WO2021200149A1 - Polishing composition and polishing method - Google Patents

Polishing composition and polishing method Download PDF

Info

Publication number
WO2021200149A1
WO2021200149A1 PCT/JP2021/010796 JP2021010796W WO2021200149A1 WO 2021200149 A1 WO2021200149 A1 WO 2021200149A1 JP 2021010796 W JP2021010796 W JP 2021010796W WO 2021200149 A1 WO2021200149 A1 WO 2021200149A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
less
polishing composition
metal salt
substrate
Prior art date
Application number
PCT/JP2021/010796
Other languages
French (fr)
Japanese (ja)
Inventor
高見 信一郎
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2022511841A priority Critical patent/JPWO2021200149A1/ja
Publication of WO2021200149A1 publication Critical patent/WO2021200149A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition and a polishing method. More specifically, the present invention relates to a polishing composition and a polishing method suitable for polishing a high-hardness material having a Vickers hardness of 1500 Hv or more.
  • This application claims priority based on Japanese Patent Application No. 2020-060913 filed on March 30, 2020, the entire contents of which are incorporated herein by reference.
  • the surface of materials such as metals, metalloids, non-metals, and oxides thereof is polished using a polishing composition.
  • a surface made of a compound semiconductor material such as silicon carbide, boron carbide, tungsten carbide, silicon nitride, titanium nitride, and gallium nitride is wrapped by supplying diamond abrasive grains between the surface and the polishing platen.
  • diamond abrasive grains can be processed by.
  • polishing (polishing) using a polishing pad and a polishing composition after or instead of wrapping with diamond abrasive grains has been studied.
  • Patent Document 1 is mentioned as a document that discloses the prior art of the polishing composition.
  • Patent Document 1 a composition for polishing tantalum is studied.
  • the polishing removal speed is sufficiently high for practical use.
  • a surface made of a high-hardness material such as silicon carbide further improvement in polishing removal speed is desired.
  • the polishing composition that can be expected to improve the polishing removal speed include a polishing composition containing fumed silica. Since fumed silica is more non-spherical than colloidal silica, it tends to have excellent processing power, but it is preferable because it is less likely to cause a problem of alumina residue (piercing or the like) on a polished surface such as alumina abrasive grains. Further, when the polishing composition contains an oxidizing agent, the oxidizing agent may change the surface of the substrate, and the polishing removal rate may be improved.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to improve the polishing removal rate of a composition containing fumed silica and an oxidizing agent.
  • a polishing composition containing fumed silica, an oxidizing agent, and a metal salt is provided.
  • This polishing composition is characterized by containing more than 10 mmol / L of metal salts.
  • the polishing removal rate is improved in the composition containing fumed silica and an oxidizing agent.
  • the "metal salt” in the present specification is defined as a compound different from the above “oxidizing agent”, and specifically, it is produced by neutralization of a strong acid and a strong base. Can be pure salt.
  • the metal forming the metal salt includes lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium or barium.
  • the metal salt is a nitrate of an alkali metal and / or an alkaline earth metal. And / or hydrochloride.
  • the polishing removal rate is preferably improved.
  • the metal forming the metal salt is calcium.
  • the polishing removal rate is particularly preferably improved.
  • the metal forming the metal salt is potassium.
  • the polishing removal rate is particularly preferably improved.
  • the oxidizing agent comprises a composite metal oxide.
  • the composition containing the composite metal oxide as an oxidizing agent contains a metal salt in an amount of more than 10 mmol / L, the polishing removal rate can be easily improved.
  • the ratio (B / A) of the metal salt concentration B [mmol / L] to the oxidizing agent concentration A [mmol / L] is 0.01 or more and 10 or less. According to such a configuration, the effect of the technique disclosed herein is preferably exhibited.
  • the pH of the polishing composition is greater than 5.0 and less than 9.0.
  • the pH of the polishing composition is in the above range (a range close to the neutral range), the effects of the techniques disclosed herein are preferably exhibited.
  • the polishing composition disclosed herein is preferably used for polishing a material having a Vickers hardness of 1500 Hv or more. According to the above-mentioned polishing composition, the polishing removal rate for a high-hardness material can be improved.
  • a preferable example of the high hardness material is silicon carbide. When polishing silicon carbide, the effects of the techniques disclosed herein are preferably exhibited.
  • a method for polishing a substrate includes a step of polishing a substrate using any of the polishing compositions disclosed herein. According to this polishing method, the polishing removal speed is improved.
  • the polishing composition disclosed herein comprises fumed silica.
  • fumed silica it can be appropriately selected and used from various known fumed silicas.
  • the fumed silica may contain one of various known fumed silicas alone or in combination of two or more.
  • the average primary particle size of fumed silica is not particularly limited as long as the effect of the present invention is exhibited, and is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more from the viewpoint of improving the polishing removal speed and the like. For example, it may be 30 nm or more. Higher polishing removal rates can be achieved by increasing the average primary particle size. From the viewpoint of surface quality after polishing, the average primary particle size is preferably 150 nm or less, more preferably 100 nm or less, still more preferably 80 nm or less, and may be, for example, 60 nm or less.
  • BET value (m 2 / g)) means the particle size (BET particle size) calculated by the formula.
  • the specific surface area can be measured, for example, by using a surface area measuring device manufactured by Micromeritex Co., Ltd., trade name "Flow Sorb II 2300".
  • the average secondary particle size of fumed silica is not particularly limited as long as the effect of the present invention is exhibited, for example, 15 nm or more is suitable, and from the viewpoint of improving the polishing removal speed, it is preferably 30 nm or more, more preferably. Is 60 nm or more, more preferably 80 nm or more, particularly preferably 100 nm or more (for example, 120 nm or more), and may be 150 nm or more.
  • the average secondary particle size of the fumed silica can be, for example, 1000 nm or less. From the viewpoint of surface quality after polishing, the average secondary particle size is preferably 500 nm or less, and may be 300 nm or less. For example, fumed silica having an average secondary particle size of 120 nm or more and 220 nm or less can be preferably adopted.
  • the average secondary particle size of fumed silica means the volume-based average particle size (50% volume average particle size) based on the dynamic light scattering method.
  • the particle size measurement based on the dynamic light scattering method can be performed using, for example, "N4 Plus” manufactured by BECKMAN COULTER.
  • the aspect ratio of fumed silica is not particularly limited and may be, for example, 1.5 or more. From the viewpoint of improving the polishing removal speed, the aspect ratio of the fumed silica may be 2.0 or more, 2.5 or more, or 3.0 or more. Further, the upper limit of the aspect ratio is, for example, less than 8.0, and may be less than 6.0.
  • the "aspect ratio" of the fumed silica means the value of the ratio of the average secondary particle size / the average primary particle size of the fumed silica.
  • the content of fumed silica in the polishing composition (when a plurality of types of fumed silica are contained, the total content thereof) is not particularly limited as long as the effects of the present invention are exhibited, and for example, 0. It is 01% by weight or more, and may be 0.05% by weight or more. From the viewpoint of improving the polishing speed, it is appropriate to be 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 0.8% by weight or more, and may be 1% by weight or more, 5% by weight. The above may be sufficient. Further, from the viewpoint of dispersibility of the polishing composition, stability over time, etc., the content of fumed silica is preferably 50% by weight or less, preferably 20% by weight or less, and 15% by weight. It may be 10% by weight or less, 8% by weight or less, 3% by weight or less, 1.5% by weight or less, for example, 0.3% by weight or less.
  • the polishing composition disclosed herein may contain silica abrasive grains other than fumed silica (hereinafter, also referred to as non-fumed silica abrasive grains) as long as the effects of the present invention are not impaired.
  • silica abrasive grains other than fumed silica hereinafter, also referred to as non-fumed silica abrasive grains
  • Abrasive grains made of a material other than the above hereinafter, also referred to as non-silica abrasive grains
  • non-fumed silica abrasive grains include colloidal silica and precipitated silica.
  • non-silica abrasive grains include oxide particles such as aluminum oxide particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles; Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; inorganic particles such as carbonates such as calcium carbonate and barium carbonate, and crosslinked or non-crosslinked polymethacryl Examples thereof include abrasive grains substantially composed of any of organic particles such as methyl acid, polyacrylonitrile, polystyrene, nylon and silicone.
  • the ratio of fumed silica to the total abrasive grains used is high.
  • the proportion of fumed silica in the entire abrasive grains is preferably more than 50% by weight, preferably 70% by weight or more, more preferably 90% by weight or more, still more preferably 95% by weight or more, and is substantially. It may be 100% by weight.
  • the polishing composition may be substantially free of diamond particles as abrasive grains. Since diamond particles have high hardness, they can be a limiting factor for improving smoothness. Moreover, since diamond particles are generally expensive, they cannot be said to be advantageous materials in terms of cost effectiveness, and from a practical point of view, the dependence on high-priced materials such as diamond particles may be low.
  • the fact that the abrasive grains do not substantially contain diamond particles means that the ratio of the diamond particles to the total abrasive grains is 1% by weight or less, more preferably 0.5% by weight or less, typically 0.1% by weight. % Or less, including the case where the ratio of diamond particles is 0% by weight. In such an embodiment, the effects of the techniques disclosed herein can be suitably exerted.
  • the polishing composition disclosed herein comprises an oxidizing agent.
  • the oxidant can cause an oxidation reaction with the surface of the substrate during the polishing process to reduce the hardness of the surface and make the surface fragile.
  • the oxidizing agent is not particularly limited as long as it is a substance having a sufficient redox potential to exert an action of oxidizing the surface of the substrate.
  • the oxidizing agent can be a substance having a redox potential higher than the redox potential of the substrate material at the pH at which polishing is performed.
  • the pH at which the polishing is carried out is usually the same as the pH of the polishing composition.
  • the redox potential of the substrate material is determined by dispersing the powder of the material in water to make a slurry, adjusting the slurry to the same pH as the polishing composition, and then using a commercially available redox potential meter to prepare the slurry.
  • the value obtained by measuring the redox potential (oxidation-reduction potential with respect to the standard hydrogen electrode at a liquid temperature of 25 ° C.) is adopted.
  • the oxidizing agent in the present specification does not include the metal salt described later.
  • the oxidizing agent include peroxides such as hydrogen peroxide; nitrates such as iron nitrate, silver nitrate and aluminum nitrate; persulfates such as persulfates such as peroxomonosulfate and peroxodisulfate; persulfates such as chloric acid and the like.
  • peroxides such as hydrogen peroxide
  • nitrates such as iron nitrate, silver nitrate and aluminum nitrate
  • persulfates such as persulfates such as peroxomonosulfate and peroxodisulfate
  • persulfates such as chloric acid and the like.
  • the polishing composition comprises a composite metal oxide as an oxidizing agent.
  • the composite metal oxide include nitric acids, iron acids, permanganic acids, chromium acids, vanadic acids, ruthenic acids, molybdic acids, renic acids and tungsten acids. Among them, iron acids, permanganates and chromium acids are more preferable, and permanganates are even more preferable.
  • One type of composite metal oxide may be used alone, or two or more types may be used in combination as appropriate.
  • the polishing composition disclosed here may or may not further contain an oxidizing agent other than the above-mentioned composite metal oxide.
  • the technique disclosed herein can be preferably carried out in a manner in which an oxidizing agent (for example, hydrogen peroxide) other than the above-mentioned composite metal oxide is substantially not contained as an oxidizing agent.
  • the concentration (content) of the oxidizing agent in the polishing composition is 0.001 mol / L or more.
  • the concentration of the oxidizing agent is preferably 0.005 mol / L or more, more preferably 0.01 mol / L or more, and 0.05 mol / L or more. The above is more preferable.
  • the concentration of oxidant is 0.10 mol / L or higher, may be 0.15 mol / L or higher, may be 0.20 mol / L or higher, eg, 0.25 mol / L or higher. Molar / L or more.
  • the concentration of the oxidizing agent is preferably 10 mol / L or less, preferably 5 mol / L or less, and 3 mol / L or less (for example, 1). It is more preferably mol / L or less, or 0.5 mol / L or less). In some embodiments, the concentration of oxidant may be 0.30 mol / L or less, 0.20 mol / L or less, 0.12 mol / L or less, 0.09 mol / L or less. It may be L or less.
  • the content of the oxidant can also be specified by the relative relationship with the abrasive grains (typically fumed silica).
  • the content of the oxidizing agent with respect to 100 parts by weight of the abrasive grains can be, for example, 0.01 mol or more, and the effect of using the oxidizing agent is effectively exhibited. From the viewpoint, it is appropriate to set it to 0.05 mol or more, and it may be 0.10 mol or more, 0.5 mol or more, 1 mol or more, 2.5 mol or more, and 5 mol. The above may be sufficient.
  • the content of the oxidizing agent with respect to 100 parts by weight of the abrasive grains can be, for example, 50 mol or less (for example, 30 mol or less), and 10 mol or less from the viewpoint of effectively exerting the mechanical polishing force of the abrasive grains. It may be 6 mol or less, 3 mol or less, 1 mol or less, 0.3 mol or less (for example, 0.1 mol or less).
  • the polishing composition disclosed herein comprises a metal salt.
  • the polishing removal rate is improved.
  • the oxidizing agent contained in the polishing composition disclosed herein alters the surface of the substrate (particularly the surface of the substrate of a high-hardness material such as silicon carbide), and the altered layer is removed by polishing. ..
  • the metal salt exhibits an action of promoting or assisting its alteration and removal, and is considered to contribute to the improvement of the polishing removal rate. It should be noted that the improvement in polishing removal speed by the technique disclosed herein is not limited to the above mechanism.
  • the “metal salt” disclosed herein is a compound different from the above-mentioned “oxidizing agent”, and specifically, it may be a positive salt produced by neutralization of a strong acid and a strong base.
  • the metal salt preferably contains an element belonging to an alkali metal and / or an alkaline earth metal, and is preferably lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), or magnesium. More preferably, it contains any one or more of (Mg), calcium (Ca), cesium (Sr), and barium (Ba).
  • a metal salt containing any one of Na, K, Ca and Sr is preferable, and a metal salt containing any one of K and Ca is particularly preferable.
  • the type of salt in the above metal salt is not particularly limited, and may be an inorganic acid salt or an organic acid salt.
  • the inorganic acid salt include salts of hydrohalic acid (for example, hydrochloric acid, hydrobromic acid, hydrofluoric acid), nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, phosphoric acid and the like.
  • the organic acid salt include carboxylic acids (for example, formic acid, acetic acid, propionic acid, benzoic acid, glycic acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid) and organic sulfonic acids (for example, methanesulfonic acid and trifluoromethane).
  • Examples thereof include salts of sulfonic acid, benzenesulfonic acid, toluenesulfonic acid), organic phosphonic acid (eg, methylphosphonic acid, benzenephosphonic acid, toluenephosphonic acid), organic phosphoric acid (eg, ethylphosphoric acid) and the like.
  • organic phosphonic acid eg, methylphosphonic acid, benzenephosphonic acid, toluenephosphonic acid
  • organic phosphoric acid eg, ethylphosphoric acid
  • metal salt examples include chlorides such as lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride and barium chloride; sodium bromide, potassium bromide, magnesium bromide, calcium bromide and the like.
  • fluorides such as lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride; lithium nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, strontium nitrate , Nitrate such as barium nitrate; sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate; potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate, magnesium carbonate, carbonic acid Substantial from any of carbonates such as calcium, strontium carbonate, barium carbonate; carboxylates such as potassium acetate, sodium acetate, calcium acetate, strontium acetate, sodium benzoate, calcium benzoate, sodium citrate, calcium citrate; A metal salt composed
  • the metal salt may be dissolved in the polishing composition or may be dispersed as a solid. That is, the metal salt may be water-soluble or water-insoluble. Further, a part of the metal salt may be dissolved in the polishing composition, and the rest may be dispersed as a solid.
  • the metal salt is a water-soluble salt. By using a water-soluble metal salt, a good surface with few defects such as scratches can be efficiently formed.
  • the metal salt is a salt that dissolves in water and exhibits a neutral range, and can be specifically a normal salt produced by neutralization of a strong acid and a strong base.
  • a metal salt in which the aqueous solution exhibits a neutral range for example, pH 6 to 8, preferably pH 6.5 to 7.5
  • the metal salt in which the aqueous solution is neutral include chlorides such as sodium chloride, potassium chloride, calcium chloride and strontium chloride, and nitrates such as sodium nitrate, potassium nitrate, calcium nitrate and strontium nitrate.
  • chlorides such as sodium chloride, potassium chloride, calcium chloride, strontium chloride, potassium nitrate, calcium nitrate and strontium nitrate.
  • potassium chloride, sodium chloride, calcium chloride, strontium chloride, potassium nitrate, calcium nitrate and strontium nitrate are preferable because they can efficiently form a good surface.
  • potassium chloride, calcium chloride, potassium nitrate and calcium nitrate are particularly preferable.
  • the concentration (content) of the metal salt is more than 10 mmol / L. This improves the polishing removal rate in the composition containing the fumed silica and the oxidizing agent.
  • the concentration of the metal salt is preferably 12 mmol / L or higher, more preferably 20 mmol / L or higher, 30 mmol / L or higher, or 50 mmol / L or higher.
  • the concentration of the metal salt is preferably 80 mmol / L or higher, preferably 150 mmol / L or higher, 250 mmol / L or higher, 500 mmol / L or higher. But it may be.
  • the upper limit of the concentration of the metal salt is not particularly limited, and it is appropriate to set it to 10 mol / L or less.
  • the concentration of the metal salt is in a predetermined range, the polishing removal rate on the surface of the substrate material (particularly the high hardness material) can be improved at a higher level.
  • the above concentration is preferably 5 mol / L or less, more preferably 3 mol / L or less, further preferably 1000 mmol / L or less, and even if it is 600 mmol / L or less. It may be 400 mmol / L or less, or 200 mmol / L or less.
  • the concentration of the metal salt may be 100 mmol / L or less, 70 mmol / L or less, or 25 mmol / L or less (eg, 20 mmol / L or less).
  • the concentration ratio of the oxidizing agent and the metal salt is not particularly limited as long as the effect of the present invention is exhibited. Estimating the effect of the present invention, it is considered preferable to set the amount of the metal salt in a predetermined range with respect to the amount of the oxidizing agent. From this point of view, the ratio (B / A) of the metal salt concentration B [mmol / L] to the oxidizing agent concentration A [mmol / L] is, for example, 0.01 or more from the viewpoint of improving the polishing removal speed. Yes, 0.05 or more is appropriate, 0.07 or more, or 0.10 or more (for example, 0.15 or more).
  • the ratio (B / A) may be 0.30 or higher, 1.0 or higher, or 3.0 or higher (eg 6.0 or higher).
  • the upper limit of the ratio (B / A) is not particularly limited, and may be, for example, 15 or less. From the viewpoint of polishing removal speed, 10 or less is appropriate, preferably 5.0 or less, and more preferably. It is 1.0 or less, more preferably 0.50 or less (for example, 0.20 or less), and may be 0.12 or less.
  • the dispersion medium used in the polishing composition is not particularly limited as long as it can disperse fumed silica, an oxidizing agent and a metal salt.
  • the dispersion medium in the present specification is a liquid (a liquid medium at 23 ° C.) generally referred to as a dispersion medium or a solvent, and includes those which can be a solvent for an oxidizing agent or a metal salt.
  • Water is preferably used as the dispersion medium.
  • the water for example, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. It is preferable that 90% by volume or more of the solvent contained in the polishing composition is water, and more preferably 95% by volume or more (typically 99 to 100% by volume) of water.
  • an organic solvent lower alcohol, lower ketone, etc.
  • the pH of the polishing composition is about 2 to 12.
  • the pH may be 2.5 or higher, 3.0 or higher, 4.0 or higher, 5.0 or higher, or 5.5 or higher.
  • the upper limit of the pH is not particularly limited, and in some embodiments, the pH may be 12.0 or less, 10.0 or less, 9.0 or less, 8.0 or less, 7.5 or less. It may be less than or equal to, 7.0 or less, or 6.5 or less. In some preferred embodiments, the pH of the polishing composition is greater than 5.0 and less than 9.0, for example less than 8.0 or less than 7.0.
  • the polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a surface protectant, a wetting agent, and a pH adjuster (organic acid, inorganic acid, basic) as long as the effects of the present invention are not impaired.
  • a pH adjuster organic acid, inorganic acid, basic
  • Known that can be used in polishing compositions for example, compositions for polishing high-hardness materials, preferably compositions for polishing silicon carbide substrates) such as compounds
  • surfactants for polishing high-hardness materials, preferably compositions for polishing silicon carbide substrates
  • rust preventives rust preventives
  • preservatives preservatives
  • antifungal agents additive may be further included as needed.
  • the content of the additive may be appropriately set according to the purpose of the addition and does not characterize the present invention, and thus detailed description thereof will be omitted.
  • the method for producing the polishing composition disclosed herein is not particularly limited.
  • the mode in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
  • the polishing composition disclosed here may be a one-dosage form or a multi-dosage form including a two-dosage form.
  • the liquid A containing a part of the constituent components of the polishing composition and the liquid B containing the remaining components are stored separately, and the liquid A and the liquid B are mixed when polishing the substrate. It may be configured to be used.
  • the polishing composition disclosed herein may be in a concentrated form (ie, in the form of a concentrated solution of a polishing solution) before being used for polishing.
  • the polishing composition in such a concentrated form is advantageous from the viewpoint of convenience and cost reduction in production, distribution, storage and the like.
  • the substrate to be polished using the polishing composition disclosed herein is not particularly limited.
  • the polishing composition disclosed herein can be applied to polish a substrate having a surface made of a compound semiconductor material, that is, a compound semiconductor substrate.
  • the constituent materials of the compound semiconductor substrate are not particularly limited, and are, for example, II-VI group compound semiconductors such as cadmium tellurate, zinc selenium, cadmium sulfide, cadmium telluride mercury, and cadmium zinc telluride; gallium phosphide and gallium arsenide.
  • Group III-V compound semiconductors such as gallium phosphide, indium phosphide, aluminum gallium arsenide, gallium arsenide, indium gallium arsenide, and gallium phosphide indium; IV-IV such as silicon carbide and germanium silicate. Group compound semiconductor; etc.
  • a substrate having a surface made of a plurality of materials may be used.
  • the polishing compositions disclosed herein can be applied to polish a substrate having a surface composed of a non-oxide (ie, non-oxide) compound semiconductor material.
  • the polishing promoting effect of the oxidizing agent contained in the polishing composition disclosed herein is likely to be suitably exhibited.
  • the polishing composition disclosed herein can be preferably used, for example, for polishing the surface of a substrate having a Vickers hardness of 500 Hv or more.
  • the Vickers hardness is preferably 700 Hv or higher, for example 1000 Hv or higher, and in some preferred embodiments 1500 Hv or higher.
  • the Vickers hardness of the substrate material may be 1800 Hv or more, 2000 Hv or more, or 2200 Hv or more.
  • the upper limit of the Vickers hardness of the substrate surface is not particularly limited, and may be, for example, approximately 7,000 Hv or less, 5000 Hv or less, or 3000 Hv or less. In this specification, the Vickers hardness can be measured based on JIS R 1610: 2003.
  • the international standard corresponding to the above JIS standard is ISO 14705: 2000.
  • Examples of the material having a Vickers hardness of 1500 Hv or more include silicon carbide, silicon nitride, titanium nitride, gallium nitride and the like.
  • the substrate in the techniques disclosed herein may have a single crystal surface of the above material that is mechanically and chemically stable.
  • the surface of the substrate is preferably composed of either silicon carbide or gallium nitride, and more preferably composed of silicon carbide.
  • Silicon carbide is expected as a compound semiconductor substrate material with low power loss and excellent heat resistance, and the practical advantage of efficiently smoothing and flattening the surface thereof is particularly great.
  • the techniques disclosed herein may be particularly preferably applied to polishing the single crystal surface of silicon carbide.
  • the polishing composition disclosed herein can be used when polishing a substrate, for example, in an embodiment including the following operations. That is, a polishing liquid (slurry) containing any of the polishing compositions disclosed herein is prepared. To prepare the above polishing liquid, the polishing liquid is prepared by adjusting the concentration of the polishing composition (for example, diluting the polishing composition), adjusting the pH of the polishing composition, or the like. Can be included. Alternatively, the above-mentioned polishing composition may be used as it is as a polishing liquid.
  • the above-mentioned polishing liquid is prepared by mixing the agents, diluting one or more agents before the mixing, and after the mixing. Diluting the mixture, etc. may be included.
  • the polishing liquid is then supplied to the polishing surface and polished by a conventional method performed by those skilled in the art. For example, it is a method in which a substrate is set in a general polishing apparatus and the polishing liquid is supplied to a polishing surface of the substrate through a polishing pad of the polishing apparatus. Typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the polishing surface of the substrate to move the two relative to each other (for example, rotational movement). Polishing of the substrate is completed through such a polishing step.
  • a polishing method for polishing a substrate and a method for manufacturing a substrate using the polishing method are provided.
  • the polishing method is characterized by including the step of polishing the substrate with the polishing composition disclosed herein.
  • the polishing method includes a step of performing preliminary polishing (preliminary polishing step) and a step of performing finish polishing (finish polishing step).
  • the pre-polishing step is a polishing step that is placed immediately prior to the finishing polishing step.
  • the preliminary polishing step may be a one-step polishing step, or may be a plurality of two or more steps of polishing steps.
  • the finish polishing step referred to here is a step of performing finish polishing on a substrate on which preliminary polishing has been performed, and is the last of the polishing steps performed using a polishing slurry containing abrasive grains (that is, that is). It refers to the polishing process that is arranged (on the most downstream side).
  • the polishing composition disclosed herein may be used in one step of the preliminary polishing step or may be used in the finishing polishing step. , May be used in both the pre-polishing step and the finishing polishing step.
  • Preliminary polishing and finish polishing can be performed by either a single-sided polishing device or a double-sided polishing device.
  • a single-sided polishing device a substrate is attached to a ceramic plate with wax, the substrate is held by a holder called a carrier, and a polishing pad is pressed against one side of the substrate while supplying a polishing composition to make the two relative to each other.
  • One side of the object to be polished is polished by moving it. The movement is, for example, a rotational movement.
  • the substrate is held by a holder called a carrier, and while the polishing composition is supplied from above, the polishing pads are pressed against the facing surfaces of the substrate and rotated in the relative direction of the substrate. Polish both sides at the same time.
  • the polishing pad used in each polishing process disclosed here is not particularly limited.
  • any of non-woven fabric type, suede type, rigid polyurethane foam type, those containing abrasive grains, those containing no abrasive grains and the like may be used.
  • a non-woven fabric type or a rigid foamed polyurethane type polishing pad containing no abrasive grains can be preferably adopted.
  • Substrates polished by the methods disclosed herein are typically cleaned after polishing. This cleaning can be performed using a suitable cleaning solution.
  • the cleaning solution to be used is not particularly limited, and known and commonly used cleaning solutions can be appropriately selected and used.
  • the polishing method disclosed herein may include any other steps in addition to the preliminary polishing step and the finishing polishing step.
  • Examples of such a step include a mechanical polishing step and a wrapping step performed before the preliminary polishing step.
  • the mechanical polishing step the substrate is polished using a liquid in which diamond abrasive grains are dispersed in a solvent.
  • the dispersion is oxidant-free.
  • the lapping step is a step of pressing the surface of a polishing surface plate, for example, a cast iron surface plate, against a substrate to polish it. Therefore, the polishing pad is not used in the wrapping process.
  • the wrapping step is typically performed by supplying abrasive grains between the polishing surface plate and the substrate.
  • the abrasive grains are typically diamond abrasive grains.
  • the polishing method disclosed herein may include an additional step before the preliminary polishing step or between the preliminary polishing step and the finishing polishing step.
  • the additional steps are, for example, a cleaning step and a polishing step.
  • the techniques disclosed herein may include a method of making a substrate that includes a polishing step by any of the polishing methods described above and the provision of a substrate made by that method.
  • the method for manufacturing the substrate is, for example, a method for manufacturing a silicon carbide substrate. That is, according to the techniques disclosed herein, a method of manufacturing a substrate, including polishing any of the substrates disclosed herein by any of the methods disclosed herein, and a substrate produced by that method. Is provided. According to the above manufacturing method, a substrate having improved surface quality, for example, a silicon carbide substrate can be efficiently provided.
  • Example 1 Fumed silica, potassium permanganate (KMnO 4 ) as an oxidizing agent, calcium nitrate as a metal salt, and deionized water were mixed to prepare the polishing composition of this example.
  • the concentration of fumed silica was 1%
  • the concentration of potassium permanganate was 260 mmol / L
  • the concentration of calcium nitrate was 15 mmol / L.
  • the pH of the polishing composition is as shown in Table 1.
  • the fumed silica one having an average primary particle size of 30 nm and an average secondary particle size of 150 nm was used.
  • Example 2 The polishing composition of each example was prepared in the same manner as in Example 1 except that the concentration of calcium nitrate was set to the concentration shown in Table 1.
  • Example 4 The polishing composition of each example was prepared in the same manner as in Example 1 except that the concentration of the oxidizing agent was 80 mmol / L and the concentration of calcium nitrate was the concentration shown in Table 1.
  • Example 7 The polishing compositions of each example were prepared in the same manner as in Example 4 except that the types and concentrations of the metal salts were shown in Table 1.
  • Example 9 The polishing compositions of each example were prepared in the same manner as in Example 4 except that the concentration of calcium nitrate was 15 mmol / L and the concentration of fumed silica was the concentration shown in Table 1.
  • Example 12 to 13 The polishing compositions of each example were prepared in the same manner as in Example 4 except that the types and concentrations of the metal salts were shown in Table 1.
  • the metal salt content was 10.
  • the polishing rate was improved as compared with Comparative Examples 1 to 4 having a millimole / L or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention provides a polishing composition including fumed silica, an oxidizing agent, and a metal salt. The polishing composition includes more than 10 mmol/L of the metal salt.

Description

研磨用組成物および研磨方法Polishing composition and polishing method
 本発明は、研磨用組成物および研磨方法に関する。詳しくは、ビッカース硬度が1500Hv以上である高硬度材料の研磨に好適な研磨用組成物および研磨方法に関する。本出願は、2020年3月30日に出願された日本国特許出願2020-060913号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a polishing composition and a polishing method. More specifically, the present invention relates to a polishing composition and a polishing method suitable for polishing a high-hardness material having a Vickers hardness of 1500 Hv or more. This application claims priority based on Japanese Patent Application No. 2020-060913 filed on March 30, 2020, the entire contents of which are incorporated herein by reference.
 金属や半金属、非金属、その酸化物等の材料の表面は、研磨用組成物を用いて研磨されている。例えば、炭化ケイ素、炭化ホウ素、炭化タングステン、窒化ケイ素、窒化チタン、窒化ガリウム等の化合物半導体材料により構成された表面は、その表面と研磨定盤との間にダイヤモンド砥粒を供給して行うラッピングによって加工され得る。しかし、ダイヤモンド砥粒を用いるラッピングでは、スクラッチや打痕の発生、残存等による欠陥や歪みが生じやすい。そこで、ダイヤモンド砥粒を用いたラッピングの後に、あるいは当該ラッピングに代えて、研磨パッドと研磨用組成物を用いる研磨(ポリシング)が検討されている。なお、研磨用組成物の従来技術を開示する文献としては、特許文献1が挙げられる。特許文献1では、タンタルを研磨する組成物が検討されている。 The surface of materials such as metals, metalloids, non-metals, and oxides thereof is polished using a polishing composition. For example, a surface made of a compound semiconductor material such as silicon carbide, boron carbide, tungsten carbide, silicon nitride, titanium nitride, and gallium nitride is wrapped by supplying diamond abrasive grains between the surface and the polishing platen. Can be processed by. However, in wrapping using diamond abrasive grains, defects and distortions due to scratches, dents, residues, etc. are likely to occur. Therefore, polishing (polishing) using a polishing pad and a polishing composition after or instead of wrapping with diamond abrasive grains has been studied. Patent Document 1 is mentioned as a document that discloses the prior art of the polishing composition. In Patent Document 1, a composition for polishing tantalum is studied.
日本国特許出願公開2011-159998号公報Japanese Patent Application Publication No. 2011-159998
 一般に、製造効率や費用効果の観点から、研磨除去速度は実用上十分に大きいことが望ましい。例えば、炭化ケイ素等のように高硬度材料から構成された面の研磨においては、研磨除去速度のさらなる向上が望まれている。そのような研磨除去速度向上が期待できる研磨用組成物として、フュームドシリカを含む研磨用組成物が挙げられる。フュームドシリカはコロイダルシリカよりも非球形であるため、加工力に優れる傾向がある一方、アルミナ砥粒のような研磨面へのアルミナ残留(突き刺さり等)の問題が生じ難く、好ましい。また、研磨用組成物が酸化剤を含むことで、酸化剤が基板の表面を変質させ、研磨除去速度は改善され得る。 In general, from the viewpoint of manufacturing efficiency and cost effectiveness, it is desirable that the polishing removal speed is sufficiently high for practical use. For example, in polishing a surface made of a high-hardness material such as silicon carbide, further improvement in polishing removal speed is desired. Examples of the polishing composition that can be expected to improve the polishing removal speed include a polishing composition containing fumed silica. Since fumed silica is more non-spherical than colloidal silica, it tends to have excellent processing power, but it is preferable because it is less likely to cause a problem of alumina residue (piercing or the like) on a polished surface such as alumina abrasive grains. Further, when the polishing composition contains an oxidizing agent, the oxidizing agent may change the surface of the substrate, and the polishing removal rate may be improved.
 本発明は、かかる事情に鑑みてなされたものであり、その目的は、フュームドシリカおよび酸化剤を含む組成物で、研磨除去速度を向上することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to improve the polishing removal rate of a composition containing fumed silica and an oxidizing agent.
 この明細書によると、フュームドシリカと、酸化剤と、金属塩と、を含む研磨用組成物が提供される。この研磨用組成物は、金属塩を10ミリモル/Lよりも多く含むことを特徴とする。研磨用組成物が上記金属塩を10ミリモル/Lよりも多く含むことで、フュームドシリカと酸化剤とを含む組成物において、研磨除去速度が向上する。なお、詳しくは後述するが、本明細書における「金属塩」は、上記「酸化剤」とは異なる化合物として定義されるものであり、具体的には、強酸と強塩基との中和により生成する正塩であり得る。上記金属塩を形成する金属は、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウムまたはバリウムを含む。 According to this specification, a polishing composition containing fumed silica, an oxidizing agent, and a metal salt is provided. This polishing composition is characterized by containing more than 10 mmol / L of metal salts. When the polishing composition contains more than 10 mmol / L of the metal salt, the polishing removal rate is improved in the composition containing fumed silica and an oxidizing agent. As will be described in detail later, the "metal salt" in the present specification is defined as a compound different from the above "oxidizing agent", and specifically, it is produced by neutralization of a strong acid and a strong base. Can be pure salt. The metal forming the metal salt includes lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium or barium.
 ここに開示される技術(研磨用組成物、研磨方法、基板の製造方法を含む。以下同じ。)のいくつかの好ましい態様において、前記金属塩は、アルカリ金属および/またはアルカリ土類金属の硝酸塩および/または塩酸塩である。上記金属塩を用いることで、研磨除去速度が好ましく向上する。 In some preferred embodiments of the techniques disclosed herein (including polishing compositions, polishing methods, substrate manufacturing methods; the same shall apply hereinafter), the metal salt is a nitrate of an alkali metal and / or an alkaline earth metal. And / or hydrochloride. By using the above metal salt, the polishing removal rate is preferably improved.
 いくつかの好ましい態様において、上記金属塩を形成する金属はカルシウムである。上記金属がカルシウムの場合、研磨除去速度が特に好適に向上する。 In some preferred embodiments, the metal forming the metal salt is calcium. When the metal is calcium, the polishing removal rate is particularly preferably improved.
 いくつかの好ましい態様において、上記金属塩を形成する金属はカリウムである。上記金属がカリウムの場合、研磨除去速度が特に好適に向上する。 In some preferred embodiments, the metal forming the metal salt is potassium. When the metal is potassium, the polishing removal rate is particularly preferably improved.
 いくつかの好ましい態様において、上記酸化剤は複合金属酸化物を含む。酸化剤として複合金属酸化物を含む組成物が、金属塩を10ミリモル/Lよりも多く含むことで、研磨除去速度を向上しやすい。 In some preferred embodiments, the oxidizing agent comprises a composite metal oxide. When the composition containing the composite metal oxide as an oxidizing agent contains a metal salt in an amount of more than 10 mmol / L, the polishing removal rate can be easily improved.
 いくつかの好ましい態様において、上記酸化剤の濃度A[ミリモル/L]に対する上記金属塩の濃度B[ミリモル/L]の比(B/A)は0.01以上10以下である。かかる構成によると、ここに開示される技術による効果が好ましく発揮される。 In some preferred embodiments, the ratio (B / A) of the metal salt concentration B [mmol / L] to the oxidizing agent concentration A [mmol / L] is 0.01 or more and 10 or less. According to such a configuration, the effect of the technique disclosed herein is preferably exhibited.
 いくつかの好ましい態様において、上記研磨用組成物のpHは5.0よりも大きく9.0未満である。研磨用組成物のpHが上記の範囲(中性域に近い範囲)であることにより、ここに開示される技術による効果は好ましく発揮される。 In some preferred embodiments, the pH of the polishing composition is greater than 5.0 and less than 9.0. When the pH of the polishing composition is in the above range (a range close to the neutral range), the effects of the techniques disclosed herein are preferably exhibited.
 ここに開示される研磨用組成物は、1500Hv以上のビッカース硬度を有する材料の研磨に好ましく用いられる。上記研磨用組成物によると、高硬度な材料に対する研磨除去速度を向上することができる。高硬度材料の好適例としては、炭化ケイ素が挙げられる。炭化ケイ素を研磨する場合において、ここに開示される技術による効果が好ましく発揮される。 The polishing composition disclosed herein is preferably used for polishing a material having a Vickers hardness of 1500 Hv or more. According to the above-mentioned polishing composition, the polishing removal rate for a high-hardness material can be improved. A preferable example of the high hardness material is silicon carbide. When polishing silicon carbide, the effects of the techniques disclosed herein are preferably exhibited.
 この明細書によると、さらに、基板の研磨方法が提供される。その研磨方法は、ここに開示されるいずれかの研磨用組成物を用いて、基板を研磨する工程を含む。この研磨方法によると、研磨除去速度が向上する。 According to this specification, a method for polishing a substrate is further provided. The polishing method includes a step of polishing a substrate using any of the polishing compositions disclosed herein. According to this polishing method, the polishing removal speed is improved.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art.
<研磨用組成物>
 (フュームドシリカ)
 ここに開示される研磨用組成物は、フュームドシリカを含む。フュームドシリカとしては、公知の各種フュームドシリカのなかから適宜選択して使用することができる。フュームドシリカは、公知の各種フュームドシリカの1種を単独でまたは2種以上を組み合わせて含むものであり得る。
<Polishing composition>
(Fumed silica)
The polishing composition disclosed herein comprises fumed silica. As the fumed silica, it can be appropriately selected and used from various known fumed silicas. The fumed silica may contain one of various known fumed silicas alone or in combination of two or more.
 フュームドシリカの平均一次粒子径は、本発明の効果が発揮される限りにおいて特に制限されず、研磨除去速度向上等の観点から、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは20nm以上であり、例えば30nm以上であってもよい。平均一次粒子径の増大によって、より高い研磨除去速度が実現され得る。また、研磨後の面品質の観点から、上記平均一次粒子径は、好ましくは150nm以下、より好ましくは100nm以下、さらに好ましくは80nm以下であり、例えば60nm以下であってもよい。 The average primary particle size of fumed silica is not particularly limited as long as the effect of the present invention is exhibited, and is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more from the viewpoint of improving the polishing removal speed and the like. For example, it may be 30 nm or more. Higher polishing removal rates can be achieved by increasing the average primary particle size. From the viewpoint of surface quality after polishing, the average primary particle size is preferably 150 nm or less, more preferably 100 nm or less, still more preferably 80 nm or less, and may be, for example, 60 nm or less.
 なお、ここに開示される技術において平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径(BET粒子径)をいう。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。 In the technique disclosed herein, the average primary particle size is the average primary particle size (nm) = 6000 / (true density (g / cm 3 ) × from the specific surface area (BET value) measured by the BET method. BET value (m 2 / g)) means the particle size (BET particle size) calculated by the formula. The specific surface area can be measured, for example, by using a surface area measuring device manufactured by Micromeritex Co., Ltd., trade name "Flow Sorb II 2300".
 フュームドシリカの平均二次粒子径は、本発明の効果が発揮される限りにおいて特に制限されず、例えば15nm以上が適当であり、研磨除去速度向上等の観点から、好ましくは30nm以上、より好ましくは60nm以上、さらに好ましくは80nm以上、特に好ましくは100nm以上(例えば120nm以上)であり、150nm以上であってもよい。また、上記フュームドシリカの平均二次粒子径は、例えば1000nm以下であり得る。研磨後の面品質の観点から、上記平均二次粒子径は、好ましくは500nm以下であり、300nm以下であってもよい。例えば、平均二次粒子径が120nm以上220nm以下のフュームドシリカを好ましく採用し得る。 The average secondary particle size of fumed silica is not particularly limited as long as the effect of the present invention is exhibited, for example, 15 nm or more is suitable, and from the viewpoint of improving the polishing removal speed, it is preferably 30 nm or more, more preferably. Is 60 nm or more, more preferably 80 nm or more, particularly preferably 100 nm or more (for example, 120 nm or more), and may be 150 nm or more. The average secondary particle size of the fumed silica can be, for example, 1000 nm or less. From the viewpoint of surface quality after polishing, the average secondary particle size is preferably 500 nm or less, and may be 300 nm or less. For example, fumed silica having an average secondary particle size of 120 nm or more and 220 nm or less can be preferably adopted.
 なお、ここに開示される技術において、フュームドシリカの平均二次粒子径とは、動的光散乱法に基づく体積基準の平均粒子径(50%体積平均粒子径)をいう。動的光散乱法に基づく粒子径の測定は、例えば、BECKMAN COULTER製「N4 Plus」を用いて行うことができる。 In the technique disclosed herein, the average secondary particle size of fumed silica means the volume-based average particle size (50% volume average particle size) based on the dynamic light scattering method. The particle size measurement based on the dynamic light scattering method can be performed using, for example, "N4 Plus" manufactured by BECKMAN COULTER.
 フュームドシリカのアスペクト比は、特に限定されず、例えば1.5以上であり得る。研磨除去速度向上の観点から、フュームドシリカのアスペクト比は、2.0以上であってもよく、2.5以上でもよく、3.0以上でもよい。また、上記アスペクト比の上限は、例えば8.0未満であり、6.0未満でもよい。なお、この明細書中において、フュームドシリカの「アスペクト比」とは、該フュームドシリカの平均二次粒子径/平均一次粒子径の比の値をいう。 The aspect ratio of fumed silica is not particularly limited and may be, for example, 1.5 or more. From the viewpoint of improving the polishing removal speed, the aspect ratio of the fumed silica may be 2.0 or more, 2.5 or more, or 3.0 or more. Further, the upper limit of the aspect ratio is, for example, less than 8.0, and may be less than 6.0. In this specification, the "aspect ratio" of the fumed silica means the value of the ratio of the average secondary particle size / the average primary particle size of the fumed silica.
 研磨用組成物におけるフュームドシリカの含有量(複数種類のフュームドシリカを含む場合には、それらの合計含有量)は、本発明の効果が発揮される限りにおいて特に制限されず、例えば0.01重量%以上であり、0.05重量%以上であってもよい。研磨速度向上の観点から、0.1重量%以上とすることが適当であり、0.5重量%以上が好ましく、0.8重量%以上がより好ましく、1重量%以上でもよく、5重量%以上でもよい。また、研磨用組成物の分散性、経時安定性等の観点から、フュームドシリカの含有量は、50重量%以下とすることが適当であり、好ましくは20重量%以下であり、15重量%以下であってもよく、10重量%以下でもよく、8重量%以下でもよく、3重量%以下でもよく、1.5重量%以下でもよく、例えば0.3重量%以下でもよい。 The content of fumed silica in the polishing composition (when a plurality of types of fumed silica are contained, the total content thereof) is not particularly limited as long as the effects of the present invention are exhibited, and for example, 0. It is 01% by weight or more, and may be 0.05% by weight or more. From the viewpoint of improving the polishing speed, it is appropriate to be 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 0.8% by weight or more, and may be 1% by weight or more, 5% by weight. The above may be sufficient. Further, from the viewpoint of dispersibility of the polishing composition, stability over time, etc., the content of fumed silica is preferably 50% by weight or less, preferably 20% by weight or less, and 15% by weight. It may be 10% by weight or less, 8% by weight or less, 3% by weight or less, 1.5% by weight or less, for example, 0.3% by weight or less.
 ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、フュームドシリカ以外のシリカ砥粒(以下、非フュームドシリカ砥粒ともいう。)を含有してもよく、シリカ以外の材質からなる砥粒(以下、非シリカ砥粒ともいう。)を含有してもよい。非フュームドシリカ砥粒の例としては、コロイダルシリカや沈降シリカが挙げられる。非シリカ砥粒の例としては、酸化アルミニウム粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等の無機粒子や、架橋または非架橋型ポリメタクリル酸メチル、ポリアクリロニトリル、ポリスチレン、ナイロン、シリコーン等の有機粒子のいずれかから実質的に構成される砥粒が挙げられる。 The polishing composition disclosed herein may contain silica abrasive grains other than fumed silica (hereinafter, also referred to as non-fumed silica abrasive grains) as long as the effects of the present invention are not impaired. Abrasive grains made of a material other than the above (hereinafter, also referred to as non-silica abrasive grains) may be contained. Examples of non-fumed silica abrasive grains include colloidal silica and precipitated silica. Examples of non-silica abrasive grains include oxide particles such as aluminum oxide particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles; Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; inorganic particles such as carbonates such as calcium carbonate and barium carbonate, and crosslinked or non-crosslinked polymethacryl Examples thereof include abrasive grains substantially composed of any of organic particles such as methyl acid, polyacrylonitrile, polystyrene, nylon and silicone.
 使用する砥粒全体に占めるフュームドシリカの割合は、概して高い方が有利である。例えば、砥粒全体に占めるフュームドシリカの割合は、50重量%超が適当であり、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上であり、実質的に100重量%でもよい。 It is generally advantageous that the ratio of fumed silica to the total abrasive grains used is high. For example, the proportion of fumed silica in the entire abrasive grains is preferably more than 50% by weight, preferably 70% by weight or more, more preferably 90% by weight or more, still more preferably 95% by weight or more, and is substantially. It may be 100% by weight.
 いくつかの態様において、研磨用組成物は、砥粒としてダイヤモンド粒子を実質的に含まないものであってもよい。ダイヤモンド粒子は硬度が高いため、平滑性向上の制限要因となり得る。また、ダイヤモンド粒子は概して高価であることから、費用効果の点で有利な材料とはいえず、実用面からは、ダイヤモンド粒子等の高価格材料への依存度は低くてもよい。ここで、砥粒がダイヤモンド粒子を実質的に含まないとは、砥粒全体のうちダイヤモンド粒子の割合が1重量%以下、より好ましくは0.5重量%以下、典型的には0.1重量%以下であることをいい、ダイヤモンド粒子の割合が0重量%である場合を包含する。このような態様において、ここに開示される技術による効果が好適に発揮され得る。 In some embodiments, the polishing composition may be substantially free of diamond particles as abrasive grains. Since diamond particles have high hardness, they can be a limiting factor for improving smoothness. Moreover, since diamond particles are generally expensive, they cannot be said to be advantageous materials in terms of cost effectiveness, and from a practical point of view, the dependence on high-priced materials such as diamond particles may be low. Here, the fact that the abrasive grains do not substantially contain diamond particles means that the ratio of the diamond particles to the total abrasive grains is 1% by weight or less, more preferably 0.5% by weight or less, typically 0.1% by weight. % Or less, including the case where the ratio of diamond particles is 0% by weight. In such an embodiment, the effects of the techniques disclosed herein can be suitably exerted.
 (酸化剤)
 ここに開示される研磨用組成物は酸化剤を含む。酸化剤は、研磨過程において基板表面との間で酸化反応を起こし、当該表面の硬度を低くし、当該面を脆弱にし得る。酸化剤を用いることにより、研磨除去速度を効果的に向上することができる。酸化剤は、基板表面を酸化する作用を発揮するのに十分な酸化還元電位を有する物質であれば特に限定されない。例えば、酸化剤は、研磨を実施するpHにおいて、基板材料の酸化還元電位より高い酸化還元電位を有する物質であり得る。ここで、上記研磨を実施するpHは、通常、研磨組成物のpHと同じである。なお、基板材料の酸化還元電位は、当該材料の粉末を水に分散させてスラリーにし、そのスラリーを研磨用組成物と同じpHに調整した後、市販の酸化還元電位計を用いて当該スラリーの酸化還元電位(液温25℃における標準水素電極に対する酸化還元電位)を測定した値が採用される。なお、本明細書における酸化剤には、後述する金属塩は含まれない。
(Oxidant)
The polishing composition disclosed herein comprises an oxidizing agent. The oxidant can cause an oxidation reaction with the surface of the substrate during the polishing process to reduce the hardness of the surface and make the surface fragile. By using an oxidizing agent, the polishing removal rate can be effectively improved. The oxidizing agent is not particularly limited as long as it is a substance having a sufficient redox potential to exert an action of oxidizing the surface of the substrate. For example, the oxidizing agent can be a substance having a redox potential higher than the redox potential of the substrate material at the pH at which polishing is performed. Here, the pH at which the polishing is carried out is usually the same as the pH of the polishing composition. The redox potential of the substrate material is determined by dispersing the powder of the material in water to make a slurry, adjusting the slurry to the same pH as the polishing composition, and then using a commercially available redox potential meter to prepare the slurry. The value obtained by measuring the redox potential (oxidation-reduction potential with respect to the standard hydrogen electrode at a liquid temperature of 25 ° C.) is adopted. The oxidizing agent in the present specification does not include the metal salt described later.
 酸化剤の具体例としては、過酸化水素等の過酸化物;硝酸鉄、硝酸銀、硝酸アルミニウム等の硝酸類;ペルオキソ一硫酸、ペルオキソ二硫酸等の過硫酸等の過硫酸類;塩素酸等の塩素酸類;過塩素酸等の過塩素酸類;臭素酸等の臭素酸類;ヨウ素酸等のヨウ素酸類;過ヨウ素酸類;鉄酸カリウム等の鉄酸類;過マンガン酸ナトリウム、過マンガン酸カリウム等の過マンガン酸類;クロム酸カリウム、二クロム酸カリウム等のクロム酸類;バナジン酸アンモニウム、バナジン酸ナトリウム、バナジン酸カリウム等のバナジン酸類;過ルテニウム酸またはその塩等のルテニウム酸類;モリブデン酸、その塩であるモリブデン酸アンモニウム、モリブデン酸二ナトリウム等のモリブデン酸類;過レニウム酸またはその塩等のレニウム酸類;タングステン酸、その塩であるタングステン酸二ナトリウム等のタングステン酸類;が挙げられる。これらは1種を単独で用いてもよく2種以上を適宜組み合わせて用いてもよい。 Specific examples of the oxidizing agent include peroxides such as hydrogen peroxide; nitrates such as iron nitrate, silver nitrate and aluminum nitrate; persulfates such as persulfates such as peroxomonosulfate and peroxodisulfate; persulfates such as chloric acid and the like. Chloric acids; Perchloric acids such as perchloric acid; Bromic acids such as bromic acid; Iodic acids such as iodic acid; Perioic acids; Iron acids such as potassium iron acid; Manganic acids; Chromic acids such as potassium chromate and potassium dichromate; Vanazic acids such as ammonium vanadate, sodium vanadate and potassium vanadate; Luthenic acids such as perlutenic acid or salts thereof; Molybdic acid and salts thereof. Examples thereof include molybdenum acids such as ammonium molybdenum and disodium molybdenate; renic acids such as perlenic acid or salts thereof; tungonic acids such as disodium tungstate which is a salt thereof. One of these may be used alone, or two or more thereof may be used in combination as appropriate.
 いくつかの好ましい態様では、研磨用組成物は、酸化剤として複合金属酸化物を含む。上記複合金属酸化物としては、硝酸類、鉄酸類、過マンガン酸類、クロム酸類、バナジン酸類、ルテニウム酸類、モリブデン酸類、レニウム酸類、タングステン酸類が挙げられる。なかでも、鉄酸類、過マンガン酸類、クロム酸類がより好ましく、過マンガン酸類がさらに好ましい。複合金属酸化物は1種を単独で用いてもよく2種以上を適宜組み合わせて用いてもよい。 In some preferred embodiments, the polishing composition comprises a composite metal oxide as an oxidizing agent. Examples of the composite metal oxide include nitric acids, iron acids, permanganic acids, chromium acids, vanadic acids, ruthenic acids, molybdic acids, renic acids and tungsten acids. Among them, iron acids, permanganates and chromium acids are more preferable, and permanganates are even more preferable. One type of composite metal oxide may be used alone, or two or more types may be used in combination as appropriate.
 ここに開示される研磨用組成物は、上記複合金属酸化物以外の酸化剤をさらに含んでもよく、含まなくてもよい。ここに開示される技術は、酸化剤として上記複合金属酸化物以外の酸化剤(例えば過酸化水素)を実質的に含まない態様で好ましく実施され得る。 The polishing composition disclosed here may or may not further contain an oxidizing agent other than the above-mentioned composite metal oxide. The technique disclosed herein can be preferably carried out in a manner in which an oxidizing agent (for example, hydrogen peroxide) other than the above-mentioned composite metal oxide is substantially not contained as an oxidizing agent.
 研磨用組成物における酸化剤の濃度(含有量)は、0.001モル/L以上とすることが適当である。研磨除去速度向上の観点から、いくつかの態様において、酸化剤の濃度は、上記濃度は0.005モル/L以上が好ましく、0.01モル/L以上がより好ましく、0.05モル/L以上がさらに好ましい。いくつかの好ましい態様では、酸化剤の濃度は、0.10モル/L以上であり、0.15モル/L以上であってもよく、0.20モル/L以上でもよく、例えば0.25モル/L以上である。また、研磨後の面品質の観点から、上記酸化剤の濃度は、10モル/L以下とすることが適当であり、5モル/L以下とすることが好ましく、3モル/L以下(例えば1モル/L以下、あるいは0.5モル/L以下)とすることがより好ましい。いくつかの態様において、酸化剤の濃度は、0.30モル/L以下であってもよく、0.20モル/L以下でもよく、0.12モル/L以下でもよく、0.09モル/L以下でもよい。 It is appropriate that the concentration (content) of the oxidizing agent in the polishing composition is 0.001 mol / L or more. From the viewpoint of improving the polishing removal rate, in some embodiments, the concentration of the oxidizing agent is preferably 0.005 mol / L or more, more preferably 0.01 mol / L or more, and 0.05 mol / L or more. The above is more preferable. In some preferred embodiments, the concentration of oxidant is 0.10 mol / L or higher, may be 0.15 mol / L or higher, may be 0.20 mol / L or higher, eg, 0.25 mol / L or higher. Molar / L or more. From the viewpoint of surface quality after polishing, the concentration of the oxidizing agent is preferably 10 mol / L or less, preferably 5 mol / L or less, and 3 mol / L or less (for example, 1). It is more preferably mol / L or less, or 0.5 mol / L or less). In some embodiments, the concentration of oxidant may be 0.30 mol / L or less, 0.20 mol / L or less, 0.12 mol / L or less, 0.09 mol / L or less. It may be L or less.
 酸化剤の含有量は、砥粒(典型的にはフュームドシリカ)との相対的関係によっても特定され得る。特に限定するものではないが、いくつかの態様において、砥粒100重量部に対する酸化剤の含有量は、例えば0.01モル以上とすることができ、酸化剤使用の効果を効果的に発揮する観点から0.05モル以上とすることが適当であり、0.10モル以上であってもよく、0.5モル以上でもよく、1モル以上でもよく、2.5モル以上でもよく、5モル以上でもよい。砥粒100重量部に対する酸化剤の含有量は、例えば50モル以下(例えば30モル以下)とすることができ、砥粒による機械的研磨力を効果的に発揮する観点から、10モル以下とすることが適当であり、6モル以下であってもよく、3モル以下でもよく、1モル以下でもよく、0.3モル以下(例えば0.1モル以下)でもよい。 The content of the oxidant can also be specified by the relative relationship with the abrasive grains (typically fumed silica). Although not particularly limited, in some embodiments, the content of the oxidizing agent with respect to 100 parts by weight of the abrasive grains can be, for example, 0.01 mol or more, and the effect of using the oxidizing agent is effectively exhibited. From the viewpoint, it is appropriate to set it to 0.05 mol or more, and it may be 0.10 mol or more, 0.5 mol or more, 1 mol or more, 2.5 mol or more, and 5 mol. The above may be sufficient. The content of the oxidizing agent with respect to 100 parts by weight of the abrasive grains can be, for example, 50 mol or less (for example, 30 mol or less), and 10 mol or less from the viewpoint of effectively exerting the mechanical polishing force of the abrasive grains. It may be 6 mol or less, 3 mol or less, 1 mol or less, 0.3 mol or less (for example, 0.1 mol or less).
 (金属塩)
 ここに開示される研磨用組成物は金属塩を含む。所定量以上の金属塩を含むことによって、研磨除去速度は向上する。具体的には、ここに開示される研磨用組成物に含まれる酸化剤は、基板表面(特に炭化ケイ素等の高硬度材料の基板表面)を変質させ、その変質した層は研磨によって除去される。金属塩は、その変質と除去を促進または補助する作用を示し、研磨除去速度の向上に寄与していると考えられる。なお、ここに開示される技術による研磨除去速度向上は、上記のメカニズムに限定的に解釈されるものではない。ここに開示される「金属塩」は、上記「酸化剤」とは異なる化合物であり、具体的には、強酸と強塩基との中和により生成する正塩であり得る。上記金属塩としては、アルカリ金属および/またはアルカリ土類金属に属する元素を含むものが好ましく、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)のうちのいずれか1種または2種以上を含むものがより好ましい。なかでも、Na、K、Ca、Srのうちのいずれかを含む金属塩が好ましく、K、Caのいずれかを含む金属塩が特に好ましい。
(Metal salt)
The polishing composition disclosed herein comprises a metal salt. By containing a predetermined amount or more of the metal salt, the polishing removal rate is improved. Specifically, the oxidizing agent contained in the polishing composition disclosed herein alters the surface of the substrate (particularly the surface of the substrate of a high-hardness material such as silicon carbide), and the altered layer is removed by polishing. .. The metal salt exhibits an action of promoting or assisting its alteration and removal, and is considered to contribute to the improvement of the polishing removal rate. It should be noted that the improvement in polishing removal speed by the technique disclosed herein is not limited to the above mechanism. The "metal salt" disclosed herein is a compound different from the above-mentioned "oxidizing agent", and specifically, it may be a positive salt produced by neutralization of a strong acid and a strong base. The metal salt preferably contains an element belonging to an alkali metal and / or an alkaline earth metal, and is preferably lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), or magnesium. More preferably, it contains any one or more of (Mg), calcium (Ca), cesium (Sr), and barium (Ba). Among them, a metal salt containing any one of Na, K, Ca and Sr is preferable, and a metal salt containing any one of K and Ca is particularly preferable.
 上記金属塩における塩の種類は特に限定されず、無機酸塩であっても有機酸塩であってもよい。例えば、無機酸塩としては、ハロゲン化水素酸(例えば、塩酸、臭化水素酸、フッ化水素酸)、硝酸、硫酸、炭酸、ケイ酸、ホウ酸、リン酸等の塩が挙げられる。また、有機酸塩としては、カルボン酸(例えば、ギ酸、酢酸、プロピオン酸、安息香酸、グリシン酸、酪酸、クエン酸、酒石酸、トリフルオロ酢酸)、有機スルホン酸(例えば、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸)、有機ホスホン酸(例えば、メチルホスホン酸、ベンゼンホスホン酸、トルエンホスホン酸)、有機リン酸(例えば、エチルリン酸)等の塩が挙げられる。なかでも、無機酸塩が好ましく、塩酸塩、硝酸塩がより好ましく、硝酸塩が特に好ましく用いられる。 The type of salt in the above metal salt is not particularly limited, and may be an inorganic acid salt or an organic acid salt. For example, examples of the inorganic acid salt include salts of hydrohalic acid (for example, hydrochloric acid, hydrobromic acid, hydrofluoric acid), nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, phosphoric acid and the like. Examples of the organic acid salt include carboxylic acids (for example, formic acid, acetic acid, propionic acid, benzoic acid, glycic acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid) and organic sulfonic acids (for example, methanesulfonic acid and trifluoromethane). Examples thereof include salts of sulfonic acid, benzenesulfonic acid, toluenesulfonic acid), organic phosphonic acid (eg, methylphosphonic acid, benzenephosphonic acid, toluenephosphonic acid), organic phosphoric acid (eg, ethylphosphoric acid) and the like. Of these, inorganic acid salts are preferable, hydrochlorides and nitrates are more preferable, and nitrates are particularly preferably used.
 金属塩の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム等の塩化物;臭化ナトリウム、臭化カリウム、臭化マグネシウム、臭化カルシウム等の臭化物;フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム等のフッ化物;硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム等の硝酸塩;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム等の硫酸塩;炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等の炭酸塩;酢酸カリウム、酢酸ナトリウム、酢酸カルシウム、酢酸ストロンチウム、安息香酸ナトリウム、安息香酸カルシウム、クエン酸ナトリウム、クエン酸カルシウム等のカルボン酸塩;のいずれかから実質的に構成される金属塩が挙げられる。金属塩は1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。 Specific examples of the metal salt include chlorides such as lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride and barium chloride; sodium bromide, potassium bromide, magnesium bromide, calcium bromide and the like. Bromide; fluorides such as lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride; lithium nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, strontium nitrate , Nitrate such as barium nitrate; sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate; potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate, magnesium carbonate, carbonic acid Substantial from any of carbonates such as calcium, strontium carbonate, barium carbonate; carboxylates such as potassium acetate, sodium acetate, calcium acetate, strontium acetate, sodium benzoate, calcium benzoate, sodium citrate, calcium citrate; A metal salt composed of sodium can be mentioned. One type of metal salt may be used alone, or two or more types may be used in combination.
 金属塩は、研磨用組成物中において溶解していてもよく、固体のまま分散していてもよい。すなわち、金属塩は水溶性であっても非水溶性であってもよい。また、研磨用組成物中において金属塩の一部が溶解し、残りが固体のまま分散していてもよい。いくつかの好ましい態様では、金属塩は水溶性の塩である。水溶性の金属塩を用いることにより、スクラッチ等の欠陥の少ない良好な表面を効率よく形成し得る。また、いくつかの好ましい態様では、金属塩は、水に溶解して中性域を示す塩であり、具体的には強酸と強塩基との中和により生成する正塩であり得る。水溶液が中性域(例えばpH6~8、好ましくはpH6.5~7.5)を示す金属塩を用いることで、高品質な表面を効率よく形成し得る。水溶液が中性を示す金属塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化ストロンチウム等の塩化物、および、硝酸ナトリウム、硝酸カリウム、硝酸カルシウム、硝酸ストロンチウム等の硝酸塩が挙げられる。なかでも、塩化カリウム、塩化ナトリウム、塩化カルシウム、塩化ストロンチウム、硝酸カリウム、硝酸カルシウムおよび硝酸ストロンチウムは、良好な表面を効率よく形成し得るので好ましい。そのなかでも、塩化カリウム、塩化カルシウム、硝酸カリウム、硝酸カルシウムが特に好ましい。 The metal salt may be dissolved in the polishing composition or may be dispersed as a solid. That is, the metal salt may be water-soluble or water-insoluble. Further, a part of the metal salt may be dissolved in the polishing composition, and the rest may be dispersed as a solid. In some preferred embodiments, the metal salt is a water-soluble salt. By using a water-soluble metal salt, a good surface with few defects such as scratches can be efficiently formed. In some preferred embodiments, the metal salt is a salt that dissolves in water and exhibits a neutral range, and can be specifically a normal salt produced by neutralization of a strong acid and a strong base. By using a metal salt in which the aqueous solution exhibits a neutral range (for example, pH 6 to 8, preferably pH 6.5 to 7.5), a high quality surface can be efficiently formed. Examples of the metal salt in which the aqueous solution is neutral include chlorides such as sodium chloride, potassium chloride, calcium chloride and strontium chloride, and nitrates such as sodium nitrate, potassium nitrate, calcium nitrate and strontium nitrate. Of these, potassium chloride, sodium chloride, calcium chloride, strontium chloride, potassium nitrate, calcium nitrate and strontium nitrate are preferable because they can efficiently form a good surface. Among them, potassium chloride, calcium chloride, potassium nitrate and calcium nitrate are particularly preferable.
 ここに開示される研磨用組成物において、金属塩の濃度(含有量)は、10ミリモル/Lよりも多い。これにより、フュームドシリカと酸化剤とを含む組成物において、研磨除去速度が向上する。いくつかの態様において、金属塩の濃度は、好ましくは12ミリモル/L以上、より好ましくは20ミリモル/L以上であり、30ミリモル/L以上であってもよく、50ミリモル/L以上でもよい。他のいくつかの態様では、金属塩の濃度は、80ミリモル/L以上が適当であり、好ましくは150ミリモル/L以上であってもよく、250ミリモル/L以上でもよく、500ミリモル/L以上でもよい。 In the polishing composition disclosed herein, the concentration (content) of the metal salt is more than 10 mmol / L. This improves the polishing removal rate in the composition containing the fumed silica and the oxidizing agent. In some embodiments, the concentration of the metal salt is preferably 12 mmol / L or higher, more preferably 20 mmol / L or higher, 30 mmol / L or higher, or 50 mmol / L or higher. In some other embodiments, the concentration of the metal salt is preferably 80 mmol / L or higher, preferably 150 mmol / L or higher, 250 mmol / L or higher, 500 mmol / L or higher. But it may be.
 金属塩の濃度の上限は、特に制限されず、10モル/L以下とすることが適当である。金属塩の濃度が所定の範囲であると、基板材料(特に高硬度材料)の表面における研磨除去速度がより高いレベルで向上し得る。研磨除去速度向上等の観点から、上記濃度は5モル/L以下とすることが好ましく、3モル/L以下がより好ましく、1000ミリモル/L以下がさらに好ましく、600ミリモル/L以下であってもよく、400ミリモル/L以下でもよく、200ミリモル/L以下でもよい。いくつかの態様では、金属塩の濃度は、100ミリモル/L以下であってもよく、70ミリモル/L以下でもよく、25ミリモル/L以下(例えば20ミリモル/L以下)でもよい。 The upper limit of the concentration of the metal salt is not particularly limited, and it is appropriate to set it to 10 mol / L or less. When the concentration of the metal salt is in a predetermined range, the polishing removal rate on the surface of the substrate material (particularly the high hardness material) can be improved at a higher level. From the viewpoint of improving the polishing removal speed, the above concentration is preferably 5 mol / L or less, more preferably 3 mol / L or less, further preferably 1000 mmol / L or less, and even if it is 600 mmol / L or less. It may be 400 mmol / L or less, or 200 mmol / L or less. In some embodiments, the concentration of the metal salt may be 100 mmol / L or less, 70 mmol / L or less, or 25 mmol / L or less (eg, 20 mmol / L or less).
 酸化剤と金属塩との濃度比は、本発明の効果が発揮される限りにおいて特に制限されない。本発明の効果が発揮される作用を推定すると、金属塩の量を、酸化剤量に対して所定の範囲に設定することが好適と考えられる。このような観点から、酸化剤の濃度A[ミリモル/L]に対する金属塩の濃度B[ミリモル/L]の比(B/A)は、研磨除去速度向上の観点から、例えば0.01以上であり、0.05以上が適当であり、0.07以上であってもよく、0.10以上(例えば0.15以上)でもよい。いくつかの態様では、上記比(B/A)は、0.30以上であってもよく、1.0以上でもよく、3.0以上(例えば6.0以上)でもよい。また、上記比(B/A)の上限は特に限定されず、例えば15以下であってもよく、研磨除去速度の観点から、10以下が適当であり、好ましくは5.0以下、より好ましくは1.0以下、さらに好ましくは0.50以下(例えば0.20以下)であり、0.12以下であってもよい。 The concentration ratio of the oxidizing agent and the metal salt is not particularly limited as long as the effect of the present invention is exhibited. Estimating the effect of the present invention, it is considered preferable to set the amount of the metal salt in a predetermined range with respect to the amount of the oxidizing agent. From this point of view, the ratio (B / A) of the metal salt concentration B [mmol / L] to the oxidizing agent concentration A [mmol / L] is, for example, 0.01 or more from the viewpoint of improving the polishing removal speed. Yes, 0.05 or more is appropriate, 0.07 or more, or 0.10 or more (for example, 0.15 or more). In some embodiments, the ratio (B / A) may be 0.30 or higher, 1.0 or higher, or 3.0 or higher (eg 6.0 or higher). The upper limit of the ratio (B / A) is not particularly limited, and may be, for example, 15 or less. From the viewpoint of polishing removal speed, 10 or less is appropriate, preferably 5.0 or less, and more preferably. It is 1.0 or less, more preferably 0.50 or less (for example, 0.20 or less), and may be 0.12 or less.
 (分散媒)
 研磨用組成物に用いられる分散媒は、フュームドシリカ、酸化剤および金属塩を分散させることができるものであればよく、特に制限されない。本明細書における分散媒は、一般に分散媒、溶媒と称される液体(23℃で液体の媒体)であり、酸化剤や金属塩の溶媒となり得るものを包含するものとする。分散媒としては、水が好ましく用いられる。水としては、例えばイオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
(Dispersion medium)
The dispersion medium used in the polishing composition is not particularly limited as long as it can disperse fumed silica, an oxidizing agent and a metal salt. The dispersion medium in the present specification is a liquid (a liquid medium at 23 ° C.) generally referred to as a dispersion medium or a solvent, and includes those which can be a solvent for an oxidizing agent or a metal salt. Water is preferably used as the dispersion medium. As the water, for example, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. It is preferable that 90% by volume or more of the solvent contained in the polishing composition is water, and more preferably 95% by volume or more (typically 99 to 100% by volume) of water.
 (pH)
 研磨用組成物のpHは、2~12程度とすることが適当である。pHが上記範囲であると、基板を研磨する際において、実用的な研磨除去速度が達成されやすい。いくつかの態様において、上記pHは、2.5以上でもよく、3.0以上でもよく、4.0以上でもよく、5.0以上でもよく、5.5以上でもよい。pHの上限は特に限定されず、いくつかの態様において、上記pHは、12.0以下でもよく、10.0以下でもよく、9.0以下でもよく、8.0以下でもよく、7.5以下でもよく、7.0以下でもよく、6.5以下でもよい。いくつかの好ましい態様では、研磨用組成物のpHは5.0よりも大きく9.0未満であり、例えば8.0未満であってもよく、7.0未満でもよい。pHが上記の範囲内にあると、より高い研磨除去速度が実現され得る。特に限定的に解釈されるものではないが、金属塩におけるカチオンとアニオンの双方が研磨除去速度向上に寄与するためと考えられる。また、研磨用組成物のpHが上記範囲内であると、例えば研磨装置へのダメージが少ないなどの利点がある。
(PH)
It is appropriate that the pH of the polishing composition is about 2 to 12. When the pH is in the above range, a practical polishing removal rate is likely to be achieved when polishing the substrate. In some embodiments, the pH may be 2.5 or higher, 3.0 or higher, 4.0 or higher, 5.0 or higher, or 5.5 or higher. The upper limit of the pH is not particularly limited, and in some embodiments, the pH may be 12.0 or less, 10.0 or less, 9.0 or less, 8.0 or less, 7.5 or less. It may be less than or equal to, 7.0 or less, or 6.5 or less. In some preferred embodiments, the pH of the polishing composition is greater than 5.0 and less than 9.0, for example less than 8.0 or less than 7.0. When the pH is within the above range, a higher polishing removal rate can be achieved. Although not particularly limited, it is considered that both cations and anions in the metal salt contribute to the improvement of the polishing removal rate. Further, when the pH of the polishing composition is within the above range, there is an advantage that damage to the polishing apparatus is small, for example.
 (その他の成分)
 ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、キレート剤、増粘剤、分散剤、表面保護剤、濡れ剤、pH調整剤(有機酸、無機酸、塩基性化合物)、界面活性剤、防錆剤、防腐剤、防カビ剤等の、研磨用組成物(例えば高硬度材料研磨用組成物、好適には炭化ケイ素基板研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。
(Other ingredients)
The polishing composition disclosed herein is a chelating agent, a thickener, a dispersant, a surface protectant, a wetting agent, and a pH adjuster (organic acid, inorganic acid, basic) as long as the effects of the present invention are not impaired. Known that can be used in polishing compositions (for example, compositions for polishing high-hardness materials, preferably compositions for polishing silicon carbide substrates) such as compounds), surfactants, rust preventives, preservatives, and antifungal agents. Additives may be further included as needed. The content of the additive may be appropriately set according to the purpose of the addition and does not characterize the present invention, and thus detailed description thereof will be omitted.
<研磨用組成物の調製>
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
<Preparation of polishing composition>
The method for producing the polishing composition disclosed herein is not particularly limited. For example, it is preferable to mix each component contained in the polishing composition using a well-known mixing device such as a blade type stirrer, an ultrasonic disperser, and a homomixer. The mode in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
 ここに開示される研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分のうち一部の成分を含むA液と、残りの成分を含むB液とが分けて保管され、基板を研磨する際にA液とB液が混合されて用いられるように構成されていてもよい。 The polishing composition disclosed here may be a one-dosage form or a multi-dosage form including a two-dosage form. For example, the liquid A containing a part of the constituent components of the polishing composition and the liquid B containing the remaining components are stored separately, and the liquid A and the liquid B are mixed when polishing the substrate. It may be configured to be used.
<濃縮液>
 ここに開示される研磨用組成物は、研磨に用いられる前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。
<Concentrate>
The polishing composition disclosed herein may be in a concentrated form (ie, in the form of a concentrated solution of a polishing solution) before being used for polishing. The polishing composition in such a concentrated form is advantageous from the viewpoint of convenience and cost reduction in production, distribution, storage and the like.
<基板>
 ここに開示される研磨用組成物を用いて研磨される基板は特に限定されない。例えば、ここに開示される研磨用組成物は、化合物半導体材料により構成された表面を有する基板、すなわち化合物半導体基板を研磨することに適用され得る。化合物半導体基板の構成材料は、特に限定されず、例えば、テルル化カドミウム、セレン化亜鉛、硫化カドミウム、テルル化カドミウム水銀、テルル化亜鉛カドミウム等のII-VI族化合物半導体;窒化ガリウム、ヒ化ガリウム、リン化ガリウム、リン化インジウム、ヒ化アルミニウムガリウム、ヒ化ガリウムインジウム、ヒ化窒素インジウムガリウム、リン化アルミニウムガリウムインジウム等のIII-V族化合物半導体;炭化ケイ素、ケイ化ゲルマニウム等のIV-IV族化合物半導体;等であり得る。これらのうち複数の材料により構成された表面を有する基板であってもよい。いくつかの好ましい態様において、ここに開示される研磨用組成物は、酸化物ではない(即ち、非酸化物の)化合物半導体材料により構成された表面を有する基板を研磨することに適用され得る。非酸化物の化合物半導体材料により構成された表面を有する基板を研磨する際に、ここに開示される研磨用組成物に含有される酸化剤による研磨促進効果が好適に発揮されやすい。
<Board>
The substrate to be polished using the polishing composition disclosed herein is not particularly limited. For example, the polishing composition disclosed herein can be applied to polish a substrate having a surface made of a compound semiconductor material, that is, a compound semiconductor substrate. The constituent materials of the compound semiconductor substrate are not particularly limited, and are, for example, II-VI group compound semiconductors such as cadmium tellurate, zinc selenium, cadmium sulfide, cadmium telluride mercury, and cadmium zinc telluride; gallium phosphide and gallium arsenide. Group III-V compound semiconductors such as gallium phosphide, indium phosphide, aluminum gallium arsenide, gallium arsenide, indium gallium arsenide, and gallium phosphide indium; IV-IV such as silicon carbide and germanium silicate. Group compound semiconductor; etc. Of these, a substrate having a surface made of a plurality of materials may be used. In some preferred embodiments, the polishing compositions disclosed herein can be applied to polish a substrate having a surface composed of a non-oxide (ie, non-oxide) compound semiconductor material. When polishing a substrate having a surface made of a non-oxide compound semiconductor material, the polishing promoting effect of the oxidizing agent contained in the polishing composition disclosed herein is likely to be suitably exhibited.
 ここに開示される研磨用組成物は、例えば、500Hv以上のビッカース硬度を有する基板表面を研磨することに好ましく用いられ得る。上記ビッカース硬度は、好ましくは700Hv以上であり、例えば1000Hv以上であり、いくつかの好ましい態様では、1500Hv以上である。基板材料のビッカース硬度は、1800Hv以上であってもよく、2000Hv以上でもよく、2200Hv以上でもよい。基板表面のビッカース硬度の上限は特に限定されず、例えば凡そ7000Hv以下であってよく、5000Hv以下でもよく、3000Hv以下でもよい。なお、本明細書において、ビッカース硬度は、JIS R 1610:2003に基づいて測定することができる。上記JIS規格に対応する国際規格はISO 14705:2000である。 The polishing composition disclosed herein can be preferably used, for example, for polishing the surface of a substrate having a Vickers hardness of 500 Hv or more. The Vickers hardness is preferably 700 Hv or higher, for example 1000 Hv or higher, and in some preferred embodiments 1500 Hv or higher. The Vickers hardness of the substrate material may be 1800 Hv or more, 2000 Hv or more, or 2200 Hv or more. The upper limit of the Vickers hardness of the substrate surface is not particularly limited, and may be, for example, approximately 7,000 Hv or less, 5000 Hv or less, or 3000 Hv or less. In this specification, the Vickers hardness can be measured based on JIS R 1610: 2003. The international standard corresponding to the above JIS standard is ISO 14705: 2000.
 1500Hv以上のビッカース硬度を有する材料としては、炭化ケイ素、窒化ケイ素、窒化チタン、窒化ガリウム等が挙げられる。ここに開示される技術における基板は、機械的かつ化学的に安定な上記材料の単結晶表面を有するものであり得る。なかでも、基板表面は、炭化ケイ素および窒化ガリウムのうちのいずれかから構成されていることが好ましく、炭化ケイ素から構成されていることがより好ましい。炭化ケイ素は、電力損失が少なく耐熱性等に優れる化合物半導体基板材料として期待されており、その表面を効率よく平滑かつ平坦にすることの実用上の利点は特に大きい。ここに開示される技術は、炭化ケイ素の単結晶表面を研磨することに対して特に好ましく適用され得る。 Examples of the material having a Vickers hardness of 1500 Hv or more include silicon carbide, silicon nitride, titanium nitride, gallium nitride and the like. The substrate in the techniques disclosed herein may have a single crystal surface of the above material that is mechanically and chemically stable. Among them, the surface of the substrate is preferably composed of either silicon carbide or gallium nitride, and more preferably composed of silicon carbide. Silicon carbide is expected as a compound semiconductor substrate material with low power loss and excellent heat resistance, and the practical advantage of efficiently smoothing and flattening the surface thereof is particularly great. The techniques disclosed herein may be particularly preferably applied to polishing the single crystal surface of silicon carbide.
<研磨方法>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、基板を研磨する際に使用することができる。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(スラリー)を用意する。上記研磨液を用意することには、研磨用組成物の濃度を調整すること(例えば研磨用組成物を希釈すること)や、研磨用組成物のpHを調整すること等により研磨液を調製することが含まれ得る。あるいは、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を用意することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。
 次いで、その研磨液を研磨面に供給し、当業者によってなされる通常の方法で研磨する。例えば、一般的な研磨装置に基板をセットし、該研磨装置の研磨パッドを通じて該基板の研磨面に上記研磨液を供給する方法である。典型的には、上記研磨液を連続的に供給しつつ、基板の研磨面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかるポリシング工程を経て基板の研磨が完了する。
<Polishing method>
The polishing composition disclosed herein can be used when polishing a substrate, for example, in an embodiment including the following operations.
That is, a polishing liquid (slurry) containing any of the polishing compositions disclosed herein is prepared. To prepare the above polishing liquid, the polishing liquid is prepared by adjusting the concentration of the polishing composition (for example, diluting the polishing composition), adjusting the pH of the polishing composition, or the like. Can be included. Alternatively, the above-mentioned polishing composition may be used as it is as a polishing liquid. Further, in the case of a multi-dosage type polishing composition, the above-mentioned polishing liquid is prepared by mixing the agents, diluting one or more agents before the mixing, and after the mixing. Diluting the mixture, etc. may be included.
The polishing liquid is then supplied to the polishing surface and polished by a conventional method performed by those skilled in the art. For example, it is a method in which a substrate is set in a general polishing apparatus and the polishing liquid is supplied to a polishing surface of the substrate through a polishing pad of the polishing apparatus. Typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the polishing surface of the substrate to move the two relative to each other (for example, rotational movement). Polishing of the substrate is completed through such a polishing step.
 この明細書によると、基板を研磨する研磨方法および該研磨方法を用いた基板の製造方法が提供される。上記研磨方法は、ここに開示される研磨用組成物を用いて基板を研磨する工程を含むことによって特徴づけられる。いくつかの好ましい態様に係る研磨方法は、予備ポリシングを行う工程(予備ポリシング工程)と、仕上げポリシングを行う工程(仕上げポリシング工程)と、を含んでいる。いくつかの好ましい態様では、予備ポリシング工程は、仕上げポリシング工程の直前に配置されるポリシング工程である。予備ポリシング工程は、1段のポリシング工程であってもよく、2段以上の複数段のポリシング工程であってもよい。また、ここでいう仕上げポリシング工程は、予備ポリシングが行われた基板に対して仕上げポリシングを行う工程であって、砥粒を含むポリシング用スラリーを用いて行われるポリシング工程のうち最後に(すなわち、最も下流側に)配置される研磨工程のことをいう。このように予備ポリシング工程と仕上げポリシング工程とを含む研磨方法において、ここに開示される研磨用組成物は、予備ポリシング工程の一工程で用いられてもよく、仕上げポリシング工程で用いられてもよく、予備ポリシング工程および仕上げポリシング工程の両方で用いられてもよい。 According to this specification, a polishing method for polishing a substrate and a method for manufacturing a substrate using the polishing method are provided. The polishing method is characterized by including the step of polishing the substrate with the polishing composition disclosed herein. The polishing method according to some preferred embodiments includes a step of performing preliminary polishing (preliminary polishing step) and a step of performing finish polishing (finish polishing step). In some preferred embodiments, the pre-polishing step is a polishing step that is placed immediately prior to the finishing polishing step. The preliminary polishing step may be a one-step polishing step, or may be a plurality of two or more steps of polishing steps. Further, the finish polishing step referred to here is a step of performing finish polishing on a substrate on which preliminary polishing has been performed, and is the last of the polishing steps performed using a polishing slurry containing abrasive grains (that is, that is). It refers to the polishing process that is arranged (on the most downstream side). As described above, in the polishing method including the preliminary polishing step and the finishing polishing step, the polishing composition disclosed herein may be used in one step of the preliminary polishing step or may be used in the finishing polishing step. , May be used in both the pre-polishing step and the finishing polishing step.
 予備ポリシングおよび仕上げポリシングは、片面研磨装置、両面研磨装置のいずれによっても実施できる。片面研磨装置では、セラミックプレートにワックスで基板を貼りつけ、キャリアと呼ばれる保持具を用いて基板を保持し、ポリシング用組成物を供給しながら基板の片面に研磨パッドを押しつけて両者を相対的に移動させることにより研磨対象物の片面を研磨する。上記移動は、例えば回転移動である。両面研磨装置では、キャリアと呼ばれる保持具を用いて基板を保持し、上方よりポリシング用組成物を供給しながら、基板の対向面に研磨パッドを押しつけ、それらを相対方向に回転させることにより基板の両面を同時に研磨する。 Preliminary polishing and finish polishing can be performed by either a single-sided polishing device or a double-sided polishing device. In a single-sided polishing device, a substrate is attached to a ceramic plate with wax, the substrate is held by a holder called a carrier, and a polishing pad is pressed against one side of the substrate while supplying a polishing composition to make the two relative to each other. One side of the object to be polished is polished by moving it. The movement is, for example, a rotational movement. In the double-sided polishing device, the substrate is held by a holder called a carrier, and while the polishing composition is supplied from above, the polishing pads are pressed against the facing surfaces of the substrate and rotated in the relative direction of the substrate. Polish both sides at the same time.
 ここに開示される各ポリシング工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、硬質発泡ポリウレタンタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。いくつかの態様において、不織布タイプや砥粒を含まない硬質発泡ポリウレタンタイプの研磨パッドを好ましく採用し得る。 The polishing pad used in each polishing process disclosed here is not particularly limited. For example, any of non-woven fabric type, suede type, rigid polyurethane foam type, those containing abrasive grains, those containing no abrasive grains and the like may be used. In some embodiments, a non-woven fabric type or a rigid foamed polyurethane type polishing pad containing no abrasive grains can be preferably adopted.
 ここに開示される方法により研磨された基板は、典型的にはポリシング後に洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、公知、慣用のものを適宜選択して用いることができる。 Substrates polished by the methods disclosed herein are typically cleaned after polishing. This cleaning can be performed using a suitable cleaning solution. The cleaning solution to be used is not particularly limited, and known and commonly used cleaning solutions can be appropriately selected and used.
 なお、ここに開示される研磨方法は、上記予備ポリシング工程および仕上げポリシング工程に加えて任意の他の工程を含み得る。そのような工程としては、予備ポリシング工程の前に行われる機械研磨工程やラッピング工程が挙げられる。上記機械研磨工程は、ダイヤモンド砥粒を溶媒に分散させた液を用いて基板を研磨する。いくつかの好ましい態様において、上記分散液は酸化剤を含まない。上記ラッピング工程は、研磨定盤、例えば鋳鉄定盤の表面を基板に押し当てて研磨する工程である。したがって、ラッピング工程では研磨パッドは使用しない。ラッピング工程は、典型的には、研磨定盤と基板との間に砥粒を供給して行われる。上記砥粒は、典型的にはダイヤモンド砥粒である。また、ここに開示される研磨方法は、予備ポリシング工程の前や、予備ポリシング工程と仕上げポリシング工程との間に追加の工程を含んでもよい。追加の工程は、例えば洗浄工程やポリシング工程である。 Note that the polishing method disclosed herein may include any other steps in addition to the preliminary polishing step and the finishing polishing step. Examples of such a step include a mechanical polishing step and a wrapping step performed before the preliminary polishing step. In the mechanical polishing step, the substrate is polished using a liquid in which diamond abrasive grains are dispersed in a solvent. In some preferred embodiments, the dispersion is oxidant-free. The lapping step is a step of pressing the surface of a polishing surface plate, for example, a cast iron surface plate, against a substrate to polish it. Therefore, the polishing pad is not used in the wrapping process. The wrapping step is typically performed by supplying abrasive grains between the polishing surface plate and the substrate. The abrasive grains are typically diamond abrasive grains. Further, the polishing method disclosed herein may include an additional step before the preliminary polishing step or between the preliminary polishing step and the finishing polishing step. The additional steps are, for example, a cleaning step and a polishing step.
 <基板の製造方法>
 ここに開示される技術には、上述したいずれかの研磨方法によるポリシング工程を含む基板の製造方法および該方法により製造された基板の提供が含まれ得る。上記基板の製造方法は、例えば炭化ケイ素基板の製造方法である。すなわち、ここに開示される技術によると、ここに開示されるいずれかの基板を、ここに開示されるいずれかの方法で研磨することを含む、基板の製造方法および該方法により製造された基板が提供される。上記製造方法によると、面質が改善された基板、例えば炭化ケイ素基板が効率的に提供され得る。
<Manufacturing method of substrate>
The techniques disclosed herein may include a method of making a substrate that includes a polishing step by any of the polishing methods described above and the provision of a substrate made by that method. The method for manufacturing the substrate is, for example, a method for manufacturing a silicon carbide substrate. That is, according to the techniques disclosed herein, a method of manufacturing a substrate, including polishing any of the substrates disclosed herein by any of the methods disclosed herein, and a substrate produced by that method. Is provided. According to the above manufacturing method, a substrate having improved surface quality, for example, a silicon carbide substrate can be efficiently provided.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to those shown in such examples. In the following description, "%" is based on weight unless otherwise specified.
<研磨用組成物の作製>
 (実施例1)
 フュームドシリカと、酸化剤としての過マンガン酸カリウム(KMnO)と、金属塩としての硝酸カルシウムと、脱イオン水とを混合し、本例の研磨用組成物を調製した。フュームドシリカの濃度は1%とし、過マンガン酸カリウムの濃度は260ミリモル/Lとし、硝酸カルシウムの濃度は15ミリモル/Lとした。研磨用組成物のpHは、表1に示すとおりである。フュームドシリカとしては、平均一次粒子径が30nm、平均二次粒子径が150nmのものを使用した。
<Preparation of polishing composition>
(Example 1)
Fumed silica, potassium permanganate (KMnO 4 ) as an oxidizing agent, calcium nitrate as a metal salt, and deionized water were mixed to prepare the polishing composition of this example. The concentration of fumed silica was 1%, the concentration of potassium permanganate was 260 mmol / L, and the concentration of calcium nitrate was 15 mmol / L. The pH of the polishing composition is as shown in Table 1. As the fumed silica, one having an average primary particle size of 30 nm and an average secondary particle size of 150 nm was used.
 (実施例2~3)
 硝酸カルシウムの濃度を表1に示す濃度とした他は実施例1と同様にして各例の研磨用組成物を調製した。
(Examples 2 to 3)
The polishing composition of each example was prepared in the same manner as in Example 1 except that the concentration of calcium nitrate was set to the concentration shown in Table 1.
 (実施例4~6)
 酸化剤の濃度を80ミリモル/Lとし、硝酸カルシウムの濃度を表1に示す濃度とした他は実施例1と同様にして各例の研磨用組成物を調製した。
(Examples 4 to 6)
The polishing composition of each example was prepared in the same manner as in Example 1 except that the concentration of the oxidizing agent was 80 mmol / L and the concentration of calcium nitrate was the concentration shown in Table 1.
 (実施例7~8)
 金属塩の種類と濃度を表1に示す内容とした他は実施例4と同様にして各例の研磨用組成物を調製した。
(Examples 7 to 8)
The polishing compositions of each example were prepared in the same manner as in Example 4 except that the types and concentrations of the metal salts were shown in Table 1.
 (実施例9~11)
 硝酸カルシウムの濃度を15ミリモル/Lとし、フュームドシリカの濃度を表1に示す濃度とした他は実施例4と同様にして各例の研磨用組成物を調製した。
(Examples 9 to 11)
The polishing compositions of each example were prepared in the same manner as in Example 4 except that the concentration of calcium nitrate was 15 mmol / L and the concentration of fumed silica was the concentration shown in Table 1.
 (実施例12~13)
 金属塩の種類と濃度を表1に示す内容とした他は実施例4と同様にして各例の研磨用組成物を調製した。
(Examples 12 to 13)
The polishing compositions of each example were prepared in the same manner as in Example 4 except that the types and concentrations of the metal salts were shown in Table 1.
 (比較例1~2)
 硝酸カルシウムの濃度を表1に示す濃度とした他は実施例4と同様にして各例の研磨用組成物を調製した。
(Comparative Examples 1 and 2)
The polishing composition of each example was prepared in the same manner as in Example 4 except that the concentration of calcium nitrate was set to the concentration shown in Table 1.
 (比較例3~4)
 金属塩の種類と濃度を表1に示す内容とした他は実施例4と同様にして各例の研磨用組成物を調製した。
(Comparative Examples 3 to 4)
The polishing compositions of each example were prepared in the same manner as in Example 4 except that the types and concentrations of the metal salts were shown in Table 1.
<研磨除去速度の評価>
 アルミナ砥粒を含む研磨液を用いて予備ポリシングを予め実施した。予備研磨を実施したSiCウェーハの表面を、各例の研磨用組成物をそのまま研磨液として用いて、下記の条件で研磨した。そして、以下の計算式(1)、(2)に従って研磨速度を算出した。結果を表1の該当欄に示す。
(1)研磨取り代[cm]=研磨前後のSiCウェーハの重量の差[g]/SiCの密度[g/cm](=3.21g/cm)/研磨対象面積[cm](=19.62cm
(2)研磨速度[nm/h]=研磨取り代[cm]×10/研磨時間(=1時間)
  [ポリシング条件]
 研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN-CH」
 研磨パッド:ニッタ・ハース社製「SUBA800XY」
 研磨圧力:29.4kPa
 定盤回転数:80回転/分
 ヘッド回転数:40回転/分
 研磨液の供給レート:20mL/分(掛け流し)
 研磨液の温度:25℃
 研磨時間:1時間
 研磨対象物:SiCウェーハ(伝導型:n型、結晶型4H‐SiC、主面(0001)のC軸に対するオフ角:4)
       2インチ×3枚
<Evaluation of polishing removal speed>
Preliminary polishing was performed in advance using a polishing liquid containing alumina abrasive grains. The surface of the pre-polished SiC wafer was polished under the following conditions using the polishing compositions of each example as they were as a polishing liquid. Then, the polishing rate was calculated according to the following calculation formulas (1) and (2). The results are shown in the corresponding columns of Table 1.
(1) Polishing allowance [cm] = difference in weight of SiC wafer before and after polishing [g] / SiC density [g / cm 3 ] (= 3.21 g / cm 3 ) / polishing target area [cm 2 ] ( = 19.62 cm 2 )
(2) polishing rate [nm / h] = grinding allowance [cm] × 10 7 / polishing time (= 1 hour)
[Policing conditions]
Polishing device: Single-sided polishing device manufactured by Nippon Engis, model "EJ-380IN-CH"
Polishing pad: "SUBA800XY" manufactured by Nitta Haas
Polishing pressure: 29.4 kPa
Surface plate rotation speed: 80 rotations / minute Head rotation speed: 40 rotations / minute Polishing liquid supply rate: 20 mL / minute (flowing)
Abrasive temperature: 25 ° C
Polishing time: 1 hour Polishing object: SiC wafer (conduction type: n type, crystal type 4H-SiC, off angle of main surface (0001) with respect to C axis: 4)
2 inches x 3 sheets
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、フュームドシリカおよび酸化剤を含み、金属塩を10ミリモル/Lよりも多い割合で含む実施例1~13の研磨用組成物によると、金属塩の含有量が10ミリモル/L以下である比較例1~4と比較して、研磨速度が向上した。 As shown in Table 1, according to the polishing compositions of Examples 1-13, which contained fumed silica and an oxidizing agent and contained a metal salt in a proportion of more than 10 mmol / L, the metal salt content was 10. The polishing rate was improved as compared with Comparative Examples 1 to 4 having a millimole / L or less.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.

Claims (10)

  1.  フュームドシリカと、酸化剤と、金属塩と、を含み、
     前記金属塩の含有量が10ミリモル/Lよりも多い、研磨用組成物。
    Contains fumed silica, an oxidant, and a metal salt,
    A polishing composition having a metal salt content of more than 10 mmol / L.
  2.  前記金属塩は、アルカリ金属および/またはアルカリ土類金属の硝酸塩および/または塩酸塩である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the metal salt is a nitrate and / or hydrochloride of an alkali metal and / or an alkaline earth metal.
  3.  前記金属塩を形成する金属はカリウムである、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the metal forming the metal salt is potassium.
  4.  前記金属塩を形成する金属はカルシウムである、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the metal forming the metal salt is calcium.
  5.  前記酸化剤は複合金属酸化物を含む、請求項1から4のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, wherein the oxidizing agent contains a composite metal oxide.
  6.  前記酸化剤の濃度A[ミリモル/L]に対する前記金属塩の濃度B[ミリモル/L]の比(B/A)は0.01以上10以下である、請求項1から5のいずれか一項に記載の研磨用組成物。 Any one of claims 1 to 5, wherein the ratio (B / A) of the concentration B [mmol / L] of the metal salt to the concentration A [mmol / L] of the oxidizing agent is 0.01 or more and 10 or less. The polishing composition according to.
  7.  pHは5.0よりも大きく9.0未満である、請求項1から6のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 6, wherein the pH is greater than 5.0 and less than 9.0.
  8.  1500Hv以上のビッカース硬度を有する材料の研磨に用いられる、請求項1から7のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 7, which is used for polishing a material having a Vickers hardness of 1500 Hv or more.
  9.  炭化ケイ素の研磨に用いられる、請求項1から8のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 8, which is used for polishing silicon carbide.
  10.  請求項1から9のいずれか一項に記載の研磨用組成物を用いて、基板を研磨する工程を含む、基板の研磨方法。 A method for polishing a substrate, which comprises a step of polishing the substrate using the polishing composition according to any one of claims 1 to 9.
PCT/JP2021/010796 2020-03-30 2021-03-17 Polishing composition and polishing method WO2021200149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511841A JPWO2021200149A1 (en) 2020-03-30 2021-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-060913 2020-03-30
JP2020060913 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200149A1 true WO2021200149A1 (en) 2021-10-07

Family

ID=77927915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010796 WO2021200149A1 (en) 2020-03-30 2021-03-17 Polishing composition and polishing method

Country Status (3)

Country Link
JP (1) JPWO2021200149A1 (en)
TW (1) TW202145332A (en)
WO (1) WO2021200149A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189296A (en) * 1999-12-28 2001-07-10 Nec Corp Method for forming metal wiring
JP2007520050A (en) * 2003-09-11 2007-07-19 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing composition and method of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189296A (en) * 1999-12-28 2001-07-10 Nec Corp Method for forming metal wiring
JP2007520050A (en) * 2003-09-11 2007-07-19 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing composition and method of use thereof

Also Published As

Publication number Publication date
JPWO2021200149A1 (en) 2021-10-07
TW202145332A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP7373403B2 (en) polishing composition
TWI731843B (en) Polishing composition
JP7125386B2 (en) Polishing composition
JP6788988B2 (en) Polishing composition
CN115380097B (en) Polishing composition
TW201942320A (en) Polishing composition
WO2021200149A1 (en) Polishing composition and polishing method
WO2022168860A1 (en) Polishing composition
WO2023054386A1 (en) Polishing composition
WO2023054385A1 (en) Polishing composition
WO2022168858A1 (en) Polishing composition
WO2023189512A1 (en) Polishing composition
WO2021241505A1 (en) Polishing method and polishing composition set
WO2016072371A1 (en) Polishing composition
JPWO2019065994A1 (en) Polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779043

Country of ref document: EP

Kind code of ref document: A1