JPH0843393A - Immunological measuring method and analyzing device - Google Patents

Immunological measuring method and analyzing device

Info

Publication number
JPH0843393A
JPH0843393A JP19624994A JP19624994A JPH0843393A JP H0843393 A JPH0843393 A JP H0843393A JP 19624994 A JP19624994 A JP 19624994A JP 19624994 A JP19624994 A JP 19624994A JP H0843393 A JPH0843393 A JP H0843393A
Authority
JP
Japan
Prior art keywords
measured
component
standard curve
concentration
turbidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19624994A
Other languages
Japanese (ja)
Inventor
Masakatsu Hashimoto
正勝 橋本
Yoshio Takahashi
良夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMA KENKYUSHO KK
Original Assignee
SHIMA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMA KENKYUSHO KK filed Critical SHIMA KENKYUSHO KK
Priority to JP19624994A priority Critical patent/JPH0843393A/en
Publication of JPH0843393A publication Critical patent/JPH0843393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To make a wide-range, high precision measurement by measuring the turbidity change mount due to reaction of the component to be measured with a reaction component using a plurality of wavelengths differing from one another, preparing standard curve for each measuring wavelength, and using the measurements which have undergone a concentration conversion with the short wavelength side standard curve in the case of a low concentration specimen and with the long wavelength side standard curve in the case of a high concentration specimen. CONSTITUTION:The main part of a device is configured with a sample erection supply part 1, sampling mechanism 2, reaction cell disc 3, reagent supply part 4, and analyzing optical system 6. The optical system 6 may be of any commercially available sort, and beams of light having different wavelengths are fed from a light source device 7 and cast on a specimen placed in a reaction cell 28, and the transmitted light is reflected by a non-abberation concave diffraction grating 26 and received by a sensor 27, and therefrom a turbidity signal is forwarded to a plurality of standard curve preparing circuits 9. The circuits 9 prepare a standard curve for measuring low concentration using a turbidity signal with short wavelength and a high concentration standard curve using a turbidity signal due to long wavelength, and a concentration calculating circuit 10 makes conversion into the concentration of the specimen by the use of these standard curves and selects concentration signal and forwards it as output 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は免疫学的測定方法及び分
析装置にかかるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immunological measuring method and analyzer.

【0002】[0002]

【従来の技術】近年、目的とする成分を高感度に定量測
定することのできる方法として、ラテックス比濁法(L
−TIA)が普及しつつある。
2. Description of the Related Art Recently, as a method capable of quantitatively measuring a target component with high sensitivity, a latex nephelometry (L
-TIA) is becoming popular.

【0003】L−TIAはラテックス凝集測定装置又は
生化学自動分析装置を用い、検体ラックに配置されたサ
ンプルカップ中の検体を反応光学セルに一定量とり所定
量の緩衝液を加えて37℃で5分間インキュベートし、
ラテックス試薬を一定量加えてかくはんし、更に5分間
37℃でインキュベートし、ラテックス試薬添加直後の
吸光度とラテックス試薬添加5分後の吸光度を測定して
吸光度変化量を求め、予め標準液を用いて同様に操作し
て得られた標準曲線から、検体中の測定しようとする成
分の濃度を求めるものが一般的である。
L-TIA uses a latex agglutination measuring device or a biochemical automatic analyzer, and a predetermined amount of a sample in a sample cup placed in a sample rack is placed in a reaction optical cell and a predetermined amount of a buffer solution is added thereto at 37 ° C. Incubate for 5 minutes,
Add a certain amount of latex reagent, stir, and incubate for another 5 minutes at 37 ° C. Measure the absorbance immediately after adding latex reagent and the absorbance 5 minutes after adding latex reagent to obtain the amount of change in absorbance, and use the standard solution in advance. In general, the concentration of the component to be measured in the sample is determined from a standard curve obtained by the same operation.

【0004】測定しようとする成分の濃度に応じて測定
範囲が決められ、測定範囲がng/ml〜μg/mlの
低濃度の場合には高感度なラテックス試薬が求められ、
比較的大きな粒子径のラテックス粒子が用いられるのに
対し、測定範囲がμg/ml〜mg/mlの高感度の場
合には低感度のラテックス試薬が求められ、比較的小さ
な粒子径のラテックス粒子が用いられるのが一般的であ
る。測定波長は粒子径の大きなラテックス試薬の場合は
570〜800nmの比較的長い波長が、又粒子径の小
さなラテックス試薬の場合は340〜500nmの比較
的短い波長が選択される。
The measuring range is determined according to the concentrations of the components to be measured, and when the measuring range is a low concentration of ng / ml to μg / ml, a highly sensitive latex reagent is required,
While latex particles having a relatively large particle size are used, low sensitivity latex reagents are required when the measurement range is high sensitivity of μg / ml to mg / ml, and latex particles having a relatively small particle size are used. It is generally used. As the measurement wavelength, a relatively long wavelength of 570 to 800 nm is selected for a latex reagent having a large particle size, and a relatively short wavelength of 340 to 500 nm is selected for a latex reagent having a small particle size.

【0005】近年は医療の進歩に伴い、体外診断薬の測
定精度の向上が望まれており、例えば血清中のC反応性
蛋白(CRP)の測定の場合、0mg/dl〜50mg
/dlと検体の濃度範囲が極めて広く分布しているた
め、高感度で且つ高濃度域において地帯現象の生じない
測定試薬が求められている。
In recent years, with the progress of medical treatment, it has been desired to improve the accuracy of measurement of in vitro diagnostic agents. For example, in the case of measuring C-reactive protein (CRP) in serum, 0 mg / dl to 50 mg.
Since the concentration range of / dl and the sample is extremely wide, there is a demand for a measurement reagent that has high sensitivity and does not cause a zone phenomenon in the high concentration range.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ラテッ
クス試薬を用いて例えば、CRPを0.1mg/dlま
で測定できるように感度を高めようとすると粒子径の大
きなラテックス粒子を使うため、CRPが1mg/dl
以上になると反応量が著しく増大し、吸光度差が自動分
析装置の測定可能な測定範囲を越えてしまう。
However, when a latex reagent is used to increase the sensitivity so that CRP can be measured up to 0.1 mg / dl, latex particles having a large particle size are used. dl
When it becomes above, the reaction amount increases remarkably and the difference in absorbance exceeds the measurable range of the automatic analyzer.

【0007】或いは、CRP10mg/dl以上で地帯
現象を生じてしまい、ラテックス凝集反応が起こりにく
くなって、吸光度差が低下して正確な測定値が得られな
いことになる。
Alternatively, when the CRP is 10 mg / dl or more, a zone phenomenon occurs, and the latex agglutination reaction becomes difficult to occur, and the difference in absorbance is reduced, and an accurate measured value cannot be obtained.

【0008】又、測定範囲を広げるために、粒子径の小
さなラテックスを使用し、且つ測定波長を短くすること
により高感度に測定できて測定範囲の広いラテックス試
薬が開発され、普及しつつあるが、血清中のIgG,I
gAのようにCRPに比べて更に高い濃度で存在する成
分の測定の場合には地帯現象が生じてしまう。
In order to extend the measuring range, latex reagents having a small particle size are used, and by shortening the measuring wavelength, a latex reagent which can be measured with high sensitivity and has a wide measuring range has been developed and is becoming popular. , IgG in serum, I
When measuring a component such as gA which is present at a higher concentration than CRP, a zone phenomenon occurs.

【0009】この地帯現象を回避するため、粒子径の小
さなラテックス試薬を多量に反応系に加え、測定波長を
長くすることにより高濃度成分の測定が可能になるが、
測定波長を長くすることにより低濃度側の感度が低下し
てしまう。感度の低下を防止するために波長を短くして
感度を高めようとすると、試薬吸光度が高くなり過ぎて
自動分析装置の吸光度測定限界近くなり、高濃度領域の
測定ができなくなる。
In order to avoid this zone phenomenon, a large amount of latex reagent having a small particle size is added to the reaction system and the measurement wavelength is lengthened to enable measurement of high concentration components.
By increasing the measurement wavelength, the sensitivity on the low concentration side is reduced. If the wavelength is shortened to increase the sensitivity in order to prevent a decrease in the sensitivity, the reagent absorbance becomes too high and approaches the absorbance measurement limit of the automatic analyzer, making it impossible to measure in the high concentration region.

【0010】[0010]

【課題を解決するための手段】本発明は上述の従来の課
題を解決するためになしたもので、免疫学的反応により
測定しようとする成分と、該測定しようとする成分と反
応する成分及び/又は該反応する成分を不溶化した担体
粒子との反応を、互いに異なる複数の波長により、一定
時間反応後の濁度変化量を夫々測定し、各測定波長毎に
標準曲線を作成し、少なくともいずれか一つの標準曲線
から検体中の測定しようとする成分を測定することを特
徴とする免疫学的測定方法、及びサンプル架設供給部
と、サンプリング機構と、反応用セルと、第一試薬供給
部及び/又は第二試薬供給部と、かくはん機構と、分析
用光学系とからなる分析装置において、互いに異なる複
数の波長の光線を照射する装置と、受光部と、該受光部
において測定波長毎に得られた標準物質の濁度信号から
標準曲線を夫々作成する標準曲線作成回路と、検体の各
測定波長毎の濁度信号から前記標準曲線作成回路で夫々
作成した標準曲線を用いて測定しようとする成分の濃度
を夫々算出する濃度演算回路と、複数の波長から得られ
た濃度信号を選択し出力する選択出力回路とを備えて成
ることを特徴とする分析装置にかかるものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and comprises a component to be measured by an immunological reaction, a component that reacts with the component to be measured, and / Or the reaction with the carrier particles insolubilized components to react, by measuring a plurality of wavelengths different from each other, the turbidity change amount after reaction for a certain period of time is measured, and a standard curve is prepared for each measurement wavelength, and at least one of them is prepared. An immunological measurement method characterized by measuring a component to be measured in a sample from one standard curve, and a sample erection supply unit, a sampling mechanism, a reaction cell, a first reagent supply unit, and / Or, in an analyzer comprising a second reagent supply unit, a stirring mechanism, and an analysis optical system, a device for irradiating light beams having a plurality of different wavelengths, a light receiving unit, and each measurement wavelength in the light receiving unit A standard curve creation circuit that creates a standard curve from the turbidity signal of the obtained standard substance, and a standard curve created by the standard curve creation circuit from the turbidity signal of each measurement wavelength of the sample are to be used for measurement. According to another aspect of the present invention, there is provided an analyzer, comprising: a concentration calculation circuit for calculating the concentrations of the respective components and a selection output circuit for selecting and outputting concentration signals obtained from a plurality of wavelengths.

【0011】ここで該当する免疫学的反応には抗原抗体
反応、補体結合反応、変性IgG−RF反応等がある。
The immunological reaction applicable here includes an antigen-antibody reaction, a complement fixation reaction, a modified IgG-RF reaction and the like.

【0012】測定しようとする成分とは、前記免疫学的
反応に関与する反応成分のいずれかをいい、抗原、抗
体、補体、RF等がある。
The component to be measured refers to any of the reaction components involved in the immunological reaction, and includes antigens, antibodies, complements, RF and the like.

【0013】測定しようとする成分と反応する成分と
は、前記免疫学的反応に関与する反応成分のいずれか他
方をいい、例えば測定しようとする成分が抗原である場
合には抗体となる。該反応成分が抗体である場合にはポ
リクローナル抗体、モノクローナル抗体のいずれも使用
可能であり、二価抗体、一価抗体のいずれでもよい。
The component reacting with the component to be measured refers to the other of the reaction components involved in the immunological reaction, and for example, when the component to be measured is an antigen, it becomes an antibody. When the reaction component is an antibody, either a polyclonal antibody or a monoclonal antibody can be used, and either a divalent antibody or a monovalent antibody may be used.

【0014】担体粒子としては、ラテックス粒子、金属
コロイド粒子等が反応性、分散安定性の面で有利であ
る。微小粒径の担体粒子を製造することは高度の技術を
必要とするが、最近市販されているものが使用可能であ
る。測定しようとする成分の含有量が高い場合には、粒
子径は小さい方が試薬ブランクが低くなり、反応系に多
量に加えることが可能となり、免疫学的反応の両成分の
比率を適切な範囲とし得る。
As the carrier particles, latex particles, metal colloid particles and the like are advantageous in terms of reactivity and dispersion stability. The production of finely divided carrier particles requires a high degree of skill, but those commercially available these days can be used. When the content of the component to be measured is high, the smaller the particle size is, the lower the reagent blank becomes, and it becomes possible to add a large amount to the reaction system. Can be

【0015】担体粒子の粒子径は1.6μm以下であれ
ばよいが、1.6μm以下の担体粒子を複数種類組み合
せることも可能であり、例えば平均粒子径が0.10μ
m以上の担体粒子と0.10μm以下の担体粒子を組み
合わせるとよい。又、平均粒子径の異なる三種類以上の
担体粒子を組み合わせてもよい。
The carrier particles may have a particle size of 1.6 μm or less, but it is possible to combine a plurality of carrier particles having a particle size of 1.6 μm or less, for example, an average particle size of 0.10 μm.
It is advisable to combine carrier particles of m or more with carrier particles of 0.10 μm or less. Further, three or more kinds of carrier particles having different average particle diameters may be combined.

【0016】担体粒子に免疫学的反応の一方の成分を不
溶化する方法としては、一般的な物理的吸着法、或は水
溶性カルボジイミドや二官能性試薬による化学的結合法
が用いられる。
As a method for insolubilizing one component of the immunological reaction in the carrier particles, a general physical adsorption method or a chemical binding method using a water-soluble carbodiimide or a bifunctional reagent is used.

【0017】測定しようとする成分を含む検体として
は、血清、血漿、血液、尿、腹水、胸水、髄液等の体
液、或は細胞、組織等の培養液、抽出液が用いられる。
As the sample containing the component to be measured, there are used body fluids such as serum, plasma, blood, urine, ascites, pleural effusion, and cerebrospinal fluid, or culture fluids and extracts of cells and tissues.

【0018】測定しようとする成分を含む検体との反応
の検出手段としては、一般的に使用される光学的な検出
手段が用いられる。すなわち、一定時間反応後の濁度変
化量を波長0.3〜2.4μmにおける吸光度及び/又
は散乱光強度の増加量又は減少量として測定する。測定
感度を上げるためには測定波長は短いほうが有利である
が、ラテックスの粒子径を大きくすると測定感度が上昇
するが試薬ブランクも高くなるので、例えば一般的な生
化学自動分析装置の吸光度測定上限は2.0〜3.0で
あるから光学的な検出手段の測定上限を越えないよう波
長を長くするのがよい。又、測定しようとする成分の含
有量が高いため測定範囲を広くとりたい場合にも波長が
長いほうがよい。短い波長の1.3倍以上の長い波長を
用いる。
As a means for detecting a reaction with a sample containing a component to be measured, a generally used optical detecting means is used. That is, the amount of change in turbidity after reaction for a certain period of time is measured as the amount of increase or decrease in absorbance and / or scattered light intensity at a wavelength of 0.3 to 2.4 μm. In order to increase the measurement sensitivity, it is advantageous to use a shorter measurement wavelength, but increasing the particle size of the latex increases the measurement sensitivity but also increases the reagent blank, so for example, the upper limit of the absorbance measurement of a general biochemical automatic analyzer Is 2.0 to 3.0, it is preferable to lengthen the wavelength so as not to exceed the upper limit of measurement by the optical detecting means. In addition, since the content of the component to be measured is high, it is preferable that the wavelength is long even when a wide measurement range is desired. A long wavelength of 1.3 times or more of a short wavelength is used.

【0019】短波長により測定した濁度変化量によって
低濃度測定用標準曲線を手書き又はコンピュータにより
作成し、長波長により測定した濁度変化量により高濃度
測定用標準曲線を同様に作成し、夫々の波長により測定
した測定しようとする成分の濁度変化量により濃度換算
を行う。
A low-concentration measurement standard curve is created by handwriting or computer by the turbidity change amount measured by the short wavelength, and a high-concentration measurement standard curve is similarly created by the turbidity change amount measured by the long wavelength. Concentration conversion is performed by the turbidity change amount of the component to be measured, which is measured by the wavelength of.

【0020】低濃度側の標準曲線を作成する際、短波長
を主波長とし、長波長を副波長として主波長と副波長の
測定濁度の差を用いてもよい。
When the standard curve on the low concentration side is prepared, the difference in the measured turbidity between the main wavelength and the sub wavelength may be used with the short wavelength as the main wavelength and the long wavelength as the sub wavelength.

【0021】複数の標準曲線から計算された測定しよう
とする成分の測定値のうち、いずれか高い方の値を選択
して出力する。
Of the measured values of the component to be measured calculated from a plurality of standard curves, the higher value is selected and output.

【0022】又、一定時間反応後の濁度変化量は、測定
しようとする成分と反応する成分及び/又は該反応する
成分を不溶化した担体粒子を添加する前後に測定しても
よく、又添加後に測定してもよい。
The amount of change in turbidity after reaction for a certain period of time may be measured before or after addition of a component that reacts with the component to be measured and / or carrier particles insolubilized with the component that reacts. It may be measured later.

【0023】又、本発明の装置はAlso, the device of the present invention is

【図6】及びFIG. 6 and

【図7】に示す通りであり、サンプル架設供給部1と、
サンプリング機構2と、反応用セルディスク3と、第一
試薬及び第2試薬供給部4と、かくはん機構5と、分析
用光学系6とからなる分析装置において、互いに異なる
複数の波長の光線を照射する光源装置7と、受光部8
と、該受光部8において測定波長毎に得られた標準物質
の濁度信号から標準曲線を夫々作成する標準曲線作成回
路9と、検体の各測定波長毎の濁度信号から前記標準曲
線作成回路9で夫々作成した標準曲線を用いて測定しよ
うとする成分の濃度を夫々算出する濃度演算回路10
と、複数の波長から得られた濃度信号を選択し出力する
選択出力回路11から構成される。図中、12は試薬ピ
ペッティング機構、13は試料分注機構、14は洗浄機
構、15は洗浄水ポンプ、16は試薬分注機構、17は
恒温槽、18はサンプルカップ、19はログ変換及びA
/D変換装置、20はマイクロコンピュータ、21はプ
リンタ、22はCRT、23はフロッピィディスク装
置、24は操作パネル、25はインターフェイスであ
る。
As shown in FIG. 7, the sample erection supply unit 1 and
Irradiation with light beams having a plurality of different wavelengths in an analyzer including a sampling mechanism 2, a reaction cell disk 3, a first reagent and second reagent supply unit 4, a stirring mechanism 5, and an analysis optical system 6. Light source device 7 and light receiving unit 8
And a standard curve creating circuit 9 for creating a standard curve from the turbidity signal of the standard substance obtained at each measurement wavelength in the light receiving unit 8, and the standard curve creating circuit from the turbidity signal at each measurement wavelength of the sample. Concentration calculation circuit 10 for calculating the concentrations of the components to be measured using the standard curves created in 9 respectively.
And a selection output circuit 11 for selecting and outputting the density signals obtained from a plurality of wavelengths. In the figure, 12 is a reagent pipetting mechanism, 13 is a sample dispensing mechanism, 14 is a washing mechanism, 15 is a wash water pump, 16 is a reagent dispensing mechanism, 17 is a constant temperature bath, 18 is a sample cup, 19 is log conversion and A
A / D converter, 20 is a microcomputer, 21 is a printer, 22 is a CRT, 23 is a floppy disk device, 24 is an operation panel, and 25 is an interface.

【0024】[0024]

【図7】に示すように、前記互いに異なる複数の波長の
光線を照射する光源装置7と、無収差凹面回折格子26
及び検知器27からなる受光部8は現在広く使用されて
いる装置をそのまま使用し、該受光部において測定波長
毎に得られた標準物質の濁度信号から標準曲線を作成す
る公知の標準曲線作成回路9を複数備える。
FIG. 7 shows a light source device 7 for irradiating light beams having a plurality of different wavelengths, and an aplanatic concave diffraction grating 26.
For the light receiving unit 8 including the detector 27, a device widely used at present is used as it is, and a known standard curve is created by creating a standard curve from the turbidity signal of the standard substance obtained for each measurement wavelength in the light receiving unit. A plurality of circuits 9 are provided.

【0025】該標準曲線作成回路9に入力する濁度信号
は、反応用セル28内の検体と第一試薬の混合液を一定
時間毎に異なる波長で濁度を測定し、更に第二試薬を添
加してかくはんした後に一定時間毎に濁度を測定した濁
度信号を使用する。
The turbidity signal input to the standard curve forming circuit 9 measures the turbidity of the mixed solution of the sample and the first reagent in the reaction cell 28 at different wavelengths at regular intervals, and further measures the second reagent. The turbidity signal is used, in which the turbidity is measured at regular intervals after addition and stirring.

【0026】低濃度測定用標準曲線は短波長による濁度
信号を用いるが、短波長を主波長とし長波長を副波長と
して長短二波長の濁度信号の差を用いてもよい。又、低
濃度測定用標準曲線は第二試薬を添加した後の濁度変化
量を用いるとよい。
Although the standard curve for low concentration measurement uses the turbidity signal of a short wavelength, the difference between the turbidity signals of long and short wavelengths may be used with the short wavelength as the main wavelength and the long wavelength as the sub wavelength. Further, the standard curve for low concentration measurement may use the turbidity change amount after the addition of the second reagent.

【0027】更に、検体の各測定波長毎の濁度信号から
前記標準曲線作成回路9で作成した標準曲線を用いて測
定しようとする成分の濃度を夫々算出する濃度演算回路
10を夫々備える。
Further, each is provided with a concentration calculation circuit 10 for calculating the concentration of the component to be measured from the turbidity signal for each measurement wavelength of the sample using the standard curve created by the standard curve creation circuit 9.

【0028】該濃度演算回路10は公知の、直線又は非
直線の標準曲線演算式を使用することができ、非直線タ
イプとしてログロジット、スプラインを使用することが
できる。
The density calculation circuit 10 can use a known straight line or non-linear standard curve calculation formula, and log logit or spline can be used as the non-linear type.

【0029】これらの濃度演算回路10からの濃度信号
を波長毎にそのまま又はいずれか高い方を選択して出力
する選択出力回路11を備える。
A selection output circuit 11 is provided which outputs the concentration signals from the concentration calculation circuit 10 as they are for each wavelength or selects the higher one and outputs it.

【0030】[0030]

【作用】免疫学的反応により測定しようとする成分と、
該測定しようとする成分と反応する成分及び/又は該反
応する成分を不溶化した担体粒子との反応を、反応用セ
ル28において分析用光学系6により互いに異なる複数
の波長により測定すると、短波長により測定した吸光度
差は測定しようとする成分の低濃度領域で大きくなり、
検出感度が高くなる。又、長波長により測定した吸光度
差は測定しようとする成分の低濃度領域では小さくなる
が、高濃度領域では大きくなり、測定精度がよい。
[Function] A component to be measured by an immunological reaction,
When the reaction with the component to be measured and / or the reaction with the carrier particles in which the reactive component is insolubilized is measured by the analysis optical system 6 in the reaction cell 28 at a plurality of different wavelengths, a short wavelength The measured absorbance difference becomes large in the low concentration region of the component to be measured,
Higher detection sensitivity. Further, the difference in absorbance measured by the long wavelength becomes small in the low concentration region of the component to be measured, but becomes large in the high concentration region, and the measurement accuracy is good.

【0031】従って、検体中の測定しようとする成分の
濃度を測定する場合、低濃度の時は短波長測定による標
準曲線を用いると高感度な測定が行え、又高濃度の時は
長波長測定による標準曲線を用いると高値の検体を確実
に測定することができる。
Therefore, when measuring the concentration of the component to be measured in the sample, high sensitivity measurement can be performed by using the standard curve by short wavelength measurement at low concentration, and long wavelength measurement at high concentration. By using the standard curve according to, it is possible to reliably measure high-value samples.

【0032】前記長波長測定の際に、第二試薬添加前後
の吸光度差を用いて標準曲線を作成することにより、よ
り高濃度の測定が可能となる。これは、一般に濁度変化
量は第二試薬添加直後がもっとも大きく、時間の経過と
ともに濁度変化量は減少するため、第二試薬添加後に濁
度変化量を測定する場合に比べ、第二試薬添加前後の濁
度変化量を測定する方が大きな濁度変化量を得ることが
できて精度が向上する。
By making a standard curve using the difference in absorbance before and after the addition of the second reagent during the long-wavelength measurement, it is possible to measure a higher concentration. This is because the turbidity change amount is generally the largest immediately after the addition of the second reagent, and the turbidity change amount decreases with the passage of time. By measuring the turbidity change amount before and after the addition, a larger turbidity change amount can be obtained and the accuracy is improved.

【0033】又、第二試薬添加後に濁度変化量を測定す
る場合は、かくはん機構5によるかくはん操作が間に入
るため、反応初期の濁度変化を利用しないので、高濃度
検体では反応初期に著しく濁度変化が生じてしまい、演
算に利用される濁度変化量は必ずしも大きくないことが
ある。このため、濃度演算回路10で計算される濃度値
は実際よりも低値となる場合もある。
When the amount of change in turbidity after the addition of the second reagent is to be measured, the stirring operation by the stirring mechanism 5 is performed in a short period of time, so the change in turbidity at the initial stage of the reaction is not used. The turbidity change remarkably occurs, and the turbidity change amount used for the calculation may not necessarily be large. Therefore, the density value calculated by the density calculation circuit 10 may be lower than the actual value.

【0034】しかし、第二試薬添加前後に濁度変化量を
測定する場合は、抗原抗体反応により生じた濁度変化量
をすべて演算に利用できるため、高値検体の測定に有利
である。
However, in the case of measuring the turbidity change amount before and after the addition of the second reagent, all the turbidity change amount generated by the antigen-antibody reaction can be used for calculation, which is advantageous for the measurement of high-value samples.

【0035】以上の説明は濁度変化量が反応時間に比例
して増加する場合についてのものであるが、濁度変化量
が反応時間に比例して減少する場合も同様に測定するこ
とができる。
Although the above description is for the case where the turbidity change amount increases in proportion to the reaction time, the same measurement can be performed when the turbidity change amount decreases in proportion to the reaction time. .

【0036】[0036]

【実施例】【Example】

実施例1 市販の粒子径0.05μmのポリスチレンラテックス粒
子に、ヤギ抗CRP抗体を常法により物理的吸着させて
感作する。0.1%BSAを含む0.2Mグリシン−N
aCl緩衝液(pH7.2)により浮遊して感作ラテッ
クス試薬を得た。
Example 1 A goat anti-CRP antibody is physically adsorbed on a commercially available polystyrene latex particle having a particle size of 0.05 μm by a conventional method for sensitization. 0.2M Glycine-N with 0.1% BSA
The sensitized latex reagent was obtained by floating with an aCl buffer (pH 7.2).

【0037】0.1%BSAを含む0.1Mグリシン−
NaCl緩衝液(反応用緩衝液とする)300μlにC
RP標準液5μlを加え、次いで前記感作ラテックス試
薬を加え、反応開始後1分と5分の0.34μm及び
0.7μmにおける吸光度を夫々測定し、吸光度差を求
めた。
0.1 M glycine containing 0.1% BSA
C in 300 μl of NaCl buffer (used as reaction buffer)
The RP standard solution (5 μl) was added, and then the sensitized latex reagent was added, and the absorbance at 0.34 μm and 0.7 μm at 1 minute and 5 minutes after the start of the reaction was measured to determine the difference in absorbance.

【0038】結果はThe result is

【図1】に示す通りであり、測定波長0.34μmでは
CRP0〜5mg/dlまでの高感度な標準曲線が得ら
れ、測定波長0.7μmでは0〜20mg/dlまでの
広範囲な標準曲線が得られた。
As shown in FIG. 1, a highly sensitive standard curve of CRP 0 to 5 mg / dl is obtained at a measurement wavelength of 0.34 μm, and a wide range of standard curve of 0 to 20 mg / dl is obtained at a measurement wavelength of 0.7 μm. Was obtained.

【0039】CRP濃度0〜5mg/dlまでの検体は
短波長測定による低濃度用標準曲線により濃度換算し、
5〜20mg/dlまでの検体は長波長測定による高濃
度用標準曲線により濃度換算して濃度を求めたところ、
L1=0.06mg/dl,L2=0.22mg/d
l,M1=3.22mg/dl,M2=5.36mg/
dl,H1=12.87mg/dl,H2=18.49
mg/dlであった。
Samples having a CRP concentration of 0 to 5 mg / dl were subjected to concentration conversion by a standard curve for low concentration by short wavelength measurement,
For samples up to 5 to 20 mg / dl, the concentration was converted by the standard curve for high concentration by long-wavelength measurement and the concentration was
L1 = 0.06 mg / dl, L2 = 0.22 mg / d
1, M1 = 3.22 mg / dl, M2 = 5.36 mg /
dl, H1 = 12.87 mg / dl, H2 = 18.49
It was mg / dl.

【0040】実施例2 前記実施例1で調製した抗CRP抗体感作ラテックス試
薬を用いて、0.34及び0.70μmにおける吸光度
を実施例1と同様に夫々測定し、低濃度用標準曲線を
0.34μmを主波長とし0.70μmを副波長として
主波長の吸光度差から副波長の吸光度差を差し引いて得
られる濁度信号により作成した。
Example 2 Using the anti-CRP antibody-sensitized latex reagent prepared in Example 1, the absorbances at 0.34 and 0.70 μm were measured in the same manner as in Example 1, and a standard curve for low concentration was obtained. It was prepared from a turbidity signal obtained by subtracting the absorbance difference of the sub wavelength from the absorbance difference of the main wavelength with 0.34 μm as the main wavelength and 0.70 μm as the sub wavelength.

【0041】反応用緩衝液300μl、CRP標準液5
μl、感作ラテックス試薬50μlとして、前記実施例
1と同様に反応し、吸光度差を求めた。
Reaction buffer 300 μl, CRP standard solution 5
μl and 50 μl of the sensitized latex reagent were reacted in the same manner as in Example 1 to determine the difference in absorbance.

【0042】結果はThe result is

【図2】に示す通りである。2 is as shown in FIG.

【0043】実施例3 前記実施例1で調製した抗CRP抗体感作ラテックス試
薬を用いて、0.34及び0.70μmにおける吸光度
を、検体に第一試薬を加えてから約20秒間隔で5分間
測定し、更に第二試薬を加えてから5分間同様の間隔で
測定した。
Example 3 Using the anti-CRP antibody-sensitized latex reagent prepared in Example 1 above, the absorbance at 0.34 and 0.70 μm was measured at intervals of about 20 seconds after adding the first reagent to the sample. The measurement was performed for 5 minutes, and after the second reagent was added, the measurement was performed for 5 minutes at the same intervals.

【0044】低濃度側標準曲線は、前記実施例2と同様
に第二試薬添加後の主波長(0.34μm)と副波長
(0.70μm)の差による吸光度差により作成し、高
濃度側標準曲線を0.70μmの長波長を用いて第二試
薬添加前と第二試薬添加五分後の吸光度差により作成し
た。
The low-concentration standard curve was prepared by the difference in absorbance due to the difference between the main wavelength (0.34 μm) and the sub-wavelength (0.70 μm) after the addition of the second reagent, as in Example 2, and the high-concentration side was obtained. A standard curve was constructed using the long wavelength of 0.70 μm and the difference in absorbance before and 5 minutes after the addition of the second reagent.

【0045】結果はThe result is

【図3】に示す通りであり、短波長側の測定によりCR
P0〜5.0mg/dlまでの高感度な標準曲線が得ら
れ、長波長側の測定によりCRP0〜20mg/dlま
での広範囲な標準曲線が得られた。
[Fig. 3] As shown in Fig. 3, CR is measured by measurement on the short wavelength side.
A highly sensitive standard curve from P0 to 5.0 mg / dl was obtained, and a wide range standard curve from CRP0 to 20 mg / dl was obtained by measurement on the long wavelength side.

【0046】実施例4 市販の粒子径0.22μmのポリスチレンラテックス粒
子に、ヤギ抗CRP抗体を実施例1と同様に感作し、感
作ラテックス試薬を得た。
Example 4 Commercially available polystyrene latex particles having a particle size of 0.22 μm were sensitized with a goat anti-CRP antibody in the same manner as in Example 1 to obtain a sensitized latex reagent.

【0047】反応用緩衝液300μlにCRP標準液を
3μl加え、ついで前記感作ラテックス試薬を50μl
加え、反応開始後1分と5分の0.57μmと0.80
μmにおける吸光度を夫々測定し、吸光度差を求めた。
3 μl of CRP standard solution was added to 300 μl of reaction buffer, and then 50 μl of the sensitized latex reagent was added.
In addition, 0.57 μm and 0.80 for 1 minute and 5 minutes after starting the reaction
The absorbance at μm was measured to obtain the difference in absorbance.

【0048】結果はThe result is

【図4】に示す通りであり、短波長側の測定によりCR
P0〜10mg/dlまでの高感度な標準曲線が得ら
れ、長波長側の測定によりCRP0〜30mg/dlま
での広範囲な標準曲線が得られた。
[Fig. 4] As shown in Fig. 4, CR is obtained by measurement on the short wavelength side.
A highly sensitive standard curve from P0 to 10 mg / dl was obtained, and a wide range standard curve from CRP0 to 30 mg / dl was obtained by measurement on the long wavelength side.

【0049】実施例5 市販の粒子径0.1μmのポリスチレンラテックス粒子
に、ヤギ抗β2ミクログロブリン抗体を実施例1と同様
に感作し、感作ラテックス試薬を得た。
Example 5 Commercially available polystyrene latex particles having a particle size of 0.1 μm were sensitized with goat anti-β2 microglobulin antibody in the same manner as in Example 1 to obtain a sensitized latex reagent.

【0050】反応用緩衝液300μlにβ2ミクログロ
ブリン標準液を3μl加え、ついで前記感作ラテックス
試薬を50μl加え、反応開始後1分と5分の0.34
μmと0.57μmにおける吸光度を夫々測定し、吸光
度差を求めた。
To the reaction buffer (300 μl), β2 microglobulin standard solution (3 μl) was added, and then the sensitized latex reagent (50 μl) was added.
The absorbances at μm and 0.57 μm were measured, and the difference in absorbance was determined.

【0051】結果はThe result is

【図5】に示す通りであり、短波長側の測定によりβ2
ミクログロブリン0〜10mg/lまでの高感度な標準
曲線が得られ、長波長側の測定によりβ2ミクログロブ
リン0〜50mg/lまでの広範囲な標準曲線が得られ
た。
[Fig. 5] As shown in Fig. 5, β2 is measured by measurement on the short wavelength side.
A highly sensitive standard curve of 0 to 10 mg / l of microglobulin was obtained, and a wide range of standard curve of 0 to 50 mg / l of β2 microglobulin was obtained by measurement on the long wavelength side.

【0052】[0052]

【発明の効果】以上述べたように本発明によれば下記の
種々の優れた効果が得られる。
As described above, according to the present invention, the following various excellent effects can be obtained.

【0053】1.本発明の方法によれば、免疫学反応に
より測定しようとする成分と、該測定しようとする成分
と反応する成分等との反応を、複数の波長により濁度変
化量を夫々測定し、各測定波長毎に標準曲線を作成する
ので、低濃度検体は短波長側標準曲線により濃度換算し
た測定値を採用できるため、高感度に測定でき、又高濃
度検体は長波長側標準曲線により濃度換算した測定値を
採用することができるため高濃度まで精度よく測定する
ことができる。
1. According to the method of the present invention, a reaction between a component to be measured by an immunological reaction and a component or the like that reacts with the component to be measured is measured by measuring the turbidity change amount at each of a plurality of wavelengths, and measuring each measurement. Since a standard curve is created for each wavelength, low-concentration samples can be measured with a concentration converted from the short-wavelength side standard curve, allowing high-sensitivity measurement, and high-concentration samples can be converted into concentration with a long-wavelength side standard curve. Since the measured value can be adopted, high concentration can be measured with high accuracy.

【0054】2.短波長側標準曲線を短波長測定濁度と
長波長測定濁度の差により作成することにより、低濃度
検体をさらに精度よく測定することができる。
2. By creating the short-wavelength side standard curve by the difference between the short-wavelength measured turbidity and the long-wavelength measured turbidity, the low-concentration sample can be measured more accurately.

【0055】3.一定時間反応後の濁度変化量を、測定
しようとする成分と反応する成分及び/又は該反応する
成分を不溶化した担体粒子を添加した後に測定すること
により、高濃度側測定範囲をさらに高濃度まで拡大する
ことができる。
3. By measuring the amount of change in turbidity after reaction for a certain period of time after adding a component that reacts with the component to be measured and / or carrier particles insolubilized with the component that reacts, the measurement range on the high concentration side is further increased. Can be expanded up to.

【0056】4.本発明の分析装置によれば、従来から
広く使用されている自動分析装置に、複数の波長毎に標
準曲線作成回路と濃度演算回路を備え、複数の波長から
得られた濃度信号を選択出力するようにしたので、低濃
度検体は高感度に測定でき、高濃度検体は測定しようと
する成分の過剰による陰性化を減少することができる。
4. According to the analyzer of the present invention, an automatic analyzer which has been widely used conventionally is provided with a standard curve creating circuit and a concentration calculating circuit for each of a plurality of wavelengths, and selectively outputs a concentration signal obtained from a plurality of wavelengths. As a result, the low-concentration sample can be measured with high sensitivity, and the high-concentration sample can reduce the negative conversion due to the excess of the component to be measured.

【0057】5.本発明の試薬及び装置によれば、測定
範囲が著しく拡大されるので、希釈再測定の数が減少し
測定時間及び試薬コストが軽減される。
5. According to the reagent and the apparatus of the present invention, the measurement range is remarkably expanded, so that the number of dilution re-measurements is reduced and the measurement time and the reagent cost are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の効果を示した説明図である。FIG. 1 is an explanatory diagram showing an effect of the present invention.

【図2】本発明の効果を示した説明図である。FIG. 2 is an explanatory diagram showing the effect of the present invention.

【図3】本発明の効果を示した説明図である。FIG. 3 is an explanatory diagram showing the effect of the present invention.

【図4】本発明の効果を示した説明図である。FIG. 4 is an explanatory diagram showing the effect of the present invention.

【図5】本発明の効果を示した説明図である。FIG. 5 is an explanatory diagram showing the effect of the present invention.

【図6】本発明の分析装置の一例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of an analyzer of the present invention.

【図7】本発明の分析装置における分析用光学系の説明
図である。
FIG. 7 is an explanatory diagram of an analysis optical system in the analysis apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 サンプル架設供給部 2 サンプリング機構 3 反応用セルディスク 6 分析用光学系 7 光源装置 8 受光部 9 標準曲線作成回路 10 濃度演算回路 11 選択出力回路 1 Sample installation supply unit 2 Sampling mechanism 3 Cell disk for reaction 6 Optical system for analysis 7 Light source device 8 Light receiving unit 9 Standard curve creation circuit 10 Concentration calculation circuit 11 Selective output circuit

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 免疫学的反応により測定しようとする成
分と、該測定しようとする成分と反応する成分及び/又
は該反応する成分を不溶化した担体粒子との反応を、互
いに異なる複数の波長により、一定時間反応後の濁度変
化量を夫々測定し、各測定波長毎に標準曲線を作成し、
少なくともいずれか一つの標準曲線から検体中の測定し
ようとする成分を測定することを特徴とする免疫学的測
定方法。
1. A reaction between a component to be measured by an immunological reaction, a component that reacts with the component to be measured, and / or carrier particles in which the component that reacts is insolubilized by a plurality of wavelengths different from each other. , Measure the turbidity change amount after reaction for a fixed time, create a standard curve for each measurement wavelength,
An immunological measuring method, which comprises measuring a component to be measured in a sample from at least one standard curve.
【請求項2】 担体粒子の粒子径が1.6μm以下であ
る請求項1記載の免疫学的測定方法。
2. The immunological measuring method according to claim 1, wherein the particle size of the carrier particles is 1.6 μm or less.
【請求項3】 測定波長が2.4μm以下の波長から選
ばれる請求項1記載の免疫学的測定方法。
3. The immunological measurement method according to claim 1, wherein the measurement wavelength is selected from wavelengths of 2.4 μm or less.
【請求項4】 可視光線、近赤外線、レーザー光線の少
なくともいずれか一つを使用する請求項1記載の免疫学
的測定方法。
4. The immunological measuring method according to claim 1, wherein at least one of visible light, near infrared light and laser light is used.
【請求項5】 互いに異なる複数の波長が、少なくとも
1.3倍以上異なる2種類以上の波長である請求項1記
載の免疫学的測定方法。
5. The immunological measuring method according to claim 1, wherein the plurality of different wavelengths are two or more kinds of wavelengths different from each other by at least 1.3 times or more.
【請求項6】 吸光度及び/又は散乱光強度により濁度
変化量を測定する請求項1記載の免疫学的測定方法。
6. The immunological measurement method according to claim 1, wherein the turbidity change amount is measured by absorbance and / or scattered light intensity.
【請求項7】 測定しようとする成分の低濃度領域を短
波長側の標準曲線により濃度換算し、高濃度領域を長波
長側の標準曲線により濃度換算する請求項1記載の免疫
学的測定方法。
7. The immunological measuring method according to claim 1, wherein the low-concentration region of the component to be measured is converted into concentration by a standard curve on the short wavelength side, and the high concentration region is converted into concentration by a standard curve on the long wavelength side. .
【請求項8】 短波長側の標準曲線を短波長測定濁度と
長波長測定濁度の差により作成する請求項1記載の免疫
学的測定方法。
8. The immunological measuring method according to claim 1, wherein the standard curve on the short wavelength side is prepared by the difference between the short wavelength measured turbidity and the long wavelength measured turbidity.
【請求項9】 複数の標準曲線から計算された測定しよ
うとする成分の測定値のうち、いずれか高いほうの測定
値を、測定しようとする成分の測定値とする請求項1記
載の免疫学的測定方法。
9. The immunology according to claim 1, wherein the higher measured value among the measured values of the component to be measured calculated from a plurality of standard curves is used as the measured value of the component to be measured. Measurement method.
【請求項10】 免疫学的反応により測定しようとする
成分の量に応じて、該測定しようとする成分と反応する
成分を不溶化した粒子径が0.1μm以下の担体粒子
と、前記測定しようとする成分と反応する成分と、該反
応する成分を不溶化した粒子径が0.1μmよりも大き
い担体粒子の少なくとも一種とを組み合わせ、測定しよ
うとする成分を含む検体と反応させ、互いに異なる複数
の波長により、一定時間反応後の濁度変化量を夫々測定
し、各測定波長毎の標準曲線の少なくともいずれか一つ
から検体中の測定しようとする成分を測定することを特
徴とする免疫学的測定方法。
10. A carrier particle having a particle size of 0.1 μm or less, in which a component that reacts with the component to be measured is insolubilized according to the amount of the component to be measured by an immunological reaction, and the component to be measured. A plurality of wavelengths different from each other by combining a component that reacts with a component that reacts with at least one of carrier particles having a particle size of 0.1 μm or more insolubilized with the component that reacts with a sample containing the component to be measured. Immunoassay characterized by measuring the amount of change in turbidity after reaction for a certain period of time and measuring the component to be measured in the sample from at least one of the standard curves for each measurement wavelength. Method.
【請求項11】 粒子径が0.1μm以下の担体粒子を
複数種類組み合わせる請求項9記載の免疫学的測定方
法。
11. The immunological measurement method according to claim 9, wherein a plurality of types of carrier particles having a particle diameter of 0.1 μm or less are combined.
【請求項12】 粒子径が0.1μm以下の担体粒子と
0.05μm以下の担体粒子とを組み合わせる請求項1
1記載の免疫学的測定方法。
12. A combination of carrier particles having a particle diameter of 0.1 μm or less and carrier particles having a particle diameter of 0.05 μm or less.
1. The immunological measurement method described in 1.
【請求項13】 一定時間反応後の濁度変化量を光学的
に測定する請求項10、11、又は12記載の免疫学的
測定方法。
13. The immunological measurement method according to claim 10, 11 or 12, wherein the amount of change in turbidity after reaction for a certain period of time is optically measured.
【請求項14】 波長0.3〜2.4μmにおける吸光
度及び/又は散乱光強度の増加を測定する請求項12記
載の免疫学的測定方法。
14. The immunological measurement method according to claim 12, wherein an increase in absorbance and / or scattered light intensity at a wavelength of 0.3 to 2.4 μm is measured.
【請求項15】 一定時間反応後の濁度変化量を、測定
しようとする成分と反応する成分及び/又は該反応する
成分を不溶化した担体粒子を添加する前後に測定する請
求項1記載の免疫学的測定方法。
15. The immunity according to claim 1, wherein the amount of change in turbidity after reaction for a certain period of time is measured before and after adding a component that reacts with a component to be measured and / or carrier particles insolubilized with the component that reacts. Measurement method.
【請求項16】 一定時間反応後の濁度変化量を、測定
しようとする成分と反応する成分及び/又は該反応する
成分を不溶化した担体粒子を添加した後に測定する請求
項1記載の免疫学的測定方法。
16. The immunology according to claim 1, wherein the amount of change in turbidity after reaction for a certain period of time is measured after adding a component that reacts with a component to be measured and / or carrier particles insolubilized with the component that reacts. Measurement method.
【請求項17】 請求項15記載の添加前後に測定して
作成した標準曲線を高濃度測定用標準曲線とし、請求項
16記載の添加後に測定して作成した標準曲線を低濃度
測定用標準曲線とする請求項1記載の免疫学的測定方
法。
17. The standard curve measured before and after the addition according to claim 15 is used as a high-concentration measurement standard curve, and the standard curve measured after the addition according to claim 16 is created as a standard curve for low-concentration measurement. The immunological measuring method according to claim 1.
【請求項18】 サンプル架設供給部と、サンプリング
機構と、反応用セルと、第一試薬供給部及び/又は第二
試薬供給部と、かくはん機構と、分析用光学系とからな
る分析装置において、互いに異なる複数の波長の光線を
照射する装置と、受光部と、該受光部において測定波長
毎に得られた標準物質の濁度信号から標準曲線を夫々作
成する標準曲線作成回路と、検体の各測定波長毎の濁度
信号から前記標準曲線作成回路で夫々作成した標準曲線
を用いて測定しようとする成分の濃度を夫々算出する濃
度演算回路と、複数の波長から得られた濃度信号を選択
し出力する選択出力回路とを備えて成ることを特徴とす
る分析装置。
18. An analyzer comprising a sample erection supply unit, a sampling mechanism, a reaction cell, a first reagent supply unit and / or a second reagent supply unit, a stirring mechanism, and an analysis optical system, A device for irradiating light beams having a plurality of different wavelengths, a light receiving unit, a standard curve creating circuit for creating a standard curve from the turbidity signal of the standard substance obtained for each measurement wavelength in the light receiving unit, and each of the samples From the turbidity signal for each measurement wavelength, the concentration calculation circuit that calculates the concentration of each component to be measured using the standard curve created by the standard curve creation circuit, and the concentration signal obtained from multiple wavelengths are selected. An analysis device comprising a selective output circuit for outputting.
【請求項19】 分析用光学系が可視光線、近赤外線、
レーザー光線の少なくともいずれか一つである請求項1
8記載の分析装置。
19. The analysis optical system comprises visible light, near infrared light,
2. At least one of laser beams.
8. The analyzer according to item 8.
【請求項20】 分析用光学系が積分球である請求項1
8記載の分析装置。
20. The analysis optical system is an integrating sphere.
8. The analyzer according to item 8.
JP19624994A 1994-07-29 1994-07-29 Immunological measuring method and analyzing device Pending JPH0843393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19624994A JPH0843393A (en) 1994-07-29 1994-07-29 Immunological measuring method and analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19624994A JPH0843393A (en) 1994-07-29 1994-07-29 Immunological measuring method and analyzing device

Publications (1)

Publication Number Publication Date
JPH0843393A true JPH0843393A (en) 1996-02-16

Family

ID=16354670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19624994A Pending JPH0843393A (en) 1994-07-29 1994-07-29 Immunological measuring method and analyzing device

Country Status (1)

Country Link
JP (1) JPH0843393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192963A1 (en) 2013-05-31 2014-12-04 積水メディカル株式会社 Method of agglutination immunoassay
KR20220159382A (en) 2020-03-30 2022-12-02 덴카 주식회사 Method for measuring target substance by latex agglutination method and reagent therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192963A1 (en) 2013-05-31 2014-12-04 積水メディカル株式会社 Method of agglutination immunoassay
KR20160014007A (en) 2013-05-31 2016-02-05 세키스이 메디칼 가부시키가이샤 Method of agglutination immunoassay
JPWO2014192963A1 (en) * 2013-05-31 2017-02-23 積水メディカル株式会社 Immunoagglutination assay
EP3418724A1 (en) 2013-05-31 2018-12-26 Sekisui Medical Co., Ltd. Method of agglutination immunoassay
JP2019060891A (en) * 2013-05-31 2019-04-18 積水メディカル株式会社 Agglutination immunoassay
US11536717B2 (en) 2013-05-31 2022-12-27 Hitachi High-Tech Corporation Method of agglutination immunoassay
KR20220159382A (en) 2020-03-30 2022-12-02 덴카 주식회사 Method for measuring target substance by latex agglutination method and reagent therefor

Similar Documents

Publication Publication Date Title
US10809258B2 (en) Method for the detection of the prozone effect of photometric assays
JP2742953B2 (en) Analysis method
US4766083A (en) Method for the photometric determination of biological agglutination
US5571728A (en) Method for analyzing particle-enhanced agglutination reactions in centrifugal analyzers by determining the brightening of turbidity
US20020106708A1 (en) Assays reagents and kits for detecting or determining the concentration of analytes
EP1845373A1 (en) An immunoassay method
JPH01282447A (en) Immunoassay system for internal total reflection scattered
KR920000056B1 (en) Process for the determination of a specifically bindable substance
JPS62231168A (en) Improvement method for forming internal standard for analyzing analite-receptor
EP1801590B1 (en) Method of assaying antigen and reagent therefor
KR920000057B1 (en) Process and reagent for the determination of a specifically bindable substance
JPH09512900A (en) Solid-phase assay for detection of ligand
Price et al. Light scattering immunoassay
JP2591750B2 (en) Immunoassay system
US5093271A (en) Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
US6210975B1 (en) Process for determining a bindable analyte via immune precipitation and reagent therefor
US8900882B2 (en) Method of assaying complex and kit to be used therefor
JPH0843393A (en) Immunological measuring method and analyzing device
JPH01301165A (en) Immunoassay
JP3220546B2 (en) Method for measuring antigen or antibody in the presence of immune complex
JPS61280568A (en) Method for measuring components in bodily fluids
Qin et al. Evaluation of the Effect of Hemolysis on Quantitative Chemiluminescent Immunoassay Results for 10 Analytes.
JP2534067B2 (en) Quantitative method for C-reactive protein
Fortunato Principles of Immunochemistry
JPS6093353A (en) Immunological measurement method of fdp