WO2021200264A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2021200264A1
WO2021200264A1 PCT/JP2021/011333 JP2021011333W WO2021200264A1 WO 2021200264 A1 WO2021200264 A1 WO 2021200264A1 JP 2021011333 W JP2021011333 W JP 2021011333W WO 2021200264 A1 WO2021200264 A1 WO 2021200264A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conversion module
thermoelectric
circuit board
thermoelectric conversion
Prior art date
Application number
PCT/JP2021/011333
Other languages
French (fr)
Japanese (ja)
Inventor
佑太 関
邦久 加藤
豪志 武藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2021200264A1 publication Critical patent/WO2021200264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion module.
  • thermoelectric conversion module that uses a thermoelectric conversion material having a thermoelectric effect such as the Seebeck effect and the Perche effect to convert between thermal energy and electrical energy.
  • thermoelectric conversion module a configuration of a so-called ⁇ -type thermoelectric conversion element is known.
  • ⁇ -type for example, a pair of electrodes that are separated from each other are provided on the substrate, and the lower surface of the P-type thermoelectric element is provided on the one electrode and the lower surface of the N-type thermoelectric element is provided on the other electrode.
  • the P-type thermoelectric element and the N-type thermoelectric element are provided apart from each other, and the upper surfaces of the P-type thermoelectric elements and the N-type thermoelectric elements are bonded to the electrodes of the opposing substrates (hereinafter, may be referred to as “PN junction”).
  • PN junction the electrodes of the opposing substrates
  • a plurality of pairs of PN-junctioned P-type thermoelectric elements and N-type thermoelectric elements are used, and are configured to be electrically connected in series and thermally connected in parallel.
  • thermoelectric conversion module As one of the corresponding methods, electronic cooling or the like using the thermoelectric conversion module is used.
  • Patent Document 1 describes a first semiconductor substrate having a photoelectric conversion unit, a heat conductive wiring provided in contact with the first semiconductor substrate, and a cooling element that controls the temperature of the photoelectric conversion unit via the heat conductive wiring.
  • the provided imaging device is disclosed.
  • the above-mentioned CMOS is used as the first semiconductor substrate having a photoelectric conversion unit, and a light receiving region having a plurality of pixels constituting the CMOS and a peripheral region provided outside the light receiving tilt region and having a peripheral circuit are provided.
  • a CMOS element is used as a cooling element, and a heat conductive wiring is interposed or the above region is directly cooled.
  • Patent Document 2 is a circuit board including at least one Perche heat pump device, wherein the Perche heat pump device includes at least one pair of thermoelectric semiconductor members that are thermally arranged in parallel and electrically arranged in series, and at least one pair.
  • the semiconductor member of the above discloses a circuit board in which the semiconductor member is at least partially embedded in the circuit board.
  • an electrode serving as a heat absorbing surface and an electrode serving as a heat radiating surface are arranged on the same plane. As described above, those having a so-called comb-shaped structure are described.
  • thermoelectric conversion module having a configuration for more efficient temperature control is desired in a circuit board or the like on which an electronic element or the like that requires a specific arrangement is mounted. There is.
  • thermoelectric conversion module having a simple structure and further improved endothermic property.
  • the present inventors have made a second electrode used for forming a PN junction pair composed of a P-type thermoelectric element layer and an N-type thermoelectric element layer constituting a thermoelectric conversion module.
  • a second electrode used for forming a PN junction pair composed of a P-type thermoelectric element layer and an N-type thermoelectric element layer constituting a thermoelectric conversion module.
  • the P-type thermoelectric element layer and the N-type thermoelectric element layer including a first electrode, a P-type thermoelectric element layer, an N-type thermoelectric element layer, and a second electrode arranged to face the first electrode, and the P-type thermoelectric element layer and the above.
  • a thermoelectric conversion module arranged in series on a circuit board provided with an electronic element, wherein the second electrode is arranged on the circuit board and / or inside the circuit board.
  • thermoelectric conversion module according to (1) above, further comprising a first substrate, wherein the first substrate has the first electrode.
  • the second electrode extends on the circuit board and is thermally connected to the electronic element.
  • the circuit board has a through hole, and the second electrode is thermally connected to the electronic element from a surface of the circuit board opposite to the electronic element side via the through hole.
  • thermoelectric conversion module according to any one of (1) to (4) above.
  • thermoelectric conversion module according to any one of (1) to (5) above, wherein all of the second electrodes are arranged inside the through holes and thermally connected to the electronic element.
  • Thermoelectric conversion module. Any of the above (1) to (7), wherein the second electrode further extends in the in-plane direction of the circuit board on the electronic element side and is thermally connected to the electronic element.
  • thermoelectric conversion module having further improved endothermic properties with a simple configuration.
  • thermoelectric conversion module which concerns on 1st Embodiment of this invention. It is a transmission perspective view for demonstrating an example of the structure of the conventional thermoelectric conversion module. It is sectional drawing for demonstrating the structure of the thermoelectric conversion module which concerns on 2nd Embodiment of this invention. It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 3rd Embodiment of this invention. It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 4th Embodiment of this invention. It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 5th Embodiment of this invention. It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 6th Embodiment of this invention.
  • thermoelectric conversion module includes a first electrode, a P-type thermoelectric element layer, an N-type thermoelectric element layer, and a second electrode arranged to face the first electrode, and the P-type.
  • a plurality of pairs of PN junctions in which the thermoelectric element layer and the N-type thermoelectric element layer are PN-bonded with the first electrode or the second electrode interposed therebetween, and the first electrode and the second electrode are used.
  • It is a thermoelectric conversion module arranged on a circuit board provided with electronic elements, which are alternately electrically connected in series, and is characterized in that the second electrode is arranged on the circuit board and / or inside the circuit board. do.
  • thermoelectric conversion module of the present invention a second electrode used for forming a PN junction pair composed of a P-type thermoelectric element layer and an N-type thermoelectric element layer constituting the thermoelectric conversion module is extended on a circuit board provided with an electronic element.
  • the heat absorption generated on the surface of the second electrode is directly applied to the electronic element, and the electronic element is efficiently cooled without limitation in the arrangement of the electronic element in the circuit board. can do.
  • the thermoelectric conversion element the positional relationship between the endothermic side and the heat radiating side is usually reversed depending on the direction of energization. Further, the polarity of the output is switched by switching the endothermic side and the heat radiating side. Therefore, the present invention is not limited as to which electrode is on the endothermic side or the heat radiating side. In this specification, for convenience, the second electrode side is described as the endothermic side, and the first electrode side is described as the heat dissipation side.
  • FIG. 1 is a perspective view showing an example of a basic configuration of a thermoelectric conversion module used in the present invention.
  • the thermoelectric conversion module is configured as a so-called ⁇ -type thermoelectric conversion element, and faces, for example, the first electrode 1b, the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4, and the first electrode 1b.
  • a second electrode 2b which is arranged in the same manner, is included in the configuration.
  • the first substrate is further included, and the first substrate has the first electrode.
  • the heat dissipation distribution from the first electrode is made uniform and the heat dissipation is improved.
  • a plurality of PN junction pairs in which the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 are PN-junctioned with the first electrode 1b or the second electrode 2b interposed therebetween are the first pair.
  • the electrode 1 and the second electrode are alternately electrically connected in series and thermally connected in parallel.
  • the number of PN junction pairs composed of the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 is not particularly limited, and is usually a plurality of pairs, which can be appropriately adjusted and used.
  • the second electrode extends over the circuit board and is thermally connected to the electronic device.
  • the second electrode constituting the thermoelectric conversion module arranged on the circuit board extends in the direction toward the electronic element separated on the circuit board and is thermally connected to efficiently cool the electronic element. can do. More preferably, the second electrode is disposed over the entire surface of any of the upper and lower surfaces of the electronic device and is thermally connected.
  • FIG. 2 is a plan view showing the configuration of the thermoelectric conversion module according to the first embodiment of the present invention (however, it extends to the region of the surface of the first electrode, the first substrate, and the electronic element on the circuit board side).
  • the second electrode to be used is not shown).
  • thermoelectric conversion module In the configuration of the thermoelectric conversion module according to the first embodiment of the present invention, the electronic element 6 is mounted on the circuit board 5, and at a position separated from the circuit board 5, directly above the second electrode 2b.
  • a thermoelectric conversion module including the laminated P-type thermoelectric element layer 3 and N-type thermoelectric element layer 4 is arranged, and heat is provided with the electronic element 6 via an electrode portion extending from the second electrode 2b of the thermoelectric conversion module. Is connected.
  • the area of the first electrode 1b (not shown) and the area of the second electrode 2b facing each other, the area of the second electrode 2b is sufficiently larger than the area of the first electrode 1b.
  • FIG. 3 is a transmission perspective view (a part of the constituent portion is visualized) showing an example of the configuration of the conventional thermoelectric conversion module.
  • the conventional thermoelectric conversion module is configured as a ⁇ -type thermoelectric conversion element.
  • a first substrate 1a having a first electrode 1b, a P-type thermoelectric element layer 3 and an N-type thermoelectric element layer 4, and the above-mentioned first. It includes a second electrode 2b'arranged so as to face the electrode 1b of 1, and further includes a second substrate 2a'.
  • the thermoelectric conversion module is arranged on the electronic element 6 mounted on the circuit board 5. It is thermally connected to the electronic element 6.
  • the surface of the first electrode 1b opposite to the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 side is the heat dissipation surface, and the other surface is the second surface.
  • the surface of the electrode 2b opposite to the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 can be used as a heat absorbing surface, and the electronic element is thermally connected to the heat absorbing surface side. It is cooled.
  • the electronic element is not particularly limited, but usually includes an electronic component arranged on a mounting portion of a circuit board, and includes heat-generating electronic components such as a CPU, CMOS, a light emitting diode, a semiconductor laser, and a capacitor.
  • the arrangement of the electronic elements provided on the circuit board is not particularly limited, and may be one surface or the other surface of the circuit board. It may also be inside the circuit board. Further, they may be arranged in combination.
  • the number of electronic elements is not particularly limited, and a plurality or a combination of a plurality of the above electronic elements can be cooled.
  • the area of the second electrode and the like are appropriately adjusted within a range in which the thermoelectric performance is not impaired. Examples of the method for joining the electronic element 6 and the second electrode 2b include known methods such as bonding with an adhesive and soldering.
  • an insulating substrate containing mainly components such as paper phenol, paper epoxy, glass composite, glass polyimide, fluorine, glass PPO, glass epoxy, polyimide, polyester, ceramics, epoxy, and bismaleimide triazine is usually used. Be done. Among these, from the viewpoint of thermoelectric performance, it is preferable to use ceramics having high thermal conductivity. Further, from the viewpoint of versatility, it is preferable to use paper phenol, paper epoxy, glass composite, glass polyimide, glass epoxy, epoxy and polyester.
  • the thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element.
  • thermoelectric conversion module of the present invention it is preferable that the second electrode extends on the circuit board and inside the circuit board and is thermally connected to the electronic element.
  • the second electrodes constituting the thermoelectric conversion module arranged on the circuit board are arranged so as to extend on the circuit board and inside the circuit board on the electronic element side separated on the circuit board, and are thermally connected to each other. , The electronic element can be cooled efficiently.
  • FIG. 4 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the second embodiment of the present invention.
  • the component 8 mounted on another substrate that hinders the thermal connection with the electronic element 6 is arranged on the circuit board 5.
  • the second electrode 2b is thermally connected to the electronic element 6 by extending and arranging the second electrode 2b up to the height of the upper surface of the component 8 including the inside of the substrate 5.
  • the thermoelectric conversion module includes a P-type thermoelectric element layer 3 and an N-type thermoelectric element layer 4, a first electrode 1b, and a first substrate 1a on the second electrode 2b.
  • Examples of the component 8 mounted on another substrate include a passive element and an active element.
  • wiring for connecting the component 8 or the like or other wiring is provided on the board, it is arranged on the board so as not to cause a short circuit with the electronic element.
  • a method of using a multilayer substrate, or an method of arranging an insulating resin or the like on an electrode and providing wiring on the electrode can be mentioned.
  • the heat from the electronic element 6 is efficiently transferred from the second electrode 2b side.
  • the heat is absorbed and the heat is dissipated from the first substrate 1a side having the first electrode 1b.
  • the second electrode By arranging the second electrode extending to the height of the upper surface of the component 8 mounted on another substrate that hinders the thermal connection, the area of the second electrode 2b becomes that of the first electrode 1b. Since it is larger than the area, heat is efficiently and quickly absorbed from the second electrode 2b.
  • the thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element.
  • the circuit board has a through hole, and the second electrode thermally enters the electronic element through the through hole from the surface opposite to the electronic element side of the circuit board. It is preferable to be connected. Further, it is preferable that all of the second electrodes are arranged inside the through hole and are thermally connected to the electronic element.
  • FIG. 5 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the third embodiment of the present invention.
  • the second electrode 12b of the thermoelectric conversion module includes the second electrode 12b arranged to face the electrode 11b, and the second electrode 12b of the thermoelectric conversion module is arranged on both sides of the circuit board 15 by the through hole 17 and is separated from the second electrode 12b. Is insulated by the circuit board 15.
  • the electronic element 16 is thermally directly connected to the second electrode 12b side. All of the second electrodes constituting the thermoelectric conversion module are arranged inside the through hole from the lower surface side of the circuit board, and are thermally directly connected to the electronic elements mounted on the circuit board to obtain electrons. The element can be cooled efficiently.
  • the circuit board 15 has through holes 17.
  • the shape and length of the through hole 17 are appropriately adjusted according to the size of the second electrode of the thermoelectric conversion module to be used.
  • the through holes 17 can be formed by a known method. For example, it can be formed by drilling or plating.
  • the through holes may be filled with a metal material or the like.
  • the same substrate material as that used for the circuit board 5 described above can be used.
  • the heat from the electronic element 16 is generated by directly arranging the second electrode 12b side arranged in the through hole 17 of the circuit board 15 as the endothermic surface on the electronic element 16. , Heat is absorbed from the endothermic surface on the side of the second electrode 12b, and heat is dissipated from the first substrate 11a.
  • the thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element 16.
  • thermoelectric conversion module of the present invention it is preferable that the entire thermoelectric conversion module is arranged inside the through hole and the second electrode is thermally connected to the electronic element.
  • the mounting density on the electronic element side of the circuit board can be increased, and the thickness of the entire circuit board can be reduced.
  • FIG. 6 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the fourth embodiment of the present invention.
  • the thermoelectric conversion module according to the fourth embodiment of the present invention has a first electrode 11b, a P-type thermoelectric element layer 13 and an N-type thermoelectric element layer 14, and a first electrode 11b arranged to face the first electrode 11b.
  • the entire thermoelectric conversion module including the electrode 12b of 2 is arranged inside the through hole 17 of the circuit board 15. Further, it is insulated by the circuit board 15 between the first electrodes 11b that are separated from each other and between the second electrodes 12b that are separated from each other.
  • the electronic element 16 is thermally directly connected to the second electrode 12b side.
  • the entire thermoelectric conversion module is arranged inside the through hole from the lower surface side of the circuit board, and the electronic element can be efficiently cooled by directly connecting to the electronic element mounted on the circuit board. ..
  • the entire thermoelectric conversion module is arranged in the through hole 17 of the circuit board 15, and the electronic element 16 is arranged directly on the electronic element 16 with the second electrode 12b side as the endothermic surface. Is absorbed from the endothermic surface on the side of the second electrode 12b and dissipated from the first electrode 11b.
  • the thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element 16. Further, since all of the thermoelectric conversion modules are arranged inside the through holes 17 of the circuit board 15, the thickness of the entire circuit board can be further reduced.
  • thermoelectric conversion module of the present invention In the configuration of the thermoelectric conversion module of the present invention, it is preferable that the second electrode further extends in the in-plane direction on the electronic element side of the circuit board and is thermally connected to the electronic element.
  • FIG. 7 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the fifth embodiment of the present invention.
  • the thermoelectric conversion module according to the fifth embodiment of the present invention includes a first substrate 11a having a first electrode 11b, a P-type thermoelectric element layer 13 and an N-type thermoelectric element layer 14, and the first electrode 11b.
  • the second electrode 12b is arranged so as to face each other, the entire second electrode 12b is arranged inside the through hole 17 of the circuit board 15, and the second electrode 12b is on the upper surface side of the circuit board 15. It extends to and is arranged as a continuous layer. Further, it is insulated by the circuit board 15 between the second electrodes 12b that are separated from each other.
  • the electronic element 16 is thermally directly connected to the second electrode 12b side.
  • the area of the second electrode 12b which is arranged inside the through hole 17 of the circuit board 15 and has a continuous layer on the upper surface side of the circuit board 15, can be expanded to the upper surface side of the circuit board 15. ..
  • the electronic element 16 is included in all the through holes 17 of the circuit board 15, and the second electrode 12b side extending in the in-plane direction on the upper surface side of the circuit board is used as an endothermic surface.
  • the heat from the electronic element 16 is absorbed from the endothermic surface on the side of the second electrode 12b and dissipated from the first substrate 11a.
  • the thermoelectric conversion module having such a configuration can absorb heat generated by the electronic element 16 more efficiently.
  • FIG. 8 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the sixth embodiment of the present invention.
  • the configuration of the thermoelectric conversion module according to the sixth embodiment is that a plurality of electronic elements 16 are arranged on the surface of the second electrode 12b extending in the in-plane direction on the upper surface side of the circuit board 15.
  • a plurality of electronic elements 16 can be arranged by appropriately adjusting the surface area of the second electrode 12b extending in the in-plane direction on the upper surface side of the circuit board 15, and one thermoelectric conversion can be performed.
  • the module can absorb the heat generated by a plurality of electronic elements more efficiently.
  • the P-type thermoelectric element layer and the N-type thermoelectric element layer used in the present invention are not particularly limited, but consist of a thermoelectric semiconductor material, a heat-resistant resin, and a thermoelectric semiconductor composition containing an ionic liquid and / or an inorganic ionic compound. Is preferable.
  • thermoelectric semiconductor material used for the thermoelectric element layer is preferably pulverized to a predetermined size by, for example, a fine pulverizer or the like and used as thermoelectric semiconductor particles (hereinafter, the thermoelectric semiconductor material may be referred to as "thermoelectric semiconductor particles"). .).
  • the particle size of the thermoelectric semiconductor particles is preferably 10 nm to 100 ⁇ m, more preferably 20 nm to 50 ⁇ m, and even more preferably 30 nm to 30 ⁇ m.
  • the average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern), and was used as the median value of the particle size distribution.
  • thermoelectric semiconductor material constituting the P-type thermoelectric element layer and the N-type thermoelectric element layer is any material that can generate a thermoelectric force by imparting a temperature difference.
  • the present invention is not particularly limited, and for example, a bismuth-tellu thermoelectric semiconductor material such as P-type bismasterlide and N-type bismasterlide; a telluride thermoelectric semiconductor material such as GeTe and PbTe; an antimony-tellu thermoelectric semiconductor material; ZnSb, Zn 3 Sb.
  • Zinc-antimon thermoelectric semiconductor materials such as 2, Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismus selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; ⁇ -FeSi 2 , CrSi 2, MnSi VDD-based thermoelectric semiconductor materials such as 1.73 and Mg 2 Si; oxide-based thermoelectric semiconductor materials; Whistler materials such as FeVAL, FeVALSi, and FeVTiAl, and sulfide-based thermoelectric semiconductor materials such as TiS 2 are used.
  • thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuthellide or N-type bismuthellide.
  • P-type bismuth telluride one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, more preferably 0.4 ⁇ X ⁇ 0.6.
  • X is larger than 0 and 0.8 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as a P-type thermoelectric conversion material are maintained, which is preferable.
  • N-type bismuth telluride one having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y is preferably used.
  • the Seebeck coefficient and the electric conductivity become large, and the characteristics as an N-type thermoelectric conversion material are maintained, which is preferable.
  • the blending amount of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. It is more preferably 50 to 96% by mass, and even more preferably 70 to 95% by mass.
  • the Seebeck coefficient absolute value of the Perche coefficient
  • the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited.
  • a film having sufficient film strength and flexibility can be obtained, which is preferable.
  • thermoelectric semiconductor particles are annealed (hereinafter, may be referred to as "annealing treatment A").
  • annealing treatment A By performing the annealing treatment A, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed, so that the Seebeck coefficient (absolute value of the Perche coefficient) of the thermoelectric conversion material is increased. , The thermoelectric performance index can be further improved.
  • the heat-resistant resin used in the present invention acts as a binder between thermoelectric semiconductor particles and enhances the flexibility of the thermoelectric element layer.
  • the heat-resistant resin is not particularly limited, but when a thin film made of a thermoelectric semiconductor composition is subjected to crystal growth of thermoelectric semiconductor particles by annealing or the like, various factors such as mechanical strength and thermal conductivity as a resin are obtained. Use a heat-resistant resin that maintains its physical properties without being impaired.
  • the heat-resistant resin include polyamide resins, polyamideimide resins, polyimide resins, polyetherimide resins, polybenzoxazole resins, polybenzoimidazole resins, epoxy resins, and copolymers having a chemical structure of these resins.
  • the heat-resistant resin may be used alone or in combination of two or more.
  • polyamide resins, polyamide-imide resins, polyimide resins, and epoxy resins are preferable and have excellent flexibility because they have higher heat resistance and do not adversely affect the crystal growth of thermoelectric semiconductor particles in the thin film. Therefore, polyamide resin, polyamide-imide resin, and polyimide resin are more preferable.
  • the polyimide resin is more preferable as the heat-resistant resin from the viewpoint of adhesion to the polyimide film and the like.
  • the polyimide resin is a general term for polyimide and its precursor.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher.
  • the decomposition temperature is within the above range, the flexibility of the thermoelectric element layer can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the blending amount of the heat-resistant resin in the thermoelectric semiconductor composition is preferably 0.1 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass.
  • a film having both high thermoelectric performance and film strength can be obtained.
  • the ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of ⁇ 50 ° C. or higher and lower than 400 ° C.
  • the ionic liquid is an ionic compound having a melting point in the range of ⁇ 50 ° C. or higher and lower than 400 ° C.
  • the melting point of the ionic liquid is preferably ⁇ 25 ° C. or higher and 200 ° C. or lower, and more preferably 0 ° C. or higher and 150 ° C. or lower.
  • Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermostability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress a decrease in electrical conductivity between thermoelectric semiconductor materials. Further, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.
  • ionic liquid known or commercially available ones can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium and the like.
  • phosphine cations and derivatives thereof and a cationic component such as lithium cations and derivatives thereof, Cl -, Br -, I -, AlCl 4 -, Al 2 Cl 7 -, BF 4 -, PF 6 -, ClO 4 -, NO 3 -, CH 3 COO - , CF 3 COO -, CH 3 SO 3 -, CF 3 SO 3 -, (FSO 2) 2 N -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, AsF 6 -, SbF 6 -, NbF 6 -, TaF 6 -, F (HF) n -, (CN) 2 n -, C 4 F 9 SO 3 -, (C 2 F 5 SO 2) Examples thereof include those composed of anionic components such as 2 N ⁇ , C 3 F 7 COO ⁇ , and (CF 3 SO 2 ) (CF 3 CO) N ⁇ .
  • the cation component of the ionic liquid is a pyridinium cation and its derivatives from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor materials and resins, and suppression of decrease in electrical conductivity between thermoelectric semiconductor material gaps.
  • 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide, and 1-butyl-4-methylpyridinium hexafluorophosphate are preferable.
  • the cation component is [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2-hydroxyethyl) imidazole].
  • Rium tetrafluoroborate] is preferable.
  • the above-mentioned ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
  • the blending amount of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the inorganic ionic compound that can be contained in the thermoelectric semiconductor composition is a compound composed of at least cations and anions. Since the inorganic ionic compound exists as a solid in a wide temperature range of 400 to 900 ° C. and has characteristics such as high ionic conductivity, it can be used as a conductivity auxiliary agent to reduce the electrical conductivity between thermoelectric semiconductor materials. Can be suppressed.
  • the blending amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass.
  • the blending amount of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably. Is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • thermoelectric element layer made of the thermoelectric semiconductor composition can be formed, for example, by applying the thermoelectric semiconductor composition on a substrate and drying it. By forming in this way, a large number of thermoelectric conversion element layers can be easily obtained at low cost.
  • a method of applying a thermoelectric semiconductor composition to obtain a thermoelectric element layer a screen printing method, a flexographic printing method, a gravure printing method, a spin coating method, a dip coating method, a die coating method, a spray coating method, a bar coating method, and a doctor blade
  • Known methods such as a method can be mentioned and are not particularly limited.
  • thermoelectric element layer When the coating film is formed into a pattern, a screen printing method, a slot die coating method, or the like, which enables easy pattern formation using a screen plate having a desired pattern, is preferably used. Then, the obtained coating film is dried to form a thermoelectric element layer.
  • the thickness of the thermoelectric element layer is not particularly limited, and is preferably 100 nm to 1000 ⁇ m, more preferably 300 nm to 600 ⁇ m, and further preferably 5 to 400 ⁇ m from the viewpoint of thermoelectric performance and film strength.
  • the P-type thermoelectric element layer and the N-type thermoelectric element layer as a thin film made of the thermoelectric semiconductor composition are further subjected to an annealing treatment (hereinafter, may be referred to as "annealing treatment B").
  • annealing treatment B By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, so that the thermoelectric performance can be further improved.
  • the annealing treatment B is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled, and the resin and the ionic compound to be used are used. Although it depends on the heat-resistant temperature and the like, it is carried out at 100 to 500 ° C. for several minutes to several tens of hours.
  • the first substrate used for the thermoelectric conversion module of the present invention is not particularly limited, and is independently a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, a glass polyimide substrate, a fluorine substrate, and a glass PPO substrate.
  • a plastic film is preferable from the viewpoint of having flexibility and having a degree of freedom for installation of a heat source on the surface.
  • polyimide film polyamide film, polyetherimide film, polyaramid film, polyamideimide film, polysulfon film, glass composite substrate, glass epoxy substrate, and glass polyimide substrate are available.
  • a polyimide film, a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, and a glass polyimide substrate are particularly preferable.
  • the thickness of the first substrate is preferably 1 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, and even more preferably 20 to 100 ⁇ m from the viewpoint of heat resistance and flexibility.
  • the metal materials used for the first electrode and the second electrode are not particularly limited, but are independently copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, and stainless steel, respectively. Alloys containing steel, molybdenum or any of these metals are preferred. Further, not only a single layer but also a plurality of layers may be combined to form a multi-layer structure.
  • the thickness of the layers of the first electrode and the second electrode are independently, preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, and further preferably 50 nm to 120 ⁇ m. When the thickness of the layers of the first electrode and the second electrode is within the above range, the electrical conductivity is high and the resistance is low, and sufficient strength as an electrode can be obtained.
  • the formation of the first electrode and the second electrode is performed using the metal material described above.
  • a method of forming the first electrode and the second electrode after providing an electrode having no pattern formed on the substrate, a known physical treatment or chemical treatment mainly composed of a photolithography method, or a method thereof.
  • a method of processing into a predetermined pattern shape by using the above in combination, or a method of directly forming an electrode pattern by a screen printing method, an inkjet method, or the like can be mentioned.
  • PVD Physical Vapor Deposition Method
  • CVD Chemical Vapor Deposition
  • thermal CVD thermal CVD
  • atomic layer deposition ALD
  • various coating methods such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method, wet process such as electrodeposition method, silver salt method .
  • Electrolytic plating method, electroless plating method, lamination of metal foil and the like are appropriately selected according to the material of the electrode. From the viewpoint of thermoelectric performance, high conductivity and high thermal conductivity are required, so it is preferable to use an electrode formed by a plating method or a vacuum film forming method.
  • a laminating agent is used to bond the P-type thermoelectric element layer and the N-type thermoelectric element layer to the electrodes.
  • the bonding agent include a conductive paste and the like.
  • the conductive paste include copper paste, silver paste, nickel paste and the like, and when a binder is used, epoxy resin, acrylic resin, urethane resin and the like can be mentioned.
  • the method of applying the bonding agent on the electrodes of the substrate include known methods such as a screen printing method and a dispensing method.
  • solder material can be used for bonding with the electrode.
  • the solder material may be appropriately selected, and Sn, Sn / Pb alloy, Sn / Ag alloy, Sn / Cu alloy, Sn / Sb alloy, Sn / In alloy, Sn / Zn alloy, Sn / In / Bi alloy, etc.
  • Known materials such as Sn / In / Bi / Zn alloys and Sn / Bi / Pb / Cd alloys can be mentioned.
  • Examples of the method of applying the solder material onto the electrodes of the substrate include known methods such as a screen printing method and a dispensing method.
  • thermoelectric conversion module of the present invention has been described above, the present invention is not limited to the above embodiment and can be further modified in various ways.
  • thermoelectric conversion module of the present invention the second electrode constituting the thermoelectric conversion module is arranged on the circuit board and / or inside the circuit board in the electronic element mounted on the circuit board.
  • a thermoelectric conversion module having further improved heat absorption can be obtained.
  • thermoelectric conversion module of the present invention has a simple configuration in which a second electrode constituting the thermoelectric conversion module is arranged on the circuit board and / or inside the circuit board on an electronic element mounted on the circuit board. Therefore, it is conceivable to apply it mainly to an electronic element mounted on a circuit board used in the above-mentioned field of electronic equipment as a cooling application.
  • thermoelectric element layer 4 N-type thermoelectric element layer 5: Circuit substrate 6: Electronic element 8: Component 11a: First substrate 11b: First electrode 12b: Second electrode 13: P-type thermoelectric element layer 14: N-type thermoelectric element layer 15: Circuit substrate 16: Electronic element 17: Through hole

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a thermoelectric conversion module which exhibits a further improved heat-absorbing property with a simple configuration. The thermoelectric conversion module is provided with a first electrode, a p-type thermoelectric element layer and n-type thermoelectric element layer, and a second electrode disposed so as to face the first electrode. In the thermoelectric conversion module, a plurality of pairs of p‐n junctions, each of which is formed by joining the p-type thermoelectric element layer and the n-type thermoelectric element layer with the first electrode or the second electrode interposed therebetween, are electrically connected in series with the first electrode and the second electrode alternately disposed. The thermoelectric conversion module is provided to a circuit substrate comprising electronic elements. The second electrode is disposed on the circuit substrate and/or inside the circuit substrate.

Description

熱電変換モジュールThermoelectric conversion module
 本発明は、熱電変換モジュールに関する。 The present invention relates to a thermoelectric conversion module.
 従来から、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換材料を用い、熱エネルギーと電気エネルギーとを相互変換するようにした熱電変換モジュールがある。
 前記熱電変換モジュールとして、いわゆるπ型の熱電変換素子の構成が知られている。π型は、例えば、互いに離間するー対の電極を基板上に設け、―方の電極の上にP型熱電素子の下面を、他方の電極の上にN型熱電素子の下面を、同じく互いに離間して設け、P型熱電素子及びN型熱電素子の反対側のそれぞれの上面を対向する基板の電極に接合(以下、「PN接合」ということがある。)することで構成される。通常は、熱電性能の観点から、PN接合した一対のP型熱電素子とN型熱電素子とが複数対用いられ、電気的には直列接続、熱的には並列接続するように構成される。
Conventionally, there is a thermoelectric conversion module that uses a thermoelectric conversion material having a thermoelectric effect such as the Seebeck effect and the Perche effect to convert between thermal energy and electrical energy.
As the thermoelectric conversion module, a configuration of a so-called π-type thermoelectric conversion element is known. In the π-type, for example, a pair of electrodes that are separated from each other are provided on the substrate, and the lower surface of the P-type thermoelectric element is provided on the one electrode and the lower surface of the N-type thermoelectric element is provided on the other electrode. The P-type thermoelectric element and the N-type thermoelectric element are provided apart from each other, and the upper surfaces of the P-type thermoelectric elements and the N-type thermoelectric elements are bonded to the electrodes of the opposing substrates (hereinafter, may be referred to as “PN junction”). Usually, from the viewpoint of thermoelectric performance, a plurality of pairs of PN-junctioned P-type thermoelectric elements and N-type thermoelectric elements are used, and are configured to be electrically connected in series and thermally connected in parallel.
 近年、コンピューター、ミラーレスカメラ、また、スマートフォン等の携帯端末等のエレクトロニクス機器には、それらの動作や制御を行うCPU(Central Processing Unit)、CMOS(Complementary Metal Oxide Semiconductor Image Sensor)等の半導体素子に代表される電子素子が基板に高密度に実装されることが当たり前のものとなっている中、さらに微細化による半導体素子のさらなる小型化、高性能化等に伴い、半導体素子自体が高温になりかつ多量の熱を放出する発熱体となってきている。このような状況下、回路基板に実装した半導体素子等の発熱をさらに効率良く吸熱、放熱する冷却デバイスが求められている。
 その対応方法の一つとして、前記熱電変換モジュールを用いた電子冷却等が用いられる。
 特許文献1は、光電変換部を有する第1半導体基板と、第1半導体基板に接して設けられた熱伝導配線と、熱伝導配線を介在して光電変換部の温度を制御する冷却素子とを備えた撮像装置を開示している。例えば、光電変換部を有する第1半導体基板として、前述したCMOSを用い、当該CMOSを構成する複数の画素を有する受光領域と、受光傾域の外側に設けられ、周辺回路を有する周辺領域とを冷却するために、冷却素子としてペルチェ素子を用い、熱伝導配線を介在し、又は直接上記領域を冷却する構成としている、
 特許文献2は、少なくとも1つのペルチェヒートポンプ装置を備える回路基板であって、ペルチェヒートポンプ装置は、熱的に並列配置および電気的に直列配置される少なくとも1対の熱電半導体部材を備え、少なくとも1対の半導体部材は、回路基板に少なくとも部分的に埋め込まれる、回路基板を開示しており、例えば、熱電半導体部材は、吸熱面となる電極と放熱面となる電極とが同一平面上に配置されるよう、いわゆるくし形タイプの構成を有するものが記載されている。
In recent years, electronic devices such as computers, mirrorless cameras, and mobile terminals such as smartphones have been used as semiconductor elements such as CPUs (Central Processing Units) and CMOSs (Complementary Metal Axis Semiconductor Image Sensors) that operate and control them. While it has become commonplace for typical electronic devices to be mounted on a substrate at high density, the temperature of semiconductor devices themselves becomes high as semiconductor devices become smaller and have higher performance due to further miniaturization. Moreover, it has become a heating element that emits a large amount of heat. Under such circumstances, there is a demand for a cooling device that more efficiently absorbs and dissipates heat generated by a semiconductor element mounted on a circuit board.
As one of the corresponding methods, electronic cooling or the like using the thermoelectric conversion module is used.
Patent Document 1 describes a first semiconductor substrate having a photoelectric conversion unit, a heat conductive wiring provided in contact with the first semiconductor substrate, and a cooling element that controls the temperature of the photoelectric conversion unit via the heat conductive wiring. The provided imaging device is disclosed. For example, the above-mentioned CMOS is used as the first semiconductor substrate having a photoelectric conversion unit, and a light receiving region having a plurality of pixels constituting the CMOS and a peripheral region provided outside the light receiving tilt region and having a peripheral circuit are provided. In order to cool, a CMOS element is used as a cooling element, and a heat conductive wiring is interposed or the above region is directly cooled.
Patent Document 2 is a circuit board including at least one Perche heat pump device, wherein the Perche heat pump device includes at least one pair of thermoelectric semiconductor members that are thermally arranged in parallel and electrically arranged in series, and at least one pair. The semiconductor member of the above discloses a circuit board in which the semiconductor member is at least partially embedded in the circuit board. For example, in the thermoelectric semiconductor member, an electrode serving as a heat absorbing surface and an electrode serving as a heat radiating surface are arranged on the same plane. As described above, those having a so-called comb-shaped structure are described.
国際公開第2019/078291号International Publication No. 2019/078291 特開2014-204123号公報Japanese Unexamined Patent Publication No. 2014-204123
 しかしながら、寸法、機能作用の観点等から、特定の配置が必要とされる電子素子等が実装される回路基板等においては、より効率的に温度制御を行う構成を有する熱電変換モジュールが望まれている。 However, from the viewpoint of dimensions, functional action, etc., a thermoelectric conversion module having a configuration for more efficient temperature control is desired in a circuit board or the like on which an electronic element or the like that requires a specific arrangement is mounted. There is.
 本発明は、上記を鑑み、簡易な構成で吸熱性がさらに向上した熱電変換モジュールを提供することを課題とする。 In view of the above, it is an object of the present invention to provide a thermoelectric conversion module having a simple structure and further improved endothermic property.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱電変換モジュールを構成するP型熱電素子層とN型熱電素子層とからなるPN接合対の形成に用いる第2の電極を、電子素子が備わる回路基板上に延在及び/又は回路基板内部に配置することにより、第2の電極の面において発現する吸熱を直接電子素子に付与し、回路基板内の電子素子の配置に制限なく電子素子を効率的に冷却することを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(8)を提供するものである。
(1)第1の電極と、P型熱電素子層及びN型熱電素子層と、第1の電極に対向して配置された第2の電極と、を含み、前記P型熱電素子層と前記N型熱電素子層とが前記第1の電極又は前記第2の電極を介在しPN接合されたPN接合対が複数対、前記第1の電極と前記第2の電極とで交互に電気的に直列接続された、電子素子が備わる回路基板に配置する熱電変換モジュールであって、前記第2の電極が前記回路基板上及び/又は回路基板内部に配置される、熱電変換モジュール。
(2)さらに第1の基板を含み、該第1の基板は前記第1の電極を有する、上記(1)に記載の熱電変換モジュール。
(3)前記第2の電極が、前記回路基板上に延在し、前記電子素子に熱的に接続される、上記(1)又は(2)に記載の熱電変換モジュール。
(4)前記第2の電極が前記回路基板上及び前記回路基板内部に延在し、前記電子素子に熱的に接続される、上記(1)~(3)のいずれかに記載の熱電変換モジュール。
(5)前記回路基板がスルーホールを有し、前記第2の電極が、前記回路基板の前記電子素子側とは反対側の面から、前記スルーホールを介在し前記電子素子に熱的に接続される、上記(1)~(4)のいずれかに記載の熱電変換モジュール。
(6)前記第2の電極の全部が、前記スルーホールの内部に配置され、前記電子素子に熱的に接続される、上記(1)~(5)のいずれかに記載の熱電変換モジュール。
(7)前記熱電変換モジュールの全部が、前記スルーホールの内部に配置され、前記第2の電極が前記電子素子に熱的に接続される、上記(1)~(6)のいずれかに記載の熱電変換モジュール。
(8)前記第2の電極が、さらに前記回路基板の前記電子素子側の面内方向に延在し、前記電子素子に熱的に接続される、上記(1)~(7)のいずれかに記載の熱電変換モジュール。
As a result of diligent studies to solve the above problems, the present inventors have made a second electrode used for forming a PN junction pair composed of a P-type thermoelectric element layer and an N-type thermoelectric element layer constituting a thermoelectric conversion module. By extending and / or arranging inside the circuit board on the circuit board provided with the electronic element, the heat absorption generated on the surface of the second electrode is directly applied to the electronic element, and the electronic element is arranged in the circuit board. We have found that the electronic device can be efficiently cooled without limitation, and completed the present invention.
That is, the present invention provides the following (1) to (8).
(1) The P-type thermoelectric element layer and the N-type thermoelectric element layer including a first electrode, a P-type thermoelectric element layer, an N-type thermoelectric element layer, and a second electrode arranged to face the first electrode, and the P-type thermoelectric element layer and the above. There are a plurality of pairs of PN junctions in which the N-type thermoelectric element layer is PN-bonded with the first electrode or the second electrode interposed therebetween, and the first electrode and the second electrode are alternately electrically connected. A thermoelectric conversion module arranged in series on a circuit board provided with an electronic element, wherein the second electrode is arranged on the circuit board and / or inside the circuit board.
(2) The thermoelectric conversion module according to (1) above, further comprising a first substrate, wherein the first substrate has the first electrode.
(3) The thermoelectric conversion module according to (1) or (2) above, wherein the second electrode extends on the circuit board and is thermally connected to the electronic element.
(4) The thermoelectric conversion according to any one of (1) to (3) above, wherein the second electrode extends on the circuit board and inside the circuit board and is thermally connected to the electronic element. module.
(5) The circuit board has a through hole, and the second electrode is thermally connected to the electronic element from a surface of the circuit board opposite to the electronic element side via the through hole. The thermoelectric conversion module according to any one of (1) to (4) above.
(6) The thermoelectric conversion module according to any one of (1) to (5) above, wherein all of the second electrodes are arranged inside the through holes and thermally connected to the electronic element.
(7) The above-mentioned (1) to (6), wherein the entire thermoelectric conversion module is arranged inside the through hole, and the second electrode is thermally connected to the electronic element. Thermoelectric conversion module.
(8) Any of the above (1) to (7), wherein the second electrode further extends in the in-plane direction of the circuit board on the electronic element side and is thermally connected to the electronic element. The thermoelectric conversion module described in.
 本発明によれば、簡易な構成で吸熱性がさらに向上した熱電変換モジュールを提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion module having further improved endothermic properties with a simple configuration.
本発明で用いる熱電変換モジュールの基本構成の一例を示す斜視図である。It is a perspective view which shows an example of the basic structure of the thermoelectric conversion module used in this invention. 本発明の第1実施形態に係る熱電変換モジュールの構成を説明するための平面図である。It is a top view for demonstrating the structure of the thermoelectric conversion module which concerns on 1st Embodiment of this invention. 従来の熱電変換モジュールの構成の一例を説明するための透過斜視図である。It is a transmission perspective view for demonstrating an example of the structure of the conventional thermoelectric conversion module. 本発明の第2実施形態に係る熱電変換モジュールの構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the thermoelectric conversion module which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る熱電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る熱電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る熱電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric conversion module which concerns on 6th Embodiment of this invention.
[熱電変換モジュール]      
 本発明の熱電変換モジュールは、第1の電極と、P型熱電素子層及びN型熱電素子層と、第1の電極に対向して配置された第2の電極と、を含み、前記P型熱電素子層と前記N型熱電素子層とが前記第1の電極又は前記第2の電極を介在しPN接合されたPN接合対が複数対、前記第1の電極と前記第2の電極とで交互に電気的に直列接続された、電子素子が備わる回路基板に配置する熱電変換モジュールであって、前記第2の電極が前記回路基板上及び/又は回路基板内部に配置されることを特徴とする。
 本発明の熱電変換モジュールでは、熱電変換モジュールを構成するP型熱電素子層とN型熱電素子層とからなるPN接合対の形成に用いる第2の電極を、電子素子が備わる回路基板上に延在及び/又は回路基板内部に配置することにより、第2の電極の面において発現する吸熱を直接電子素子に付与し、回路基板内の電子素子の配置に制限なく該電子素子を効率的に冷却することができる。
 なお、熱電変換素子は、通常、吸熱側と放熱側の位置関係は、通電の方向により逆転する。また、吸熱側と放熱側が入れ替わることにより、出力の極性が入れ替わる。このようなことから、どちらの電極が吸熱側、放熱側であるかについては本発明を制限するものではない。本明細書では、便宜的に第2の電極側を吸熱側、第1の電極側を放熱側として記載した。
[Thermoelectric conversion module]
The thermoelectric conversion module of the present invention includes a first electrode, a P-type thermoelectric element layer, an N-type thermoelectric element layer, and a second electrode arranged to face the first electrode, and the P-type. A plurality of pairs of PN junctions in which the thermoelectric element layer and the N-type thermoelectric element layer are PN-bonded with the first electrode or the second electrode interposed therebetween, and the first electrode and the second electrode are used. It is a thermoelectric conversion module arranged on a circuit board provided with electronic elements, which are alternately electrically connected in series, and is characterized in that the second electrode is arranged on the circuit board and / or inside the circuit board. do.
In the thermoelectric conversion module of the present invention, a second electrode used for forming a PN junction pair composed of a P-type thermoelectric element layer and an N-type thermoelectric element layer constituting the thermoelectric conversion module is extended on a circuit board provided with an electronic element. By arranging it in the circuit board and / or inside the circuit board, the heat absorption generated on the surface of the second electrode is directly applied to the electronic element, and the electronic element is efficiently cooled without limitation in the arrangement of the electronic element in the circuit board. can do.
In the thermoelectric conversion element, the positional relationship between the endothermic side and the heat radiating side is usually reversed depending on the direction of energization. Further, the polarity of the output is switched by switching the endothermic side and the heat radiating side. Therefore, the present invention is not limited as to which electrode is on the endothermic side or the heat radiating side. In this specification, for convenience, the second electrode side is described as the endothermic side, and the first electrode side is described as the heat dissipation side.
 図1は本発明で用いる熱電変換モジュールの基本構成の一例を示す斜視図である。当該熱電変換モジュールは、いわゆるπ型の熱電変換素子として構成され、例えば、第1の電極1bと、P型熱電素子層3及びN型熱電素子層4と、前記第1の電極1bに対向して配置された第2の電極2bと、を含み、構成される。
 本発明の熱電変換モジュールの構成において、さらに第1の基板を含み、該第1の基板は前記第1の電極を有することが好ましい。第1の電極の、P型熱電素子層及びN型熱電素子層とは反対側に前記第1の基板を設けることにより、第1の電極からの放熱分布が均一化され放熱性が向上する。
 また、図1において、P型熱電素子層3とN型熱電素子層4とが前記第1の電極1b又は前記第2の電極2bを介在しPN接合されたPN接合対が複数対、前記第1の電極と前記第2の電極とで交互に電気的に直列接続に、また熱的には並列接続される。P型熱電素子層3及びN型熱電素子層4からなるPN接合対の数は、特に制限されず、通常複数対であり、適宜調整され用いることができる。
FIG. 1 is a perspective view showing an example of a basic configuration of a thermoelectric conversion module used in the present invention. The thermoelectric conversion module is configured as a so-called π-type thermoelectric conversion element, and faces, for example, the first electrode 1b, the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4, and the first electrode 1b. A second electrode 2b, which is arranged in the same manner, is included in the configuration.
In the configuration of the thermoelectric conversion module of the present invention, it is preferable that the first substrate is further included, and the first substrate has the first electrode. By providing the first substrate on the side of the first electrode opposite to the P-type thermoelectric element layer and the N-type thermoelectric element layer, the heat dissipation distribution from the first electrode is made uniform and the heat dissipation is improved.
Further, in FIG. 1, a plurality of PN junction pairs in which the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 are PN-junctioned with the first electrode 1b or the second electrode 2b interposed therebetween are the first pair. The electrode 1 and the second electrode are alternately electrically connected in series and thermally connected in parallel. The number of PN junction pairs composed of the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 is not particularly limited, and is usually a plurality of pairs, which can be appropriately adjusted and used.
 以下、本発明を図を用い、実施形態により具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings.
(第1実施形態)
 第2の電極が、回路基板上に延在し、電子素子に熱的に接続されることが好ましい。
 回路基板上に配置された熱電変換モジュールを構成する第2の電極が、該回路基板上に離間した電子素子側の方向に延在し熱的に接続することにより、該電子素子を効率よく冷却することができる。
 より好ましくは、第2の電極が、前記電子素子の上下面のいずれかの面の全体に配置され熱的に接続される。
(First Embodiment)
It is preferred that the second electrode extends over the circuit board and is thermally connected to the electronic device.
The second electrode constituting the thermoelectric conversion module arranged on the circuit board extends in the direction toward the electronic element separated on the circuit board and is thermally connected to efficiently cool the electronic element. can do.
More preferably, the second electrode is disposed over the entire surface of any of the upper and lower surfaces of the electronic device and is thermally connected.
 図2は本発明の第1実施形態に係る熱電変換モジュールの構成を示す平面図である(但し、第1の電極、第1の基板、及び電子素子の回路基板側の面の領域に延在する第2の電極は図示せず)。 FIG. 2 is a plan view showing the configuration of the thermoelectric conversion module according to the first embodiment of the present invention (however, it extends to the region of the surface of the first electrode, the first substrate, and the electronic element on the circuit board side). The second electrode to be used is not shown).
 本発明の第1の実施形態に係る熱電変換モジュールの構成においては、回路基板5上に、電子素子6が実装され、該回路基板5上の離間した位置に、第2の電極2bの直上に積層されたP型熱電素子層3及びN型熱電素子層4を含む熱電変換モジュールが配置され、該熱電変換モジュールの第2の電極2bから延在した電極部を介在し前記電子素子6と熱的に接続されている。
 互いに対向する第1の電極1b(図示せず)の面積と第2の電極2bの面積にあっては、第2の電極2bの面積が、第1の電極1bの面積より十分に大きいことから、第2の電極2bを吸熱面となるよう熱電変換モジュールを通電させた場合、吸熱性が増大し、回路基板5上に離間した電子素子6を効率よく冷却することができる。
In the configuration of the thermoelectric conversion module according to the first embodiment of the present invention, the electronic element 6 is mounted on the circuit board 5, and at a position separated from the circuit board 5, directly above the second electrode 2b. A thermoelectric conversion module including the laminated P-type thermoelectric element layer 3 and N-type thermoelectric element layer 4 is arranged, and heat is provided with the electronic element 6 via an electrode portion extending from the second electrode 2b of the thermoelectric conversion module. Is connected.
Regarding the area of the first electrode 1b (not shown) and the area of the second electrode 2b facing each other, the area of the second electrode 2b is sufficiently larger than the area of the first electrode 1b. When the thermoelectric conversion module is energized so that the second electrode 2b serves as a heat absorbing surface, the heat absorbing property is increased, and the electronic element 6 separated on the circuit board 5 can be efficiently cooled.
 図3は従来の熱電変換モジュールの構成の一例を示す透過斜視図(構成部の一部を可視化)である。
 従来の熱電変換モジュールは、π型の熱電変換素子として構成され、例えば、第1の電極1bを有する第1の基板1aと、P型熱電素子層3及びN型熱電素子層4と、前記第1の電極1bに対向して配置された第2の電極2b’と、を含み、さらに第2の基板2a’を含む。
 回路基板5上における熱電変換モジュールの構成としては、第2の電極2b’を有する第2の基板2a’を吸熱面とした場合、回路基板5上に実装された電子素子6上に配置され、該電子素子6上と熱的に接続される。
FIG. 3 is a transmission perspective view (a part of the constituent portion is visualized) showing an example of the configuration of the conventional thermoelectric conversion module.
The conventional thermoelectric conversion module is configured as a π-type thermoelectric conversion element. For example, a first substrate 1a having a first electrode 1b, a P-type thermoelectric element layer 3 and an N-type thermoelectric element layer 4, and the above-mentioned first. It includes a second electrode 2b'arranged so as to face the electrode 1b of 1, and further includes a second substrate 2a'.
As a configuration of the thermoelectric conversion module on the circuit board 5, when the second substrate 2a'having the second electrode 2b'is used as a heat absorbing surface, the thermoelectric conversion module is arranged on the electronic element 6 mounted on the circuit board 5. It is thermally connected to the electronic element 6.
 本発明の実施形態の熱電変換モジュールにおいては、第1の電極1bの、P型熱電素子層3及びN型熱電素子層4側とは反対側の面を放熱面、他方の面である第2の電極2bの、P型熱電素子層3及びN型熱電素子層4側とは反対側の面を吸熱面とすることができ、電子素子は前記吸熱面側に熱的に接続されることで冷却される。
 電子素子としては、特に制限はないが、通常、回路基板の実装部に配置されたものを対象とし、CPU、CMOS、発光ダイオード、半導体レーザー及びコンデンサ等の発熱性の電子部品が挙げられる。
 回路基板に備わる電子素子の配置は、特に制限されず、回路基板の一方の面であっても他方の面であってもよい。また、回路基板の内部にあってもよい。さらに、それらを組み合わせた配置でもよい。
 電子素子の数は、特に制限されず、上記の電子素子を、複数又は複数組み合わせて冷却することができる。熱電性能が損なわれない範囲で、第2の電極の面積等を適宜調整する。
 電子素子6と第2の電極2bとの接合方法としては、接着剤による接着、ハンダ等、公知の方法が挙げられる。
In the thermoelectric conversion module of the embodiment of the present invention, the surface of the first electrode 1b opposite to the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 side is the heat dissipation surface, and the other surface is the second surface. The surface of the electrode 2b opposite to the P-type thermoelectric element layer 3 and the N-type thermoelectric element layer 4 can be used as a heat absorbing surface, and the electronic element is thermally connected to the heat absorbing surface side. It is cooled.
The electronic element is not particularly limited, but usually includes an electronic component arranged on a mounting portion of a circuit board, and includes heat-generating electronic components such as a CPU, CMOS, a light emitting diode, a semiconductor laser, and a capacitor.
The arrangement of the electronic elements provided on the circuit board is not particularly limited, and may be one surface or the other surface of the circuit board. It may also be inside the circuit board. Further, they may be arranged in combination.
The number of electronic elements is not particularly limited, and a plurality or a combination of a plurality of the above electronic elements can be cooled. The area of the second electrode and the like are appropriately adjusted within a range in which the thermoelectric performance is not impaired.
Examples of the method for joining the electronic element 6 and the second electrode 2b include known methods such as bonding with an adhesive and soldering.
 回路基板5としては、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスポリイミド、フッ素、ガラスPPO、ガラスエポキシ、ポリイミド、ポリエステル、セラミックス、エポキシ、ビスマレイミドトリアジン等を主な成分とする絶縁性基板が通常用いられる。この中で、熱電性能の観点から、熱伝導率が高いセラミックスを用いることが好ましい。また、汎用性の観点から紙フェノール、紙エポキシ、ガラスコンポジット、ガラスポリイミド、ガラスエポキシ、エポキシ、ポリエステルを用いることが好ましい。 As the circuit board 5, an insulating substrate containing mainly components such as paper phenol, paper epoxy, glass composite, glass polyimide, fluorine, glass PPO, glass epoxy, polyimide, polyester, ceramics, epoxy, and bismaleimide triazine is usually used. Be done. Among these, from the viewpoint of thermoelectric performance, it is preferable to use ceramics having high thermal conductivity. Further, from the viewpoint of versatility, it is preferable to use paper phenol, paper epoxy, glass composite, glass polyimide, glass epoxy, epoxy and polyester.
 第1実施形態によれば、例えば、第2の電極2b側を吸熱面として、電子素子6に熱的に接続した場合、該電子素子6からの熱が第2の電極2b側から効率的に吸熱されるとともに、第1の電極1bを有する第1の基板1a側から放熱される。第2の電極2bを延在したことから第2の電極2bの面積は第1の電極1bの面積より大きくなり、第2の電極2bから効率よく吸熱が迅速に行われる。このような構成を有する熱電変換モジュールにより、電子素子の発熱を効率的に吸熱することができる。 According to the first embodiment, for example, when the second electrode 2b side is used as an endothermic surface and is thermally connected to the electronic element 6, the heat from the electronic element 6 is efficiently transferred from the second electrode 2b side. The heat is absorbed and the heat is dissipated from the first substrate 1a side having the first electrode 1b. Since the second electrode 2b is extended, the area of the second electrode 2b is larger than the area of the first electrode 1b, and heat is efficiently and quickly absorbed from the second electrode 2b. The thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element.
(第2実施形態)
 本発明の熱電変換モジュールの構成において、第2の電極が回路基板上及び回路基板内部に延在し、前記電子素子に熱的に接続されることが好ましい。
 回路基板に配置された熱電変換モジュールを構成する第2の電極が、回路基板上に離間した電子素子側に、回路基板上及び回路基板内部に延在し配置され、熱的に接続することにより、該電子素子を効率よく冷却することができる。
(Second Embodiment)
In the configuration of the thermoelectric conversion module of the present invention, it is preferable that the second electrode extends on the circuit board and inside the circuit board and is thermally connected to the electronic element.
The second electrodes constituting the thermoelectric conversion module arranged on the circuit board are arranged so as to extend on the circuit board and inside the circuit board on the electronic element side separated on the circuit board, and are thermally connected to each other. , The electronic element can be cooled efficiently.
 図4は本発明の第2実施形態に係る熱電変換モジュールの構成を示す断面図である。
 本発明の第2の実施形態に係る熱電変換モジュールの構成においては、回路基板5上に、電子素子6との熱的な接続に障害となる他の基板上に実装される部品8が配置されており、第2の電極2bを基板5の内部を含め部品8の上面の高さまで延在し配置させることにより、電子素子6と熱的に接続される。熱電変換モジュールは、該第2の電極2b上にP型熱電素子層3及びN型熱電素子層4、第1の電極1b及び第1の基板1aを含む。
FIG. 4 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the second embodiment of the present invention.
In the configuration of the thermoelectric conversion module according to the second embodiment of the present invention, the component 8 mounted on another substrate that hinders the thermal connection with the electronic element 6 is arranged on the circuit board 5. The second electrode 2b is thermally connected to the electronic element 6 by extending and arranging the second electrode 2b up to the height of the upper surface of the component 8 including the inside of the substrate 5. The thermoelectric conversion module includes a P-type thermoelectric element layer 3 and an N-type thermoelectric element layer 4, a first electrode 1b, and a first substrate 1a on the second electrode 2b.
 他の基板上に実装される部品8としては、受動素子や能動素子が挙げられる。
 基板上に前記部品8等を接続するための配線や、その他の配線を設ける際は、前記電子素子と短絡しないように基板上に配置されている。前記電子素子と短絡させないように配置させるためには、多層基板を用いたり、電極上に絶縁性の樹脂等を配置しその上に配線を設けたりする方法が挙げられる。
Examples of the component 8 mounted on another substrate include a passive element and an active element.
When wiring for connecting the component 8 or the like or other wiring is provided on the board, it is arranged on the board so as not to cause a short circuit with the electronic element. In order to arrange the electronic element so as not to cause a short circuit, a method of using a multilayer substrate, or an method of arranging an insulating resin or the like on an electrode and providing wiring on the electrode can be mentioned.
 第2実施形態によれば、例えば、第2の電極2b側を吸熱面として、電子素子6に熱的に接続した場合、該電子素子6からの熱が第2の電極2b側から効率的に吸熱されるとともに、第1の電極1bを有する第1の基板1a側から放熱される。第2の電極を熱的な接続に障害となる他の基板上に実装される部品8の上面の高さまで延在し配置したことにより、第2の電極2bの面積は第1の電極1bの面積より大きくなっていることから、第2の電極2bから効率よく吸熱が迅速に行われる。このような構成を有する熱電変換モジュールにより、電子素子の発熱を効率的に吸熱することができる。 According to the second embodiment, for example, when the second electrode 2b side is used as an endothermic surface and is thermally connected to the electronic element 6, the heat from the electronic element 6 is efficiently transferred from the second electrode 2b side. The heat is absorbed and the heat is dissipated from the first substrate 1a side having the first electrode 1b. By arranging the second electrode extending to the height of the upper surface of the component 8 mounted on another substrate that hinders the thermal connection, the area of the second electrode 2b becomes that of the first electrode 1b. Since it is larger than the area, heat is efficiently and quickly absorbed from the second electrode 2b. The thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element.
(第3実施形態)
 本発明の熱電変換モジュールの構成において、回路基板がスルーホールを有し、第2の電極が、回路基板の電子素子側とは反対側の面から、スルーホールを介在し電子素子に熱的に接続されることが好ましい。
 また、第2の電極の全部が、スルーホールの内部に配置され、電子素子に熱的に接続されることが好ましい。
 回路基板にスルーホールを設け、熱電変換モジュールを構成する第2の電極を、例えば、回路基板の下面側からスルーホールを介在し回路基板上に実装される電子素子と熱的に接続することにより、電子素子を効率よく冷却することができる。
 上記の構成により、例えば、回路基板の電子素子側の表面積の低減につながり、実装密度を高くできる。
(Third Embodiment)
In the configuration of the thermoelectric conversion module of the present invention, the circuit board has a through hole, and the second electrode thermally enters the electronic element through the through hole from the surface opposite to the electronic element side of the circuit board. It is preferable to be connected.
Further, it is preferable that all of the second electrodes are arranged inside the through hole and are thermally connected to the electronic element.
By providing a through hole in the circuit board and thermally connecting the second electrode constituting the thermoelectric conversion module to, for example, an electronic element mounted on the circuit board via the through hole from the lower surface side of the circuit board. , The electronic element can be cooled efficiently.
With the above configuration, for example, the surface area of the circuit board on the electronic element side can be reduced, and the mounting density can be increased.
 図5は、本発明の第3実施形態に係る熱電変換モジュールの構成を示す断面図である。
 本発明の第3実施形態に係る熱電変換モジュールの構成においては、第1の電極11bを有する第1の基板11aと、P型熱電素子層13及びN型熱電素子層14と、前記第1の電極11bに対向して配置された第2の電極12bと、を含み、熱電変換モジュールの第2の電極12bはスルーホール17により回路基板15の両面に配置され、離間する第2の電極12b間において回路基板15により絶縁されている。電子素子16は、第2の電極12b側に熱的に直接接続する。
 熱電変換モジュールを構成する第2の電極の全部が、例えば、回路基板の下面側からスルーホールの内部に配置され、回路基板上に実装される電子素子と熱的に直接接続することにより、電子素子を効率よく冷却することができる。
FIG. 5 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the third embodiment of the present invention.
In the configuration of the thermoelectric conversion module according to the third embodiment of the present invention, the first substrate 11a having the first electrode 11b, the P-type thermoelectric element layer 13 and the N-type thermoelectric element layer 14, and the first The second electrode 12b of the thermoelectric conversion module includes the second electrode 12b arranged to face the electrode 11b, and the second electrode 12b of the thermoelectric conversion module is arranged on both sides of the circuit board 15 by the through hole 17 and is separated from the second electrode 12b. Is insulated by the circuit board 15. The electronic element 16 is thermally directly connected to the second electrode 12b side.
All of the second electrodes constituting the thermoelectric conversion module are arranged inside the through hole from the lower surface side of the circuit board, and are thermally directly connected to the electronic elements mounted on the circuit board to obtain electrons. The element can be cooled efficiently.
 回路基板15は、スルーホール17を有する。スルーホール17の形状、長さは、用いる熱電変換モジュールの第2の電極の大きさにより適宜調整する。
 スルーホール17の形成は公知の方法で形成できる。例えば、穴あけ加工やめっき法等により形成できる。スルーホールは金属材料等でフィリングされていてもよい。
The circuit board 15 has through holes 17. The shape and length of the through hole 17 are appropriately adjusted according to the size of the second electrode of the thermoelectric conversion module to be used.
The through holes 17 can be formed by a known method. For example, it can be formed by drilling or plating. The through holes may be filled with a metal material or the like.
 回路基板15に用いる基板材料としては、前述した回路基板5に用いる基板材料と同一のものを用いることができる。 As the substrate material used for the circuit board 15, the same substrate material as that used for the circuit board 5 described above can be used.
 第3実施形態によれば、回路基板15のスルーホール17内の全部に配置された第2の電極12b側を吸熱面として、電子素子16に直接配置することにより、電子素子16からの熱が、第2の電極12b側の吸熱面から吸熱されるとともに、第1の基板11aから放熱される。このような構成を有する熱電変換モジュールにより、電子素子16の発熱を効率的に吸熱することができる。 According to the third embodiment, the heat from the electronic element 16 is generated by directly arranging the second electrode 12b side arranged in the through hole 17 of the circuit board 15 as the endothermic surface on the electronic element 16. , Heat is absorbed from the endothermic surface on the side of the second electrode 12b, and heat is dissipated from the first substrate 11a. The thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element 16.
(第4実施形態)
 本発明の熱電変換モジュールの構成において、熱電変換モジュールの全部が、スルーホールの内部に配置され、第2の電極が電子素子に熱的に接続されることが好ましい。
 上記の構成により、例えば、回路基板の電子素子側の実装密度を高くできるとともに、回路基板全体の薄型化につながる。
(Fourth Embodiment)
In the configuration of the thermoelectric conversion module of the present invention, it is preferable that the entire thermoelectric conversion module is arranged inside the through hole and the second electrode is thermally connected to the electronic element.
With the above configuration, for example, the mounting density on the electronic element side of the circuit board can be increased, and the thickness of the entire circuit board can be reduced.
 図6は、本発明の第4実施形態に係る熱電変換モジュールの構成を示す断面図である。
 本発明の第4実施形態に係る熱電変換モジュールは、第1の電極11bと、P型熱電素子層13及びN型熱電素子層14と、前記第1の電極11bに対向して配置された第2の電極12bと、を含み、熱電変換モジュールの全部が回路基板15のスルーホール17の内部に配置される。また、離間する第1の電極11b間、及び離間する第2の電極12b間において回路基板15により絶縁されている。電子素子16は、第2の電極12b側に熱的に直接接続する。
 熱電変換モジュールの全部が、回路基板の下面側からスルーホールの内部に配置され、回路基板上に実装される電子素子と熱的に直接接続することにより、電子素子を効率よく冷却することができる。
FIG. 6 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the fourth embodiment of the present invention.
The thermoelectric conversion module according to the fourth embodiment of the present invention has a first electrode 11b, a P-type thermoelectric element layer 13 and an N-type thermoelectric element layer 14, and a first electrode 11b arranged to face the first electrode 11b. The entire thermoelectric conversion module including the electrode 12b of 2 is arranged inside the through hole 17 of the circuit board 15. Further, it is insulated by the circuit board 15 between the first electrodes 11b that are separated from each other and between the second electrodes 12b that are separated from each other. The electronic element 16 is thermally directly connected to the second electrode 12b side.
The entire thermoelectric conversion module is arranged inside the through hole from the lower surface side of the circuit board, and the electronic element can be efficiently cooled by directly connecting to the electronic element mounted on the circuit board. ..
 第4実施形態によれば、回路基板15のスルーホール17内に熱電変換モジュールの全部が配置され、第2の電極12b側を吸熱面として、電子素子16に直接配置することにより、電子素子16からの熱が、第2の電極12b側の吸熱面から吸熱されるとともに、第1の電極11bから放熱される。このような構成を有する熱電変換モジュールにより、電子素子16の発熱を効率的に吸熱することができる。また、熱電変換モジュールの全部が回路基板15のスルーホール17の内部に配置されることから、回路基板全体のさらなる薄型化につながる。 According to the fourth embodiment, the entire thermoelectric conversion module is arranged in the through hole 17 of the circuit board 15, and the electronic element 16 is arranged directly on the electronic element 16 with the second electrode 12b side as the endothermic surface. Is absorbed from the endothermic surface on the side of the second electrode 12b and dissipated from the first electrode 11b. The thermoelectric conversion module having such a configuration can efficiently absorb the heat generated by the electronic element 16. Further, since all of the thermoelectric conversion modules are arranged inside the through holes 17 of the circuit board 15, the thickness of the entire circuit board can be further reduced.
(第5実施形態)
 本発明の熱電変換モジュールの構成において、第2の電極が、さらに回路基板の電子素子側の面内方向に延在し、前記電子素子に熱的に接続されることが好ましい。
(Fifth Embodiment)
In the configuration of the thermoelectric conversion module of the present invention, it is preferable that the second electrode further extends in the in-plane direction on the electronic element side of the circuit board and is thermally connected to the electronic element.
 図7は、本発明の第5実施形態に係る熱電変換モジュールの構成を示す断面図である。
 本発明の第5実施形態に係る熱電変換モジュールは、第1の電極11bを有する第1の基板11aと、P型熱電素子層13及びN型熱電素子層14と、前記第1の電極11bに対向して配置された第2の電極12bと、を含み、第2の電極12bの全部が回路基板15のスルーホール17の内部に配置され、かつ第2の電極12bが回路基板15の上面側に延在し連続層として配置される。また、離間する第2の電極12b間において回路基板15により絶縁されている。電子素子16は、第2の電極12b側に熱的に直接接続する。
 回路基板15のスルーホール17の内部に配置され、回路基板15の上面側に連続層を有する第2の電極12bにあっては、回路基板15の上面側に面積を拡大することが可能となる。
FIG. 7 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the fifth embodiment of the present invention.
The thermoelectric conversion module according to the fifth embodiment of the present invention includes a first substrate 11a having a first electrode 11b, a P-type thermoelectric element layer 13 and an N-type thermoelectric element layer 14, and the first electrode 11b. The second electrode 12b is arranged so as to face each other, the entire second electrode 12b is arranged inside the through hole 17 of the circuit board 15, and the second electrode 12b is on the upper surface side of the circuit board 15. It extends to and is arranged as a continuous layer. Further, it is insulated by the circuit board 15 between the second electrodes 12b that are separated from each other. The electronic element 16 is thermally directly connected to the second electrode 12b side.
The area of the second electrode 12b, which is arranged inside the through hole 17 of the circuit board 15 and has a continuous layer on the upper surface side of the circuit board 15, can be expanded to the upper surface side of the circuit board 15. ..
 第5実施形態によれば、回路基板15のスルーホール17内に全部に含まれ、さらに回路基板の上面側の面内方向に延在した第2の電極12b側を吸熱面として、電子素子16に直接配置することにより、電子素子16からの熱が、第2の電極12b側の吸熱面から吸熱されるとともに、第1の基板11aから放熱される。このような構成を有する熱電変換モジュールにより、電子素子16の発熱をより効率的に吸熱することができる。 According to the fifth embodiment, the electronic element 16 is included in all the through holes 17 of the circuit board 15, and the second electrode 12b side extending in the in-plane direction on the upper surface side of the circuit board is used as an endothermic surface. The heat from the electronic element 16 is absorbed from the endothermic surface on the side of the second electrode 12b and dissipated from the first substrate 11a. The thermoelectric conversion module having such a configuration can absorb heat generated by the electronic element 16 more efficiently.
(第6実施形態)
 図8は、本発明の第6実施形態に係る熱電変換モジュールの構成を示す断面図である。第6実施形態に係る熱電変換モジュールの構成は、回路基板15の上面側の面内方向に延在した第2の電極12bの表面に複数の電子素子16を配置したものである。
 第6実施形態によれば、回路基板15の上面側の面内方向に延在した第2の電極12bの表面積を適宜調整することにより電子素子16を複数配置することができ、一つの熱電変換モジュールで複数の電子素子の発熱をより効率的に吸熱することができる。
(Sixth Embodiment)
FIG. 8 is a cross-sectional view showing the configuration of the thermoelectric conversion module according to the sixth embodiment of the present invention. The configuration of the thermoelectric conversion module according to the sixth embodiment is that a plurality of electronic elements 16 are arranged on the surface of the second electrode 12b extending in the in-plane direction on the upper surface side of the circuit board 15.
According to the sixth embodiment, a plurality of electronic elements 16 can be arranged by appropriately adjusting the surface area of the second electrode 12b extending in the in-plane direction on the upper surface side of the circuit board 15, and one thermoelectric conversion can be performed. The module can absorb the heat generated by a plurality of electronic elements more efficiently.
<熱電素子層>
 本発明に用いるP型熱電素子層及びN型熱電素子層は、特に制限されないが、熱電半導体材料、耐熱性樹脂、並びに、イオン液体及び/又は無機イオン性化合物を含む熱電半導体組成物からなることが好ましい。
<Thermoelectric element layer>
The P-type thermoelectric element layer and the N-type thermoelectric element layer used in the present invention are not particularly limited, but consist of a thermoelectric semiconductor material, a heat-resistant resin, and a thermoelectric semiconductor composition containing an ionic liquid and / or an inorganic ionic compound. Is preferable.
(熱電半導体材料)
 熱電素子層に用いる熱電半導体材料は、例えば、微粉砕装置等により、所定のサイズまで粉砕し、熱電半導体粒子として使用することが好ましい(以下、熱電半導体材料を「熱電半導体粒子」ということがある。)。
 熱電半導体粒子の粒径は、好ましくは10nm~100μm、より好ましくは20nm~50μm、さらに好ましくは30nm~30μmである。
 前記熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
(Thermoelectric semiconductor material)
The thermoelectric semiconductor material used for the thermoelectric element layer is preferably pulverized to a predetermined size by, for example, a fine pulverizer or the like and used as thermoelectric semiconductor particles (hereinafter, the thermoelectric semiconductor material may be referred to as "thermoelectric semiconductor particles"). .).
The particle size of the thermoelectric semiconductor particles is preferably 10 nm to 100 μm, more preferably 20 nm to 50 μm, and even more preferably 30 nm to 30 μm.
The average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern), and was used as the median value of the particle size distribution.
 本発明に用いる熱電素子層において、P型熱電素子層及びN型熱電素子層を構成する熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。 In the thermoelectric element layer used in the present invention, the thermoelectric semiconductor material constituting the P-type thermoelectric element layer and the N-type thermoelectric element layer is any material that can generate a thermoelectric force by imparting a temperature difference. The present invention is not particularly limited, and for example, a bismuth-tellu thermoelectric semiconductor material such as P-type bismasterlide and N-type bismasterlide; a telluride thermoelectric semiconductor material such as GeTe and PbTe; an antimony-tellu thermoelectric semiconductor material; ZnSb, Zn 3 Sb. Zinc-antimon thermoelectric semiconductor materials such as 2, Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismus selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; β-FeSi 2 , CrSi 2, MnSi VDD-based thermoelectric semiconductor materials such as 1.73 and Mg 2 Si; oxide-based thermoelectric semiconductor materials; Whistler materials such as FeVAL, FeVALSi, and FeVTiAl, and sulfide-based thermoelectric semiconductor materials such as TiS 2 are used.
 これらの中でも、本発明に用いる前記熱電半導体材料は、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることが好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電変換材料としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電変換材料としての特性が維持されるので好ましい。
Among these, the thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuthellide or N-type bismuthellide.
As the P-type bismuth telluride, one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used. In this case, X is preferably 0 <X ≦ 0.8, more preferably 0.4 ≦ X ≦ 0.6. When X is larger than 0 and 0.8 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as a P-type thermoelectric conversion material are maintained, which is preferable.
Further, as the N-type bismuth telluride, one having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y is preferably used. In this case, Y is preferably 0 ≦ Y ≦ 3 (when Y = 0: Bi 2 Te 3 ), and more preferably 0.1 <Y ≦ 2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as an N-type thermoelectric conversion material are maintained, which is preferable.
 熱電半導体粒子の前記熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体粒子の配合量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The blending amount of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. It is more preferably 50 to 96% by mass, and even more preferably 70 to 95% by mass. When the blending amount of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Perche coefficient) is large, the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited. At the same time, a film having sufficient film strength and flexibility can be obtained, which is preferable.
 また、熱電半導体粒子は、アニール処理(以下、「アニール処理A」ということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体粒子は、結晶性が向上し、さらに、熱電半導体粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数(ペルチェ係数の絶対値)が増大し、熱電性能指数をさらに向上させることができる。 Further, it is preferable that the thermoelectric semiconductor particles are annealed (hereinafter, may be referred to as "annealing treatment A"). By performing the annealing treatment A, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed, so that the Seebeck coefficient (absolute value of the Perche coefficient) of the thermoelectric conversion material is increased. , The thermoelectric performance index can be further improved.
(耐熱性樹脂)
 本発明に用いる耐熱性樹脂は、熱電半導体粒子間のバインダーとして働き、熱電素子層の屈曲性を高めるためのものである。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂を用いる。
 前記耐熱性樹脂としては、例えば、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、エポキシ樹脂、及びこれらの樹脂の化学構造を有する共重合体等が挙げられる。前記耐熱性樹脂は、単独でも又は2種以上組み合わせて用いてもよい。これらの中でも、耐熱性がより高く、且つ薄膜中の熱電半導体粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。前述の支持体として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
(Heat resistant resin)
The heat-resistant resin used in the present invention acts as a binder between thermoelectric semiconductor particles and enhances the flexibility of the thermoelectric element layer. The heat-resistant resin is not particularly limited, but when a thin film made of a thermoelectric semiconductor composition is subjected to crystal growth of thermoelectric semiconductor particles by annealing or the like, various factors such as mechanical strength and thermal conductivity as a resin are obtained. Use a heat-resistant resin that maintains its physical properties without being impaired.
Examples of the heat-resistant resin include polyamide resins, polyamideimide resins, polyimide resins, polyetherimide resins, polybenzoxazole resins, polybenzoimidazole resins, epoxy resins, and copolymers having a chemical structure of these resins. Can be mentioned. The heat-resistant resin may be used alone or in combination of two or more. Among these, polyamide resins, polyamide-imide resins, polyimide resins, and epoxy resins are preferable and have excellent flexibility because they have higher heat resistance and do not adversely affect the crystal growth of thermoelectric semiconductor particles in the thin film. Therefore, polyamide resin, polyamide-imide resin, and polyimide resin are more preferable. When a polyimide film is used as the above-mentioned support, the polyimide resin is more preferable as the heat-resistant resin from the viewpoint of adhesion to the polyimide film and the like. In the present invention, the polyimide resin is a general term for polyimide and its precursor.
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電素子層の屈曲性を維持することができる。 The heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. When the decomposition temperature is within the above range, the flexibility of the thermoelectric element layer can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 前記耐熱性樹脂の前記熱電半導体組成物中の配合量は、好ましくは0.1~40質量%、より好ましくは0.5~20質量%、さらに好ましくは1~20質量%である。前記耐熱性樹脂の配合量が、上記範囲内であれば、高い熱電性能と皮膜強度が両立した膜が得られる。 The blending amount of the heat-resistant resin in the thermoelectric semiconductor composition is preferably 0.1 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass. When the blending amount of the heat-resistant resin is within the above range, a film having both high thermoelectric performance and film strength can be obtained.
(イオン液体)
 熱電半導体組成物に含まれ得るイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50℃以上400℃未満のいずれかの温度領域において液体で存在し得る塩をいう。換言すれば、イオン液体は、融点が-50℃以上400℃未満の範囲にあるイオン性化合物である。イオン液体の融点は、好ましくは-25℃以上200℃以下、より好ましくは0℃以上150℃以下である。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
(Ionic liquid)
The ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of −50 ° C. or higher and lower than 400 ° C. In other words, the ionic liquid is an ionic compound having a melting point in the range of −50 ° C. or higher and lower than 400 ° C. The melting point of the ionic liquid is preferably −25 ° C. or higher and 200 ° C. or lower, and more preferably 0 ° C. or higher and 150 ° C. or lower. Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermostability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress a decrease in electrical conductivity between thermoelectric semiconductor materials. Further, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、Br、I、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。 As the ionic liquid, known or commercially available ones can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium and the like. phosphine cations and derivatives thereof; and a cationic component such as lithium cations and derivatives thereof, Cl -, Br -, I -, AlCl 4 -, Al 2 Cl 7 -, BF 4 -, PF 6 -, ClO 4 -, NO 3 -, CH 3 COO - , CF 3 COO -, CH 3 SO 3 -, CF 3 SO 3 -, (FSO 2) 2 N -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, AsF 6 -, SbF 6 -, NbF 6 -, TaF 6 -, F (HF) n -, (CN) 2 n -, C 4 F 9 SO 3 -, (C 2 F 5 SO 2) Examples thereof include those composed of anionic components such as 2 N , C 3 F 7 COO − , and (CF 3 SO 2 ) (CF 3 CO) N −.
 上記のイオン液体の中で、高温安定性、熱電半導体材料及び樹脂との相溶性、熱電半導体材料間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。 Among the above ionic liquids, the cation component of the ionic liquid is a pyridinium cation and its derivatives from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor materials and resins, and suppression of decrease in electrical conductivity between thermoelectric semiconductor material gaps. , It is preferable to contain at least one selected from the imidazolium cation and its derivatives.
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体として、1-ブチル-4-メチルピリジニウムブロミド、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファートが好ましい。 As the ionic liquid containing the pyridinium cation and its derivative as the cation component, 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide, and 1-butyl-4-methylpyridinium hexafluorophosphate are preferable.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。 Further, as an ionic liquid containing an imidazolium cation and a derivative thereof, the cation component is [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2-hydroxyethyl) imidazole]. Rium tetrafluoroborate] is preferable.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 Further, the above-mentioned ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 イオン液体の熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~20質量%である。イオン液体の配合量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass. When the blending amount of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
(無機イオン性化合物)
 熱電半導体組成物に含まれ得る無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は400~900℃の幅広い温度領域において固体で存在し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を抑制することができる。
(Inorganic ionic compound)
The inorganic ionic compound that can be contained in the thermoelectric semiconductor composition is a compound composed of at least cations and anions. Since the inorganic ionic compound exists as a solid in a wide temperature range of 400 to 900 ° C. and has characteristics such as high ionic conductivity, it can be used as a conductivity auxiliary agent to reduce the electrical conductivity between thermoelectric semiconductor materials. Can be suppressed.
 無機イオン性化合物の熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~10質量%である。無機イオン性化合物の配合量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~10質量%である。
The blending amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass. When the blending amount of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
When the inorganic ionic compound and the ionic liquid are used in combination, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably. Is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
 前記熱電半導体組成物からなる熱電素子層は、例えば、基板上に、前記熱電半導体組成物を塗布し、乾燥することで形成することができる。このように、形成することで、簡便に低コストで多数の熱電変換素子層を得ることができる。
 熱電半導体組成物を塗布し、熱電素子層を得る方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷法、スロットダイコート法等が好ましく用いられる。
 次いで、得られた塗膜を乾燥することにより、熱電素子層が形成される。
The thermoelectric element layer made of the thermoelectric semiconductor composition can be formed, for example, by applying the thermoelectric semiconductor composition on a substrate and drying it. By forming in this way, a large number of thermoelectric conversion element layers can be easily obtained at low cost.
As a method of applying a thermoelectric semiconductor composition to obtain a thermoelectric element layer, a screen printing method, a flexographic printing method, a gravure printing method, a spin coating method, a dip coating method, a die coating method, a spray coating method, a bar coating method, and a doctor blade Known methods such as a method can be mentioned and are not particularly limited. When the coating film is formed into a pattern, a screen printing method, a slot die coating method, or the like, which enables easy pattern formation using a screen plate having a desired pattern, is preferably used.
Then, the obtained coating film is dried to form a thermoelectric element layer.
 熱電素子層の厚さは、特に限定されるものではなく、熱電性能と皮膜強度の点から、好ましくは100nm~1000μm、より好ましくは300nm~600μm、さらに好ましくは5~400μmである。 The thickness of the thermoelectric element layer is not particularly limited, and is preferably 100 nm to 1000 μm, more preferably 300 nm to 600 μm, and further preferably 5 to 400 μm from the viewpoint of thermoelectric performance and film strength.
 熱電半導体組成物からなる薄膜としてのP型熱電素子層及びN型熱電素子層は、さらにアニール処理(以下、「アニール処理B」ということがある。)を行うことが好ましい。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる樹脂及びイオン性化合物の耐熱温度等に依存するが、100~500℃で、数分~数十時間行われる。 It is preferable that the P-type thermoelectric element layer and the N-type thermoelectric element layer as a thin film made of the thermoelectric semiconductor composition are further subjected to an annealing treatment (hereinafter, may be referred to as "annealing treatment B"). By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, so that the thermoelectric performance can be further improved. The annealing treatment B is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled, and the resin and the ionic compound to be used are used. Although it depends on the heat-resistant temperature and the like, it is carried out at 100 to 500 ° C. for several minutes to several tens of hours.
<基板>
 本発明の熱電変換モジュールに用いる、第1の基板は、特に制限されず、それぞれ独立に、紙フェノール基板、紙エポキシ基板、ガラスコンポジット基板、ガラスエポキシ基板、ガラスポリイミド基板、フッ素基板、ガラスPPO基板、ガラス、セラミックス、又はプラスチックフィルム等を用いることができる。これらの中で、屈曲性を有し、熱源の表面への設置に対し自由度を有する観点から、プラスチックフィルムが好ましい。さらに、耐熱性が高く、アウトガスの発生が少ないという観点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルム、ポリサルフォンフィルム、ガラスコンポジット基板、ガラスエポキシ基板、ガラスポリイミド基板が好ましく、さらにまた、汎用性が高いという観点から、ポリイミドフィルム、紙フェノール基板、紙エポキシ基板、ガラスコンポジット基板、ガラスエポキシ基板、ガラスポリイミド基板が特に好ましい。
<Board>
The first substrate used for the thermoelectric conversion module of the present invention is not particularly limited, and is independently a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, a glass polyimide substrate, a fluorine substrate, and a glass PPO substrate. , Glass, ceramics, plastic film and the like can be used. Among these, a plastic film is preferable from the viewpoint of having flexibility and having a degree of freedom for installation of a heat source on the surface. Further, from the viewpoint of high heat resistance and low generation of outgas, polyimide film, polyamide film, polyetherimide film, polyaramid film, polyamideimide film, polysulfon film, glass composite substrate, glass epoxy substrate, and glass polyimide substrate are available. Preferably, from the viewpoint of high versatility, a polyimide film, a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, and a glass polyimide substrate are particularly preferable.
 前記第1の基板の厚さは、耐熱性及び屈曲性の観点から、1~1000μmが好ましく、10~500μmがより好ましく、20~100μmがさらに好ましい。 The thickness of the first substrate is preferably 1 to 1000 μm, more preferably 10 to 500 μm, and even more preferably 20 to 100 μm from the viewpoint of heat resistance and flexibility.
<電極>
 本発明の熱電変換モジュールにおいて、第1の電極及び第2の電極に用いる金属材料としては、特に制限されないが、それぞれ独立に、銅、金、ニッケル、アルミニウム、ロジウム、白金、クロム、パラジウム、ステンレス鋼、モリブデン又はこれらのいずれかの金属を含む合金が好ましい。また、単層のみならず、複数組み合わせて多層構成としてもよい。
 前記第1の電極及び第2の電極の層の厚さは、それぞれ独立に、好ましくは10nm~200μm、より好ましくは30nm~150μm、さらに好ましくは50nm~120μmである。第1の電極及び第2の電極の層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、かつ電極として十分な強度が得られる。
<Electrode>
In the thermoelectric conversion module of the present invention, the metal materials used for the first electrode and the second electrode are not particularly limited, but are independently copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, and stainless steel, respectively. Alloys containing steel, molybdenum or any of these metals are preferred. Further, not only a single layer but also a plurality of layers may be combined to form a multi-layer structure.
The thickness of the layers of the first electrode and the second electrode are independently, preferably 10 nm to 200 μm, more preferably 30 nm to 150 μm, and further preferably 50 nm to 120 μm. When the thickness of the layers of the first electrode and the second electrode is within the above range, the electrical conductivity is high and the resistance is low, and sufficient strength as an electrode can be obtained.
 第1の電極及び第2の電極の形成は、前述した金属材料を用いて行う。第1の電極及び第2の電極を形成する方法としては、基板上にパターンが形成されていない電極を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、インクジェット法等により直接電極のパターンを形成する方法等が挙げられる。
 パターンが形成されていない電極の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、電極の材料に応じて適宜選択される。
 熱電性能の観点から、高い導電性、高い熱伝導性が求められるため、めっき法や真空成膜法で成膜した電極を用いることが好ましい。
The formation of the first electrode and the second electrode is performed using the metal material described above. As a method of forming the first electrode and the second electrode, after providing an electrode having no pattern formed on the substrate, a known physical treatment or chemical treatment mainly composed of a photolithography method, or a method thereof. A method of processing into a predetermined pattern shape by using the above in combination, or a method of directly forming an electrode pattern by a screen printing method, an inkjet method, or the like can be mentioned.
As a method for forming an electrode in which a pattern is not formed, PVD (Physical Vapor Deposition Method) such as vacuum deposition method, sputtering method, ion plating method, or CVD (Chemical Vapor Deposition) such as thermal CVD, atomic layer deposition (ALD), etc. Dry process such as vapor deposition method), various coating methods such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method, wet process such as electrodeposition method, silver salt method , Electrolytic plating method, electroless plating method, lamination of metal foil and the like, and are appropriately selected according to the material of the electrode.
From the viewpoint of thermoelectric performance, high conductivity and high thermal conductivity are required, so it is preferable to use an electrode formed by a plating method or a vacuum film forming method.
 P型熱電素子層及びN型熱電素子層と、電極との接合は、貼り合わせ剤を用いる。
 貼り合わせ剤としては、導電ペースト等が挙げられる。導電ペーストとしては、銅ペースト、銀ペースト、ニッケルペースト等が挙げられ、バインダーを使用する場合は、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。
 貼り合わせ剤を基板の電極上に塗布する方法としては、スクリーン印刷法、ディスペンシング法等の公知の方法が挙げられる。
A laminating agent is used to bond the P-type thermoelectric element layer and the N-type thermoelectric element layer to the electrodes.
Examples of the bonding agent include a conductive paste and the like. Examples of the conductive paste include copper paste, silver paste, nickel paste and the like, and when a binder is used, epoxy resin, acrylic resin, urethane resin and the like can be mentioned.
Examples of the method of applying the bonding agent on the electrodes of the substrate include known methods such as a screen printing method and a dispensing method.
 また、電極との接合にハンダ材料を用いることができる。ハンダ材料としては、適宜選択すればよく、Sn、Sn/Pb合金、Sn/Ag合金、Sn/Cu合金、Sn/Sb合金、Sn/In合金、Sn/Zn合金、Sn/In/Bi合金、Sn/In/Bi/Zn合金、Sn/Bi/Pb/Cd合金等の既知の材料が挙げられる。
 ハンダ材料を基板の電極上に塗布する方法としては、スクリーン印刷法、ディスペンシング法等の公知の方法が挙げられる。
Further, a solder material can be used for bonding with the electrode. The solder material may be appropriately selected, and Sn, Sn / Pb alloy, Sn / Ag alloy, Sn / Cu alloy, Sn / Sb alloy, Sn / In alloy, Sn / Zn alloy, Sn / In / Bi alloy, etc. Known materials such as Sn / In / Bi / Zn alloys and Sn / Bi / Pb / Cd alloys can be mentioned.
Examples of the method of applying the solder material onto the electrodes of the substrate include known methods such as a screen printing method and a dispensing method.
 以上、本発明の熱電変換モジュールのー実施形態について説明したが、本発明は上記実施形態には限定されず、さらに種々の変形をすることができる。 Although the embodiment of the thermoelectric conversion module of the present invention has been described above, the present invention is not limited to the above embodiment and can be further modified in various ways.
 本発明の熱電変換モジュールの構成によれば、回路基板に実装される電子素子に、熱電変換モジュールを構成する第2の電極を回路基板上及び/又は回路基板内部に配置するという簡易な構成で吸熱性がさらに向上した熱電変換モジュールが得られる。 According to the configuration of the thermoelectric conversion module of the present invention, the second electrode constituting the thermoelectric conversion module is arranged on the circuit board and / or inside the circuit board in the electronic element mounted on the circuit board. A thermoelectric conversion module having further improved heat absorption can be obtained.
 本発明の熱電変換モジュールは、回路基板に実装される電子素子に、熱電変換モジュールを構成する第2の電極を回路基板上及び/又は回路基板内部に配置するという簡易な構成を有する。
 このため、主として冷却用途として、前述したエレクトロニクス機器の分野に用いられる回路基板に実装する電子素子に適用することが考えられる。
The thermoelectric conversion module of the present invention has a simple configuration in which a second electrode constituting the thermoelectric conversion module is arranged on the circuit board and / or inside the circuit board on an electronic element mounted on the circuit board.
Therefore, it is conceivable to apply it mainly to an electronic element mounted on a circuit board used in the above-mentioned field of electronic equipment as a cooling application.
1a:第1の基板
1b:第1の電極
2b:第2の電極
2a’:第2の基板
2b’:第2の電極
3:P型熱電素子層
4:N型熱電素子層
5:回路基板
6:電子素子
8:部品
11a:第1の基板
11b:第1の電極
12b:第2の電極
13:P型熱電素子層
14:N型熱電素子層
15:回路基板
16:電子素子
17:スルーホール

 
1a: First substrate 1b: First electrode 2b: Second electrode 2a': Second substrate 2b': Second electrode 3: P-type thermoelectric element layer 4: N-type thermoelectric element layer 5: Circuit substrate 6: Electronic element 8: Component 11a: First substrate 11b: First electrode 12b: Second electrode 13: P-type thermoelectric element layer 14: N-type thermoelectric element layer 15: Circuit substrate 16: Electronic element 17: Through hole

Claims (8)

  1.  第1の電極と、P型熱電素子層及びN型熱電素子層と、前記第1の電極に対向して配置された第2の電極と、を含み、
    前記P型熱電素子層と前記N型熱電素子層とが前記第1の電極又は前記第2の電極を介在しPN接合されたPN接合対が複数対、前記第1の電極と前記第2の電極とで交互に電気的に直列接続された、電子素子が備わる回路基板に配置する熱電変換モジュールであって、前記第2の電極が前記回路基板上及び/又は回路基板内部に配置される、熱電変換モジュール。
    It includes a first electrode, a P-type thermoelectric element layer, an N-type thermoelectric element layer, and a second electrode arranged so as to face the first electrode.
    A plurality of pairs of PN junctions in which the P-type thermoelectric element layer and the N-type thermoelectric element layer are PN-bonded with the first electrode or the second electrode interposed therebetween, the first electrode and the second electrode. A thermoelectric conversion module arranged on a circuit board provided with an electronic element, which is electrically connected in series with electrodes alternately, wherein the second electrode is arranged on the circuit board and / or inside the circuit board. Thermoelectric conversion module.
  2.  さらに第1の基板を含み、該第1の基板は前記第1の電極を有する、請求項1に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, further comprising a first substrate, wherein the first substrate has the first electrode.
  3.  前記第2の電極が、前記回路基板上に延在し、前記電子素子に熱的に接続される、請求項1又は2に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1 or 2, wherein the second electrode extends on the circuit board and is thermally connected to the electronic element.
  4.  前記第2の電極が前記回路基板上及び前記回路基板内部に延在し、前記電子素子に熱的に接続される、請求項1~3のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 3, wherein the second electrode extends on the circuit board and inside the circuit board and is thermally connected to the electronic element.
  5.  前記回路基板がスルーホールを有し、前記第2の電極が、前記回路基板の前記電子素子側とは反対側の面から、前記スルーホールを介在し前記電子素子に熱的に接続される、請求項1~4のいずれか1項に記載の熱電変換モジュール。 The circuit board has a through hole, and the second electrode is thermally connected to the electronic element from a surface of the circuit board opposite to the electronic element side via the through hole. The thermoelectric conversion module according to any one of claims 1 to 4.
  6.  前記第2の電極の全部が、前記スルーホールの内部に配置され、前記電子素子に熱的に接続される、請求項1~5のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 5, wherein all of the second electrodes are arranged inside the through hole and thermally connected to the electronic element.
  7.  前記熱電変換モジュールの全部が、前記スルーホールの内部に配置され、前記第2の電極が前記電子素子に熱的に接続される、請求項1~6のいずれか1項に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 6, wherein all of the thermoelectric conversion modules are arranged inside the through holes, and the second electrode is thermally connected to the electronic element. ..
  8.  前記第2の電極が、さらに前記回路基板の前記電子素子側の面内方向に延在し、前記電子素子に熱的に接続される、請求項1~7のいずれか1項に記載の熱電変換モジュール。

     
    The thermoelectric according to any one of claims 1 to 7, wherein the second electrode further extends in the in-plane direction of the circuit board on the electronic element side and is thermally connected to the electronic element. Conversion module.

PCT/JP2021/011333 2020-03-30 2021-03-19 Thermoelectric conversion module WO2021200264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061391 2020-03-30
JP2020-061391 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200264A1 true WO2021200264A1 (en) 2021-10-07

Family

ID=77928211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011333 WO2021200264A1 (en) 2020-03-30 2021-03-19 Thermoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2021200264A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075821A1 (en) * 2022-10-07 2024-04-11 株式会社東海理化電機製作所 Composition for thermoelectric conversion elements, thermoelectric conversion module, method for producing composition for thermoelectric conversion elements, and method for producing thermoelectric conversion module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231729A (en) * 2008-03-25 2009-10-08 Nec Corp Semiconductor device
JP2014204123A (en) * 2013-04-09 2014-10-27 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー Printed circuit board integrated thermoelectric cooler/heater
US20170223817A1 (en) * 2016-01-29 2017-08-03 Delta Electronics, Inc. Thermoelectric cooling module
JP2019149501A (en) * 2018-02-28 2019-09-05 京セラ株式会社 Wiring board and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231729A (en) * 2008-03-25 2009-10-08 Nec Corp Semiconductor device
JP2014204123A (en) * 2013-04-09 2014-10-27 ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー Printed circuit board integrated thermoelectric cooler/heater
US20170223817A1 (en) * 2016-01-29 2017-08-03 Delta Electronics, Inc. Thermoelectric cooling module
JP2019149501A (en) * 2018-02-28 2019-09-05 京セラ株式会社 Wiring board and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075821A1 (en) * 2022-10-07 2024-04-11 株式会社東海理化電機製作所 Composition for thermoelectric conversion elements, thermoelectric conversion module, method for producing composition for thermoelectric conversion elements, and method for producing thermoelectric conversion module

Similar Documents

Publication Publication Date Title
CN1326256C (en) Fabrication of thermoelectric modules and solder for such fabrication
JP7406756B2 (en) Thermoelectric conversion module and its manufacturing method
US20080308140A1 (en) Thermo-Electric Cooling Device
US20100108117A1 (en) Thermoelectric module package and manufacturing method therefor
WO2018139475A1 (en) Flexible thermoelectric conversion element and method for manufacturing same
WO2021200264A1 (en) Thermoelectric conversion module
JP2007035907A (en) Thermoelectric module
WO2021065670A1 (en) Thermoelectric conversion module
JP2019179911A (en) Thermoelectric conversion module
WO2021200265A1 (en) Thermoelectric conversion module
WO2019188862A1 (en) Thermoelectric conversion module
WO2021241635A1 (en) Thermoelectric conversion module and manufacturing method therefor
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
JPWO2020045376A1 (en) A method for manufacturing a chip of a thermoelectric conversion material and a method for manufacturing a thermoelectric conversion module using the chip obtained by the manufacturing method.
US20230380288A1 (en) Thermoelectric conversion module
JP2022057937A (en) Electrode for thermoelectric conversion modules
WO2021193358A1 (en) Thermoelectric conversion module
JPWO2020071424A1 (en) Thermoelectric conversion material chip
TW202013776A (en) Thermoelectric conversion unit
WO2023190633A1 (en) Thermoelectric conversion module
WO2023276559A1 (en) Semiconductor sealing body
JP2022157777A (en) Thermoelectric conversion module
JP2021192409A (en) Electrode for thermoelectric conversion module
JP2022157771A (en) Electrode for thermoelectric conversion module and thermoelectric conversion module using the same
JP2022157779A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP