponic cultivation step.
  • the term shoot means apical buds, axillary buds, adventitious shoots, shoots differentiated from polyblasts or seedling primordia, and shoots in which these shoots are elongated.
  • the term "sapling” means a rooted shoot.
  • the seedlings in the present specification also include those that have tended to grow poorly due to soil cultivation of the rooted shoots.
  • hydroponics means cultivation that does not require a solid medium such as soil, and is also referred to as hydroponics or hydroponics. Usually, cultivation is carried out using a nutrient solution.
  • the above-ground part means a stem and leaves attached to the stem.
  • the plant to which the production method of the present invention can be applied is not particularly limited, but is preferably a woody plant.
  • the woody plant is not particularly limited, and examples of woody plants of a wide range of types and varieties of deciduous trees and evergreen trees are mentioned.
  • Hevea genus such as Hevea brasiliensis; fig (Ficus carica), Indian rubber tree (Ficus elastica), Oitabi (Ficus plumila L.), Inubiwa (Ficus erecta Tumb.
  • Inubiwa (Ficus genguitensis Merr.), Mukuinuubiwa (Ficus irisana Elm.), Gajumaru (Ficus microcarpa L.f.), Oobainubiwa (Ficus septica Burm. Perhenium argentatum) is more preferred. More preferably, it is a plant belonging to the family Hevea, such as a plant belonging to the genus Hevea, and particularly preferably a plant belonging to the genus Hevea. Among them, Hevea brasiliensis is the most preferable.
  • Examples of the material for inducing the shoot include plant tissues such as leaf stalks, leaf pieces, hypocotyls of somatic cell embryos, nodes, axillary buds, and apical buds.
  • plant tissues such as leaf stalks, leaf pieces, hypocotyls of somatic cell embryos, nodes, axillary buds, and apical buds.
  • a tissue containing nodes, axillary buds, or apical buds is preferable because shoots can be stably induced.
  • Specific examples thereof include mature trees, young trees, seedlings, cloned seedlings, and the above-mentioned tissues derived from sterile seedlings (sterile seedlings) grown from seedlings in a test tube.
  • tissue derived from an adult tree, a young tree, a seedling, or a cloned seedling When the above-mentioned tissue derived from an adult tree, a young tree, a seedling, or a cloned seedling is used, it can be used by cutting it to an appropriate size and then sterilizing or sterilizing the surface, but in vitro. When the tissue derived from sterile seedlings (sterile seedlings) grown from seedlings is used, it can be used after being appropriately cut to a required size.
  • the surface of the tissue is first washed before culturing in the induction medium described later.
  • it may be washed with scouring powder or a soft sponge, but it is preferable to wash with running water.
  • the cleaning water may contain about 0.1% by mass of a surfactant.
  • the tissue is then sterilized or sterilized.
  • Sterilization or sterilization can be performed using a well-known sterilizing agent or sterilizing agent, but ethanol, benzalkonium chloride, and an aqueous solution of sodium hypochlorite are preferable. After sterilization or sterilization treatment, it may be further washed with sterilized water.
  • cleaning, sterilization, or sterilization treatment include the following procedures. After cleaning the surface of the tissue with running water, wash with ethanol. Then, sterilize with an aqueous solution of sodium hypochlorite with stirring as necessary. Then wash with sterile water.
  • the method for inducing the shoot is not particularly limited, but an example of the induction step for inducing the shoot from the tissue or the like will be described.
  • Induction process In the induction step, shoots are induced and formed by culturing the tissue in an induction medium containing a plant hormone and a carbon source.
  • the induction medium may be liquid or solid, but solid culture is preferable because shoots can be easily induced by inserting the tissue into the medium and culturing.
  • the induction medium is a liquid medium, static culture may be performed or shaking culture may be performed.
  • a tissue that has been sterilized or sterilized it is preferable to cut off the cut end and use it for culturing in order to eliminate the influence of the sterilizing agent and the sterilizing agent.
  • plant hormone examples include auxin-based plant hormone and / or cytokinine-based plant hormone. Above all, it is preferable to use a cytokinin-based plant hormone.
  • Auxin-based plant hormones include 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid, indole-3-butyric acid, indole-3-acetic acid, indolepropionic acid, chlorophenoxyacetic acid, naphthoxyacetic acid, phenylacetic acid, 2,4. 5-Trichlorophenoxyacetic acid, parachlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, 4-fluorophenoxyacetic acid, 2-methoxy-3,6-dichlorobenzoic acid, 2-phenylic acid, picrolam, picolinic acid, etc. Can be mentioned.
  • 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid and indole-3-butyric acid are preferable, and 2,4-dichlorophenoxyacetic acid and 1-naphthalene acetic acid are more preferable.
  • cytokinin-based plant hormones include benzyladenine, kinetin, zeatin, benzylaminopurine, isopentenylaminopurine, tidiazulone, isopentenyladenine, zeatinriboside, and dihydrozeatin.
  • benzyladenine, kinetin and zeatin are preferable, benzyladenine and kinetin are more preferable, and benzyladenine is further preferable.
  • the carbon source is not particularly limited, and is not particularly limited, and is not particularly limited. And other sugars. Of these, sucrose is preferable.
  • the induction medium preferably further contains activated carbon in order to prevent the accumulation of the growth inhibitor in the tissue.
  • coconut water coconut milk may be included to promote the formation of shoots.
  • induction medium White's medium (described in "Introduction to Plant Cell Engineering (Society Publishing Center) p20 to p36), Heller's medium (Heller R, Bot. Biol. Veg. Paris 14 1-223 (1953)), SH medium.
  • MS medium, B5 medium, WP medium, and MB medium to which plant hormones are added are preferable, and MS medium, MS modified medium with its composition modified, MB medium, or MB modified with its composition modified.
  • a medium supplemented with phytohormones is more preferable.
  • a solidifying agent may be used to solidify the medium.
  • the solidifying agent is not particularly limited, and examples thereof include agar, gellan gum, agarose, gellite, agar, and phytagel.
  • composition and culture conditions of a suitable induction medium differ depending on the plant species and whether the medium is a liquid medium or a solid medium, but usually have the following composition (particularly in the case of rubber tree).
  • the concentration of the carbon source in the induction medium is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, still more preferably 3.0% by mass or more.
  • the concentration of the carbon source is preferably 10% by mass or less, more preferably 9.0% by mass or less, still more preferably 6.0% by mass or less.
  • the concentration of a carbon source means the concentration of a saccharide.
  • the concentration of the auxin-based plant hormone in the induction medium is specifically preferably 1.0 mg / L or less, more preferably 0.1 mg. / L or less, more preferably 0.05 mg / L or less, and particularly preferably 0.01 mg / L or less.
  • the concentration of the cytokinin-based plant hormone in the induction medium is preferably 0.01 mg / L or more, more preferably 0.1 mg / L or more, still more preferably 0.5 mg. / L or more, particularly preferably 0.8 mg / L or more, and most preferably 3.0 mg / L or more.
  • the concentration of the cytokinin-based plant hormone is preferably 8.0 mg / L or less, more preferably 7.0 mg / L or less, still more preferably 6.0 mg / L or less.
  • the concentration of the benzyladenine is preferably 4.0 to 6.0 mg / L, and most preferably 5.0 mg / L.
  • the concentration of the kinetin is preferably 0.8 to 1.2 mg / L, and most preferably 1.0 mg / L.
  • the concentration of activated carbon in the induction medium is preferably 0.01% by mass or more, more preferably 0.03% by mass or more.
  • the concentration of the activated carbon is preferably 1.0% by mass or less, more preferably 0.1% by mass or less.
  • the concentration of silver nitrate in the induction medium is preferably 0.1 mg / L or more, more preferably 0.3 mg / L or more, still more preferably 0.5 mg / L or more.
  • the concentration of the silver nitrate is preferably 5.0 mg / L or less, more preferably 3.0 mg / L or less.
  • the pH of the induction medium is preferably 4.0 to 10.0, more preferably 5.0 to 6.5, and even more preferably 5.5 to 6.0.
  • the pH of the solid medium means the pH of the medium to which all the components except the solidifying agent are added.
  • the induction step is usually carried out in a controlled environment in which culture conditions such as temperature and illumination time are controlled.
  • the culture conditions can be set as appropriate, but for example, the culture temperature is preferably 0 to 40 ° C, more preferably 20 to 40 ° C, and even more preferably 25 to 35 ° C.
  • the culture may be carried out in a dark place or in a light place, and examples of the light conditions include a condition of 14 to 16 hours of light time under illumination of 12.5 ⁇ mol / m 2 / s. Be done.
  • the culturing time is not particularly limited, but culturing is preferably 1 to 10 weeks, more preferably 3 to 5 weeks.
  • the concentration of the solidifying agent in the induction medium is preferably 0.1% by mass or more, more preferably 0.2% by mass or more.
  • the concentration of the solidifying agent is preferably 2.0% by mass or less, more preferably 1.1% by mass or less, still more preferably 0.8% by mass or less.
  • the plant hormone is a cytokinin-based plant hormone (particularly, benzyladenine or kinetin), the concentration thereof is 3.0 to 8.0 mg / L, and the culture temperature is 25 to 35 ° C. Is particularly preferable.
  • shoots can be induced and formed by culturing the tissue in the induction medium.
  • the method for obtaining a seedling from a shoot is not particularly limited, but an example of a method for obtaining a seedling from a shoot will be described below.
  • the formed shoots may be subjected to the culturing step described later as they are, but it is preferable that the formed shoots are subjected to the following dipping treatment step before the culturing step. As a result, seedlings tend to be obtained more preferably.
  • the shoot is immersed in an auxin solution containing an auxin-based plant hormone.
  • the shoot for example, a section of a shoot of about 2 cm
  • the shoot obtained by an induction step or the like may be immersed in an auxin solution.
  • the shoot it is preferable to immerse the chute in a state where the end of the section of the chute, that is, the cut end of the chute is immersed in the auxin solution.
  • the shoot may be allowed to stand still or the shoot may be shaken.
  • the time for performing the dipping treatment step is preferably 24 hours or more, more preferably 40 hours or more, further preferably 60 hours or more, particularly preferably 70 hours or more, preferably 168 hours or less, more preferably 150 hours or less. More preferably 130 hours or less, particularly preferably 100 hours or less, most preferably 90 hours or less, and even more preferably 80 hours or less. As a result, a better rooting rate can be obtained.
  • the immersion treatment step is preferably performed in a controlled environment in which the temperature, lighting time, and the like are controlled.
  • the temperature at which the dipping treatment step is performed is preferably 0 to 40 ° C, more preferably 20 to 40 ° C, and even more preferably 25 to 35 ° C.
  • the dipping treatment step may be performed in a dark place or in a bright place, but the light conditions include, for example, a light time of 14 to 16 hours under illumination of 5 to 20 ⁇ mol / m 2 / s. Can be mentioned.
  • the shoot to be subjected to the dipping treatment step is not particularly limited, and any shoot formed by any method can be used, and examples thereof include a shoot obtained by the induction step and the like. Further, the shoot to be subjected to the dipping treatment step is preferably a section of the shoot. For example, sections of shoots cut from tissues such as axillary buds used as materials for inducing shoots are preferred. It is also preferable to use shoots that have been cultured in the induction medium for a period of 6 months or less.
  • the length of the shoot (shoot section) subjected to the dipping treatment step is preferably 10 mm or more, more preferably 15 mm or more, further preferably 20 mm or more, preferably 100 mm or less, more preferably 80 mm or less, still more preferably. Is 50 mm or less. As a result, a better rooting rate can be obtained.
  • auxin-based plant hormone contained in the auxin solution the same auxin-based plant hormone used in the induction medium can be used.
  • indole-3-butyric acid and 1-naphthalene acetic acid are preferable, and indole-3-butyric acid and 1-naphthalene acetic acid are preferably used in combination.
  • the concentration of the auxin-based plant hormone in the auxin solution is preferably 15 mg / L or less, more preferably 12 mg / L or less, preferably 1.0 mg / L or more, more preferably 3.0 mg / L or more, still more preferably. Is 5.0 mg / L or more, particularly preferably 8.0 mg / L or more. As a result, a better rooting rate can be obtained.
  • the concentration of the auxin-based plant hormone means the total concentration of the auxin-based plant hormone.
  • the concentration of indole-3-butyric acid in the auxin solution is preferably 10 mg / L or less, more preferably 7.5 mg / L or less, still more preferably 6.0 mg / L or less, and preferably 1.0 mg / L or more. , More preferably 2.5 mg / L or more, further preferably 3.0 mg / L or more, and particularly preferably 4.0 mg / L or more.
  • the concentration of 1-naphthalene acetic acid in the auxin solution is preferably 10 mg / L or less, more preferably 7.5 mg / L or less, still more preferably 6.0 mg / L or less, preferably 1.0 mg / L or more. It is more preferably 2.5 mg / L or more, further preferably 3.0 mg / L or more, and particularly preferably 4.0 mg / L or more. As a result, a better rooting rate can be obtained.
  • the auxin solution may contain an auxin-based plant hormone
  • the dispersion medium for dissolving the auxin-based plant hormone is not particularly limited, and examples thereof include water, an isotonic solution, a buffer solution, and a tissue culture medium.
  • the isotonic liquid include a liquid obtained by adding an inorganic salt such as KCl, NaCl, CaCl 2 , or MgCl 2 to a liquid of 0.01 to 7 M, preferably 0.5 to 2 M.
  • the buffer solution include a phosphate buffer solution, a Tris buffer solution, and a MES buffer solution.
  • the medium for tissue culture include the above-mentioned media. Of these, water is preferable because the effect is more preferably obtained. That is, it is preferable that the auxin solution is an aqueous solution in which an auxin-based plant hormone is dissolved in water.
  • the components that can be blended in the auxin solution are not particularly limited, but glutathione is preferable. As a result, a better rooting rate can be obtained.
  • Glutathione is a tripeptide having glutamate, cysteine and glycine as constituent amino acids, and may be any of reduced glutathione, oxidized glutathione (glutathione disulfide), and mixtures thereof, but reduced glutathione is preferable.
  • the concentration of glutathione in the auxin solution is preferably 10 ⁇ mol / L or more, more preferably 30 ⁇ mol / L or more, still more preferably 40 ⁇ mol / L or more, particularly preferably 60 ⁇ mol / L or more, and most preferably 80 ⁇ mol / L or more. It is preferably 500 ⁇ mol / L or less, more preferably 400 ⁇ mol / L or less, still more preferably 300 ⁇ mol / L or less, particularly preferably 200 ⁇ mol / L or less, and most preferably 150 ⁇ mol / L or less. As a result, a better rooting rate can be obtained.
  • auxin solution it is also possible to use plant hormones other than auxin-based plant hormones in the auxin solution.
  • the cytokinin-based plant hormone that can be used in the auxin solution the same cytokinin-based plant hormone as that used in the induction medium can be used, but the auxin solution may not contain any plant hormone other than the auxin-based plant hormone. preferable.
  • the concentration of plant hormones other than auxin-based plant hormones in the auxin solution is preferably 2.0 mg / L or less, more preferably 1.0 mg / L or less, still more preferably 0.1 mg / L or less, and particularly preferably 0. It is 08 mg / L or less, most preferably 0 mg / L. As a result, a better rooting rate can be obtained.
  • the shoots soaked in the dipping treatment step are rooted by culturing in a rooting induction medium.
  • the rooting induction medium may be liquid or solid, but solid culture is preferable because rooting can be easily performed by inserting a shoot into the medium and culturing.
  • static culture may be performed or shaking culture may be performed.
  • the shoots used in the culturing step are not particularly limited as long as they are the shoots immersed in the immersion treatment step.
  • a chute in which a tissue mass is formed at the base of the chute by immersing the chute in the dipping treatment step is preferable.
  • the rooting induction medium contains a carbon source.
  • the plant hormone used in the rooting induction medium is not particularly limited, and the same plant hormones (auxin-based plant hormone, cytokinin-based plant hormone) used in the induction medium can be used.
  • the carbon source used in the rooting induction medium is not particularly limited, and the same carbon source as that used in the induction medium can be used, but sucrose is particularly preferable. As a result, a better rooting rate can be obtained.
  • the rooting induction medium preferably further contains activated carbon and silver nitrate. As a result, a better rooting rate can be obtained.
  • the rooting induction medium preferably further contains glutathione as in the auxin solution.
  • glutathione may be any of reduced glutathione, oxidized glutathione, and a mixture thereof, but reduced glutathione is preferable.
  • a basal medium used as the induction medium a modified basal medium having a modified composition of the basal medium, or the like, to which a carbon source is added, can be used.
  • those obtained by adding a carbon source to MS medium, B5 medium, WP medium, and MB medium are preferable, and MS medium, MS modified medium having been modified in its composition, MB medium, or its composition has been modified.
  • a carbon source added to the MB modified medium is more preferable, and an MB medium or an MB modified medium having a modified composition thereof added with a carbon source is further preferable.
  • a solidifying agent may be used to solidify the medium.
  • the solidifying agent is not particularly limited, and examples thereof include agar, gellan gum, agarose, gellite, agar, and phytagel.
  • composition and culture conditions of a suitable rooting induction medium differ depending on the plant species and whether the medium is a liquid medium or a solid medium, but usually (especially in the case of rubber tree) the following composition is used. be.
  • the concentration of the carbon source in the rooting induction medium is preferably 0.1% by mass or more, more preferably 1.0% by mass or more.
  • the concentration of the carbon source is preferably 10% by mass or less, more preferably 6.0% by mass or less.
  • the concentration of plant hormone in the rooting induction medium is preferably 2.0 mg / L or less, more preferably 1.0 mg / L or less, still more preferably 0.1 mg / L or less, and particularly preferably 0.08 mg / L or less. , Most preferably 0 mg / L. As a result, a better rooting rate can be obtained.
  • the concentration of activated carbon in the rooting induction medium is preferably 0.005% by mass or more, more preferably 0.008% by mass or more.
  • the concentration of the activated carbon is preferably 1.0% by mass or less, more preferably 0.1% by mass or less.
  • the concentration of silver nitrate in the rooting induction medium is preferably 0.1 mg / L or more, more preferably 0.3 mg / L or more, still more preferably 0.5 mg / L or more.
  • the concentration of the silver nitrate is preferably 5.0 mg / L or less, more preferably 3.0 mg / L or less.
  • the concentration of glutathione in the rooting induction medium is preferably 10 ⁇ mol / L or more, more preferably 30 ⁇ mol / L or more, still more preferably 40 ⁇ mol / L or more, particularly preferably 60 ⁇ mol / L or more, and most preferably 80 ⁇ mol / L or more. It is preferably 500 ⁇ mol / L or less, more preferably 400 ⁇ mol / L or less, still more preferably 300 ⁇ mol / L or less, particularly preferably 200 ⁇ mol / L or less, and most preferably 150 ⁇ mol / L or less.
  • the pH of the rooting induction medium is preferably 4.0 to 10.0, more preferably 5.0 to 6.5, and even more preferably 5.5 to 6.0.
  • the culturing step is usually carried out in a controlled environment in which culturing conditions such as temperature and lighting time are controlled.
  • the culture conditions can be set as appropriate, but for example, the culture temperature is preferably 0 to 40 ° C, more preferably 20 to 40 ° C, and even more preferably 25 to 35 ° C.
  • the culture may be carried out in a dark place or in a light place, and examples of the light conditions include a condition of 14 to 16 hours of light time under illumination of 5 to 20 ⁇ mol / m 2 / s. Be done.
  • the culturing time is not particularly limited, but the culturing is preferably 1 to 10 weeks, more preferably 4 to 8 weeks.
  • the culturing start (0 hour) is defined as the time when the shoot (shoot section) immersed in the rooting induction medium is transplanted by the dipping treatment step, and the culturing period 3
  • the week means 504 hours after the start of the culture
  • the 9th week of the culture period means 1512 hours after the start of the culture.
  • the culture period will be cumulatively added.
  • the concentration of the solidifying agent in the rooting induction medium is preferably 0.1% by mass or more, more preferably 0.2% by mass or more.
  • the concentration of the solidifying agent is preferably 2.0% by mass or less, more preferably 1.1% by mass or less, still more preferably 0.75% by mass or less.
  • the concentration of plant hormone is low (substantially not contained) and glutathione is contained, the concentration of plant hormone is low (substantially not contained), and glutathione is contained. It is more preferable to contain it.
  • the shoots soaked in the dipping treatment step can be rooted by culturing in the rooting induction medium, and the rooted shoots (saplings) can be obtained and completely. Clone seedlings are formed.
  • the obtained seedlings are conventionally directly transplanted to soil, but in the present invention, they are subjected to the following hydroponic cultivation steps.
  • the seedlings used in the hydroponic cultivation process are not particularly limited as long as they are seedlings derived from shoots of woody plants. As described above, the seedlings used in the hydroponic cultivation process include not only rooted shoots but also plants that have tended to grow poorly due to soil cultivation of the rooted shoots.
  • the leaf development of the seedlings used in the hydroponic cultivation process is completed.
  • the completion of leaf development means that the leaf development is completed after the buds have grown and the leaves have emerged.
  • the height of the above-ground part of the seedlings used in the hydroponic cultivation step is preferably 1 m or less, more preferably 50 cm or less, further preferably 20 cm or less, preferably 1.5 cm or more, more preferably 3.0 cm. Above, more preferably 4.5 cm or more. Within the above range, the effect tends to be more preferably obtained.
  • the height of the above-ground part of the seedlings used in the hydroponic cultivation process means the height of the above-ground part of the seedlings at the start of the hydroponic cultivation process.
  • cultivation is usually carried out using a nutrient solution. More preferably, the roots of the seedlings are cultivated in contact with the nutrient solution. And no solid medium such as soil is used.
  • the nutrient solution is prepared by dissolving fertilizer containing nutrients necessary for plant growth in water, and is not particularly limited as long as it is a nutrient solution suitable for plant growth, and conventionally known nutrients are used.
  • Fertilizer Farm Ace No. 1 for hydroponic cultivation of Kaneko manufactured by Kaneko Seedling Co., Ltd.
  • Fertilizer Farm Ace No. 2 for fertilizer for hydroponic cultivation of Kaneko (manufactured by Kaneko Seedling Co., Ltd.)
  • Fertilizer for hydroponic cultivation OAT House No. 1 (manufactured by OAT Agrio Co., Ltd.), fertilizer for nutrient solution cultivation OAT House No.
  • Hyponica liquid fertilizer manufactured by Kyowa Co., Ltd.
  • Hogland hydroponic liquid etc.
  • Hyponica liquid fertilizer manufactured by Kyowa Co., Ltd.
  • Hoagland hydroponic solution is preferable, and Hoagland hydroponic solution is more preferable.
  • OAT House No. 1 has 10.0% by mass of total nitrogen, 8.0% by mass of water-soluble phosphoric acid, 27.0% by mass of water-soluble potassium, 4.0% by mass of water-soluble bitter soil, and 0% by mass of water-soluble manganese.
  • OAT House No. 2 is a powdered fertilizer containing 11.0% by mass of total nitrogen and 23.0% by mass of lime.
  • OAT House No. 1 when preparing a nutrient solution using OAT House No. 1 and OAT House No. 2, OAT House No. 1 was dissolved in water according to a known formulation (for example, A formulation, C formulation, etc.). After that, OAT House No. 2 is added to the solution to dissolve it.
  • a known formulation for example, A formulation, C formulation, etc.
  • OAT House No. 2 is added to the solution to dissolve it.
  • the component composition of the A formulation of OAT House No. 1 (manufactured by OAT Agrio Co., Ltd.) and OAT House No. 2 (manufactured by OAT Agrio Co., Ltd.) is as follows.
  • the Hoagland hydroponic solution has the following composition.
  • the nitrogen content, water-soluble phosphoric acid content, water-soluble potassium content, lime content, water-soluble bitter soil content, etc. in the nutrient solution are not particularly limited, and the nutrient solution is suitable for plant growth. It can be easily set by those skilled in the art.
  • the nitrogen concentration in the nutrient solution is preferably, for example, 10 to 20 mmol / l.
  • the water-soluble phosphoric acid concentration in the nutrient solution is preferably, for example, 1 to 6 mmol / l.
  • the water-soluble potassium concentration in the nutrient solution is preferably, for example, 5 to 15 mmol / l.
  • the temperature of the nutrient solution and the amount of dissolved oxygen in the nutrient solution are very important.
  • the effect can be more preferably obtained by setting the temperature of the nutrient solution and the dissolved oxygen amount of the nutrient solution within the following suitable numerical ranges. This is presumed as follows. By supplying sufficient oxygen to the roots, oxygen deficiency can be prevented, and by keeping the water temperature suitable for growth, moisture damage can be prevented. As a result, the absorption of nutrients and water from the roots is promoted, and a healthy plant can be obtained more preferably.
  • the temperature of the nutrient solution is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, particularly preferably 25 ° C. or higher, preferably 36 ° C. or lower, more preferably 34 ° C. or lower, still more preferably.
  • the amount of dissolved oxygen in the nutrient solution is preferably 2 ppm or more, more preferably 4 ppm or more, further preferably 5 ppm or more, particularly preferably 7 ppm or more, most preferably 9 ppm or more, preferably 20 ppm or less, more preferably 18 ppm or less. It is more preferably 15 ppm or less, and particularly preferably 12 ppm or less. Within the above range, the effect tends to be more preferably obtained.
  • the amount of dissolved oxygen in the nutrient solution is a value measured at 25 ° C. using a dissolved oxygen measuring device.
  • the method for keeping the dissolved oxygen amount within the above range is not particularly limited, but for example, air or oxygen may be added to the nutrient solution, that is, aeration may be performed. Thereby, the effect tends to be obtained more preferably.
  • the initial pH of the nutrient solution is preferably 5.6 to 5.8. Within the above range, the effect tends to be more preferably obtained. Further, in the hydroponic cultivation step, it is preferable to carry out cultivation while maintaining the pH of the nutrient solution at 5.0 to 6.5.
  • the pH is preferably 5.2 or more, more preferably 5.5 or more, preferably 6.3 or less, and more preferably 6.0 or less. Within the above range, the effect tends to be more preferably obtained. If necessary, an acid or an alkali may be added to the nutrient solution to adjust the pH so that the pH is within the above range. Further, in the present specification, pH is a value measured at 25 ° C.
  • the illuminance at the position of the leaves under bright conditions is 5000 lpx or more.
  • the illuminance is preferably 6000 lpx or more, more preferably 7000 lpx or more, preferably 15000 lpx or less, and more preferably 10000 lpx or less. Within the above range, the effect tends to be more preferably obtained.
  • the illuminance at the leaf position is a value measured in accordance with JIS C 7612.
  • the light source for obtaining the illuminance is not particularly limited, and natural light, artificial light, or a combination of these may be used.
  • artificial light light emitting diode (LED), halogen lamp, incandescent lamp, fluorescent lamp, arc lamp, electrodeless discharge lamp, low pressure discharge lamp, cold cathode type fluorescent tube, external electrode type fluorescent tube, electroluminescence light, And HID lamps and the like can be used.
  • the HID lamp include a high-pressure mercury lamp, a metal halide lamp, and a high-pressure sodium lamp. Only one type of these light sources may be used, or two or more types may be used in combination.
  • the daytime (bright condition) in the hydroponic cultivation step is not particularly limited, but is preferably 12 hours or more, more preferably 14 hours or more, preferably 22 hours or less, and more preferably 20 hours or less. Within the above range, the effect tends to be more preferably obtained.
  • the cultivation temperature in the hydroponic cultivation step is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, particularly preferably 26 ° C. or higher, preferably 36 ° C. or lower, more preferably 34 ° C. or lower. It is more preferably 32 ° C. or lower, and particularly preferably 30 ° C. or lower. Within the above range, the effect tends to be more preferably obtained.
  • the cultivation period in the hydroponic cultivation step is not particularly limited, but is preferably 2 months or longer, more preferably 3 months or longer, further preferably 4 months or longer, and the upper limit is not particularly limited. Within the above range, the effect tends to be more preferably obtained.
  • hydroponic cultivation conditions are not particularly limited, and cultivation can be carried out under normally adopted conditions suitable for plant growth.
  • the apparatus or the like for hydroponics is not particularly limited, and an apparatus or the like usually used for hydroponics can be used.
  • the seedlings tend to be fixed on the nutrient solution and the effect is more preferably obtained.
  • the elastic material is not particularly limited as long as it has elasticity, and examples thereof include a sponge and a water supply sheet. These may be used alone or in combination of two or more. Of these, a sponge is preferable.
  • the root base means the vicinity of the site where rooting is observed.
  • the elastic material When attaching the elastic material to the root base of the seedling, it is preferable not to overtighten the base. Therefore, it is preferable that the elastic material is notched.
  • the tensile strength of the elastic material is preferably 30 KPa or more, more preferably 40 KPa or more, further preferably 60 KPa or more, preferably 1000 KPa or less, more preferably 500 KPa or less, still more preferably 100 KPa or less. Within the above range, the elastic material does not overtighten the base, and the effect tends to be more preferably obtained.
  • the tensile strength of the elastic material is based on JIS K6400-5, and the value obtained by pulling the test piece with a tensile tester and dividing the maximum force until breaking by the cross-sectional area of the test piece is defined as the tensile strength.
  • both acclimatization and initial growth can be efficiently promoted, so that it is not necessary to separately perform the acclimatization step, and the shoot-derived seedlings of the woody plant to the plant body (complete). Clone seedlings, which are plants, can be produced with high productivity.
  • the method for producing natural rubber of the present invention A plant manufacturing process for producing a plant by the method for producing a plant, and a plant manufacturing process. It includes a natural rubber manufacturing step of manufacturing natural rubber using a plant obtained by a plant manufacturing step. Since the method for producing natural rubber of the present invention includes a plant body production step for producing a plant body by the method for producing a plant body, natural rubber can be produced with high productivity.
  • the plant body manufacturing step is a step of manufacturing a plant body by the plant body manufacturing method, and the plant body manufacturing method may be carried out.
  • natural rubber is manufactured using the plant body obtained in the plant body manufacturing process. Specifically, by cultivating the plant body obtained in the plant body manufacturing step, natural rubber may be biosynthesized in the ductal cells of the plant body to produce the natural rubber.
  • the method for recovering natural rubber from a plant may be carried out according to a conventionally known method.
  • rubber naturally rubber
  • milky lotion latex
  • solidifying the latex by adding acid as necessary Can be collected as minutes.
  • the obtained rubber may be used after being washed, dehydrated, and dried, if necessary.
  • the method for producing a rubber product of the present invention is A step of producing natural rubber by the method for producing natural rubber, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and a raw rubber product molding step of molding a raw rubber product from the kneaded product. , And a vulcanization step of vulcanizing the raw rubber product. Since the method for producing a rubber product of the present invention includes a step of producing a natural rubber by the method for producing a natural rubber, the rubber product can be produced with high productivity.
  • the rubber product is not particularly limited as long as it is a rubber product that can be manufactured using rubber (preferably natural rubber), and examples thereof include pneumatic tires, rubber crawlers, and rubber fenders.
  • the raw rubber product molding step is a raw tire for molding the raw tire from the kneaded product.
  • the vulcanization step corresponds to a vulcanization step of vulcanizing the raw tire. That is, the method for producing a pneumatic tire of the present invention includes a step of producing natural rubber by the method for producing natural rubber, and a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product.
  • It includes a raw tire molding step of molding a raw tire from the kneaded product and a vulcanization step of vulcanizing the raw tire. Since the method for producing a pneumatic tire of the present invention includes a step of producing natural rubber by the method for producing natural rubber, the pneumatic tire can be produced with high productivity.
  • the method for producing natural rubber may be carried out to produce natural rubber.
  • the natural rubber obtained by the step of producing the natural rubber by the method for producing the natural rubber and the additive are kneaded to obtain a kneaded product.
  • the additive is not particularly limited, and an additive used in the production of rubber products can be used.
  • a rubber component other than rubber obtained from the latex for example, a reinforcing filler such as carbon black, silica, calcium carbonate, alumina, clay, talc, a silane coupling agent, etc.
  • a reinforcing filler such as carbon black, silica, calcium carbonate, alumina, clay, talc, a silane coupling agent, etc.
  • examples thereof include zinc oxide, stearic acid, processing aids, various antioxidants, softeners such as oil, vulcanizing agents such as wax and sulfur, and vulcanization accelerators.
  • the kneading in the kneading step may be performed using a rubber kneading device such as an open roll, a Banbury mixer, or a closed kneader.
  • a rubber kneading device such as an open roll, a Banbury mixer, or a closed kneader.
  • a raw rubber product (raw tire in the case of a tire) is molded from the kneaded product obtained in the kneading step.
  • the method for molding the raw rubber product is not particularly limited, and the method used for molding the raw rubber product may be appropriately applied.
  • the rubber product is a pneumatic tire
  • the kneaded product obtained in the kneading process is extruded according to the shape of each tire member, molded by a normal method on a tire molding machine, and each tire member.
  • the tires may be bonded together to form a raw tire (unvulcanized tire).
  • a rubber product is obtained by vulcanizing the raw rubber product obtained in the raw rubber product molding step.
  • the method for vulcanizing the raw rubber product is not particularly limited, and the method used for vulcanizing the raw rubber product may be appropriately applied.
  • the pneumatic tire can be obtained by heating and pressurizing the raw tire (unvulcanized tire) obtained in the raw rubber product molding step in a vulcanizer and vulcanizing it.
  • BA Benzyl adenine KI: Kinetin Silver nitrate: Silver nitrate gelling agent (solidifying agent) manufactured by Merck & Co., Ltd .: Phytagel manufactured by Sigma-Aldrich Co., Ltd.
  • Tissues containing axillary buds were collected from Hevea brasiliensis saplings. Next, the tissue containing the axillary buds collected from the seedlings was washed with running water, further washed with 70% by mass ethanol, sterilized with an aqueous solution of sodium hypochlorite diluted to about 5 to 10% by volume, and washed with sterilized water. bottom.
  • the sterilized tissue was inserted into an induction medium (solid medium) and cultured (induction step).
  • induction medium benzyladenine 5.0 mg / L, silver nitrate 1.0 mg / L, sculose 3.0% by mass, and activated charcoal 0.05% by mass were added to MB medium to adjust the pH of the medium to 5.7.
  • a gelling agent was added so as to be 0.275% by mass, sterilized in an autoclave (121 ° C., 20 minutes), and prepared by cooling in a clean bench.
  • the tissue of Hevea brasiliensis was inserted into an induction medium (solid medium) and cultured under illumination at a culture temperature of 28 ° C. and 12.5 ⁇ mol / m 2 / s under the condition of 16 hours of light time to induce shoots.
  • transplantation was carried out every 4 weeks by transplanting to an induction medium having the same composition. The shoots induced by the induction step were used below.
  • the cut end of the chute was immersed in an auxin solution (5.0 mg / L 1-naphthalene acetic acid, 5.0 mg / L indole-3-butyric acid, 100 ⁇ mol / L reduced glutathione) for 72 hours (immersion treatment step, temperature: 28 ° C., 16 hours day length under 12.5 ⁇ mol / m 2 / s illumination).
  • auxin solution 5.0 mg / L 1-naphthalene acetic acid, 5.0 mg / L indole-3-butyric acid, 100 ⁇ mol / L reduced glutathione
  • the cut end surface of the shoots immersed in the immersion treatment step was inserted and cultured (culture step).
  • the culture was carried out under illumination of 12.5 ⁇ mol / m 2 / s for 16 hours on a day length and at a temperature of 25 to 28 ° C. for 8 weeks.
  • the auxin solution was prepared by dissolving the above components in distilled water.
  • the above-mentioned components other than the solidifying agent were added to the basal medium, the pH of the medium was adjusted to 5.7, and then the solidifying agent was added so as to be 0.275% by mass. Prepared by sterilizing in an autoclave (121 ° C., 20 minutes) and cooling in a clean bench.
  • Example 1 Hydroponics A notched sponge (tensile strength: 80 KPa) was attached around the root base of the obtained seedling (height above ground: 5.0 cm). Then, the plant was set in the hole provided in the pedestal (material: Styrofoam), and the pedestal was floated in a deep container containing the nutrient solution (initial pH of the nutrient solution: 5.7). At this time, the roots of the seedlings were soaked in the nutrient solution. Oxygen was supplied to the nutrient solution by an air pump, and the amount of dissolved oxygen in the nutrient solution was maintained at 12 ppm. Then, hydroponics was carried out under the conditions of a nutrient solution temperature of 25 ° C.
  • a cultivation temperature of 28 ° C. under bright conditions of 16 hours and dark conditions of 8 hours was maintained.
  • the illuminance at the leaf position under the light condition was maintained at 5,000 to 10,000 lx, and the illuminance at the leaf position under the dark condition was maintained at 1 lx or less.
  • a nitric acid solution was added to the nutrient solution, and cultivation was carried out while maintaining the pH of the nutrient solution at 5.6 to 5.8.
  • Hoagland hydroponic solution was used as the nutrient solution.
  • FIG. 1 (a) shows the transition of the height of the above-ground portion of each example
  • FIG. 1 (b) shows the transition of the stem thickness of each example. From FIG. 1, by comparing Examples and Comparative Examples, it was found that hydroponics significantly promotes the growth of the above-ground part as compared with soil cultivation. Further, in Comparative Examples 1-1 and 1-2 in which soil cultivation was carried out, a delayed stage was observed for about 6 months at the initial stage of cultivation, whereas hydroponics was carried out. In Examples 1-1 and 1-2, the growth of the above-ground part was confirmed from the early stage of cultivation. As for the thickness of the stem, the thickness of the stem at a location 1.0 cm away from the boundary between the above-ground part and the root was measured.
  • FIG. 2 is a photograph showing the state of the above-ground part of each example after 3 months of cultivation. From FIG. 2, it was found that in the case of hydroponics, the growth of the above-ground part was promoted and the health condition of the leaves was better than that in the case of soil cultivation.
  • FIG. 3 is a photograph showing the state of the roots of each example after 3 months of cultivation. From FIG. 3, it was found that the taproots were mainly swirled in the comparative example of soil cultivation, but the roots were not swirling and the lateral roots were developed in the example of hydroponics. Thus, it was found that hydroponics promotes rooting and root development as compared with soil cultivation.
  • Example 2 soil cultivation was carried out using the seedlings (height of the above-ground part: 5.0 cm) obtained in the same manner as described above. At this time, the growth became poor.
  • the seedlings having poor growth were hydroponically cultivated for 2 months under the same conditions as in Example 1. Photographs of the seedlings at the start of hydroponics and the seedlings after 2 months of hydroponics are shown in FIG. From FIG. 4, soil cultivation is carried out on shoot-derived seedlings of woody plants, and even when the growth tends to be poor, the seedlings that tend to grow poorly are switched to hydroponics and cultivated. As a result, it was found that the growth was improved. On the other hand, the seedlings with poor growth were cultivated in soil under the same conditions as in Comparative Example 1, but they died.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Hydroponics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Provided are: a method for producing a plant body, whereby it is possible to produce a plant body from a juvenile plant derived from a shoot of a woody plant with high productivity; and a method for producing a natural rubber, a method for producing a pneumatic tire, and a method for producing a rubber product, in each of which the aforementioned production method is employed. The present invention relates to a method for producing a plant body, comprising a hydroponic cultivation step in which a juvenile plant derived from a shoot of a woody plant is subjected to hydroponic cultivation.

Description

植物体の製造方法、天然ゴムの製造方法、空気入りタイヤの製造方法、及び、ゴム製品の製造方法Plant manufacturing method, natural rubber manufacturing method, pneumatic tire manufacturing method, and rubber product manufacturing method
本発明は、植物体の製造方法、天然ゴムの製造方法、空気入りタイヤの製造方法、及び、ゴム製品の製造方法に関する。 The present invention relates to a method for producing a plant, a method for producing natural rubber, a method for producing a pneumatic tire, and a method for producing a rubber product.
現在、工業用ゴム製品に用いられている天然ゴム(ポリイソプレノイドの1種)は、トウダイグサ科のパラゴムノキ(Hevea brasiliensis)や桑科植物のインドゴムノキ(Ficus elastica)などのゴム産生植物を栽培し、その植物体が有する乳管細胞で天然ゴムを生合成させ、該天然ゴムを植物から手作業により採取することにより得られる。 Natural rubber (a type of polyisoprenoid) currently used in industrial rubber products is used to cultivate rubber-producing plants such as Hevea brasiliensis of the family Spurge and Ficus elastica, a mulberry plant. It is obtained by biosynthesizing natural rubber with the mammary tube cells of the plant and manually collecting the natural rubber from the plant.
現状、工業用天然ゴムは、パラゴムノキをほぼ唯一の採取源としている。またゴム製品の主原料として、様々な用途において幅広くかつ大量に用いられている。しかしながら、パラゴムノキは東南アジアや南米などの限られた地域でのみ生育可能な植物である。更に、パラゴムノキは、植樹からゴムの採取が可能な成木になるまでに7年程度を要し、また、採取出来る季節が限られる場合がある。また、成木から天然ゴムを採取できる期間は20~30年に限られる。 At present, the only source of industrial natural rubber is Hevea brasiliensis. It is also widely used in large quantities in various applications as a main raw material for rubber products. However, Hevea brasiliensis is a plant that can grow only in limited areas such as Southeast Asia and South America. Furthermore, it takes about 7 years for Hevea brasiliensis to become an adult tree from which rubber can be collected from tree planting, and the season in which rubber can be collected may be limited. In addition, the period during which natural rubber can be collected from mature trees is limited to 20 to 30 years.
今後、開発途上国を中心に天然ゴムの需要の増大が見込まれており、天然ゴム資源の枯渇が懸念されていることから、安定的な天然ゴムの供給源が望まれている。 In the future, the demand for natural rubber is expected to increase mainly in developing countries, and there is concern about the depletion of natural rubber resources. Therefore, a stable supply source of natural rubber is desired.
このような状況下において、パラゴムノキによる天然ゴムの増産を図る動きが見られる。パラゴムノキは、播種により実生苗を育成させ成長させた後台木とし、クローン苗から得た芽を台木に接ぎ木することで苗を増殖させる。しかしながら、接ぎ穂は、台木の影響を受ける場合があるため、真のクローン苗とはならない。 Under such circumstances, there is a movement to increase the production of natural rubber by Hevea brasiliensis. Hevea brasiliensis is used as a rootstock after seedlings are grown and grown by sowing, and the seedlings are grown by grafting the buds obtained from the cloned seedlings to the rootstock. However, the scion is not a true cloned seedling because it can be affected by the rootstock.
一方、組織培養を利用したクローン苗を増殖させる方法としてマイクロプロパゲーションがある。マイクロプロパゲーション技術では無菌での組織培養で苗を増殖させる。具体的には、増殖させようとする植物の個体から採取した芽、茎端等の組織を培養してシュートを誘導し、最終的にシュートを発根させ、幼植物が得られる。この手法では、真のクローン苗が得られる。 On the other hand, there is micropropagation as a method for growing cloned seedlings using tissue culture. In micropropagation technology, seedlings are grown by aseptic tissue culture. Specifically, tissues such as buds and stem tips collected from an individual plant to be propagated are cultured to induce shoots, and finally shoots are rooted to obtain seedlings. This technique yields true cloned seedlings.
本発明者らが鋭意検討した結果、木本植物のシュート由来の幼植物は、根の成長が十分ではない場合があり、生育が遅くなりやすいことが判明した。そのため、木本植物のシュート由来の幼植物を商業的に利用しようとした場合、根の成長、生育の遅延が大きな問題となり、木本植物のシュート由来の幼植物から植物体を生産性良く製造するという点では改善の余地がある。
本発明は、本発明者らが見出した新たな課題を解決し、木本植物のシュート由来の幼植物から植物体を生産性良く製造可能な植物体の製造方法、該製造方法を用いた天然ゴムの製造方法、空気入りタイヤの製造方法、及び、ゴム製品の製造方法を提供することを目的とする。
As a result of diligent studies by the present inventors, it has been found that the shoot-derived seedlings of woody plants may not have sufficient root growth and tend to grow slowly. Therefore, when trying to commercially use shoot-derived seedlings of woody plants, root growth and growth delay become a major problem, and plants can be produced from shoot-derived seedlings of woody plants with high productivity. There is room for improvement in terms of doing so.
The present invention solves a new problem found by the present inventors, a method for producing a plant body capable of producing a plant body from a shoot-derived seedling of a woody plant with high productivity, and a natural method using the production method. It is an object of the present invention to provide a method for producing rubber, a method for producing a pneumatic tire, and a method for producing a rubber product.
なお、組織培養を利用したクローン苗を増殖させる方法として、前記のようなシュートを使用する方法以外にも、増殖させようとする植物の個体から採取した芽、茎端等の組織を培養してカルスを誘導し、誘導したカルスを増殖させ、増殖させたカルスを複数のカルスに分割し、分割された各カルスを再分化することにより幼植物を得る方法も存在する。この手法により得られた幼植物は、主根が形成されやすく、木本植物のシュート由来の幼植物のような根の成長(特に、主根の形成)が十分ではないという問題は生じない。よって、根の成長、生育の遅延が大きな問題となるのは、木本植物のシュート由来の幼植物特有の問題である。すなわち、本発明者らが見出した前述の新たな課題は、木本植物のシュート由来の幼植物特有の課題である。 As a method for growing cloned seedlings using tissue culture, in addition to the method using shoots as described above, tissues such as buds and stem tips collected from individual plants to be grown are cultivated. There is also a method of inducing callus, proliferating the induced callus, dividing the propagated callus into a plurality of callus, and redifferentiating each divided callus to obtain a seedling. The seedlings obtained by this method tend to form taproots, and there is no problem that root growth (particularly, taproot formation) is not sufficient like the shoot-derived seedlings of woody plants. Therefore, the major problem of root growth and growth delay is a problem peculiar to shoot-derived seedlings of woody plants. That is, the above-mentioned new problem found by the present inventors is a problem peculiar to shoot-derived seedlings of woody plants.
本発明者らは、本発明者らが見出した新たな課題を解決するために鋭意検討した結果、通常は、木本植物のシュート由来の幼植物は、土壌が入れられたポットに移し替えられ、土耕栽培が行われるが、木本植物のシュート由来の幼植物を水耕栽培することにより、土耕栽培に比べて、発根、根の発達、及び地上部の生育が促進され、幼植物の生育が大きく促進され、木本植物のシュート由来の幼植物から植物体を生産性良く製造可能であることを見出して本発明を完成した。 As a result of diligent studies to solve the new problems found by the present inventors, usually, shoot-derived seedlings of woody plants are transferred to pots containing soil. , Soil cultivation is carried out, but by hydroponics of young plants derived from shoots of woody plants, rooting, root development, and above-ground growth are promoted compared to soil cultivation, and young plants are cultivated. The present invention was completed by finding that the growth of a plant is greatly promoted and a plant can be produced with high productivity from a shoot-derived seedling of a woody plant.
すなわち、本発明は、木本植物のシュート由来の幼植物を水耕栽培する水耕栽培工程を含む植物体の製造方法に関する。 That is, the present invention relates to a method for producing a plant body, which comprises a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant.
前記水耕栽培工程において、養液の温度が20~36℃であることが好ましい。 In the hydroponic cultivation step, the temperature of the nutrient solution is preferably 20 to 36 ° C.
前記水耕栽培工程において、養液の溶存酸素量が2~20ppmであることが好ましい。 In the hydroponic cultivation step, the amount of dissolved oxygen in the nutrient solution is preferably 2 to 20 ppm.
前記水耕栽培工程において、養液の初期pHが5.6~5.8であることが好ましい。 In the hydroponic cultivation step, the initial pH of the nutrient solution is preferably 5.6 to 5.8.
前記水耕栽培工程において、養液のpHを5.0~6.5に維持することが好ましい。 In the hydroponic cultivation step, it is preferable to maintain the pH of the nutrient solution at 5.0 to 6.5.
前記水耕栽培工程において、明条件時の葉の位置での照度が5000lx以上の照度環境下で栽培を行うことが好ましい。 In the hydroponic cultivation step, it is preferable to cultivate in an illuminance environment where the illuminance at the position of the leaves under bright conditions is 5000 lpx or more.
前記幼植物の地上部の高さが1m以下であることが好ましい。 The height of the above-ground part of the seedling is preferably 1 m or less.
前記シュートがHevea属に属する植物のシュートであることが好ましい。 It is preferable that the shoot is a shoot of a plant belonging to the genus Hevea.
前記シュートがパラゴムノキのシュートであることが好ましい。 It is preferable that the shoot is a Hevea brasiliensis shoot.
本発明はまた、前記植物体の製造方法により植物体を製造する植物体製造工程と、
植物体製造工程により得られた植物体を用いて天然ゴムを製造する天然ゴム製造工程とを含む天然ゴムの製造方法に関する。
The present invention also includes a plant manufacturing process for producing a plant by the method for producing a plant.
The present invention relates to a method for producing natural rubber, which includes a natural rubber manufacturing process for producing natural rubber using a plant obtained by a plant manufacturing process.
本発明はまた、前記天然ゴムの製造方法により天然ゴムを製造する工程、該工程により得られる天然ゴムと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法に関する。 The present invention also includes a step of producing natural rubber by the method for producing natural rubber, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and molding a raw tire from the kneaded product. The present invention relates to a method for producing a pneumatic tire, which includes a raw tire forming step and a vulcanization step of vulcanizing the raw tire.
本発明はまた、前記天然ゴムの製造方法により天然ゴムを製造する工程、該工程により得られる天然ゴムと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法に関する。 The present invention also includes a step of producing natural rubber by the method for producing natural rubber, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and molding a raw rubber product from the kneaded product. The present invention relates to a method for producing a rubber product, which includes a process for forming a raw rubber product and a vulcanization step for vulcanizing the raw rubber product.
本発明の植物体の製造方法は、木本植物のシュート由来の幼植物を水耕栽培する水耕栽培工程を含むため、木本植物のシュート由来の幼植物から植物体を生産性良く製造できる。 Since the method for producing a plant of the present invention includes a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant, the plant can be productively produced from a shoot-derived seedling of a woody plant. ..
本発明の天然ゴムの製造方法は、前記植物体の製造方法により植物体を製造する植物体製造工程を含むため、天然ゴムを生産性良く製造できる。 Since the method for producing natural rubber of the present invention includes a plant body production step for producing a plant body by the method for producing a plant body, natural rubber can be produced with high productivity.
本発明の空気入りタイヤの製造方法は、前記天然ゴムの製造方法により天然ゴムを製造する工程を含むため、空気入りタイヤを生産性良く製造できる。 Since the method for producing a pneumatic tire of the present invention includes a step of producing natural rubber by the method for producing natural rubber, the pneumatic tire can be produced with high productivity.
本発明のゴム製品の製造方法は、前記天然ゴムの製造方法により天然ゴムを製造する工程を含むため、ゴム製品を生産性良く製造できる。 Since the method for producing a rubber product of the present invention includes a step of producing a natural rubber by the method for producing a natural rubber, the rubber product can be produced with high productivity.
実施例1、比較例1の結果を示す図である。It is a figure which shows the result of Example 1 and Comparative Example 1. 地上部の様子の一例を示す写真である。It is a photograph showing an example of the state of the above-ground part. 根の様子の一例を示す写真である。It is a photograph showing an example of the state of the root. 実施例2の結果を示す写真である。It is a photograph which shows the result of Example 2.
<植物体の製造方法>
本発明の植物体の製造方法は、木本植物のシュート由来の幼植物を水耕栽培する水耕栽培工程を含む。
これにより、土耕栽培に比べて、発根、根の発達、及び地上部の生育が促進され、幼植物の生育が大きく促進され、木本植物のシュート由来の幼植物から植物体を生産性良く製造できる。
また、木本植物のシュート由来の幼植物に対して土耕栽培を行って、生育不良傾向となった場合であっても、生育不良傾向の幼植物を水耕栽培に切り替えて栽培することにより、生育の改善が見られる。
また、水耕栽培は、通常は、養液を用いて栽培を行うため、根が接するのは養液であるため、根の生育進行方向に物理的な障害は存在しないことから、接触摩擦によるストレスの発生を低減できる。
なお、本発明の植物体の製造方法は、水耕栽培工程を含む限り、その他の工程を含んでいてもよい。
<Manufacturing method of plants>
The method for producing a plant of the present invention includes a hydroponic cultivation step of hydroponically cultivating a shoot-derived seedling of a woody plant.
As a result, rooting, root development, and above-ground growth are promoted, and the growth of seedlings is greatly promoted, and the productivity of plants from shoot-derived seedlings of woody plants is increased as compared with soil cultivation. Can be manufactured well.
In addition, even if soil cultivation is performed on shoot-derived seedlings of woody plants and the growth tends to be poor, the seedlings that tend to grow poorly can be cultivated by switching to hydroponics. , Improvement of growth is seen.
In addition, since hydroponics is usually cultivated using a nutrient solution, the roots come into contact with the nutrient solution, and there is no physical obstacle in the direction of root growth. Therefore, contact friction is used. The occurrence of stress can be reduced.
The method for producing a plant of the present invention may include other steps as long as it includes a hydroponic cultivation step.
本発明において、前記効果が得られる理由は明らかではないが、以下のように推測される。
水耕栽培は、養分や水分を水溶液から比較的容易に吸収できることから、根の生育が比較的弱い状態であっても、養分や水分を吸収しやすい。そのため、木本植物のシュート由来の幼植物であっても、水耕栽培工程を行うことにより、生育を安定させるとともに根の生育を促すことができる。
In the present invention, the reason why the above effect is obtained is not clear, but it is presumed as follows.
Since hydroponics can absorb nutrients and water from an aqueous solution relatively easily, it is easy to absorb nutrients and water even when root growth is relatively weak. Therefore, even if it is a young plant derived from a shoot of a woody plant, it is possible to stabilize the growth and promote the growth of roots by performing a hydroponic cultivation step.
本明細書においてシュートとは、頂芽、腋芽、不定芽の他、多芽体又は苗条原基より分化してきた芽、及びこれらの芽が伸長した状態のものを意味する。
本明細書において、幼植物とは、発根したシュートを意味する。なお、本明細書における幼植物には、発根したシュートに加えて、発根したシュートに対して土耕栽培を行って、生育不良傾向となったものも含まれる。
本明細書において、水耕栽培とは、土壌などの固形培地を必要としない栽培を意味し、水耕、水栽培とも言う。通常は、養液を用いて栽培を行う。
本明細書において、地上部とは、茎及び茎についている葉を意味する。
As used herein, the term shoot means apical buds, axillary buds, adventitious shoots, shoots differentiated from polyblasts or seedling primordia, and shoots in which these shoots are elongated.
As used herein, the term "sapling" means a rooted shoot. In addition to the rooted shoots, the seedlings in the present specification also include those that have tended to grow poorly due to soil cultivation of the rooted shoots.
In the present specification, hydroponics means cultivation that does not require a solid medium such as soil, and is also referred to as hydroponics or hydroponics. Usually, cultivation is carried out using a nutrient solution.
As used herein, the above-ground part means a stem and leaves attached to the stem.
本発明の製造方法が適用できる植物(シュートの由来植物)は、特に限定されないが、木本植物であることが好ましい。
前記木本植物としては、特に制限されず、落葉樹、常緑樹の広い範囲の種類及び品種の木本植物を挙げることができるが、特に、ゴムを資源として採取できるゴムノキであることが好ましく、パラゴムノキ(Hevea brasiliensis)等のHevea属;イチジク(Ficus carica)、インドゴムノキ(Ficus elastica)、オオイタビ(Ficus pumila L.)、イヌビワ(Ficus erecta Thumb.)、ホソバムクイヌビワ(Ficus ampelas Burm.f.)、コウトウイヌビワ(Ficus benguetensis Merr.)、ムクイヌビワ(Ficus irisana Elm.)、ガジュマル(Ficus microcarpa L.f.)、オオバイヌビワ(Ficus septica Burm.f.)、ベンガルボダイジュ(Ficus benghalensis)等のFicus属;グアユール(Parhenium argentatum)がより好ましい。更に好ましくは、Hevea属に属する植物等のトウダイグサ科(Euphorbiaceae)に属する植物であり、特に好ましくは、Hevea属に属する植物である。なかでも、パラゴムノキ(Hevea brasiliensis)が最も好ましい。
The plant to which the production method of the present invention can be applied (plant from which shoots are derived) is not particularly limited, but is preferably a woody plant.
The woody plant is not particularly limited, and examples of woody plants of a wide range of types and varieties of deciduous trees and evergreen trees are mentioned. Hevea genus such as Hevea brasiliensis; fig (Ficus carica), Indian rubber tree (Ficus elastica), Oitabi (Ficus plumila L.), Inubiwa (Ficus erecta Tumb. Inubiwa (Ficus genguitensis Merr.), Mukuinuubiwa (Ficus irisana Elm.), Gajumaru (Ficus microcarpa L.f.), Oobainubiwa (Ficus septica Burm. Perhenium argentatum) is more preferred. More preferably, it is a plant belonging to the family Hevea, such as a plant belonging to the genus Hevea, and particularly preferably a plant belonging to the genus Hevea. Among them, Hevea brasiliensis is the most preferable.
前記シュートを誘導するための材料としては、植物の葉柄、葉片、体細胞胚の胚軸、節、腋芽、頂芽等の植物の組織が挙げられる。なかでも、シュートを安定的に誘導することが可能であることから、節、腋芽、又は頂芽を含む組織が好ましい。具体的には、成木や幼木、苗木、クローン苗、又は試験管内で実生苗から生育させた無菌苗(無菌実生苗)由来の前記組織などが挙げられる。 Examples of the material for inducing the shoot include plant tissues such as leaf stalks, leaf pieces, hypocotyls of somatic cell embryos, nodes, axillary buds, and apical buds. Among them, a tissue containing nodes, axillary buds, or apical buds is preferable because shoots can be stably induced. Specific examples thereof include mature trees, young trees, seedlings, cloned seedlings, and the above-mentioned tissues derived from sterile seedlings (sterile seedlings) grown from seedlings in a test tube.
成木や幼木、苗木、又はクローン苗由来の前記組織を使用する場合には、適宜必要な大きさに切断した後、表面を殺菌又は滅菌することで使用することができるが、試験管内で実生苗から生育させた無菌苗(無菌実生苗)由来の前記組織を使用する場合には、適宜必要な大きさに切断した後に使用することが可能である。 When the above-mentioned tissue derived from an adult tree, a young tree, a seedling, or a cloned seedling is used, it can be used by cutting it to an appropriate size and then sterilizing or sterilizing the surface, but in vitro. When the tissue derived from sterile seedlings (sterile seedlings) grown from seedlings is used, it can be used after being appropriately cut to a required size.
成木や幼木、苗木、又はクローン苗由来の前記組織を用いる場合、後述する誘導培地で培養する前にまず、組織の表面を洗浄する。例えば、磨き粉で洗浄したり、柔らかいスポンジで洗浄したりしても良いが、流水で洗浄するのが好ましい。当該洗浄用の水は、界面活性剤を約0.1質量%含むものであってもよい。 When the tissue derived from an adult tree, a young tree, a seedling, or a cloned seedling is used, the surface of the tissue is first washed before culturing in the induction medium described later. For example, it may be washed with scouring powder or a soft sponge, but it is preferable to wash with running water. The cleaning water may contain about 0.1% by mass of a surfactant.
次に、組織を殺菌又は滅菌する。殺菌又は滅菌は、周知の殺菌剤、滅菌剤を用いて行うことができるが、エタノール、塩化ベンザルコニウム、次亜塩素酸ナトリウム水溶液が好ましい。なお、殺菌又は滅菌処理の後、更に滅菌水で洗浄してもよい。 The tissue is then sterilized or sterilized. Sterilization or sterilization can be performed using a well-known sterilizing agent or sterilizing agent, but ethanol, benzalkonium chloride, and an aqueous solution of sodium hypochlorite are preferable. After sterilization or sterilization treatment, it may be further washed with sterilized water.
前記洗浄、殺菌又は滅菌処理を行う具体例として例えば以下の手順が挙げられる。流水で組織の表面を洗浄した後、エタノールで洗浄。次いで次亜塩素酸ナトリウム水溶液で必要に応じて撹拌しながら滅菌。その後、滅菌水を用いて洗浄。 Specific examples of the cleaning, sterilization, or sterilization treatment include the following procedures. After cleaning the surface of the tissue with running water, wash with ethanol. Then, sterilize with an aqueous solution of sodium hypochlorite with stirring as necessary. Then wash with sterile water.
シュートの誘導方法は特に限定されないが、前記組織などからシュートを誘導する誘導工程の一例について説明する。 The method for inducing the shoot is not particularly limited, but an example of the induction step for inducing the shoot from the tissue or the like will be described.
(誘導工程)
誘導工程では、前記組織を、植物ホルモン及び炭素源を含む誘導培地で培養することにより、シュートを誘導、形成させる。なお、誘導培地は、液体であっても固体であってもよいが、培地に前記組織を差し込んで培養することでシュートを誘導しやすくなるため、固体培養が好ましい。また、誘導培地が液体培地である場合には、静置培養を行ってもよく、振とう培養を行ってもよい。
また、殺菌又は滅菌処理を行った組織を用いる場合には、殺菌剤、滅菌剤の影響を除くため切り口を切除して培養に用いるのが好ましい。
(Induction process)
In the induction step, shoots are induced and formed by culturing the tissue in an induction medium containing a plant hormone and a carbon source. The induction medium may be liquid or solid, but solid culture is preferable because shoots can be easily induced by inserting the tissue into the medium and culturing. When the induction medium is a liquid medium, static culture may be performed or shaking culture may be performed.
When a tissue that has been sterilized or sterilized is used, it is preferable to cut off the cut end and use it for culturing in order to eliminate the influence of the sterilizing agent and the sterilizing agent.
植物ホルモン(植物生長ホルモン)としては、例えば、オーキシン系植物ホルモン及び/又はサイトカイニン系植物ホルモンが挙げられる。中でも、サイトカイニン系植物ホルモンを用いることが好ましい。 Examples of the plant hormone (plant growth hormone) include auxin-based plant hormone and / or cytokinine-based plant hormone. Above all, it is preferable to use a cytokinin-based plant hormone.
オーキシン系植物ホルモンとしては、2,4-ジクロロフェノキシ酢酸、1-ナフタレン酢酸、インドール-3-酪酸、インドール-3-酢酸、インドールプロピオン酸、クロロフェノキシ酢酸、ナフトキシ酢酸、フェニル酢酸、2,4,5-トリクロロフェノキシ酢酸、パラクロロフェノキシ酢酸、2-メチル-4-クロロフェノキシ酢酸、4-フルオロフェノキシ酢酸、2-メトキシ-3,6-ジクロロ安息香酸、2-フェニル酸、ピクロラム、ピコリン酸等が挙げられる。なかでも、2,4-ジクロロフェノキシ酢酸、1-ナフタレン酢酸、インドール-3-酪酸が好ましく、2,4-ジクロロフェノキシ酢酸、1-ナフタレン酢酸がより好ましい。 Auxin-based plant hormones include 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid, indole-3-butyric acid, indole-3-acetic acid, indolepropionic acid, chlorophenoxyacetic acid, naphthoxyacetic acid, phenylacetic acid, 2,4. 5-Trichlorophenoxyacetic acid, parachlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, 4-fluorophenoxyacetic acid, 2-methoxy-3,6-dichlorobenzoic acid, 2-phenylic acid, picrolam, picolinic acid, etc. Can be mentioned. Of these, 2,4-dichlorophenoxyacetic acid, 1-naphthalene acetic acid and indole-3-butyric acid are preferable, and 2,4-dichlorophenoxyacetic acid and 1-naphthalene acetic acid are more preferable.
サイトカイニン系植物ホルモンとしては、ベンジルアデニン、カイネチン、ゼアチン、ベンジルアミノプリン、イソペンテニルアミノプリン、チジアズロン、イソペンテニルアデニン、ゼアチンリボシド、ジヒドロゼアチン等が挙げられる。なかでも、ベンジルアデニン、カイネチン、ゼアチンが好ましく、ベンジルアデニン、カイネチンがより好ましく、ベンジルアデニンが更に好ましい。 Examples of cytokinin-based plant hormones include benzyladenine, kinetin, zeatin, benzylaminopurine, isopentenylaminopurine, tidiazulone, isopentenyladenine, zeatinriboside, and dihydrozeatin. Among them, benzyladenine, kinetin and zeatin are preferable, benzyladenine and kinetin are more preferable, and benzyladenine is further preferable.
炭素源としては、特に限定されず、スクロース、グルコース、トレハロース、フルクトース、ラクトース、ガラクトース、キシロース、アロース、タロース、グロース、アルトロース、マンノース、イドース、アラビノース、アピオース、マンニトール、ソルビトール、キシリトール、エリスリトール、マルトース等の糖類が挙げられる。なかでも、スクロースが好ましい。 The carbon source is not particularly limited, and is not particularly limited, and is not particularly limited. And other sugars. Of these, sucrose is preferable.
誘導培地は、前記組織への成長阻害物質の蓄積を防止するために、更に活性炭を含むことが好ましい。また、シュートの形成を促進するために、更に硝酸銀を含むことが好ましい。更には、シュートの形成を促進するために、ココナッツウォーター(ココナッツミルク)を含んでもよい。 The induction medium preferably further contains activated carbon in order to prevent the accumulation of the growth inhibitor in the tissue. In addition, it is preferable to further contain silver nitrate in order to promote the formation of shoots. Furthermore, coconut water (coconut milk) may be included to promote the formation of shoots.
誘導培地としては、Whiteの培地(植物細胞工学入門(学会出版センター)p20~p36に記載)、Hellerの培地(Heller R, Bot.Biol.Veg.Paris 14 1-223(1953))、SH培地(SchenkとHildebrandtの培地)、MS培地(MurashigeとSkoogの培地)(植物細胞工学入門(学会出版センター)p20~p36に記載)、LS培地(LinsmaierとSkoogの培地)(植物細胞工学入門(学会出版センター)p20~p36に記載)、Gamborg培地、B5培地(植物細胞工学入門(学会出版センター)p20~p36に記載)、MB培地(Biotechnology in Agriculture and Forestry volum5(TreesII)p222-245に記載)、WP培地(Woody Plant:木本類用)等の基本培地や、該基本培地の組成に変更を加えた改変基本培地等のベースとなる培地に植物ホルモンを加えたものを使用すればよい。なかでも、MS培地、B5培地、WP培地、MB培地に植物ホルモンを加えたものが好ましく、MS培地、その組成に変更を加えたMS改変培地、MB培地又はその組成に変更を加えたMB改変培地に植物ホルモンを加えたものがより好ましい。 As the induction medium, White's medium (described in "Introduction to Plant Cell Engineering (Society Publishing Center) p20 to p36), Heller's medium (Heller R, Bot. Biol. Veg. Paris 14 1-223 (1953)), SH medium. (Schenk and Hildebrand medium), MS medium (Murashige and Skog medium) (Introduction to plant cell engineering (Society Publishing Center) p20-p36), LS medium (Linsmaier and Skog medium) (Introduction to plant cell engineering (Society) (Publishing Center) p20-p36), Gamborg Medium, B5 Medium (Introduction to Plant Cell Engineering (Society Publishing Center) p20-p36), MB Medium (Biotechnology in Agriculture and Forestry volume5 (TreesII) p222-245) , WP medium (Woody Plant: for woody plants), or a base medium such as a modified basal medium in which the composition of the basal medium is modified, to which phytohormones are added may be used. Among them, MS medium, B5 medium, WP medium, and MB medium to which plant hormones are added are preferable, and MS medium, MS modified medium with its composition modified, MB medium, or MB modified with its composition modified. A medium supplemented with phytohormones is more preferable.
誘導培地を固体培地とする場合、固形化剤を使用して培地を固体にすればよい。固形化剤としては、特に限定されず、寒天、ゲランガム、アガロース、ゲルライト、アガー、フィタゲル等が挙げられる。 When the induction medium is a solid medium, a solidifying agent may be used to solidify the medium. The solidifying agent is not particularly limited, and examples thereof include agar, gellan gum, agarose, gellite, agar, and phytagel.
好適な誘導培地の組成及び培養条件は、植物種により異なり、また培地が液体培地であるか固体培地であるかによっても異なるが、通常は(特に、ゴムノキの場合は)以下の組成である。 The composition and culture conditions of a suitable induction medium differ depending on the plant species and whether the medium is a liquid medium or a solid medium, but usually have the following composition (particularly in the case of rubber tree).
誘導培地中の炭素源の濃度は、好ましくは0.1質量%以上、より好ましくは1.0質量%以上、更に好ましくは3.0質量%以上である。該炭素源の濃度は、好ましくは10質量%以下、より好ましくは9.0質量%以下、更に好ましくは6.0質量%以下である。なお、本明細書において、炭素源の濃度とは、糖類の濃度を意味する。 The concentration of the carbon source in the induction medium is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, still more preferably 3.0% by mass or more. The concentration of the carbon source is preferably 10% by mass or less, more preferably 9.0% by mass or less, still more preferably 6.0% by mass or less. In addition, in this specification, the concentration of a carbon source means the concentration of a saccharide.
誘導培地にオーキシン系植物ホルモンを実質的に加えないことが好ましく、誘導培地中のオーキシン系植物ホルモンの濃度としては、具体的には、好ましくは1.0mg/L以下、より好ましくは0.1mg/L以下、更に好ましくは0.05mg/L以下、特に好ましくは0.01mg/L以下である。 It is preferable that substantially no auxin-based plant hormone is added to the induction medium, and the concentration of the auxin-based plant hormone in the induction medium is specifically preferably 1.0 mg / L or less, more preferably 0.1 mg. / L or less, more preferably 0.05 mg / L or less, and particularly preferably 0.01 mg / L or less.
誘導培地にサイトカイニン系植物ホルモンを加える場合の、誘導培地中のサイトカイニン系植物ホルモンの濃度としては、好ましくは0.01mg/L以上、より好ましくは0.1mg/L以上、更に好ましくは0.5mg/L以上、特に好ましくは0.8mg/L以上、最も好ましくは3.0mg/L以上である。該サイトカイニン系植物ホルモンの濃度は、好ましくは8.0mg/L以下、より好ましくは7.0mg/L以下、更に好ましくは6.0mg/L以下である。
特に、前記サイトカイニン系植物ホルモンとしてベンジルアデニンを使用する場合の、該ベンジルアデニンの濃度は、4.0~6.0mg/Lであることが好ましく、最も好ましくは、5.0mg/Lである。他方、前記サイトカイニン系植物ホルモンとしてカイネチンを使用する場合の、該カイネチンの濃度は、0.8~1.2mg/Lであることが好ましく、最も好ましくは、1.0mg/Lである。
When the cytokinin-based plant hormone is added to the induction medium, the concentration of the cytokinin-based plant hormone in the induction medium is preferably 0.01 mg / L or more, more preferably 0.1 mg / L or more, still more preferably 0.5 mg. / L or more, particularly preferably 0.8 mg / L or more, and most preferably 3.0 mg / L or more. The concentration of the cytokinin-based plant hormone is preferably 8.0 mg / L or less, more preferably 7.0 mg / L or less, still more preferably 6.0 mg / L or less.
In particular, when benzyladenine is used as the cytokinin-based plant hormone, the concentration of the benzyladenine is preferably 4.0 to 6.0 mg / L, and most preferably 5.0 mg / L. On the other hand, when kinetin is used as the cytokinin-based plant hormone, the concentration of the kinetin is preferably 0.8 to 1.2 mg / L, and most preferably 1.0 mg / L.
誘導培地中の活性炭の濃度は、好ましくは0.01質量%以上、より好ましくは0.03質量%以上である。該活性炭の濃度は、好ましくは1.0質量%以下、より好ましくは0.1質量%以下である。 The concentration of activated carbon in the induction medium is preferably 0.01% by mass or more, more preferably 0.03% by mass or more. The concentration of the activated carbon is preferably 1.0% by mass or less, more preferably 0.1% by mass or less.
誘導培地中の硝酸銀の濃度は、好ましくは0.1mg/L以上、より好ましくは0.3mg/L以上、更に好ましくは0.5mg/L以上である。該硝酸銀の濃度は、好ましくは5.0mg/L以下、より好ましくは3.0mg/L以下である。 The concentration of silver nitrate in the induction medium is preferably 0.1 mg / L or more, more preferably 0.3 mg / L or more, still more preferably 0.5 mg / L or more. The concentration of the silver nitrate is preferably 5.0 mg / L or less, more preferably 3.0 mg / L or less.
誘導培地のpHは、4.0~10.0が好ましく、5.0~6.5がより好ましく、5.5~6.0が更に好ましい。
なお、本明細書において、固体培地のpHは、固形化剤を除く全成分を添加した培地のpHを意味する。
The pH of the induction medium is preferably 4.0 to 10.0, more preferably 5.0 to 6.5, and even more preferably 5.5 to 6.0.
In the present specification, the pH of the solid medium means the pH of the medium to which all the components except the solidifying agent are added.
誘導工程は、通常、温度、照明時間等の培養条件の管理された制御環境下で行われる。培養条件は適宜設定することができるが、例えば、培養温度は、0~40℃が好ましく、20~40℃がより好ましく、25~35℃が更に好ましい。培養は、暗所で行っても明所で行ってもよいが、光条件としては、例えば、12.5μmol/m/sの照明の下、14~16時間の明時間という条件などが挙げられる。培養時間は、特に限定されないが、1~10週間培養することが好ましく、3~5週間がより好ましい。 The induction step is usually carried out in a controlled environment in which culture conditions such as temperature and illumination time are controlled. The culture conditions can be set as appropriate, but for example, the culture temperature is preferably 0 to 40 ° C, more preferably 20 to 40 ° C, and even more preferably 25 to 35 ° C. The culture may be carried out in a dark place or in a light place, and examples of the light conditions include a condition of 14 to 16 hours of light time under illumination of 12.5 μmol / m 2 / s. Be done. The culturing time is not particularly limited, but culturing is preferably 1 to 10 weeks, more preferably 3 to 5 weeks.
固体培地の場合、誘導培地中の固形化剤の濃度は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上である。該固形化剤の濃度は、好ましくは2.0質量%以下、より好ましくは1.1質量%以下、更に好ましくは0.8質量%以下である。 In the case of a solid medium, the concentration of the solidifying agent in the induction medium is preferably 0.1% by mass or more, more preferably 0.2% by mass or more. The concentration of the solidifying agent is preferably 2.0% by mass or less, more preferably 1.1% by mass or less, still more preferably 0.8% by mass or less.
上述の条件のなかでも、植物ホルモンがサイトカイニン系植物ホルモン(特に、ベンジルアデニン、又はカイネチン)で、その濃度が3.0~8.0mg/Lであり、培養温度が25~35℃であることが特に好ましい。 Among the above conditions, the plant hormone is a cytokinin-based plant hormone (particularly, benzyladenine or kinetin), the concentration thereof is 3.0 to 8.0 mg / L, and the culture temperature is 25 to 35 ° C. Is particularly preferable.
以上のように、前記組織を前記誘導培地で培養することにより、シュートを誘導、形成することが可能である。 As described above, shoots can be induced and formed by culturing the tissue in the induction medium.
シュートから幼植物を得る方法は特に限定されないが、以下において、シュートから幼植物を得る方法の一例について説明する。
形成されたシュートはこのまま後述する培養工程に供してもよいが、培養工程の前に以下の浸漬処理工程に供することが好ましい。これにより、より好適に幼植物が得られる傾向がある。
The method for obtaining a seedling from a shoot is not particularly limited, but an example of a method for obtaining a seedling from a shoot will be described below.
The formed shoots may be subjected to the culturing step described later as they are, but it is preferable that the formed shoots are subjected to the following dipping treatment step before the culturing step. As a result, seedlings tend to be obtained more preferably.
(浸漬処理工程)
浸漬処理工程では、オーキシン系植物ホルモンを含有するオーキシン溶液にシュートを浸漬する。
具体的には、誘導工程等により得られたシュート(例えば、2cm程度のシュートの切片)をオーキシン溶液に浸漬すればよい。
シュートをオーキシン溶液に浸漬する際、シュートの切片の端部、すなわち、シュートの切り口がオーキシン溶液に浸かる状態で浸漬することが好ましい。
また、シュートをオーキシン溶液に浸漬する際、シュートを静置して行ってもよく、シュートを振とうして行ってもよい。
(Immersion process)
In the dipping treatment step, the shoot is immersed in an auxin solution containing an auxin-based plant hormone.
Specifically, the shoot (for example, a section of a shoot of about 2 cm) obtained by an induction step or the like may be immersed in an auxin solution.
When immersing the chute in the auxin solution, it is preferable to immerse the chute in a state where the end of the section of the chute, that is, the cut end of the chute is immersed in the auxin solution.
Further, when the shoot is immersed in the auxin solution, the shoot may be allowed to stand still or the shoot may be shaken.
前記浸漬処理工程を行う時間は、好ましくは24時間以上、より好ましくは40時間以上、更に好ましくは60時間以上、特に好ましくは70時間以上であり、好ましくは168時間以下、より好ましくは150時間以下、更に好ましくは130時間以下、特に好ましくは100時間以下、最も好ましくは90時間以下、より最も好ましくは80時間以下である。これにより、より良好な発根率が得られる。 The time for performing the dipping treatment step is preferably 24 hours or more, more preferably 40 hours or more, further preferably 60 hours or more, particularly preferably 70 hours or more, preferably 168 hours or less, more preferably 150 hours or less. More preferably 130 hours or less, particularly preferably 100 hours or less, most preferably 90 hours or less, and even more preferably 80 hours or less. As a result, a better rooting rate can be obtained.
浸漬処理工程は、温度、照明時間等が管理された制御環境下で行われることが好ましい。例えば、浸漬処理工程を行う温度は、0~40℃が好ましく、20~40℃がより好ましく、25~35℃が更に好ましい。浸漬処理工程は、暗所で行っても明所で行ってもよいが、光条件としては、例えば、5~20μmol/m/sの照明の下、14~16時間の明時間という条件などが挙げられる。 The immersion treatment step is preferably performed in a controlled environment in which the temperature, lighting time, and the like are controlled. For example, the temperature at which the dipping treatment step is performed is preferably 0 to 40 ° C, more preferably 20 to 40 ° C, and even more preferably 25 to 35 ° C. The dipping treatment step may be performed in a dark place or in a bright place, but the light conditions include, for example, a light time of 14 to 16 hours under illumination of 5 to 20 μmol / m 2 / s. Can be mentioned.
浸漬処理工程に供されるシュートとしては、特に限定されず、どのような方法により形成されたシュートであっても用いることができ、例えば、前記誘導工程等により得られたシュートが挙げられる。
また、浸漬処理工程に供されるシュートとしては、シュートの切片であることが好ましい。例えば、シュートを誘導するための材料として用いられた腋芽等の組織から切断されたシュートの切片が好ましい。
また、誘導培地で培養した期間が6ヶ月以内のシュートを用いることも好ましい。
The shoot to be subjected to the dipping treatment step is not particularly limited, and any shoot formed by any method can be used, and examples thereof include a shoot obtained by the induction step and the like.
Further, the shoot to be subjected to the dipping treatment step is preferably a section of the shoot. For example, sections of shoots cut from tissues such as axillary buds used as materials for inducing shoots are preferred.
It is also preferable to use shoots that have been cultured in the induction medium for a period of 6 months or less.
浸漬処理工程に供されるシュート(シュートの切片)の長さは、好ましくは10mm以上、より好ましくは15mm以上、更に好ましくは20mm以上であり、好ましくは100mm以下、より好ましくは80mm以下、更に好ましくは50mm以下である。これにより、より良好な発根率が得られる。 The length of the shoot (shoot section) subjected to the dipping treatment step is preferably 10 mm or more, more preferably 15 mm or more, further preferably 20 mm or more, preferably 100 mm or less, more preferably 80 mm or less, still more preferably. Is 50 mm or less. As a result, a better rooting rate can be obtained.
オーキシン溶液が含有するオーキシン系植物ホルモンとしては、前記誘導培地に用いられるオーキシン系植物ホルモンと同様のものを用いることができる。なかでも、インドール-3-酪酸、1-ナフタレン酢酸が好ましく、インドール-3-酪酸及び1-ナフタレン酢酸を併用することが好ましい。 As the auxin-based plant hormone contained in the auxin solution, the same auxin-based plant hormone used in the induction medium can be used. Of these, indole-3-butyric acid and 1-naphthalene acetic acid are preferable, and indole-3-butyric acid and 1-naphthalene acetic acid are preferably used in combination.
オーキシン溶液中のオーキシン系植物ホルモンの濃度は、好ましくは15mg/L以下、より好ましくは12mg/L以下であり、好ましくは1.0mg/L以上、より好ましくは3.0mg/L以上、更に好ましくは5.0mg/L以上、特に好ましくは8.0mg/L以上である。これにより、より良好な発根率が得られる。
ここで、複数のオーキシン系植物ホルモンを使用する場合、オーキシン系植物ホルモンの濃度とは、オーキシン系植物ホルモンの合計濃度を意味する。
The concentration of the auxin-based plant hormone in the auxin solution is preferably 15 mg / L or less, more preferably 12 mg / L or less, preferably 1.0 mg / L or more, more preferably 3.0 mg / L or more, still more preferably. Is 5.0 mg / L or more, particularly preferably 8.0 mg / L or more. As a result, a better rooting rate can be obtained.
Here, when a plurality of auxin-based plant hormones are used, the concentration of the auxin-based plant hormone means the total concentration of the auxin-based plant hormone.
オーキシン系植物ホルモンとして、インドール-3-酪酸及び1-ナフタレン酢酸を併用する場合、
オーキシン溶液中のインドール-3-酪酸の濃度は、好ましくは10mg/L以下、より好ましくは7.5mg/L以下、更に好ましくは6.0mg/L以下であり、好ましくは1.0mg/L以上、より好ましくは2.5mg/L以上、更に好ましくは3.0mg/L以上、特に好ましくは4.0mg/L以上であり、
オーキシン溶液中の1-ナフタレン酢酸の濃度は、好ましくは10mg/L以下、より好ましくは7.5mg/L以下、更に好ましくは6.0mg/L以下であり、好ましくは1.0mg/L以上、より好ましくは2.5mg/L以上、更に好ましくは3.0mg/L以上、特に好ましくは4.0mg/L以上である。これにより、より良好な発根率が得られる。
When indole-3-butyric acid and 1-naphthalene acetic acid are used in combination as auxin-based plant hormones
The concentration of indole-3-butyric acid in the auxin solution is preferably 10 mg / L or less, more preferably 7.5 mg / L or less, still more preferably 6.0 mg / L or less, and preferably 1.0 mg / L or more. , More preferably 2.5 mg / L or more, further preferably 3.0 mg / L or more, and particularly preferably 4.0 mg / L or more.
The concentration of 1-naphthalene acetic acid in the auxin solution is preferably 10 mg / L or less, more preferably 7.5 mg / L or less, still more preferably 6.0 mg / L or less, preferably 1.0 mg / L or more. It is more preferably 2.5 mg / L or more, further preferably 3.0 mg / L or more, and particularly preferably 4.0 mg / L or more. As a result, a better rooting rate can be obtained.
オーキシン溶液は、オーキシン系植物ホルモンを含有していればよく、オーキシン系植物ホルモンを溶解させる分散媒としては、特に限定されないが、水、等張液、緩衝液、組織培養用培地などが挙げられる。等張液としては、例えばKCl、NaCl、CaCl2、MgCl2などの無機塩を添加して0.01~7M、好ましくは、0.5~2Mにした液体が挙げられる。緩衝液としては、リン酸緩衝液、トリス緩衝液、MES緩衝液などが挙げられる。組織培養用培地としては、上述の培地などが挙げられる。なかでも、効果がより好適に得られるという理由から、水が好ましい。すなわち、オーキシン溶液が、オーキシン系植物ホルモンを水に溶解させた水溶液であることが好ましい。 The auxin solution may contain an auxin-based plant hormone, and the dispersion medium for dissolving the auxin-based plant hormone is not particularly limited, and examples thereof include water, an isotonic solution, a buffer solution, and a tissue culture medium. .. Examples of the isotonic liquid include a liquid obtained by adding an inorganic salt such as KCl, NaCl, CaCl 2 , or MgCl 2 to a liquid of 0.01 to 7 M, preferably 0.5 to 2 M. Examples of the buffer solution include a phosphate buffer solution, a Tris buffer solution, and a MES buffer solution. Examples of the medium for tissue culture include the above-mentioned media. Of these, water is preferable because the effect is more preferably obtained. That is, it is preferable that the auxin solution is an aqueous solution in which an auxin-based plant hormone is dissolved in water.
オーキシン系植物ホルモン以外にオーキシン溶液に配合できる成分は特に限定されないが、グルタチオンが好ましい。これにより、より良好な発根率が得られる。
グルタチオンは、グルタミン酸、システイン及びグリシンを構成アミノ酸とするトリペプチドで、還元型グルタチオン、酸化型グルタチオン(グルタチオンジスルフィド)、及びこれらの混合物のいずれでもよいが、還元型グルタチオンが好ましい。
In addition to the auxin-based plant hormone, the components that can be blended in the auxin solution are not particularly limited, but glutathione is preferable. As a result, a better rooting rate can be obtained.
Glutathione is a tripeptide having glutamate, cysteine and glycine as constituent amino acids, and may be any of reduced glutathione, oxidized glutathione (glutathione disulfide), and mixtures thereof, but reduced glutathione is preferable.
オーキシン溶液中のグルタチオンの濃度は、好ましくは10μmol/L以上、より好ましくは30μmol/L以上、更に好ましくは40μmol/L以上、特に好ましくは60μmol/L以上、最も好ましくは80μmol/L以上であり、好ましくは500μmol/L以下、より好ましくは400μmol/L以下、更に好ましくは300μmol/L以下、特に好ましくは200μmol/L以下、最も好ましくは150μmol/L以下である。これにより、より良好な発根率が得られる。 The concentration of glutathione in the auxin solution is preferably 10 μmol / L or more, more preferably 30 μmol / L or more, still more preferably 40 μmol / L or more, particularly preferably 60 μmol / L or more, and most preferably 80 μmol / L or more. It is preferably 500 μmol / L or less, more preferably 400 μmol / L or less, still more preferably 300 μmol / L or less, particularly preferably 200 μmol / L or less, and most preferably 150 μmol / L or less. As a result, a better rooting rate can be obtained.
オーキシン溶液にはオーキシン系植物ホルモン以外の植物ホルモンを使用することも可能である。オーキシン溶液に使用できるサイトカイニン系植物ホルモンとしては、前記誘導培地に用いられるサイトカイニン系植物ホルモンと同様のものを用いることができるが、オーキシン溶液にはオーキシン系植物ホルモン以外の植物ホルモンを使用しないことが好ましい。 It is also possible to use plant hormones other than auxin-based plant hormones in the auxin solution. As the cytokinin-based plant hormone that can be used in the auxin solution, the same cytokinin-based plant hormone as that used in the induction medium can be used, but the auxin solution may not contain any plant hormone other than the auxin-based plant hormone. preferable.
オーキシン溶液中のオーキシン系植物ホルモン以外の植物ホルモンの濃度は、好ましくは2.0mg/L以下、より好ましくは1.0mg/L以下、更に好ましくは0.1mg/L以下、特に好ましくは0.08mg/L以下、最も好ましくは0mg/Lである。これにより、より良好な発根率が得られる。 The concentration of plant hormones other than auxin-based plant hormones in the auxin solution is preferably 2.0 mg / L or less, more preferably 1.0 mg / L or less, still more preferably 0.1 mg / L or less, and particularly preferably 0. It is 08 mg / L or less, most preferably 0 mg / L. As a result, a better rooting rate can be obtained.
(培養工程)
培養工程では、前記浸漬処理工程により浸漬されたシュートを発根誘導培地で培養することにより発根させる。
なお、発根誘導培地は、液体であっても固体であってもよいが、培地にシュートを差し込んで培養することで発根させやすくなるため、固体培養が好ましい。また、発根誘導培地が液体培地である場合には、静置培養を行ってもよく、振とう培養を行ってもよい。
(Culture process)
In the culturing step, the shoots soaked in the dipping treatment step are rooted by culturing in a rooting induction medium.
The rooting induction medium may be liquid or solid, but solid culture is preferable because rooting can be easily performed by inserting a shoot into the medium and culturing. When the rooting induction medium is a liquid medium, static culture may be performed or shaking culture may be performed.
培養工程に供されるシュートは、前記浸漬処理工程により浸漬されたシュートであれば特に限定されない。なかでも、前記浸漬処理工程においてシュートを浸漬することにより、シュートの基部に組織塊が形成されたシュートが好ましい。更には、シュートの基部に既に組織塊が形成されているシュートを前記浸漬処理工程に用いることもより好ましい。 The shoots used in the culturing step are not particularly limited as long as they are the shoots immersed in the immersion treatment step. Among them, a chute in which a tissue mass is formed at the base of the chute by immersing the chute in the dipping treatment step is preferable. Furthermore, it is more preferable to use a chute in which a tissue mass has already been formed at the base of the chute in the dipping treatment step.
発根誘導培地は、炭素源を含むものである。 The rooting induction medium contains a carbon source.
発根誘導培地に用いられる植物ホルモンとしては、特に限定されず、前記誘導培地に用いられる植物ホルモン(オーキシン系植物ホルモン、サイトカイニン系植物ホルモン)と同様のものを用いることができる。 The plant hormone used in the rooting induction medium is not particularly limited, and the same plant hormones (auxin-based plant hormone, cytokinin-based plant hormone) used in the induction medium can be used.
発根誘導培地に用いられる炭素源としては、特に限定されず、前記誘導培地に用いられる炭素源と同様のものを用いることができるが、なかでもスクロースが好ましい。これにより、より良好な発根率が得られる。 The carbon source used in the rooting induction medium is not particularly limited, and the same carbon source as that used in the induction medium can be used, but sucrose is particularly preferable. As a result, a better rooting rate can be obtained.
発根誘導培地は、前記誘導培地同様、更に、活性炭、硝酸銀を含むことが好ましい。これにより、より良好な発根率が得られる。 Like the induction medium, the rooting induction medium preferably further contains activated carbon and silver nitrate. As a result, a better rooting rate can be obtained.
発根誘導培地は、前記オーキシン溶液同様、更に、グルタチオンを含むことが好ましい。これにより、より良好な発根率が得られる。
グルタチオンとしては、還元型グルタチオン、酸化型グルタチオン、及びこれらの混合物のいずれでもよいが、還元型グルタチオンが好ましい。
The rooting induction medium preferably further contains glutathione as in the auxin solution. As a result, a better rooting rate can be obtained.
The glutathione may be any of reduced glutathione, oxidized glutathione, and a mixture thereof, but reduced glutathione is preferable.
発根誘導培地としては、前記誘導培地として用いられる基本培地や、該基本培地の組成に変更を加えた改変基本培地等のベースとなる培地に炭素源を加えた同様のものを用いることができるが、なかでも、MS培地、B5培地、WP培地、MB培地に炭素源を加えたものが好ましく、MS培地、その組成に変更を加えたMS改変培地、MB培地又はその組成に変更を加えたMB改変培地に炭素源を加えたものがより好ましく、MB培地又はその組成に変更を加えたMB改変培地に炭素源を加えたものが更に好ましい。 As the rooting induction medium, a basal medium used as the induction medium, a modified basal medium having a modified composition of the basal medium, or the like, to which a carbon source is added, can be used. However, among them, those obtained by adding a carbon source to MS medium, B5 medium, WP medium, and MB medium are preferable, and MS medium, MS modified medium having been modified in its composition, MB medium, or its composition has been modified. A carbon source added to the MB modified medium is more preferable, and an MB medium or an MB modified medium having a modified composition thereof added with a carbon source is further preferable.
発根誘導培地を固体培地とする場合、固形化剤を使用して培地を固体にすればよい。固形化剤としては、特に限定されず、寒天、ゲランガム、アガロース、ゲルライト、アガー、フィタゲル等が挙げられる。 When the rooting induction medium is a solid medium, a solidifying agent may be used to solidify the medium. The solidifying agent is not particularly limited, and examples thereof include agar, gellan gum, agarose, gellite, agar, and phytagel.
好適な発根誘導培地の組成及び培養条件は、植物種により異なり、また培地が液体培地であるか固体培地であるかによっても異なるが、通常は(特に、ゴムノキの場合は)以下の組成である。 The composition and culture conditions of a suitable rooting induction medium differ depending on the plant species and whether the medium is a liquid medium or a solid medium, but usually (especially in the case of rubber tree) the following composition is used. be.
発根誘導培地中の炭素源の濃度は、好ましくは0.1質量%以上、より好ましくは1.0質量%以上である。該炭素源の濃度は、好ましくは10質量%以下、より好ましくは6.0質量%以下である。 The concentration of the carbon source in the rooting induction medium is preferably 0.1% by mass or more, more preferably 1.0% by mass or more. The concentration of the carbon source is preferably 10% by mass or less, more preferably 6.0% by mass or less.
発根誘導培地中の植物ホルモンの濃度は、好ましくは2.0mg/L以下、より好ましくは1.0mg/L以下、更に好ましくは0.1mg/L以下、特に好ましくは0.08mg/L以下、最も好ましくは0mg/Lである。これにより、より良好な発根率が得られる。 The concentration of plant hormone in the rooting induction medium is preferably 2.0 mg / L or less, more preferably 1.0 mg / L or less, still more preferably 0.1 mg / L or less, and particularly preferably 0.08 mg / L or less. , Most preferably 0 mg / L. As a result, a better rooting rate can be obtained.
発根誘導培地中の活性炭の濃度は、好ましくは0.005質量%以上、より好ましくは0.008質量%以上である。該活性炭の濃度は、好ましくは1.0質量%以下、より好ましくは0.1質量%以下である。 The concentration of activated carbon in the rooting induction medium is preferably 0.005% by mass or more, more preferably 0.008% by mass or more. The concentration of the activated carbon is preferably 1.0% by mass or less, more preferably 0.1% by mass or less.
発根誘導培地中の硝酸銀の濃度は、好ましくは0.1mg/L以上、より好ましくは0.3mg/L以上、更に好ましくは0.5mg/L以上である。該硝酸銀の濃度は、好ましくは5.0mg/L以下、より好ましくは3.0mg/L以下である。 The concentration of silver nitrate in the rooting induction medium is preferably 0.1 mg / L or more, more preferably 0.3 mg / L or more, still more preferably 0.5 mg / L or more. The concentration of the silver nitrate is preferably 5.0 mg / L or less, more preferably 3.0 mg / L or less.
発根誘導培地中のグルタチオンの濃度は、好ましくは10μmol/L以上、より好ましくは30μmol/L以上、更に好ましくは40μmol/L以上、特に好ましくは60μmol/L以上、最も好ましくは80μmol/L以上であり、好ましくは500μmol/L以下、より好ましくは400μmol/L以下、更に好ましくは300μmol/L以下、特に好ましくは200μmol/L以下、最も好ましくは150μmol/L以下である。 The concentration of glutathione in the rooting induction medium is preferably 10 μmol / L or more, more preferably 30 μmol / L or more, still more preferably 40 μmol / L or more, particularly preferably 60 μmol / L or more, and most preferably 80 μmol / L or more. It is preferably 500 μmol / L or less, more preferably 400 μmol / L or less, still more preferably 300 μmol / L or less, particularly preferably 200 μmol / L or less, and most preferably 150 μmol / L or less.
発根誘導培地のpHは、4.0~10.0が好ましく、5.0~6.5がより好ましく、5.5~6.0が更に好ましい。 The pH of the rooting induction medium is preferably 4.0 to 10.0, more preferably 5.0 to 6.5, and even more preferably 5.5 to 6.0.
培養工程は、通常、温度、照明時間等の培養条件の管理された制御環境下で行われる。培養条件は適宜設定することができるが、例えば、培養温度は、0~40℃が好ましく、20~40℃がより好ましく、25~35℃が更に好ましい。培養は、暗所で行っても明所で行ってもよいが、光条件としては、例えば、5~20μmol/m/sの照明の下、14~16時間の明時間という条件などが挙げられる。培養時間は、特に限定されないが、1~10週間培養することが好ましく、4~8週間がより好ましい。 The culturing step is usually carried out in a controlled environment in which culturing conditions such as temperature and lighting time are controlled. The culture conditions can be set as appropriate, but for example, the culture temperature is preferably 0 to 40 ° C, more preferably 20 to 40 ° C, and even more preferably 25 to 35 ° C. The culture may be carried out in a dark place or in a light place, and examples of the light conditions include a condition of 14 to 16 hours of light time under illumination of 5 to 20 μmol / m 2 / s. Be done. The culturing time is not particularly limited, but the culturing is preferably 1 to 10 weeks, more preferably 4 to 8 weeks.
なお、本明細書において、培養工程の培養時間については、発根誘導培地に前記浸漬処理工程により浸漬されたシュート(シュートの切片)を移植したときを培養開始(0時間)とし、培養期間3週間目は、培養開始後504時間、培養期間9週間目は、培養開始後1512時間を意味し、新たな発根誘導培地に移植した(植え替えた)際は培養期間をリセットせずに、培養期間を累積加算することとする。 In the present specification, regarding the culturing time of the culturing step, the culturing start (0 hour) is defined as the time when the shoot (shoot section) immersed in the rooting induction medium is transplanted by the dipping treatment step, and the culturing period 3 The week means 504 hours after the start of the culture, and the 9th week of the culture period means 1512 hours after the start of the culture. The culture period will be cumulatively added.
固体培地の場合、発根誘導培地中の固形化剤の濃度は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上である。該固形化剤の濃度は、好ましくは2.0質量%以下、より好ましくは1.1質量%以下、更に好ましくは0.75質量%以下である。 In the case of a solid medium, the concentration of the solidifying agent in the rooting induction medium is preferably 0.1% by mass or more, more preferably 0.2% by mass or more. The concentration of the solidifying agent is preferably 2.0% by mass or less, more preferably 1.1% by mass or less, still more preferably 0.75% by mass or less.
上述の条件のなかでも、植物ホルモンの濃度が低いこと(実質的に含有しないこと)、グルタチオンを含有することが好ましく、植物ホルモンの濃度が低く(実質的に含有せず)、かつ、グルタチオンを含有することがより好ましい。 Among the above conditions, it is preferable that the concentration of plant hormone is low (substantially not contained) and glutathione is contained, the concentration of plant hormone is low (substantially not contained), and glutathione is contained. It is more preferable to contain it.
以上のように、前記浸漬処理工程により浸漬されたシュートを前記発根誘導培地で培養することにより、発根させることが可能であり、発根させたシュート(幼植物)が得られ、完全なクローン苗が形成される。 As described above, the shoots soaked in the dipping treatment step can be rooted by culturing in the rooting induction medium, and the rooted shoots (saplings) can be obtained and completely. Clone seedlings are formed.
得られた幼植物(木本植物のシュート由来の幼植物)は、従来であれば、直接土壌に移植されるが、本発明では、以下の水耕栽培工程に供する。 The obtained seedlings (saplings derived from shoots of woody plants) are conventionally directly transplanted to soil, but in the present invention, they are subjected to the following hydroponic cultivation steps.
(水耕栽培工程)
水耕栽培工程では、木本植物のシュート由来の幼植物を水耕栽培する。
(Hydroponic cultivation process)
In the hydroponic cultivation process, young plants derived from shoots of woody plants are hydroponically cultivated.
水耕栽培工程に供される幼植物は、木本植物のシュート由来の幼植物であれば特に限定されない。水耕栽培工程に供される幼植物には、前記の通り、発根したシュートだけではなく、発根したシュートに対して土耕栽培を行って、生育不良傾向となった植物も含まれる。 The seedlings used in the hydroponic cultivation process are not particularly limited as long as they are seedlings derived from shoots of woody plants. As described above, the seedlings used in the hydroponic cultivation process include not only rooted shoots but also plants that have tended to grow poorly due to soil cultivation of the rooted shoots.
水耕栽培工程に供される幼植物は、葉の展開が完了していることが好ましい。ここで、本明細書において、葉の展開が完了しているとは、芽が伸長し、出葉してから葉の展開が完了していることを意味する。 It is preferable that the leaf development of the seedlings used in the hydroponic cultivation process is completed. Here, in the present specification, the completion of leaf development means that the leaf development is completed after the buds have grown and the leaves have emerged.
水耕栽培工程に供される幼植物の地上部の高さは、好ましくは1m以下、より好ましくは50cm以下、更に好ましくは20cm以下であり、好ましくは1.5cm以上、より好ましくは3.0cm以上、更に好ましくは4.5cm以上である。前記範囲内であると、効果がより好適に得られる傾向がある。
ここで、水耕栽培工程に供される幼植物の地上部の高さは、水耕栽培工程開始時の幼植物の地上部の高さを意味する。
The height of the above-ground part of the seedlings used in the hydroponic cultivation step is preferably 1 m or less, more preferably 50 cm or less, further preferably 20 cm or less, preferably 1.5 cm or more, more preferably 3.0 cm. Above, more preferably 4.5 cm or more. Within the above range, the effect tends to be more preferably obtained.
Here, the height of the above-ground part of the seedlings used in the hydroponic cultivation process means the height of the above-ground part of the seedlings at the start of the hydroponic cultivation process.
水耕栽培では、通常は、養液を用いて栽培を行う。より好ましくは幼植物の根が養液に接触する状態で栽培を行う。そして、土壌などの固形培地を使用しない。 In hydroponics, cultivation is usually carried out using a nutrient solution. More preferably, the roots of the seedlings are cultivated in contact with the nutrient solution. And no solid medium such as soil is used.
前記養液は、植物が生長するために必要な養分を含む肥料を水に溶かして調製したものであり、植物の生育に適した養液であれば特に限定されず、従来公知のものを使用できるが、例えば、カネコ養液栽培用肥料ファームエース1号(カネコ種苗(株)製)、カネコ養液栽培用肥料ファームエース2号(カネコ種苗(株)製)、養液栽培用肥料OATハウス1号(OATアグリオ(株)製)、養液栽培用肥料OATハウス2号(OATアグリオ(株)製)、ハイポニカ液体肥料(協和(株)製)、ホーグランド水耕液などが使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。なかでも、ハイポニカ液体肥料(協和(株)製)、ホーグランド水耕液が好ましく、ホーグランド水耕液がより好ましい。 The nutrient solution is prepared by dissolving fertilizer containing nutrients necessary for plant growth in water, and is not particularly limited as long as it is a nutrient solution suitable for plant growth, and conventionally known nutrients are used. Yes, for example, Fertilizer Farm Ace No. 1 for hydroponic cultivation of Kaneko (manufactured by Kaneko Seedling Co., Ltd.), Fertilizer Farm Ace No. 2 for fertilizer for hydroponic cultivation of Kaneko (manufactured by Kaneko Seedling Co., Ltd.), Fertilizer for hydroponic cultivation OAT House No. 1 (manufactured by OAT Agrio Co., Ltd.), fertilizer for nutrient solution cultivation OAT House No. 2 (manufactured by OAT Agrio Co., Ltd.), Hyponica liquid fertilizer (manufactured by Kyowa Co., Ltd.), Hogland hydroponic liquid, etc. can be used. These may be used alone or in combination of two or more. Among them, Hyponica liquid fertilizer (manufactured by Kyowa Co., Ltd.) and Hoagland hydroponic solution are preferable, and Hoagland hydroponic solution is more preferable.
例えば、OATハウス1号は、窒素全量10.0質量%、水溶性リン酸8.0質量%、水溶性カリウム27.0質量%、水溶性苦土4.0質量%、水溶性マンガン0.10質量%、水溶性ホウ素0.10質量%、鉄分0.18質量%、銅分0.002質量%、亜鉛分0.006質量%、モリブデン分0.002質量%を含む粉末状の肥料である。
また、OATハウス2号は、窒素全量11.0質量%、石灰23.0質量%を含む粉末状肥料である。
For example, OAT House No. 1 has 10.0% by mass of total nitrogen, 8.0% by mass of water-soluble phosphoric acid, 27.0% by mass of water-soluble potassium, 4.0% by mass of water-soluble bitter soil, and 0% by mass of water-soluble manganese. A powdered fertilizer containing 10% by mass, 0.10% by mass of water-soluble boron, 0.18% by mass of iron, 0.002% by mass of copper, 0.006% by mass of zinc, and 0.002% by mass of molybdenum. be.
OAT House No. 2 is a powdered fertilizer containing 11.0% by mass of total nitrogen and 23.0% by mass of lime.
例えば、OATハウス1号とOATハウス2号とを用いて、養液を調製する場合には、公知の処方(例えば、A処方やC処方など)に従って、水にOATハウス1号を溶解させた後、その溶液にOATハウス2号を添加して溶解させる。
一例として、OATハウス1号(OATアグリオ(株)製)及びOATハウス2号(OATアグリオ(株)製)のA処方の成分組成を下記する。
窒素全量(TN):260ppm
(内アンモニア性窒素(AN):23ppm、硝酸性窒素(NN):233ppm)
リン酸(P):120ppm
加里(KO):405ppm
石灰(CaO):230ppm
苦土(MgO):60ppm
マンガン(MnO):1.5ppm
ホウ素(B):1.5ppm
鉄(Fe):2.7ppm
銅(Cu):0.03ppm
亜鉛(Zn):0.09ppm
モリブデン(Mo):0.03ppm
EC値(dS/m):2.6
For example, when preparing a nutrient solution using OAT House No. 1 and OAT House No. 2, OAT House No. 1 was dissolved in water according to a known formulation (for example, A formulation, C formulation, etc.). After that, OAT House No. 2 is added to the solution to dissolve it.
As an example, the component composition of the A formulation of OAT House No. 1 (manufactured by OAT Agrio Co., Ltd.) and OAT House No. 2 (manufactured by OAT Agrio Co., Ltd.) is as follows.
Total Nitrogen (TN): 260ppm
(Internal ammonia nitrogen (AN): 23 ppm, nitrate nitrogen (NN): 233 ppm)
Phosphoric acid (P 2 O 5 ): 120 ppm
Potassium (K 2 O): 405 ppm
Lime (CaO): 230ppm
Magnesium (MgO): 60ppm
Manganese (MnO): 1.5 ppm
Boron (B 2 O 3 ): 1.5 ppm
Iron (Fe): 2.7 ppm
Copper (Cu): 0.03ppm
Zinc (Zn): 0.09 ppm
Molybdenum (Mo): 0.03 ppm
EC value (dS / m): 2.6
例えば、ホーグランド水耕液は、以下の組成である。
Figure JPOXMLDOC01-appb-T000001
For example, the Hoagland hydroponic solution has the following composition.
Figure JPOXMLDOC01-appb-T000001
前記養液中の窒素含有量、水溶性リン酸含有量、水溶性カリウム含有量、石灰含有量、水溶性苦土含有量等は特に限定されず、植物の生育に適した養液となるように当業者であれば容易に設定可能である。
前記養液中の窒素濃度は、例えば、10~20mmol/lであることが好ましい。
前記養液中の水溶性リン酸濃度は、例えば、1~6mmol/lであることが好ましい。前記養液中の水溶性カリウム濃度は、例えば、5~15mmol/lであることが好ましい。
The nitrogen content, water-soluble phosphoric acid content, water-soluble potassium content, lime content, water-soluble bitter soil content, etc. in the nutrient solution are not particularly limited, and the nutrient solution is suitable for plant growth. It can be easily set by those skilled in the art.
The nitrogen concentration in the nutrient solution is preferably, for example, 10 to 20 mmol / l.
The water-soluble phosphoric acid concentration in the nutrient solution is preferably, for example, 1 to 6 mmol / l. The water-soluble potassium concentration in the nutrient solution is preferably, for example, 5 to 15 mmol / l.
発根、根の発達、及び地上部の生育がより促進され、幼植物の生育がより大きく促進され、木本植物のシュート由来の幼植物から植物体をより生産性良く製造するためには、養液の温度及び養液の溶存酸素量が非常に重要である。養液の温度及び養液の溶存酸素量を以下の好適な数値範囲内とすることにより、効果がより好適に得られる。
これは、以下のように推測される。
根に必要な酸素を十分に供給することで、酸素不足を防ぐとともに、生育に適した水温に保つことで、湿害を予防できる。これにより、根からの養分・水分の吸収を促し、健康な植物体をより好適に得られる。
In order to promote rooting, root development, and above-ground growth, to promote the growth of seedlings more, and to produce plants more productively from shoot-derived seedlings of woody plants, The temperature of the nutrient solution and the amount of dissolved oxygen in the nutrient solution are very important. The effect can be more preferably obtained by setting the temperature of the nutrient solution and the dissolved oxygen amount of the nutrient solution within the following suitable numerical ranges.
This is presumed as follows.
By supplying sufficient oxygen to the roots, oxygen deficiency can be prevented, and by keeping the water temperature suitable for growth, moisture damage can be prevented. As a result, the absorption of nutrients and water from the roots is promoted, and a healthy plant can be obtained more preferably.
養液の温度は、好ましくは20℃以上、より好ましくは22℃以上、更に好ましくは24℃以上、特に好ましくは25℃以上であり、好ましくは36℃以下、より好ましくは34℃以下、更に好ましくは32℃以下、特に好ましくは30℃以下、最も好ましくは28℃以下、より最も好ましくは26℃以下である。前記範囲内であると、効果がより好適に得られる傾向がある。 The temperature of the nutrient solution is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, particularly preferably 25 ° C. or higher, preferably 36 ° C. or lower, more preferably 34 ° C. or lower, still more preferably. Is 32 ° C. or lower, particularly preferably 30 ° C. or lower, most preferably 28 ° C. or lower, and more preferably 26 ° C. or lower. Within the above range, the effect tends to be more preferably obtained.
養液の溶存酸素量は、好ましくは2ppm以上、より好ましくは4ppm以上、更に好ましくは5ppm以上、特に好ましくは7ppm以上、最も好ましくは9ppm以上であり、好ましくは20ppm以下、より好ましくは18ppm以下、更に好ましくは15ppm以下、特に好ましくは12ppm以下である。前記範囲内であると、効果がより好適に得られる傾向がある。
なお、養液の溶存酸素量は、溶存酸素測定器を用いて25℃で測定される値である。
なお、溶存酸素量を前記範囲内とするための方法としては特に限定されないが、例えば、養液に対して、空気や酸素を添加、すなわち、エアレーションを行えばよい。これにより、効果がより好適に得られる傾向がある。
The amount of dissolved oxygen in the nutrient solution is preferably 2 ppm or more, more preferably 4 ppm or more, further preferably 5 ppm or more, particularly preferably 7 ppm or more, most preferably 9 ppm or more, preferably 20 ppm or less, more preferably 18 ppm or less. It is more preferably 15 ppm or less, and particularly preferably 12 ppm or less. Within the above range, the effect tends to be more preferably obtained.
The amount of dissolved oxygen in the nutrient solution is a value measured at 25 ° C. using a dissolved oxygen measuring device.
The method for keeping the dissolved oxygen amount within the above range is not particularly limited, but for example, air or oxygen may be added to the nutrient solution, that is, aeration may be performed. Thereby, the effect tends to be obtained more preferably.
養液の初期pHは、好ましくは5.6~5.8である。前記範囲内であると、効果がより好適に得られる傾向がある。
また、水耕栽培工程において、養液のpHを5.0~6.5に維持しながら栽培を行うことが好ましい。該pHは、好ましくは5.2以上、より好ましくは5.5以上であり、好ましくは6.3以下、より好ましくは6.0以下である。前記範囲内であると、効果がより好適に得られる傾向がある。
なお、前記pH範囲内となるように、必要に応じて、酸やアルカリを養液に添加して調整すればよい。
また、本明細書において、pHは、25℃で測定される値である。
The initial pH of the nutrient solution is preferably 5.6 to 5.8. Within the above range, the effect tends to be more preferably obtained.
Further, in the hydroponic cultivation step, it is preferable to carry out cultivation while maintaining the pH of the nutrient solution at 5.0 to 6.5. The pH is preferably 5.2 or more, more preferably 5.5 or more, preferably 6.3 or less, and more preferably 6.0 or less. Within the above range, the effect tends to be more preferably obtained.
If necessary, an acid or an alkali may be added to the nutrient solution to adjust the pH so that the pH is within the above range.
Further, in the present specification, pH is a value measured at 25 ° C.
水耕栽培工程において、明条件時の葉の位置での照度が5000lx以上の照度環境下で栽培を行うことが好ましい。照度は、好ましくは6000lx以上、より好ましくは7000lx以上であり、好ましくは15000lx以下、より好ましくは10000lx以下である。前記範囲内であると、効果がより好適に得られる傾向がある。
なお、本明細書において、葉の位置での照度は、JIS C 7612に準拠して測定される値である。
In the hydroponic cultivation step, it is preferable to cultivate in an illuminance environment where the illuminance at the position of the leaves under bright conditions is 5000 lpx or more. The illuminance is preferably 6000 lpx or more, more preferably 7000 lpx or more, preferably 15000 lpx or less, and more preferably 10000 lpx or less. Within the above range, the effect tends to be more preferably obtained.
In this specification, the illuminance at the leaf position is a value measured in accordance with JIS C 7612.
前記照度を得るための光源としては、特に限定されず、自然光を利用しても、人工光を利用しても、これらを組み合わせて利用してもよい。人工光を用いる場合、発光ダイオード(LED)、ハロゲンランプ、白熱電球、蛍光灯、アーク灯、無電極放電灯、低圧放電灯、冷陰極型蛍光管、外部電極型蛍光管、エレクトロルミネセンスライト、及びHIDランプ等を使用することができる。HIDランプとしては、例えば、高圧水銀ランプ、メタルハライドランプ、及び高圧ナトリウムランプ等が挙げられる。これらの光源は、1種類のみを使用してもよいし、2種以上を組み合わせて使用してもよい。 The light source for obtaining the illuminance is not particularly limited, and natural light, artificial light, or a combination of these may be used. When using artificial light, light emitting diode (LED), halogen lamp, incandescent lamp, fluorescent lamp, arc lamp, electrodeless discharge lamp, low pressure discharge lamp, cold cathode type fluorescent tube, external electrode type fluorescent tube, electroluminescence light, And HID lamps and the like can be used. Examples of the HID lamp include a high-pressure mercury lamp, a metal halide lamp, and a high-pressure sodium lamp. Only one type of these light sources may be used, or two or more types may be used in combination.
水耕栽培工程における日長時間(明条件)は、特に限定されないが、好ましくは12時間以上、より好ましくは14時間以上であり、22時間以下が好ましく、20時間以下がより好ましい。前記範囲内であると、効果がより好適に得られる傾向がある。 The daytime (bright condition) in the hydroponic cultivation step is not particularly limited, but is preferably 12 hours or more, more preferably 14 hours or more, preferably 22 hours or less, and more preferably 20 hours or less. Within the above range, the effect tends to be more preferably obtained.
水耕栽培工程における栽培温度は、好ましくは20℃以上、より好ましくは22℃以上、更に好ましくは24℃以上、特に好ましくは26℃以上であり、好ましくは36℃以下、より好ましくは34℃以下、更に好ましくは32℃以下、特に好ましくは30℃以下である。前記範囲内であると、効果がより好適に得られる傾向がある。 The cultivation temperature in the hydroponic cultivation step is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, particularly preferably 26 ° C. or higher, preferably 36 ° C. or lower, more preferably 34 ° C. or lower. It is more preferably 32 ° C. or lower, and particularly preferably 30 ° C. or lower. Within the above range, the effect tends to be more preferably obtained.
水耕栽培工程における栽培期間は、特に限定されないが、2ヶ月以上が好ましく、3ヶ月以上がより好ましく、4ヶ月以上が更に好ましく、上限については特に限定されない。前記範囲内であると、効果がより好適に得られる傾向がある。 The cultivation period in the hydroponic cultivation step is not particularly limited, but is preferably 2 months or longer, more preferably 3 months or longer, further preferably 4 months or longer, and the upper limit is not particularly limited. Within the above range, the effect tends to be more preferably obtained.
その他の水耕栽培条件としては、特に限定されず、植物の生育に適した通常採用される条件により栽培することができる。また、水耕栽培を行う装置等についても特に限定されず、通常水耕栽培に用いられる装置等を用いることができる。 Other hydroponic cultivation conditions are not particularly limited, and cultivation can be carried out under normally adopted conditions suitable for plant growth. Further, the apparatus or the like for hydroponics is not particularly limited, and an apparatus or the like usually used for hydroponics can be used.
水耕栽培工程では、幼植物の根の基部周りに弾性材を取り付けることが好ましい。これにより、幼植物が養液上に固定され、効果がより好適に得られる傾向がある。
弾性材としては、弾性を有する限り特に限定されないが、スポンジ、給水シート等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スポンジが好ましい。
ここで、本明細書において、根の基部とは、発根が見られた部位付近を意味する。
In the hydroponic cultivation process, it is preferable to attach an elastic material around the root base of the seedling. As a result, the seedlings tend to be fixed on the nutrient solution and the effect is more preferably obtained.
The elastic material is not particularly limited as long as it has elasticity, and examples thereof include a sponge and a water supply sheet. These may be used alone or in combination of two or more. Of these, a sponge is preferable.
Here, in the present specification, the root base means the vicinity of the site where rooting is observed.
幼植物の根の基部に弾性材を取り付ける際に、基部を締め付けすぎないことが好ましい。そのため、弾性材は切込みが入れられていることが好ましい。
弾性材の引張強度は、好ましくは30KPa以上、より好ましくは40KPa以上、更に好ましくは60KPa以上であり、好ましくは1000KPa以下、より好ましくは500KPa以下、更に好ましくは100KPa以下である。前記範囲内であると、弾性材が基部を締め付けすぎず、効果がより好適に得られる傾向がある。
なお、本明細書において、弾性材の引張強度は、JIS K6400-5に準拠し、試験片を引張試験機で引っ張り、破断までの最大力を試験片断面積で除した値を引張強度とする。
When attaching the elastic material to the root base of the seedling, it is preferable not to overtighten the base. Therefore, it is preferable that the elastic material is notched.
The tensile strength of the elastic material is preferably 30 KPa or more, more preferably 40 KPa or more, further preferably 60 KPa or more, preferably 1000 KPa or less, more preferably 500 KPa or less, still more preferably 100 KPa or less. Within the above range, the elastic material does not overtighten the base, and the effect tends to be more preferably obtained.
In the present specification, the tensile strength of the elastic material is based on JIS K6400-5, and the value obtained by pulling the test piece with a tensile tester and dividing the maximum force until breaking by the cross-sectional area of the test piece is defined as the tensile strength.
以上のように、木本植物のシュート由来の幼植物を水耕栽培する水耕栽培工程を行うことにより、土耕栽培に比べて、発根、根の発達、及び地上部の生育が促進され、幼植物の生育が大きく促進され、木本植物のシュート由来の幼植物から植物体(完全な植物体であるクローン苗)を生産性良く製造できる。
得られた植物体は、必要に応じて、土壌に移植してもよい。
なお、前記水耕栽培工程を行うことにより、馴化も完了する。よって、前記水耕栽培工程を行うことにより、馴化と初期成育を共に効率的に促進できるため、別途、馴化工程を行う必要がなく、木本植物のシュート由来の幼植物から植物体(完全な植物体であるクローン苗)を生産性良く製造できる。
As described above, by performing the hydroponic cultivation process of hydroponic cultivation of shoot-derived seedlings of woody plants, rooting, root development, and above-ground growth are promoted as compared with soil cultivation. , The growth of seedlings is greatly promoted, and a plant body (a cloned seedling which is a complete plant body) can be produced with high productivity from seedlings derived from shoots of woody plants.
The obtained plant body may be transplanted to soil if necessary.
By performing the hydroponic cultivation step, the acclimatization is also completed. Therefore, by performing the hydroponic cultivation step, both acclimatization and initial growth can be efficiently promoted, so that it is not necessary to separately perform the acclimatization step, and the shoot-derived seedlings of the woody plant to the plant body (complete). Clone seedlings, which are plants, can be produced with high productivity.
<天然ゴムの製造方法>
本発明の天然ゴムの製造方法は、
前記植物体の製造方法により植物体を製造する植物体製造工程と、
植物体製造工程により得られた植物体を用いて天然ゴムを製造する天然ゴム製造工程とを含む。本発明の天然ゴムの製造方法は、前記植物体の製造方法により植物体を製造する植物体製造工程を含むため、天然ゴムを生産性良く製造できる。
<Manufacturing method of natural rubber>
The method for producing natural rubber of the present invention
A plant manufacturing process for producing a plant by the method for producing a plant, and a plant manufacturing process.
It includes a natural rubber manufacturing step of manufacturing natural rubber using a plant obtained by a plant manufacturing step. Since the method for producing natural rubber of the present invention includes a plant body production step for producing a plant body by the method for producing a plant body, natural rubber can be produced with high productivity.
植物体製造工程は、前記植物体の製造方法により植物体を製造する工程であり、前記植物体の製造方法を実施すればよい。 The plant body manufacturing step is a step of manufacturing a plant body by the plant body manufacturing method, and the plant body manufacturing method may be carried out.
天然ゴム製造工程では、植物体製造工程により得られた植物体を用いて天然ゴムを製造する。具体的には、植物体製造工程により得られた植物体を栽培することにより、該植物体が有する乳管細胞で天然ゴムを生合成させ、天然ゴムを製造すればよい。 In the natural rubber manufacturing process, natural rubber is manufactured using the plant body obtained in the plant body manufacturing process. Specifically, by cultivating the plant body obtained in the plant body manufacturing step, natural rubber may be biosynthesized in the ductal cells of the plant body to produce the natural rubber.
植物体からの天然ゴムの回収方法は従来公知の方法に従って行えばよい。
例えば、植物体をナイフ等で物理的に傷つけ、乳液(ラテックス)を回収し、必要に応じて、酸を添加する方法等によりラテックスを固化することにより、植物体からゴム(天然ゴム)を固形分として回収できる。得られたゴム(天然ゴム)は、必要に応じて、洗浄、脱水、乾燥を行ってから使用すればよい。
The method for recovering natural rubber from a plant may be carried out according to a conventionally known method.
For example, rubber (natural rubber) is solidified from the plant by physically damaging the plant with a knife or the like, collecting the milky lotion (latex), and solidifying the latex by adding acid as necessary. Can be collected as minutes. The obtained rubber (natural rubber) may be used after being washed, dehydrated, and dried, if necessary.
<ゴム製品の製造方法>
本発明のゴム製品の製造方法は、
前記天然ゴムの製造方法により天然ゴムを製造する工程、該工程により得られる天然ゴムと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含む。本発明のゴム製品の製造方法は、前記天然ゴムの製造方法により天然ゴムを製造する工程を含むため、ゴム製品を生産性良く製造できる。
<Manufacturing method of rubber products>
The method for producing a rubber product of the present invention is
A step of producing natural rubber by the method for producing natural rubber, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and a raw rubber product molding step of molding a raw rubber product from the kneaded product. , And a vulcanization step of vulcanizing the raw rubber product. Since the method for producing a rubber product of the present invention includes a step of producing a natural rubber by the method for producing a natural rubber, the rubber product can be produced with high productivity.
ゴム製品としては、ゴム(好ましくは天然ゴム)を使用して製造できるゴム製品であれば特に限定されず、例えば、空気入りタイヤ、ゴムクローラ、ゴム防舷材等が挙げられる。 The rubber product is not particularly limited as long as it is a rubber product that can be manufactured using rubber (preferably natural rubber), and examples thereof include pneumatic tires, rubber crawlers, and rubber fenders.
ゴム製品が空気入りタイヤの場合、すなわち、本発明のゴム製品の製造方法が本発明の空気入りタイヤの製造方法の場合、前記生ゴム製品成形工程は、前記混練物から生タイヤを成形する生タイヤ成形工程に、前記加硫工程は、前記生タイヤを加硫する加硫工程に相当する。すなわち、本発明の空気入りタイヤの製造方法は、前記天然ゴムの製造方法により天然ゴムを製造する工程、該工程により得られる天然ゴムと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む。本発明の空気入りタイヤの製造方法は、前記天然ゴムの製造方法により天然ゴムを製造する工程を含むため、空気入りタイヤを生産性良く製造できる。 When the rubber product is a pneumatic tire, that is, when the method for manufacturing the rubber product of the present invention is the method for manufacturing the pneumatic tire of the present invention, the raw rubber product molding step is a raw tire for molding the raw tire from the kneaded product. In the molding step, the vulcanization step corresponds to a vulcanization step of vulcanizing the raw tire. That is, the method for producing a pneumatic tire of the present invention includes a step of producing natural rubber by the method for producing natural rubber, and a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product. It includes a raw tire molding step of molding a raw tire from the kneaded product and a vulcanization step of vulcanizing the raw tire. Since the method for producing a pneumatic tire of the present invention includes a step of producing natural rubber by the method for producing natural rubber, the pneumatic tire can be produced with high productivity.
前記天然ゴムの製造方法により天然ゴムを製造する工程は、前記天然ゴムの製造方法を実施し、天然ゴムを製造すればよい。 In the step of producing natural rubber by the method for producing natural rubber, the method for producing natural rubber may be carried out to produce natural rubber.
<混練工程>
混練工程では、前記天然ゴムの製造方法により天然ゴムを製造する工程により得られる天然ゴムと、添加剤とを混練して混練物を得る。
<Kneading process>
In the kneading step, the natural rubber obtained by the step of producing the natural rubber by the method for producing the natural rubber and the additive are kneaded to obtain a kneaded product.
添加剤としては特に限定されず、ゴム製品の製造に用いられる添加剤を使用できる。例えば、ゴム製品が空気入りタイヤの場合、例えば、前記ラテックスから得られたゴム以外のゴム成分、カーボンブラック、シリカ、炭酸カルシウム、アルミナ、クレー、タルクなどの補強用充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、加工助剤、各種老化防止剤、オイルなどの軟化剤、ワックス、硫黄などの加硫剤、加硫促進剤等が挙げられる。 The additive is not particularly limited, and an additive used in the production of rubber products can be used. For example, when the rubber product is a pneumatic tire, for example, a rubber component other than rubber obtained from the latex, a reinforcing filler such as carbon black, silica, calcium carbonate, alumina, clay, talc, a silane coupling agent, etc. Examples thereof include zinc oxide, stearic acid, processing aids, various antioxidants, softeners such as oil, vulcanizing agents such as wax and sulfur, and vulcanization accelerators.
混練工程における混練は、オープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて行えばよい。 The kneading in the kneading step may be performed using a rubber kneading device such as an open roll, a Banbury mixer, or a closed kneader.
<生ゴム製品成形工程(タイヤの場合は生タイヤ成形工程)>
生ゴム製品成形工程では、混練工程により得られた混練物から生ゴム製品(タイヤの場合は生タイヤ)を成形する。
生ゴム製品の成形方法としては特に限定されず、生ゴム製品の成形に用いられる方法を適宜適用すればよい。例えば、ゴム製品が空気入りタイヤの場合、混練工程により得られた混練物を、各タイヤ部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、各タイヤ部材を貼り合わせ、生タイヤ(未加硫タイヤ)を成形すればよい。
<Raw rubber product molding process (raw tire molding process for tires)>
In the raw rubber product molding step, a raw rubber product (raw tire in the case of a tire) is molded from the kneaded product obtained in the kneading step.
The method for molding the raw rubber product is not particularly limited, and the method used for molding the raw rubber product may be appropriately applied. For example, when the rubber product is a pneumatic tire, the kneaded product obtained in the kneading process is extruded according to the shape of each tire member, molded by a normal method on a tire molding machine, and each tire member. The tires may be bonded together to form a raw tire (unvulcanized tire).
<加硫工程>
加硫工程では、生ゴム製品成形工程により得られた生ゴム製品を加硫することにより、ゴム製品が得られる。
生ゴム製品を加硫する方法としては特に限定されず、生ゴム製品の加硫に用いられる方法を適宜適用すればよい。例えば、ゴム製品が空気入りタイヤの場合、生ゴム製品成形工程により得られた生タイヤ(未加硫タイヤ)を加硫機中で加熱加圧して加硫することにより空気入りタイヤが得られる。
<Vulcanization process>
In the vulcanization step, a rubber product is obtained by vulcanizing the raw rubber product obtained in the raw rubber product molding step.
The method for vulcanizing the raw rubber product is not particularly limited, and the method used for vulcanizing the raw rubber product may be appropriately applied. For example, when the rubber product is a pneumatic tire, the pneumatic tire can be obtained by heating and pressurizing the raw tire (unvulcanized tire) obtained in the raw rubber product molding step in a vulcanizer and vulcanizing it.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
以下、実施例で使用した各種薬品について、まとめて説明する。
BA:ベンジルアデニン
KI:カイネチン
硝酸銀:メルク社製の硝酸銀
ゲル化剤(固形化剤):シグマアルドリッチ社製のPhytagel
Hereinafter, various chemicals used in the examples will be collectively described.
BA: Benzyl adenine KI: Kinetin Silver nitrate: Silver nitrate gelling agent (solidifying agent) manufactured by Merck & Co., Ltd .: Phytagel manufactured by Sigma-Aldrich Co., Ltd.
<誘導工程>
パラゴムノキの苗木から腋芽を含む組織を採取した。
次に、苗木から採取した腋芽を含む組織を流水で洗浄し、更に70質量%エタノールで洗浄した後、約5~10体積%に希釈した次亜塩素酸ナトリウム水溶液で滅菌し、滅菌水で洗浄した。
<Induction process>
Tissues containing axillary buds were collected from Hevea brasiliensis saplings.
Next, the tissue containing the axillary buds collected from the seedlings was washed with running water, further washed with 70% by mass ethanol, sterilized with an aqueous solution of sodium hypochlorite diluted to about 5 to 10% by volume, and washed with sterilized water. bottom.
次に、滅菌した組織を誘導培地(固体培地)に差し込み、培養を行った(誘導工程)。誘導培地は、MB培地に、ベンジルアデニン5.0mg/L、硝酸銀1.0mg/L、スクロース3.0質量%、活性炭0.05質量%を添加し、培地のpHを5.7に調整した後、ゲル化剤を0.275質量%となるように添加して、オートクレーブ(121℃、20分)で滅菌し、クリーンベンチ内で冷却することにより調製した。 Next, the sterilized tissue was inserted into an induction medium (solid medium) and cultured (induction step). As the induction medium, benzyladenine 5.0 mg / L, silver nitrate 1.0 mg / L, sculose 3.0% by mass, and activated charcoal 0.05% by mass were added to MB medium to adjust the pH of the medium to 5.7. After that, a gelling agent was added so as to be 0.275% by mass, sterilized in an autoclave (121 ° C., 20 minutes), and prepared by cooling in a clean bench.
パラゴムノキの前記組織を誘導培地(固体培地)に差し込み、培養温度28℃、12.5μmol/m/sの照明の下、16時間の明時間という条件で培養し、シュートを誘導した。なお、4週間ごとに同じ組成の誘導培地に移植する植え継ぎを行った。
誘導工程により誘導されたシュートを以下において使用した。
The tissue of Hevea brasiliensis was inserted into an induction medium (solid medium) and cultured under illumination at a culture temperature of 28 ° C. and 12.5 μmol / m 2 / s under the condition of 16 hours of light time to induce shoots. In addition, transplantation was carried out every 4 weeks by transplanting to an induction medium having the same composition.
The shoots induced by the induction step were used below.
オーキシン溶液(5.0mg/L 1-ナフタレン酢酸、5.0mg/L インドール-3-酪酸、100μmol/L 還元型グルタチオン)にシュートの切り口を72時間浸漬した(浸漬処理工程、温度:28℃、12.5μmol/m/sの照明の下、16時間日長)。次に、MB基本培地に3.0質量%スクロース、0.01質量%活性炭、1.0mg/L硝酸銀、100μmol/L 還元型グルタチオン、0.275質量%固形化剤を含むホルモンフリー(植物ホルモンの濃度0mg/L)の固形培地(pH5.7)に、浸漬処理工程により浸漬処理されたシュートの切り口面を挿し込み培養した(培養工程)。培養は、12.5μmol/m/sの照明の下、16時間日長、温度25~28℃で8週間培養した。ホルモンフリーの培地で培養を開始後2週間目から根が確認できる個体があり、該個体を更に4週間培養し、幼植物(シュート由来の幼植物)を得た。
なお、オーキシン溶液は、前記成分を蒸留水に溶解することにより調製した。
また、培地は、基本培地に、固形化剤を除く前記各成分を添加し、培地のpHを5.7に調整した後、固形化剤を0.275質量%となるように添加して、オートクレーブ(121℃、20分)で滅菌し、クリーンベンチ内で冷却することにより調製した。
The cut end of the chute was immersed in an auxin solution (5.0 mg / L 1-naphthalene acetic acid, 5.0 mg / L indole-3-butyric acid, 100 μmol / L reduced glutathione) for 72 hours (immersion treatment step, temperature: 28 ° C., 16 hours day length under 12.5 μmol / m 2 / s illumination). Next, hormone-free (plant hormone) containing 3.0% by mass sucrose, 0.01% by mass activated charcoal, 1.0 mg / L silver nitrate, 100 μmol / L reduced glutathione, and 0.275% by mass solidifying agent in MB basal medium. In a solid medium (pH 5.7) having a concentration of 0 mg / L), the cut end surface of the shoots immersed in the immersion treatment step was inserted and cultured (culture step). The culture was carried out under illumination of 12.5 μmol / m 2 / s for 16 hours on a day length and at a temperature of 25 to 28 ° C. for 8 weeks. There was an individual whose roots could be confirmed from 2 weeks after the start of culturing in a hormone-free medium, and the individual was cultivated for another 4 weeks to obtain a seedling (shoot-derived seedling).
The auxin solution was prepared by dissolving the above components in distilled water.
Further, as the medium, the above-mentioned components other than the solidifying agent were added to the basal medium, the pH of the medium was adjusted to 5.7, and then the solidifying agent was added so as to be 0.275% by mass. Prepared by sterilizing in an autoclave (121 ° C., 20 minutes) and cooling in a clean bench.
(実施例1)水耕栽培
得られた幼植物(地上部の高さ:5.0cm)の根の基部周りに、切込みを入れたスポンジ(引張強度:80KPa)を取り付けた。そして、台座(材質:発泡スチロール)に設けた穴に植物をセットし、養液(養液の初期pH:5.7)を入れた深さのある容器に台座を浮かべた。この際に、幼植物の根が養液に浸かるようにした。養液には、エアポンプで酸素を供給し、養液の溶存酸素量を12ppmに維持した。そして、養液の温度25℃、栽培温度28℃で、明条件16時間、暗条件8時間の条件下で水耕栽培を行った。
なお、明条件時の葉の位置での照度は5,000~10,000lxを維持し、暗条件時の葉の位置での照度は1lx以下を維持した。
また、硝酸溶液を養液に添加して、養液のpHを5.6~5.8に維持しながら栽培を行った。
(Example 1) Hydroponics A notched sponge (tensile strength: 80 KPa) was attached around the root base of the obtained seedling (height above ground: 5.0 cm). Then, the plant was set in the hole provided in the pedestal (material: Styrofoam), and the pedestal was floated in a deep container containing the nutrient solution (initial pH of the nutrient solution: 5.7). At this time, the roots of the seedlings were soaked in the nutrient solution. Oxygen was supplied to the nutrient solution by an air pump, and the amount of dissolved oxygen in the nutrient solution was maintained at 12 ppm. Then, hydroponics was carried out under the conditions of a nutrient solution temperature of 25 ° C. and a cultivation temperature of 28 ° C. under bright conditions of 16 hours and dark conditions of 8 hours.
The illuminance at the leaf position under the light condition was maintained at 5,000 to 10,000 lx, and the illuminance at the leaf position under the dark condition was maintained at 1 lx or less.
In addition, a nitric acid solution was added to the nutrient solution, and cultivation was carried out while maintaining the pH of the nutrient solution at 5.6 to 5.8.
なお、養液としては、ホーグランド水耕液を使用した。 As the nutrient solution, Hoagland hydroponic solution was used.
そして、栽培中1ヶ月経過毎に観察、写真撮影を行い、根の形成状態の確認、根の伸長、地上部の高さ、茎の太さ、葉の枯れの有無などを観察し、地上部の生育状態と根の形成状態を評価した。 Then, observe and take photographs every month during cultivation to check the root formation state, root elongation, above-ground height, stem thickness, and whether or not leaves are dead. The growth state and root formation state of the plant were evaluated.
(比較例1)
養液の代わりに培養土(バーミキュライトと観葉植物の土の混合)を用いた点以外は同様の条件で土耕栽培を行った。水やりは、前記養液をじょうろを用いて培養土に一日に一回加えて、培養土を湿らせることにより行った。
(Comparative Example 1)
Soil cultivation was carried out under the same conditions except that potting soil (a mixture of vermiculite and foliage plant soil) was used instead of the nutrient solution. Watering was carried out by adding the nutrient solution to the potting soil once a day using a watering can to moisten the potting soil.
実施例、比較例における評価結果を図1に示す。なお、各例はそれぞれ2回実施した。
図1(a)は、各例の地上部の高さの推移を、図1(b)は、各例の茎の太さの推移を示す。
図1より、実施例、比較例の対比により、水耕栽培することにより、土耕栽培に比べて、地上部の生育が顕著に促進されることが分かった。
また、土耕栽培を行った比較例1-1、1-2では、栽培初期の約6ヶ月に渡って遅延ステージ(retarded stage)が見られたのに対して、水耕栽培を行った実施例1-1、1-2では、栽培初期から地上部の生育が確認された。
なお、茎の太さは、地上部と根の境界から1.0cm離れた箇所の茎の太さを測定した。
The evaluation results in Examples and Comparative Examples are shown in FIG. Each example was carried out twice.
FIG. 1 (a) shows the transition of the height of the above-ground portion of each example, and FIG. 1 (b) shows the transition of the stem thickness of each example.
From FIG. 1, by comparing Examples and Comparative Examples, it was found that hydroponics significantly promotes the growth of the above-ground part as compared with soil cultivation.
Further, in Comparative Examples 1-1 and 1-2 in which soil cultivation was carried out, a delayed stage was observed for about 6 months at the initial stage of cultivation, whereas hydroponics was carried out. In Examples 1-1 and 1-2, the growth of the above-ground part was confirmed from the early stage of cultivation.
As for the thickness of the stem, the thickness of the stem at a location 1.0 cm away from the boundary between the above-ground part and the root was measured.
図2は、各例の栽培3ヶ月経過時における地上部の様子を示す写真である。
図2より、水耕栽培した場合、土耕栽培した場合に比べて、地上部の生育が促進され、葉の健康状態が良好であることが分かった。
FIG. 2 is a photograph showing the state of the above-ground part of each example after 3 months of cultivation.
From FIG. 2, it was found that in the case of hydroponics, the growth of the above-ground part was promoted and the health condition of the leaves was better than that in the case of soil cultivation.
図3は、各例の栽培3ヶ月経過時における根の様子を示す写真である。
図3より、土耕栽培した比較例では、主に主根が渦を巻いているが、水耕栽培した実施例では、根は渦を巻かず、側根が発達していることが分かった。このように、水耕栽培した場合、土耕栽培に比べて、発根、根の発達が促進されることが分かった。
FIG. 3 is a photograph showing the state of the roots of each example after 3 months of cultivation.
From FIG. 3, it was found that the taproots were mainly swirled in the comparative example of soil cultivation, but the roots were not swirling and the lateral roots were developed in the example of hydroponics. Thus, it was found that hydroponics promotes rooting and root development as compared with soil cultivation.
(実施例2)
まず、前記と同様にして得られた幼植物(地上部の高さ:5.0cm)を用いて土耕栽培を行った。この際に、生育不良となった。
この生育不良となった苗を実施例1と同様の条件で水耕栽培を2ヶ月行った。水耕栽培開始時の苗と、水耕栽培2ヶ月経過時の苗の写真を図4に示した。
図4より、木本植物のシュート由来の幼植物に対して土耕栽培を行って、生育不良傾向となった場合であっても、生育不良傾向の幼植物を水耕栽培に切り替えて栽培することにより、生育の改善が見られることが分かった。
一方、生育不良となった苗を比較例1と同様の条件で土耕栽培を行ったが、枯れてしまった。
(Example 2)
First, soil cultivation was carried out using the seedlings (height of the above-ground part: 5.0 cm) obtained in the same manner as described above. At this time, the growth became poor.
The seedlings having poor growth were hydroponically cultivated for 2 months under the same conditions as in Example 1. Photographs of the seedlings at the start of hydroponics and the seedlings after 2 months of hydroponics are shown in FIG.
From FIG. 4, soil cultivation is carried out on shoot-derived seedlings of woody plants, and even when the growth tends to be poor, the seedlings that tend to grow poorly are switched to hydroponics and cultivated. As a result, it was found that the growth was improved.
On the other hand, the seedlings with poor growth were cultivated in soil under the same conditions as in Comparative Example 1, but they died.
以上の通り、水耕栽培した場合、土耕栽培に比べて、発根、根の発達、及び地上部の生育が促進され、幼植物の生育が大きく促進され、木本植物のシュート由来の幼植物から植物体を生産性良く製造できることが分かった。 As described above, when hydroponically cultivated, rooting, root development, and above-ground growth are promoted, and the growth of seedlings is greatly promoted as compared with soil cultivation. It was found that plants can be produced from plants with high productivity.

Claims (12)

  1. 木本植物のシュート由来の幼植物を水耕栽培する水耕栽培工程を含む植物体の製造方法。 A method for producing a plant including a hydroponic cultivation step in which a young plant derived from a shoot of a woody plant is hydroponically cultivated.
  2. 前記水耕栽培工程において、養液の温度が20~36℃である請求項1記載の植物体の製造方法。 The method for producing a plant according to claim 1, wherein in the hydroponic cultivation step, the temperature of the nutrient solution is 20 to 36 ° C.
  3. 前記水耕栽培工程において、養液の溶存酸素量が2~20ppmである請求項1又は2記載の植物体の製造方法。 The method for producing a plant according to claim 1 or 2, wherein in the hydroponic cultivation step, the amount of dissolved oxygen in the nutrient solution is 2 to 20 ppm.
  4. 前記水耕栽培工程において、養液の初期pHが5.6~5.8である請求項1~3のいずれかに記載の植物体の製造方法。 The method for producing a plant according to any one of claims 1 to 3, wherein the initial pH of the nutrient solution is 5.6 to 5.8 in the hydroponic cultivation step.
  5. 前記水耕栽培工程において、養液のpHを5.0~6.5に維持する請求項1~4のいずれかに記載の植物体の製造方法。 The method for producing a plant according to any one of claims 1 to 4, wherein the pH of the nutrient solution is maintained at 5.0 to 6.5 in the hydroponic cultivation step.
  6. 前記水耕栽培工程において、明条件時の葉の位置での照度が5000lx以上の照度環境下で栽培を行う請求項1~5のいずれかに記載の植物体の製造方法。 The method for producing a plant according to any one of claims 1 to 5, wherein in the hydroponic cultivation step, cultivation is performed in an illuminance environment where the illuminance at the leaf position under bright conditions is 5000 lpx or more.
  7. 前記幼植物の地上部の高さが1m以下である請求項1~6のいずれかに記載の植物体の製造方法。 The method for producing a plant according to any one of claims 1 to 6, wherein the height of the above-ground portion of the seedling is 1 m or less.
  8. 前記シュートがHevea属に属する植物のシュートである請求項1~7のいずれかに記載の植物体の製造方法。 The method for producing a plant according to any one of claims 1 to 7, wherein the shoot is a shoot of a plant belonging to the genus Hevea.
  9. 前記シュートがパラゴムノキのシュートである請求項1~7のいずれかに記載の植物体の製造方法。 The method for producing a plant according to any one of claims 1 to 7, wherein the shoot is a shoot of Hevea brasiliensis.
  10. 請求項1~9のいずれかに記載の植物体の製造方法により植物体を製造する植物体製造工程と、
    植物体製造工程により得られた植物体を用いて天然ゴムを製造する天然ゴム製造工程とを含む天然ゴムの製造方法。
    A plant manufacturing process for producing a plant by the method for producing a plant according to any one of claims 1 to 9.
    A method for producing natural rubber, which comprises a natural rubber manufacturing process for producing natural rubber using a plant obtained by a plant manufacturing process.
  11. 請求項10記載の天然ゴムの製造方法により天然ゴムを製造する工程、該工程により得られる天然ゴムと、添加剤とを混練して混練物を得る混練工程、前記混練物から生タイヤを成形する生タイヤ成形工程、及び前記生タイヤを加硫する加硫工程を含む空気入りタイヤの製造方法。 A step of producing natural rubber by the method for producing natural rubber according to claim 10, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and molding a raw tire from the kneaded product. A method for producing a pneumatic tire, which comprises a raw tire molding step and a vulcanization step of vulcanizing the raw tire.
  12. 請求項10記載の天然ゴムの製造方法により天然ゴムを製造する工程、該工程により得られる天然ゴムと、添加剤とを混練して混練物を得る混練工程、前記混練物から生ゴム製品を成形する生ゴム製品成形工程、及び前記生ゴム製品を加硫する加硫工程を含むゴム製品の製造方法。
     
    A step of producing natural rubber by the method for producing natural rubber according to claim 10, a kneading step of kneading the natural rubber obtained by the step and an additive to obtain a kneaded product, and molding a raw rubber product from the kneaded product. A method for producing a rubber product, which comprises a raw rubber product molding step and a vulcanization step of vulcanizing the raw rubber product.
PCT/JP2021/011569 2020-04-02 2021-03-22 Method for producing plant body, method for producing natural rubber, method for producing pneumatic tire, and method for producing rubber product WO2021200303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180021219.8A CN115279174A (en) 2020-04-02 2021-03-22 Method for producing plant material, method for producing natural rubber, method for producing pneumatic tire, and method for producing rubber product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020066819A JP7278237B2 (en) 2020-04-02 2020-04-02 Plant body manufacturing method, natural rubber manufacturing method, pneumatic tire manufacturing method, and rubber product manufacturing method
JP2020-066819 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021200303A1 true WO2021200303A1 (en) 2021-10-07

Family

ID=77928424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011569 WO2021200303A1 (en) 2020-04-02 2021-03-22 Method for producing plant body, method for producing natural rubber, method for producing pneumatic tire, and method for producing rubber product

Country Status (3)

Country Link
JP (2) JP7278237B2 (en)
CN (1) CN115279174A (en)
WO (1) WO2021200303A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456401B (en) * 2021-12-23 2023-09-19 西北农林科技大学 Extraction method capable of improving yield of natural rubber of bumper Liu Zhongtian

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110506A (en) * 2003-10-02 2005-04-28 Bridgestone Corp Method for mass proliferation of elite tree of hevea brasiliensis by tissue culture
JP2008061602A (en) * 2006-09-08 2008-03-21 Osaka Prefecture Univ Method for raising plant cutting seedling
JP2016140318A (en) * 2015-02-03 2016-08-08 住友ゴム工業株式会社 Recovering method of rubber tree, proliferation method of rubber tree, induction method of shoot, growth method of shoot, root method of shoot and conditioning method for infant plant
JP2016149973A (en) * 2015-02-17 2016-08-22 住友ゴム工業株式会社 Collection method of latex, cultivation method of plants belonging to asteraceae, production method of pneumatic tire, and production method of rubber goods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173030B2 (en) 2003-03-05 2008-10-29 本田技研工業株式会社 Method for separating laminated glass and separating apparatus for the method
JP2007319047A (en) 2006-05-31 2007-12-13 Oji Paper Co Ltd Method for creating seedling or scion-production mother tree
JP5880773B2 (en) 2011-12-27 2016-03-09 株式会社リコー Communication management system, communication system, communication management method, and program
US10172307B2 (en) * 2012-09-05 2019-01-08 Sumitomo Rubber Industries, Ltd. Plant-adventitious-embryo induction method, plant restoration method, and plant reproduction method
TWI763772B (en) 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
JP2018166479A (en) * 2017-03-30 2018-11-01 国立研究開発法人産業技術総合研究所 Growth promoting method of lamiaceae arboreous plant branches and leaves, and production method of plant branches and leaves thereof
JP2019083721A (en) * 2017-11-06 2019-06-06 住友ゴム工業株式会社 Water culture method of asteraceae plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110506A (en) * 2003-10-02 2005-04-28 Bridgestone Corp Method for mass proliferation of elite tree of hevea brasiliensis by tissue culture
JP2008061602A (en) * 2006-09-08 2008-03-21 Osaka Prefecture Univ Method for raising plant cutting seedling
JP2016140318A (en) * 2015-02-03 2016-08-08 住友ゴム工業株式会社 Recovering method of rubber tree, proliferation method of rubber tree, induction method of shoot, growth method of shoot, root method of shoot and conditioning method for infant plant
JP2016149973A (en) * 2015-02-17 2016-08-22 住友ゴム工業株式会社 Collection method of latex, cultivation method of plants belonging to asteraceae, production method of pneumatic tire, and production method of rubber goods

Also Published As

Publication number Publication date
CN115279174A (en) 2022-11-01
JP7278237B2 (en) 2023-05-19
JP2022036988A (en) 2022-03-08
JP2021159035A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP5013143B2 (en) Production method of cuttings of Pinaceae trees
JP6359970B2 (en) Plant somatic embryo induction method, plant regeneration method, and plant growth method
CN104186351A (en) Tissue culture method of strawberries
CN104719163A (en) Method for increasing acclimatization planting percent of blueberry tissue culture test-tube seedlings
WO2021200303A1 (en) Method for producing plant body, method for producing natural rubber, method for producing pneumatic tire, and method for producing rubber product
JP2019083721A (en) Water culture method of asteraceae plant
JP4523769B2 (en) Mass propagation method of fine tree of Para rubber tree by tissue culture
Singh et al. Identification of the suitable hardening protocol and hardening medium in micropropagation of gerbera (Gerbera jamesonii Bolus)
CN110384044B (en) Cultivation method of virus-free seed stems of taros
CN104663445A (en) In-vitro rapid propagation technology of high lipid-producing pinus elliottii
KR102612091B1 (en) Promoting methods for rooting of in vitro shoots of Diospyros kaki and mass propagation of plants through these techniques
CN108849511B (en) Tissue culture method of young populus tomentosa seedlings
CN108184462A (en) A kind of open country eggplant sapling stock breeding method and its method for grafting fruits and vegetables
JP7292162B2 (en) Production method of the mother tree
EP4275485A2 (en) Method for producing sapling of woody plant, method for producing natural rubber, method for producing pneumatic tire, method for producing rubber product, and hevea brasiliensis sapling
JP2013021989A (en) Method for producing clone seedling
CN1473465A (en) Maka seedling reproducing method
CN104542308B (en) Rapid callus reproduction method for dioscorea bulbifera
CN113475402B (en) Method for in vitro culture of test-tube plantlet by using tender stem segment of rubber tree
JP3787624B2 (en) Method for inducing adventitious roots and adventitious buds in figs
JP7331343B2 (en) Shoot rooting method
CN113068614B (en) Method for rapidly propagating high-quality seedlings of golden strelitzia
CN102388806A (en) Carya illinoensis tissue culture propagating method
JP7234540B2 (en) Shoot culture method
JPH07155081A (en) Production of seed and seedling of dwarfed eustoma resselianum g. don

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779052

Country of ref document: EP

Kind code of ref document: A1