WO2021199178A1 - Latex agglutination method-mediated target substance measurement method, and reagent therefor - Google Patents

Latex agglutination method-mediated target substance measurement method, and reagent therefor Download PDF

Info

Publication number
WO2021199178A1
WO2021199178A1 PCT/JP2020/014610 JP2020014610W WO2021199178A1 WO 2021199178 A1 WO2021199178 A1 WO 2021199178A1 JP 2020014610 W JP2020014610 W JP 2020014610W WO 2021199178 A1 WO2021199178 A1 WO 2021199178A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
reagent
amount
latex particles
change
Prior art date
Application number
PCT/JP2020/014610
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 良克
康紀 皆川
建治 宮田
Original Assignee
デンカ生研株式会社
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ生研株式会社, 株式会社日立ハイテク filed Critical デンカ生研株式会社
Priority to KR1020227033516A priority Critical patent/KR20220159382A/en
Priority to PCT/JP2020/014610 priority patent/WO2021199178A1/en
Priority to CN202080099034.4A priority patent/CN115516312A/en
Publication of WO2021199178A1 publication Critical patent/WO2021199178A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin

Abstract

The invention provides a latex agglutination method-mediated target substance measurement method, and a reagent therefor, allowing for an accurate measurement in both a low concentration region and a high concentration region. The latex agglutination method-mediated target substance measurement method comprises reacting a sensitized latex particle suspension with a target substance, and then measuring, from the amounts of optical changes, the agglutination of the sensitized latex particles. In the method, the volume-based mean particle diameter of the sensitized latex particles prior to sensitization is 80 nm to 335 nm, the final concentration of the sensitized latex particles in the reaction system is 0.005 to 0.10 w/v%, the final concentration, in the reaction system, of particles having a particle diameter of 80 nm or smaller for the sensitized latex particles prior to sensitization, is 0.09 w/v% or lower, and the amounts of optical changes comprise the amount of change in absorbance and the amount of change in scattered ray.

Description

ラテックス凝集法による目的物質の測定方法、およびその試薬Measurement method of target substance by latex agglutination method and its reagent
 本発明は、ラテックス凝集法による目的物質の測定方法、およびその試薬に関する。さらに詳しくは、散乱光強度測定と吸光度測定を組み合わせたラテックス粒子増強免疫凝集測定方法、およびその試薬に関する。 The present invention relates to a method for measuring a target substance by a latex agglutination method and a reagent thereof. More specifically, the present invention relates to a latex particle-enhanced immunoaggregation measurement method that combines scattered light intensity measurement and absorbance measurement, and a reagent thereof.
 ラテックス粒子を利用した免疫測定法は、血清、血漿、尿などの体液に含まれる測定対象の目的物質の定量方法として臨床検査に応用され、自動分析装置を用いることにより簡便・迅速に測定が行えるため広く普及している。 The immunoassay method using latex particles is applied to clinical tests as a method for quantifying the target substance to be measured contained in body fluids such as serum, plasma, and urine, and can be measured easily and quickly by using an automatic analyzer. Therefore, it is widely used.
 近年は、さらなる測定性能の向上を目的とした応用技術が提案されている。例えば、目的物質が低濃度域の測定では強いシグナルが得られる短い波長で、高濃度域の測定では分析装置のシグナル検出範囲の上限を超えないよう長い波長を用いてシグナルの絶対値を抑制するというものである(特許文献1)。しかしながら、ラテックス微粒子溶液の濁度には波長依存性があり、長波長になるほどシグナルが低下することは公知の事実であり、ある光学的変化に対し、波長の選択によってシグナルの大小を調整して分析装置に適合させているにすぎない当該方法では、粒子増強免疫凝集測定方法における精度ならびにダイナミックレンジに関する欠点を補うほどの劇的な改善効果は期待できない。 In recent years, applied technologies aimed at further improving measurement performance have been proposed. For example, the absolute value of the signal is suppressed by using a short wavelength at which a strong signal is obtained when the target substance is measured in the low concentration range, and by using a long wavelength when measuring the high concentration range so as not to exceed the upper limit of the signal detection range of the analyzer. (Patent Document 1). However, it is a known fact that the turbidity of the latex fine particle solution is wavelength-dependent, and the signal decreases as the wavelength becomes longer. For a certain optical change, the magnitude of the signal is adjusted by selecting the wavelength. The method, which is only adapted to the analyzer, cannot be expected to have a dramatic improvement effect enough to compensate for the shortcomings in the accuracy and dynamic range of the particle-enhanced immunoaggregation measurement method.
 また、粒子増強免疫凝集測定法において、一つの測定に散乱光強度測定と吸光度測定を併用することにより高感度かつダイナミックレンジの広い測定ができるというものもある(特許文献2)。しかしながら、散乱光強度測定は低濃度域の範囲を増大させられるが、効果を得る為には正しい粒子径を選択しなければならないことが文献内で記述されている(特許文献3)。粒子径が300nm以下になると散乱光強度測定の効果が得られないことが記述されている。つまり、該手法の様に低濃度域の範囲を増大可能な散乱光強度測定の特徴を活かす粒子径を選択することは、高濃度域の測定が可能な吸光度測定の設計範囲を狭めることとなり、ダイナミックレンジの増大と言えるほどの劇的な効果が達成できないこととなる。 In addition, in the particle-enhanced immunoaggregation measurement method, there is also a method in which high-sensitivity and wide dynamic range measurement can be performed by combining scattered light intensity measurement and absorbance measurement in one measurement (Patent Document 2). However, although the scattered light intensity measurement can increase the range of the low concentration region, it is described in the literature that the correct particle size must be selected in order to obtain the effect (Patent Document 3). It is described that the effect of measuring the scattered light intensity cannot be obtained when the particle size is 300 nm or less. In other words, selecting a particle size that makes use of the characteristics of scattered light intensity measurement that can increase the range of the low concentration range as in the method narrows the design range of absorbance measurement that can measure the high concentration range. The dramatic effect of increasing the dynamic range cannot be achieved.
 更に、平均粒径の異なる2種類以上のラテックス粒子に抗体を感作して用いる測定法(特許文献4)によれば広い濃度範囲に及ぶ測定が可能となる。平均粒子径が単一のラテックス粒子にポリクローナル抗体とモノクローナル抗体を併せて用いる方法(特許文献5)によれば、同様な効果が得られる。また、低反応性の抗体をコーティングさせた小さい粒径の粒子と高反応性の抗体をコーティングさせた大きい粒径の粒子を用いる測定法(特許文献6、特許文献7)などが提案されている。しかしながら、これらの文献に記載された方法は、吸光度測定のみを対象とした設計であり、低濃度域の範囲を増大させる散乱光強度測定に適したものとなっていない。つまり、低濃度域の範囲増大が可能な散乱光強度測定の利点、および高濃度域の測定が可能な吸光度測定の利点の双方を享受可能な、ダイナミックレンジを増大させる真の試薬設計は明示されていない。 Furthermore, according to a measurement method (Patent Document 4) in which an antibody is sensitized to two or more types of latex particles having different average particle sizes, measurement over a wide concentration range becomes possible. According to a method (Patent Document 5) in which a polyclonal antibody and a monoclonal antibody are used in combination with latex particles having a single average particle size, the same effect can be obtained. Further, a measurement method using particles having a small particle size coated with a low-reactivity antibody and particles having a large particle size coated with a highly reactive antibody (Patent Documents 6 and 7) has been proposed. .. However, the methods described in these documents are designed only for the absorbance measurement, and are not suitable for the scattered light intensity measurement that increases the range of the low concentration region. In other words, a true reagent design that increases the dynamic range that can enjoy both the advantages of scattered light intensity measurement that can increase the range of low concentration range and the advantage of absorbance measurement that can measure high concentration range is specified. Not.
 また、ラテックス粒子増強免疫凝集法で所望の低濃度領域の測定を達成する為、試薬量に対する検体量比(本明細書及び特許請求の範囲において「検体量濃度」と呼ぶ)を増加する傾向が問題点として指摘されている。検体量濃度を増すと、見掛け上、反応試薬中の抗原濃度を増すことが出来る。これにより、低濃度検体の測定精度を高める効果が得られる。しかしながら、検体量濃度を増すと目的物質以外の成分も増加することから、目的物質以外を測定してしまう(非特異)反応が生じる可能性が増し、誤った判定(偽陽性)を下す原因となりうる。 Further, in order to achieve the measurement of a desired low concentration region by the latex particle-enhanced immunoaggregation method, there is a tendency to increase the sample amount ratio (referred to as "sample amount concentration" in the present specification and claims) to the amount of reagent. It has been pointed out as a problem. By increasing the sample amount concentration, the antigen concentration in the reaction reagent can be apparently increased. As a result, the effect of improving the measurement accuracy of the low-concentration sample can be obtained. However, as the sample volume concentration increases, the components other than the target substance also increase, which increases the possibility of a (non-specific) reaction that measures other than the target substance, which causes an erroneous judgment (false positive). sell.
特開平08-043393号公報Japanese Unexamined Patent Publication No. 08-043393 WO2014-192963号公報WO2014-192963 特開2013-64705号公報Japanese Unexamined Patent Publication No. 2013-64705 特許第2588174号公報Japanese Patent No. 2588174 特開平10-90268号公報Japanese Unexamined Patent Publication No. 10-90268 特開平11-108929号公報Japanese Unexamined Patent Publication No. 11-108929 特許第3513075号掲載公報Publication of Patent No. 3513075
 本発明の目的は、低濃度領域及び高濃度領域のいずれにおいても正確な測定を可能とする、ラテックス凝集法による目的物質の測定方法、およびその試薬を提供することである。 An object of the present invention is to provide a method for measuring a target substance by a latex agglutination method and a reagent thereof, which enables accurate measurement in both a low concentration region and a high concentration region.
 本願発明者は、鋭意研究の結果、吸光度測定と散乱光測定を併用するとともに、特定の範囲の体積平均粒子径を持ち、かつ、小さなラテックス粒子の濃度が所定値以下であるラテックス粒子を特定の濃度範囲で用いることにより、低濃度領域及び高濃度領域のいずれにおいても正確な測定を可能となることを見出し、本発明を完成した。 As a result of diligent research, the inventor of the present application has used both absorbance measurement and scattered light measurement, and has specified latex particles having a volume average particle diameter in a specific range and a concentration of small latex particles of a predetermined value or less. The present invention has been completed by finding that accurate measurement is possible in both a low concentration region and a high concentration region when used in a concentration range.
 すなわち、本発明は、以下のものを提供する。
(1) 感作ラテックス粒子の浮遊液と前記目的物質とを反応させ、次いで、前記感作ラテックス粒子の凝集を、光学的変化量から測定することを含む、ラテックス凝集法による目的物質の測定方法であって、前記感作ラテックス粒子の感作前の体積平均粒子径が80nm~335nmであり、反応系中の前記感作ラテックス粒子の終濃度が0.005~0.10w/v%であり、前記感作ラテックス粒子の感作前の粒子径が80nm以下の粒子の反応系中の終濃度が0.09w/v%以下であり、前記光学的変化量が、吸光度変化量と散乱光変化量である、方法。
(2)  前記吸光度変化量及び前記散乱光変化量の測定を、前記感作ラテックス粒子の感作前の体積平均粒子径の1~10倍の範囲の波長の光を用いて行う、(1)記載の方法。 
(3) 前記吸光度変化量の測定波長は、500~900nmの範囲内で選択された2つの波長を用い、更に選ばれた2つの測定波長は主波長と、該主波長よりも長い副波長を用い、更に、前期散乱光変化量は500~900nmの範囲内で選択された1つの波長を用いる(1)又は(2)記載の方法。
(4) 前記目的物質について、達成すべき測定値の下限値と上限値が規定により定められている場合、吸光度測定のみで該下限値を達成するために必要な最小の検体量濃度の0.7倍以下の検体濃度で行う、(1)~(3)のいずれか1項に記載の方法。 
(5) 前記散乱光変化量の測定における散乱角が10°~30°の範囲内で少なくとも1種の散乱が測定される、(1) ~(4)のいずれか1項に記載の方法。
(6)  感作ラテックス粒子の浮遊液と前記目的物質とを反応させ、次いで、前記感作ラテックス粒子の凝集を、吸光度変化量と散乱光変化量から測定することを含む、ラテックス凝集法による目的物質の測定試薬であって、前記感作ラテックス粒子の感作前の体積平均粒子径が80nm~335nmであり、反応系中の前記感作ラテックス粒子の終濃度が0.005~0.10w/v%であり、前記感作ラテックス粒子の感作前の粒子径が80nm以下の粒子の反応系中の終濃度が0.09w/v%以下である、試薬。
(7) 感作前の前記感作ラテックス粒子の体積平均粒子径が前記吸光度変化量及び前記散乱光変化量の測定波長の1~1/10の範囲である、(6)に記載の試薬。
That is, the present invention provides the following.
(1) A method for measuring a target substance by a latex agglomeration method, which comprises reacting a suspended liquid of sensitized latex particles with the target substance, and then measuring the aggregation of the sensitized latex particles from the amount of optical change. The volume average particle diameter of the sensitized latex particles before sensitization is 80 nm to 335 nm, and the final concentration of the sensitized latex particles in the reaction system is 0.005 to 0.10 w / v%. The final concentration of the sensitized latex particles in the reaction system of particles having a particle diameter of 80 nm or less before sensitization is 0.09 w / v% or less, and the amount of optical change is the amount of change in absorbance and the change in scattered light. The amount, the way.
(2) The amount of change in absorbance and the amount of change in scattered light are measured using light having a wavelength in the range of 1 to 10 times the volume average particle diameter of the sensitized latex particles before sensitization (1). The method described.
(3) As the measurement wavelength of the amount of change in absorbance, two wavelengths selected within the range of 500 to 900 nm are used, and the two further selected measurement wavelengths are a main wavelength and a sub-wavelength longer than the main wavelength. The method according to (1) or (2).
(4) When the lower and upper limits of the measured values to be achieved are stipulated for the target substance, the minimum sample concentration required to achieve the lower limit only by absorbance measurement is 0. The method according to any one of (1) to (3), which is carried out at a sample concentration of 7 times or less.
(5) The method according to any one of (1) to (4), wherein at least one type of scattering is measured within a range of a scattering angle of 10 ° to 30 ° in the measurement of the amount of change in scattered light.
(6) A purpose according to the latex agglomeration method, which comprises reacting a suspended liquid of sensitized latex particles with the target substance, and then measuring the aggregation of the sensitized latex particles from the amount of change in absorbance and the amount of change in scattered light. A reagent for measuring a substance, the volume average particle diameter of the sensitized latex particles before sensitization is 80 nm to 335 nm, and the final concentration of the sensitized latex particles in the reaction system is 0.005 to 0.10 w /. A reagent having v% and having a final concentration of 0.09 w / v% or less in the reaction system of particles having a particle size of 80 nm or less before sensitization of the sensitized latex particles.
(7) The reagent according to (6), wherein the volume average particle diameter of the sensitized latex particles before sensitization is in the range of 1 to 1/10 of the measurement wavelengths of the amount of change in absorbance and the amount of change in scattered light.
 本発明のラテックス凝集法によれば、自動分析装置を用いて、低濃度領域及び高濃度領域のいずれにおいても正確な測定を可能となる。 According to the latex agglutination method of the present invention, accurate measurement can be performed in both a low concentration region and a high concentration region by using an automatic analyzer.
本発明の方法に用いることができる、自動分析装置の概略を示す図である。It is a figure which shows the outline of the automatic analyzer which can be used in the method of this invention.
 本発明の方法は、基本的に、ラテックス凝集法と呼ばれる周知の方法の一種であり、本発明の方法では、ラテックス粒子の凝集の程度の測定を吸光度変化量と、散乱光変化量の測定により行うものである。例えば、本発明の一実施形態では、これは次のようにして行うことができる。 The method of the present invention is basically a kind of well-known method called a latex agglutination method, and in the method of the present invention, the degree of aggregation of latex particles is measured by measuring the amount of change in absorbance and the amount of change in scattered light. It is something to do. For example, in one embodiment of the invention this can be done as follows.
 すなわち、一実施形態の方法では、測定対象の目的物質を含む試料溶液と、目的物質との結合パートナーを担持したラテックス粒子を含む溶液とを混合して混合液を調製する工程と;
 第1、第2の時点間の散乱光強度差から混合液の(イ)散乱光強度の変化量を測定する工程と;
 第3、第4の時点間の吸光度差から混合液の(ロ)吸光度の変化量を測定する工程と;
 測定された(イ)散乱光強度の変化量および(ロ)吸光度の変化量を、散乱光強度変化量に基づく検量線および吸光度変化量に基づく検量線を用いて試料中の目的物質の存在量と関連付ける工程と;を有する。本実施形態によれば、このような工程を有することから、実質的に低濃度から高濃度までを包含する検量線を得ることができ、高感度かつダイナミックレンジの広い粒子増強免疫凝集測定を行うことができる。
That is, in the method of one embodiment, a step of mixing a sample solution containing the target substance to be measured and a solution containing latex particles carrying a binding partner with the target substance to prepare a mixed solution;
From the difference in scattered light intensity between the first and second time points, (a) the step of measuring the amount of change in scattered light intensity of the mixed solution;
The step of measuring the amount of change in (b) absorbance of the mixed solution from the difference in absorbance between the third and fourth time points;
The measured amount of (a) change in scattered light intensity and (b) amount of change in absorbance are measured using a calibration curve based on the amount of change in scattered light intensity and a calibration curve based on the amount of change in absorbance. It has a step of associating with; According to the present embodiment, since it has such a step, it is possible to obtain a calibration curve that substantially covers from a low concentration to a high concentration, and perform particle-enhanced immunoaggregation measurement with high sensitivity and a wide dynamic range. be able to.
 ここで、第1、第2、第3、第4の時点は混合液の調製開始から1000秒後までの間からそれぞれ選ばれることが好ましい。混合液の調製開始から1000秒以内とすることにより、測定試薬設計の自由度を確保しながら所望の感度と所望のダイナミックレンジの両方を満たすことが可能となるからである。また、(イ)散乱光強度の変化量および(ロ)吸光度の変化量の測定は、500から900nmの波長の範囲内でおこなうことが好ましい。 Here, it is preferable that the first, second, third, and fourth time points are selected from the period from the start of preparation of the mixed solution to 1000 seconds later, respectively. This is because it is possible to satisfy both the desired sensitivity and the desired dynamic range while ensuring the degree of freedom in designing the measurement reagent by setting the mixture within 1000 seconds from the start of preparation. Further, (a) the amount of change in scattered light intensity and (b) the amount of change in absorbance are preferably measured within a wavelength range of 500 to 900 nm.
 以下に、本実施形態に用いられるラテックス粒子や目的物質等の説明を交えながら、実施形態にかかるラテックス粒子増強免疫凝集測定法について詳しく説明していく。なお、以下の説明において、「一つの測定」とは、一つの反応槽において行われる一連の反応と測定を意味する。自動分析装置における測定を例にとれば、第一試液と試料との混合と、それに引き続く第二試液(目的物質との結合パートナーを担持したラテックス粒子を含む溶液)の添加混合、散乱光強度の変化量の測定および吸光度の変化量の測定を一つの反応槽で行うことを意味する。また、本発明における「目的物質を含む試料溶液」には、上記のように第一試液(緩衝液)と混合され希釈された検体溶液も含まれるものとする。 The latex particle-enhanced immunoagglutination measurement method according to the embodiment will be described in detail below, with explanations of the latex particles and the target substance used in the present embodiment. In the following description, "one measurement" means a series of reactions and measurements performed in one reaction vessel. Taking the measurement with an automatic analyzer as an example, the mixing of the first test solution and the sample, the subsequent addition and mixing of the second test solution (solution containing latex particles carrying a binding partner with the target substance), and the scattered light intensity. It means that the measurement of the amount of change and the measurement of the amount of change in absorbance are performed in one reaction vessel. Further, the "sample solution containing the target substance" in the present invention also includes a sample solution mixed and diluted with the first test solution (buffer solution) as described above.
(ラテックス粒子)
 本発明の方法に用いられるラテックス粒子は、従来から広く用いられている、例えばポリスチレン、スチレン-ブタジエン共重合体、スチレン-スチレンスルホン酸塩共重合体などを用いることができる。このようなラテックス粒子は市販されているので、市販品を好ましく用いることができる。市販品は、ラテックス粒子の粒径が極めて均一に揃っており、粒子径を明記して市販されているラテックス粒子は、全粒子が、明記された粒子径を持つと近似的に考えることができ、粒子径が異なる2種以上のラテックス粒子を用いる場合の、下記の体積平均粒子径の計算も、この近似に基づき計算することができる。
(Latex particles)
As the latex particles used in the method of the present invention, conventionally widely used, for example, polystyrene, styrene-butadiene copolymer, styrene-styrene sulfonate copolymer and the like can be used. Since such latex particles are commercially available, commercially available products can be preferably used. In the commercially available product, the particle size of the latex particles is extremely uniform, and in the case of the latex particles on the market with the specified particle size specified, it can be roughly considered that all the particles have the specified particle size. When two or more types of latex particles having different particle sizes are used, the following volume average particle size can also be calculated based on this approximation.
 用いるラテックス粒子は、複数の粒子径で構成されるもので構わないが、結合パートナーを感作する前(本明細書及び特許請求の範囲において、単に「感作前」と呼ぶことがある)の体積平均粒子径aが80~335nmの範囲であり、好ましくは100~300nmの範囲である。体積平均粒子径aは、下記の数式1で求められ、第1成分の粒子径a(nm)と同成分の粒子内比率n(%)、第2成分の粒子径a(nm)と同成分の粒子内比率n(%)、第n成分の粒子径a(nm)と同成分の粒子内比率n(%)から求められる。体積平均粒子径aが80nm未満だと抗原抗体反応によって生じるラテックス粒子の凝集塊の大きさが小さくなり、目的物質の低濃度域の測定で十分な精度が得られなくなる。また、体積平均粒子径が335nmを超えると、凝集塊が大きくなり過ぎて、粒子の沈降等を生じてしまい、高濃度域の測定が困難になる。 The latex particles used may be composed of a plurality of particle sizes, but before the binding partner is sensitized (in the present specification and claims, it may be simply referred to as "pre-sensitization"). The volume average particle diameter a is in the range of 80 to 335 nm, preferably in the range of 100 to 300 nm. The volume average particle diameter a is calculated by the following formula 1, and has the particle diameter a 1 (nm) of the first component, the intraparticle ratio n 1 (%) of the same component, and the particle diameter a 2 (nm) of the second component. the intragranular ratio n 2 (%) of the component is determined from the particle diameter a n of the n component particles in a ratio of (nm) and the component n n (%). If the volume average particle diameter a is less than 80 nm, the size of the agglomerates of the latex particles generated by the antigen-antibody reaction becomes small, and sufficient accuracy cannot be obtained in the measurement of the low concentration range of the target substance. On the other hand, if the volume average particle size exceeds 335 nm, the agglomerates become too large and the particles settle, making it difficult to measure the high concentration range.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、反応系中の感作ラテックス粒子の終濃度は、0.005~0.10w/v%の範囲、好ましくは、0.010~0.090w/v%の範囲である。0.005w/v%未満となると、粒子数が不足し、高濃度域の想定が難しくなる。逆に、粒子濃度が0.10w/v%を超えると、初期状態の光学量(吸光度)が大きくなり、光学変化量の測定上限との差が取り難くなるため、高濃度域の測定が難しくなる。 The final concentration of the sensitized latex particles in the reaction system is in the range of 0.005 to 0.10 w / v%, preferably in the range of 0.010 to 0.090 w / v%. If it is less than 0.005 w / v%, the number of particles will be insufficient and it will be difficult to assume a high concentration range. On the contrary, when the particle concentration exceeds 0.10 w / v%, the optical amount (absorbance) in the initial state becomes large and it is difficult to take a difference from the measurement upper limit of the optical change amount, so that it is difficult to measure the high concentration range. Become.
 更に、感作前のラテックス粒子の粒子径が80nm以下のラテックス粒子は0.09w/v%以下、好ましくは、0.05w/v%以下である。80nm以下の粒子が0.09w/v%を超えると、多重散乱を発生し、散乱光変化量の測定精度を低下させてしまう。 Further, the latex particles having a particle size of 80 nm or less before sensitization are 0.09 w / v% or less, preferably 0.05 w / v% or less. If particles of 80 nm or less exceed 0.09 w / v%, multiple scattering will occur and the measurement accuracy of the amount of change in scattered light will be reduced.
(検体)
 本発明の方法は、種々の生体試料を測定対象とすることが可能であり、特に限定されないが、例えば血液、血清、血漿、尿などの体液である。
(Sample)
The method of the present invention can measure various biological samples, and is not particularly limited to body fluids such as blood, serum, plasma, and urine.
 目的物質の測定下限値と上限値は、臨床的な意義だけでなく、各測定方法(免疫比濁法、ラテックス凝集法、化学発光免疫法、蛍光免疫法、等)の技術的な理由からある種の業界標準的な測定範囲として決定されている場合がある。例えば、下記実施例で測定しているラテックス凝集法のCRP(C反応性タンパク質)では、下限値0.01mg/dL、上限値32mg/dLが業界標準となっている。各社が販売している各検査キットを用いて測定を行う場合、測定値がこの下限値以上で且つ上限値を満足するように、検体量濃度を設定する必要がある。本発明の方法により目的物質を測定する場合、吸光度測定のみで該下限値を達成するために必要な最小の検体量濃度(検体量濃度B)の0.7倍以下の検体量濃度(検体量濃度A)で行うことが好ましい。下限値の達成と上限値の達成は相反的であり、下限値は、検体量濃度を高くすることにより達成し易くなるが、下限値を達成するために検体濃度を高くすると、検体によっては上限値を満足しないものが出てくる可能性が高くなる。本発明の方法によれば、従来の吸光度測定のみによって下限値を達成するのに必要な最小の検体量濃度Bの0.7倍以下の検体量濃度Aで測定を行うことが可能であり、このように検体量濃度を下げると、上限値を向上させることができるので有利である。すなわち、検体量濃度を0.7倍以下とすることで、高感度な散乱光検出による最小検出感度向上の効果を享受しつつ、高濃度測定域上限を大幅に向上させるという効果を達成出来る。0.7倍超とすると、最小検出感度は向上するが、高濃度測定域上限の向上効果が十分に得られなくなることがある。 The lower and upper limits of measurement of the target substance are not only for clinical significance but also for technical reasons of each measurement method (immunosturbation method, latex agglutination method, chemiluminescent immunity method, fluorescence immunization method, etc.). It may be determined as the industry standard measurement range for species. For example, in the latex agglutination method CRP (C-reactive protein) measured in the following examples, the lower limit value of 0.01 mg / dL and the upper limit value of 32 mg / dL are industry standards. When measuring using each test kit sold by each company, it is necessary to set the sample amount concentration so that the measured value is equal to or more than this lower limit value and satisfies the upper limit value. When the target substance is measured by the method of the present invention, the sample amount concentration (sample amount) is 0.7 times or less of the minimum sample amount concentration (sample amount concentration B) required to achieve the lower limit value only by the absorbance measurement. It is preferable to carry out at the concentration A). Achievement of the lower limit value and achievement of the upper limit value are contradictory, and the lower limit value can be easily achieved by increasing the sample amount concentration, but if the sample concentration is increased in order to achieve the lower limit value, the upper limit is increased depending on the sample. There is a high possibility that some products will not satisfy the value. According to the method of the present invention, it is possible to perform the measurement at the sample amount concentration A which is 0.7 times or less of the minimum sample amount concentration B required to achieve the lower limit value only by the conventional absorbance measurement. Lowering the sample amount concentration in this way is advantageous because the upper limit value can be improved. That is, by setting the sample amount concentration to 0.7 times or less, it is possible to achieve the effect of significantly improving the upper limit of the high concentration measurement range while enjoying the effect of improving the minimum detection sensitivity by the highly sensitive scattered light detection. If it exceeds 0.7 times, the minimum detection sensitivity is improved, but the effect of improving the upper limit of the high concentration measurement range may not be sufficiently obtained.
(測定対象の目的物質)
 本発明の方法の測定対象となる目的物質は、タンパク質、ペプチド、アミノ酸、脂質、糖、核酸、ハプテンなど、理論的にラテックス粒子増強免疫凝集測定法により測定可能な分子であれば特に制限はない。例としてCRP(C反応性タンパク質)、Lp(a)(リポプロテイン(a))、MMP3(マトリクスメタロプロテイナーゼ3)、抗CCP(環状シトルリン化ペプチド)抗体、抗リン脂質抗体、抗梅毒抗原抗体、RPR、IV型コラーゲン、PSA、AFP、CEA、BNP(脳性ナトリウム利尿ペプチド)、NT-proBNP、インスリン、マイクロアルブミン、シスタチンC、RF(リウマチ因子)、CA―RF、KL-6、PIVKA―II、FDP、Dダイマー、SF(可溶性フィブリン)、TAT(トロンビン-アンチトロンビンIII複合体)、PIC、PAI、XIII因子、ペプシノーゲンI・IIや、フェニトイン、フェノバルビタール、カルバマゼピン、バルプロ酸、テオフィリンなどが挙げられる。
(Target substance to be measured)
The target substance to be measured by the method of the present invention is not particularly limited as long as it is a molecule that can be theoretically measured by the latex particle-enhanced immunoaggregation measurement method, such as protein, peptide, amino acid, lipid, sugar, nucleic acid, and hapten. .. For example, CRP (C-reactive protein), Lp (a) (lipoprotein (a)), MMP3 (matrix metalloproteinase 3), anti-CCP (cyclic citrulylated peptide) antibody, anti-phospholipid antibody, anti-pyorrhea antigen antibody, RPR, type IV collagen, PSA, AFP, CEA, BNP (brain natriuretic peptide), NT-proBNP, insulin, microalbumin, cystatin C, RF (rheumatic factor), CA-RF, KL-6, PIVKA-II, Examples include FDP, D dimer, SF (soluble fibrin), TAT (thrombin-antithrombin III complex), PIC, PAI, XIII factor, pepsinogen I / II, phenitoin, phenobarbital, carbamatepine, valproic acid, theophylline and the like. ..
(結合パートナー)
 本発明の粒子増強免疫凝集測定法に供される結合パートナーとしては、対象の目的物質に結合する物質としてタンパク質、ペプチド、アミノ酸、脂質、糖、核酸、ハプテンなどが挙げられるが、特異性および親和性から抗体、その抗原結合性断片や、抗原の利用が一般的である。また分子量の大小、天然や合成といった由来に特に制限はない。
(Join partner)
Examples of the binding partner used in the particle-enhanced immunoaggregation measurement method of the present invention include proteins, peptides, amino acids, lipids, sugars, nucleic acids, haptens and the like as substances that bind to the target substance of interest, but their specificity and affinity. From sex, antibodies, antigen-binding fragments thereof, and antigens are generally used. In addition, there are no particular restrictions on the size of the molecular weight, the origin such as natural or synthetic.
(測定試薬)
 本発明の方法に供される測定試薬の構成に関して特に制限はないが、臨床検査の分野で汎用される自動分析装置での使用を考慮した場合、緩衝液からなる第一試液(R1)と目的物質に対する結合パートナーを担持したラテックス粒子を含む第二試液(R2)の2液で構成された測定試薬が一般的である。
 なお、本発明の測定試薬は吸光度変化量と散乱光変化量をそれぞれ単独で測定することもできる。
(Measuring reagent)
The composition of the measuring reagent used in the method of the present invention is not particularly limited, but when considering the use in an automatic analyzer widely used in the field of clinical examination, the first reagent solution (R1) composed of a buffer solution and the purpose. A measurement reagent composed of two liquids of a second reagent solution (R2) containing latex particles carrying a binding partner to a substance is common.
The measuring reagent of the present invention can also measure the amount of change in absorbance and the amount of change in scattered light independently.
(測定試薬の成分)
 本発明の方法に用いられる測定試薬の成分は、反応の主成分である結合パートナーを感作(担持)したラテックス粒子の他に、試料のイオン強度や浸透圧などを緩衝する成分として、例えば、酢酸、クエン酸、リン酸、トリス、グリシン、ホウ酸、炭酸、及びグッドの緩衝液や、それらのナトリウム塩、カリウム塩、カルシウム塩などを含んでもよい。また凝集形成を増強する成分としてポリエチレングリコール、ポリビニルピロリドン、リン脂質ポリマーなどの高分子を含んでもよい。また、凝集の形成をコントロールする成分として高分子物質、タンパク質、アミノ酸、糖類、金属塩類、界面活性剤類、還元性物質やカオトロピック物質など汎用される成分を1種類、または複数の成分を組合せて含んでもよい。また消泡成分を含んでもよい。
(Components of measurement reagents)
The components of the measurement reagent used in the method of the present invention include latex particles sensitized (supported) by a binding partner, which is the main component of the reaction, as well as components that buffer the ionic strength and osmotic pressure of the sample, for example. It may contain acetic acid, citric acid, phosphoric acid, tris, glycine, boric acid, carbonic acid, and Good's buffers, their sodium salts, potassium salts, calcium salts, and the like. Further, a polymer such as polyethylene glycol, polyvinylpyrrolidone, or a phospholipid polymer may be contained as a component for enhancing aggregation formation. In addition, as a component that controls the formation of aggregates, one type or a combination of a plurality of general-purpose components such as polymer substances, proteins, amino acids, sugars, metal salts, surfactants, reducing substances and chaotropic substances is used. It may be included. It may also contain a defoaming component.
(分析装置)
 本発明の方法には、測定に要する総反応時間が10分以内と迅速かつ簡便な自動分析装置の利用が適しており、特に特開2013-64705号公報に開示されるような、散乱光強度と吸光度をほぼ同時に測定できる自動分析装置が好適である。もっとも、本発明の方法は、自動分析装置を用いる方法に限定されるものではない。
(Analysis equipment)
The method of the present invention is suitable for using a quick and simple automatic analyzer with a total reaction time of 10 minutes or less, and in particular, scattered light intensity as disclosed in Japanese Patent Application Laid-Open No. 2013-64705. An automatic analyzer that can measure the absorbance at almost the same time is suitable. However, the method of the present invention is not limited to the method using an automatic analyzer.
 本発明の方法に用いることができる、自動分析装置の好適な一例の全体概略構成を図1に示す。図1中、自動分析装置1は、検体ディスク10、反応ディスク20、試薬ディスク30、検体分注機構41、試薬分注機構42、コンピュータ100、インタフェース回路101等を備える。検体ディスク10には駆動部12を備える。反応ディスク20には駆動部22を備える。試薬ディスク30には駆動部32を備える。また、反応ディスク20には、吸光光度計44と散乱光度計45との2種類の光度計が設置されている。また、反応ディスク20には、恒温槽28を備える。また、反応ディスク20には、撹拌部43や洗浄部46等が設置されている。 FIG. 1 shows an overall schematic configuration of a suitable example of an automatic analyzer that can be used in the method of the present invention. In FIG. 1, the automatic analyzer 1 includes a sample disk 10, a reaction disk 20, a reagent disk 30, a sample dispensing mechanism 41, a reagent dispensing mechanism 42, a computer 100, an interface circuit 101, and the like. The sample disk 10 is provided with a drive unit 12. The reaction disk 20 includes a drive unit 22. The reagent disk 30 includes a drive unit 32. Further, the reaction disk 20 is provided with two types of photometers, an absorptiometer 44 and a scattered photometer 45. Further, the reaction disk 20 is provided with a constant temperature bath 28. Further, the reaction disk 20 is provided with a stirring unit 43, a cleaning unit 46, and the like.
 コンピュータ100は、分析制御部50、記憶部70、出力部71、入力部72等を備える。分析制御部50は、信号線等を含むインタフェース回路101を通じて、各駆動部や各機構と接続されている。コンピュータ100は、例えばPCで構成されるが、これに限らず、LSI基板等の回路基板で構成されてもよいし、それらの組み合わせで構成されてもよい。記憶部70は、ROM、RAM、不揮発性記憶装置等の記憶装置で構成される。 The computer 100 includes an analysis control unit 50, a storage unit 70, an output unit 71, an input unit 72, and the like. The analysis control unit 50 is connected to each drive unit and each mechanism through an interface circuit 101 including a signal line or the like. The computer 100 is composed of, for example, a PC, but is not limited to this, and may be composed of a circuit board such as an LSI board or a combination thereof. The storage unit 70 is composed of a storage device such as a ROM, a RAM, and a non-volatile storage device.
 検体ディスク10には、複数の検体カップ15が設置され保持されている。検体カップ15は、検体2を収容する検体容器である。各検体カップ15は、検体ディスク10のディスク本体11上に、周方向に沿って相互に離間させて並設されて保持されている。 A plurality of sample cups 15 are installed and held on the sample disk 10. The sample cup 15 is a sample container that houses the sample 2. Each sample cup 15 is arranged and held side by side on the disk body 11 of the sample disk 10 so as to be separated from each other along the circumferential direction.
 検体ディスク10の駆動部12は、分析制御部50からの制御に従って検体ディスク10を駆動制御する。その際、駆動部12は、ディスク本体11を回動させて、複数の検体カップ15を周方向に沿って移動させる。検体ディスク10は、駆動部12の駆動制御によって、ディスク本体11に設置されている複数の検体カップ15のうちの1つの検体カップ15を、周方向に沿った所定位置に配置する。所定位置は、例えば検体分注機構41による検体吸入位置等である。 The drive unit 12 of the sample disk 10 drives and controls the sample disk 10 according to the control from the analysis control unit 50. At that time, the drive unit 12 rotates the disk body 11 to move the plurality of sample cups 15 along the circumferential direction. In the sample disk 10, one of the plurality of sample cups 15 installed in the disk body 11 is arranged at a predetermined position along the circumferential direction by the drive control of the drive unit 12. The predetermined position is, for example, a sample inhalation position by the sample dispensing mechanism 41 or the like.
 なお、図1の構成例では、検体ディスク10は、複数の検体カップ15がディスク本体11上に周方向に沿って一列の円周に配置されている。これに限らず、ディスク本体11の同心円状に複数列に検体カップ15が配置される構成としてもよい。また、図1の構成例では、ディスク方式の検体ディスク15を有するが、これに限らず、ラック方式としてもよい。ラック方式では、複数の検体容器が1次元または2次元で配列されて保持される検体ラックを用いる。 In the configuration example of FIG. 1, in the sample disk 10, a plurality of sample cups 15 are arranged on the disk body 11 in a line of circumferences along the circumferential direction. Not limited to this, the sample cups 15 may be arranged in a plurality of rows concentrically of the disk body 11. Further, in the configuration example of FIG. 1, the sample disk 15 of the disk type is provided, but the present invention is not limited to this, and a rack type may be used. In the rack method, a sample rack in which a plurality of sample containers are arranged and held in one or two dimensions is used.
 試薬ディスク30は、反応ディスク20の隣に設置されている。試薬ディスク30のディスク本体31には、複数の試薬ボトル35が設置され保持されている。試薬ボトル35は、試薬4を収容する試薬容器である。各試薬ボトル35は、ディスク本体31の周方向に沿って相互に離間させて並設されて保持されている。試薬ボトル35には、自動分析装置1での検査項目の目的成分物質に応じた種類の試薬4が収容されている。試薬4の種類毎に、別々の試薬ボトル35に収容されている。 The reagent disk 30 is installed next to the reaction disk 20. A plurality of reagent bottles 35 are installed and held in the disk body 31 of the reagent disk 30. The reagent bottle 35 is a reagent container that houses the reagent 4. The reagent bottles 35 are arranged and held side by side so as to be separated from each other along the circumferential direction of the disc body 31. The reagent bottle 35 contains a reagent 4 of a type corresponding to the target component substance of the inspection item in the automatic analyzer 1. Each type of reagent 4 is contained in a separate reagent bottle 35.
 試薬ディスク30の駆動部32は、分析制御部50からの制御に従って、ディスク本体31を回動させて、複数の試薬ボトル35を周方向に沿って移動させる。試薬ディスク30は、駆動部32の駆動制御によって、ディスク本体31に設置されている複数の試薬ボトル35のうちの使用する1つの試薬ボトル35を、試薬ディスク30の所定位置に配置する。所定位置は、例えば試薬分注機構42による試薬吸入位置等である。 The drive unit 32 of the reagent disk 30 rotates the disk body 31 according to the control from the analysis control unit 50 to move the plurality of reagent bottles 35 along the circumferential direction. In the reagent disk 30, one of the plurality of reagent bottles 35 installed in the disk body 31 is arranged at a predetermined position on the reagent disk 30 by the drive control of the drive unit 32. The predetermined position is, for example, a reagent inhalation position by the reagent dispensing mechanism 42.
 試薬ディスク30には、冷却機構を備えた試薬保冷庫38が設けられている。ディスク本体31上に配置されている複数の試薬ボトル35は、ディスク本体31が回動しても、試薬保冷庫38の冷却環境に常時保持された状態で冷却される。これにより、試薬4の劣化防止が図られている。試薬保冷庫38の冷却機構としては、例えば、低温水を循環する方式、あるいはペルチェ素子により気相中にて冷却する方式等が用いられる。 The reagent disk 30 is provided with a reagent cool box 38 provided with a cooling mechanism. Even if the disk body 31 rotates, the plurality of reagent bottles 35 arranged on the disk body 31 are cooled while being constantly held in the cooling environment of the reagent cool box 38. As a result, deterioration of the reagent 4 is prevented. As the cooling mechanism of the reagent refrigerator 38, for example, a method of circulating low-temperature water, a method of cooling in the gas phase by a Pelche element, or the like is used.
 反応ディスク20は、検体ディスク10と試薬ディスク30との間に設置されている。反応ディスク20のディスク本体21には、複数の反応容器25が設置され保持されている。反応容器25は、反応液3が作製される容器である。反応液3は、検体2と試薬4との混合液である。検体分注機構41によって反応容器25内に検体2が分注され、試薬分注機構42によって試薬4が分注され、その検体2と試薬4との混合液によって反応液3が作製される。各反応容器25は、ディスク本体21の周方向に沿って相互に離間させて並設されて保持されている。反応容器25は、吸光光度計44および散乱光度計45による測定のために、透光性材料により構成されている。反応ディスク20の駆動部22は、分析制御部50からの制御に従って、ディスク本体21を回動させて、複数の反応容器25を周方向に沿って移動させる。反応ディスク20は、ディスク本体21の回動によって、複数の反応容器25のうちの1つの反応容器25を、周方向に沿って設けられた所定位置に配置する。所定位置は、例えば検体分注機構41による検体吐出位置や、試薬分注機構42による試薬吐出位置等である。 The reaction disk 20 is installed between the sample disk 10 and the reagent disk 30. A plurality of reaction vessels 25 are installed and held in the disc body 21 of the reaction disc 20. The reaction vessel 25 is a vessel in which the reaction solution 3 is produced. The reaction solution 3 is a mixed solution of the sample 2 and the reagent 4. The sample 2 is dispensed into the reaction vessel 25 by the sample dispensing mechanism 41, the reagent 4 is dispensed by the reagent dispensing mechanism 42, and the reaction solution 3 is prepared by the mixed solution of the sample 2 and the reagent 4. The reaction vessels 25 are juxtaposed and held side by side so as to be separated from each other along the circumferential direction of the disc body 21. The reaction vessel 25 is made of a translucent material for measurement by the absorptiometer 44 and the scattered photometer 45. The drive unit 22 of the reaction disk 20 rotates the disk body 21 in accordance with the control from the analysis control unit 50 to move the plurality of reaction vessels 25 along the circumferential direction. The reaction disk 20 arranges one of the plurality of reaction containers 25 at a predetermined position provided along the circumferential direction by rotating the disk body 21. The predetermined position is, for example, a sample discharge position by the sample dispensing mechanism 41, a reagent discharge position by the reagent dispensing mechanism 42, or the like.
 反応ディスク20のディスク本体21上に配置されている複数の各々の反応容器25は、恒温槽28内の恒温槽水(恒温流体ともいう)に常時浸漬されている。これにより、反応容器25内の反応液3が一定の反応温度(例えば37℃程度)に保たれる。恒温槽28内の恒温槽水は、分析制御部50によって、温度および流量が制御され、反応容器25に供給される熱量が制御される。 Each of the plurality of reaction vessels 25 arranged on the disk body 21 of the reaction disk 20 is constantly immersed in the constant temperature bath water (also referred to as constant temperature fluid) in the constant temperature bath 28. As a result, the reaction solution 3 in the reaction vessel 25 is maintained at a constant reaction temperature (for example, about 37 ° C.). The temperature and flow rate of the constant temperature bath water in the constant temperature bath 28 are controlled by the analysis control unit 50, and the amount of heat supplied to the reaction vessel 25 is controlled.
 反応ディスク20の周上および周付近には、検体分注機構41および試薬分注機構42に加え、互いの位置を異ならせて、撹拌部43、吸光光度計44、散乱光度計45、洗浄部46等が配置されている。 In addition to the sample dispensing mechanism 41 and the reagent dispensing mechanism 42, the stirring unit 43, the absorptiometer 44, the scattered photometer 45, and the cleaning unit are located on and near the circumference of the reaction disk 20 at different positions. 46 etc. are arranged.
 検体分注機構41は、検体ディスク10と反応ディスク20との間に設置されている。検体分注機構41は、検体ディスク10の検体吸入位置の検体カップ15から検体2を吸入し、反応ディスク20の検体吐出位置の反応容器25に吐出する動作である検体分注動作を行う。検体分注機構41は、可動アームや分注ノズルを備える。分注ノズルは、可動アームに取り付けられたピペットノズルから成る。検体分注機構41は、検体分注動作の際、分注ノズルを検体ディスク10上の検体吸入位置に移動させ、検体吸入位置に配置された検体カップ15から、分注ノズル内に所定量の検体2を吸入して収容する。その後、検体分注機構41は、分注ノズルを反応ディスク20上の検体吐出位置に移動させて、検体吐出位置に配置された反応容器25内に、分注ノズル内の検体2を吐出する。 The sample dispensing mechanism 41 is installed between the sample disk 10 and the reaction disk 20. The sample dispensing mechanism 41 performs a sample dispensing operation, which is an operation of sucking the sample 2 from the sample cup 15 at the sample inhalation position of the sample disk 10 and discharging the sample 2 into the reaction vessel 25 at the sample discharge position of the reaction disk 20. The sample dispensing mechanism 41 includes a movable arm and a dispensing nozzle. The dispensing nozzle consists of a pipette nozzle attached to a movable arm. The sample dispensing mechanism 41 moves the dispensing nozzle to the sample suction position on the sample disk 10 during the sample dispensing operation, and from the sample cup 15 arranged at the sample suction position, a predetermined amount is contained in the dispensing nozzle. Specimen 2 is inhaled and contained. After that, the sample dispensing mechanism 41 moves the dispensing nozzle to the sample discharging position on the reaction disk 20, and discharges the sample 2 in the dispensing nozzle into the reaction vessel 25 arranged at the sample discharging position.
 試薬分注機構42は、試薬ディスク30と反応ディスク20との間に設置されている。試薬分注機構42は、試薬ディスク30の試薬吸入位置の試薬ボトル35から試薬4を吸入し、反応ディスク20の試薬吐出位置の反応容器25に吐出する動作である試薬分注動作を行う。分注される試薬4は、対象の検体2に対応して設定された分析項目(検査項目等とも呼ばれる)である目的成分物質の定量に用いられる試薬である。試薬分注機構42は、同様に、可動アームや分注ノズルを備える。試薬分注機構42は、試薬分注動作の際、分注ノズルを試薬ディスク30上の試薬吸入位置に移動させ、試薬吸入位置に配置された試薬ボトル35から分注ノズル内に所定量の試薬4を吸入して収容する。その後、試薬分注機構42は、分注ノズルを反応ディスク20上の試薬吐出位置に移動させて、試薬吐出位置に配置された反応容器25内に、分注ノズル内の試薬4を吐出する。 The reagent dispensing mechanism 42 is installed between the reagent disc 30 and the reaction disc 20. The reagent dispensing mechanism 42 performs a reagent dispensing operation, which is an operation of sucking the reagent 4 from the reagent bottle 35 at the reagent inhalation position of the reagent disk 30 and discharging the reagent 4 into the reaction vessel 25 at the reagent discharge position of the reaction disk 20. The reagent 4 to be dispensed is a reagent used for quantification of a target component substance, which is an analysis item (also called a test item or the like) set corresponding to the target sample 2. The reagent dispensing mechanism 42 also includes a movable arm and a dispensing nozzle. The reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent suction position on the reagent disk 30 during the reagent dispensing operation, and a predetermined amount of reagent is injected into the dispensing nozzle from the reagent bottle 35 arranged at the reagent suction position. Inhale and contain 4. After that, the reagent dispensing mechanism 42 moves the dispensing nozzle to the reagent discharging position on the reaction disk 20, and discharges the reagent 4 in the dispensing nozzle into the reaction vessel 25 arranged at the reagent discharging position.
 検体分注機構41および試薬分注機構42には、異なる種類の検体2あるいは試薬4の分注に備えて、それぞれ、洗浄槽46が設けられている。洗浄槽46は、分注ノズルを洗浄するための機構である。各分注機構は、各分注ノズルを、分注動作の前後に洗浄槽46で洗浄する。これにより、検体2同士あるいは試薬4同士のコンタミネーションが防止される。また、各分注機構の分注ノズルには、検体2あるいは試薬4の液面を検知するセンサが備え付けられている。これにより、検体2あるいは試薬4の不足による測定異常が監視および検知可能である。加えて、検体分注機構41には、分注ノズルの詰まりを検知する圧力センサが備え付けられている。これにより、検体2に含まれるフィブリン等の不溶性物質が分注ノズルに詰まることで発生する分注異常が監視および検知可能である。分析制御部50は、それらのセンサを含む機構を通じて、測定時の各種の異常等を監視および検知可能である。 The sample dispensing mechanism 41 and the reagent dispensing mechanism 42 are each provided with a washing tank 46 in preparation for dispensing different types of sample 2 or reagent 4. The cleaning tank 46 is a mechanism for cleaning the dispensing nozzle. Each dispensing mechanism cleans each dispensing nozzle in the cleaning tank 46 before and after the dispensing operation. As a result, contamination between the samples 2 or the reagents 4 is prevented. Further, the dispensing nozzle of each dispensing mechanism is equipped with a sensor for detecting the liquid level of the sample 2 or the reagent 4. Thereby, the measurement abnormality due to the shortage of the sample 2 or the reagent 4 can be monitored and detected. In addition, the sample dispensing mechanism 41 is provided with a pressure sensor that detects clogging of the dispensing nozzle. As a result, it is possible to monitor and detect a dispensing abnormality that occurs when an insoluble substance such as fibrin contained in the sample 2 is clogged in the dispensing nozzle. The analysis control unit 50 can monitor and detect various abnormalities during measurement through a mechanism including these sensors.
 撹拌部43は、反応ディスク20上の所定位置である撹拌位置に配置された反応容器25内の検体2と試薬4との混合液を撹拌する。これにより、反応容器25内の混合液は、均一に攪拌されて、その反応が促進され、反応液3として作製される。撹拌部43には、例えば攪拌翼を備える攪拌機、あるいは超音波を用いた攪拌機構を備える。 The stirring unit 43 stirs the mixed solution of the sample 2 and the reagent 4 in the reaction vessel 25 arranged at the stirring position which is a predetermined position on the reaction disk 20. As a result, the mixed solution in the reaction vessel 25 is uniformly stirred, the reaction is promoted, and the reaction solution 3 is prepared. The stirring unit 43 is provided with, for example, a stirrer equipped with a stirring blade or a stirring mechanism using ultrasonic waves.
 2種類の光度計における、第1種光度計として1つの吸光光度計44を有し、第2種光度計として1つの散乱光度計45を有する。吸光光度計44および散乱光度計45の各光度計は、基本的な構造として、光源および受光部を有する。各光度計の光源は、例えば、反応ディスク20の内周側に配置されており、各光度計の受光部は、反応ディスク20の外周側に配置されている。各光度計は、分析制御部50と接続されている。 In two types of photometers, it has one absorptiometer 44 as a first-class photometer and one scattered photometer 45 as a second-class photometer. Each photometer of the absorptiometer 44 and the scattered photometer 45 has a light source and a light receiving unit as a basic structure. The light source of each photometer is arranged on the inner peripheral side of the reaction disk 20, for example, and the light receiving portion of each photometer is arranged on the outer peripheral side of the reaction disk 20. Each photometer is connected to the analysis control unit 50.
 吸光光度計44は、反応ディスク20上の所定位置である測定位置(特に第1測定位置)に配置された反応容器25の反応液3についての測定を行う。散乱光度計45は、反応ディスク20上の所定位置である測定位置(特に第2測定位置)に配置された反応容器25の反応液3についての測定を行う。図1の構成例では、吸光光度計44および散乱光度計45の2つの光度計は、反応ディスク20の周上で、反応ディスク20の回動中心を通る対角線上に対向する所定位置に設置されている。第1測定位置に対して吸光光度計44が、第2測定位置に対して散乱光度計45が配置されている。なお、周上、第1測定位置と第2測定位置との間の所定位置には、撹拌部43や洗浄部46が配置されている。 The absorptiometer 44 measures the reaction solution 3 of the reaction vessel 25 arranged at the measurement position (particularly the first measurement position) which is a predetermined position on the reaction disk 20. The scattered photometer 45 measures the reaction solution 3 of the reaction vessel 25 arranged at the measurement position (particularly the second measurement position) which is a predetermined position on the reaction disk 20. In the configuration example of FIG. 1, two photometers, an absorptiometer 44 and a scattering photometer 45, are installed at predetermined positions on the circumference of the reaction disk 20 and diagonally opposed to each other through the rotation center of the reaction disk 20. ing. An absorptiometer 44 is arranged at the first measurement position, and a scattered photometer 45 is arranged at the second measurement position. The stirring unit 43 and the cleaning unit 46 are arranged at predetermined positions on the circumference between the first measurement position and the second measurement position.
 吸光光度計44は、光源から第1測定位置の反応容器25の反応液3に光を照射する。その際、吸光光度計44は、反応液3から得られる透過光を、受光部によって検出し、単一または複数の波長の透過光の光量または光強度の少なくとも一方(光量/光強度と記載する場合がある)を測定する。また、吸光光度計44は、その測定値に基づいて、所定の計算によって、濃度等の定量値を得てもよい。吸光光度計44は、測定値または計算値を含む信号を出力する。 The absorptiometer 44 irradiates the reaction solution 3 of the reaction vessel 25 at the first measurement position with light from the light source. At that time, the absorptiometer 44 detects the transmitted light obtained from the reaction solution 3 by the light receiving unit, and describes at least one of the light intensity or the light intensity of the transmitted light having a single or a plurality of wavelengths (light intensity / light intensity). May) be measured. Further, the absorptiometer 44 may obtain a quantitative value such as a concentration by a predetermined calculation based on the measured value. The absorptiometer 44 outputs a signal including a measured value or a calculated value.
 散乱光度計45は、光源から第2測定位置の反応容器25の反応液3に光を照射する。その際、散乱光度計45は、反応液3から得られる散乱光を、受光部によって検出し、散乱光の光量または光強度の少なくとも一方(光量/光強度)を測定する。また、散乱光度計45は、その測定値に基づいて、所定の計算によって、濃度等の定量値を得てもよい。散乱光度計45は、測定値または計算値を含む信号を出力する。 The scattered photometer 45 irradiates the reaction solution 3 of the reaction vessel 25 at the second measurement position with light from the light source. At that time, the scattered photometer 45 detects the scattered light obtained from the reaction solution 3 by the light receiving unit, and measures at least one of the amount of scattered light and the light intensity (light amount / light intensity). Further, the scattered photometer 45 may obtain a quantitative value such as a concentration by a predetermined calculation based on the measured value. The scattered photometer 45 outputs a signal including a measured value or a calculated value.
 洗浄部46は、反応ディスク20上の洗浄位置に配置された反応容器25についての洗浄を行う。洗浄部46は、測定および分析が終了した反応容器25から、残っている反応液3を排出し、その反応容器25を洗浄する。洗浄された反応容器25は再使用可能となる。すなわち、その反応容器25には、再び、検体分注機構41から次の検体2が分注され、試薬分注機構42から次の試薬4が分注されることになる。 The cleaning unit 46 cleans the reaction vessel 25 arranged at the cleaning position on the reaction disk 20. The cleaning unit 46 discharges the remaining reaction solution 3 from the reaction vessel 25 for which the measurement and analysis have been completed, and cleans the reaction vessel 25. The washed reaction vessel 25 can be reused. That is, the next sample 2 is dispensed from the sample dispensing mechanism 41 again, and the next reagent 4 is dispensed from the reagent dispensing mechanism 42 into the reaction vessel 25.
(散乱角度)
 本発明に用いられる散乱光強度測定の散乱角度に特に制限はないが、10°~35°にするのが望ましく、より好ましくは20°~30°である。散乱角度を前記の範囲にすることによって、散乱光を検知するための受光部において透過光の影響を強く受けず、また散乱光を受光する能力に関しても有利となる。
(Scattering angle)
The scattering angle of the scattered light intensity measurement used in the present invention is not particularly limited, but is preferably 10 ° to 35 °, more preferably 20 ° to 30 °. By setting the scattering angle within the above range, the light receiving portion for detecting the scattered light is not strongly affected by the transmitted light, and the ability to receive the scattered light is also advantageous.
(散乱光強度測定)
 本発明に用いられる散乱光強度測定の光源や照射光波長には特に制限はないが、ラテックス粒子の上記体積平均粒子径aの1~10倍が好適である。より好適な範囲としては1.5~5倍である。1倍未満だと、高濃度検体の測定精度が大幅に低下することがある。また10倍より大きくなると散乱光強度測定の利点である最小検出感度能が大幅に低下してしまうことがある。散乱光強度の変化量を測定する2時点の測光間隔に特に制限はなく、一般的には間隔が長い方がより高感度となる。前述の自動分析装置においては、測定対象の目的物質を含む試料溶液と、目的物質との結合パートナーを担持したラテックス粒子を含む溶液との混合直後から、最大1000秒までの任意の2時点における散乱光強度測定と吸光度測定の変化量を、それぞれ測定できるが、混合直後から300秒以内の2時点の散乱光強度の変化量と吸光度の変化量の両方をそれぞれ測定することにより、第一試液、第二試液を通じた一つの測定(一試料)あたりの総測定時間を10分以内とすることができ、市販されている各種自動分析装置の最大検体処理速度の利益を享受することができる。
(Measurement of scattered light intensity)
The light source for measuring the scattered light intensity and the wavelength of the irradiation light used in the present invention are not particularly limited, but 1 to 10 times the volume average particle diameter a of the latex particles is preferable. A more preferable range is 1.5 to 5 times. If it is less than 1 times, the measurement accuracy of a high-concentration sample may be significantly reduced. Further, if it is larger than 10 times, the minimum detection sensitivity ability, which is an advantage of the scattered light intensity measurement, may be significantly lowered. There is no particular limitation on the photometric interval at two time points for measuring the amount of change in scattered light intensity, and in general, the longer the interval, the higher the sensitivity. In the above-mentioned automatic analyzer, scattering at any two time points from immediately after mixing the sample solution containing the target substance to be measured and the solution containing latex particles carrying a binding partner with the target substance to a maximum of 1000 seconds. The amount of change in light intensity measurement and the amount of change in absorbance measurement can be measured respectively, but by measuring both the amount of change in scattered light intensity and the amount of change in absorbance at two time points within 300 seconds immediately after mixing, the first reagent solution, The total measurement time per measurement (one sample) through the second test solution can be set to 10 minutes or less, and the benefit of the maximum sample processing speed of various commercially available automatic analyzers can be enjoyed.
(吸光度測定)
 本発明に用いられる吸光度測定の波長に特に制限はないが、散乱光強度の測定と同様に、用いられるラテックス粒子の体積平均粒子径aの1~10倍が好適である。より好適な範囲としては1.4~8倍である。1倍未満だと、高濃度検体の測定精度が大幅に低下することがある。また10倍より大きくなると最小検出感度能が低下してしまうことがある。また、本発明に用いられる吸光度測定の波長としては、前記の範囲内において1波長測定あるいは、散乱光強度測定に用いる波長と比較して短波長側の主波長と、長波長側の副波長とを組合せた2波長測定を利用することができ、後者の方がより正確で好ましい。吸光度の変化量を測定する2時点の測光間隔に特に制限はなく、一般的には間隔が長い方がより高感度となる。
(Absorbance measurement)
The wavelength of the absorbance measurement used in the present invention is not particularly limited, but as in the measurement of the scattered light intensity, it is preferably 1 to 10 times the volume average particle diameter a of the latex particles used. A more preferable range is 1.4 to 8 times. If it is less than 1 times, the measurement accuracy of a high-concentration sample may be significantly reduced. Further, if it is larger than 10 times, the minimum detection sensitivity may be lowered. Further, the wavelengths for the absorbance measurement used in the present invention include a main wavelength on the short wavelength side and a sub-wavelength on the long wavelength side as compared with the wavelength used for one wavelength measurement or scattered light intensity measurement within the above range. A combination of two wavelength measurements can be used, the latter being more accurate and preferred. There is no particular limitation on the photometric interval at two time points for measuring the amount of change in absorbance, and in general, the longer the interval, the higher the sensitivity.
(変化量)
 本発明に用いられる光量(散乱光強度および吸光度)の変化量は、2時点間の差や比、単位時間あたりの換算値など、ラテックス粒子増強免疫凝集測定法に適用可能な算出法であれば特に制限はない。
(Amount of change)
The amount of change in the amount of light (scattered light intensity and absorbance) used in the present invention is a calculation method applicable to the latex particle-enhanced immunoaggregation measurement method, such as the difference and ratio between two time points and the conversion value per unit time. There are no particular restrictions.
(目的物質の存在量と関連付ける工程)
 本発明のラテックス粒子増強免疫凝集測定法においては、既知濃度の目的物質含有試料を用いて、散乱光強度測定、吸光度測定それぞれの検量線を個別に作成し、目的物質の低濃度域、つまり最小検出感度は高感度な散乱光強度測定の検量線、目的物質の高濃度域測定上限はダイナミックレンジの広い吸光度測定の検量線に基づき濃度を算出する。ダイナミックレンジが広い吸光度測定では、より広い濃度範囲で検量線を作成することができる。
(Step to associate with the abundance of the target substance)
In the latex particle-enhanced immunoaggregation measurement method of the present invention, calibration curves for scattered light intensity measurement and absorbance measurement are individually prepared using a sample containing a target substance having a known concentration, and a low concentration range of the target substance, that is, the minimum The detection sensitivity is calculated based on the calibration curve for highly sensitive scattered light intensity measurement, and the upper limit of measurement in the high concentration range of the target substance is calculated based on the calibration curve for absorbance measurement with a wide dynamic range. For absorbance measurements with a wide dynamic range, a calibration curve can be created over a wider concentration range.
(検出変動係数比)
 検出変動係数比は低値標準物質の再現性測定におけるバラツキ度(変動係数)を吸光度測定値と散乱光測定値の比で導出したものとなる。
(Detection coefficient of variation ratio)
The detection coefficient of variation ratio is obtained by deriving the degree of variation (coefficient of variation) in the reproducibility measurement of the low-value standard material by the ratio of the absorbance measurement value and the scattered light measurement value.
(高濃度域測定上限)
 高濃度域測定上限とは測定可能な最大の目的物質量を意味する。本発明の方法の高濃度域測定上限は、目的物質濃度に比例した光量変化が検出できる範囲となる。必要な場合には、検体を適宜希釈することにより、適切な濃度とすることができる。
(High concentration range measurement upper limit)
The upper limit of measurement in the high concentration range means the maximum amount of the target substance that can be measured. The upper limit of measurement in the high concentration range of the method of the present invention is a range in which a change in the amount of light proportional to the concentration of the target substance can be detected. If necessary, the sample can be appropriately diluted to obtain an appropriate concentration.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
(実施例1~3、および比較例1~9)
(調製例:単一粒子径によるCRP測定試薬の調製)
1.第2試液(R2):抗体結合ラテックス溶液の調製
 抗CRPウサギポリクローナル抗体(特異抗体量(mg/mL)が抗体液中の総タンパク量(mg/mL)に対して17%含有される抗体液)をポリスチレンラテックス粒子に感作し、グリシン緩衝液中に分散浮遊し試薬を調製した。すなわち、試薬は、緩衝液(グリシン 170mM pH 6.0)中で抗体とポリスチレンラテックス粒子の規定量を混合し、室温で60分間十分に撹拌することにより感作を行い、その後、遠心操作により上清を除き、ウシ血清アルブミンを含むグリシン緩衝液によりポリスチレンラテックス粒子表面の抗体未感作部分のブロッキングを施し再び遠心操作により抗体感作ポリスチレンラテックス粒子を集め、グリシン緩衝液中にラテックス粒子を、ソニケーションを行って充分に分散浮遊させることにより調製し、第2試薬(抗体結合ラテックス溶液:R2)を得た。
(Examples 1 to 3 and Comparative Examples 1 to 9)
(Preparation example: Preparation of CRP measurement reagent by single particle size)
1. 1. Second reagent solution (R2): Preparation of antibody-binding latex solution Anti-CRP rabbit polyclonal antibody (antibody solution containing 17% of specific antibody amount (mg / mL) with respect to total protein amount (mg / mL) in antibody solution) ) Was sensitized to polystyrene latex particles, dispersed and suspended in a glycine buffer, and a reagent was prepared. That is, the reagent is sensitized by mixing a specified amount of antibody and polystyrene latex particles in a buffer solution (glycine 170 mM pH 6.0), stirring sufficiently at room temperature for 60 minutes, and then centrifuging. Excluding Qing, the antibody-insensitive portion on the surface of the polystyrene latex particles was blocked with a glycine buffer solution containing bovine serum albumin, and the antibody-sensitized polystyrene latex particles were collected again by centrifugation, and the latex particles were placed in the glycine buffer solution. It was prepared by nicking and sufficiently dispersing and suspending to obtain a second reagent (antibody-bound latex solution: R2).
2.第一試液(R1)の調製
 200mMの塩化ナトリウム、1.0%のBSAを含む170mM グリシン緩衝液を調製し、第一試液とした。
2. Preparation of First Test Solution (R1) A 170 mM glycine buffer solution containing 200 mM sodium chloride and 1.0% BSA was prepared and used as the first test solution.
3.標準試料
 測定用試料として、ヒトCRP精製抗原を正常ヒト血清で希釈して調製したCRP標準品を用いた。CRP標準品は、血漿蛋白国際標準品CRM470に準拠して値付けされたもので、0.25、0.5、1、2、4、8、16、32、48、67、100mg/dLを用意した。0mg/dLとして生理食塩液を使用した。
3. 3. Standard sample As a measurement sample, a CRP standard prepared by diluting human CRP purified antigen with normal human serum was used. The CRP standard is priced according to the plasma protein international standard CRM470, and contains 0.25, 0.5, 1, 2, 4, 8, 16, 32, 48, 67, 100 mg / dL. I prepared it. Saline was used at 0 mg / dL.
(分析装置と測定条件)
 特開2013-64705号公報記載の自動分析装置を用いて一つの測定について散乱光強度と吸光度両方の測定をおこなった。散乱光強度測定の各条件は、照射波長700nm、散乱角度20°、および30°とし、吸光度測定の各条件は、主波長570nm、副波長800nmの2波長として測定した。CRPを含む試料1.5μLにR1 122μLを添加撹拌して37℃で約300秒間インキュベーション後、R2 122μLを添加撹拌し、37℃で約300秒間インキュベーションしている間の任意の2時点間の光量の差から散乱光強度ならびに吸光度の変化量を算出した。
(Analyzer and measurement conditions)
Both the scattered light intensity and the absorbance were measured for one measurement using the automatic analyzer described in JP2013-64705. Each condition of the scattered light intensity measurement was an irradiation wavelength of 700 nm, a scattering angle of 20 °, and 30 °, and each condition of the absorbance measurement was measured as two wavelengths of a main wavelength of 570 nm and a sub-wavelength of 800 nm. Add 122 μL of R1 to 1.5 μL of the sample containing CRP and incubate at 37 ° C. for about 300 seconds, then add and stir 122 μL of R2 and incubate at 37 ° C. for about 300 seconds. The amount of change in scattered light intensity and absorbance was calculated from the difference between the two.
(検量線と試料測定)
 CRPキャリブレーター(デンカ生研社製)を用いてスプライン演算した散乱光強度、吸光度それぞれに基づく検量線を用いて試料中のCRP濃度をそれぞれ算出した。なお検量線の濃度範囲は各測定条件下におけるダイナミックレンジに応じて都度選択した。
(Calibration curve and sample measurement)
The CRP concentration in the sample was calculated using a calibration curve based on each of the scattered light intensity and the absorbance calculated by spline using a CRP calibrator (manufactured by Denka Seiken Co., Ltd.). The concentration range of the calibration curve was selected each time according to the dynamic range under each measurement condition.
(測定中のラテックス粒子濃度と検体量濃度)
 本測定では表1に示す様な粒子径、粒子濃度のラテックス粒子を使用した。また、検体量濃度は、0.62v%であった。
(Latex particle concentration and sample volume concentration during measurement)
In this measurement, latex particles having a particle size and a particle concentration as shown in Table 1 were used. The sample volume concentration was 0.62 v%.
 実施例1~3、および比較例1~9で用いた原料および得られた試薬を、以下の方法で評価した。結果を表2に示す。 The raw materials and the obtained reagents used in Examples 1 to 3 and Comparative Examples 1 to 9 were evaluated by the following methods. The results are shown in Table 2.
[検出変動係数比]
 測定の精度管理に用いるCRPのコントロール血清(デンカ生研製)の低値側試料を1/20に生理食塩水で希釈したものを検体として吸光度、並びに散乱光強度それぞれを、各n=20測定した。得られたn=20の標準偏差から変動係数(CV)を測定方法別に求め、吸光度の変動係数(CVabs)を基準に、散乱光強度の変動係数(CVsc)の割合を求め、同値を検出変動係数比とした(式2)。検出変動係数比が1以下であれば、散乱光強度の変動係数が吸光度の変動係数よりも小さいことを表し、散乱光強度の利点である検出感度の向上が期待される指標となる。
[Detection coefficient of variation ratio]
The absorbance and scattered light intensity of the low-value side sample of CRP control serum (manufactured by Denka Seiken Co., Ltd.) used for quality control of measurement diluted with physiological saline as a sample were measured at n = 20 each. .. From the obtained standard deviation of n = 20, the coefficient of variation (CV) was obtained for each measurement method, and the ratio of the coefficient of variation (CV sc ) of the scattered light intensity was obtained based on the coefficient of variation of absorbance (CV abs ), and the same value was obtained. It was used as the detection coefficient of variation ratio (Equation 2). When the detection coefficient of variation ratio is 1 or less, it means that the coefficient of variation of the scattered light intensity is smaller than the coefficient of variation of the absorbance, which is an index expected to improve the detection sensitivity, which is an advantage of the scattered light intensity.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 その結果、比較例1~8のラテックス粒子径60nm、および70nmを用いた試薬では、調整した何れの粒子濃度(0.074~0.350w/v%)でも検出変動係数比が1以上となり、散乱光検出系の利点である低値感度の向上が期待されない試薬組成であることが示唆された。 As a result, in the reagents using the latex particle diameters of 60 nm and 70 nm of Comparative Examples 1 to 8, the detection coefficient of variation ratio was 1 or more at any of the adjusted particle concentrations (0.074 to 0.350 w / v%). It was suggested that the reagent composition is not expected to improve the low value sensitivity, which is an advantage of the scattered light detection system.
 210nmのラテックス粒子を用いた試薬では、粒子濃度が0.008~0.033w/v%(実施例1~3)の範囲において、検出変動係数比が1以下となり、同粒子径、および濃度範囲においては散乱光検出系の利点である低値感度の向上が期待される試薬組成であることが示唆された。しかしながら、同じ210nmのラテックス径を用いても、粒子濃度が0.004w/v%(比較例9)では、検出変動係数比が1以上となった。 In the reagent using the latex particles of 210 nm, the detection coefficient of variation ratio was 1 or less in the particle concentration range of 0.008 to 0.033 w / v% (Examples 1 to 3), and the particle size and concentration range were the same. It was suggested that the composition is expected to improve low value sensitivity, which is an advantage of the scattered light detection system. However, even when the same latex diameter of 210 nm was used, the detection coefficient of variation ratio was 1 or more when the particle concentration was 0.004 w / v% (Comparative Example 9).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例4~7)
 実施例1~3、および比較例1~9で得られた結果が、CRP測定試薬に特有な結果であるかとの検証を目的に、異なる試薬項目で同様評価を行った。
(Examples 4 to 7)
Similar evaluations were performed with different reagent items for the purpose of verifying whether the results obtained in Examples 1 to 3 and Comparative Examples 1 to 9 were unique to the CRP measurement reagent.
(実施例4)
 ラテックス上に担持する結合パートナーを抗シスタチンC(Cys-C)ポリクローナル抗体に変更し、且つ表3に示す通りに変更した以外は、実施例1と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表4に示す。検出変動係数比は1以下であり、粒子径、および粒子濃度共にCRP測定試薬中の評価(実施例1~3、および比較例1~9)で得られた範囲と同等であり、矛盾しないことを確認した。
(Example 4)
A second reagent (R2) was prepared in the same manner as in Example 1 except that the binding partner supported on the latex was changed to an anti-cystatin C (Cys-C) polyclonal antibody and changed as shown in Table 3. Measurements were made. The results obtained are shown in Table 4. The detection coefficient of variation ratio is 1 or less, and both the particle size and the particle concentration are equivalent to the ranges obtained in the evaluations in the CRP measuring reagent (Examples 1 to 3 and Comparative Examples 1 to 9), and are consistent with each other. It was confirmed.
(実施例5)
 ラテックス上に担持する結合パートナーを抗ミオグロビン(Mb)ポリクローナル抗体に変更し、且つ表3に示す通りに変更した以外は、実施例1と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表4に示す。検出変動係数比は1以下であり、粒子径、および粒子濃度共にCRP測定試薬中の評価(実施例1~3、および比較例1~9)で得られた範囲と同等であり、矛盾しないことを確認した。
(Example 5)
A second reagent (R2) was prepared and measured in the same manner as in Example 1 except that the binding partner supported on the latex was changed to an anti-myoglobin (Mb) polyclonal antibody and changed as shown in Table 3. rice field. The results obtained are shown in Table 4. The detection coefficient of variation ratio is 1 or less, and both the particle size and the particle concentration are equivalent to the ranges obtained in the evaluations in the CRP measuring reagent (Examples 1 to 3 and Comparative Examples 1 to 9), and are consistent with each other. It was confirmed.
(実施例6)
 ラテックス上に担持する結合パートナーを抗イムノグロブリンE(IgE)モノクローナル抗体に変更し、且つ表3に示す通りに変更した以外は、実施例1と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表4に示す。検出変動係数比は1以下であり、粒子径、および粒子濃度共にCRP測定試薬中の評価(実施例1~3、および比較例1~9)で得られた範囲と同等であり、矛盾しないことを確認した。
(Example 6)
A second reagent (R2) was prepared and measured in the same manner as in Example 1 except that the binding partner supported on the latex was changed to an anti-immunoglobulin E (IgE) monoclonal antibody and changed as shown in Table 3. Was done. The results obtained are shown in Table 4. The detection coefficient of variation ratio is 1 or less, and both the particle size and the particle concentration are equivalent to the ranges obtained in the evaluations in the CRP measuring reagent (Examples 1 to 3 and Comparative Examples 1 to 9), and are consistent with each other. It was confirmed.
(実施例7)
 ラテックス上に担持する結合パートナーを抗ミエロペルオキシダーゼ(MPO)ポリクローナル抗体に変更し、且つ表3に示す通りに変更した以外は、実施例1と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表4に示す。検出変動係数比は1以下であり、粒子径、および粒子濃度共にCRP測定試薬中の評価(実施例1~3、および比較例1~9)で得られた範囲と同等であり、矛盾しないことを確認した。
(Example 7)
A second reagent (R2) was prepared and measured in the same manner as in Example 1 except that the binding partner supported on the latex was changed to an anti-myeloperoxidase (MPO) polyclonal antibody and changed as shown in Table 3. went. The results obtained are shown in Table 4. The detection coefficient of variation ratio is 1 or less, and both the particle size and the particle concentration are equivalent to the ranges obtained in the evaluations in the CRP measuring reagent (Examples 1 to 3 and Comparative Examples 1 to 9), and are consistent with each other. It was confirmed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例8~12、比較例10~17)
 ラテックス上に担持する結合パートナーを抗CRPポリクローナル抗体にして、2種の異なる粒子径のラテックス粒子を用い、且つ表5に示す通りに各粒子濃度を変更した以外は、実施例1と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表6に示す。
(Examples 8 to 12, Comparative Examples 10 to 17)
Similar to Example 1, except that the binding partner carried on the latex was an anti-CRP polyclonal antibody, two types of latex particles having different particle sizes were used, and the concentration of each particle was changed as shown in Table 5. Two reagents (R2) were prepared and measured. The results obtained are shown in Table 6.
 用いた2種のラテックス粒子の小粒子径(60、70nm)側の濃度が0.35~0.15w/v%の範囲(比較例10~15)では、検出変動係数比が1以上となり、単一粒子系の場合(比較例1~9)と同様に散乱光計測の利点が発揮されない試薬組成であることが示唆された。 When the concentrations of the two types of latex particles used on the small particle diameter (60, 70 nm) side were in the range of 0.35 to 0.15 w / v% (Comparative Examples 10 to 15), the detection coefficient of variation ratio was 1 or more. It was suggested that the reagent composition did not exhibit the advantages of scattered light measurement as in the case of the single particle system (Comparative Examples 1 to 9).
 ラテックス粒子の小粒子径が100nmで、且つ粒子濃度が0.35~0.15w/v%の場合(比較例16~17、実施例12)、短波長570nm側の吸光度測定値が、測定上限の吸光度3.0を超えてしまい、測定不可(吸光度の変動係数は「ERROR」と表記)となった。よって、同範囲の検出変動係数比は算出不可となった。但し、同吸光度は、測定波長と反比例の関係が成り立ち、測定波長を570nmよりも長い波長で測定することで測定上限の3.0以下となり、検出変動係数比を算出することが可能となる可能性がある。小粒子径の粒子濃度が0.15w/v%の実施例12の散乱光計測の変動係数は、4.2%と十分低い値で有り、吸光度の波長選択により、検出変動係数比が1以下となる可能性は十二分に有ると見なせる。また、小粒子径(60、70、100nm)の粒子濃度が0.074w/v%(実施例8~11)では、検出変動係数比が1以下となり、散乱光検出系の利点が発揮される試薬設計であることが示唆された。 When the small particle size of the latex particles is 100 nm and the particle concentration is 0.35 to 0.15 w / v% (Comparative Examples 16 to 17, Example 12), the absorbance measurement value on the short wavelength 570 nm side is the upper limit of measurement. The absorbance of 3.0 was exceeded, and it became impossible to measure (the variation coefficient of absorbance is expressed as "ERROR"). Therefore, the detection coefficient of variation ratio in the same range cannot be calculated. However, the absorbance has an inversely proportional relationship with the measurement wavelength, and by measuring the measurement wavelength at a wavelength longer than 570 nm, it becomes 3.0 or less, which is the upper limit of measurement, and it is possible to calculate the detection coefficient of variation ratio. There is sex. The coefficient of variation of the scattered light measurement of Example 12 in which the particle concentration of the small particle size is 0.15 w / v% is a sufficiently low value of 4.2%, and the detection coefficient of variation ratio is 1 or less depending on the wavelength selection of the absorbance. It can be considered that there is a sufficient possibility of becoming. Further, when the particle concentration of the small particle diameter (60, 70, 100 nm) is 0.074 w / v% (Examples 8 to 11), the detection coefficient of variation ratio is 1 or less, and the advantage of the scattered light detection system is exhibited. It was suggested that it was a reagent design.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例13、比較例18)
 実施例8~12、および比較例10~17で得られた結果が、CRP測定試薬に特有な結果であるかとの検証を目的に、異なる試薬項目で同様評価を行った。
(Example 13, Comparative Example 18)
Similar evaluations were performed with different reagent items for the purpose of verifying whether the results obtained in Examples 8 to 12 and Comparative Examples 10 to 17 were unique to the CRP measurement reagent.
(実施例13)
 ラテックス上に担持する結合パートナーを抗フェリチン(FER)ポリクローナル抗体に変更し、且つ表7に示す通りに変更した以外は、実施例9と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表8に示す。検出変動係数比は1以下であり、粒子径、および粒子濃度共にCRP測定試薬中の評価(実施例8~12、および比較例10~17)で得られた範囲と同等であり、矛盾しないことを確認した。
(Example 13)
A second reagent (R2) was prepared and measured in the same manner as in Example 9, except that the binding partner supported on the latex was changed to an anti-ferritin (FER) polyclonal antibody and changed as shown in Table 7. rice field. The results obtained are shown in Table 8. The detection coefficient of variation ratio is 1 or less, and both the particle size and the particle concentration are equivalent to the ranges obtained in the evaluations in the CRP measuring reagent (Examples 8 to 12 and Comparative Examples 10 to 17), and are consistent with each other. It was confirmed.
(比較例18)
 ラテックス上に担持する結合パートナーを抗β2-ミクログロブリン(BMG)ポリクローナル抗体に変更し、且つ表7に示す通りに変更した以外は、実施例9と同様に第2試薬(R2)を作製し、測定を行った。得られた結果は表8に示す。検出変動係数比は1以上であり、粒子径、および粒子濃度共にCRP測定試薬中の評価(実施例8~12、および比較例10~17)で得られた範囲と同等であり、矛盾しないことを確認した。
(Comparative Example 18)
A second reagent (R2) was prepared in the same manner as in Example 9 except that the binding partner supported on the latex was changed to an anti-β2-microglobulin (BMG) polyclonal antibody and changed as shown in Table 7. Measurements were made. The results obtained are shown in Table 8. The detection coefficient of variation ratio is 1 or more, and both the particle size and the particle concentration are equivalent to the ranges obtained in the evaluations in the CRP measuring reagent (Examples 8 to 12 and Comparative Examples 10 to 17), and are consistent with each other. It was confirmed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(比較例19、実施例14)
 実施例9の試薬を基準に、表9に示す通りに検体濃度を変更した以外は、同様に第2試薬(R2)を作製し、測定を行った。ただし、比較例19では、散乱光測定を行わず、吸光度測定のみを行った。本評価では追加の評価項目として、以下を追加した。得られた結果は表10に示す。
(Comparative Example 19, Example 14)
A second reagent (R2) was prepared and measured in the same manner, except that the sample concentration was changed as shown in Table 9, based on the reagent of Example 9. However, in Comparative Example 19, the scattered light measurement was not performed, and only the absorbance measurement was performed. In this evaluation, the following were added as additional evaluation items. The results obtained are shown in Table 10.
[高濃度域測定上限]
 高濃度域測定上限は、検量線を得るために測定する目的物質の最大濃度とした。
[High concentration range measurement upper limit]
The upper limit of measurement in the high concentration range was the maximum concentration of the target substance to be measured in order to obtain a calibration curve.
 その結果、実施例14では、比較例19から検体量を0.68割に減量しても、検出変動係数比は1以下であり、且つ高濃度域測定上限が、比較例19(32mg/dL)と比較し1.5倍の47mg/dL相当に増大するという臨床試薬として良好な結果を得た。 As a result, in Example 14, even if the sample amount was reduced to 0.680% from Comparative Example 19, the detection coefficient of variation ratio was 1 or less, and the upper limit of measurement in the high concentration range was Comparative Example 19 (32 mg / dL). ), A good result was obtained as a clinical reagent that increased by 1.5 times to 47 mg / dL.
(比較例20、実施例15)
 実施例14で得られた結果が、CRP測定試薬に特有な結果であるかとの検証を目的に、異なる試薬項目としてFER測定試薬で同様評価を行った。実施例13試薬を基準に、表9に示す通りに検体量を変更した以外は、同様に第2試薬(R2)を作製し、測定を行った。ただし、比較例20では、散乱光測定を行わず、吸光度測定のみを行った。得られた結果は表10に示す。
(Comparative Example 20, Example 15)
For the purpose of verifying whether the result obtained in Example 14 is a result peculiar to the CRP measuring reagent, the same evaluation was performed with the FER measuring reagent as a different reagent item. A second reagent (R2) was prepared and measured in the same manner, except that the sample amount was changed as shown in Table 9 based on the reagent of Example 13. However, in Comparative Example 20, only the absorbance was measured without measuring the scattered light. The results obtained are shown in Table 10.
 その結果、比較例20から検体濃度を0.29割に減量しても、検出変動係数比は1以下であり、且つ高濃度域測定上限が、比較例20(1000ng/mL)と比較し3.5倍の3500ng/mL相当に増大すると言う臨床試薬として良好な結果を得た。 As a result, even if the sample concentration was reduced to 0.290% from Comparative Example 20, the detection coefficient of variation ratio was 1 or less, and the upper limit of measurement in the high concentration range was 3 as compared with Comparative Example 20 (1000 ng / mL). Good results were obtained as a clinical reagent that increased by a factor of 3.5 to 3500 ng / mL.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1~表10の結果から、本発明のラテックス粒子増強免疫凝集測定方法とその試薬は、感度(検出感度比)およびダイナミックレンジ(高濃度域測定上限)に優れることが分かった。 From the results in Tables 1 to 10, it was found that the latex particle-enhanced immunoaggregation measuring method and its reagent of the present invention are excellent in sensitivity (detection sensitivity ratio) and dynamic range (high concentration range measurement upper limit).
 2 検体
 3 反応液
 4 試薬
 10 検体ディスク
 11 ディスク本体
 12 駆動部
 15 検体カップ
 20 反応ディスク
 21 ディスク本体
 22 駆動部
 25 反応容器
 28 恒温槽
 30 試薬ディスク
 31 ディスク本体
 32 駆動部
 35 試薬ボトル
 38 試薬保冷庫
 41 検体分注機構
 42 試薬分注機構
 43 撹拌部
 44 吸光光度計
 45 散乱光度計
 46 洗浄部(槽)
 50 分析制御部
 70 記憶部
 71 出力部
 72 入力部
 100 コンピュータ
 101 インタフェース回路
2 Specimen 3 Reaction solution 4 Reagent 10 Specimen disk 11 Disc body 12 Drive unit 15 Specimen cup 20 Reaction disk 21 Disc body 22 Drive unit 25 Reaction vessel 28 Constant temperature bath 30 Reagent disk 31 Disc body 32 Drive unit 35 Reagent bottle 38 Reagent cold storage 41 Specimen dispensing mechanism 42 Reagent dispensing mechanism 43 Stirring unit 44 Absorption photometer 45 Scattered photometer 46 Cleaning unit (tank)
50 Analysis control unit 70 Storage unit 71 Output unit 72 Input unit 100 Computer 101 Interface circuit

Claims (7)

  1.  感作ラテックス粒子の浮遊液と目的物質とを反応させ、次いで、前記感作ラテックス粒子の凝集を、光学的変化量から測定することを含む、ラテックス凝集法による目的物質の測定方法であって、前記感作ラテックス粒子の感作前の体積平均粒子径が80nm~335nmであり、反応系中の前記感作ラテックス粒子の終濃度が0.005~0.170w/v%であり、前記感作ラテックス粒子の感作前の粒子径が80nm以下の粒子の反応系中の終濃度が0.09w/v%以下であり、前記光学的変化量が、吸光度変化量と散乱光変化量である、方法。 A method for measuring a target substance by a latex agglomeration method, which comprises reacting a suspension of sensitized latex particles with a target substance, and then measuring the aggregation of the sensitized latex particles from an amount of optical change. The volume average particle diameter of the sensitized latex particles before sensitization was 80 nm to 335 nm, and the final concentration of the sensitized latex particles in the reaction system was 0.005 to 0.170 w / v%. The final concentration of the latex particles with a particle size of 80 nm or less before sensitization in the reaction system is 0.09 w / v% or less, and the optical changes are the absorbance change and the scattered light change. Method.
  2.  前記吸光度変化量及び前記散乱光変化量の測定を、前記感作ラテックス粒子の感作前の体積平均粒子径の1~10倍の範囲の波長の光を用いて行う、請求項1記載の方法。 The method according to claim 1, wherein the amount of change in absorbance and the amount of change in scattered light are measured using light having a wavelength in the range of 1 to 10 times the volume average particle diameter of the sensitized latex particles before sensitization. ..
  3.  前記吸光度変化量の測定波長は、500~900nmの範囲内で選択された2つの波長を用い、更に選ばれた2つの測定波長は主波長と、該主波長よりも長い副波長を用い、更に、前期散乱光変化量は500~900nmの範囲内で選択された1つの波長を用いる請求項1又は2記載の方法。 As the measurement wavelength of the amount of change in absorbance, two wavelengths selected in the range of 500 to 900 nm are used, and the two further selected measurement wavelengths use a main wavelength and a sub-wavelength longer than the main wavelength, and further. The method according to claim 1 or 2, wherein the amount of change in scattered light in the first half uses one wavelength selected in the range of 500 to 900 nm.
  4.  前記目的物質について、達成すべき測定値の下限値と上限値が規定により定められている場合、吸光度測定のみで該下限値を達成するために必要な最小の検体量濃度の0.7倍以下の検体量濃度で行う、請求項1~3のいずれか1項に記載の方法。 When the lower and upper limits of the measured values to be achieved are specified for the target substance, 0.7 times or less of the minimum sample volume concentration required to achieve the lower limit only by absorbance measurement. The method according to any one of claims 1 to 3, which is carried out at the sample amount concentration of.
  5.  前記散乱光変化量の測定における散乱角が10°~30°の範囲内で少なくとも1種の散乱が測定される、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein at least one type of scattering is measured within a range of a scattering angle of 10 ° to 30 ° in the measurement of the amount of change in scattered light.
  6. 感作ラテックス粒子の浮遊液と前記目的物質とを反応させ、次いで、前記感作ラテックス粒子の凝集を、吸光度変化量と散乱光変化量から測定することを含む、ラテックス凝集法による目的物質の測定試薬であって、前記感作ラテックス粒子の感作前の体積平均粒子径が80nm~335nmであり、反応系中の前記感作ラテックス粒子の終濃度が0.005~0.10w/v%であり、前記感作ラテックス粒子の感作前の粒子径が80nm以下の粒子の反応系中の終濃度が0.09w/v%以下である、試薬。 Measurement of the target substance by the latex agglomeration method, which comprises reacting the suspended liquid of the sensitized latex particles with the target substance, and then measuring the aggregation of the sensitized latex particles from the amount of change in absorbance and the amount of change in scattered light. As a reagent, the volume average particle diameter of the sensitized latex particles before sensitization is 80 nm to 335 nm, and the final concentration of the sensitized latex particles in the reaction system is 0.005 to 0.10 w / v%. A reagent having a final concentration of 0.09 w / v% or less in a reaction system of particles having a particle size of 80 nm or less before sensitization of the sensitized latex particles.
  7. 感作前の前記感作ラテックス粒子の体積平均粒子径が前記吸光度変化量及び前記散乱光変化量の測定波長の1~1/10の範囲である、請求項6に記載の試薬。 The reagent according to claim 6, wherein the volume average particle diameter of the sensitized latex particles before sensitization is in the range of 1 to 1/10 of the measurement wavelengths of the amount of change in absorbance and the amount of change in scattered light.
PCT/JP2020/014610 2020-03-30 2020-03-30 Latex agglutination method-mediated target substance measurement method, and reagent therefor WO2021199178A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227033516A KR20220159382A (en) 2020-03-30 2020-03-30 Method for measuring target substance by latex agglutination method and reagent therefor
PCT/JP2020/014610 WO2021199178A1 (en) 2020-03-30 2020-03-30 Latex agglutination method-mediated target substance measurement method, and reagent therefor
CN202080099034.4A CN115516312A (en) 2020-03-30 2020-03-30 Method for measuring target substance by latex agglutination method and reagent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014610 WO2021199178A1 (en) 2020-03-30 2020-03-30 Latex agglutination method-mediated target substance measurement method, and reagent therefor

Publications (1)

Publication Number Publication Date
WO2021199178A1 true WO2021199178A1 (en) 2021-10-07

Family

ID=77927778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014610 WO2021199178A1 (en) 2020-03-30 2020-03-30 Latex agglutination method-mediated target substance measurement method, and reagent therefor

Country Status (3)

Country Link
KR (1) KR20220159382A (en)
CN (1) CN115516312A (en)
WO (1) WO2021199178A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255140A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Automatic analysis device and specimen analysis method
CN116413256A (en) * 2023-02-13 2023-07-11 上海索昕生物科技有限公司 Photosensitive microsphere for photoexcitation chemiluminescence detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025401A1 (en) * 2004-08-31 2006-03-09 Denka Seiken Co., Ltd. Method of assaying antigen and reagent therefor
WO2009066731A1 (en) * 2007-11-21 2009-05-28 Arkray, Inc. Measurement reagent, immune nephelometry using the same, and analyte analysis tool
WO2012157206A1 (en) * 2011-05-13 2012-11-22 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2014192963A1 (en) * 2013-05-31 2014-12-04 積水メディカル株式会社 Method of agglutination immunoassay
WO2018043688A1 (en) * 2016-08-31 2018-03-08 積水化学工業株式会社 Analyte concentration measuring method, particle containing agglutinated fluorescent material, and inspection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513075B1 (en) 1969-02-05 1976-01-30
JP2588174B2 (en) 1986-09-08 1997-03-05 三菱化学株式会社 Measuring method of antigen-antibody reaction
JPH0843393A (en) 1994-07-29 1996-02-16 Shima Kenkyusho:Kk Immunological measuring method and analyzing device
JP4163764B2 (en) 1996-09-18 2008-10-08 栄研化学株式会社 Immunological particle agglutination method
CA2244326C (en) 1997-08-11 2006-03-28 Shinichi Eda Microparticle enhanced light scattering agglutination assay and microparticle reagents therefor
JP5740264B2 (en) 2011-09-20 2015-06-24 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025401A1 (en) * 2004-08-31 2006-03-09 Denka Seiken Co., Ltd. Method of assaying antigen and reagent therefor
WO2009066731A1 (en) * 2007-11-21 2009-05-28 Arkray, Inc. Measurement reagent, immune nephelometry using the same, and analyte analysis tool
WO2012157206A1 (en) * 2011-05-13 2012-11-22 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2014192963A1 (en) * 2013-05-31 2014-12-04 積水メディカル株式会社 Method of agglutination immunoassay
WO2018043688A1 (en) * 2016-08-31 2018-03-08 積水化学工業株式会社 Analyte concentration measuring method, particle containing agglutinated fluorescent material, and inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255140A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Automatic analysis device and specimen analysis method
CN116413256A (en) * 2023-02-13 2023-07-11 上海索昕生物科技有限公司 Photosensitive microsphere for photoexcitation chemiluminescence detection

Also Published As

Publication number Publication date
CN115516312A (en) 2022-12-23
KR20220159382A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP6367942B2 (en) Method for detecting prozone effects in photometric assays
US9310286B2 (en) Patient sample classification based upon low angle light scattering
US9568488B2 (en) Biological sample analyzing apparatus
JP6581726B2 (en) Automatic analyzer and automatic analysis method
WO2021199178A1 (en) Latex agglutination method-mediated target substance measurement method, and reagent therefor
US11187712B2 (en) Automated analyzer and automated analysis method
JP3708942B2 (en) Carrier particle latex for measuring reagent and measuring reagent
EP1801590B1 (en) Method of assaying antigen and reagent therefor
JPWO2011065573A1 (en) Homogeneous measurement method and reagent
CN111239418A (en) Kit for determining ANA based on latex enhanced immunoturbidimetry and preparation and use methods thereof
JPS6365369A (en) Method for measuring antigen-antibody reaction
US5093271A (en) Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
JP2005283250A (en) Measuring method of gold colloid agglutination reaction
JP7327944B2 (en) Method for measuring target substance by latex agglutination method and its reagent
US7851229B2 (en) Two-phase optical assay with unitized container and double or single sensor systems
JP3513075B2 (en) Immunoassay and reagent therefor
EP2309265A1 (en) Method of assaying complex and kit to be used therefor
US20140011190A1 (en) Method for performing a rapid test
JPH0448265A (en) Immunoassay
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JP7438910B2 (en) Ferritin measurement reagent
JPS6262291B2 (en)
CN114137221A (en) Myoglobin detection reagent preparation method and detection method
WO2020203755A1 (en) Immunoassay reagent and immunoassay method
CN117890578A (en) Single reagent for detecting trypsinogen 2 (Try-2) and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP