WO2021199939A1 - 車両用電源装置 - Google Patents
車両用電源装置 Download PDFInfo
- Publication number
- WO2021199939A1 WO2021199939A1 PCT/JP2021/009025 JP2021009025W WO2021199939A1 WO 2021199939 A1 WO2021199939 A1 WO 2021199939A1 JP 2021009025 W JP2021009025 W JP 2021009025W WO 2021199939 A1 WO2021199939 A1 WO 2021199939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- power supply
- node
- supply device
- power storage
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims description 38
- 239000003990 capacitor Substances 0.000 claims description 36
- 230000000903 blocking effect Effects 0.000 claims description 13
- 230000009467 reduction Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 206010011416 Croup infectious Diseases 0.000 description 1
- 201000010549 croup Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/04—Cutting off the power supply under fault conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/16—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/08—Three-wire systems; Systems having more than three wires
- H02J1/082—Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/36—Arrangements using end-cell switching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention is a power supply device mounted on a vehicle, which includes a high-voltage power storage means particularly used for traveling drive and a low-voltage power source to be supplied to an electric load other than the traveling drive, and from the high-voltage power storage means. It is configured to obtain the low voltage power supply via a step-down means.
- Patent Document 1 a vehicle power supply device according to the proposal of the present applicant is known (Patent Document 1). According to this, in a configuration in which power conversion from high voltage to low voltage is performed by selectively connecting a predetermined power storage element group to a low voltage electric load from a high voltage power supply formed by connecting power storage elements in series. By switching the power storage element group at a high voltage, the switching loss of the switching means is made substantially zero.
- the voltage of the electric power storage means for driving the vehicle is from a low voltage of about 48 volts to a system using a high voltage of about 600 volts.
- the human body is a vehicle in a voltage range exceeding 60 volts. It is necessary to consider the prevention of electric shock accidents when the electric circuit part connected to the power storage means of the above is touched. Therefore, in a general high-voltage system of a vehicle, as shown in FIG. 1, a DC-DC converter provided with an insulating transformer is arranged between the high-voltage part and the low-voltage part, and the high-voltage circuit is connected to the vehicle body.
- the configuration is such that the human body does not get an electric shock even if it touches any part of the circuit part including the high voltage storage means.
- the present invention has been made in view of the above problems, and in a vehicle power supply device mounted on a vehicle and obtaining a low voltage power supply from a high voltage power supply via a step-down means, the voltage on the high voltage side is the electric shock limit of the human body. Even when the system exceeds 60 volts, electric shock accidents can be prevented without using insulating means such as a transformer, and approximately 100% power conversion efficiency can be easily obtained in the power conversion function to the low voltage side. It provides a power supply device for vehicles.
- a high voltage is obtained by connecting an electric load operating at a predetermined low voltage and a plurality of power storage elements constituting each node (group node) for supplying the predetermined low voltage in series.
- a high-voltage power supply that obtains a DC power supply, a high-voltage load device connected to the high-voltage power supply via a wire harness, and a plurality of nodes provided corresponding to each node that supplies the predetermined low voltage to the electric load.
- the voltage is supplied by turning on the switch means and the switch means for supplying the voltage from at least one node and turning off the switch means for supplying the voltage from the other node, and once all the switch means are supplied.
- the present invention includes an electric leakage detecting means for detecting the electric leakage resistance between the circuit portion formed by the above and the ground potential and transmitting a signal to the control means.
- control means determines a signal transmitted from the earth leakage detection means during the period when the earth leakage means is off, and when the earth leakage resistance is equal to or less than a predetermined value, all the switching means are off. It is characterized by holding the state for a predetermined period of time.
- n natural numbers
- N N: N:. Natural number
- control means controls the switch means so as to periodically change the plurality of selected nodes.
- control means determines the node to be selected so that the charge / discharge states of the plurality of power storage elements become substantially uniform.
- control means determines the selective holding time of each node so that the charge / discharge states of the plurality of power storage elements become substantially uniform.
- the time for connecting the high voltage power supply and the high voltage load device by the cutoff means is the duration of the current flowing from the high voltage power supply to the human body, which is an electric shock accident of the human body. Was set to be less than the time that occurs.
- the time for connecting the high voltage power supply and the high voltage load device by the shutoff means is a duration inversely proportional to the voltage value of the high voltage power supply, or the leakage detection means. The duration was proportional to the leakage resistance value detected by.
- the control means fixes all the switching means in the off state.
- the control means when the leakage resistance detection value of the leakage detection means is equal to or less than a predetermined value, the control means holds a state in which all the switching means are off for a predetermined time. Again, the switching means repeats the operation of selectively connecting the respective nodes and the electric load.
- the control means turns off the switching means, and the resistance value is the first.
- the operation of turning on the switching means is repeated again.
- control means uses the period in which the cutoff means connects the high voltage power supply and the high voltage load device, and the current value flowing from the high voltage power supply to the human body.
- the blocking means is controlled so that the product with and is 0.003 amperes ⁇ 1 second or less.
- control means determines a period for switching the node selected by the switching means so that the magnitude of the charge / discharge depth at each node of the power storage element is equal to or less than a predetermined value. Set below the value.
- a low voltage capacitor is connected in parallel with the electric load.
- a high voltage capacitor is connected in parallel with the high voltage load device.
- the reduction width of the voltage applied to the electric load during the dead time period or the capacitance value of the low voltage capacitor is equal to or less than a predetermined value. Is set.
- the voltage drop applied to the high voltage load device during the off period of the cutoff means or the capacitance value of the high voltage capacitor is determined by the amount of decrease in the voltage applied to the high voltage load device during the off period of the cutoff means. It is set to be less than or equal to a predetermined value.
- a capacitor is arranged in parallel with each node of the power storage element.
- four series storage elements may be selected in a croup manner and connected to an electric load.
- the control means periodically turns off the cutoff means and detects the ground fault current flowing from the high voltage circuit portion connected to the outside of the vehicle power supply device as the leakage resistance value by the leakage detection means, and the value is predetermined. If it is less than the value, it is judged that the human body is touching the high voltage circuit, and the switching means is turned off to disconnect the high voltage power supply and the low voltage circuit, that is, the metal part of the car body. It is possible to prevent an electric shock accident by blocking the energization of the human body due to contact with the power source.
- a plurality of power storage elements constituting a node having a predetermined low voltage with n (n: natural number) are connected in series. Then, a DC power supply having a high voltage N times a predetermined low voltage is obtained. Therefore, a high voltage and a predetermined low voltage can be efficiently supplied by using all the power storage elements.
- control means since the control means periodically changes the node selected by the switching means from the plurality of power storage elements, some of the power storage elements connected in series It is possible to prevent a problem that only the power storage element is discharged and the other power storage elements are overcharged.
- control means determines the node to be selected so that the charge / discharge states of the plurality of power storage elements are substantially uniform, when the plurality of power storage elements are connected in series and charged / discharged. It can also have a known cell balance function that is required.
- the control means determines the selective holding time of each node so that the charge / discharge states of the plurality of power storage elements become substantially uniform. In order to make the charge / discharge states of a plurality of power storage elements substantially uniform, so that the discharge time is long for the node selected from the power storage elements having a large charge amount, and conversely, in the power storage element having a small charge amount.
- the selective holding time of each node is determined so that the discharge time is short for the node selected from. It can also have a known cell balance function required when charging / discharging a plurality of power storage elements in series.
- the earth-leakage circuit breaker used for a general commercial power source, the earth-leakage detection sensitivity of 30 mA ⁇ 0.1 second is set.
- the control means has a period of connecting the high voltage power supply and the high voltage load device by the cutoff means, and the duration of the leakage current flowing from the high voltage power supply to the human body is an electric shock accident of the human body. Since it is less than the time when the occurrence occurs, it is possible to eliminate the damage to the human body even when the person touches the high voltage part.
- the control means has a duration of connecting the high voltage power supply and the high voltage load device by the cutoff means in inverse proportion to the voltage value of the high voltage power supply, or the leakage detecting means.
- the duration is set to be proportional to the detected resistance value.
- the control means fixes the switching means in the off state.
- the control means keeps the switching means off for a predetermined time such as 0.5 seconds, and then switches. The operation of turning on the means again is repeated.
- a predetermined time such as 0.5 seconds
- the power supply from the high voltage power supply to the low voltage electric load is supplied. Since it restarts, the vehicle function can be maintained.
- the switching means when the detection resistance value of the leakage detecting means is equal to or less than the first threshold value of, for example, 10 kiloohms, the switching means is turned off, and then the detection resistance value is set to, for example, 100 kiloohms.
- the threshold value When the threshold value is exceeded, the operation of turning on the switching means is repeated. In a dangerous area where the detection resistance value is small and the electric shock current to the human body is large, the connection between the high voltage power supply and the low voltage circuit is cut off, and when the detection resistance value is large and the electric shock current drops to a safe value, it is restarted.
- control means has such that the product of the period for which the cutoff means connects the high voltage power supply and the high voltage load device and the electric shock current value of the human body is 0.003 amperes ⁇ 1 second or less. Control the switching means. It is possible to secure the same level of safety as the standard 0.03 amps x 0.1 seconds or less of the earth-leakage circuit breaker used in general commercial power supplies.
- control means sets the period for switching the node selected by the switching means to be equal to or less than a predetermined value so that the magnitude of the charge / discharge depth at each node of the power storage element is equal to or less than a predetermined value. do. It is possible to minimize the decrease in the life of the power storage element due to the excessive charge / discharge depth of each power storage element.
- control means supplies power to the switching means from the low voltage capacitor during the so-called dead time period in which the connection between all the nodes and the electric load is disconnected. It is possible to prevent the voltage supplied to the load from dropping. The voltage supplied to the electric load can be kept stable.
- the voltage supplied to the high voltage load device decreases by supplying power from the high voltage capacitor to the high voltage load device during the period when the control means turns off the cutoff means. Can be suppressed, and the voltage supplied to the load device can be kept stable.
- the capacitor having a small internal impedance is arranged in parallel with the series node of the power storage element, it is sufficiently small immediately after the switching means switches the connection to an arbitrary node.
- the low voltage capacitor can be charged with the power supply impedance, that is, a large current, and it is possible to suppress a decrease in the voltage supplied to the electric load.
- the breaking means is turned on, the charging current for the high-voltage capacitor can be increased, so that a decrease in the voltage supplied to the high-voltage load device can be suppressed.
- AC power is supplied to the electric load by alternately reversing the polarity with the side at predetermined periods. It is possible to supply AC power for using household appliances that require commercial power in the vehicle.
- FIG. 2 shows a basic embodiment of the present invention, in which the vehicle power supply device 1 is charged by a power generation means mechanically connected to a drive mechanism mounted on a vehicle (not shown) and traveling by an engine and a motor.
- the power storage elements 1a to 40d made of a secondary battery, the switching means S1a to S40b, the control means 200, the electric leakage detecting means 100, and the blocking means 500 and 501 are included.
- the vehicle power supply device 1 operates at 12 volt, and one end on the negative potential side is connected to an electric load 300 electrically connected to the vehicle body, and is high via wire harnesses W1 and W2 extending to the outside. It is connected to the voltage load device 400 to supply the electric power of the high voltage power storage elements 1a to 40d to the high voltage load device 400.
- the power storage elements 3b to 39d, the switching means S3b to S39a connected to the power storage elements, and the portion where the switching means and the control means 200 are connected are omitted.
- the power generation means (not shown) is driven by an engine in order to supply the electric power required for the vehicle electrical components, and when the vehicle is reduced, the kinetic energy at the time of reduction is regenerated via the drive mechanism to charge the power storage elements 1a to 40d. It works as it does.
- Each node of the power storage elements 1a to 40d is, for example, a lithium-ion battery having a charging voltage of 3 V. As a result, a high voltage power supply with a total of 480 volts is formed. Further, the high-voltage power supply is supplied to the high-voltage load device 400 including a motor, an inverter, etc. mounted on the vehicle, and acts to assist the driving torque of the engine. As a result, when the vehicle is power running, the energy regenerated at the time of reduction can be reused for running, so that it is possible to improve the running fuel efficiency of the vehicle.
- the nodes 1a to 1d are designated as the first group node
- the nodes 2a to 2d are designated as the second group node
- the nodes 3a to 3d are designated as the third group node
- the nodes from 40d to 40d are designated as the 40th group nodes
- the switching means S1a to S40b are connected to both ends of each group node.
- group nodes may simply be referred to as nodes.
- 200 is a control means and acts to control the on / off state of the switching means S1a to S40b and the on / off state of the blocking means 500 and the blocking means 501.
- the control means 200 turns on the switching means S1a and S2a and connects the electric load 300 and the first group node of the power storage element for a Ton time set to, for example, 10 milliseconds.
- the switching means other than the switching means S1a and S2a are turned off. Since the switching means S2a is connected to the positive electrode side of the first group node and the switching means S1a is connected to the negative electrode side of the first group node, a DC voltage of 12 volts is applied to the electric load 300 during Ton. It will be.
- the control means 200 keeps all the switching means S1a to S40b described above off during the period Td shown in FIG.
- the reason for providing the time Td is that, for example, when the switching means S1a and the switching means S1b are turned on at the same time, the switching means S1a, the switching means S1b, and the nodes 1a, 1b, 1c, and 1d of the power storage element are formed. This is because an excessive current flows through the closed circuit, which causes damage to the switching means or wasteful consumption of charging power of each power storage element.
- the switching means S1a to S40b actually respond when a signal for controlling the on / off of each switching means is transmitted from the control means 200. It is known that there will be a time delay before. Therefore, the control means 200 requires a sufficient waiting time Td from turning off the desired switching means to turning on the other switching means. This Td is called a dead time, and in the case of a general MOSFET, several tens of nanoseconds to several microseconds are required.
- the control means 200 turns on the switching means S1a and S2a during Ton and connects the switching means S1a and S2a to the electric load 300 to provide the required voltage 12 to the electric load 300.
- Bolts are supplied, and subsequently, in the second group node, the electric load is connected to the electric load 300 between Tons via the switching means S1b and S3a, and in the third group node, the ton is connected via the switching means S2b and S4a.
- the control means 200 turns on the switching means S1a and S2a during Ton and connects the switching means S1a and S2a to the electric load 300 to provide the required voltage 12 to the electric load 300.
- Seconds x number of group nodes 40 0.4 seconds) is repeated as one cycle, and it is assumed that it acts to continue supplying 12 volt DC power to the electric load 300, so each of the first to 40th power storage element group nodes It is possible to keep the charge / discharge state of the above substantially uniform.
- the leakage detection means 100 is connected to the high voltage circuit portion by the wire harnesses W1 and W2 extending to the outside of the vehicle power supply device via the terminal T102 and the terminal T101, and is grounded to the vehicle body via the terminal T103.
- the leakage detecting means 100 includes a voltage source (not shown) inside, and the value of the current flowing between the terminal T101 and the grounding terminal T103 and the value of the current flowing between the terminal T102 and the grounding terminal T103. Therefore, the electrical resistance value between the terminal T101 and the ground and the electrical resistance value between the terminal T103 and the ground are measured, and the smaller resistance value is output to the control means 200. It is configured.
- the terminal T101 and the terminal T102 of the leakage detecting means 100 are floating with respect to the vehicle body, so that the leakage resistance value is substantially infinite.
- a human body touches the high voltage circuit portion on the wire harness W1 side a relatively small resistance value is detected between the terminal T101 and the ground terminal T103 because the resistance value of the human body is about 5 K ⁇ .
- the control means 200 repeats the operation of turning on the blocking means 500 and 501 for the TN period and turning off the period of the TF1 (TF2) in the periodic TS, and the period during which the blocking means 500 and 501 are on.
- the high-voltage circuit part is cut off and is in a floating state. Therefore, the leakage resistance value RLeak of the leakage detection means 100 in the period TF1 of FIG. 4 is infinite.
- the leakage resistance value RLeak detected by the leakage detection means 100 is a relatively small value.
- FIG. 4 shows.
- the switching means S1a to S40b are fixed as off.
- the control means 200 sets the period Hold during which the switching means S1a to S40b are off to, for example, about 0.5 seconds, and the switching means S1a to S40b select and connect each group node again. You may repeat the operation to do.
- control means 200 determines that the human body is in contact with the high voltage circuit portion because the leakage resistance value RLeak is smaller than the threshold value RLth in the off period TF2 of the cutoff means 500 and 501, and the period of Thold.
- the switching means S1a to S40b are turned off.
- control means 200 selectively connects the group nodes in the order to be selected next to the group note selected during the period TF2 among the switching means S1a to S40b, for example, S2b. Turn on S4a.
- control means 200 determines that the human body is still in contact with the high voltage circuit because the leakage resistance value RLeek in the off period TF3 of the cutoff means 500 and 501 is smaller than the threshold value RLth, and the switching means S2b and S4a By continuing the state in which all the switching means including and are turned off again for the Thold period, the on and off are repeated in a cycle of about 0.5 seconds.
- the first threshold RLth1 is set to about 100 kiloohms by dividing the voltage value of the high-voltage power supply of 480 V by the current value of 5 mA, which is considered to have no effect on the human body, and the second threshold RLth2. Is preferably set to about 1 megaohm as a resistance value near the middle between the RLth1 and the insulating resistance value that is substantially infinite between the floating high voltage circuit and the ground.
- the control means 200 disconnects the high-voltage power supply and the low-voltage circuit, that is, the metal part of the vehicle body by turning off the switching means S1a to S40b. It is possible to prevent an electric shock accident by blocking the energization of the human body due to touching between the two. By surrounding the vehicle power supply device 1 with a housing (not shown), it is possible to prevent a human body from directly touching the inside of the vehicle power supply device 1 and receiving an electric shock.
- the power generation means limits the charging voltage of the power storage element so that the voltage obtained by connecting the entire nodes of the power storage elements 1a to 40d in series has a predetermined maximum value.
- the current consumption of the electric load 300 is not constant, and may change significantly in a short time depending on the operating state of the driver, such as electric power steering.
- the switching means S1a to S40b are controlled by the control means 200 and the first group node to the 40th group node of the power storage element are switched at equal intervals, a difference may occur in the charging state of each group node. ..
- control means 200 preferentially connects the group node having a high voltage to the electric load 300 while monitoring the voltage of each group node of the power storage element via the terminals T201, T202, T203 to T239, and T240 shown in FIG.
- the charge state of each power storage element group (group node) is kept substantially uniform by selectively switching the power storage element group (group node) to be discharged so that the group node having a low voltage is not connected to the electric load 300. be able to.
- the control means 200 monitors the voltage of each group node of the power storage element via the terminals T201, T202, T203 to T239, and T240 shown in FIG. Charging of the power storage element group (group node) so that the period in which the switching means is turned on is set long for the node and the period in which the switching means is turned on is set short for the group node having a low voltage. It is also possible to individually calculate and control Ton1 to Ton40 shown in FIG. 8 from the amount and the value of the current flowing through the electric load 300. As a result, the charging state of each power storage element group (group node) can be kept substantially uniform.
- the action of the earth leakage detecting means 100 is to determine the presence or absence of electric shock due to the contact of the human body with the high voltage circuit portion during the period TN in which the breaking means 500 and 501 of FIG. 4 are on. It is detected by whether or not the leakage resistance value of the leakage detection means 100 during the period when 501 is off is equal to or less than the threshold voltage RLth, and when there is contact with the human body, the switching means S1a to S40b are turned off. Therefore, the maximum time that the electric shock current actually flows to the human body is TN.
- the TN time must be within the range in which the electric shock current determined by the voltage value of the high-voltage power supply by the power storage elements 1a to 40d and the resistance value of the human body and the human body reaction assumed from the duration thereof are harmless to the human body. It is generally said that there is no fatal human reaction if the electric shock time is 0.1 seconds or less when the current value is 30 mA. That is, it is said that the maximum value of the product of the electric shock current and the electric shock time is 0.003 amperes seconds in order to suppress the reaction to a safe human body.
- the maximum electric shock current is about 100 mA from the voltage value of the high voltage power supply of 480 volts and the human body resistance of 5 K ⁇ , and the electric shock time without harm to the human body is calculated to be 0.03 seconds or less. Therefore, the maximum value of the TN during the period when the blocking means 500 and 501 are on is set to 0.001 seconds, which is a small value with sufficient margin.
- the earth leakage detection means 100 needs to measure the earth leakage resistance RLeak during the off period TF1, TF2, TF * (* is arbitrary) when the control means 200 cuts off the earth leakage means 500, 501, the earth leakage.
- the off period is about 10 microseconds.
- a system equipped with a high-voltage power supply for a vehicle not only leaks when the human body touches a high-voltage circuit part, but also temporarily leaks due to leakage of mounted electronic components, malfunction of the insulating part, vibration during running, etc. Current may flow. In such a case, if the power supply from the high-voltage power source to the low-voltage electric load 300 is completely stopped by the action of the control means 200, the function of each part may be lost while the vehicle is running, which may be dangerous.
- the switching means S1a to S40b are turned off. After holding the state of (Thold) for 0.5 seconds or more, the switching means S1a to S40b are turned on again, or when the leakage resistance value RLeek increases to a predetermined second threshold value RLth2 or more, the switching means is again turned on.
- the operation of turning on S1a to S40b was configured to be periodically repeated.
- the control means 200 shortens the time TNn at which the cutoff means 500 and 501 are turned on in inverse proportion to the voltage value of the high-voltage power supply from the power storage elements 1a to 40d, and / or It is desirable to shorten the leakage resistance value in proportion to the minimum value of the leakage resistance value RLeak detected by the leakage detection means 100.
- the leakage is not caused by the vehicle but an electric shock to the human body, the higher the voltage of the high-voltage power supply, the shorter the energizing time to the human body, and / or the larger the electric shock current, the shorter the energizing time to the human body. Therefore, the safety is further improved.
- control means 200 switches each group node in the cycle T to supply a predetermined low voltage power supply to the electric load 300, and the power generation means (not shown) has a predetermined total voltage of the series storage elements 1a to 40d. It is assumed that the battery is constantly charged so as to have the value of.
- the group node is in a discharged state due to the current flowing through the electric load 300 during the on period.
- the charging voltage drops.
- the non-selected group node since the charging current is supplied from the power generation means so that the total voltage of all the power storage elements 1a to 40d becomes constant, the voltage changes in the increasing direction.
- the difference between the maximum voltage and the minimum voltage at the specific group node is the so-called charge / discharge depth, and when this width becomes large, the life of the power storage element is shortened.
- control means 200 selectively shortens the time Ton of connecting the power storage element group (group node) to the electric load 300 and goes through the selection of all the power storage element groups (group nodes). It can be seen that the control cycle T should be shortened.
- the switching loss in the switching means S1a to S40b is such that in the on-transition process of each switching means, the voltage V across the switching means when the switching means is in the open state is accompanied by the on operation.
- the current I increases as it decreases.
- the switching loss occurs during the dead time Td, the average value of the switching loss with respect to the control cycle T of the control means 200 is Td / T, so that the control cycle T is shortened as described above. As a result, there is a problem that the switching loss becomes excessive.
- the voltage VL applied to the electric load 300 during the dead time Td period shown in FIG. 3 is 0 volt during the period when all the switching means S1a to S40b are off. Therefore, since the power supplied to the electric load 300 is momentarily interrupted, there is a problem that the low-voltage vehicle electric load is momentarily stopped.
- a low-voltage capacitor 310 is arranged in parallel with the electric load 300.
- the voltage charged in the low voltage capacitor 310 continues to be supplied to the electric load 300, so that the voltage VL does not drop to 0 volt, but a slight voltage drop from the peak voltage as shown by the broken line VLa in FIG. Can be fastened to.
- the amount of voltage drop in this case is determined by the current flowing through the electric load 300, the capacity of the low voltage capacitor 310, and the dead time Td.
- the dead time Td and the current flowing through the electric load 300 are fixed, the low voltage capacitor The larger the capacity of 310, the smaller the amount of voltage drop can be.
- the dead time Td time should be shortened. Needless to say, the amount of voltage drop can be reduced.
- the total voltage of the series storage elements in the group node of the storage elements connected by turning on any of the switching means is 12 volts.
- the voltage of the low voltage capacitor 310 is approximately 12 volts, the voltage across the switching means can be set to approximately 0 volts when the switching means is in the open state, so that the switching loss in this case is shown in FIG. As shown in No. 11, since the current I increases while the voltage V remains substantially 0 volt, the loss I ⁇ V becomes the minimum.
- the voltage of one group node of the power storage element is output as the voltage supplied to the electric load 300, and by utilizing the fact that the low voltage capacitor 310 holds the voltage of the group node, each group node If the voltage is the same, the voltage of each group node that switches all the group nodes is the same as the voltage of the electric load 300 (low voltage capacitor 310), so the operation of the switching means is so-called ZVS (known zero volt switching). Therefore, switching loss is theoretically not generated.
- the switching loss is not generated at the time of stepping down from the high voltage power supply to the low voltage power supply, the heat loss generated by the switching element used for stepping down is extremely reduced, and the output is 2.5 KW in the experiments of the inventors.
- the power conversion efficiency was 99.5%, which made it possible to significantly reduce the system cost, such as eliminating the need for a heat dissipation plate.
- control means 200 measures the insulation resistance value between the high voltage portion and the ground by the leakage detection means 100 during the period when the cutoff means 500 and 501 are turned off.
- the power supply from the high-voltage power supply to the high-voltage load device 400 is stopped for a predetermined period, so that the voltage supplied to the high-voltage load device 400 is maintained even during the stop period, as shown in FIG.
- the high voltage capacitor 700 it is possible to reduce the switching loss of the interrupting means 500 and 501 which are periodically interrupted. This is the same reason that the switching loss generated in the switching means can be reduced by adding the low voltage capacitor 310, and thus detailed description thereof will be omitted.
- capacitors 601 and 602 are used at both ends of each power storage element group (group node) formed by connecting four nodes of the power storage elements 1a to 40d in series. ⁇ 640 were connected and configured.
- the power storage element has an equivalent series resistance value of several tens of m ⁇ as an internal resistance (not shown). Therefore, in the case of four series power storage elements in one group node in the present embodiment, an internal resistance of about 100 m ⁇ is provided for each group node of the power storage element.
- the electrical time constant of the rising portion is the capacitance of the capacitor 310.
- the rising waveform of VL when the capacitor 310 is charged by the internal resistance of the power storage element has a large time constant and a low voltage state continues for a long time. Further, since this is repeated in the period T, it becomes a factor that the average value of the voltage supplied to the electric load 300 decreases. Therefore, it is desirable that the time constant is as small as possible.
- the equivalent series resistance of a capacitor as a capacitance element is as small as several m ⁇ . Therefore, when the capacitors 601 and 602 to 640 are connected in parallel with each group node of the power storage element as in the present embodiment, the internal resistance of the power storage element is apparently reduced, and the capacitor 310 is charged by the internal resistance. As shown by VLc in FIG. 3, the rising waveform of VL in this case has a small time constant and a short state in which the voltage is low. Since this is repeated in the period T, the decrease in the average value of the voltage supplied to the electric load 300 is small, and the accuracy of the voltage supplied to the electric load 300 is improved.
- the power storage element 180 lithium-ion batteries having a cell voltage of 3 volts are connected in series, and the total voltage is 540 volts.
- the 60 power storage elements are regarded as one group node, and the whole is divided into three group nodes G1 to G3, and the voltage of each group node is switched every 1 millisecond by the switching means to supply the commercial power supply load.
- the selected group node is G1
- G2 is selected and supplied to the commercial power load
- the power storage element group for connecting to the commercial power load is used. Operate the switching means so that the polarity of (group node) is reversed.
- the vehicle power supply device selectively connects a predetermined power storage element group (group node) to a low voltage electric load from a high voltage power supply formed by connecting power storage elements in series.
- group node a predetermined power storage element group
- the charge / discharge depth of the power storage element is reduced and the life is improved.
- the switching loss of the switching means for switching can be made substantially zero, it has an excellent feature that the weight and cost of the member required for heat dissipation of the switching element can be significantly improved.
- the leakage resistance value is measured with the high-voltage circuit temporarily cut off by the breaking means, and if a decrease in the resistance value is observed, it is assumed that the human body is touching the high-voltage circuit part, and the high-voltage power supply is used. And, since the connection with the low voltage circuit connected to the vehicle body is to be cut off continuously or for a predetermined period, dangerous human reaction at the time of electric shock without using means such as an insulated DC-DC converter. Can be suppressed.
- the voltage of the power storage element can be boosted and supplied to the electric load means.
- the capacitor is a node, and the voltage of the power storage element is charged to each node via the switching means, so that the boosted power is taken out from the capacitors connected in series. There is.
- a breaking means is added to the high voltage side connected to the electric load means, and the resistance value between the grounds on the high voltage side is measured by the leakage detecting means in the same manner as in the above embodiment, and the resistance value between the grounds on the high voltage side is measured.
- the switching means for selectively connecting each node can be cut off to prevent an electric shock accident.
- control means including the location and number of the interrupting means, and the presence / absence of synchronization between the interrupting cycle of the blocking means and the intermittent cycle of the switching means, can take any form, and at the same time, as a configuration of the leakage detecting means. It should be easily understood that there are various known techniques and that various failure detection means and a fail-safe function at the time of failure may be added.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
【課題】 車両に搭載され高圧電源から降圧手段を介して低電圧電源を得る車両用電源装置において、トランス等の絶縁手段を用いることなく人体の感電を防止する。 【解決手段】 蓄電素子を直列に接続して形成した高電圧電源から、所定の蓄電素子グループを選択的に低電圧電気負荷と接続することによって、高電圧から低電圧へと電力変換を行う構成において、高電圧電源と高電圧電気負荷との間へ設けた遮断手段によって高電圧回路を遮断した期間中に、高電圧回路から接地への漏電抵抗を測定し、所定値以下の時に高電圧電源から低電圧の電気負荷への電力供給を遮断することで感電を防止する。
Description
本発明は、車両に搭載される電源装置であって、特に走行駆動等に用いる高圧蓄電手段と、走行駆動用以外の電気負荷へ供給する低電圧電源とを具備するとともに、該高圧蓄電手段から降圧手段を介して前記低電圧電源を得るがごとく構成したものである。
上記電源装置として、本出願人の提案に係る車両用電源装置が公知である(特許文献1)。これによると、蓄電素子を直列に接続して形成した高圧電源から、所定の蓄電素子グループを選択的に低電圧電気負荷と接続することで、高電圧から低電圧へと電力変換を行う構成において、該蓄電素子グループを高 で切り替えることによってスイッチング手段のスイッチング損失を略ゼロにしたものである。
車両の走行駆動用電力蓄電手段の電圧は48ボルト程度の低電圧から600ボルト程度の高電圧を用いたシステムまで様々な実施形態があり、一般的に60ボルトを超える電圧範囲においては人体が車両の蓄電手段と接続された電気回路部分に触れた際の感電事故防止に配慮することが必要である。
その為、車両の一般的な高電圧システムにおいては図1に示すように高電圧部位と低電圧部位との間に絶縁トランスを備えたDC-DCコンバータを配置すると共に、高電圧回路は車体との直接接続を避けて負電位回路と正電位回路の双方をフローティングとすることで、人体が高電圧蓄電手段を含む回路部分のいずれの部位に触っても感電しない構成となっている。
その為、車両の一般的な高電圧システムにおいては図1に示すように高電圧部位と低電圧部位との間に絶縁トランスを備えたDC-DCコンバータを配置すると共に、高電圧回路は車体との直接接続を避けて負電位回路と正電位回路の双方をフローティングとすることで、人体が高電圧蓄電手段を含む回路部分のいずれの部位に触っても感電しない構成となっている。
ここで、特許文献1によると、低電圧回路である負荷手段50の低電位側は一般的に12ボルト電源のボディーアースとして車体に接地されることになるから、スイッチ手段30~35の内、いずれか1つ以上が閉じている場合には高電圧側の直列に接続された蓄電手段20a~20Lの接続点のどこかが車体と直接接続されるので、人体が高電圧回路に触れると感電する。具体的には、蓄電手段20a~20Lの直列合計電圧が仮に480ボルトであるとして、スイッチ手段35が閉じている瞬間に蓄電手段20aの正電位側と車体との間に触れると人体に480ボルトの高電圧が印加されて感電事故が発生する可能性が考えられる。
本発明は前記課題に鑑みてなされたものであり、車両に搭載され高電圧電源から降圧手段を介して低電圧電源を得る車両用電源装置において、高電圧側の電圧が人体の感電限界である60ボルトを超えるシステムとした場合においても、トランス等の絶縁手段を用いることなく感電事故を防止することができ、且つ低電圧側への電力変換機能において容易に略100%の電力変換効率を得る車両用電源装置を提供するものである。
請求項1の発明による車両用電源装置は、所定低電圧で作動する電気負荷と、前記所定低電圧を供給する各ノード(グループノード)を構成する複数の蓄電素子を直列に接続して高電圧の直流電源を得る高電圧電源と、ワイヤーハーネスを介して高電圧電源と接続された高電圧負荷装置と、前記電気負荷に前記所定低電圧を供給する各ノードに対応して設けられた複数のスイッチ手段と、少なくとも1つのノードからの電圧を供給する前記スイッチ手段をオンし、他のノードからの電圧を供給する前記スイッチ手段をオフにすることで電圧を供給するとともに、一旦全てのスイッチ手段をオフにするデッドタイム期間を設けた後、次に電圧を供給するノードの前記スイッチ手段をオンとし、他のノードからの電圧を供給するスイッチ手段をオフにする制御を順次繰り返すことで、全ての蓄電素子から電圧を供給させる制御手段と、制御手段によって前記高電圧電源と高電圧負荷装置との間の電気回路を周期的に遮断する遮断手段と、該高電圧電源と高電圧負荷装置とで形成される回路部位と接地電位との間の漏電抵抗を検出して前記制御手段に信号を送出する漏電検出手段と、を備える。そして、前記制御手段は、前記遮断手段がオフである期間に前記漏電検出手段から送出される信号を判定し、漏電抵抗が所定の値以下である場合には、前記スイッチング手段が全てオフである状態を所定期間保持することを特徴とする。
請求項2の発明による車両用電源装置では、前記高電圧電源は、n個(n:自然数)で前記所定低電圧となるノードを構成する複数の蓄電素子を直列に(n×N(N:自然数))個接続して、前記所定低電圧のN倍の高電圧の直流電源を得る。
請求項3の発明による車両用電源装置では、前記制御手段は、前記選択する複数のノードを周期的に変更するように前記スイッチ手段を制御する。
請求項4の発明による車両用電源装置では、前記制御手段は、前記複数の蓄電素子の充放電状態が略均一となるように、前記選択するノードを決定する。
請求項5の発明による車両用電源装置では、前記制御手段は、前記複数の蓄電素子の充放電状態が略均一となるように、各ノードの選択保持時間を決定する。
請求項6の発明による車両用電源装置では、前記遮断手段によって前記高電圧電源と高電圧負荷装置とを接続する時間は、前記高電圧電源から人体に流れる電流の継続時間が、人体の感電事故が起きる時間未満となるように設定した。
請求項7の発明による車両用電源装置では、前記遮断手段によって前記高電圧電源と高電圧負荷装置を接続する時間は、前記高電圧電源の電圧値に反比例した継続時間、又は、前記漏電検出手段が検出する漏電抵抗値に比例した継続時間とした。
請求項8の発明による車両用電源装置では、前記制御手段は、前記漏電検出手段の漏電抵抗検出値が所定の値以下の時、前記スイッチング手段を全てオフの状態に固定する。
請求項9の発明による車両用電源装置では、前記制御手段は、前記漏電検出手段の漏電抵抗検出値が所定の値以下の時、前記スイッチング手段が全てオフである状態を所定の時間保持した後、再度、前記スイッチング手段が前記各ノードと前記電気負荷を選択的に接続する動作を繰り返す。
請求項10の発明による車両用電源装置では、前記制御手段は、前記漏電検出手段が検出した抵抗値が第一の閾値以下の時、前記スイッチング手段をオフとし、該抵抗値が前記第一の閾値より大きい第二の閾値以上となった場合に、再度、前記スイッチング手段をオンとする動作を繰り返す。
請求項11の発明による車両用電源装置では、前記制御手段は、前記遮断手段が前記高電圧電源と前記高電圧負荷装置とを接続している期間と、前記高電圧電源から人体に流れる電流値との積が0.003アンペア×1秒以下となるように前記遮断手段を制御する。
請求項12の発明による車両用電源装置では、前記制御手段は、蓄電素子の各ノードにおける充放電深度の大きさが所定値以下となるように、前記スイッチング手段が選択するノードを切り替える周期を所定値以下に設定する。
請求項13の発明による車両用電源装置では、前記電気負荷と並列に低圧コンデンサが接続される。
請求項14の発明による車両用電源装置では、前記高電圧負荷装置と並列に高圧コンデンサが接続される。
請求項15の発明による車両用電源装置では、前記デッドタイム期間、又は、前記低圧コンデンサの容量値は、該デッドタイム期間中に前記電気負荷に印加される電圧の低下幅が所定値以下となるように設定される。
請求項16の発明による車両用電源装置では、前記遮断手段のオフ期間、又は、前記高圧コンデンサの容量値は、該遮断手段のオフ期間中に高電圧負荷装置に印加される電圧の低下幅が所定値以下となるように設定される。
請求項17の発明による車両用電源装置では、蓄電素子の各ノードと並列にコンデンサが配設される。
請求項18の発明による車両用電源装置では、前記複数の蓄電素子を直列に接続して高電圧の直流電源を得る高電圧電源の前記各ノードから、前記スイッチング手段によって前記電気負荷と接続する際の高電位側と低電位側との極性を所定期間ごとに交互に反転することによって、該電気負荷へ交流電力を供給する。
請求項1、請求項2の発明によれば、低電圧電源の電圧をVLとすると、蓄電素子を直列に接続した高電圧電源の電圧VHはVL×N(Nは自然数)であって、且つ該蓄電素子の個数はN×n(nは自然数)であるので、例えばVLを12ボルトとして、N=40とした場合、VHは480ボルトとなるとともに、n=4とすると合計でN×n=160個の直列蓄電素子で高圧電源を構成することになると同時に、該蓄電素子1個当たりの電圧は3ボルトとなる。
そこで、12ボルトの低電圧電源を得る為には4個の直列蓄電素子をクループ的に選択して電気負荷と接続すれば良い。
しかるに、480ボルトの高圧電源から12ボルトの低電圧電源を得る為に、公知のスイッチング電源回路等によるDC-DCコンバータを用いる必要はなく、直列に接続された蓄電素子の各ノード(グループノード)から選択的に電気負荷と接続する単純なスイッチング手段によって降圧を実現可能である。
従って、スイッチング手段の構成が簡略化可能であるとともに、公知のスイッチング損失やインダクターから発生する損失を大幅に低減できるから、降圧のための電力損失を低減して放熱構造を簡略化し、その結果、かかる降圧のための装置を含む電源装置の重量とコストを低減できる。
従って、スイッチング手段の構成が簡略化可能であるとともに、公知のスイッチング損失やインダクターから発生する損失を大幅に低減できるから、降圧のための電力損失を低減して放熱構造を簡略化し、その結果、かかる降圧のための装置を含む電源装置の重量とコストを低減できる。
ここで、高電圧電源の直列に接続された蓄電素子のノードの一部がスイッチング手段を介して低電圧回路、即ち車体の金属部位と接続されるから、高電圧電源回路部位に触れると人体に感電電流が流れる。しかしながら制御手段は、周期的に遮断手段をオフにして車両用電源装置の外部と接続された高電圧回路部位から流れる地絡電流を、漏電検出手段による漏電抵抗値として検出し、その値が所定値以下である場合には人体が高電圧回路に触れていると判定し、スイッチング手段をオフにして高電圧電源と低電圧回路、即ち車体の金属部位との接続を切り離すから、車体と高電圧電源との間に触れたことによる人体への通電を阻止して感電事故を防止することができる。
請求項2の発明によれば、高電圧電源は、n個(n:自然数)で所定低電圧となるノードを構成する複数の蓄電素子を直列に(n×N(N:自然数))個接続して、所定低電圧のN倍の高電圧の直流電源を得る。このため、全ての蓄電素子を用いて効率的に高電圧と所定低電圧とを供給することができる。
請求項3の発明によれば、制御手段によって、スイッチング手段が複数の蓄電素子の中から選択するノードを周期的に変更させるようにしたから、直列に接続された蓄電素子の内、一部の蓄電素子だけが放電してその他の蓄電素子が過充電となるといった不具合を防止することができる。
請求項4の発明によれば、制御手段は、複数の蓄電素子の充放電状態が略均一となるように、選択するノードを決定するから、複数の蓄電素子を直列にして充放電する際に必要となる公知のセルバランス機能を兼ね備えることができる。
請求項5の発明によれば、制御手段は、複数の蓄電素子の充放電状態が略均一となるように、各ノードの選択保持時間を決定する。複数の蓄電素子の充放電状態が略均一となるように、充電量の大きい蓄電素子の中から選択するノードに対しては放電時間が長くなるように、逆に充電量の小さい蓄電素子の中から選択するノードに対しては放電時間が短くなるように、各ノードの選択保持時間を決定する。複数の蓄電素子を直列にして充放電する際に必要となる公知のセルバランス機能を兼ね備えることができる。
人体に高電圧を印加すると、5ミリアンペア以下の電流値であれば人体への影響がないとされている。これよりも大きな電流域ではその継続時間によって人体反応が変化することが知られており、電流値が大きくなる程に短時間の感電で人体が障害を受ける。
従って、一般的な商用電源に用いられる漏電遮断器においては30ミリアンペア×0.1秒の漏電検出感度が設定されている。
従って、一般的な商用電源に用いられる漏電遮断器においては30ミリアンペア×0.1秒の漏電検出感度が設定されている。
そこで、請求項6の発明によれば、制御手段は、遮断手段によって高電圧電源と高電圧負荷装置とを接続する期間は、高電圧電源から人体に流れる漏電電流の継続時間が人体の感電事故が起きる時間未満としたから、人が高電圧部位に触れた場合においても人体への障害を無くすことができる。
請求項7の発明によれば、制御手段は、遮断手段によって高電圧電源と高電圧負荷装置とを接続する期間を、高電圧電源の電圧値に反比例した継続時間か、又は、漏電検出手段が検出した抵抗値に比例した継続時間となるように設定される。高電圧電源の電圧値か、又は人体を介して接地との間で生じる抵抗値が小さくなって人体の感電電流が大きくなる場合には、人体への通電時間、すなわち感電時間を短くすることができるのでより安全性が向上する。
請求項8の発明によれば、制御手段は、漏電検出手段の検出抵抗値が所定の値以下の時、スイッチング手段をオフの状態に固定する。これによって、高電圧電源と車体とが接続される電気回路を遮断することで、車体と高電圧電源との間に触れたことによる人体への通電を阻止して感電事故を防止することができるのでより安全性が向上する。
請求項9の発明によれば、制御手段は、漏電検出手段の検出抵抗値が所定の値以下の時、スイッチング手段がオフである状態を0.5秒等の所定時間以上保持した後、スイッチング手段を再度オンとする動作を繰り返す。人体の感電に対して十分な休止時間を持たせて安全性を確保すると共に、車体各部の故障によって一時的な漏電が発生したとしても高電圧電源から低電圧の前記電気負荷への電力供給が再開するので、車両機能を維持することができる。
請求項10の発明によれば、漏電検出手段の検出抵抗値が、例えば10キロオームとした第一の閾値以下の時スイッチング手段をオフとした後、検出抵抗値が例えば100キロオームとした第二の閾値以上となった場合には再度スイッチング手段をオンとする動作を繰り返す。検出抵抗値が小さく人体への感電電流が大きい危険な領域においては高電圧電源と低電圧回路との接続を遮断し、検出抵抗値が大きく感電電流が安全な値まで低下した場合には、再度接続するように構成したから、人体の安全性が確保されるとともに車体各部の故障によって一時的な漏電電流が発生したとしても高電圧電源から電気負荷への電力供給が再開するので、車両機能を維持することができる。
請求項11の発明によれば、制御手段は、遮断手段が高電圧電源と高電圧負荷装置とを接続する期間と人体の感電電流値との積が0.003アンペア×1秒以下となるようにスイッチング手段を制御する。一般的な商用電源で採用される漏電遮断器の規格0.03アンペア×0.1秒以下と同程度の安全水準を確保することができる。
請求項12の発明によれば、制御手段は、蓄電素子の各ノードにおける充放電深度の大きさが所定値以下となるように、前記スイッチング手段が選択するノードを切り替える周期を所定値以下に設定する。各蓄電素子の充放電深度が過大になることによる該蓄電素子の寿命低下を最小限に留めることができる。
請求項13の発明によれば、制御手段がスイッチング手段に対して、全てのノードと電気負荷との間の接続を切り離す所謂デッドタイムの期間中に、低圧コンデンサから電力を供給することで該電気負荷へ供給される電圧が低下するのを抑止することができる。該電気負荷へ供給する電圧を安定に保つことができる。
請求項14の発明によれば、制御手段が遮断手段をオフとしている期間中に、高圧コンデンサから高電圧負荷装置へ電力を供給することで該高電圧負荷装置へ供給される電圧が低下するのを抑止することができ、係る負荷装置へ供給する電圧を安定に保つことができる。
請求項15の発明によれば、スイッチング手段が切り替わる前後の電気負荷に印加される電圧を保持できるから、該スイッチング手段がオンとなる直前の該スイッチング手段両端の電位差が無くなってスイッチング損失を排除できるという効果がある。
請求項16の発明によれば、遮断手段が切り替わる前後の高電圧負荷装置に印加される電圧を保持できるから、該遮断手段がオンとなる(又はオフとなる)前後の該遮断手段両端の電位差が無くなってスイッチング損失を排除できるという効果がある
次に、スイッチング手段が任意のノードに対して接続の切り替えを行った直後において、蓄電素子の内部抵抗が大きい場合には、電気負荷と並列に接続した低圧コンデンサを充電する為に多くの時間を要する。
その為、スイッチング手段が切り替わるタイミングにおける電気負荷へ供給される電圧の低下が避けられない。
その為、スイッチング手段が切り替わるタイミングにおける電気負荷へ供給される電圧の低下が避けられない。
そこで、請求項17の発明によれば、蓄電素子の直列ノードと並列に内部インピーダンスの小さいコンデンサを配設したから、スイッチング手段が任意のノードに対して接続の切り替えを行った直後に、十分小さい電源インピーダンス、即ち大きな電流で前記低圧コンデンサを充電でき、電気負荷へ供給される電圧の低下を抑制することが可能である。
同様に、前記遮断手段がオンした場合に前記高圧コンデンサに対する充電電流を大きくすることができるので、高電圧負荷装置へ供給される電圧の低下を抑制できる。
同様に、前記遮断手段がオンした場合に前記高圧コンデンサに対する充電電流を大きくすることができるので、高電圧負荷装置へ供給される電圧の低下を抑制できる。
請求項18の発明によれば、複数の蓄電素子を直列に接続して高電圧の直流電源を得る高電圧電源の各ノードから、スイッチング手段によって電気負荷と接続する際の高電位側と低電位側との極性を所定期間ごとに交互に反転することによって、該電気負荷へ交流電力を供給する。車両において商用電源を必要とする家庭用電気製品を使用するための交流電源を供給することができる。
以下、各図を参照しながら本発明の車両用電源装置の実施態様について説明する。
図2は、本発明にかかる基本的な実施態様であり、車両用電源装置1は、図示しない車両に搭載してエンジンとモータによって走行を行う駆動機構と機械的に連結された発電手段によって充電される、二次電池からなる蓄電素子1a~40dと、スイッチング手段S1a~S40b、制御手段200、漏電検出手段100、遮断手段500、501とから構成される。また、車両用電源装置1は12ボルトで作動するとともに負電位側の一端が車体と電気的に接続された電気負荷300と接続されるとともに、外部に延びたワイヤーハーネスW1、W2を介して高電圧負荷装置400と接続して高電圧の蓄電素子1a~40dの電力を高電圧負荷装置400へ供給する。
図2は、本発明にかかる基本的な実施態様であり、車両用電源装置1は、図示しない車両に搭載してエンジンとモータによって走行を行う駆動機構と機械的に連結された発電手段によって充電される、二次電池からなる蓄電素子1a~40dと、スイッチング手段S1a~S40b、制御手段200、漏電検出手段100、遮断手段500、501とから構成される。また、車両用電源装置1は12ボルトで作動するとともに負電位側の一端が車体と電気的に接続された電気負荷300と接続されるとともに、外部に延びたワイヤーハーネスW1、W2を介して高電圧負荷装置400と接続して高電圧の蓄電素子1a~40dの電力を高電圧負荷装置400へ供給する。
尚、図2においては蓄電素子3bから39d、及びそれら蓄電素子と接続されるスイッチング手段S3bからS39a、さらに該スイッチング手段と制御手段200とが接続される部位の図は省略してある。
図示しない発電手段は、車両電装品に必要な電力を供給する為、エンジンによって駆動されるとともに、車両の減 時には駆動機構を介して減 時の運動エネルギーを回生して蓄電素子1a~40dを充電するが如く作用する。
蓄電素子1a~40dの各ノードは、例えば充電電圧3Vのリチウムイオン電池であり、該蓄電素子1aから40dの全ノードを直列に接続して、電気負荷300の要求電圧12ボルトに対する倍数Nを40として、合計480ボルトの高圧電源が形成される。また、該高圧電源は車載されたモータ、インバータ等から成る高電圧負荷装置400へ供給して、エンジンの駆動トルクをアシストするように作用する。これによって、車両の力行時には、減 時に回生したエネルギーを再利用して走行できるから車両の走行燃費向上を図ることが可能になる。
蓄電素子1a~40dは、1aから1dのノードを第1のグループノードとして、2aから2dのノードを第2のグループノードとして、3aから3dのノードを第3のグループノードとして、最終的に40aから40dのノードを第40のグループノードとして、それぞれ各グループノードの両端部へスイッチング手段S1a~S40bを接続してある。
尚、蓄電素子1a~40dのノード総個数は、倍数N=40に各グループノード内の個数n=4を掛け合わせて、合計はN×n=160個としてある。請求項中で、グループノードは単にノードとして参照される場合がある。
ここで、第1から第40の各グループノードにおける直列蓄電素子の合計電圧は3ボルト×4=12ボルトとなる。
ここで、第1から第40の各グループノードにおける直列蓄電素子の合計電圧は3ボルト×4=12ボルトとなる。
図2において、200は制御手段でありスイッチング手段S1aからS40bのオン/オフ状態と遮断手段500、遮断手段501のオン/オフ状態とを制御するように作用する。
制御手段200は、図3に示す如くスイッチング手段S1aとS2aとをオンにして電気負荷300と蓄電素子の第1グループノードを例えば10ミリ秒に設定したTon時間の間接続する。この時、スイッチング手段S1aとS2a以外のスイッチング手段はオフとなっている。スイッチング手段S2aは第1グループノードの正極側とつながっており、スイッチング手段S1aは第1グループノードの負極側とつながっているから、Tonの間、電気負荷300に12ボルトの直流電圧が印加されることになる。
次に制御手段200は、図3に示す期間Tdの間、前述したすべてのスイッチング手段S1a~S40bをオフに維持する。該時間Tdを設ける理由は、例えばスイッチング手段S1aとスイッチング手段S1bとが同時にオンする期間があると、該スイッチング手段S1aとスイッチング手段S1bと蓄電素子のノード1a、1b、1c、1dとで形成される閉回路に過大な電流が流れて、スイッチング手段の破損或いは、各蓄電素子の充電電力を無駄に消費するといった事態を招くからである。
スイッチング手段S1a~S40bとして、例えば公知のMOSFETを採用した場合には、制御手段200から各スイッチング手段のオン/オフを制御する信号を送出した際に、実際に該スイッチング手段S1a~S40bが応動するまでに時間遅れが発生することが知られている。従って、制御手段200は所望のスイッチング手段をオフにしてから、他のスイッチング手段をオンするまでに十分な待ち時間Tdを要する。このTdをデッドタイムと称し、一般的なMOSFETの場合数十ナノ秒から数マイクロ秒が必要である。
以上のようにして制御手段200は、蓄電素子の第1グループノードにおいては、スイッチング手段S1a、S2aをTonの間オンにして、電気負荷300と接続することによって該電気負荷300へ要求電圧の12ボルトを供給し、続いて第2グループノードにおいては、スイッチング手段S1b、S3aを介してTonの間、電気負荷300と接続し、さらに第3グループノードにおいては、スイッチング手段S2b、S4aを介してTonの間、電気負荷300と接続し、最終的に第40グループノードにおいては、スイッチング手段S39b、S40bを介してTonの間、電気負荷300と接続するが如く、図3のT(Ton時間10ミリ秒×グループノード数40=0.4秒)を1周期として繰り返し、電気負荷300へ12ボルトの直流電力の供給を続けるように作用するものとしたから第1から第40の各蓄電素子グループノードの充放電状態を略均一に保つことができる。
次に図2、図4及び図5を参照して、漏電検出手段100の作用を説明する。
漏電検出手段100は端子T102と端子T101とを介して、車両用電源装置の外部に延びたワイヤーハーネスW1とW2とによる高電圧回路部位へ接続するとともに、端子T103を経由して車体へ接地してある。ここで、該漏電検出手段100はその内部に図示しない電圧源を具備しており、端子T101と接地端子T103との間に流れる電流、及び端子T102と接地端子T103との間に流れる電流の値から、該端子T101と接地との間の電気的抵抗値と、端子T103と接地との間の電気的抵抗値を測定して、いずれか小さい方の抵抗値を制御手段200へ出力するように構成してある。
漏電検出手段100は端子T102と端子T101とを介して、車両用電源装置の外部に延びたワイヤーハーネスW1とW2とによる高電圧回路部位へ接続するとともに、端子T103を経由して車体へ接地してある。ここで、該漏電検出手段100はその内部に図示しない電圧源を具備しており、端子T101と接地端子T103との間に流れる電流、及び端子T102と接地端子T103との間に流れる電流の値から、該端子T101と接地との間の電気的抵抗値と、端子T103と接地との間の電気的抵抗値を測定して、いずれか小さい方の抵抗値を制御手段200へ出力するように構成してある。
遮断手段500と501とがオフである期間において、漏電検出手段100の端子T101と端子T102とは車体に対してフローティングとなっているから上記漏電抵抗値は略無限大となっている。ところが、ワイヤーハーネスW1側の高電圧回路部位に人体が触れると、該人体の抵抗値が5KΩ程度であることから端子T101と接地端子T103との間に比較的小さい抵抗値が検出される。
図4に示す如く制御手段200は遮断手段500、501をTNの期間オンとし、TF1(TF2)の期間オフとする動作を周期TSで繰り返し、該遮断手段500、501がオンとなっている期間は蓄電素子1aから40dによる高電圧電源が高電圧負荷装置400へ供給され、遮断手段500、501がオフとなっている期間は車両用電源装置1から外部と接続されるワイヤーハーネスW1、W2による高電圧回路部位が遮断されてフローティング状態となっている。
従って、図4の期間TF1における漏電検出手段100の漏電抵抗値RLeakは無限大である。しかし、期間TF2は人体が車両用電源装置外部の高電圧回路部位に触れている為、漏電検出手段100が検出する漏電抵抗値RLeakは比較的小さな値となる。
従って、図4の期間TF1における漏電検出手段100の漏電抵抗値RLeakは無限大である。しかし、期間TF2は人体が車両用電源装置外部の高電圧回路部位に触れている為、漏電検出手段100が検出する漏電抵抗値RLeakは比較的小さな値となる。
制御手段200は、上記漏電検出手段100の端子T100を介して制御手段200の端子T200へ漏電抵抗値RLeakを取り込んでおり、RLeakが所定の閾値RLth以下であることを検出した場合、図4に示すようにスイッチング手段S1a~S40bをオフとして固定する。
別の実施態様として、制御手段200は図5で示す如くスイッチング手段S1a~S40bがオフである期間Tholdを例えば0.5秒程度に設定し、再度スイッチング手段S1a~S40bが各グループノードを選択接続する動作を繰り返しても良い。
別の実施態様として、制御手段200は図5で示す如くスイッチング手段S1a~S40bがオフである期間Tholdを例えば0.5秒程度に設定し、再度スイッチング手段S1a~S40bが各グループノードを選択接続する動作を繰り返しても良い。
図5において、制御手段200は遮断手段500、501のオフ期間TF2において漏電抵抗値RLeakが閾値RLthよりも小さいことから、前記高電圧回路部位へ人体が接触していると判断し、Tholdの期間スイッチング手段S1a~S40bをオフとする。
次に制御手段200は、スイッチング手段S1a~S40bの内、前記期間TF2の間に選択されていたグループノートの次に選択されるべき順位にあるグループノードを選択接続するスイッチング手段として、例えばS2bとS4aとをオンにする。
続けて制御手段200は、遮断手段500、501のオフ期間TF3における漏電抵抗値RLeakが閾値RLthよりも小さいことから、未だ人体が高電圧回路に接触していると判断し、スイッチング手段S2b、S4aとを含む全てのスイッチング手段を再度オフとした状態をThold期間だけ継続することで前記オンとオフを約0.5秒の周期で繰り返す。
遮断手段500、501のオフ期間TF※(※は任意)における漏電検出手段100の漏電抵抗値RLeakが閾値RLth以上である場合には、人体が高電圧回路に接触していないと判断されスイッチング手段S1a~S40bはオン状態へ移行して前記グループノードの電圧を選択的に低電圧の電気負荷300へ供給する動作を再開する。
さらに別の実施態様として、図6に示すように制御手段200は、遮断手段500、501のオフ期間TF2において漏電抵抗値RLeakが第一の閾値RLth1以下であることを検出した場合、スイッチング手段S1a~S40bをオフ状態とし、その後期間TF3において漏電抵抗値RLeakが未だ第一の閾値RLth1以下であることから、スイッチング手段S1a~S40bをオフ状態として継続し、さらに期間TF4において漏電抵抗値RLeakが前記第一の閾値RLth1より大きい第二の閾値RLth2以上となったことを検出した場合にスイッチング手段S1a~S40bの内、所定の一組を再度オンにして前記グループノードの電圧を選択的に低電圧の電気負荷300へ供給する動作を再開しても良い。
尚、前記第一の閾値RLth1は、前記高電圧電源の電圧値480Vを、人体への影響が無いとされる電流値5ミリアンペアで割り算して、約100キロオームに設定し、第二の閾値RLth2は該RLth1と、前記フローティングとなった高電圧回路と接地間の略無限大となる絶縁抵抗値との中間付近の抵抗値として1メガオーム程度に設定することが望ましい。
上記のように構成することで、制御手段200はスイッチング手段S1a~S40bをオフにすることで高電圧電源と低電圧回路、即ち車体の金属部位との接続を切り離すから、車体と高電圧電源との間に触れたことによる人体への通電を阻止して感電事故を防止することができる。尚、車両用電源装置1は図示しない筐体で囲むことによって、該車両用電源装置1の内部に直接人体が触れて感電することが防止されている。
次に、図示しない発電手段は、蓄電素子1aから40dのノード全体を直列にした電圧が所定の最大値になるように、該蓄電素子の充電電圧を制限している。
一方で、電気負荷300の消費電流は一定ではなく、例えば電動パワーステアリングのように運転者の操作状態によって短時間で大きく変化する場合がある。この場合、制御手段200によってスイッチング手段S1aからS40bの制御を行い、蓄電素子の第1グループノードから第40グループノードを等間隔で切り替えると、各グループノードの充電状態に差異が発生することがある。
しかるに、制御手段200は図7に示す端子T201、T202、T203~T239、T240を介して蓄電素子の各グループノードの電圧をモニターしながら、電圧の高いグループノードを優先的に電気負荷300と接続し、電圧の低いグループノードは電気負荷300と接続しないように、放電すべき蓄電素子グループ(グループノード)を選択的に切り替えることによって各蓄電素子グループ(グループノード)の充電状態を略均一に保つことができる。
別の実施態様として、図8に示すように制御手段200は図7に示す端子T201、T202、T203~T239、T240を介して蓄電素子の各グループノードの電圧をモニターしながら、電圧の高いグループノードに対してはスイッチング手段をオンとしている期間を長く設定し、電圧の低いグループノードに対してはスイッチング手段をオンとしている期間を短く設定するように、該蓄電素子グループ(グループノード)の充電量と電気負荷300へ流れる電流値とから図8に示すTon1~Ton40を個別に算出して制御することもできる。これによって各蓄電素子グループ(グループノード)の充電状態を略均一に保つことができる。
漏電検出手段100の作用は前述の如く、図4の遮断手段500、501がオンとなっている期間TNの間に人体が高電圧回路部位に接触したことによる感電の有無を、遮断手段500、501がオフとなった期間における漏電検出手段100の漏電抵抗値が閾値RLth以下であるか否かによって検出して、人体の接触がある場合にはスイッチング手段S1a~S40bをオフにするものとしたから、実際に人体への感電電流が流れる時間は最大でTNとなる。
しかるに、TNの時間は蓄電素子1aから40dによる高電圧電源の電圧値と人体の抵抗値とから決まる感電電流とその継続時間から想定される人体反応が、人体に無害である範囲内である必要があって、一般的には電流値が30ミリアンペアの時に感電時間が0.1秒以下であれば致命的な人体反応は無いとされている。
即ち、安全な人体反応に抑制するには感電電流と感電時間との積の最大値が0.003アンペア秒であるとされている。
即ち、安全な人体反応に抑制するには感電電流と感電時間との積の最大値が0.003アンペア秒であるとされている。
その為、本実施態様においては高電圧電源の電圧値480ボルトと人体抵抗5KΩとから最大感電電流は約100ミリアンペアであると仮定し、人体に危害の無い感電時間は0.03秒以下と計算されるから、遮断手段500、501がオンとなっている期間TNの最大値は十分に余裕を持って小さな値である0.001秒と設定した。
一方で、制御手段200が遮断手段500、501を遮断するオフ期間TF1、TF2、TF※(※は任意)の間に前記漏電検出手段100が漏電抵抗RLeakを測定する必要があるので、該漏電検出手段100を形成する図示しない公知のオペアンプ増幅回路等の応答性に鑑みて、該オフ期間は10マイクロ秒程度とすることが望ましい。
車両の高電圧電源を備えたシステムは、人体が高電圧回路部位へ触れた場合のみならず、搭載される電子部品のリークや絶縁部分の機能不良、及び走行中の振動等によって一時的に漏電電流が流れる場合がある。そのような場合に、制御手段200の作用によって高電圧電源から低電圧電気負荷300への電力供給が完全に停止すると、車両が走行中に各部機能を喪失して危険な場合がある。
そこで図5、及び図6の実施態様によれば、制御手段200は前述したように、漏電検出手段100が検出した漏電抵抗値RLeakが所定の閾値RLth以下の時、スイッチング手段S1a~S40bがオフである状態を0.5秒以上(Thold)保持した後、再度スイッチング手段S1a~S40bをオンとするか、又は漏電抵抗値RLeakが所定の第二の閾値RLth2以上まで増加した場合に再度スイッチング手段S1a~S40bをオンにする動作を周期的に繰り返すが如く構成した。
これによって、車体各部の故障等によって一時的な漏電電流が発生したとしても高電圧電源から電気負荷300への電力供給が再開するので車両機能が回復して走行安全性を維持することができる。また、スイッチング手段S1a~S40bがオフである状態を0.5秒以上とすれば、漏電電流が車両の故障に伴うものでは無く、実際には人体の感電による場合であっても人体への致命的な影響を無くすことができる。
ここで制御手段200は、図4に示すように遮断手段500、501をオンとする時間TNnは、前記蓄電素子1aから40dによる高電圧電源の電圧値に反比例して短くするか、及び/又は漏電検出手段100が検出した漏電抵抗値RLeakの最小値に比例して短くすることが望ましい。これによって、漏電が車両起因ではなく人体の感電であった場合は、高電圧電源の電圧が高い程人体への通電時間が短くなり、及び/又は感電電流が大きい程人体への通電時間が短くなるのでより安全性が向上する。
次に、本発明の実施態様に係る車両用電源装置1において、制御手段200がスイッチング手段S1a~S40bを切り替えて、蓄電素子1a~40dの各グループノードを切り替える周期に関し、図12に従って説明する。
尚、制御手段200は各グループノードを周期Tで切り替えて電気負荷300へ所定の低電圧電源を供給しているものとし、また図示しない発電手段は、直列蓄電素子1a~40dの合計電圧が所定の値となるように常時充電しているものとする。
ここで、制御手段200によって選択された蓄電素子のグループノードは、例えば図12の第1グループノードを例にすると、オン期間には電気負荷300を流れる電流によって当該グループノードが放電状態となって充電電圧が降下していく。同時に、非選択グループノードにおいては、全蓄電素子1a~40dの合計電圧が一定になるように、発電手段から充電電流が供給されているので、増加方向へ電圧が変化する。この時の、特定グループノードにおける最大電圧と最低電圧の差が所謂充放電深度であり、この幅が大きくなると蓄電素子の寿命が低下する。
しかるに、蓄電素子寿命の観点から制御手段200によって蓄電素子グループ(グループノード)を選択的に電気負荷300と接続している時間Tonを短くするとともに全蓄電素子グループ(グループノード)の選択を一巡する制御周期Tを短くするべきであることが判る。
ところが、本実施態様においてはスイッチング手段S1a~S40bにおけるスイッチング損失は図10に示すように各スイッチング手段のオン遷移過程において、該スイッチング手段が開放状態の時の両端電圧Vが、オン動作に伴って減少するのに連動して電流Iが増加する。この時の損失I×Vは、例えば蓄電素子の各グループノードの電圧を12ボルトとし、電気負荷300の電流を200アンペアとすると12×1/2×200×1/2=600ワットのピーク損失が発生する。また、このスイッチング損失はスイッチング手段のオフ遷移過程においても同様に発生する。
加えて、かかるスイッチング損失は前記デッドタイムTdの間で発生することから、制御手段200の制御周期Tに対するスイッチング損失の平均値はTd/Tとなるので、前述のように制御周期Tを短くすることによって、該スイッチング損失が過大となるといった問題がある。
さらに、本実施態様によると図3で示したデッドタイムTdの期間の電気負荷300への印加電圧VLは、スイッチング手段S1a~S40bが全てオフである期間において0ボルトとなる。その為、電気負荷300への供給電力が瞬断されるので、低電圧の車両電気負荷が瞬間的に停止するといった問題がある。
そこで、図9に示すように電気負荷300と並列に低圧コンデンサ310を配設した。これによって、低圧コンデンサ310に充電された電圧が電気負荷300へ供給され続けることから、前記電圧VLは0ボルトまで降下することなく、図3の破線VLaで示す如く、ピーク電圧から僅かの電圧降下に留めることができる。この場合の電圧降下量は、電気負荷300へ流れる電流と、低圧コンデンサ310の容量と、デッドタイムTdとによって決まり、該デッドタイムTdと電気負荷300へ流れる電流を固定した場合には該低圧コンデンサ310の容量が大きい程、VLaの降下量を小さくすることができる。
尚、低圧コンデンサ310の容量と、デッドタイムTdと電気負荷300へ流れる電流値とによって、VLaの降下量が決まるのであるから該低圧コンデンサ310の容量を規定するとデッドタイムTdの時間を短くすることによってVLaの降下量を減らすことができるのは言うまでもない。
従って、電気負荷300へ供給される電圧の瞬断を防ぐことができる。さらに、スイッチング手段S1a~S40bのいずれかがオン状態に遷移する過程では、いずれかのスイッチング手段がオンになって接続される蓄電素子のグループノードにおける直列蓄電素子の電圧合計が12ボルトであって、且つ、低圧コンデンサ310の電圧が略12ボルトであることから、該スイッチング手段が開放状態である時のスイッチング手段の両端電圧を略0ボルトとすることができるので、この場合のスイッチング損失は図11に示すように、電圧Vが略0ボルトのまま電流Iが増加するので損失I×Vは極小となる。
言い換えると、蓄電素子の1つのグループノードの電圧を電気負荷300へ供給する電圧として出力するのであり、該グループノードの電圧を低圧コンデンサ310が保持していることを利用することによって各グループノードの電圧が同じであれば、全てのグループノードを切り替える最の各グループノードの電圧と電気負荷300(低圧コンデンサ310)の電圧が同じであるので、スイッチング手段の動作は所謂ZVS(公知のゼロボルトスイッチング)となって理論的にスイッチング損失を発生しないことになる。
本実施態様によれば、高圧電源から低圧電源へ降圧する最にスイッチング損失を発生しないので、降圧に用いるスイッチング素子の発生する熱損失が極端に少なくなり、発明者らの実験において出力2.5KWの降圧装置を製作した際に電力変換効率は99.5%となって、放熱板が不要になるといったシステムコストの大幅な低減を可能にした。
尚、本実施態様においては前述の如く制御手段200は、遮断手段500、501をオフとした期間に漏電検出手段100によって高電圧部位と接地間の絶縁抵抗値を測定するものとした。
この場合に、高電圧電源から高電圧負荷装置400への電源供給は所定期間停止されるから、当該停止期間においても高電圧負荷装置400へ供給される電圧を保持するように、図2に示す如く高電圧負荷装置400と並列に所望の容量を具備した高圧コンデンサ700を配設することが好ましい。
さらに、該高圧コンデンサ700を配設することによって周期的に断続する遮断手段500、501のスイッチング損失を低減することができる。これは前述の、スイッチング手段に生じるスイッチング損失を、前記低圧コンデンサ310を付加することによって低減できるのと同じ理由であるので詳細説明を省略する。
次に別の実施態様として、図13に示すように、蓄電素子1aから40dの内、4個ずつのノードを直列にして形成される各蓄電素子グループ(グループノード)の両端にコンデンサ601、602~640を接続して構成した。
蓄電素子は、例えばリチウムイオン電池を採用した場合、図示しない内部抵抗として数十mΩの等価直列抵抗値を持っていることが公知である。その為、本実施態様における1つのグループノードにおける4個の直列蓄電素子の場合は蓄電素子の1グループノードあたり約100mΩの内部抵抗を備えることになる。
図3のデッドタイムTdを終了して、いずれかのスイッチング手段がオンすることによって電気負荷300の電圧VLが上昇する際に、かかる上昇部分の電気的時定数は、コンデンサ310の静電容量と、前述の内部抵抗との積で表される。
従って、蓄電素子の内部抵抗によってコンデンサ310が充電される場合のVLの上昇波形は図3のVLbで示す如く、時定数が大きく、電圧の低い状態が長く継続することになる。さらに、これを周期Tで繰り返すことから、電気負荷300へ供給される電圧の平均値が低下する要因となるので、かかる時定数はできるだけ小さいことが望ましい。
静電容量素子としてのコンデンサの等価直列抵抗は数mΩと小さいのが一般的である。そこで本実施態様の如く、蓄電素子の各グループノードと並列にコンデンサ601、602~640を接続すると、該蓄電素子の内部抵抗を見かけ上小さくすることになり、内部抵抗によってコンデンサ310が充電される場合のVLの上昇波形は図3のVLcで示す如く、時定数が小さく、電圧の低い状態が短くなる。これを周期Tで繰り返すことから、電気負荷300へ供給される電圧の平均値の低下が少なく該電気負荷300へ供給する電圧の精度が向上する。
以下、直列に接続して高電圧電源を形成した複数の蓄電素子から、商用電源で作動する機器に供給する為の交流電力を出力する方法に関し、図14を用いて説明する。尚、基本的な構成は前述までの実施態様と類似するので、本実施態様における構成を示す図は省略する。
先ず、蓄電素子は3ボルト単位のセル電圧を持つリチウムイオン電池を180個直列にし、全体電圧を540ボルトとしてある。次に、60個の蓄電素子を1グループノードとして、全体をG1~G3の3グループノードに分割し、スイッチング手段によって各グループノードの電圧を1ミリ秒毎に切り替えて商用電源負荷に供給する。10ミリ秒が経過した時点で、選択されているグループノードはG1となっており、次にG2を選択して商用電源負荷へ供給する際に、該商用電源負荷と接続する際の蓄電素子グループ(グループノード)の極性が反転するように、スイッチング手段を操作する。続けて、同じ極性を維持したままG3,G1と切り替え、最終的にG2が選択された次のサイクルでG3を選択接続する際に、再度商用電源負荷と接続する際の蓄電素子グループ(グループノード)の極性を反転する。
以上の操作を繰り返して、商用電源負荷に対して50Hz、±90ボルトの矩形交流電圧を印加することができる。
以上の如く、本発明の実施態様に係る車両用電源装置は、蓄電素子を直列に接続して形成した高圧電源から、所定の蓄電素子グループ(グループノード)を選択的に低電圧電気負荷と接続することによって、高電圧から低電圧へと電力変換を行うことができ、その際、該蓄電素子グループ(グループノード)を高 で切り替えることによって該蓄電素子の充放電深度を小さくして寿命を改善するとともに、切り替えを行うスイッチング手段のスイッチング損失を略ゼロにすることができるので、該スイッチング素子の放熱にかかる部材の重量、コストを大幅に改善できるといった優れた特徴を有する。
加えて遮断手段によって高電圧回路を一時的に遮断した状態で漏電抵抗値を測定し、該抵抗値の低下が認められた場合には人体が高電圧回路部位に触れているとして、高電圧電源と、車体へ接続された低電圧回路との接続を継続的に、又は所定期間の間遮断するものとしたから絶縁型DC-DCコンバータ等の手段を用いることなく、感電時の危険な人体反応を抑制することができる。
尚、別の実施態様として図15に示す如く、前述までの実施態様における蓄電素子と電気負荷手段を入れ替えることによって、該蓄電素子の電圧を昇圧して電気負荷手段に供給することが可能であることは、本発明の属する技術分野における通常の知識を有する者が容易に想到し得る事項である。図14に示す実施形態においては、コンデンサがノードでありスイッチング手段を介して蓄電素子の電圧が各ノードに充電されることで、直列に接続したコンデンサから昇圧された電力を取り出すように構成されている。
また、本実施態様においても電気負荷手段と接続される高電圧側に遮断手段を付加して、前記実施態様と同様に漏電検出手段によって高電圧側の接地間抵抗値を測定し、人体への感電が測定された場合に、各ノードを選択的に接続するスイッチング手段遮断して感電事故を防止することができる。
本発明の実施態様においては、実施例として限定的な構成と作用を示しているに過ぎず、直列蓄電素子の数、蓄電素子の種類、スイッチング手段の素子種類と構成、遮断手段の素子種類、遮断手段の配置場所と数、遮断手段の断続周期とスイッチング手段の断続周期との同期有無を含む制御手段の動作タイミングは任意の形態をとることが可能であると同時に、漏電検出手段の構成として各種公知技術が存在すること、及び各種故障検出手段と故障時のフェールセーフ機能を追加しても良いことは容易に理解されるべきである。
1a~40d 蓄電素子(ノード)
S1a~S40b スイッチング手段
100 漏電検出手段
200 制御手段
300 電気負荷
400 高電圧負荷装置
500、501 遮断手段
S1a~S40b スイッチング手段
100 漏電検出手段
200 制御手段
300 電気負荷
400 高電圧負荷装置
500、501 遮断手段
Claims (18)
- 所定低電圧で作動する電気負荷と、前記所定低電圧を供給する各ノードを構成する複数の蓄電素子を直列に接続して高電圧の直流電源を得る高電圧電源と、
ワイヤーハーネスを介して高電圧電源と接続された高電圧負荷装置と、
前記電気負荷に前記所定低電圧を供給する各ノードに対応して設けられた複数のスイッチ手段と、
少なくとも1つのノードからの電圧を供給する前記スイッチ手段をオンし、他のノードからの電圧を供給する前記スイッチ手段をオフにすることで電圧を供給するとともに、一旦全てのスイッチ手段をオフにするデッドタイム期間を設けた後、次に電圧を供給するノードの前記スイッチ手段をオンとし、他のノードからの電圧を供給するスイッチ手段をオフにする制御を順次繰り返すことで、全ての前記蓄電素子から電圧を供給させる制御手段と、
前記高電圧電源と高電圧負荷装置との間の電気回路を遮断する遮断手段と、
高電圧電源と高電圧負荷装置とで形成される回路部位と接地電位との間の漏電抵抗を検出して前記制御手段に信号を送出する漏電検出手段と、を備えた車両用電源装置であって、
前記制御手段は、前記遮断手段がオフである期間に前記漏電検出手段から送出される信号を判定し、漏電抵抗が所定の値以下である場合には、前記スイッチング手段が全てオフである状態を所定期間保持することを特徴とする車両用電源装置。 - 前記高電圧電源は、n個(n:自然数)で前記所定低電圧となるノードを構成する複数の蓄電素子を直列に(n×N(N:自然数))個接続して、前記所定低電圧のN倍の高電圧の直流電源を得ることを特徴とする請求項1に記載の車両用電源装置。
- 前記制御手段は、前記選択する複数のノードを周期的に変更するように前記スイッチ手段を制御することを特徴とする請求項1に記載の車両用電源装置。
- 前記制御手段は、前記複数の蓄電素子の充放電状態が略均一となるように、前記選択するノードを決定することを特徴とする請求項3に記載の車両用電源装置。
- 前記制御手段は、前記複数の蓄電素子の充放電状態が略均一となるように、各ノードの選択保持時間を決定することを特徴とする請求項3に記載の車両用電源装置。
- 前記遮断手段によって前記高電圧電源と高電圧負荷装置とを接続する時間は、前記高電圧電源から人体に流れる電流の継続時間が、人体の感電事故が起きる時間未満となるように設定したことを特徴とする請求項1から請求項5のいずれか1項に記載の車両用電源装置。
- 前記遮断手段によって前記高電圧電源と高電圧負荷装置を接続する時間は、前記高電圧電源の電圧値に反比例した継続時間、又は、前記漏電検出手段が検出する漏電抵抗値に比例した継続時間としたことを特徴とする請求項6に記載の車両用電源装置。
- 前記制御手段は、前記漏電検出手段の漏電抵抗検出値が所定の値以下の時、前記スイッチング手段を全てオフの状態に固定することを特徴とする請求項1から請求項7のいずれか1項に記載の車両用電源装置。
- 前記制御手段は、前記漏電検出手段の漏電抵抗検出値が所定の値以下の時、前記スイッチング手段が全てオフである状態を所定の時間保持した後、再度、前記スイッチング手段が前記各ノードと前記電気負荷を選択的に接続する動作を繰り返すことを特徴とする請求項1から請求項7のいずれか1項に記載の車両用電源装置。
- 前記制御手段は、前記漏電検出手段が検出した抵抗値が第一の閾値以下の時、前記スイッチング手段をオフとし、該抵抗値が前記第一の閾値より大きい第二の閾値以上となった場合に、再度、前記スイッチング手段をオンとする動作を繰り返すことを特徴とする請求項1から請求項7のいずれか1項に記載の車両用電源装置。
- 前記制御手段は、前記遮断手段が前記高電圧電源と前記高電圧負荷装置とを接続している期間と、前記高電圧電源から人体に流れる電流値との積が0.003アンペア×1秒以下となるように前記遮断手段を制御することを特徴とする請求項1から請求項10のいずれか1項に記載の車両用電源装置。
- 前記制御手段は、前記蓄電素子の各ノードにおける充放電深度の大きさが所定値以下となるように、前記スイッチング手段が選択するノードを切り替える周期を所定値以下に設定することを特徴とする請求項1から請求項11のいずれか1項に記載の車両用電源装置。
- 前記電気負荷と並列に低圧コンデンサが接続されることを特徴とする請求項1から請求項12のいずれか1項に記載の車両用電源装置。
- 前記高電圧負荷装置と並列に高圧コンデンサが接続されることを特徴とする請求項1から請求項13のいずれか1項に記載の車両用電源装置。
- 前記デッドタイム期間、又は、前記低圧コンデンサの容量値は、該デッドタイム期間中に前記電気負荷に印加される電圧の低下幅が所定値以下となるように設定されることを特徴とする請求項13に記載の車両用電源装置。
- 前記遮断手段のオフ期間、又は、前記高圧コンデンサの容量値は、該遮断手段のオフ期間中に前記高電圧負荷装置に印加される電圧の低下幅が所定値以下となるように設定されることを特徴とする請求項14に記載の車両用電源装置。
- 前記蓄電素子の各ノードと並列にコンデンサが配設されることを特徴とする請求項13又は請求項14に記載の車両用電源装置。
- 前記複数の蓄電素子を直列に接続して高電圧の直流電源を得る高電圧電源の前記各ノードから、前記スイッチング手段によって前記電気負荷と接続する際の高電位側と低電位側との極性を所定期間ごとに交互に反転することによって、該電気負荷へ交流電力を供給することを特徴とする請求項1から請求項17のいずれか1項に記載の車両用電源装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21780909.4A EP4129741A1 (en) | 2020-04-01 | 2021-03-08 | Vehicle power source device |
US17/904,680 US11945313B2 (en) | 2020-04-01 | 2021-03-08 | Power supply device for vehicle |
CN202180015270.8A CN115136445A (zh) | 2020-04-01 | 2021-03-08 | 车辆用电源装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020065916A JP7560715B2 (ja) | 2020-04-01 | 2020-04-01 | 車両用電源装置 |
JP2020-065916 | 2020-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021199939A1 true WO2021199939A1 (ja) | 2021-10-07 |
Family
ID=77928562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/009025 WO2021199939A1 (ja) | 2020-04-01 | 2021-03-08 | 車両用電源装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11945313B2 (ja) |
EP (1) | EP4129741A1 (ja) |
JP (1) | JP7560715B2 (ja) |
CN (1) | CN115136445A (ja) |
WO (1) | WO2021199939A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022091630A1 (ja) * | 2020-11-02 | 2022-05-05 | 株式会社今仙電機製作所 | 車両用電源装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7518333B2 (ja) * | 2020-01-20 | 2024-07-18 | 株式会社今仙電機製作所 | 車両用電源装置 |
JP7506300B2 (ja) * | 2020-03-13 | 2024-06-26 | 株式会社今仙電機製作所 | 車両用電源装置 |
EP4238805A4 (en) * | 2020-11-02 | 2024-10-09 | Imasen Electric Ind | VEHICLE POWER SOURCE DEVICE |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984212A (ja) * | 1995-09-18 | 1997-03-28 | Seiko Epson Corp | 電気自動車の電源装置 |
JP2010124535A (ja) * | 2008-11-17 | 2010-06-03 | Toyota Motor Corp | 車両の電源システムおよび車両 |
WO2013098873A1 (ja) * | 2011-12-26 | 2013-07-04 | 川崎重工業株式会社 | 電動式乗り物の診断方法及びシステム |
JP2013158109A (ja) * | 2012-01-27 | 2013-08-15 | Honda Motor Co Ltd | 電動車両の電源装置及び電動車両の補機用電力供給方法 |
JP2018026973A (ja) | 2016-08-12 | 2018-02-15 | 株式会社今仙電機製作所 | 車両用電源装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7518333B2 (ja) * | 2020-01-20 | 2024-07-18 | 株式会社今仙電機製作所 | 車両用電源装置 |
JP7506300B2 (ja) * | 2020-03-13 | 2024-06-26 | 株式会社今仙電機製作所 | 車両用電源装置 |
-
2020
- 2020-04-01 JP JP2020065916A patent/JP7560715B2/ja active Active
-
2021
- 2021-03-08 EP EP21780909.4A patent/EP4129741A1/en active Pending
- 2021-03-08 CN CN202180015270.8A patent/CN115136445A/zh active Pending
- 2021-03-08 US US17/904,680 patent/US11945313B2/en active Active
- 2021-03-08 WO PCT/JP2021/009025 patent/WO2021199939A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984212A (ja) * | 1995-09-18 | 1997-03-28 | Seiko Epson Corp | 電気自動車の電源装置 |
JP2010124535A (ja) * | 2008-11-17 | 2010-06-03 | Toyota Motor Corp | 車両の電源システムおよび車両 |
WO2013098873A1 (ja) * | 2011-12-26 | 2013-07-04 | 川崎重工業株式会社 | 電動式乗り物の診断方法及びシステム |
JP2013158109A (ja) * | 2012-01-27 | 2013-08-15 | Honda Motor Co Ltd | 電動車両の電源装置及び電動車両の補機用電力供給方法 |
JP2018026973A (ja) | 2016-08-12 | 2018-02-15 | 株式会社今仙電機製作所 | 車両用電源装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022091630A1 (ja) * | 2020-11-02 | 2022-05-05 | 株式会社今仙電機製作所 | 車両用電源装置 |
US12109899B2 (en) | 2020-11-02 | 2024-10-08 | Imasen Electric Industrial Co., Ltd. | Power supply device for vehicle |
Also Published As
Publication number | Publication date |
---|---|
US20230074268A1 (en) | 2023-03-09 |
CN115136445A (zh) | 2022-09-30 |
EP4129741A1 (en) | 2023-02-08 |
JP2021164333A (ja) | 2021-10-11 |
JP7560715B2 (ja) | 2024-10-03 |
US11945313B2 (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021149371A1 (ja) | 車両用電源装置 | |
WO2021199939A1 (ja) | 車両用電源装置 | |
WO2021182407A1 (ja) | 車両用電源装置 | |
KR102308374B1 (ko) | 이차전지 방전 시스템 및 그 방법 | |
CN111245043A (zh) | 电源系统 | |
US9209719B2 (en) | Load driving device and inverted movable body equipped with same | |
WO2022091631A1 (ja) | 車両用電源装置 | |
WO2021124952A1 (ja) | 車両用電源装置 | |
JP5404712B2 (ja) | 充電装置、車載用充電装置、車載用充電装置における充電方法 | |
WO2022091630A1 (ja) | 車両用電源装置 | |
JP7578874B2 (ja) | 車両用電源装置 | |
CN106655313B (zh) | 蓄能电池的电流控制装置 | |
JP2008086136A (ja) | コンタクタのクリーニング方法とコンタクタをクリーニングする車両用電源装置 | |
JP2023127974A (ja) | 車両用電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21780909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021780909 Country of ref document: EP Effective date: 20221102 |