WO2021200283A1 - 体調検知方法、体調検知装置及びプログラム - Google Patents

体調検知方法、体調検知装置及びプログラム Download PDF

Info

Publication number
WO2021200283A1
WO2021200283A1 PCT/JP2021/011463 JP2021011463W WO2021200283A1 WO 2021200283 A1 WO2021200283 A1 WO 2021200283A1 JP 2021011463 W JP2021011463 W JP 2021011463W WO 2021200283 A1 WO2021200283 A1 WO 2021200283A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical condition
state model
subject
body movement
current state
Prior art date
Application number
PCT/JP2021/011463
Other languages
English (en)
French (fr)
Inventor
増田 健司
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN202180021702.6A priority Critical patent/CN115298745A/zh
Priority to JP2022511924A priority patent/JPWO2021200283A1/ja
Publication of WO2021200283A1 publication Critical patent/WO2021200283A1/ja
Priority to US17/943,469 priority patent/US20230005612A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • This disclosure relates to a physical condition detection method, a physical condition detection device, and a program.
  • Patent Document 1 proposes a care system that enables a close relative in a remote place to witness and care for the death of a close relative.
  • the correlation between the information on each change such as electrocardiogram and heart rate obtained from a large number of past deaths and the information on how long after each change of the person died. It is disclosed to obtain the estimated time of death of the subject from the present based on the information provided.
  • body movement data data such as heartbeat, respiration and body movement of the relative himself, that is, the subject himself. It is also desired to detect changes in the physical condition of the subject at an early stage, including changes in physical condition toward death during terminal care.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a physical condition detection method, a physical condition detection device, and a program capable of detecting a change in the physical condition of a subject.
  • the physical condition detection method is a physical condition detection method performed by a computer, and acquires body movement data of a subject at a certain time including the present.
  • a mathematical model constructed using the body movement data of the target person in the past period when the physical condition of the target person was in a steady state
  • the body movement data of the target person at the current time is used to obtain the target person's body movement data.
  • a steady state model that expresses the current state of the physical condition of the subject and is generated from the body movement data of the subject in the past period by using the mathematical model.
  • the current state model is output in order to detect a change in the physical condition of the subject based on the difference obtained by comparing the current state model with the current state model.
  • a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM, and the system, the method, the method, and the like. It may be implemented using any combination of integrated circuits, computer programs and recording media.
  • FIG. 1 is a diagram showing an example of a configuration of a physical condition detection system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of the physical condition detection device according to the embodiment.
  • FIG. 3 is a diagram showing an example of a target person from which body movement data according to the embodiment is acquired.
  • FIG. 4A is a flowchart showing the operation of the physical condition detection device according to the embodiment.
  • FIG. 4B is a flowchart showing the operation of the physical condition detection device according to the embodiment.
  • FIG. 5A is a diagram showing a steady state model and a current state model according to the first embodiment of the embodiment.
  • FIG. 5B is a diagram showing a steady state model and a current state model according to the first embodiment of the embodiment.
  • FIG. 5A is a diagram showing a steady state model and a current state model according to the first embodiment of the embodiment.
  • FIG. 5C is a diagram showing a steady state model and a current state model according to the first embodiment of the embodiment.
  • FIG. 6A is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6B is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6C is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6D is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6E is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6A is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6B is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6C is
  • FIG. 6F is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6G is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6H is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 6I is a diagram showing a steady state model and a current state model according to the second embodiment of the embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of the physical condition change detection device according to the embodiment.
  • FIG. 8 is a diagram showing a performance verification result when a mathematical model is constructed using 7 patterns of features.
  • the physical condition detection method is a physical condition detection method performed by a computer, in which physical condition data of a subject at a certain time including the present is acquired, and the physical condition of the subject is in a steady state.
  • a mathematical model constructed using the body movement data of the target person in the past period
  • the current state of the physical condition of the target person is expressed from the body movement data of the target person at the current time.
  • a state model is generated, and the steady state model expressing the steady state of the physical condition of the subject generated by using the mathematical model from the body movement data of the subject in the past period is compared with the current state model.
  • the current state model is output in order to detect a change in the physical condition of the subject based on the difference obtained.
  • the difference is obtained, and an alert is notified based on the difference.
  • the alert when notifying the alert, the alert may be notified when a change in the physical condition of the target person is detected based on the difference.
  • the difference is the distance between the steady state model and the current state model, and the direction of movement from the portion where the steady state model is located to the portion where the current state model is located.
  • a change in the physical condition of the subject is detected based on the direction.
  • the steady state model is generated from the body movement data of the subject in the past period by using the mathematical model.
  • the steady state of the target person can be obtained from the body movement data of the target person in a new past period including the current time.
  • the steady-state model shown may be regenerated.
  • the period during which the subject's physical condition used to generate the steady state model was in the steady state can be set to a period closer to the present, so that the change in the subject's physical condition can be detected more accurately.
  • the mathematical model may be constructed by using the feature amount obtained by calculating the statistic based on the interaction from the body movement data of the subject in the past period.
  • the physical condition detection device includes an acquisition unit that acquires body movement data of a subject at a certain time including the present, and the physical condition detecting device in the past period in which the physical condition of the subject has been in a steady state.
  • a current state model that expresses the current state of the target person's physical condition from the target person's body movement data at the current time acquired by the acquisition unit using a mathematical model constructed using the target person's body movement data.
  • a steady state model expressing the steady state of the physical condition of the target person generated by using the mathematical model from the body movement data of the target person in the past period, and the current state model.
  • an output unit that outputs the current state model is provided.
  • a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM, and the system, the method, the method, and the like. It may be implemented using any combination of integrated circuits, computer programs or recording media.
  • FIG. 1 is a diagram showing an example of a configuration of a physical condition detection system according to the present embodiment.
  • the physical condition detection system can detect changes in the physical condition of the target person by including at least the physical condition detection device 10.
  • the physical condition detection system includes a physical condition detection device 10, a physical condition change detection device 20, and a room sensor 30, which are connected by a network 40.
  • the room sensor 30 is installed in the room where the target person exists and acquires the biological information of the target person.
  • the physical condition detection device 10 acquires the biological information of the target person from the room sensor 30, generates and outputs the information used for detecting the physical condition of the target person.
  • the physical condition change detection device 20 detects and notifies the physical condition change of the target person by using the information output by the physical condition detection device 10.
  • the room sensor 30 is an example, and may be any sensor that can acquire biometric information of the target person.
  • the room sensor 30 may be, for example, a sensor worn on the subject, or a sheet-type sensor laid under the sheets or mat of the bed.
  • FIG. 2 is a diagram showing an example of the configuration of the physical condition detection device 10 according to the present embodiment.
  • the physical condition detection device 10 outputs a state model expressing the state of the target person's physical condition as information for detecting a change in the physical condition of the target person, and outputs a state model generated from the body movement data of the target person himself / herself.
  • the physical condition detection device 10 includes an acquisition unit 11, a processing unit 12, and an output unit 13.
  • each component will be described in detail.
  • the acquisition unit 11 acquires the body movement data of the target person from the room sensor 30 via the network 40. More specifically, the acquisition unit 11 acquires the body movement data of the target person at the current time, which is a fixed time including the present. In addition, the acquisition unit 11 may acquire the body movement data of the target person in the past period.
  • the body movement data includes, for example, heartbeat information, respiration information, and body movement information of the subject, but is not limited to this, and may be biological information of the subject.
  • the heartbeat information includes the time-series heartbeat data of the subject linked to the time
  • the breathing information includes the time-series breathing data of the subject linked to the time
  • the body movement information includes the time-series breathing data. Includes time-series body movement data of the associated subject.
  • body movement is the movement of the body, but in the medical field, it often represents the movement of the body unconsciously such as at bedtime.
  • FIG. 3 is a diagram showing an example of a target person for which body movement data according to the present embodiment is acquired.
  • the subject 50 shown in FIG. 3 is, for example, a patient who is undergoing terminal care at a hospice facility.
  • the subject 50 has three types of biological information, heartbeat information, respiration information, and body movement information, acquired as body movement data by a room sensor 30 installed in a hospice facility.
  • the physical condition detection device 10 outputs information for detecting a change in the physical condition of the subject using the body movement data when the subject 50 is sleeping in the bed 60. Further, the change in physical condition in this case means that the physical condition of the subject 50 changed toward death during terminal care.
  • the subject for detecting the physical condition is not limited to the example of the patient at the hospice facility as described above, and may be a patient with myocardial infarction or apnea syndrome. Further, the target person for detecting the physical condition does not have to be a patient, and may be a person who wants to detect the physical condition using the body movement data at bedtime.
  • the processing unit 12 uses the mathematical model 121 constructed by using the body movement data of the target person in the past period when the physical condition of the target person was in a steady state, and uses the body movement data of the target person at the current time to obtain the target person. Generates a current state model that expresses the current state of the physical condition of.
  • the processing unit 12 uses the mathematical model 121 to generate a steady state model expressing the steady state of the physical condition of the target person generated from the body movement data of the target person in the past period. If there is no difference between the steady state model and the current state model, the processing unit 12 obtains a steady state model indicating the steady state of the target person from the body movement data of the target person in a new past period including the current time. It may be regenerated. After that, the physical condition of the subject will be detected using the regenerated steady state model.
  • the mathematical model 121 is generated (also referred to as learned) by constructing a neural network from a steady-state data set, that is, body motion data of the subject in the past period when the subject's physical condition was steady. By evaluating the model, it is constructed for each subject.
  • the mathematical model 121 is constructed by using the feature amount obtained by calculating the statistic based on the interaction from the body movement data of the subject in the past period.
  • the characteristic amounts include, for example, the moving average value (speed) of each of the heartbeat component and the respiratory component, the movement skewness (distortion of distribution), the dispersion of the respiratory component (sagging), and the outlier value of the heartbeat component (movement outlier).
  • a steady-state data set that is, body motion data of the subject in the past period when the subject's physical condition was steady.
  • the characteristic amounts include, for example, the moving average value (speed) of each of the heartbeat component and the respiratory component, the movement skewness (distortion of distribution), the disper
  • the output unit 13 outputs the state model generated by the processing unit 12. More specifically, the output unit 13 outputs the steady state model generated by the processing unit 12. Further, the output unit 13 outputs the current state model generated by the processing unit 12 in order to detect a change in the physical condition of the target person by the difference obtained by comparing the steady state model and the current state model.
  • FIG. 4A and 4B are flowcharts showing the operation of the physical condition detection device 10 according to the present embodiment.
  • FIG. 4A shows the operation from the construction of the mathematical model to the generation of the steady state model by the physical condition detection device 10.
  • FIG. 4B shows the operation of the physical condition detection device 10 to generate the current state model.
  • a mathematical model 121 is constructed using the body movement data of the subject in the past period when the physical condition of the subject was in a steady state (S10).
  • the mathematical model 121 is constructed using the feature amount obtained by calculating the statistic based on the interaction from the body movement data of the subject in the past period when the physical condition of the subject was in a steady state. ..
  • the computer of the physical condition detection device 10 uses the mathematical model 121 constructed in step S10 to obtain a steady state model of the subject from the body movement data of the subject in the past period when the physical condition of the subject was steady. Is generated (S11).
  • the computer of the physical condition detection device 10 outputs the steady state model generated in step S11 (S12).
  • the computer of the physical condition detection device 10 acquires the body movement data of the target person at the current time, which is a fixed time including the present (S20).
  • the computer of the physical condition detection device 10 uses the mathematical model 121 constructed in advance to generate a current state model of the target person from the body movement data of the target person at the current time acquired in step S20 (S21).
  • the computer of the physical condition detection device 10 outputs the current state model generated in step S12 in order to detect the change in the physical condition of the target person (S22).
  • the difference between the steady state model and the current state model is obtained by comparing the output steady state model and the current state model by displaying them on a display or the like, the physical condition of the subject changes. Can be detected.
  • Example 1 are diagrams showing a steady state model and a current state model according to the first embodiment of the present embodiment.
  • the subject whose physical condition is detected is a patient at a hospice facility, and body movement data is acquired by a room sensor 30 as shown in FIG.
  • the steady state model and the current state model shown in FIGS. 5A to 5C are generated by using the body movement data when the subject 50 is sleeping in the bed 60.
  • FIG. 5A shows a current state model when “12:00 to 24:00 on 5/17” is the current time.
  • FIG. 5B shows a current state model when "0:00 to 12:00 on 5/18" is the current time.
  • FIG. 5C shows a current state model when “12:00 to 24:00 on 5/18” is the current time.
  • each of FIGS. 5A to 5C also shows a steady state model in the past period in which the physical condition of the subject 50 was in a steady state. The subject 50 died around "24:00 on 5/20".
  • the current state model gradually moves downward compared to the steady state model from "0:00 to 12:00 on 5/18" shown in FIG. 5B, that is, from the morning of 5/18. I'm moving. Then, after "12:00 to 24:00 on 5/18" shown in FIG. 5C, that is, after the afternoon of 5/18, the current state model clearly moves downward as compared with the steady state model. Recognize.
  • Example 2 are diagrams showing a steady state model and a current state model according to the second embodiment of the present embodiment.
  • the subject is different from the subject according to Example 1, but is a patient in a hospice facility, and body movement data is acquired by the room sensor 30 as shown in FIG. Further, the steady state model and the current state model shown in FIGS. 6A to 6I are generated by using the body movement data when the subject 50 is sleeping in the bed 60.
  • FIG. 6A shows the current state model when "12:00 to 24:00 on 5/16" is the current time.
  • FIG. 6B shows a current state model when "0:00 to 12:00 on 5/17” is the current time.
  • FIG. 6C shows a current state model when “12:00 to 24:00 on 5/17” is the current time.
  • FIG. 6D shows a current state model when "0: 00-12: 00 on 5/18” is set as the current time.
  • FIG. 6E shows a current state model when “12:00 to 24:00 on 5/18” is the current time.
  • FIG. 6F shows a current state model when "0:00 to 12:00 on 5/19” is set as the current time.
  • FIG. 6G shows a current state model when "12:00 to 24:00 on 5/19” is the current time.
  • FIG. 6H shows a current state model when "0:00 to 12:00 on 5/20” is set as the current time.
  • FIG. 6I shows a current state model when "12:00 to 24:00 on 5/20” is the current time.
  • FIGS. 6A to 6I also shows a steady state model in the past period in which the physical condition of the subject 50 was in a steady state.
  • the subject 50 died around "24:00 on 5/20".
  • the current state model gradually deviated from the steady state model from "0:00 to 12:00 on 5/18" shown in FIG. 6D, that is, from the morning of 5/18. You can see that it behaves (becomes an out-of-order distribution). Further, at "0:00 to 12:00 on 5/19” shown in FIG. 6F, that is, in the morning of 5/19, the current state model has moved to a position clearly deviated from the steady state model. I understand that. Then, after "12:00 to 24:00 on 5/20" shown in FIG. 6I, that is, after the afternoon of 5/20, the current state model has moved to a completely different position as compared with the steady state model. You can see that.
  • the staff of the hospice facility can detect the change in the patient's physical condition on a daily basis of several days ago and notify the relatives. You can secure time to spend for care.
  • the physical condition detection device 10 may cause the physical condition change detection device 20 to detect that the physical condition of the subject has changed by comparing the steady state model output by the physical condition detection device 10 with the current state model.
  • the physical condition change detection device 20 will be described.
  • FIG. 7 is a diagram showing an example of the configuration of the physical condition change detection device 20 according to the present embodiment.
  • the physical condition change detection device 20 can detect that the physical condition of the subject has changed by comparing the steady state model output by the physical condition detection device 10 with the current state model.
  • the physical condition change detection device 20 includes an acquisition unit 201, a storage unit 202, a physical condition change detection unit 203, and a notification unit 204.
  • an acquisition unit 201 the physical condition change detection device 20 includes an acquisition unit 201, a storage unit 202, a physical condition change detection unit 203, and a notification unit 204.
  • the acquisition unit 11 acquires the steady state model output by the physical condition detection device 10 via the network 40 in advance and stores it in the storage unit 202. Further, the acquisition unit 11 acquires the current state model output by the physical condition detection device 10 via the network 40. The acquisition unit 11 acquires the current state model output by the physical condition detection device 10 at predetermined time intervals.
  • the storage unit 202 has a non-volatile storage area, and stores information used for various processes performed by the physical condition change detection device 20.
  • the storage unit 202 is, for example, a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
  • the storage unit 202 stores the steady state model output by the physical condition detection device 10. Further, the storage unit 202 may temporarily store the current state model output by the physical condition detection device 10.
  • the physical condition change detection unit 203 compares the steady state model with the current state model, and obtains the difference if there is a difference. Further, the physical condition change detection unit 203 detects a change in the physical condition of the subject based on the difference obtained by comparing the steady state model and the current state model.
  • the difference is the distance between the steady state model and the current state model, and the direction of movement from the part where the steady state model is located to the part where the current state model is located.
  • the physical condition change detection unit 203 arranges the steady state model and the current state model in a space formed by the same coordinate axes. For example, the center of gravity of the distribution of the steady state model is compared with the center of gravity of the distribution of the current state model. As a result of comparison, the physical condition change detection unit 203 may obtain the difference between the centers of gravity of the two as a difference.
  • the center of gravity is an example of the distance between the steady state model and the current state model, and is not limited to this.
  • the physical condition change detection unit 203 arranges the steady state model and the current state model in a space formed by the same coordinate axes, and a portion where the steady state model is distributed in the space and a portion where the current state model is distributed in the space. You may compare whether or not there is a discrepancy with. In this case, the physical condition change detection unit 203 differs between the distance between the parts distributed in the constant space and the direction in which the steady state model moves from the part distributed in the space to the part where the current state model is distributed in the space. Can be obtained as.
  • the physical condition change detection unit 203 may notify the physical condition detection device 10 to that effect via the notification unit 204. As a result, the physical condition change detection unit 203 can give the physical condition detection device 10 a trigger to regenerate the steady state model. Therefore, the physical condition change detection unit 203 can update the steady state model stored in the storage unit 202 to a steady state model with good freshness. Further, the physical condition change detection unit 203 can detect the change in the physical condition of the subject more accurately by using a steady state model with good freshness. That is, since the period during which the subject's physical condition used to generate the steady state model was in the steady state can be set to a period closer to the present, the physical condition detection device 10 detects the change in the subject's physical condition more accurately. can do.
  • the notification unit 204 notifies the alert based on the difference obtained by the physical condition change detection unit 203. More specifically, the notification unit 204 notifies an alert when the physical condition change detection unit 203 detects a change in the physical condition of the target person based on the difference obtained by itself. As a result, by receiving the alert, it is possible to know that there has been a change in the physical condition of the target person or that a change in the physical condition of the target person has been detected.
  • the notification unit 204 may notify an alert to a mobile terminal such as a smartphone connected via the network 40.
  • a mobile terminal such as a smartphone connected via the network 40.
  • the physical condition detection device 10 uses a mathematical model constructed from the body movement data when the physical condition of the subject is in the steady state, and determines the steady state of the physical condition of the subject.
  • the expressed steady state model can be generated and output.
  • the physical condition detection device 10 according to the present embodiment uses the constructed mathematical model to generate a current state model expressing the current state of the target person's physical condition from the body movement data of the target person at the current time. Can be output. Then, by comparing the steady state model output by the physical condition detection device 10 with the current state model, it is possible to detect a change in the physical condition of the subject.
  • the current state model for detecting the change in the physical condition of the target person can be output, so that the change in the physical condition of the target person can be detected. Can be done.
  • the mathematical model 121 is obtained by calculating an interaction-based statistic from a steady-state dataset, i.e., the subject's body movement data in the past period when the subject's physical condition was steady. It was explained that it is constructed for each subject using the features.
  • FIG. 8 is a diagram showing the performance verification results when a mathematical model is constructed using 7 patterns of features.
  • the body movement data used when constructing the mathematical model were the time-series body movement data, heart rate data, and respiration data of the subject as a sample at bedtime in the steady state.
  • the subjects sampled were 22 patients at a hospice facility.
  • a mathematical model constructed for 22 people was generated using each of the 7 patterns of features. Then, the area occupied by the mathematical model for each individual constructed using the features of each pattern and the area for plotting the daily and individual body movement data from the date of death to 1 to 3 days before are overlapped.
  • the number of samples that can be separated is defined as the number that can be judged to be misaligned.
  • Patterns 1 to 3 only the feature amount obtained by calculating the moving average from the body movement data was used in order to suppress the fluctuation of the time series data. Patterns 1 to 3 differ only in the moving average time.
  • the feature amount obtained by calculating the statistic based on the interaction and the moving average from the same body movement data was used.
  • the statistic is a time-series body movement data, heart rate data, respiration data ratio, difference, etc. included in the body movement data. Patterns 4 to 7 differ only in the moving average time.
  • the average number of detection days was 2.75 days at the best. Further, it was found that the feature amount obtained by calculating the statistic based on the interaction, as in patterns 4 to 7, can be detected at least 2.4 days ago. In other words, by constructing a mathematical model using the features obtained by calculating the statistic based on the interaction, the change in the body movement data of the subject, that is, the change in the physical condition of the subject two days before the death date. It can be seen that can be detected.
  • the physical condition detection device 10 and the like according to one or more aspects of the present disclosure have been described above based on the embodiments and modifications, but the present disclosure is not limited to these embodiments and the like. As long as it does not deviate from the gist of the present disclosure, one or more of the present embodiments may be modified by those skilled in the art, or may be constructed by combining components in different embodiments. It may be included within the scope of the embodiment. For example, the following cases are also included in the present disclosure.
  • the above-mentioned physical condition detection device 10 and physical condition change detection device 20 may be used to detect changes in physical condition due to pathology including signs of myocardial infarction and the onset of apnea syndrome.
  • the body movement data may appropriately include biological information such as body weight information necessary for detecting a change in physical condition.
  • a computer system in which some or all of the components constituting the physical condition detection device 10 and the physical condition change detection device 20 are composed of a microprocessor, ROM, RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like. It may be.
  • a computer program is stored in the RAM or the hard disk unit. When the microprocessor operates according to the computer program, each device achieves its function.
  • a computer program is configured by combining a plurality of instruction codes indicating commands to a computer in order to achieve a predetermined function.
  • a part or all of the components constituting the physical condition detection device 10 and the physical condition change detection device 20 may be composed of one system LSI (Large Scale Integration). ..
  • a system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, is a computer system including a microprocessor, a ROM, a RAM, and the like. ..
  • a computer program is stored in the RAM. When the microprocessor operates according to the computer program, the system LSI achieves its function.
  • Some or all of the components constituting the physical condition detection device 10 and the physical condition change detection device 20 may be composed of an IC card or a single module that can be attached to and detached from each device.
  • the IC card or the module is a computer system composed of a microprocessor, ROM, RAM and the like.
  • the IC card or the module may include the above-mentioned super multifunctional LSI.
  • the microprocessor operates according to a computer program, the IC card or the module achieves its function. This IC card or this module may have tamper resistance.
  • the present disclosure is used for a physical condition detection method, a physical condition detection device, and a program used for detecting not only a change in physical condition toward death in terminal care but also a change in physical condition due to a pathology including signs of myocardial infarction and the onset of apnea syndrome. can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Business, Economics & Management (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • General Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

コンピュータが行う体調検知方法であって、現在を含む一定時間である現在時間における対象者の体動データを取得し(S20)、構築された数理モデルを用いて、現在時間における対象者の体動データから、対象者の体調の現在状態を表現した現在状態モデルを生成し(S21)、構築された数理モデルを用いて過去期間における対象者の体動データから生成された対象者の体調の定常状態を表現した定常状態モデルと現在状態モデルとを比較して得た差分により対象者の体調の変化を検知するために、現在状態モデルを出力する(S22)。

Description

体調検知方法、体調検知装置及びプログラム
 本開示は、体調検知方法、体調検知装置及びプログラムに関する。
 例えば特許文献1には、遠隔地に居る近親者が親しい縁者の死に際に立ち会って看取ることを可能にする看取りシステムが提案されている。特許文献1では、過去の多数の死亡例から得られた心電図、心拍などの各変化に関する情報と当該人がそれらの各変化からどれだけの時間の経過後に死亡したかに関する情報との相関関係を示す情報に基づいて、対象者の現在からの死亡推定時刻を取得することが開示されている。
特開2017-33502号公報
 しかしながら、過去の死亡例のデータを多数集めることは難しい。また、過去の死亡例のデータの数を多数集めることができたとしても、心電図、心拍の各変化は個人差が大きいため、上記の相関関係を示す情報に基づいて取得できる、現在から死亡推定時刻までの時間は数時間程度と予想される。
 一方で、縁者自身すなわち対象者自身の心拍、呼吸及び体動などのデータ(体動データと称する)を集めることは比較的容易である。また、ターミナルケア中に死に向かって体調が変化したことを含む対象者の体調の変化を早期に検知することも望まれている。
 本開示は、上述の事情を鑑みてなされたもので、対象者の体調の変化を検知することができる体調検知方法、体調検知装置及びプログラムを提供することを目的とする。
 上記目的を達成するために、本開示の一形態に係る体調検知方法は、コンピュータが行う体調検知方法であって、現在を含む一定時間である現在時間における対象者の体動データを取得し、前記対象者の体調が定常状態であった過去期間における前記対象者の体動データを用いて構築された数理モデルを用いて、前記現在時間における前記対象者の体動データから、前記対象者の体調の現在状態を表現した現在状態モデルを生成し、前記過去期間における前記対象者の前記体動データから前記数理モデルを用いて生成された前記対象者の体調の定常状態を表現した定常状態モデルと前記現在状態モデルとを比較して得た差分により前記対象者の体調の変化を検知するために、前記現在状態モデルを出力する。
 なお、これらのうちの一部の具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータで読み取り可能なCD-ROMなどの記録媒体を用いて実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせを用いて実現されてもよい。
 本開示の体調検知方法等によれば、対象者の体調の変化を検知することができる。
図1は、実施の形態に係る体調検知システムの構成の一例を示す図である。 図2は、実施の形態に係る体調検知装置の構成の一例を示す図である。 図3は、実施の形態に係る体動データが取得される対象者の一例を示す図である。 図4Aは、実施の形態に係る体調検知装置の動作を示すフローチャートである。 図4Bは、実施の形態に係る体調検知装置の動作を示すフローチャートである。 図5Aは、実施の形態の実施例1に係る定常状態モデルと現在状態モデルとを示す図である。 図5Bは、実施の形態の実施例1に係る定常状態モデルと現在状態モデルとを示す図である。 図5Cは、実施の形態の実施例1に係る定常状態モデルと現在状態モデルとを示す図である。 図6Aは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Bは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Cは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Dは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Eは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Fは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Gは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Hは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図6Iは、実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。 図7は、実施の形態に係る体調変化検出装置の構成の一例を示す図である。 図8は、7パターンの特徴量を用いて数理モデルを構築したとする場合の性能の検証結果を示す図である。
 本開示の一態様に係る体調検知方法は、コンピュータが行う体調検知方法であって、現在を含む一定時間である現在時間における対象者の体動データを取得し、前記対象者の体調が定常状態であった過去期間における前記対象者の体動データを用いて構築された数理モデルを用いて、前記現在時間における前記対象者の体動データから、前記対象者の体調の現在状態を表現した現在状態モデルを生成し、前記過去期間における前記対象者の前記体動データから前記数理モデルを用いて生成された前記対象者の体調の定常状態を表現した定常状態モデルと前記現在状態モデルとを比較して得た差分により前記対象者の体調の変化を検知するために、前記現在状態モデルを出力する。
 これにより、対象者の体動データのみを用いて対象者の体調の変化を検知するための現在状態モデルを出力することができる。換言すると、定常状態モデルと現在状態モデルとを比較すると対象者の体調の変化を検知することができる現在状態モデルを出力することができる。
 このようにして、対象者の体調の変化を検知することができる体調検知方法を実現できる。
 ここで、例えば、さらに、前記定常状態モデルと前記現在状態モデルとを比較することで、前記差分を得、前記差分に基づき、アラートを通知する。
 これにより、アラートを受け取ることで、対象者の体調の変化があったことを知ることができる。
 また、例えば、前記アラートを通知する際、前記差分に基づき、前記対象者の体調の変化を検知した場合に、前記アラートを通知するとしてもよい。
 これにより、アラートを受け取ることで、対象者の体調の変化が検知されたことを知ることができる。
 ここで、例えば、前記差分は、前記定常状態モデル及び前記現在状態モデルの距離と、前記定常状態モデルが位置する部分から前記現在状態モデルが位置する部分に移動した方向とであり、前記距離と前記方向とに基づき、前記対象者の体調の変化を検知する。
 また、例えば、前記現在状態モデルを生成する前に、前記数理モデルを用いて、前記過去期間における前記対象者の前記体動データから前記定常状態モデルを生成する。
 また、例えば、さらに、前記定常状態モデルと前記現在状態モデルとの差がない場合、前記現在時間を含めた新たな過去期間における前記対象者の前記体動データから、前記対象者の定常状態を示す定常状態モデルを再生成するとしてもよい。
 これにより、定常状態モデルの生成に用いる対象者の体調が定常状態であった期間をより現在に近い期間とすることができるので、より精度よく対象者の体調の変化を検知することができる。
 また、例えば、前記数理モデルは、前記過去期間における前記対象者の体動データから交互作用に基づく統計量を算出することで得た特徴量を用いて、構築されるとしてもよい。
 これにより、対象者本人の体動データのみを用いて、定常状態モデルと現在状態モデルとを生成することができる数理モデルを構築することができる。
 本開示の一態様に係る体調検知装置は、現在を含む一定時間である現在時間における対象者の体動データを取得する取得部と、前記対象者の体調が定常状態であった過去期間における前記対象者の体動データを用いて構築された数理モデルを用いて、前記取得部が取得した前記現在時間における対象者の体動データから、前記対象者の体調の現在状態を表現した現在状態モデルを生成する処理部と、前記過去期間における前記対象者の前記体動データから前記数理モデルを用いて生成された前記対象者の体調の定常状態を表現した定常状態モデルと前記現在状態モデルとを比較して得た差分により前記対象者の体調の変化を検知するために、前記現在状態モデルを出力する出力部とを備える。
 なお、これらのうちの一部の具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータで読み取り可能なCD-ROM等の記録媒体を用いて実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせを用いて実現されてもよい。
 以下、本開示の一態様に係る体調検知方法について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また全ての実施の形態において、各々の内容を組み合わせることもできる。
 (実施の形態)
 まず、体調検知方法を実現するために用いられる体調検知システムについて説明する。
 [1. 体調検知システム]
 図1は、本実施の形態に係る体調検知システムの構成の一例を示す図である。
 本実施の形態に係る体調検知システムは、少なくとも体調検知装置10を備えることで対象者の体調の変化を検出することができる。本実施の形態では、体調検知システムは、図1に示すように、体調検知装置10と、体調変化検出装置20と、ルームセンサ30とを備え、これらはネットワーク40により接続されている。
 ルームセンサ30は、対象者の存在する部屋に設置されて、対象者の生体情報を取得する。体調検知装置10は、ルームセンサ30から対象者の生体情報を取得して、対象者の体調を検知するために用いる情報を生成して出力する。体調変化検出装置20は、体調検知装置10により出力された情報を用いて、対象者の体調変化を検出して通知する。なお、ルームセンサ30は、一例であり、対象者の生体情報を取得できるセンサであればよい。ルームセンサ30は、例えば対象者に装着されているセンサでもよく、ベッドのシーツ下またはマット下に敷くシートタイプのセンサでもよい。
 以下、各装置について説明する。
 [2. 体調検知装置10]
 図2は、本実施の形態に係る体調検知装置10の構成の一例を示す図である。
 体調検知装置10は、対象者の体調の変化を検知するための情報として、対象者の体調の状態を表現した状態モデルであって対象者本人の体動データから生成した状態モデルを出力する。本実施の形態では、体調検知装置10は、図2に示すように、取得部11と、処理部12と、出力部13とを備える。以下、各構成要素について詳細に説明する。
 [2.1 取得部11]
 取得部11は、ネットワーク40を介して、ルームセンサ30から対象者の体動データを取得する。より具体的には、取得部11は、現在を含む一定時間である現在時間における対象者の体動データを取得する。また、取得部11は、過去期間における対象者の体動データを取得してもよい。
 ここで、体動データには、例えば対象者の心拍情報、呼吸情報及び体動情報を含むが、これに限らず、対象者の生体情報であればよい。心拍情報には時刻に紐づいた対象者の時系列の心拍データが含まれ、呼吸情報には時刻に紐づいた対象者の時系列の呼吸データが含まれ、体動情報には、時刻に紐づいた対象者の時系列の体動データが含まれる。また体動とは、身体の動きであるが、医療現場では就寝時などの無意識下の身体の動きを表すことが多い。
 図3は、本実施の形態に係る体動データが取得される対象者の一例を示す図である。
 図3に示す対象者50は、例えばホスピス施設においてターミナルケアされている患者である。対象者50は、ホスピス施設に設置されたルームセンサ30により心拍情報、呼吸情報及び体動情報の3種類の生体情報が体動データとして取得されている。本実施の形態では、体調検知装置10は、対象者50がベッド60で就寝しているときの体動データを用いて、対象者の体調の変化を検知するための情報を出力する。また、この場合の体調の変化は、ターミナルケア中に死に向かって対象者50の体調が変化したことを意味する。
 なお、体調を検知するための対象者は、上記のようなホスピス施設の患者の例に限定されず、心筋梗塞または無呼吸症候群の患者であってもよい。また、体調を検知するための対象者は、患者でなくてもよく、就寝時の体動データを用いて体調を検知したい者であればよい。
 [2.2 処理部12]
 処理部12は、対象者の体調が定常状態であった過去期間における対象者の体動データを用いて構築された数理モデル121を用いて、現在時間における対象者の体動データから、対象者の体調の現在状態を表現した現在状態モデルを生成する。
 また、処理部12は、数理モデル121を用いて、過去期間における対象者の体動データから生成した対象者の体調の定常状態を表現した定常状態モデルを生成する。なお、処理部12は、定常状態モデルと現在状態モデルとの差がない場合、現在時間を含めた新たな過去期間における対象者の体動データから、対象者の定常状態を示す定常状態モデルを再生成してもよい。その後、再生成された定常状態モデルを用いて、対象者の体調が検知されることになる。
 ここで、数理モデル121は、定常状態のデータセットすなわち対象者の体調が定常状態であった過去期間における対象者の体動データから、ニューラルネットワークを構築して生成した(学習されたとも称することができる)モデルを評価することで、対象者ごとに構築される。本実施の形態では、数理モデル121は、過去期間における対象者の体動データから交互作用に基づく統計量を算出することで得た特徴量を用いて構築される。なお、特徴量としては、例えば心拍成分及び呼吸成分それぞれの移動平均値(速さ)、移動歪度(分布の歪さ)、呼吸成分の分散(みだれ)、並びに、心拍成分の移動外れ値(急激な変化の有無)のうちの1以上のものが挙げられる。
 [2.3 出力部13]
 出力部13は、処理部12で生成された状態モデルを出力する。より具体的には、出力部13は、処理部12で生成された定常状態モデルを出力する。また、出力部13は、定常状態モデルと現在状態モデルとを比較して得る差分により対象者の体調の変化を検知させるために、処理部12で生成された現在状態モデルを出力する。
 [2.4 体調検知装置10の動作等]
 次に、以上のように構成される体調検知装置10の動作等について説明する。
 図4A及び図4Bは、本実施の形態に係る体調検知装置10の動作を示すフローチャートである。図4Aでは、数理モデルが構築されてから体調検知装置10が定常状態モデルを生成するまでの動作が示されている。図4Bでは、体調検知装置10が現在状態モデルを生成する動作が示されている。
 図4Aに示すように、まず、対象者の体調が定常状態であった過去期間における対象者の体動データを用いて数理モデル121を構築する(S10)。本実施の形態では、対象者の体調が定常状態であった過去期間における対象者の体動データから交互作用に基づく統計量を算出することで得た特徴量を用いて数理モデル121を構築する。
 次に、体調検知装置10のコンピュータは、ステップS10で構築した数理モデル121を用いて、対象者の体調が定常状態であった過去期間における対象者の体動データから、対象者の定常状態モデルを生成する(S11)。
 次に、体調検知装置10のコンピュータは、ステップS11で生成した定常状態モデルを出力する(S12)。
 また、図4Bに示すように、まず、体調検知装置10のコンピュータは、現在を含む一定時間である現在時間における対象者の体動データを取得する(S20)。
 次に、体調検知装置10のコンピュータは、前もって構築した数理モデル121を用いて、ステップS20で取得した現在時間における対象者の体動データから、対象者の現在状態モデルを生成する(S21)。
 次に、体調検知装置10のコンピュータは、対象者の体調の変化を検知するために、ステップS12で生成した現在状態モデルを出力する(S22)。
 そして、出力された定常状態モデルと現在状態モデルとをディスプレイ等に表示するなどにより比較することで、定常状態モデルと現在状態モデルとの差分を得た場合には、対象者の体調が変化したことを検知することができる。
 以下、実施例1及び実施例2において、定常状態モデルと現在状態モデルとの比較により体調の変化が検知できることを説明する。
 (実施例1)
 図5A~図5Cは、本実施の形態の実施例1に係る定常状態モデルと現在状態モデルとを示す図である。
 本実施例において、体調の変化を検知される対象者は、ホスピス施設の患者であり、図3に示すようなルームセンサ30で体動データが取得されている。また、図5A~図5Cに示される定常状態モデルと現在状態モデルとは、対象者50がベッド60で就寝しているときの体動データを用いて生成されている。図5Aには、「5/17の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。図5Bには、「5/18の0:00-12:00」を現在時間としたときの現在状態モデルが示されている。図5Cには、「5/18の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。また、図5A~図5Cのそれぞれには、対象者50の体調が定常状態であった過去期間における定常状態モデルも示されている。なお、この対象者50は、「5/20の24:00」頃に死亡している。
 図5A~図5Cからわかるように、図5Bに示す「5/18の0:00-12:00」すなわち5/18の午前から徐々に、現在状態モデルが定常状態モデルと比較して下方に移動している。そして、図5Cに示す「5/18の12:00-24:00」すなわち5/18の午後以降には、現在状態モデルが定常状態モデルと比較してはっきりと下方に移動していることがわかる。
 これにより、数時間前という時間単位でなく数日前という日単位で対象者50の体調の変化を検知することができるのがわかる。
 (実施例2)
 図6A~図6Iは、本実施の形態の実施例2に係る定常状態モデルと現在状態モデルとを示す図である。
 本実施例において、対象者は、実施例1に係る対象者とは異なるが、ホスピス施設の患者であり、図3に示すようなルームセンサ30で体動データが取得されている。また、図6A~図6Iに示される定常状態モデルと現在状態モデルとは対象者50がベッド60で就寝しているときの体動データを用いて生成されている。
 図6Aには、「5/16の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。図6Bには、「5/17の0:00-12:00」を現在時間としたときの現在状態モデルが示されている。図6Cには、「5/17の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。
 また、図6Dには、「5/18の0:00-12:00」を現在時間としたときの現在状態モデルが示されている。図6Eには、「5/18の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。図6Fには、「5/19の0:00-12:00」を現在時間としたときの現在状態モデルが示されている。図6Gには、「5/19の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。図6Hには、「5/20の0:00-12:00」を現在時間としたときの現在状態モデルが示されている。図6Iには、「5/20の12:00-24:00」を現在時間としたときの現在状態モデルが示されている。
 また、図6A~図6Iのそれぞれには、対象者50の体調が定常状態であった過去期間における定常状態モデルも示されている。なお、この対象者50は、「5/20の24:00」頃に死亡している。
 図6A~図6Hからわかるように、図6Dに示す「5/18の0:00-12:00」すなわち5/18の午前から徐々に、現在状態モデルが定常状態モデルと比較して外れた振る舞いをする(外れた分布となる)のがわかる。また、図6Fに示す「5/19の0:00-12:00」すなわち5/19の午前には、現在状態モデルが定常状態モデルと比較して、はっきりと外れた位置に移動しているのがわかる。そして、図6Iに示す「5/20の12:00-24:00」すなわち5/20の午後以降には、現在状態モデルは、定常状態モデルと比較して完全に異なる位置に移動していることがわかる。
 このように、2日~3日前には対象者50の体調が死に向かって変化したことがわかる。
 よって、対象者50である患者の親族がお看取りを行いたい場合、ホスピス施設の職員は、数日前という日単位で患者の体調の変化を検知して親族に通知することができるので、親族がお看取りのためにかけつける時間を確保することができる。
 なお、体調検知装置10は、体調変化検出装置20に、体調検知装置10が出力する定常状態モデルと現在状態モデルとを比較させることで、対象者の体調が変化したこと検出させてもよい。以下、体調変化検出装置20について説明する。
 [3. 体調変化検出装置20]
 図7は、本実施の形態に係る体調変化検出装置20の構成の一例を示す図である。
 体調変化検出装置20は、体調検知装置10により出力された定常状態モデルと現在状態モデルとを比較することで、対象者の体調が変化したこと検出することができる。本実施の形態では、体調変化検出装置20は、図7に示すように、取得部201と、記憶部202と、体調変化検出部203と、通知部204とを備える。以下、各構成要素について詳細に説明する。
 [3.1 取得部201]
 取得部11は、ネットワーク40を介して体調検知装置10により出力された定常状態モデルを前もって取得し、記憶部202に格納する。また、取得部11は、ネットワーク40を介して体調検知装置10により出力された現在状態モデルを取得する。なお、取得部11は、体調検知装置10により出力された現在状態モデルを所定時間毎に取得している。
 [3.2 記憶部202]
 記憶部202は、不揮発性の記憶領域を有し、体調変化検出装置20が行う各種処理に利用される情報を記憶している。記憶部202は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などである。本実施の形態では、記憶部202は、体調検知装置10により出力された定常状態モデルを記憶する。また、記憶部202は、体調検知装置10により出力された現在状態モデルを一時的に記憶してもよい。
 [3.3 体調変化検出部203]
 体調変化検出部203は、定常状態モデルと現在状態モデルとを比較することで、差分があれば差分を得る。また、体調変化検出部203は、定常状態モデルと現在状態モデルとの比較により得た差分に基づき、対象者の体調の変化を検知する。
 ここで、差分は、定常状態モデル及び現在状態モデルの距離と、定常状態モデルが位置する部分から現在状態モデルが位置する部分に移動した方向である。
 ここで、例えば図6Fに示す定常状態モデルと現在状態モデルとを用いて説明すると、体調変化検出部203は、定常状態モデルと現在状態モデルとを同一座標軸により形成される空間に配置して、例えば定常状態モデルの分布の重心と現在状態モデルの分布との重心を比較する。体調変化検出部203は、比較の結果、両者の重心にずれがあれば、そのずれを差分として得ればよい。なお、重心は定常状態モデル及び現在状態モデルの距離の一例であり、これに限らない。体調変化検出部203は、定常状態モデルと現在状態モデルとを同一座標軸により形成される空間に配置して、定常状態モデルが当該空間に分布する部分と、現在状態モデルが当該空間に分布する部分とにずれが発生しているか否かを比較してもよい。この場合、体調変化検出部203は、定当該空間に分布する部分同士の距離と、定常状態モデルが当該空間に分布する部分から現在状態モデルが当該空間に分布する部分に移動した方向とが差分として得ることができる。
 体調変化検出部203は、定常状態モデルと現在状態モデルとを比較しても差がない場合、通知部204を介して、体調検知装置10にその旨を通知してもよい。これにより、体調変化検出部203は、体調検知装置10に定常状態モデルを再生成するトリガーを与えることができる。よって、体調変化検出部203は、記憶部202に格納する定常状態モデルを鮮度のよい定常状態モデルに更新することができる。また、体調変化検出部203は、鮮度のよい定常状態モデルを用いることで、対象者の体調の変化をより精度よく検知することができる。つまり、定常状態モデルの生成に用いる対象者の体調が定常状態であった期間をより現在に近い期間とすることができるので、体調検知装置10は、より精度よく対象者の体調の変化を検知することができる。
 [3.4 通知部204]
 通知部204は、体調変化検出部203が得た差分に基づき、アラートを通知する。より具体的には、通知部204は、体調変化検出部203が、自身が得た差分に基づき対象者の体調の変化を検知した場合に、アラートを通知する。これにより、アラートを受け取ることで、対象者の体調の変化があったことまたは対象者の体調の変化が検知されたことを知ることができる。
 なお、通知部204は、ネットワーク40を介して接続されるスマホ等の携帯端末に対して、アラートを通知してもよい。これにより、体調の変化を検知される対象者がホスピス施設の患者である場合、対象者50の親族がお看取りを行いたい場合、対象者の体調が死に向かって変化したときに、対象者の親族またはホスピス施設の職員は、携帯端末にアラートが通知される。よって、対象者の親族は、ホスピス施設の職員を介して、または直接、数日前という日単位で対象者の体調の変化を知ることができるので、お看取りのためにかけつける時間を確保することができる。
 [4 効果等]
 以上のように、本実施の形態に係る体調検知装置10は、対象者の体調が定常状態であったときの体動データから構築された数理モデルを用いて、対象者の体調の定常状態を表現した定常状態モデルを生成して出力することができる。また、本実施の形態に係る体調検知装置10は、構築された数理モデルを用いて、現在時間における対象者の体動データから、対象者の体調の現在状態を表現した現在状態モデルを生成して出力することができる。そして、体調検知装置10により出力された定常状態モデルと現在状態モデルとを比較することで、対象者の体調の変化を検知することができる。
 このように、本実施の形態に係る体調検知装置10によれば、対象者の体調の変化を検知するための現在状態モデルを出力することができるので、対象者の体調の変化を検出させることができる。
 [数理モデルの検証]
 上記の実施の形態では、数理モデル121は、定常状態のデータセットすなわち対象者の体調が定常状態であった過去期間における対象者の体動データから交互作用に基づく統計量を算出することで得た特徴量を用いて、対象者ごとに構築されると説明した。
 定常状態のデータセットそのままではなく、様々な統計量を算出することで得た特徴量を用いて構築される数理モデルの性能を検証したので、以下説明する。
 図8は、7パターンの特徴量を用いて数理モデルを構築したとする場合の性能の検証結果を示す図である。数理モデルを構築する際に用いた体動データは、サンプルとした対象者の定常状態における就寝時の時系列の体動データ、心拍データ及び呼吸データとした。また、サンプルとした対象者は22人のホスピス施設の患者であるとした。また、7パターンの特徴量それぞれを用いて、構築された数理モデルを、22人分生成した。そして、それぞれのパターンの特徴量を用いて構築された個人ごとの数理モデルが占める領域と、死亡日から1~3日前までの日毎かつ個人ごとの体動データをプロットした領域とをオーバラップしているかを判断して、ずれがあると判断できる数を分離可能なサンプル数とした。
 図8に示すように、パターン1~3では、時系列データの変動を抑えるために体動データから移動平均を算出した特徴量のみを用いた。パターン1~3はそれぞれ、移動平均の時間のみ異なる。一方、パターン4~7では、同じ体動データから交互作用に基づく統計量と移動平均とを算出することで得た特徴量を用いた。なお、統計量とは、体動データに含まれる時系列の体動データ、心拍データ及び呼吸データの割合、差分等である。パターン4~7はそれぞれ移動平均の時間のみ異なる。
 図8からわかるように、平均検出日数は、最も良いもので2.75日前であった。また、パターン4~7のように、交互作用に基づく統計量を算出することで得た特徴量を用いることで、少なくとも2.4日前には検出可能であることがわかった。つまり、交互作用に基づく統計量を算出することで得た特徴量を用いて数理モデルを構築することで、死亡日から2日前には対象者の体動データの変化すなわち対象者の体調の変化を検知できることがわかる。
 以上、本開示の一つまたは複数の態様に係る体調検知装置10等について、実施の形態および変形例に基づいて説明したが、本開示は、これら実施の形態等に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の一つまたは複数の態様の範囲内に含まれてもよい。例えば、以下のような場合も本開示に含まれる。
 (1)上記の体調検知装置10及び体調変化検出装置20は、心筋梗塞の兆候、無呼吸症候群の発症を含む病理による体調の変化を検知するために用いてもよい。この場合には、体動データに体重情報など、体調の変化を検知するために必要となる生体情報を適宜含めればよい。
 (2)上記の体調検知装置10及び体調変化検出装置20を構成する構成要素の一部または全部は、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムでもよい。前記RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 (3)上記の体調検知装置10及び体調変化検出装置20を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。
 (4)上記の体調検知装置10及び体調変化検出装置20を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。前記ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカードまたは前記モジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。
 本開示は、ターミナルケアにおける死に向かう体調の変化だけでなく、心筋梗塞の兆候、無呼吸症候群の発症を含む病理による体調の変化を検知するために用いる体調検知方法、体調検知装置及びプログラムに利用できる。
 10 体調検知装置
 11、201 取得部
 12 処理部
 13 出力部
 20 体調変化検出装置
 30 ルームセンサ
 40 ネットワーク
 50 対象者
 60 ベッド
 121 数理モデル
 202 記憶部
 203 体調変化検出部
 204 通知部

Claims (9)

  1.  コンピュータが行う体調検知方法であって、
     現在を含む一定時間である現在時間における対象者の体動データを取得し、
     前記対象者の体調が定常状態であった過去期間における前記対象者の体動データを用いて構築された数理モデルを用いて、前記現在時間における前記対象者の体動データから、前記対象者の体調の現在状態を表現した現在状態モデルを生成し、
     前記過去期間における前記対象者の前記体動データから前記数理モデルを用いて生成された前記対象者の体調の定常状態を表現した定常状態モデルと前記現在状態モデルとを比較して得た差分により前記対象者の体調の変化を検知するために、前記現在状態モデルを出力する、
     体調検知方法。
  2.  さらに、
     前記定常状態モデルと前記現在状態モデルとを比較することで、前記差分を得、
     前記差分に基づき、アラートを通知する、
     請求項1に記載の体調検知方法。
  3.  前記アラートを通知する際、
     前記差分に基づき、前記対象者の体調の変化を検知した場合に、前記アラートを通知する、
     請求項2に記載の体調検知方法。
  4.  前記差分は、前記定常状態モデル及び前記現在状態モデルの距離と、前記定常状態モデルが位置する部分から前記現在状態モデルが位置する部分に移動した方向とであり、
     前記距離と前記方向とに基づき、前記対象者の体調の変化を検知する、
     請求項3に記載の体調検知方法。
  5.  前記現在状態モデルを生成する前に、
     前記数理モデルを用いて、前記過去期間における前記対象者の前記体動データから前記定常状態モデルを生成する、
     請求項1~4のいずれか1項に記載の体調検知方法。
  6.  さらに、前記定常状態モデルと前記現在状態モデルとの差がない場合、前記現在時間を含めた新たな過去期間における前記対象者の前記体動データから、前記対象者の定常状態を示す定常状態モデルを再生成する、
     請求項1~5のいずれか1項に記載の体調検知方法。
  7.  前記数理モデルは、前記過去期間における前記対象者の体動データから交互作用に基づく統計量を算出することで得た特徴量を用いて、構築される、
     請求項1~6のいずれか1項に記載の体調検知方法。
  8.  現在を含む一定時間である現在時間における対象者の体動データを取得し、
     前記対象者の体調が定常状態であった過去期間における前記対象者の体動データを用いて構築された数理モデルを用いて、前記現在時間における前記対象者の体動データから、前記対象者の体調の現在状態を表現した現在状態モデルを生成し、
     前記過去期間における前記対象者の前記体動データから前記数理モデルを用いて生成された前記対象者の体調の定常状態を表現した定常状態モデルと前記現在状態モデルとを比較して得た差分により前記対象者の体調の変化を検知するために、前記現在状態モデルを出力することを、
     コンピュータに実行させるプログラム。
  9.  現在を含む一定時間である現在時間における対象者の体動データを取得する取得部と、
     前記対象者の体調が定常状態であった過去期間における前記対象者の体動データを用いて構築された数理モデルを用いて、前記取得部が取得した前記現在時間における対象者の体動データから、前記対象者の体調の現在状態を表現した現在状態モデルを生成する処理部と、
     前記過去期間における前記対象者の前記体動データから前記数理モデルを用いて生成された前記対象者の体調の定常状態を表現した定常状態モデルと前記現在状態モデルとを比較して得た差分により前記対象者の体調の変化を検知するために、前記現在状態モデルを出力する出力部とを備える、
     体調検知装置。
PCT/JP2021/011463 2020-03-30 2021-03-19 体調検知方法、体調検知装置及びプログラム WO2021200283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180021702.6A CN115298745A (zh) 2020-03-30 2021-03-19 身体状况检测方法、身体状况检测装置及程序
JP2022511924A JPWO2021200283A1 (ja) 2020-03-30 2021-03-19
US17/943,469 US20230005612A1 (en) 2020-03-30 2022-09-13 Physical condition detection method, physical condition detection device, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-059718 2020-03-30
JP2020059718 2020-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/943,469 Continuation US20230005612A1 (en) 2020-03-30 2022-09-13 Physical condition detection method, physical condition detection device, and recording medium

Publications (1)

Publication Number Publication Date
WO2021200283A1 true WO2021200283A1 (ja) 2021-10-07

Family

ID=77928208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011463 WO2021200283A1 (ja) 2020-03-30 2021-03-19 体調検知方法、体調検知装置及びプログラム

Country Status (4)

Country Link
US (1) US20230005612A1 (ja)
JP (1) JPWO2021200283A1 (ja)
CN (1) CN115298745A (ja)
WO (1) WO2021200283A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155071A (ja) * 2018-03-08 2019-09-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 事象予測システム、センサ信号処理システム、事象予測方法及びプログラム
JP2019159964A (ja) * 2018-03-14 2019-09-19 メドケア株式会社 効率化支援システム及び医療効率化支援方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7987069B2 (en) * 2007-11-12 2011-07-26 Bee Cave, Llc Monitoring patient support exiting and initiating response

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155071A (ja) * 2018-03-08 2019-09-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 事象予測システム、センサ信号処理システム、事象予測方法及びプログラム
JP2019159964A (ja) * 2018-03-14 2019-09-19 メドケア株式会社 効率化支援システム及び医療効率化支援方法

Also Published As

Publication number Publication date
US20230005612A1 (en) 2023-01-05
JPWO2021200283A1 (ja) 2021-10-07
CN115298745A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7437575B2 (ja) 生理学的イベント検知特徴部を備えたベッド
US20240099607A1 (en) System, sensor and method for monitoring health related aspects of a patient
JP6869167B2 (ja) 異常報知装置、プログラム及び異常報知方法
JPWO2019044619A1 (ja) 生体情報処理システム、生体情報処理方法、及びコンピュータプログラム
JP6122188B1 (ja) 身体状況検知装置、身体状況検知方法及びベッドシステム
US11547298B2 (en) Abnormality determination apparatus and non-transitory computer readable medium storing program
Barsocchi et al. An unobtrusive sleep monitoring system for the human sleep behaviour understanding
JP4993980B2 (ja) 呼気時間を出力可能な装置および方法
US20140358041A1 (en) Assessing physical stability of a patient using an accelerometer
JP7034687B2 (ja) 異常報知装置及びプログラム
JP2019155071A (ja) 事象予測システム、センサ信号処理システム、事象予測方法及びプログラム
US20220151549A1 (en) Contactless monitoring of sleep activities and body vital signs via seismic sensing
JP6932668B2 (ja) 評価装置及びプログラム
US11717209B2 (en) Abnormality determination apparatus and non-transitory computer readable medium storing program used for the same
JP6518056B2 (ja) 睡眠状態判定装置、睡眠状態判定方法及びプログラム
Siyang et al. The development of IoT-based non-obstructive monitoring system for human's sleep monitoring
WO2021200283A1 (ja) 体調検知方法、体調検知装置及びプログラム
JP7325576B2 (ja) 端末装置、出力方法及びコンピュータプログラム
JPWO2020170290A1 (ja) 異常判定装置、方法、及びプログラム
US10194817B2 (en) Method and system of monitoring cardiac function based on patient position
CN115175608A (zh) 用于使用接触传感器来检测呼吸信息的系统和方法
Aburukba et al. Remote monitoring framework for elderly care home centers in UAE
WO2024204406A1 (ja) 体調変異予測モデルの作成方法、体調変異予測システム、体調変異予測方法、体調変異予測モデル、及び規則性特定モデルの作成方法
US20240188883A1 (en) Hypnodensity-based sleep apnea monitoring system and method of operation thereof
Harrington et al. Bedscales: a non-contact adherence-independent multi-person sensor for longitudinal physiologic monitoring in the home bed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21781963

Country of ref document: EP

Kind code of ref document: A1