JPH0448265A - Immunoassay - Google Patents

Immunoassay

Info

Publication number
JPH0448265A
JPH0448265A JP15933090A JP15933090A JPH0448265A JP H0448265 A JPH0448265 A JP H0448265A JP 15933090 A JP15933090 A JP 15933090A JP 15933090 A JP15933090 A JP 15933090A JP H0448265 A JPH0448265 A JP H0448265A
Authority
JP
Japan
Prior art keywords
antibodies
antigens
antibody
reaction
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15933090A
Other languages
Japanese (ja)
Inventor
Hiromi Iijima
飯嶋 裕巳
Hiroshi Ito
博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP15933090A priority Critical patent/JPH0448265A/en
Publication of JPH0448265A publication Critical patent/JPH0448265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PURPOSE:To make simultaneous multiple item measurement within the same reaction vessel by continuously effecting a flocculation reaction based on antigens or antibodies of two items in the same reaction vessel using the same specimen. CONSTITUTION:The 1st flocculation reaction based on the antigens or antibodies of one item is first effected in the same reaction vessel, then the 2nd flocculation reaction based on the antigens or antibodies of another one item is effected, by which the presence or quantity of the desired antigens or antibodies of the two items is simultaneously determined with the one specimen. The antigens to be used are exemplified by all of the antigens having antigenicity, such as protein, bacteria, and the components thereof, polysaccharides, lipids, nucleic acids, hormones, vitamins, hapten of drugs, etc., allergen of pollen, etc. The antibodies are exemplified by antiserum contg. antibodies, polyclonal antibodies (IgG fractions) (excluding the antiserum in the case of sensitization to fine particle carriers). The antigens or antibodies of multiple items are simultaneously measured within the same reaction vessel in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、体液(血液、血清、血しよう、髄液。[Detailed description of the invention] [Industrial application field] The present invention applies to body fluids (blood, serum, blood plasma, spinal fluid).

尿等)中の抗原又は抗体の測定法に関するものである。This relates to a method for measuring antigens or antibodies in urine, etc.).

詳しくは、同一検体の同時2項目免疫測定法に関するも
のである。
Specifically, it relates to a simultaneous two-item immunoassay method for the same specimen.

〔従来の技術〕[Conventional technology]

近年、医学や臨床検査の分野において、免疫測定法、特
に抗原抗体反応に基づく凝集を光学的濁度変化として測
定する比濁法は、試薬や自動分析装置の進歩と相俟って
急速に普及してきた。
In recent years, immunoassay methods, especially turbidimetry, which measures agglutination based on antigen-antibody reactions as changes in optical turbidity, have rapidly become popular in the fields of medicine and clinical testing, along with advances in reagents and automatic analyzers. I've been doing it.

従来、その測定方法としては、良く知られているように
、反応の結果生じる凝集塊を光学的濁度変化として測定
する比濁法、比朧法(ネフエロメトリー)が用いられて
いる。比濁法は、光学的濁度変化を透過光の変化として
測定するものであり[rclin、chem、」、第2
8巻第1.0号、第2121〜2124頁(1982)
参照〕、比朧法は、光学的濁度変化を散乱光の変化とし
て測定するものである( rAm、J、C11n、Pa
thol、Jw第76巻、第753頁(1981)参照
〕、又、ラテックスのような微粒子に抗原又は抗体を担
持した試薬を用い測定感度を高めたラテックス凝集比濁
法[rProtLdes of theBiology
cal Fluids(PERGAMON PRESS
社)」、第1版、第589〜第593頁(1973)参
照]等が用いられている。
Conventionally, as well-known measurement methods, turbidimetry and nephelometry have been used to measure aggregates produced as a result of the reaction as changes in optical turbidity. The nephelometric method measures optical turbidity changes as changes in transmitted light [rclin, chem, vol.
Vol. 8, No. 1.0, pp. 2121-2124 (1982)
], the Hiro method measures optical turbidity changes as changes in scattered light (rAm, J, C11n, Pa
thol, Jw Vol. 76, p. 753 (1981)], and latex agglutination nephelometry, which uses a reagent in which antigens or antibodies are supported on microparticles such as latex to increase measurement sensitivity [rProtLdes of the Biology].
cal Fluids(PERGAMON PRESS
Inc.), 1st edition, pp. 589-593 (1973)].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような免疫測定法においては、現在単一項目毎の測
定で行われている。たとえば、汎発性血管向凝固症候群
(DIC)患者の診断には、フィブリノーゲンとフィブ
リノーゲン、フィブリン分解産物(Fl)P、FDP−
E、FDP−Dダイマー等)の測定が行われているが、
測定は項目毎に検体を採取して別々の専用試薬で実施さ
れているのが現状である。又、リウマチ性熱、心筋炎、
糸球体腎炎等の各種炎症性疾患では、抗ストレプトリジ
ンO価(ASO)、C反応性蛋白(CRP)。
Currently, such immunoassay methods are performed by measuring each single item. For example, in the diagnosis of patients with disseminated angiocoagulant syndrome (DIC), fibrinogen and fibrin degradation products (Fl)P, FDP-
E, FDP-D dimer, etc.) have been measured.
Currently, measurements are performed by collecting samples for each item and using separate dedicated reagents. Also, rheumatic fever, myocarditis,
For various inflammatory diseases such as glomerulonephritis, anti-streptolysin O titer (ASO) and C-reactive protein (CRP).

自己免疫疾患(RF因子と抗核抗体の検出)等、同一患
者について複数項目の測定が行われているが、これらも
項目毎に検体を採取して別々の専用試薬で実施されてい
るのが現状である。上記の例の他にも、感染症や悪性腫
瘍等の各種疾患等でも同一患者の複数項目の測定が行わ
れている。又、特に新生児や癌患者からの検体の採取は
困難であり、患者の負担も大きく検体の必要量をより少
なくすることが望まれている。このためにも、診断上必
要な項目についての多項目同時測定が望まれている。し
かし、多数反応の混在により同一反応容器内での同時多
項目測定は困難であった。
Multiple items are measured on the same patient, such as autoimmune diseases (detection of RF factors and anti-nuclear antibodies), but it is important to collect samples for each item and use separate dedicated reagents. This is the current situation. In addition to the above examples, multiple items are measured on the same patient for various diseases such as infectious diseases and malignant tumors. In addition, it is difficult to collect specimens from newborns and cancer patients in particular, and the burden on patients is large, so it is desired to further reduce the required amount of specimens. For this reason, simultaneous measurement of multiple items necessary for diagnosis is desired. However, simultaneous measurement of multiple items in the same reaction vessel was difficult due to the coexistence of multiple reactions.

本発明は、同一患者検体を用いて同一反応容器内で2項
目の抗原又は抗体に基づく凝集反応を連続して行うこと
により、最少の検体採取量で、測定簡便性、迅速性に優
れる免疫測定法を提供するものである。
The present invention provides an immunoassay that is easy to measure and rapid, with a minimum amount of specimen collected, by sequentially performing agglutination reactions based on two antigens or antibodies in the same reaction container using the same patient specimen. It provides law.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、抗原と抗体による凝集反応を光学的な濁度変
化しとて測定し、検体中の目的とする抗原又は抗体の存
在又は量を求める免疫測定法において、同一の反応容器
中で、まず1項目の抗原又は抗体に基づく第1の凝集反
応を行ない、次いで他の1項目の抗原又は抗体に基づく
第2の凝集反応を行なうことにより、1つの検体につい
て同時に2項目の目的とする抗原又は抗体の存在又は量
を求めることを特徴とする免疫測定法に関する。
The present invention is an immunoassay method in which the agglutination reaction between an antigen and an antibody is measured as a change in optical turbidity to determine the presence or amount of a target antigen or antibody in a specimen, in the same reaction vessel. By first performing a first agglutination reaction based on one antigen or antibody, and then performing a second agglutination reaction based on another antigen or antibody, two target antigens can be obtained simultaneously for one specimen. Or it relates to an immunoassay method characterized by determining the presence or amount of antibodies.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

抗原と抗体による凝集反応を光学的な濁度変化として測
定し、検体試料中の抗原又は抗体の存在又は量を求める
免疫測定法は古くから良く知られている。
Immunoassay methods have been well known for a long time, in which the presence or amount of antigen or antibody in a specimen sample is determined by measuring the agglutination reaction between antigen and antibody as an optical turbidity change.

「抗原と抗体による凝集反応」は、水溶性の緩衝液中で
、抗原と抗体の特異的な結合反応(抗原抗体反応)の結
果凝集する反応である。通常、測定しようとする目的の
検体中の抗原又は抗体を試料とし、それに対する抗体又
は抗原が試薬として用いられている。この反応の進行の
度合は、抗原と抗体の量的関係、抗体の力価、抗原の種
類、反応温度(通常、室温から37℃)、反応媒体とし
ての水溶性の緩衝液等により変動する。通常、水溶性の
緩衝液としては0.1〜0.2moQ/Qの塩化す1−
リウムを含むpH5〜10、好ましくはpH6〜8のり
ん酸緩衝液、トリス〔トリス(ヒドロキシメチル)アミ
ノメタン〕塩酸緩衝液、グリシン緩衝液、はう酸緩衝液
、アンモニア緩衝液。
"Agglutination reaction between antigen and antibody" is a reaction in which antigen and antibody aggregate as a result of a specific binding reaction (antigen-antibody reaction) in an aqueous buffer. Usually, an antigen or antibody in a specimen to be measured is used as a sample, and an antibody or antigen against it is used as a reagent. The degree of progress of this reaction varies depending on the quantitative relationship between the antigen and antibody, the titer of the antibody, the type of antigen, the reaction temperature (usually from room temperature to 37° C.), the aqueous buffer solution used as the reaction medium, etc. Usually, as an aqueous buffer, 0.1 to 0.2 moQ/Q of 1-chloride is used.
Phosphate buffer with pH 5 to 10, preferably pH 6 to 8, containing tris[tris(hydroxymethyl)aminomethane]hydrochloric acid, glycine buffer, oxalic acid buffer, ammonia buffer.

トリエタノールアミン緩衝液等が反応の媒体として用い
られ、場合により、安定化剤、防腐剤、キレート剤、界
面活性剤、増感剤(ポリエチレングリコール)等の添加
剤と共に用いられる。又、抗原と抗体による凝集反応は
、光学的な濁度変化として測定される。
A triethanolamine buffer or the like is used as a reaction medium, optionally along with additives such as stabilizers, preservatives, chelating agents, surfactants, and sensitizers (polyethylene glycol). Furthermore, the agglutination reaction between antigen and antibody is measured as an optical turbidity change.

本発明において試薬として用いる抗原としては、蛋白質
、菌体及びその成分、ペプチド、多糖体。
Antigens used as reagents in the present invention include proteins, bacterial cells and their components, peptides, and polysaccharides.

脂質、核酸、ホルモン、ビタミン、ステロイド。lipids, nucleic acids, hormones, vitamins, steroids.

薬物等のハプテン、花粉等のアレルゲンなど抗原性を有
する全てのものが挙げられる。又、本発明において試薬
として用いる抗体としては、抗原に親和性を有する物質
および上記抗原から公知の方法により得られる抗体であ
り、抗体を含む抗血清。
Examples include all things that have antigenicity, such as haptens such as drugs and allergens such as pollen. In addition, the antibodies used as reagents in the present invention include substances having affinity for antigens and antibodies obtained from the above-mentioned antigens by known methods, and antisera containing antibodies.

ポリクローナル抗体(IgG画分)、モノクローナル抗
体等及びこれらの抗体から誘導されるFab +Fab
’ 、F(ab’ )、等が挙げられる(但し、微粒子
担体への感作には、抗血清を除く)。
Polyclonal antibodies (IgG fraction), monoclonal antibodies, etc., and Fab +Fab derived from these antibodies
', F(ab'), etc. (however, antiserum is excluded for sensitization to particulate carriers).

尚、本発明において、2種類の目的とする測定項目の組
合せは、検体中の同一成分を目的としない限り可能であ
る。
In the present invention, a combination of two types of target measurement items is possible as long as the same component in the specimen is not the target.

本発明において、「光学的な濁度の変化の測定」は検出
装置の面からいえば、通常の分光光度計や生化学自動分
析装置を用い吸光度(透過光)の変化を測定する比濁法
が利用できる。又、試薬面からいえば、目的とする抗体
又は抗原に対する抗原又は抗体をそのまま(すなわち微
粒子担体を使用しないで)用いる試薬と抗原又は抗体を
ラテックス等の不溶性の微粒子担体に感作した感作微粒
子担体を使用する試薬が水沫に利用できる。
In the present invention, "measuring changes in optical turbidity" refers to the nephelometric method, which measures changes in absorbance (transmitted light) using an ordinary spectrophotometer or automatic biochemical analyzer. is available. From a reagent perspective, there are reagents that use the antigen or antibody against the target antibody or antigen as is (i.e., without using a microparticle carrier), and sensitized microparticles in which the antigen or antibody is sensitized to an insoluble microparticle carrier such as latex. Reagents using carriers are available for water droplets.

本発明に利用できる微粒子担体としては、測定に使用す
る水溶性の緩衝液中で不溶性の、有機高分子重合性の微
粒子担体等であり、ポリスチレン。
The particulate carrier that can be used in the present invention includes organic polymerizable particulate carriers that are insoluble in the aqueous buffer used for measurement, such as polystyrene.

スチレン−ブタジェン共重合体、スチレン−スチレンス
ルホン酸の様な乳化重合により得られるラテックス粒子
やリポソームのような球状粒子が挙げられる。この微粒
子担体へ抗原又は抗体を感作(結合)させ測定用試薬と
して用いるが、感作は公知の方法により、物理的に吸着
させても良いし、化学的に結合させても良い。
Examples include latex particles obtained by emulsion polymerization such as styrene-butadiene copolymer and styrene-styrene sulfonic acid, and spherical particles such as liposomes. The microparticle carrier is sensitized (bound) with an antigen or antibody and used as a measurement reagent, and the sensitization may be performed by physically adsorbing or chemically binding by a known method.

一般に、微粒子担体を使用しない比濁法用試薬は、その
ままの反応では吸光度の変化量がtJ・さいためポリエ
チレングリコール6000等の増感剤が必要である0通
常、反応系中の濃度で3〜4%のポリエチレングリコー
ル6000の存在が好ましい、又、測定の波長はより高
感度な測定を可能にするためには340〜400nm位
の比較的短波長領域を主波長とする二波長測定、又は、
−波長測定が好ましい。尚、当然、試薬としての抗原又
は抗体の量は、検出目的の抗体又は抗原の測定範囲等の
兼ねおいて適宜設定すべきである。
In general, with nephelometric reagents that do not use particulate carriers, the amount of change in absorbance is small when reacted as is, so a sensitizer such as polyethylene glycol 6000 is required. The presence of 4% polyethylene glycol 6000 is preferable, and in order to enable more sensitive measurement, dual-wavelength measurement with the main wavelength in a relatively short wavelength region of about 340 to 400 nm, or
- Wavelength measurements are preferred. Naturally, the amount of antigen or antibody used as a reagent should be appropriately determined, taking into account the measurement range of the antibody or antigen to be detected.

微粒子担体を使用する比濁法用試薬による測定の感度は
高感度で、検体中の微量成分の測定に最適である。微粒
子担体の使用は、粒子自身濁度を呈し、光の透過を遮り
、光を散乱する0反面、反応前のブランク値が高くなり
、反応の為に使える領域が限定される。検体中の抗原ま
たは抗体を精度、再現性とも良く、しかも広範囲の濃度
範囲で測定するためには必要に応じ、測定波長、微粒子
担体の粒子径及びその濃度を選択することにより改善で
きる。例えば、比濁法での微粒子担体の粒子濃度が同一
の場合、微粒子担体の粒子径がより微小で測定波長が粒
子径に比べより長波長な程、反応前のブランク値は低く
なる。逆に、微粒子担体の粒子径がより大きくて測定波
長が粒子径に近いほど、反応前のブランク値は高くなる
。測定系と試薬化の条件は、当業者が測定項目に応じ適
宜設定しているように、目的項目の要求される感度と測
定範囲の兼ねあいから微粒子担体の粒子径と濃度及び測
定波長を設定すべきである。
The sensitivity of measurements using nephelometric reagents using microparticle carriers is high, making it ideal for measuring trace components in specimens. When using a microparticle carrier, the particles themselves exhibit turbidity, block the transmission of light, and scatter light. However, on the other hand, the blank value before the reaction becomes high, and the area that can be used for the reaction is limited. In order to measure antigens or antibodies in a specimen with good precision and reproducibility over a wide concentration range, improvements can be made by selecting the measurement wavelength, the particle diameter of the microparticle carrier, and its concentration as necessary. For example, when the particle concentration of the microparticle carrier in the nephelometric method is the same, the blank value before the reaction becomes lower as the particle diameter of the microparticle carrier is smaller and the measurement wavelength is longer than the particle diameter. Conversely, the larger the particle diameter of the microparticle carrier and the closer the measurement wavelength is to the particle diameter, the higher the blank value before the reaction. The measurement system and reagent conditions are set as appropriate by those skilled in the art according to the measurement item, and the particle diameter and concentration of the microparticle carrier and measurement wavelength are set based on the balance between the sensitivity and measurement range required for the target item. Should.

本発明は、以上に詳述した免疫測定法において、同一の
反応容器中で、まず1項目の抗原又は抗体に基づく第1
の凝集反応を行ない、次いで他の1項目の抗原又は抗体
に基づく第2の凝集反応を行なうことにより、1つの検
体について同時に2項目の目的とする抗原又は抗体の存
在又は量を求める。
In the immunoassay method detailed above, the present invention provides a first method based on one antigen or antibody in the same reaction vessel.
The presence or amount of two target antigens or antibodies is simultaneously determined for one specimen by performing an agglutination reaction based on one antigen or antibody and then performing a second agglutination reaction based on another antigen or antibody.

その場合、次のようにすると第1の凝集反応による第2
の凝集反応への影響を減少又は除去できるので好ましい
In that case, if you do the following, the second aggregation reaction will occur due to the first aggregation reaction.
This is preferable because it can reduce or eliminate the influence on the aggregation reaction.

(1)第1の凝集反応は感作微粒子担体を使用せず、第
2の凝集反応で感作微粒子担体を使用する。
(1) A sensitized fine particle carrier is not used in the first aggregation reaction, and a sensitized fine particle carrier is used in the second aggregation reaction.

(2)第1の凝集反応及び第2の凝集反応とも感作微粒
子担体を使用する。
(2) Sensitized fine particle carriers are used in both the first aggregation reaction and the second aggregation reaction.

前者(1)の組合せの場合、第1の凝集反応の測定を3
40〜400nm位の比較的短波長領域で、次いで、第
2の凝集反応の測定はより長波長領域400〜2400
nmで行うことにより第1の凝集反応の影響を減じるこ
とが8来るので特に好ましい。
In the case of the former combination (1), the first agglutination reaction measurement is
The second aggregation reaction is measured in a relatively short wavelength region of about 40 to 400 nm, and then in a longer wavelength region of 400 to 2400 nm.
It is particularly preferable to carry out the reaction at 8 nm, since this reduces the influence of the first aggregation reaction.

また、後者(2)の場合、第2の凝集反応の試薬中に、
第1の凝集反応の試薬で使用した抗原又は抗体を適当量
共存させることにより、第1の凝集反応の第2の凝集反
応への影響を減少又は除去できるので特に好ましい。
In the latter case (2), in the reagent for the second agglutination reaction,
It is particularly preferable to coexist an appropriate amount of the antigen or antibody used in the reagent for the first agglutination reaction, since the influence of the first agglutination reaction on the second agglutination reaction can be reduced or eliminated.

各々の凝集反応における濁度変化の測定は、反応開始後
一定時間後の1点で測定するワンポイントエンド測定法
(One Po1nt End As5ay)、反応開
始前と反応開始後一定時間後の2点で測定するツーポイ
ントエンド測定法(Two Po1nt Encl A
s5ay)、反応開始後の2点で測定するレート測定(
Tw。
The turbidity change in each agglutination reaction can be measured using one point end measurement method (One Point End As5ay), which measures at one point after a certain period of time after the start of the reaction, or at two points, one before the start of the reaction and one after a certain period of time after the start of the reaction. Two Point End Measurement Method (Two Point Encl A)
s5ay), rate measurement measured at two points after the start of the reaction (
Tw.

Po1nt Rate As5ay)及び2点以上の時
点で測定するマルチポイント測定法(Multi Po
1nt Rateassay)により行なわれる。第1
の凝集反応の測定にはエンドポイント測定法及びレード
測定法のいずれも適しているが、第2の凝集反応の測定
にはレート測定法が最適である。レート測定法は反応開
始後の比較的短時間、好ましくは5分以内で測定が好ま
しい、あまり長い期間での測定は迅速測定の利点を損な
うばかりでなく測定可能な範囲を狭くするからである。
Point Rate As 5ay) and multi-point measurement method that measures at two or more points.
1nt Rateassay). 1st
Although both the endpoint measurement method and the rate measurement method are suitable for measuring the second agglutination reaction, the rate measurement method is most suitable for measuring the second agglutination reaction. In the rate measurement method, it is preferable to perform measurement within a relatively short period of time, preferably within 5 minutes after the start of the reaction, because measurement over a too long period not only impairs the advantage of rapid measurement but also narrows the measurable range.

また、濁度変化の測定において、実際に測定する光は、
いわゆる透過光(吸光度)、散乱光のいずれでもよい。
In addition, when measuring turbidity changes, the light actually measured is
It may be either so-called transmitted light (absorbance) or scattered light.

本発明における免疫測定法の波長は、測定装置や測定方
法の選択、微粒子担体の使用の有無、該担体の粒子径及
びその濃度などにより適宜選択される。一般に、微粒子
担体を使用しない比濁法では300nm〜400nm、
微粒子担体を使用する比濁法では波長400nm〜24
00nmの単色光又は多色光が用いられる。
The wavelength of the immunoassay in the present invention is appropriately selected depending on the selection of the measuring device and measuring method, whether or not a particulate carrier is used, the particle size of the carrier, its concentration, and the like. Generally, in turbidimetry that does not use particulate carriers, the wavelength is 300 nm to 400 nm;
In the nephelometric method using a fine particle carrier, the wavelength is 400 nm to 24 nm.
00 nm monochromatic or polychromatic light is used.

上記の測定値から目的とする抗原又は抗体の存在又は量
を求める。例えば濃度を求めるには、予め既知濃度の標
準試料を検体と同様に測定して目的物質の濃度と濁度変
化量との関係を求めておくことにより、検体試料による
濁度変化量から目的物質の濃度が換算できる。
The presence or amount of the target antigen or antibody is determined from the above measured values. For example, to determine the concentration, first measure a standard sample with a known concentration in the same way as the specimen and determine the relationship between the concentration of the target substance and the amount of change in turbidity. The concentration of can be converted.

〔実施例〕〔Example〕

以下に実施例を挙げ、本発明を更に詳細に説明するが、
本発明は以下の実施例によって限定されるものではない
The present invention will be explained in more detail with reference to Examples below.
The invention is not limited by the following examples.

(実施例1) 血しようのフィブリノーゲンとFDP−Eの 量1)試
薬 (1)フィブリノーゲン測定試薬 50mMりん酸塩緩衝溶液(pH7,3)中に、過剰量
のFDP −E抗原で吸収したウサギ抗ヒトフィブリノ
ーゲン抗血清の20(v/ V )%、ポリエチレング
リコール600゜の3(w/v)%及び0.1M塩化ナ
トリウムを含有する。
(Example 1) Amounts of fibrinogen and FDP-E in blood plasma 1) Reagent (1) Fibrinogen measurement reagent Rabbit antibody absorbed with excess amount of FDP-E antigen in 50mM phosphate buffer solution (pH 7.3) Contains 20 (v/v)% human fibrinogen antiserum, 3 (w/v)% polyethylene glycol 600° and 0.1M sodium chloride.

(2)FDP−E測定試薬(抗FDP −E抗体感作ラ
テックス) 抗FDP −E抗体の50mMりん酸塩緩衝溶液(抗体
濃度;0.5mg/mQ)の80mMに、平均粒子径が
0.11μmのポリスチレンラテックス(日本合成ゴム
社製、固形分濃度;10重量%)の0.5mβ を加え
、10℃で一時間攪拌し、次いで10℃で30分間遠心
分離(20000r、P、■)した。未反応の上清をデ
カンテーションし、残った抗体感作ラテックス粒子を5
0mMりん酸塩緩衝溶液(2(w/v)%牛血清アルブ
ミン(B S A)、0.1M塩化ナトリウム含有)8
0mρに再分散させた。
(2) FDP-E measurement reagent (anti-FDP-E antibody sensitized latex) 80mM of 50mM phosphate buffer solution (antibody concentration: 0.5mg/mQ) of anti-FDP-E antibody has an average particle size of 0. 0.5 mβ of 11 μm polystyrene latex (manufactured by Japan Synthetic Rubber Co., Ltd., solid content concentration: 10% by weight) was added, stirred at 10°C for 1 hour, and then centrifuged at 10°C for 30 minutes (20000 r, P, ■). . Decant the unreacted supernatant, and remove the remaining antibody-sensitized latex particles.
0mM phosphate buffer solution (containing 2 (w/v)% bovine serum albumin (BSA), 0.1M sodium chloride)8
It was redispersed to 0 mρ.

2)測定方法 フィブリノーゲン測定試薬(第1の凝集反応用試薬、以
下R工と略す)350μQとともに生理食塩水2oμQ
を反応容器(光路長6m+のセル)中に添加混合し、3
7℃保温下で反応させ、5分後に主波長340nm、副
波長700nmで吸光度差を測定しフィブリノーゲン測
定試薬の試薬ブランク(Blk−AbsFg)とした。
2) Measurement method Fibrinogen measurement reagent (first agglutination reaction reagent, hereinafter abbreviated as R) 350μQ and physiological saline 2oμQ
Add and mix into a reaction vessel (cell with optical path length 6m+), and
The reaction was carried out while keeping the temperature at 7°C, and after 5 minutes, the absorbance difference was measured at a main wavelength of 340 nm and a sub wavelength of 700 nm, and a reagent blank (Blk-AbsFg) for a fibrinogen measurement reagent was obtained.

続けて同時に、FDP・E測定試薬(第2の凝集反応用
試薬、以下R7と略す)350μQを添加混合し37℃
で保温下で反応させ、1分後及び3分後に波長700n
mで吸光度を測定した。これから単位時間当りの吸光度
変化量を求めFDP −Es定試薬の試薬ブランクBl
k−ΔabsFDP−E)とした。
Continuously, at the same time, 350 μQ of FDP・E measurement reagent (second agglutination reaction reagent, hereinafter abbreviated as R7) was added and mixed, and the mixture was heated at 37°C.
After 1 minute and 3 minutes, the wavelength was 700n.
Absorbance was measured at m. From this, calculate the amount of change in absorbance per unit time and use the reagent blank Bl of the FDP-Es constant reagent.
k-ΔabsFDP-E).

次に上記操作と同様にして、患者検体血清2゜μQとR
エ 350μQを反応容器中に添加混合し、37℃保温
下で反応させ5分後の波長340nmでの吸光度を測定
し検体中フィブリノーゲンによる反応吸光度(S−Ab
sFg)とした。続けて同時に、R,350μρを添加
混合し37℃保温下で反応させ、1分後及び3分後の波
長700nmでの吸光度を測定した。これから単位時間
当りの吸光度変化量を求め検体中FDP −Hによる吸
光度変化量(S・ΔAbsFDP−E)とした、、患者
検体血清中のフィブリノーゲンによる吸光度変化量(Δ
AbsFg)及び検体中のFDP −Hによる吸光度変
化量(ΔAbsFDP−E)を式1,2から算出した。
Next, in the same manner as above, the patient sample serum 2゜μQ and R
Add and mix 350 μQ into a reaction container, react at 37°C, and measure the absorbance at a wavelength of 340 nm after 5 minutes.
sFg). Continuously, at the same time, 350 μρ of R was added and mixed, and the mixture was allowed to react at 37° C., and the absorbance at a wavelength of 700 nm was measured after 1 minute and 3 minutes. From this, the amount of change in absorbance per unit time was determined and was defined as the amount of change in absorbance due to FDP-H in the sample (S・ΔAbsFDP-E), and the amount of change in absorbance due to fibrinogen in patient sample serum (Δ
AbsFg) and the amount of change in absorbance due to FDP-H in the sample (ΔAbsFDP-E) were calculated from equations 1 and 2.

ΔAbsFg=S−AbsFg−B1に−AbsFg 
   −式1%式% ・・・式2 予め、患者検体血清の代わりに既知濃度のフィブリノー
ゲンとFDP −Eを含有する標準品を用い上記操作と
同様にして測定し式1,2から各々の吸光度変化量を求
め、各々の検量線を作成しておいた。検体中のフィブリ
ノーゲン及びFDP・Eの濃度は、この検量線とフィブ
リノーゲンΔAbsFg及びFDP −Eの吸光度変化
量(ΔAbsFg及びΔAbsFDP−E)から各々の
濃度を求めた。以上の測定及び計算は、日立7050形
自動分析装置((株)日立製作所要)により自動的に行
った。
ΔAbsFg=S-AbsFg-B1-AbsFg
-Formula 1%Formula %...Formula 2 In advance, a standard product containing fibrinogen and FDP-E of known concentrations was used instead of the patient sample serum, and the absorbance was measured in the same manner as above, and each absorbance was determined from Formulas 1 and 2. The amount of change was determined and a calibration curve was created for each. The concentrations of fibrinogen and FDP-E in the specimen were determined from this calibration curve and the amount of change in absorbance of fibrinogen ΔAbsFg and FDP-E (ΔAbsFg and ΔAbsFDP-E). The above measurements and calculations were automatically performed using a Hitachi 7050 automatic analyzer (manufactured by Hitachi, Ltd.).

表1に、フィブリノーゲン及びFDP −Eの患者検体
(5検体)について、単項目で測定を行なつた場合の測
定値と上記水沫との測定値の結果を示した。
Table 1 shows the results of fibrinogen and FDP-E patient specimens (5 specimens) measured by single item and the water droplet.

表  1 岨フィブリノーゲン測定法と測定値(単位; m g 
/ d Q )本2FDP−Eの測定法と測定値(単位
;ng/mQ)*3従来法;単項目での測定(試薬はフ
ィブリノーゲン測定試薬)祠従来法;単項目での測定(
試薬はFDP−E測定試薬)(実施例2) CRPとASOの 量 1)試薬 (1)CRP測定試薬 抗ヒトCRP抗体の50mMりん酸塩緩衝溶液(抗体濃
度; 0.5m g/m 12)の80mQに、平均粒
子径が0.11μmのポリスチレンラテックス(種水化
学社製、固形分濃度;10重量%)の0.5mu  を
加え、10℃で一時間攪拌し、次いで10℃で30分間
遠心分離(20,0OOr、9.m、) L、、た。未
反応の上清をデカンテーションし、残った抗体感作ラテ
ックス粒子を50mMりん酸塩緩衝溶液[2(W/V)
%BSA、0.1M塩化ナトリウム含塩化ナトリウム含
有3窃0 (2)AS○測定試薬 抗ヒトCRP抗体の50mMりん酸塩緩衝溶液(抗体濃
度; 0 、 5 m g / m Q )の80mQ
に、平均粒子径が0.11μmのポリスチレンラテック
ス(種水化学社製,固形分濃度;10重量%)の0 、
 5 m fl  を加え、10℃で一時間攪拌し、次
いで10℃で30分間遠心分離(20,0OOr.p.
m.) シた。未反応の上清をデカンテーションし、残
った抗体感作ラテックス粒子を50mMりん酸塩緩衝溶
液〔2(w/v)%BSA,0.1M塩化ナトリウム及
び0.05(w/v)%抗ヒトCRP抗体含有)80m
Qに再分散させた。
Table 1 Measuring method of fibrinogen and measured values (unit: m g
/ d Q) Book 2 FDP-E measurement method and measurement value (unit: ng/mQ)
Reagent is FDP-E measurement reagent) (Example 2) Amount of CRP and ASO 1) Reagent (1) CRP measurement reagent 50mM phosphate buffer solution of anti-human CRP antibody (antibody concentration; 0.5mg/m 12) 0.5 mu of polystyrene latex (manufactured by Tanesui Kagaku Co., Ltd., solid content concentration: 10% by weight) with an average particle size of 0.11 μm was added to 80 mQ of the solution, stirred at 10°C for 1 hour, and then stirred at 10°C for 30 minutes. Centrifugation (20.0OOr, 9.m) L. The unreacted supernatant was decanted, and the remaining antibody-sensitized latex particles were dissolved in 50 mM phosphate buffer solution [2 (W/V)
%BSA, 0.1M sodium chloride Contains sodium chloride (2) AS○ measurement reagent 80mQ of 50mM phosphate buffer solution of anti-human CRP antibody (antibody concentration: 0, 5 mg/mQ)
0 of polystyrene latex (manufactured by Tanesui Kagaku Co., Ltd., solid content concentration: 10% by weight) with an average particle size of 0.11 μm,
5 m fl was added, stirred at 10°C for 1 hour, and then centrifuged at 10°C for 30 minutes (20,0 OOr.p.
m. ) Shita. The unreacted supernatant was decanted and the remaining antibody-sensitized latex particles were dissolved in 50 mM phosphate buffer solution [2 (w/v)% BSA, 0.1 M sodium chloride and 0.05 (w/v)% anti- Contains human CRP antibody) 80m
It was redispersed in Q.

2)測定方法 CRP測定試薬(第1の凝集反応用試薬、以下R1と略
す)350μQともに生理食塩水3μQを反応容器(光
路長6m+のセル)中に添加混合し、37℃保温下で反
応させ1分後及び3分後の波長570nmでの吸光度を
測定した。これから単位時間当りの吸光度変化量を求め
CRP測定試薬の試薬ブランク(Blk・ΔAbsCR
P)とした。続けて同時に、ASO測定試薬(第2凝集
反応用試薬,以下R2 と略す)350μQを添加混合
し37℃保温下で反応させ、1分後及び3分後の波長7
00nmでの吸光度を測定した.これから単位時間当り
の吸光度変化量を求めASO測定試薬の試薬ブランク(
Blk−ΔAbsASO)とした。
2) Measurement method 350μQ of CRP measurement reagent (first agglutination reaction reagent, hereinafter abbreviated as R1) and 3μQ of physiological saline were added and mixed in a reaction container (cell with optical path length 6m+), and reacted at 37°C. The absorbance at a wavelength of 570 nm was measured after 1 minute and 3 minutes. From this, calculate the amount of change in absorbance per unit time and use the reagent blank (Blk・ΔAbsCR) of the CRP measurement reagent.
P). Continuously, at the same time, 350 μQ of ASO measurement reagent (second agglutination reaction reagent, hereinafter abbreviated as R2) was added and mixed and allowed to react at 37°C.
The absorbance was measured at 00 nm. From this, calculate the amount of change in absorbance per unit time and use the reagent blank of the ASO measurement reagent (
Blk-ΔAbsASO).

次に上記操作と同様にして、患者検体血清3μiとR,
350μβを反応容器中に添加混合し、37℃保温下で
反応させ1分後及び5分後の波長570nmでの吸光度
を測定し検体中CRPによる反応吸光度(S・ΔAbs
CRP)とした。続けて同時に、R,350μaを添加
混合し37℃保温下で反応され、1分後及び3分後の波
長700nmでの吸光度を測定した。これから単位時間
当りの吸光度変化量を求め検体中ASOによる吸光度変
化量(S・ΔAbsASO)とした。患者検体血清のC
RPによる吸光度変化量(ΔAbsCRP)及び検体中
のASOによる吸光度変化量(ΔAbsASQ)を式3
゜4から算出した。
Next, in the same manner as above, 3μi of patient sample serum and R,
350 μβ was added and mixed in a reaction container, and the reaction was kept at 37°C. The absorbance at a wavelength of 570 nm was measured after 1 minute and 5 minutes.
CRP). Subsequently, at the same time, 350 μa of R was added and mixed, and the mixture was reacted at 37° C., and the absorbance at a wavelength of 700 nm was measured after 1 minute and 3 minutes. From this, the amount of change in absorbance per unit time was determined and defined as the amount of change in absorbance due to ASO in the sample (S·ΔAbsASO). C of patient sample serum
The amount of change in absorbance due to RP (ΔAbsCRP) and the amount of change in absorbance due to ASO in the sample (ΔAbsASQ) are calculated using Equation 3.
Calculated from °4.

ΔAbsCRP =S・ΔAbsCRP−Blk・ΔA
bsCRP  −式3ΔAbsASO=S・ΔAbsA
SO−81?ΔAbsASO−式4予め、患者検体血清
の代わりに既知濃度のCRPとASOを含有する標準品
を用い上記操作と同様にした測定し式1,2から各々の
吸光度変化量を求め、各々の検量線を作成しておいた。
ΔAbsCRP = S・ΔAbsCRP−Blk・ΔA
bsCRP - Formula 3ΔAbsASO=S・ΔAbsA
SO-81? ΔAbsASO-Formula 4 In advance, a standard product containing known concentrations of CRP and ASO was used in place of the patient sample serum, and measurements were carried out in the same manner as above.The absorbance changes for each were determined from Formulas 1 and 2, and each calibration curve was calculated. I have created it.

検体中のCRP及びASOの濃度は、この検線とCRP
及びASOの光吸度変化量(ΔAbsCRP及びΔAb
s/+SO)から各々の濃度を求めた。以上の測定及び
計算は、日立7050形自動分析装置により自動的に行
った。
The concentration of CRP and ASO in the sample is determined by using this standard line and CRP.
and ASO light absorbance change (ΔAbsCRP and ΔAb
The respective concentrations were determined from s/+SO). The above measurements and calculations were automatically performed using a Hitachi 7050 automatic analyzer.

表2に、CRP及びASOの患者検体(5検体)につい
て、単項目での測定値と本性との測定値の表  2 は抗体の存在又は量を同時に、しかも簡便で迅速求IC
RPの測定法と測定値(単位;mg/dΩ)京2A S
 Oの測定法と測定値(単位;iu/mQ)零3従来法
;単項目での測定(試薬はCRP測定試薬)祠従来法;
単項目での測定(試薬はASO測定試薬、但し。
Table 2 shows the measured values for single items and the measured values for CRP and ASO patient samples (5 samples).
RP measurement method and measured value (unit: mg/dΩ) Kyo2A S
Measuring method of O and measured value (unit: iu/mQ) Zero 3 Conventional method; Single item measurement (reagent is CRP measurement reagent) Traditional method;
Single item measurement (reagent is ASO measurement reagent, however.

抗ヒトCRP抗体は添加していなレリ 〔発明の効果〕 以上のように、本発明の免疫測定法によれば。No anti-human CRP antibody added. 〔Effect of the invention〕 As described above, according to the immunoassay method of the present invention.

Claims (1)

【特許請求の範囲】 1、抗原と抗体による凝集反応を光学的な濁度変化とし
て測定し、検体中の目的とする抗原又は抗体の存在又は
量を求める免疫測定法において、同一の反応容器中で、
まず1項目の抗原又は抗体に基づく第1の凝集反応を行
ない、次いで他の1項目の抗原又は抗体に基づく第2の
凝集反応を行なうことにより、1つの検体について同時
に2項目の目的とする抗原又は抗体の存在又は量を求め
ることを特徴とする免疫測定法。 2、第1の凝集反応が、感作微粒子担体を使用しない反
応であり、第2の凝集反応が感作微粒子担体を使用する
ものである請求項1記載の免疫測定法。 3、第1の凝集反応及び第2の凝集反応が感作微粒子担
体を使用するものである請求項1記載の免疫測定法。
[Claims] 1. In an immunoassay method in which the agglutination reaction between an antigen and an antibody is measured as an optical turbidity change to determine the presence or amount of a target antigen or antibody in a specimen, in,
By first performing a first agglutination reaction based on one antigen or antibody, and then performing a second agglutination reaction based on another antigen or antibody, two target antigens can be obtained simultaneously for one specimen. or an immunoassay method characterized by determining the presence or amount of antibodies. 2. The immunoassay method according to claim 1, wherein the first agglutination reaction is a reaction that does not use a sensitized particulate carrier, and the second agglutination reaction uses a sensitized particulate carrier. 3. The immunoassay method according to claim 1, wherein the first agglutination reaction and the second agglutination reaction use a sensitized fine particle carrier.
JP15933090A 1990-06-18 1990-06-18 Immunoassay Pending JPH0448265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15933090A JPH0448265A (en) 1990-06-18 1990-06-18 Immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15933090A JPH0448265A (en) 1990-06-18 1990-06-18 Immunoassay

Publications (1)

Publication Number Publication Date
JPH0448265A true JPH0448265A (en) 1992-02-18

Family

ID=15691465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15933090A Pending JPH0448265A (en) 1990-06-18 1990-06-18 Immunoassay

Country Status (1)

Country Link
JP (1) JPH0448265A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074860A1 (en) * 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. Reagent for measuring aggregation and method of measuring aggregation
WO2008029873A1 (en) * 2006-09-08 2008-03-13 Nitto Boseki Co., Ltd. Method for determination of antigen and antibody against the antigen, and determination reagent for use in the method
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus
JP2013055934A (en) * 2011-08-17 2013-03-28 Sanwa Kagaku Kenkyusho Co Ltd Measuring method
JP2017156105A (en) * 2016-02-29 2017-09-07 シスメックス株式会社 Blood coagulation analyzer and blood coagulation analysis method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074860A1 (en) * 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. Reagent for measuring aggregation and method of measuring aggregation
JP5170742B2 (en) * 2005-12-28 2013-03-27 積水メディカル株式会社 Aggregation measuring reagent and aggregation measuring method
US8987005B2 (en) 2005-12-28 2015-03-24 Sekisui Medical Co., Ltd. Reagent for measuring agglutination and method of measuring agglutination
WO2008029873A1 (en) * 2006-09-08 2008-03-13 Nitto Boseki Co., Ltd. Method for determination of antigen and antibody against the antigen, and determination reagent for use in the method
JP5177677B2 (en) * 2006-09-08 2013-04-03 日東紡績株式会社 Method for measuring antigen and antibody against the antigen, and measuring reagent used therefor
JP2009014602A (en) * 2007-07-06 2009-01-22 Toshiba Corp Automatic analysis apparatus
JP2013055934A (en) * 2011-08-17 2013-03-28 Sanwa Kagaku Kenkyusho Co Ltd Measuring method
JP2017156105A (en) * 2016-02-29 2017-09-07 シスメックス株式会社 Blood coagulation analyzer and blood coagulation analysis method

Similar Documents

Publication Publication Date Title
JPS6314783B2 (en)
JPH03502246A (en) Coagulation methods for the analysis of substances
KR920000056B1 (en) Process for the determination of a specifically bindable substance
WO2006025401A1 (en) Method of assaying antigen and reagent therefor
Gella et al. Latex agglutination procedures in immunodiagnosis
Cuilliere et al. Microparticle-enhanced nephelometric immunoassay (Nephelia) for immunoglobulins G, A, and M
WO2009054538A1 (en) Method and kit for measurement of acrolein adduct in sample utilizing agglutination reaction of immunological microparticle
JPH0448265A (en) Immunoassay
JP5085736B2 (en) Method for measuring complex and kit used therefor
CN102369441B (en) Immunoassay method and reagent therefor
JP3513075B2 (en) Immunoassay and reagent therefor
JP7438910B2 (en) Ferritin measurement reagent
JPH01301165A (en) Immunoassay
JP4507439B2 (en) Latex immunoturbidimetric assay and kit used therefor
JP3220546B2 (en) Method for measuring antigen or antibody in the presence of immune complex
JPH0783929A (en) Measuring method for concentration of antigen or antibody
US20030113794A1 (en) Method for reducing non-specific aggregation of latex microparticles in the presence of serum or plasma
JPH10104232A (en) Assay of human plasminogen and measuring kit therefor
JP3916189B2 (en) Reagent for immunoassay and immunoassay
JP3618797B2 (en) Immunoassay
JPH10104233A (en) Assay of human anti-thorombin iii and its measuring kit
JP2000146974A (en) Immunoassay
JPS6262291B2 (en)
JPH1026622A (en) Determination method for human alpha-fetoproteins and measuring kit
JPH01158354A (en) Reagent and method for immunological measurement of many components