WO2021197490A1 - 供气机 - Google Patents

供气机 Download PDF

Info

Publication number
WO2021197490A1
WO2021197490A1 PCT/CN2021/085571 CN2021085571W WO2021197490A1 WO 2021197490 A1 WO2021197490 A1 WO 2021197490A1 CN 2021085571 W CN2021085571 W CN 2021085571W WO 2021197490 A1 WO2021197490 A1 WO 2021197490A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
motor
cylinder
supply machine
piston
Prior art date
Application number
PCT/CN2021/085571
Other languages
English (en)
French (fr)
Inventor
刘贵文
毋宏兵
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021197490A1 publication Critical patent/WO2021197490A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F1/00Combination or multi-purpose hand tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block

Definitions

  • This application relates to a gas supply machine.
  • Atmospheric pressure (under 0.8Mpa) pneumatic tools are still widely used in various pneumatic tools due to their simple structure, reliable work, convenient maintenance, and long service life, such as: pneumatic nail guns, spray guns, air cannons, air shears, Inflatable devices, etc., but there are also some problems.
  • the air supply unit is bulky and inconvenient to carry, and cannot be operated without cords. Factors such as inconvenient connection to the power supply at the construction site have caused users to complain that the experience is not good. Therefore, various lithium battery air compressors have appeared on the market to meet this type of market demand, and their development momentum is strong.
  • an objective of the present application is to provide an air supply machine to improve air compression efficiency.
  • an air supply machine the air supply machine includes: a housing; a motor, located in the housing, the motor defines the motor axis and includes the motor axis A rotating motor shaft; a battery pack, connected to the housing; a compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, used to convert the rotation of the motor shaft into the piston
  • the drive assembly includes a deceleration mechanism for reducing the rotation speed of the motor shaft and driving the piston to reciprocate through the output shaft of the deceleration mechanism;
  • the inner diameter is 50 mm to 100 mm
  • the stroke of the piston is 40 mm to 100 mm; the rotation speed of the output shaft ranges from 60 rpm to 600 rpm.
  • the air supply provided by this application is optimally designed for the diameter, stroke, and output shaft speed of the cylinder, so that the single compressed air volume is large, and the speed is reduced when the total displacement remains unchanged, so that the air is in the cylinder.
  • the time of the compression process is lengthened, heat dissipation is accelerated, and then close to isothermal compression, and the compression efficiency is improved.
  • the rotational speed range of the output shaft is 120 rpm to 400 rpm; preferably, the rotational speed range of the output shaft is 180 rpm to 250 rpm; preferably, the rotational speed range of the output shaft is 360 rpm to 600 rpm.
  • the inner diameter of the cylinder ranges from 50 mm to 80 mm; preferably, the stroke of the piston is from 40 mm to 70 mm.
  • the speed reduction mechanism is a three-stage gear reduction, and the total transmission ratio is 50-150.
  • the total transmission ratio is 50-80.
  • the rated power of the motor is between 600W and 1200W.
  • the idling speed of the motor is 18000 rpm to 30000 rpm.
  • the idling speed of the motor is 20,000 rpm to 30,000 rpm.
  • the flow rate of the compression assembly is between about 1 liter/s to 2.2 liters/s.
  • the inner diameter of the cylinder ranges from 60 mm to 90 mm; the stroke of the piston is from 60 mm to 90 mm;
  • the stroke frequency of the piston is 60 to 600 strokes per minute.
  • the flow rate of the compression assembly is between about 1.5 liters/s and 2.2 liters/s.
  • a clutch device is provided between the motor shaft and the drive assembly, and the clutch device selectively transmits the power of the motor to the drive assembly.
  • the air supply unit further includes an anti-reverse mechanism, and the anti-reverse mechanism is used to make the output shaft rotate in one direction.
  • an air supply machine the air supply machine includes: a housing; A motor shaft rotating on the axis; a battery pack, connected to the housing; a compression assembly, including a cylinder and a piston arranged in the cylinder; wherein the inner diameter of the cylinder is 50 mm to 100 mm, and the stroke of the piston The stroke frequency of the piston is 40 mm to 100 mm; the stroke frequency of the piston is 60 to 600 times per minute; and the drive assembly is used to convert the rotational movement of the motor shaft into the reciprocating movement of the piston in the cylinder.
  • the air supply provided by this application is optimally designed for the diameter, stroke, and stroke frequency of the piston, so that the single compressed air volume is large, and the speed is reduced when the total displacement remains unchanged, so that the air is in the cylinder.
  • the time of the compression process is lengthened, heat dissipation is accelerated, and then close to isothermal compression, and the compression efficiency is improved.
  • an air supply machine the air supply machine includes: a housing; A motor shaft that rotates on the axis; a battery pack connected to the housing; a compression assembly including a cylinder and a piston arranged in the cylinder; a drive assembly for converting the rotational movement of the motor shaft into the piston
  • the drive assembly includes a speed reduction mechanism for reducing the speed of the motor shaft and driving the piston to reciprocate through the output shaft of the speed reduction mechanism; the speed reduction mechanism
  • the total transmission ratio of the mechanism is 50-150; the inner diameter of the cylinder is 50 mm to 100 mm, and the stroke of the piston is 40 mm to 100 mm.
  • the air supply provided by this application is optimally designed with the cylinder diameter, stroke and the total transmission ratio of the deceleration mechanism, so that the single compressed air volume is large, and the rotation speed is reduced under the condition of the total displacement.
  • the time of the compression process in the cylinder is lengthened, heat dissipation is accelerated, and then close to isothermal compression, and the compression efficiency is improved.
  • an air supply machine the air supply machine includes: a housing;
  • the motor shaft rotates on the axis, and the idling speed of the motor ranges from 18000rpm to 30000rpm;
  • the compression assembly includes a cylinder and a piston arranged in the cylinder;
  • the drive assembly includes a deceleration mechanism for reducing the rotation speed of the motor shaft of the motor and driving the piston to reciprocate through the output shaft of the deceleration mechanism
  • the inner diameter of the cylinder ranges from 50 mm to 80 mm, and the stroke of the piston ranges from 40 mm to 70 mm.
  • the air supply provided in this application uses a high-speed motor, which greatly reduces the weight of the whole machine; and the diameter and stroke of the cylinder are optimally designed, and the single compressed air volume is large, and the speed is reduced when the total displacement is unchanged. In this way, the time of the air compression process in the cylinder is lengthened, heat dissipation is accelerated, and then close to isothermal compression, and the compression efficiency is improved;
  • Another object of the present application is to provide an air supply machine that is light in weight and has a high flow rate.
  • an air supply machine the air supply machine includes: a housing; a battery pack connected to the housing; a motor located in the housing, the motor defines The axis of the motor includes a motor shaft capable of rotating around the axis of the motor, and the idling speed of the motor ranges from 20,000 rpm to 30,000 rpm; the battery pack is connected to the housing; the compression assembly includes a cylinder and is arranged on the cylinder The drive assembly is used to convert the rotational movement of the motor shaft into the reciprocating movement of the piston in the cylinder, the drive assembly includes a deceleration mechanism, the deceleration mechanism is used to convert the motor The rotation speed of the motor shaft is reduced and the piston is driven to reciprocate through the output shaft of the reduction mechanism; wherein the flow rate of the compression assembly is between about 1 liter/s and 2.2 liters/s.
  • the air supply provided by this application adopts a high-speed motor, which reduces the weight of the whole machine and also has a higher flow rate.
  • the inner diameter of the cylinder ranges from 50 mm to 80 mm; the stroke of the piston is from 40 mm to 70 mm.
  • Another object of the present application is to provide an air supply machine, which is optimally designed for the ratio of the cylinder's single stroke displacement to the rated power.
  • an air supply machine the air supply machine includes: a housing; a motor located in the housing, the motor defines a motor axis and includes a motor shaft capable of rotating around the motor axis;
  • the battery pack is connected to the housing;
  • the compression assembly includes a cylinder and a piston arranged in the cylinder;
  • a drive assembly is used to convert the rotational movement of the motor shaft into the piston in the cylinder Reciprocating motion;
  • the single stroke displacement of each cylinder is between 150 and 250 milliliters;
  • the rated power of the motor is within 1200W, the ratio of the single stroke displacement of each cylinder to the rated power It is between 0.18 cm 3 /W and 0.42 cm 3 /W.
  • the drive assembly includes a speed reduction mechanism for reducing the speed of the motor shaft and driving the piston to reciprocate through the output shaft of the speed reduction mechanism; the speed range of the output shaft is 60 rpm to 600 rpm .
  • the rotation speed of the output shaft ranges from 360 rpm to 600 rpm. .
  • Another object of the present application is to provide an air supply machine with low energy consumption and high air supply efficiency.
  • an air supply machine the air supply machine includes: a housing; a battery pack connected to the housing; a motor located in the housing, and the motor defines The motor axis and includes a motor shaft capable of rotating around the motor axis, the rated power of the motor is within 1200W; the compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, the drive assembly is used to The rotary motion of the motor shaft is converted into the reciprocating motion of the piston in the cylinder; wherein the ratio of the flow rate of the compression assembly to the rated power is not less than 1.18 cm 3 /S/W.
  • the ratio of the flow rate of the compression assembly to the rated power is 1.25 cm 3 /S/W to 2.75 cm 3 /S/W.
  • the ratio of the flow rate of the compression assembly to the rated power is 1.3 cm 3 /8/W to 2.3 cm 3 /S/W.
  • the air supply provided by this application is optimally designed with the ratio of the flow rate of the compression component to the rated power, which will not reduce the air supply while increasing the endurance of the battery pack (low energy consumption) Therefore, a gas supply machine with low energy consumption and large displacement can be provided.
  • Another object of the present application is to provide a light-weight air supply machine to improve portability.
  • an air supply machine the air supply machine includes: a housing; a motor, located in the housing, the motor defines the motor axis and includes a motor axis capable of rotating around the motor axis The motor shaft; a compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, the drive assembly is used to convert the rotary motion of the motor shaft into the reciprocating motion of the piston in the cylinder; Wherein, for the rated power within 1200W, the weight of the air supply machine is less than 6kg.
  • the drive assembly includes a speed reduction mechanism for reducing the speed of the motor shaft of the motor and driving the piston to reciprocate through the output shaft of the speed reduction mechanism, and the speed of the output shaft is less than 600rpm.
  • the rotation speed of the output shaft is 360 rpm to 600 rpm.
  • the weight of the air supply machine is 3 kg to 5 kg.
  • the weight of the air supply machine is 4kg to 5.5kg.
  • an air supply machine the air supply machine includes: a casing; a battery pack connected to the casing; a motor located in the casing, the motor defining The motor axis includes a motor shaft capable of rotating around the motor axis; a compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, which is used to convert the rotational movement of the motor shaft into a The reciprocating motion of the piston in the cylinder; wherein, for a rated power within 1200W, the ratio of the weight of the air supply to the rated power is not greater than 7.5 g/W.
  • the ratio of the weight of the air supply machine to the rated power is between 4.38 g/W and 7.5 g/W.
  • the ratio of the weight of the air supply machine to the rated power is 3.8 g/W to 6.2 g/W.
  • the air supply provided in this application is optimally designed with the ratio of the weight of the air supply to the rated power, so that the overall weight of the air supply is relatively light and easy to carry without affecting the performance of the air supply.
  • an air supply machine the air supply machine includes: a casing; a battery pack connected to the casing; a motor located in the casing; a compression assembly including A cylinder and a piston arranged in the cylinder; a drive assembly for converting the rotary motion of the motor shaft into a reciprocating motion of the piston in the cylinder; the flow rate of the compression assembly is relatively
  • the ratio to the weight of the air supply machine is not less than 0.16 liters/s/kg.
  • the ratio of the flow rate of the compression assembly to the weight of the air supply unit ranges from 0.2 liter/s/kg to 0.7 liter/s/kg.
  • the ratio of the flow rate of the compression assembly to the weight of the air supply unit ranges from 0.25 liter/s/kg to 0.4 liter/s/kg.
  • the air supply provided in this application is optimally designed with the ratio of the flow rate of the compression component to the weight of the air supply, so that the whole air supply is lighter in weight, easy to carry, and the flow rate can meet the air supply demand .
  • an air supply machine the air supply machine includes: a housing; A rotating motor shaft; a compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, the drive assembly is used to convert the rotational movement of the motor shaft into the reciprocating movement of the piston in the cylinder
  • a clutch device is provided between the motor shaft and the drive assembly, and the clutch device enables the motor shaft to selectively drive the drive assembly to move.
  • a clutch device is provided in this application. During the operation of the motor, the clutch device is used to select whether to transmit power to the drive assembly. In this way, according to the actual working conditions of the pneumatic tool, it is possible to choose whether to cut off the power transmission or switch on the power transmission without turning off the motor, without frequently starting the motor, thereby ensuring the service life of the air supply machine.
  • the clutch device includes a first clutch member, a second clutch member, and a moving assembly supported by the motor shaft, the second clutch member is provided with a drive member engaged with the drive assembly, and the moving assembly The engagement and separation of the second clutch member and the first clutch member are promoted.
  • the second clutch and the first clutch are engaged, the power of the motor is transmitted to the drive assembly, and the piston moves to compress air; when the second clutch is separated from the first clutch, the power of the motor cannot be transmitted to the drive assembly , The motor is idling.
  • the first clutch is fixed on the motor shaft of the motor, and the moving assembly causes the second clutch to move along the motor axis to achieve engagement and separation with the first clutch.
  • the housing includes a clutch housing for accommodating the clutch device
  • the moving assembly includes a static raceway disk, a movable raceway disk, and a raceway steel ball arranged on the clutch housing, wherein the movable roller
  • the track plate and the static raceway plate are provided with a raceway for accommodating the steel ball of the raceway.
  • the raceway is a spiral raceway.
  • the moving assembly further includes an electromagnetic tube, an iron core contained in the electromagnetic tube, and a connecting element connecting the iron core and the moving race disk.
  • the electromagnetic tube is energized, the iron core is driven along its own axis. Move in the opposite direction, and then pull the moving race disk to rotate.
  • the moving assembly further includes a reset mechanism, the reset mechanism includes a reset spring, and the reset spring provides a spring force for the second clutch to move in a direction separating from the first clutch.
  • the reset mechanism further includes a limiting member, and the return spring is arranged between the limiting member and the second clutch member, and a limiting member is provided between the limiting member and the motor shaft. Bit steel ball.
  • a thrust bearing is provided between the movable race disk and the second clutch.
  • the first clutch is a flywheel. In this way, the flywheel can store energy when the motor is idling, and start with load.
  • the first clutch member is provided with a friction inclined surface for driving the second clutch member.
  • the slope of the friction slope is 3 (multiplication factor).
  • the multiplication factor of the clutch device is 20.
  • the second clutch is slidably arranged on the motor shaft through a needle bearing.
  • an air supply machine the air supply machine includes: a housing; A motor shaft that rotates on the axis; a compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, which is used to convert the rotational movement of the motor shaft into the reciprocation of the piston in the cylinder Movement; pressure sensor, the pressure sensor is used to detect the pressure value of the gas discharged by the cylinder; clutch device, arranged between the motor shaft and the drive assembly, the clutch device includes a first clutch, The second clutch member, when the pressure value is lower than the preset minimum value, the first clutch member and the second clutch member are engaged, and the clutch device transmits the power of the motor to the drive assembly; When the pressure value is higher than the preset maximum value, the first clutch and the second clutch are separated, and the clutch device will not transmit the power of the motor to the drive assembly.
  • the air supply unit includes a buffer tube connected to the cylinder, and the pressure sensor is used to detect the pressure value of the air pressure in the buffer tube.
  • the capacity of the buffer tube is equivalent to the capacity of the cylinder.
  • the buffer tube is provided with at least one of a safety valve, a quick connector, and a pressure gauge.
  • the clutch device includes a suction and pull electromagnet, and when the pressure value is lower than the preset minimum value, the pull and pull electromagnet is energized, and the first clutch and the second clutch are energized. Engagement; when the pressure value is higher than the preset maximum value, the pull electromagnet is de-energized, and the first clutch and the second clutch are separated.
  • Another object of the present application is to provide a gas supply machine that provides a single pack capability.
  • an air supply machine the air supply machine includes: a casing; a battery pack connected to the casing; a motor located in the casing, the motor
  • the motor axis is defined and includes a motor shaft capable of rotating around the motor axis; a compression assembly, including a cylinder and a piston arranged in the cylinder; a drive assembly, the drive assembly is used to convert the rotational movement of the motor shaft into The reciprocating movement of the piston in the cylinder;
  • the drive assembly includes a deceleration mechanism for reducing the rotation speed of the motor shaft of the motor and driving the piston to reciprocate through the output shaft of the deceleration mechanism Movement; anti-reverse mechanism, located in the housing, the anti-reverse mechanism is used to make the output shaft rotate in one direction.
  • the present application provides an anti-reversal mechanism, which can cause the compression assembly to be reversed due to the connecting rod crank mechanism when the compression assembly is stopped at a random position with load. It prevents the compressed high-pressure gas from turning into a low-pressure gas. Thereby, the waste of battery pack power is avoided, and the single pack capacity is improved.
  • the anti-reverse mechanism includes a one-way clutch provided on the output shaft.
  • the one-way clutch includes a one-way needle roller bearing, the inner ring of the one-way needle roller bearing is fixedly connected with the output shaft, and the outer ring of the one-way needle roller bearing is fixedly connected with the housing .
  • the anti-reverse mechanism includes a one-way needle roller bearing, the inner ring of the one-way needle roller bearing is fixedly connected to the output shaft, and the outer ring of the one-way needle roller bearing is fixed to the housing connect.
  • a clutch device is provided between the motor shaft and the drive assembly, and the clutch device enables the motor shaft to selectively drive the drive assembly to move.
  • Another object of the present application is to provide a plug-and-play gas supply machine that can supply gas on demand.
  • an air supply machine the air supply machine includes: a housing; a motor located in the housing; a compression assembly including a cylinder and a piston arranged in the cylinder;
  • the clutch device has an engaged state in which the power of the motor is transmitted to the compression mechanism and a separated state in which the power of the motor is not transmitted to the compression mechanism; and is detachably connected to the housing
  • the battery pack a pressure sensor, the pressure sensor can generate a pressure signal related to the outlet pressure value of the air supply; a controller, which is electrically connected to the battery pack, the controller is used to control the operation of the air supply : Receiving the pressure signal from the pressure sensor, and comparing the outlet pressure value of the air supply from the pressure signal with a preset pressure value, the preset pressure value including a preset minimum value and a preset pressure value Set the highest value, when the pressure value is higher than the preset highest value, the controller controls the clutch device to be in a separated state; when the pressure value
  • the controller first controls the motor to start, and then controls the clutch device to be in an engaged state.
  • an air supply machine characterized in that: the air supply machine includes: a housing; a motor located in the housing; A piston; a clutch mechanism, the clutch mechanism has an engaged state in which the power of the motor is transmitted to the compression mechanism and a disengaged state in which the power of the motor is not transmitted to the compression mechanism; the clutch mechanism includes suction and pull Electromagnet; a battery pack detachably connected to the housing; a pressure sensor, the pressure sensor can generate a pressure signal related to the outlet pressure value of the air supply; a controller, electrically connected to the battery pack The controller is used to control the operation of the air supply: receiving the pressure signal from the pressure sensor, and comparing the outlet pressure value of the inflator from the pressure signal with a preset pressure value, so The preset pressure value includes a preset minimum value and a preset maximum value. When the pressure value is higher than the preset maximum value, the controller controls the suction and pull electromagnet to power off; When the value is lower than the prese
  • the present application also provides an air supply machine, including: a compression assembly for compressing air; the compression assembly includes a cylinder and a piston arranged in the cylinder and slidingly fitted with the cylinder; the inner diameter of the cylinder The range is 50 mm to 100 mm, the stroke of the piston is 40 mm to 100 mm; a drive assembly for driving the piston; the drive assembly includes a motor and a transmission mechanism; the motor is provided with an output shaft; the The transmission mechanism is used to convert the rotational motion of the output shaft of the motor into the reciprocating motion of the piston for compressing air; the motor is a brushless and non-inductive high-speed motor.
  • the cylinder is connected with a buffer tube for storing compressed gas, and the buffer tube is provided with a pressure sensor for its internal air pressure and a quick connector; the outer diameter of the buffer tube is smaller than the inner diameter of the cylinder.
  • a clutch device is also provided between the motor and the transmission mechanism; the clutch device is used to allow the motor to transmit power when the air pressure of the buffer tube is lower than a preset pressure, and to transmit power to the buffer tube. When the air pressure is higher than the preset pressure, the power transmission of the motor is cut off.
  • the transmission mechanism includes a speed reduction mechanism; the speed reduction mechanism is used to reduce the speed of the output shaft of the motor and drive the piston through the output shaft of the speed reduction mechanism; the speed of the output shaft of the speed reduction mechanism Below 600 rpm, the speed reduction mechanism adopts a multi-stage planetary speed reduction mechanism.
  • the air supply has a controller; the controller is connected to the pressure sensor and the clutch device, and the controller controls the disconnection and connection of the clutch device through the pressure detected by the pressure sensor.
  • the clutch device includes: a first clutch member, a second clutch member, a moving race disk, a static race disk, a raceway steel ball, and a reset mechanism;
  • the first clutch member is fixed to the output of the motor On the shaft;
  • the static raceway plate is fixed, the moving raceway plate is arranged opposite to the moving raceway plate, and the moving raceway plate and the static raceway plate are provided to accommodate the raceway steel The raceway of the ball;
  • the movable race disk makes the second clutch part engage and separate from the first clutch part by reciprocating rotation; the reset mechanism is used to reset the clutch part to the initial position.
  • the clutch device includes: the first clutch member and the second clutch member adopt a manner in which the friction surface is an inclined surface.
  • the first clutch is a flywheel fixedly sleeved outside the output shaft of the motor.
  • the reset mechanism includes: a reset spring, a limit steel ball, a steel ball limit cover, a thrust bearing, and a needle roller bearing; the thrust bearing is located between the second clutch and the moving race disk
  • the return spring, the limit steel ball, and the steel ball limit cover are located in the second clutch part; one end of the return spring abuts against the second clutch part, and the other end abuts against the steel ball limit cover;
  • the limit steel ball is installed in the steel ball limit cover and is in contact with the output shaft of the motor.
  • the movable race plate has a boss connector, the boss connector is connected to one end of a cable, and the other end of the cable is connected to an iron core; the controller is connected to a cable for pulling the The pull-in electromagnet of the iron core; the controller controls the on-off of the pull-in electromagnet through the detection pressure of the pressure sensor.
  • the air supply provided by an embodiment of the present application adopts a non-inductive brushless high-speed motor, the cylinder adopts a large diameter and a large stroke, and the single compressed air volume is large, and the corresponding speed is reduced under the condition of the total displacement unchanged, so that The time of the air compression process in the cylinder is lengthened, heat dissipation is accelerated, and then close to isothermal compression, and the compression efficiency is improved.
  • Figure 1 is a three-dimensional schematic diagram of an air supply provided by an embodiment of the present application.
  • Figure 2 is another view of Figure 1;
  • Figure 3 is a schematic cross-sectional view of Figure 1
  • Figure 4 is a front view of Figure 1;
  • Figure 5 is a side view of Figure 1
  • Figure 6 is a cross-sectional view of the compression assembly of Figure 1;
  • FIG. 7 is a diagram of the installation position of the intake valve of FIG. 6;
  • Figure 8 is a cross-sectional view taken along line C-C of Figure 7;
  • Figure 9 is an assembly diagram of the speed reduction mechanism, clutch device, and motor of Figure 1;
  • Figure 10 is a top view of Figure 1;
  • FIG. 11 is a cross-sectional view of A1-A1 in FIG. 10;
  • Figure 12 is an exploded view of the clutch device of Figure 1;
  • Figure 13 is an assembly diagram of Figure 12
  • FIGS 14a-16b are diagrams of the working principle of the clutch device
  • Figure 17 is an assembly diagram of the deceleration mechanism of Figure 1;
  • Figure 18 is a schematic diagram of the multiplication of the clutch structure
  • FIG. 19 is a three-dimensional schematic diagram of an air supply device provided by another embodiment of the present application.
  • Fig. 20 is a schematic diagram of the use state of Fig. 1;
  • Figure 21 is a flow chart of the control logic of Figure 1;
  • Figure 22 is a graph showing the relationship between cylinder compression frequency (stroke frequency) and cylinder surface temperature.
  • An embodiment of the present application provides an air supply machine, including: a compression assembly 100 for compressing air; the compression assembly 100 includes a cylinder 4 and a piston arranged in the cylinder 4 and slidingly fitted with the cylinder 4 1; a drive assembly for driving the piston 1; the drive assembly includes a motor 400 and a transmission mechanism; the motor 400 is provided with a motor shaft 56 that can rotate around the motor axis X; the transmission mechanism is used to The rotary motion of the motor shaft 56 of the motor 400 is converted into the reciprocating motion of the piston 1 for compressing air.
  • the motor 400 is a brushless and non-inductive high-speed motor.
  • the motor axis X of the motor 400 is perpendicular to the sliding direction of the piston 1; or the motor axis X of the motor 400 is perpendicular to the length direction of the cylinder 4.
  • the motor 400 is placed approximately vertically, and is located above the cylinder 4.
  • the motor 400 can also be placed horizontally (horizontally), that is, the motor axis X of the motor 400 is parallel to the sliding direction of the piston 1 (as shown in FIG. 19), or it is the length of the cylinder 4.
  • the directions are parallel.
  • the air supply unit has a power source to supply power to the motor 400.
  • the power source may include a battery pack 600, where the battery pack is detachably installed on the battery pack installation part (not shown in the figure) of the air supply machine.
  • the air supply machine may have two battery packs 600, and the two battery packs 600 are located on both sides of the motor 400.
  • the air supply unit can also be powered by a single battery pack 600, wherein one battery pack 600 can be used as a backup, and the other battery pack 600 can be turned on to work when the other battery pack 600 is out of power.
  • the two battery packs 600 can also be used in parallel, thus prolonging the working time of the air supply unit.
  • the battery pack 600 can provide voltages such as 20V and 40V.
  • the MCU of the controller 500 detects whether the voltage of the battery pack 600 is normal, and the sampling chip collects the signal of the pressure sensor.
  • the gas supply machine may also be provided with only a single battery pack 600, and a single battery pack 600 is used for power supply.
  • the gas supply machine has a single battery pack 600. The weight of the air supply machine can be reduced.
  • the compression assembly 100 includes a piston 1, a piston seal 2, a piston pin 3, a cylinder 4, a connecting rod I 5, a connecting support frame 6, and a connecting rod II 9.
  • the compression assembly 100 includes two cylinders 4.
  • the cylinder 4 is screwed to the connecting support frame 6 through the cylinder flange, and a sealing ring can be arranged between the connections.
  • the end of the cylinder 4 is provided with a nut flange to connect the outlet check valve 11.
  • Piston 1 is made of aluminum or plastic material.
  • the outer casing of piston 1 is provided with a piston sealing ring 2.
  • the specific sealing method adopts a Y-shaped sealing ring, an O-shaped sealing ring or a cup type.
  • the inner surface of the cylinder 4 is hardly oxidized, the piston sealing ring 2 is installed in the ring-shaped groove of the piston 1, and the connecting rod I 5 is connected to the piston 1 through the piston pin 3.
  • the connecting support frame 6 is respectively connected with the two cylinders 4 through flanges.
  • the drive assembly includes a crank mechanism, and the crank mechanism includes a crank 8 and a crank pin 7.
  • the crank 8 is hinged with the two connecting rods II 9 and the connecting rod I 5 through the crank pin 7.
  • One end of the outlet check valve 11 is connected to the cylinder 4 and one end is connected to the air outlet pipe 12.
  • an intake valve 10 is provided on the piston 1.
  • the intake valve 10 includes an intake valve plate 103 arranged on the piston 1.
  • the piston 1 is provided with an intake hole 101 for air intake, and an intake valve plate 103 corresponding to the control intake hole 101.
  • the intake valve plate 103 is installed on one side of the piston 1 by a locking screw 102.
  • the intake valve plate 103 blocks the intake hole 101 when the piston 1 compresses gas, and the intake valve plate 103 opens the intake hole 101 when the piston 1 compresses gas.
  • the connecting support frame 6 has an air inlet, and the air inlet is provided with an air filter 86 (see FIG. 5), and the air enters the cylinder after passing through the air filter 86.
  • Cylinder 4 is set in a symmetrical way. The crank 8 rotates once. Two cylinders 4 compress and inhale each time. Cylinder 4 adopts a large diameter, large stroke, large displacement aluminum alloy or plastic cylinder. The single compressed air volume is large, and there is no need to set up storage. The gas tank is convenient to reduce the quality of the whole machine.
  • the cylinder 4 provided in this embodiment adopts a large-diameter, large-stroke, large-displacement aluminum alloy or plastic cylinder, and the inner diameter of the cylinder 4 ranges from 50 mm to 100 mm. In some embodiments, the inner diameter of the cylinder 4 ranges from 50 mm to 80 mm; in some embodiments, the inner diameter of the cylinder 4 ranges from 60 mm to 90 mm. Of course, the inner diameter range of the cylinder 4 can also be 50 mm, 65 mm, 70 mm or 80 mm.
  • the stroke of the piston 1 in the cylinder 4 is 40 mm to 100 mm. In some embodiments, the stroke of the piston 1 is 30 mm to 100 mm; in some embodiments, the stroke of the piston 1 is 40 mm to 70 mm; in some embodiments, the stroke of the piston 1 is 60 mm to 90 mm . Of course, the stroke of the piston 1 can be 50 mm, 60 mm, 65 mm, 70 mm or 80 mm, etc.
  • the cylinder 4 has a single stroke displacement between 98.13 ml and 785 ml; in some embodiments, the cylinder 4 has a single stroke displacement in the range of 100 ml to 300 ml. In some embodiments, the cylinder 4 has a single stroke displacement ranging from 150 milliliters to 250 milliliters. In the illustrated embodiment, the cylinder 4 has a single stroke displacement of approximately 200 milliliters.
  • the cylinder 4 of the air supply unit of this embodiment adopts a large diameter and a large stroke, and thus a single compressed air volume is large (a single stroke displacement is large).
  • a single stroke displacement is large.
  • the single compressed air volume is relatively small and cannot meet the working requirements; if the inner diameter range and stroke range are larger than this range, the single compressed air volume will be large , But the required motor power will also increase a lot, and the volume increases, which increases the weight of the air supply unit.
  • the battery 600 may have a rated output voltage of 20V or 40V, for example, if two battery packs with a rated output voltage of 20V or one battery pack with a rated output voltage of 40V, the inner diameter range of the cylinder 4 is consistent with the The ratio of the voltage value of the power supply is: 1.5 millimeters per volt to 2.5 millimeters per volt. For example, if a battery pack with a rated output voltage of 20V, the ratio of the inner diameter range of the cylinder 4 to the voltage value of the power supply is: 2.5 mm per volt to 5 mm per volt.
  • Motor axis and the existing portable air supply machine usually choose a cylinder with a small diameter and a short stroke.
  • the main reason is that the large diameter of the cylinder and the long stroke require the motor to have a large torque; and the motor with low speed and large torque is usually bulky. Therefore, the portable air supply does not use this type of motor, and it usually does not A cylinder with a large displacement with a single stroke will be selected.
  • the motor 400 adopts a three-wire brushless and non-inductive high-speed motor, which is light in weight and high in rotation speed, thereby reducing the weight of the entire air supply machine.
  • the idling speed of the motor 400 is between 18,000 rpm and 30,000 rpm. In some embodiments, the idling speed of the motor 400 is between 20,000 rpm and 30,000 rpm. In some embodiments, the idling speed of the motor 400 is between 5000 rpm and 50,000 rpm.
  • the rated power of the motor 400 is within 1200W, and the rated current is about 45 amperes.
  • the rated power is 600W-1200W; in some embodiments, the rated power is 400W-1500W; in some embodiments, the rated power is 700W-900W. In some embodiments, the idling speed of the motor 400 is 24000 rpm, and the rated power is 800W, 810W or 850W.
  • the motor 400 includes: a motor bearing 50, a motor rotor 51, a motor fan 52, a motor housing 54, a motor stator 55, a motor shaft 56, a motor end cover 57, and a connecting bolt 58.
  • the motor end cover 57 is connected to one end of the motor housing 54 by a connecting bolt 58.
  • the motor stator 55 is fixedly installed in the motor housing 54.
  • the motor rotor 51 is fixed outside the motor shaft 56 in the motor housing 54 to drive the motor shaft 56 to rotate together.
  • One end of the motor bearing 50 fixed on the motor housing 54 is sleeved outside the motor shaft 56.
  • the motor fan 52 is sleeved outside the motor shaft 56 and rotates with the motor shaft 56 to cool the entire device when the air supply is running.
  • the air supply unit further includes a housing 210.
  • the motor housing 54 and the motor end cover 57 can be regarded as a part of the housing 210.
  • the housing 210 also includes a clutch housing 34, a deceleration mechanism housing 60, and the like. Among them, the motor housing 54, the clutch housing 34, and the speed reduction mechanism housing 60 are fixedly connected.
  • the housing 210 also includes the above-mentioned battery pack installation part.
  • the brushless and non-inductive high-speed motor has a high rotation speed and a large power
  • the cylinder to be driven has a large diameter and a large displacement in a single stroke.
  • the transmission mechanism includes a deceleration mechanism 200.
  • the function of the deceleration mechanism 200 is to decelerate and increase the torque, which reduces the speed of the high-speed motor 400 while increasing the torque to drive the load to run. In this way, the weight of the entire air supply unit can be reduced, and a larger load can be driven, so that there is sufficient exhaust volume per unit time.
  • the speed reduction mechanism 200 is used to reduce the rotation speed of the output shaft of the motor 400 and drive the piston 1 through the output shaft of the speed reduction mechanism 200.
  • the rotation speed of the output shaft of the speed reduction mechanism 200 is below 600 rpm. Therefore, the compression process of the air in the cylinder 4 takes a longer time, which is beneficial to heat dissipation, and then approaches the isothermal compression, the compression efficiency is improved, and the energy loss is small.
  • the rotation speed of the output shaft of the speed reduction mechanism 200 ranges from 60 rpm to 600 rpm.
  • the speed range is 120 rpm to 400 rpm; in some embodiments, the speed range is 180 rpm to 250 rpm; in some embodiments, the speed range is 360 rpm to 600 rpm; in some embodiments, the speed range is 400 rpm to 400 rpm. 560rpm.
  • the stroke frequency of the compression assembly 100 ranges from 60 times per minute to 600 times per minute. Referring to the relationship between the cylinder compression frequency (stroke frequency) and the cylinder surface temperature shown in Figure 22, it can be seen that the stroke frequency of the compressor assembly 100 of the air supply provided in this embodiment is 60 to 600 per minute, according to the figure The surface temperature of the cylinder 4 shown in 22 does not exceed 30 degrees, and the cylinder does not generate significant heat, which will not affect the user and can be carried with you.
  • the stroke frequency of the compression assembly 100 may range from 120 strokes per minute to 400 strokes per minute. Further preferably, the stroke frequency may be 180 times per minute to 250 times per minute. In some embodiments, the stroke frequency can range from 360 strokes per minute to 600 strokes per minute; in some embodiments, the stroke frequency can range from 400 strokes per minute to 560 strokes per minute.
  • M is the stroke frequency of the compression assembly 100
  • N is the number of cylinders. Therefore, in some embodiments, the flow rate of the compression assembly 100 is between about 1 liter/s and 2.2 liters/s; in some embodiments, the flow rate of the compression assembly 100 is between about 0.8 liters/s and 2.5.
  • the flow rate of the compression assembly 100 is between about 1.5 liters/s to 2.2 liters/s (ie, 90 liters/minute to 132 liters/minute); in some embodiments , The flow rate of the compression assembly 100 is between about 1 liter/s to 2 liters/s. It can be 1.4 liters/sec; 1.8 liters/sec and so on.
  • the number of cylinders 4 is two, and the rotation speed may be 120 rpm to 400 rpm.
  • the cylinder 4 may be a single cylinder; the rotation speed may be 400 rpm to 560 rpm.
  • Conventional pneumatic tools (such as pneumatic nail gun (F30)) require 700 ml of air per firing.
  • the air supply volume of the air supply machine is about 1 liter/s to 2.2 liters/s. Therefore, the air supply machine can fire the pneumatic nail gun 2 to 3 times per second, which can satisfy the continuous demand of the pneumatic tool. Work.
  • the stroke frequency (rotation speed of the output shaft) and the single stroke displacement of the cylinder 4 are better designed in this embodiment.
  • the cylinder 4 of the present embodiment adopts a large diameter and a large stroke, and thus a single compressed air volume Large, so that the air supply machine has a higher flow rate, to meet the needs of continuous work of pneumatic tools; reasonable design of the stroke frequency (rotation speed of the output shaft), and will not make the temperature of the cylinder not rise very high, easy to carry and avoid Energy loss.
  • the gas supply may have a battery voltage ratio Q:V between about 0.05 liters/s per volt and about 0.11 liters/s per volt.
  • the flow rate to battery voltage ratio Q:V can be about 0.07 liters/s per volt.
  • the ratio of the flow rate of the air supply machine to the rated power is optimally designed.
  • the rated power is a kind of power that is consumed in the continuous operation of the air supply machine and converted in the air supply machine.
  • the rated power of the motor 400 is within 1200W.
  • the result of the optimal ratio of the rated power of the air supply machine to the flow rate the battery pack of the air supply machine has a long power supply time and has a low displacement. Affected. Due to the low energy consumption of the air supply, the battery life can be improved without reducing the air supply.
  • the flow rate of the compression assembly 100 is between about 1 liter/s and 2.2 liters/s.
  • the ratio of the flow rate of the compression assembly 100 to the rated power is not less than 1.18 cm 3 /S/W. If the flow rate of the air supply machine is too small in the ratio relative to the rated power, then the same power is small, and the flow rate is too small to meet the gas supply demand. In some embodiments, the ratio of the flow rate of the compression assembly to the rated power is between 1.25 cm 3 /S/W and 2.75 cm 3 /S/W.
  • the ratio of the flow rate of the compression assembly to the rated power is in the range of 1.3 cm 3 /S/W to 2.3 cm 3 /S/W. Therefore, while improving the endurance of the battery pack (low energy consumption), the air supply volume will not be reduced, so that a gas supply machine with low energy consumption and large displacement can be provided.
  • the ratio of the single stroke displacement of the cylinder 4 to the rated power is optimally designed.
  • the rated power of the motor 400 is within 1200W, and the ratio of the single stroke displacement of each cylinder 4 to the rated power is between 0.12 cm 3 /W and 0.98 cm 3 /W; In some embodiments, the ratio of the single stroke displacement of each cylinder to the rated power is between 0.18 cm 3 /W and 0.42 cm 3 /W.
  • the ratio of the weight of the air supply machine to the rated power is optimally designed.
  • the weight of the air supply machine in the embodiment of the present application is less than 6 kg, which can solve the heavy physical work of the user carrying the air supply machine.
  • the ratio of the weight of the air supply to the rated power is not more than 7.5g/W. If the weight of the air supply machine is too large in proportion to the rated power, the air supply machine is relatively heavy and inconvenient to carry. As a DC air supply machine that does not need to be connected to the mains, it is more suitable for pneumatic tools with light weight and good performance.
  • the ratio of the weight of the air supply machine to the rated power is between 4.38 g/W and 7.5 g/W.
  • the ratio of the weight of the air supply machine to the rated power is 3.8 g/W to 6.2 g/W. It can be seen that, under the condition that the performance of the air supply machine is not affected, the weight of the whole machine is relatively light and easy to carry.
  • the weight of the air supply unit is less than 6kg.
  • the weight of the air supply machine is 3 kg to 5 kg. In some embodiments, the weight of the air supply machine is between 4 kg and 5.5 kg.
  • the weight of the air supply is the total weight of all components, including the weight of the battery pack 600, which is about 600-800 grams.
  • the weight of the pneumatic tool is not considered, and the weight of the air pipe used to connect the pneumatic tool is not considered.
  • the driving component includes a motor and a transmission mechanism.
  • the motor 400 adopts a brushless and non-inductive high-speed motor with a high speed and a weight of about 500-600 grams.
  • the transmission mechanism includes a deceleration mechanism, and the weight is about 350-450 grams.
  • the compression assembly 100 includes a cylinder 4 and a piston 1 arranged in the cylinder 4 and slidingly fitted with the cylinder 4. As the gas is close to isothermal compression, the cylinder 4 generates a small amount of heat, and it is possible to dissipate heat without radiating fins; and the cylinder, The pistons are all made of lightweight and wear-resistant materials, which can be made of aluminum or plastic materials. The overall weight of the compression assembly 100 is 400-550g.
  • the ratio of the weight of the air supply machine to the flow rate is also designed, so that the air supply machine has a higher flow rate. It is light and easy to carry.
  • the ratio of the flow rate of the air supply machine to the weight of the air supply machine is not less than 0.16 liters/s/Kg. If the flow rate of the air supply machine is too small in proportion to the weight of the air supply machine, the flow rate of the air supply machine of the same weight is too small to meet the air supply demand. In some embodiments, the ratio of the flow rate of the air supply machine to the weight of the air supply machine ranges from 0.2 liter/s/kg to 0.7 liter/s/kg.
  • the ratio of the flow rate of the air supply machine to the weight of the air supply machine ranges from 0.25 liter/s/kg to 0.4 liter/s/kg.
  • the ratio of the flow rate of the air supply machine to the weight of the air supply machine may be 0.35 liters/s/kg, 0.29 liters/s/kg, and so on.
  • the flow rate of the air supply machine is optimally designed without increasing the weight.
  • a DC air supply machine that does not need to be connected to the mains, it is more suitable for pneumatic tools that need to be replaced in different places to meet the needs of continuous work of pneumatic tools and light in weight. Since the air supply unit is lighter, it can be arbitrarily carried on the body; or hung on the waist; or placed in a suitable position by hand.
  • the air supply machine 2000 is small in size and light in weight and can be carried around.
  • the operator 1000 supplies air through the strap on the air supply machine 2000
  • the machine 2000 is carried on your back, and a pneumatic tool (such as a pneumatic nail gun) 4000 is connected to a quick connector 80 on the air supply machine 2000 by connecting the air pipe 5000 to realize the supply of high-pressure gas.
  • the operator 1000 operates the pneumatic nail gun 4000 to shoot nails on the target working surface 6000.
  • the current technology cylinder is prone to hot due to adiabatic compression, and the compression efficiency is low. This will reduce the effective gas output of a single pack of lithium batteries.
  • the large displacement and low-frequency compression technology adopted by the air supply of this embodiment is just the opposite of the above-mentioned technology. The air supply is easy to carry around, and the heating of the cylinder will not affect the user. Plug and play can be realized without the need for users. wait.
  • the air supply unit also includes a deceleration mechanism 200 for deceleration and torque increase.
  • the deceleration mechanism 200 is used to reduce the speed of the high-speed motor 400 while increasing the torque to drive the load to run.
  • the power input end of the reduction mechanism 200 receives the power of the motor 400 (specifically, the following gear 20, where the gear 20 is the gear at the output end of the clutch device 300 and also the gear at the input end of the reduction mechanism 200), and the output end of the reduction mechanism 200
  • the crank 8 is connected to drive the piston 1 to make linear reciprocating motion in the cylinder 4.
  • the reduction mechanism 200 is a three-stage gear reduction, with a total transmission ratio of about 30-150; or 30-100; or 50-100.
  • the total transmission ratio of the deceleration mechanism is 50-80; of course, the transmission ratio can also be 55; 60 or 70.
  • the total transmission of the deceleration mechanism 200 is within an appropriate range, so that the output shaft transmitted by the high-speed motor via the deceleration mechanism has the best rotational speed. Therefore, the air supply machine can have a larger displacement and will not generate heat due to the high frequency of the cylinder.
  • the reduction mechanism 200 includes: a reduction mechanism housing 60, a primary gear ring 61, a secondary gear ring 62, a secondary planet carrier 64, a bearing 65, a reduction mechanism output shaft 66, and a third stage
  • the primary pin shaft 73 is interference-pressed into the hole on the disc of the primary planet carrier 71, and there can be multiple primary gears 72, which are arranged on the primary planet carrier 71 through the primary pin shaft 73; similarly, the secondary gear 70 passes through the secondary pin
  • the shaft 69 is arranged on the secondary planet carrier 64; the third-stage gear 68 is arranged on the output shaft 66 through the third-stage pin 67.
  • the reduction mechanism 200 has a gear 20 (re-described) at the input end and an output shaft 66 of the reduction mechanism at the output end.
  • a flange 15 is connected to the end of the reduction mechanism housing 60.
  • the output shaft 66 of the reduction mechanism can be rotatably arranged in the flange 15 around the axis of the output shaft 66, and a bearing 17 and a bearing retainer 18 are sleeved between the output shaft 66 and the flange 15 of the reduction mechanism.
  • the axis of the output shaft 66 coincides with the motor axis X of the motor 400.
  • the input gear 20 at the input end is driven by the motor shaft 56 of the motor 400.
  • the front end (upper end in FIG.
  • the speed reduction mechanism 200 also includes a primary ring gear 61 and a secondary ring gear 62.
  • the gear modules of the two inner gear rings of the primary ring gear 61 and the secondary ring gear 62 are different.
  • the stage gear 70 and the primary gear 72 mesh.
  • the outer surfaces of the ring gears 61 and 62 have several protrusions in the axial direction, and the cross-sectional shape is triangle or other geometric shapes. These geometric protrusions are sleeved in the fixed reduction gear housing 60.
  • the power of the gear 20 comes from the motor 400, which is equivalent to the primary center wheel.
  • the rotation of the gear 20 drives the primary gear 72 to rotate around the axis of the primary gear 72 itself, and at the same time, the primary gear 72 revolves around the axis of the output shaft 66 by driving the primary planet carrier 71. Therefore, the gear (not numbered) on the primary planet carrier 71 meshes with the secondary gear 70, driving the secondary gear 70 to rotate around the axis of the secondary gear 70, and at the same time, driving the secondary planet carrier 64 around the output through the secondary pin 69.
  • the axis of the shaft 66 revolves.
  • the gear (not labeled) of the secondary planet carrier 64 meshes with the third-stage gear 68, which drives the third-stage gear 68 to rotate around its own axis while driving the output shaft 66 to rotate. Therefore, the power of the reduction mechanism 200 is transmitted to the primary planet carrier 71 through the primary planetary gear 72 and the primary pin shaft 73.
  • the protrusion on the primary planet carrier 71 is processed into a sun gear, or the gear is arranged on the protrusion as a The first-level center wheel is used.
  • the power passes through the secondary gear 70, the secondary pin 69, the secondary planet carrier 64, the tertiary gear 68, and the tertiary pin 67 to finally transmit the power to the output shaft 66 of the reduction mechanism.
  • the bearing 65 supports the output shaft 66 of the speed reduction mechanism. Therefore, in this embodiment, a planetary gear reduction system is adopted, which can output a large torque with the advantage of a small size.
  • the connecting rod crank mechanism When the compression assembly 100 is loaded and stopped at a random position, the connecting rod crank mechanism may be reversed due to the existence of pressure, so that the compressed high-pressure gas becomes a low-pressure gas again.
  • an anti-reversal mechanism is added to the air supply provided in this embodiment.
  • the anti-reverse mechanism makes the output shaft 66 of the speed reduction mechanism 200 rotate in one direction.
  • the anti-reverse mechanism includes a one-way clutch provided on the output shaft 66.
  • the one-way clutch includes a one-way needle roller bearing 16, the inner ring of the one-way needle roller bearing 16 is fixedly connected to the output shaft 66, and the outer ring of the one-way needle roller bearing 16 is fixedly connected to the reduction mechanism housing 60 ( Interference tight fit). In this way, it can be ensured that the output shaft 66 of the speed reduction mechanism cannot be reversed, and the power of the battery pack 600 can be avoided from wasting.
  • the cylinder 4 is connected with a buffer tube 82 for storing compressed gas, and there is no need to install a large-volume gas storage tank.
  • the buffer tube 82 is arranged on the cylinder 4, and the outer diameter of the buffer tube 82 is smaller than the inner diameter of the cylinder 4.
  • the capacity of the buffer tube 82 is equivalent to the capacity of the cylinder 4.
  • the length of the buffer tube 82 is less than the length of the cylinder 4.
  • the buffer tube 82 has a quick connector 80 to output the compressed gas to the pneumatic tool.
  • the buffer tube 82 communicates with the cylinder 4.
  • the buffer tube 82 has an end cover 85 at both ends. The end cover 85 is connected to the cylinder 4 through the outlet pipe 12.
  • the two ends of the cylinder 4 are respectively connected to the outlet pipe 12 through the outlet check valve 11 to avoid buffering
  • the high-pressure gas in the pipe 82 flows back.
  • the buffer tube 82 is also provided with a safety valve 83. When the pressure in the buffer tube 82 exceeds a certain pressure, the safety valve 83 is automatically opened to relieve the pressure, thereby improving the safety performance of the equipment.
  • the buffer pipe 82 provides a accommodating space for part of the compressed gas, and provides installation positions for the safety valve 83, the quick connector 80, and the pressure sensor 88 described below.
  • the air supply unit also includes a clutch device 300, which is used to select whether to transmit power to the drive assembly through the clutch device during the operation of the motor.
  • the clutch device 300 is disposed between the motor 400 and the transmission mechanism, and can selectively transmit the power of the motor 400 to the drive assembly. That is, the clutch device 300 enables the motor shaft 56 to selectively drive the drive assembly to move. In this way, the air supply machine can choose to cut off the power transmission or switch on the power transmission according to the actual working conditions of the pneumatic tool, without turning off the motor, and does not start the motor frequently, thereby ensuring the service life of the air supply machine.
  • the clutch device 300 is used to allow the motor 400 to transmit power when the air pressure (pressure value) of the buffer tube 82 is lower than a preset pressure, and to cut off the power when the air pressure of the buffer tube 82 is higher than the preset pressure.
  • the motor 400 transmits power.
  • the function of the clutch device 300 is to cut off the power and switch on the power. The cut off and on is controlled by an actuator (for example, the suction and pull electromagnet 90 described below).
  • the preset pressure may be a set value or a range value. To avoid frequent starting of the motor 400, the preset pressure is preferably a range value.
  • the preset pressure may include a preset maximum value and a preset maximum value. The lowest value.
  • the clutch device 300 is used to allow the motor 400 to transmit power when the air pressure (pressure value) of the buffer tube 82 is lower than a preset minimum value, and when the air pressure of the buffer tube 82 is higher than a preset maximum value When the value is reached, the power transmission of the motor 400 is cut off.
  • the preset maximum value may be a pressure value that is set according to the user's expectations (for example, the rated working pressure of the target tool), and the preset minimum value may have a fixed difference with the preset maximum value, which is then set by the user After the highest value is preset, there is no need to additionally set the preset lowest value.
  • the preset pressure range
  • the motor 400 will not start in the working state, which can avoid The problem of frequent starting of the motor 400 reduces the use noise and improves the user experience.
  • the gas supply machine has a controller 500 and a pressure sensor 88 for detecting the gas pressure value.
  • the controller 500 is electrically connected to the battery pack 600.
  • the pressure sensor 88 may be arranged on the controller 500 or the buffer tube, and is mainly used to detect the outlet pressure value of the air supply machine, that is, the pressure value of the gas discharged from the cylinder 4.
  • the controller 500 is connected to the pressure sensor 88 and the clutch device 300, and the controller controls the disconnection and connection of the clutch device 300 through the pressure detected by the pressure sensor.
  • the buffer tube 82 is provided with a pressure sensor connector 81.
  • the pressure sensor connector 81 is connected to the pressure sensor 88 in the controller through a gas pipe 87.
  • the pressure sensor 88 can also be installed on the buffer tube 82. Specifically, it can be integrated with the pressure sensor connector 81, and then the lead wire of the pressure sensor 88 can be connected to the controller 500. This way, the connection is relatively simple and the processing is convenient. low cost.
  • the control principle of the gas supply is mainly to control the separation state of the clutch device 300 according to the change of gas pressure, so that the compression assembly 100 is in the working and non-working state, and each time it stops in the non-working state They are all random. It is possible that the air pressure is in the state of high pressure load. If the air pressure is not released during the second start, the torque characteristics of the motor 400 are difficult to restart with load.
  • the current common practice is to pass before the start
  • the solenoid pneumatic valve first removes the air pressure before starting, but directly removing the air pressure will produce a lot of waste, which will reduce the performance of a single battery pack and reduce the air pressure efficiency.
  • the air supply of this embodiment is provided with a flywheel energy storage mechanism (clutch device 300).
  • the motor 400 is first started by the controller 500 and idling at a high speed.
  • the flywheel 39 coaxial with the motor 400 stores a large part of the rotational kinetic energy when the motor 400 is idling. Load, the release of the kinetic energy of the flywheel 39 will help the motor 400 to start with load. In this way, the on-load startup of the air supply unit can be successfully completed, so that the problem that the motor 400 cannot be started when the motor is on-load can be smoothly solved.
  • the clutch device 300 includes a first clutch 39, a second clutch 30, and a moving assembly supported by the motor shaft.
  • the second clutch 30 is provided with a drive engaged with the drive assembly.
  • the moving assembly facilitates the engagement and separation of the second clutch 39 and the first clutch 30.
  • the clutch device can selectively transmit the power of the motor 400 to the drive assembly, that is, selectively transmit the power of the motor 400 to the deceleration mechanism 200, and play the role of power clutch.
  • the first clutch 39 is a flywheel and is fixed on the motor shaft 56 of the motor 400.
  • the flywheel 39 is a part of the clutch device 300. When its weight reaches a certain mass, it can be used as an energy storage part.
  • the power of the motor 400 can be stored by the rotating kinetic energy of the flywheel 39, and the kinetic energy of the flywheel 39 can be released to the motor shaft 56 when needed. , The interaction between the two will also play a role in reducing the jitter of the whole machine.
  • the concave surface of the flywheel 39 has a friction slope 301, that is, the friction surface, so the flywheel 39 is also called the friction disc I.
  • the second clutch 30 may also be referred to as a friction disc II, which can move along the motor axis X to achieve engagement and separation with the first clutch 39.
  • the friction surface 301 and the inclined surface of the friction disc II 30 are tightly and seamlessly pressed into a pair, and the power is transmitted through friction. In this way, the power of the motor 400 can be pressed together through the two inclined surfaces to transmit the power to the reduction mechanism 200 to act as a power The role of clutch.
  • the second clutch 30 is slidably disposed on the motor shaft 56 through a needle bearing 40.
  • the driving part is a gear 20, which can be integrally formed with the second clutch part 30; and can also be fixedly connected with the second clutch part 30.
  • the gear 20 is also the input end of the reduction mechanism.
  • the housing 210 includes a clutch housing 34 that houses the clutch device 300.
  • the moving assembly includes a static raceway disk 33, a movable raceway disk 32 and a raceway steel ball 35 arranged on the clutch housing 34, wherein the movable raceway disk and the static raceway disk are provided with the raceway steel ball 35. Raceway.
  • a number of evenly distributed raceways can be provided.
  • the raceways are arranged on the opposite end faces of the static raceway disk 33 and the movable raceway disk 32, and there are 3 raceways evenly distributed.
  • the raceway is a spiral raceway (only the static raceway disk 33 is shown, and the moving raceway disk 33 is the same).
  • the raceway has deep and shallow ends.
  • the center of the raceway is deep from the end surface (large distance) is the deep end, and the distance from the raceway end surface is shallow (distance The small end is the shallow end; and the transition is smooth from the deep end to the shallow end. In this way, the axial displacement of the raceway steel ball 35 is a gradual movement when rolling in the raceway.
  • the moving assembly also includes a thrust bearing 38 arranged between the moving race disk 32 and the second clutch 30.
  • One end of the thrust bearing 38 abuts against the second clutch 30 (friction disc II 30) and can rotate together with the second clutch 30;
  • the moving race disk 32 moves toward the first clutch 39 along the motor axis X, it will drive the second clutch 30 to move in the direction of engaging with the first clutch 39.
  • the moving assembly also includes an electromagnetic tube 90 (it is a position-attracting electromagnet), an iron core 93 housed in the electromagnetic tube, and a connecting element 91 connecting the iron core 93 and the moving race disk 32.
  • the connecting element 91 is a cable
  • a cable connector 92 is provided on the moving race disk.
  • One end of the cable 91 is connected to the cable connector 92 and the other end is connected to the iron core 93.
  • the moving assembly further includes a reset mechanism, and the reset mechanism includes a reset spring 36, and the reset spring 36 provides a spring force for the second clutch 39 to move in the direction of separating from the first clutch 30. That is, when there is no need to drive the piston 1 to move, the return spring 36 pushes the friction disc II 30 to leave the friction slope of the flywheel 39 and be in the initial position.
  • the reset mechanism further includes a limiting member 37.
  • the limiting member can also be called a steel ball limiting cover 37
  • the return spring 36 is arranged between the steel ball limiting cover 37 and the second clutch 30
  • a limit steel ball 31 is provided between the steel ball limit cover 37 and the motor shaft 56.
  • the limiting steel ball 31 is installed in the inner hole of the steel ball limiting cover 37 and abuts against the motor shaft 56. In this way, the limit steel ball 31 and the steel ball limit cover 37 and the motor shaft 56 are in point contact, and even if the motor shaft 56 rotates at a high speed, wear can be reduced.
  • One end of the return spring 36 abuts against the bottom of the inner hole of the second clutch 30, and one end abuts against the edge of the steel ball limit cover 37. After the return spring 36 is assembled, there is a certain pre-tightening force, that is, when the piston 1 does not need to be driven to move, The return spring 36 pushes the friction disc II 30 away from the friction slope of the flywheel 39.
  • the clutch device 300 is mainly divided into three functional parts, the first is the combination of the static race disk 33 and the movable race disk 32 that generate thrust, and the second is the clutch body of the flywheel 39 and the friction disk II 30 , The third is the friction disc II reset mechanism, Figure 13 is the assembly diagram of the clutch device, Figure 14a-16b is the working principle diagram of the clutch device.
  • the three functional parts are described in detail below to better understand the application.
  • the first functional part the combination of the static race disk 33 and the movable race disk 32.
  • the static raceway disk 33 and the clutch housing 34 are in tight contact with each other, and there is a gap between the movable raceway 32 and the clutch housing 34, and the movable raceway disk 32 can rotate around the axis. Axial power is transmitted between the static raceway 33 and the movable raceway disk 32 through the steel balls 35 in the raceway.
  • the movable race disk 32 is provided with a boss as a cable connecting head 92, and the other end of the cable 91 is connected to the iron core 93 of the attracting and pulling electromagnet 90. Since the static raceway disk 33 and the movable raceway disk 32 are equipped with raceways, the deep and shallow ends of the raceway of the static raceway disk 33 and the movable raceway disk 32 correspond to each other during assembly.
  • the raceway steel ball 35 is at the deep end of the two raceways, and the distance between the two end faces is the smallest, as shown in Figure 16a, about 7.2 mm .
  • This distance difference is also the action stroke of the clutch device.
  • the multiplication effect of the clutch device 300 of this embodiment is to magnify the suction force of the pull electromagnet 90 by 20 times. Therefore, the multiplication factor of the clutch device is 20, that is, the force exerted by the cable 91 on the second clutch member 30 can be increased, which can be increased by 20 times.
  • the iron core 93 pulls the cable 91 to drive the raceway disk 32 to rotate, and the raceway steel ball 35 moves from the deep end to the shallow end, prompting the movable raceway disk 32 to move axially, due to the multiplication A relatively large force is generated in the axial direction, which can overcome the thrust of the return spring 36 to push the friction disc II 30 to move along the motor axis X direction, so that the friction disc II 30 and the friction disc I frictionally engage to transmit power.
  • the second functional part the clutch body of the first clutch 39 (friction disc I 39) and the second clutch 30 (friction disc II 30); according to the principle of friction mechanics, the friction force is proportional to the positive pressure, the friction disc II 30 The greater the frictional force with the friction disc I, the more favorable it is for power transmission. Therefore, the first clutch 39 is provided with a friction slope for driving the second clutch 30 in this embodiment.
  • the multiplication of the entire clutch device 300 is approximately equal to 20 ⁇ 3 ⁇ 60. That is to say, the attraction force of the pull electromagnet 90 is increased by 60 times, that is, the force transmitted by the cable 91 until the friction force acting on the friction plate II 30 and the friction plate I is increased by 60 times, which is more important for the transmission of power. favorable.
  • the friction slope can be nested with non-metallic wear-resistant materials such as copper.
  • the reset mechanism includes: a return spring 36, a limit steel ball 31, a steel ball limit cover 37, a needle roller bearing 40, a thrust bearing 38, and a friction disc II 30.
  • One end of the thrust bearing 38 abuts against the friction disc II 30 and rotates together with the friction disc I (flywheel 39), and one end abuts against the movable race disc 32 and rotates together with the movable race disc 32.
  • the return spring 36, the limit steel ball 31, and the steel ball limit cover 37 are installed in the friction plate II 30.
  • One end of the return spring 36 abuts against the bottom of the inner hole of the friction plate II 30, and one end abuts against the edge of the steel ball limit cover 37.
  • the limit steel ball 31 is installed in the inner hole of the steel ball limit cover 37, and the return spring 36 has a certain pre-tightening force after assembly, so that the return spring 36 pushes the friction plate II 30 away from the friction slope.
  • the working process of the reset mechanism is as follows: when the pull electromagnet 90 is energized, the iron core 63 is forced to rotate through the cable 91 to pull the race disk 32. Due to the multiplication relationship, a relatively large force will be generated in the axial direction. , It overcomes the thrust of the return spring 36 to push the friction disk II 30 to move in the axial direction of the motor, so that the friction disk II 30 and friction disk I frictionally contact to transmit power. When the pull electromagnet 90 is de-energized, the friction disc II 30 and the friction disc I are frictionally disengaged from contact with the friction disc I under the action of the return spring 36, so that the power transmission is released.
  • the energization of the pull electromagnet 90 and the length of the energization time are controlled by the controller 500 (MCU).
  • the controller 500 receives the pressure signal detected by the pressure sensor 88 to the buffer tube 82.
  • the outlet pressure value of the air supply from the pressure signal is compared with the preset pressure value.
  • the controller 500 controls the clutch device to be in the separated state. Because when the detected pressure value of the pressure sensor 88 is above the preset maximum value, it indicates that the pressure in the buffer tube 82 is too large, and the controller 500 controls the pull solenoid 90 to de-energize.
  • the clutch device 300 will not transmit the power of the motor 400 to the drive assembly, that is, the clutch device 300 cuts off the power transmission of the motor 400
  • the motor 400 is controlled to idle for more than a predetermined time (in this embodiment, the motor continues to idle for more than 10 seconds), and then the motor is turned off.
  • the pressure value is lower than the preset minimum value
  • the detected pressure value of the pressure sensor 88 is lower than the preset maximum value
  • the (controller 500) continues to determine whether the detected pressure value is lower than the preset minimum value.
  • the controller 500 needs to control the clutch device 300 to be in the engaged state. Correct the initial state of the air supply unit to the working state. It is determined whether the motor 400 is in the starting state.
  • the motor 400 determines whether the clutch device 300 is in a separated state (whether the friction disc II 30 and the friction disc I 39 are separated or in contact, specifically, the separation state of the clutch device 300 can be determined by the energized state of the electromagnet 90 ).
  • the pull electromagnet 90 is powered off, the motor 400 is started, and then the pull electromagnet 90 is turned on, the friction disc II 30 is engaged with the friction disc I 39, and the clutch device 300 connects the motor 400
  • the power is transmitted to the driving assembly (deceleration mechanism 200), thereby prompting the piston 1 to reciprocate to compress air, and the motor 400 is stopped when the pressure value is greater than the preset maximum value.
  • the detected pressure value is less than the preset maximum value but greater than the preset minimum value, it is determined whether the current state of the air supply machine is the initial state or the working state, and when it is determined as the initial state, it is circularly judged whether it is greater than the preset maximum value. Value until the pressure value is below the preset minimum value, no compressed air is performed during this process.
  • the step of judging whether the motor is started is entered, and the motor 400 is turned off until the pressure value exceeds the preset maximum value by starting the motor 400.
  • the gas supply provided by the present embodiment controls the separation state of the clutch device 300 according to the pressure change of the compressed gas of the gas supply, so as to intelligently control whether the compression assembly 100 is working or not working. In this way, There is no need to set up a gas tank, plug and play, and gas can be supplied on demand.
  • any numerical value quoted herein includes all values of the lower value and the upper value in increments of one unit from the lower limit value to the upper limit value, and there is a gap of at least two units between any lower value and any higher value. That's it.
  • the number of a component or the value of a process variable is from 1 to 90, preferably from 20 to 80, and more preferably from 30 to 70, the purpose is to illustrate the
  • the specification also explicitly lists values such as 15 to 85, 22 to 68, 43 to 51, and 30 to 32. For values less than 1, one unit is appropriately considered to be 0.0001, 0.001, 0.01, 0.1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

一种供气机,包括:壳体(210);电机(400),位于壳体内;压缩组件(100),包括气缸(4)和设置在气缸内的活塞(1);驱动组件(100),用于将电机轴的旋转运动转换为活塞在气缸内的往复运动,驱动组件包括减速机构(200),减速机构用于将电机轴的转速降低并通过减速机构的输出轴带动活塞往复运动,用于压缩空气;气缸的内径为50毫米到100毫米,活塞的行程为40毫米到100毫米;输出轴的转速范围为60rpm~600rpm。该供气机最佳地设计了气缸的直径、行程和输出轴的转速,进而使得单次压缩气量大,在总排量不变的情况下转速降低,如此使得空气在气缸中压缩过程的时间拉长,散热加快,进而接近等温压缩,提升空气压缩效率。

Description

供气机
本申请要求了申请日为2020年04月03日,申请号为202020478797.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及供气机。
背景技术
常压(0.8Mpa以下)气动工具因其结构简单,工作可靠,维修方便,寿命长等优点仍大量应用于各种气动工具的使用场合,比如:气动钉枪、喷枪、风炮、气剪、充气装置等,但也存在一些问题,其气源供气机笨重携带不方便,且不能无绳操作,工地电源往往连接不方便等因素,造成用户抱怨体验感觉不好。因此,市面上已出现各种锂电池空气压缩机以适应这类市场需求,且发展势头强劲。
虽然这类型的供气机已经解决电源问题,但因储气罐和结构的原因重量还是普遍笨重,根本实现不了随身携带,并且因采用小容积高频压缩技术,压缩效率低,发热严重并且震动和噪音也比较大。
发明内容
鉴于上述不足,本申请的一个目的是提供一种供气机,以提升空气压缩效率。
为达到上述目的,本申请采用如下技术方案:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;电池包,连接在所述壳体上;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动,所述驱动组件包括减速机构,所述减速机构用于将所述电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;所述气缸的内径为50毫米到100毫米,所述活塞的行程为40毫米到100毫米;所述输出轴的转速范围为60rpm~600rpm。
本申请所提供的供气机最佳地设计了气缸的直径、行程和输出轴的转速,进而使得单次压缩气量大,在总排量不变的情况下转速降低,如此使得空气在气缸中压缩过程的时间拉长,散热加快,进而接近等温压缩,压缩效率提高。
优选的,所述输出轴的转速范围为120rpm~400rpm;优选的,所述输出轴的转速范围为180rpm~250rpm;优选的,所述输出轴的转速范围为360rpm~600rpm。
优选的,所述气缸的内径范围为50毫米到80毫米;优选的,所述活塞的行程为40毫米到70毫米。
优选的,所述减速机构为三级齿轮减速,总传动比为50~150。优选的,总传动比为50~80。
优选的,所述电机的额定功率在600W~1200W。
优选的,所述电机的空转转速为18000rpm~30000rpm。优选的,所述电机的空转转速 为20000rpm~30000rpm。
优选的,所述压缩组件的流率在约1升/s至2.2升/s之间。
优选的,所述气缸的内径范围为60毫米到90毫米;所述活塞的行程为60毫米到90毫米;
优选的,所述活塞的冲程频率为每分钟60至600次。
优选的,所述压缩组件的流率在约1.5升/s和2.2升/s之间。
优选的,在所述电机轴和所述驱动组件之间设有离合装置,所述离合装置可选择地将所述电机的动力传递至所述驱动组件。
优选的,所述供气机还包括防反转机构,所述防反转机构用于使得输出轴单向旋转。
为达到上述目的,本申请采用另一技术方案:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;电池包,连接在所述壳体上;压缩组件,包括气缸和设置在所述气缸内的活塞;其中所述气缸的内径为50毫米到100毫米,所述活塞的行程为40毫米到100毫米;所述活塞的冲程频率为每分钟60至600次;驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动。
本申请所提供的供气机最佳地设计了气缸的直径、行程和活塞的冲程频率,进而使得单次压缩气量大,在总排量不变的情况下转速降低,如此使得空气在气缸中压缩过程的时间拉长,散热加快,进而接近等温压缩,压缩效率提高。
为达到上述目的,本申请采用另一技术方案:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;电池包,连接在所述壳体上;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动,所述驱动组件包括减速机构,所述减速机构用于将所述电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;所述减速机构的总传动比为50~150;所述气缸的内径为50毫米到100毫米,所述活塞的行程为40毫米到100毫米。
本申请所提供的供气机最佳地设计了气缸的直径、行程和减速机构的总传动比,进而使得单次压缩气量大,在总排量不变的情况下转速降低,如此使得空气在气缸中压缩过程的时间拉长,散热加快,进而接近等温压缩,压缩效率提高。
为达到上述目的,本申请采用另一技术方案:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴,且所述电机的空转转速范围为18000rpm~30000rpm;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动,所述驱动组件包括减速机构,所述减速机构用于将所述电机的电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;所述气缸的内径范围为50毫米到80毫米,所述活塞的行程为40毫米到70毫米。
本申请所提供的供气机采用了高速电机,大大降低了整机重量;且最佳地设计了气缸 的直径、行程,单次压缩气量大,在总排量不变的情况下转速降低,如此使得空气在气缸中压缩过程的时间拉长,散热加快,进而接近等温压缩,压缩效率提高;
本申请的另一个目的是提供一种供气机,重量轻且还具有较高流率。
为达到上述目的,所采用技术方案是:一种供气机,所述供气机包括:壳体;电池包,连接在所述壳体上;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴,且所述电机的空转转速范围为20000rpm~30000rpm;电池包,连接在所述壳体上;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动,所述驱动组件包括减速机构,所述减速机构用于将所述电机的电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;其中,所述压缩组件的流率在约1升/s至2.2升/s之间。
本申请所提供的供气机采用了高速电机,降低了整机重量的同时还具有较高的流率。
优选的,所述气缸的内径范围为50毫米到80毫米;所述活塞的行程为40毫米到70毫米。
本申请的另一目的是提供一种供气机,最佳地设计了气缸的单次冲程位移相对于所述额定功率的比例。
所采用的技术方案是:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;电池包,连接在所述壳体上;压缩组件,包括气缸、设置在所述气缸内的活塞;驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;所述每个气缸具有的单次冲程位移在150~250毫升之间;所述电机的额定功率在1200W以内,所述每个气缸的单次冲程位移相对于所述额定功率的比例处于0.18cm 3/W至0.42cm 3/W。
优选的,所述驱动组件包括减速机构,减速机构用于将所述电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;所述输出轴的转速范围为60rpm~600rpm。
优选的,所述输出轴的转速范围为360rpm~600rpm。。
本申请的另一个目的是提供一种能耗小、供气效率高的供气机。
为达到上述目的,所采用技术方案是:一种供气机,所述供气机包括:壳体;电池包,连接在所述壳体上;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴,所述电机的额定功率在1200W以内;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;其中,所述压缩组件的流率相对于所述额定功率的比例不小于1.18cm 3/S/W。
其中,所述压缩组件的流率相对于所述额定功率的比例处于1.25cm 3/S/W至2.75cm 3/S/W。
优选的,压缩组件的流率相对于所述额定功率的比例处于1.3cm 3/8/W至2.3cm 3/S/W。
本申请所提供的供气机最佳地最佳地设计了压缩组件的流率相对于所述额定功率的比例,在提高电池包的续航能力下(能耗小),并不会减少供气量,从而可以提供一种能耗小、排量大的供气机。
本申请的另一个目的是提供一种重量轻的供气机,以改善便携性能。
为达到上述目的,本申请的技术方案:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;其中,对于1200W以内的额定功率,所述供气机的重量小于6kg。
优选的,所述驱动组件包括减速机构,所述减速机构用于将所述电机的电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动,所述输出轴的转速小于600rpm。优选的,所述输出轴的转速为360rpm~600rpm。
优选的,所述供气机的重量在3kg至5kg。优选的,所述供气机的重量在4kg至5.5kg。
本申请的另一个目的是提供一种便携且性能佳的供气机。为达到上述目的,本申请的技术方案:一种供气机,所述供气机包括:壳体;电池包,连接在所述壳体上;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;其中,对于1200W以内的额定功率,所述供气机的重量相对于所述额定功率的比例不大于7.5g/W。
优选的,所述供气机的重量相对于所述额定功率的比例处于4.38g/W至7.5g/W。优选的,所述供气机的重量相对于所述额定功率的比例处于3.8g/W至6.2g/W。
本申请所提供的供气机最佳地设计了供气机的重量相对于额定功率的比例,进而使得供气机的性能不受影响的情况下,整机重量较轻便于携带。
本申请的另一个目的是提供一种便携且具有较大流率的供气机。为达到上述目的,本申请的技术方案:一种供气机,所述供气机包括:壳体;电池包,连接在所述壳体上;电机,位于所述壳体内;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;所述压缩组件的流率相对于所述供气机的重量的比不小于0.16升/s/kg。
优选的,所述压缩组件的流率相对于供气机的重量的比范围是0.2升/s/kg至0.7升/s/kg。优选的,所述压缩组件的流率相对于供气机的重量的比范围是0.25升/s/kg至0.4升/s/kg。
本申请所提供的供气机最佳地设计了压缩组件的流率相对于供气机的重量的比例,进而使得供气机整机重量更轻、便于携带,而且流率可以满足供气需求。
本申请的另一个目的是提供一种使用寿命长的供气机。为达到上述目的,本申请的技术方案是:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;在所述电机轴和所述驱动组件之间设有离合装置,所述离合装置使所述电机轴可选择带动所述驱动组件运动。
本申请中设置有离合装置,电机运转过程中,通过离合装置来选择是否将动力传递至 驱动组件。如此,可以根据气动工具的实际工况,无需关闭电机就可以选择切断动力传输还是接通动力传输,而不会频繁启动电机,从而保证了供气机的使用寿命。
优选的,所述离合装置包括由所述电机轴支撑的第一离合件、第二离合件以及移动组件,所述第二离合件设有与所述驱动组件啮合的驱动件,所述移动组件促使所述第二离合件和第一离合件接合和分离。当第二离合件和第一离合件接合,将电机的动力传递至驱动组件,进而活塞运动进行压缩空气;当第二离合件和第一离合件分离,则无法将电机的动力传递至驱动组件,电机进行空转。
优选的,所述第一离合件固定于所述电机的电机轴上,所述移动组件促使所述第二离合件沿所述电机轴线移动实现与所述第一离合件接合和分离。
优选的,所述壳体包括收容所述离合装置的离合器外壳,所述移动组件包括设置在所述离合器外壳上的静滚道盘、动滚道盘和滚道钢球,其中所述动滚道盘和所述静滚道盘设置有容纳所述滚道钢球的滚道,所述滚道为螺旋滚道,所述动滚道盘转动时,在所述钢球的作用下产生轴向移动,使得所述第二离合件与所述第一离合件接合分离。
优选的,所述移动组件还包括电磁管、收容在所述电磁管内的铁芯、连接所述铁芯和所述动滚道盘的连接元件,所述电磁管通电后带动铁芯沿自身轴向移动,进而拉动所述动滚道盘转动。
优选的,所述移动组件还包括复位机构,所述复位机构包括复位弹簧,所述复位弹簧提供所述第二离合件朝着与所述第一离合件分离方向移动的弹簧力。
优选的,所述复位机构还包括限位件,所述复位弹簧设置在所述限位件和所述第二离合件之间,且在所述限位件和所述电机轴之间设有限位钢球。
优选的,在所述动滚道盘和所述第二离合件之间设有推力轴承。优选的,所述第一离合件是飞轮。如此,飞轮可以在电机空转时,存储能量,实现带载启动。
优选的,所述第一离合件设有驱动所述第二离合件的摩擦斜面。
优选的,所述摩擦斜面的斜率为3(倍增系数)。
优选的,所述离合装置的倍增倍数为20。
优选的,所述第二离合件通过滚针轴承可滑动地设置在所述电机轴上。
为达到上述目的,本申请采用另一技术方案:一种供气机,所述供气机包括:壳体;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;压力传感器,所述压力传感器用于检测由所述气缸排出的气体的压力值;离合装置,设置在所述电机轴和所述驱动组件之间,所述离合装置包括第一离合件、第二离合件,当所述压力值低于预设最低值时,所述第一离合件、第二离合件接合,所述离合装置将所述电机的动力传递至所述驱动组件;当所述压力值高于预设最高值时,所述第一离合件、第二离合件分离,所述离合装置不会将所述电机的动力传递至所述驱动组件。
优选的,所述供气机包括与所述气缸连通的缓存管,所述压力传感器用于检测所述缓 存管内气压的压力值。
优选的,所述缓存管的容量与所述气缸的容量相当。优选的,所述缓存管上设有安全阀,快速接头,压力表至少其中之一。
优选的,所述离合装置包括吸拉电磁铁,当所述压力值低于所述预设最低值时,所述吸拉电磁铁的通电,所述第一离合件和所述第二离合件接合;当所述压力值高于所述预设最高值时,所述吸拉电磁铁断电,所述第一离合件和所述第二离合件分离。
本申请的另一个目的是提供一种提供单包能力的供气机。
为达到上述目的,本申请的技术方案是:一种供气机,所述供气机包括:壳体;电池包,连接在所述壳体上;电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;所述驱动组件包括减速机构,所述减速机构用于将所述电机的电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;防反转机构,位于所述壳体内,所述防反转机构用于使得所述输出轴单向旋转。
本申请提供了防反转机构,可以使得压缩组件带载停在某一随机位置时,也会由于连杆曲柄机构反转。避免了压好的高压气体又变成了低压气体。从而避免电池包电力的浪费,提高了单包能力。
优选的,所述防反转机构包括设置在所述输出轴上的单向离合器。
优选的,所述单向离合器包括单向滚针轴承,所述单向滚针轴承的内圈与所述输出轴固定连接,所述单向滚针轴承的外圈与所述壳体固定连接。
优选的,所述防反转机构包括单向滚针轴承,所述单向滚针轴承的内圈与所述输出轴固定连接,所述单向滚针轴承的外圈与所述壳体固定连接。
优选的,在所述电机轴和所述驱动组件之间设有离合装置,所述离合装置使所述电机轴可选择带动所述驱动组件运动。
本申请的另一个目的是提供一种即插即用,且可按需供气的供气机。
为达到上述目的,本申请的技术方案是:一种供气机,所述供气机包括:壳体;位于壳体内的电机;压缩组件,包括气缸和设置在所述气缸内的活塞;离合装置,所述离合装置具有将所述电机的动力传递给所述压缩机构的接合状态和不将所述电机的动力传递给所述压缩机构的分离状态;可拆卸地连接在所述壳体上的电池包;压力传感器,所述压力传感器能够产生与所述供气机的出口压力值有关的压力信号;控制器,电连接所述电池包,所述控制器用于控制所述供气机操作:接收来自所述压力传感器的所述压力信号,将来自所述压力信号的所述供气机的出口压力值与预设压力值进行比较,所述预设压力值包括预设最低值和预设最高值,当所述压力值高于所述预设最高值时,所述控制器控制所述离合装置使其位于分离状态;当所述压力值低于所述预设最低值时,所述控制器控制所述所述离合装置使其位于接合状态。
优选的,当所述压力值低于所述预设最低值时,所述控制器先控制所述电机启动,再 控制所述离合装置使其位于接合状态。
为实现上述目的,另一个技术方案是:一种供气机,其特征在于:所述供气机包括:壳体;位于壳体内的电机;压缩组件,包括气缸和设置在所述气缸内的活塞;离合机构,所述离合机构具有将所述电机的动力传递给所述压缩机构的接合状态和不将所述电机的动力传递给所述压缩机构的分离状态;所述离合机构包括吸拉电磁铁;可拆卸地连接在所述壳体上的电池包;压力传感器,所述压力传感器能够产生与所述供气机的出口压力值有关的压力信号;控制器,电连接所述电池包,所述控制器用于控制所述供气机操作:接收来自所述压力传感器的所述压力信号,将来自所述压力信号的所述充气机的出口压力值与预设压力值进行比较,所述预设压力值包括预设最低值和预设最高值,当所述压力值高于所述预设最高值时,所述控制器控制所述吸拉电磁铁断电;当所述压力值低于所述预设最低值时,所述控制器控制所述吸拉电磁铁通电。
本申请还提供了一种供气机,包括:用于压缩空气的压缩组件;所述压缩组件包括气缸和设置在所述气缸内的并与所述气缸滑动配合的活塞;所述气缸的内径范围为50毫米到100毫米,所述活塞的行程为40毫米到100毫米;用于驱动所述活塞的驱动组件;所述驱动组件包括电机和传动机构;所述电机设有输出轴;所述传动机构用于将所述电机的输出轴的旋转运动转换为所述活塞的往复运动,用于压缩空气;所述电机为无刷无感高速电机。
优选的,所述气缸连通有用于存储压缩气体的缓存管,所述缓存管上设置有用于其内部气压的压力传感器、以及快速接头;所述缓存管的外径小于所述气缸的内径。
优选的,所述电机和所述传动机构之间还设有离合装置;所述离合装置用于在所述缓存管的气压低于预设压力时允许所述电机传递动力并在所述缓存管的气压高于预设压力时切断所述电机传递动力。
优选的,所述传动机构包括减速机构;所述减速机构用于将所述电机的输出轴的转速降低并通过所述减速机构的输出轴带动所述活塞;所述减速机构的输出轴的转速在600rpm以下,所述减速机构采用多级行星减速机构。
优选的,所述供气机具有控制器;所述控制器和所述压力传感器、离合装置相连接,所述控制器通过所述压力传感器的检测压力控制所述离合装置的切断和接通。
优选的,所述离合装置包括:第一离合件、第二离合件、动滚道盘、静滚道盘、滚道钢球、复位机构;所述第一离合件固定于所述电机的输出轴上;所述静滚道盘固定不动,所述动滚道盘与所述动滚道盘相对设置,所述动滚道盘和所述静滚道盘设置有容纳所述滚道钢球的滚道;所述动滚道盘通过往复转动使得所述第二离合件与所述第一离合件接合分离;所述复位机构用于使所述离合件复位至初始位置。
优选的,所述离合装置包括:第一离合件、第二离合件采用了摩擦面为斜面的方式。优选的,所述第一离合件为固定套设于所述电机的输出轴外的飞轮。
优选的,所述复位机构包括:复位弹簧、限位钢球、钢球限位罩、推力轴承、滚针轴承;所述推力轴承位于所述第二离合件和所述动滚道盘之间;复位弹簧、限位钢球、所述 钢球限位罩位于所述第二离合件内;复位弹簧的一端相抵于所述第二离合件,另一端相抵于钢球限位罩;所述限位钢球内装于所述钢球限位罩内并与所述电机的输出轴相抵接触。
优选的,所述动滚道盘具有凸台连接头,所述凸台连接头连接一拉索的一端,所述拉索的另一端连接铁芯;所述控制器连接一用于拉动所述铁芯的吸拉电磁铁;所述控制器通过所述压力传感器的检测压力控制所述吸拉电磁铁的通断。
本申请一个实施例所提供的供气机通过采用无感无刷高速电机,气缸采用大直径,大行程,进而单次压缩气量大,在总排量不变的情况下相应转速降低,如此使得空气在气缸中压缩过程的时间拉长,散热加快,进而接近等温压缩,压缩效率提高。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
图1是本申请一个实施例所提供的供气机立体示意图;
图2是图1的另一视图;
图3是图1的剖面示意图
图4是图1的主视图;
图5是图1的侧视图
图6是图1的压缩组件的剖视图;
图7是图6的进气阀安装位置图;
图8是图7的C-C剖视图;
图9是图1的减速机构、离合装置、电机的装配图;
图10是图1的俯视图;
图11是图10的A1-A1剖视图;
图12是图1的离合装置的爆炸图;
图13是图12的装配图;
图14a-图16b是离合装置工作原理图;
图17是图1的减速机构装配图;
图18是离合结构倍增原理图;
图19是本申请另一个实施例所提供的供气机立体示意图;
图20是图1的使用状态示意图;
图21是图1的控制逻辑流程图;
图22是气缸压缩频率(冲程频率)与气缸外表温度关系图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图18。本申请一个实施例提供一种供气机,包括:用于压缩空气的压缩组件100;所述压缩组件100包括气缸4和设置在所述气缸4内的并与所述气缸4滑动配合的活塞1;用于驱动所述活塞1的驱动组件;所述驱动组件包括电机400和传动机构;所述电机400设有可围绕电机轴线X旋转的电机轴56;所述传动机构用于将所述电机400的电机轴56的旋转运动转换为所述活塞1的往复运动,用于压缩空气。所述电机400为无刷无感高速电机。
在本实施方式中,电机400的电机轴线X电机轴线与活塞1的滑动方向相垂直;或者电机400的电机轴线X与气缸4的长度方向相垂直。在如图20使用状态下,电机400整体大致呈竖向放置,位于气缸4的上方。当然,在其他实施例中,电机400也可以为横向放置(水平放置),即电机400的电机轴线X与活塞1的滑动方向相平行(如图19所示),或者,与气缸4的长度方向相平行。供气机具有电源向电机400供电。
具体的,电源可以包括电池包600,在这里,电池包可拆卸地安装在供气机的电池包安装部(图中未示)。供气机可以具有两个电池包600,两个电池包600位于电机400的两侧。供气机也可采用单个电池包600供电,其中,一个电池包600可以作为备用,在另一个电池包600缺电情况下开启进行工作。当然,两个电池包600也可以并联使用,如此延长供气机的工作时间。电池包600可以提供20V、40V等电压。在打开电源开关时,控制器500的MCU会检测电池包600的电压是否正常,采样芯片采集压力传感器的信号。当然,在一些实施例中,供气机也可以仅设有单个电池包600,利用单个电池包600进行供电,例如图19中所给出的实施例中,供气机具有单个电池包600,可减轻供气机的重量。
如图6、图7、图8所示,在本实施例中,压缩组件100包括活塞1,活塞密封圈2,活塞销3,气缸4,连杆I 5,连接支撑架6,连杆II 9,进气阀10,出口单向阀11,出气管12。所述压缩组件100包括2个所述气缸4。
其中,气缸4通过气缸法兰与连接支撑架6螺丝连接,连接之间可以设置密封圈。气 缸4末端设置螺母法兰,以便连接出口单向阀11。活塞1采用铝制或塑料材料,活塞1外套设有活塞密封圈2,具体的密封方式采用Y型密封圈O型密封圈或皮碗方式。气缸4内表面硬质氧化,活塞密封圈2安装于活塞1环型的槽内,连杆I 5通过活塞销3与活塞1连接。连接支撑架6通过法兰盘与两个气缸4分别连接。驱动组件包括曲柄机构,曲柄机构包括曲柄8和曲柄销7。曲柄8通过曲柄销7与两根连杆II 9、连杆I 5铰接。出口单向阀11一端接气缸4,一端连接出气管12。
在本实施例中,活塞1上设置有进气阀10。具体的,进气阀10包括设置于活塞1上的进气阀片103。其中,活塞1上设置有用于进气的进气孔101,以及对应控制进气孔101的进气阀片103。进气阀片103通过锁紧螺丝102安装于活塞1的一侧。活塞1在压缩气体时进气阀片103将进气孔101封堵,在进气时进气阀片103将进气孔101打开。
其中,连接支撑架6具有进气口,进气口设有空气过滤器86(可参见图5),空气经过空气过滤器86后进入气缸内。气缸4设置为左右对称方式,曲柄8旋转一周两个气缸4各压缩和吸气一次,气缸4采用大直径,大行程,大排量铝合金或者塑料气缸,单次压缩气量大,无需设置储气罐,便于降低整机质量。
本实施例所提供气缸4采用大直径,大行程,大排量铝合金或者塑料气缸,气缸4的内径范围为50毫米到100毫米。在一些实施方式中,气缸4的内径范围为50毫米~80毫米;在一些实施方式中,气缸4的内径范围为60毫米到90毫米。当然,气缸4的内径范围还可以是50毫米,65毫米,70毫米或80毫米等。
气缸4内活塞1的行程为40毫米到100毫米。在一些实施方式中,活塞1的行程为30毫米~100毫米;在一些实施方式中,活塞1的行程为40毫米~70毫米;在一些实施方式中,活塞1的行程为60毫米到90毫米。当然,活塞1的行程可以是50毫米,60毫米,65毫米,70毫米或80毫米等。
基于气缸4的内径和活塞1的行程,相应地,气缸4具有的单次冲程位移可以按照下述公式来计算:V=πr 2L,其中R为气缸4的半径;L为活塞1的行程。
相应地,在一些实施例中,气缸4具有的单次冲程位移在98.13毫升至785毫升之间;在一些实施例中,气缸4具有的单次冲程位移的范围在100毫升至300毫升。在一些实施例中,气缸4具有的单次冲程位移的范围在150毫升至250毫升。在所示实施例中,气缸4具有约200毫升的单次冲程位移。
本实施例的供气机的气缸4采用大直径,大行程,进而单次压缩气量大(单次冲程位移大),在总排量不变的情况下相应转速降低,使得空气在气缸4中压缩过程的时间拉长,散热加快,进而接近等温压缩,压缩效率提高;而且也可以减少能量损失。如果在总排量不变的情况下,内径范围及行程范围小于上述范围,则单次压缩气量比较小,不能满足工作要求;如果内径范围及行程范围大于该范围,则单次压缩气量会大,但所需的电机功率也会增加很多,体积加大,增加了供气机的整机重量。
在一些实施例中,由于电池600可是具有20V或40V的额定输出电压,如若2个额定输出电压为20V电池包或是1个额定输出电压为40V电池包,所述气缸4的内径范围与所 述电源的电压值的比值为:1.5毫米每伏特至2.5毫米每伏特。如若1个额定输出电压为20V电池包,所述气缸4的内径范围与所述电源的电压值的比值为:2.5毫米每伏特至5毫米每伏特。
电机轴线电机轴线而现有的便于携带的供气机常规会选用直径小,行程短的气缸。主要是因为气缸的直径大、行程长则需要电机具有较大的扭矩;而通常转速低、大扭矩的电机比较笨重,因此,便于携带的供气机不会采用此类电机,也就通常不会选取具有单次冲程的排气量大的气缸。
在本实施例中,电机400采用三线无刷无感高速电机,重量轻,转速高,进而减轻整个供气机的重量。其中,在一些实施方式中,电机400空转转速在18000rpm-30000rpm。在一些实施方式中,电机400空转转速在20000rpm-30000rpm。在一些实施方式中,电机400空转转速在5000rpm~50000rpm。电机400的额定功率在1200W以内,额定电流约45安培。在一些实施方式中,额定功率为600W-1200W;在一些实施方式中,额定功率为400W-1500W;在一些实施方式中,额定功率700W-900W。在一些实施例中的电机400的空转转速为24000rpm,额定功率为800W、810W或850W。
电机400包括:电机轴承50,电机转子51,电机风扇52,电机外罩54,电机定子55,电机轴56,电机端盖57,连接螺栓58。电机端盖57通过连接螺栓58连接在电机外罩54的一端,电机定子55固定安装在电机外罩54中,电机转子51在电机外罩54内固定在电机轴56外,带动电机轴56一同转动。电机轴承50固定在电机外罩54的一端套设于电机轴56外。电机风扇52套设于电机轴56外,随电机轴56一同转动,在供气机运转时为整个设备降温。
供气机还包括壳体210,在本实施例中,电机外罩54、电机端盖57都可以看成是壳体210的一部分。当然,后续还会提到,壳体210还包括离合器外壳34、减速机构外壳60等。其中,电机外罩54、离合器外壳34、减速机构外壳60固定连接。当然,壳体210也还包括上述提及的电池包安装部。
在本实施例中,考虑到无刷无感高速电机的转速高,功率大,而所需要驱动的气缸直径大以及单次冲程的排气量大。基于此考虑,传动机构包括减速机构200。其中,减速机构200作用是减速增扭作用,把高转速的电机400速度降下来,同时增大扭矩带动负载运转。如此,即可以减少供气机整机的重量,又可以驱动较大的负载,满足的单位时间内有足够的排气量。具体的,减速机构200用于将电机400的输出轴的转速降低并通过减速机构200的输出轴带动所述活塞1。在本实施例中,所述减速机构200的输出轴的转速在600rpm以下。因此,空气在气缸4中压缩过程的时间较长,有利于散热,进而接近等温压缩,压缩效率提高,能量损失较小。具体的,所述减速机构200的输出轴的转速范围为60rpm~600rpm。在气缸4的单次冲程位移不变的情况下,输出轴的转速小于上述范围,则压缩组件的流率小,不能满足工作要求;如果输出轴的转速大于该范围,则气缸的温度升高,能量损失较大,容易发生危险。
在一些实施方式中,转速范围为120rpm~400rpm;在一些实施方式中,转速范围为 180rpm~250rpm;在一些实施方式中,转速范围为360rpm~600rpm;在一些实施方式中,转速范围为400rpm~560rpm。
其中,所述压缩组件100的冲程频率为每分钟60次至每分钟600次。参见图22所示的气缸压缩频率(冲程频率)与气缸外表温度关系图可以看出,本实施例所提供的供气机的压缩组件100的冲程频率为每分钟60至每分钟600,按照图22中所示气缸4的外表温度不超过30度,气缸发热不明显,进而不会影响到使用者,可以随身携带。在一些实施例中,所述压缩组件100的冲程频率可以是每分钟120次至每分钟400次。进一步优选的,冲程频率可以是每分钟180次至每分钟250次。在一些实施方式中,冲程频率可以是每分钟360次至每分钟600次;在一些实施方式中,冲程频率可以是每分钟400次至每分钟560次。
在本实施例中,压缩组件100的流率可以通过将气缸4的单次冲程位移乘以压缩组件100的冲程频率为来计算,可以按照下述公式来计算:Q=V*M*N。其中,M为压缩组件100的冲程频率;N为气缸的数量。因此,在一些实施例中,压组组件100的流率在约1升/s至2.2升/s之间;在一些实施例中,压组组件100的流率在约0.8升/s至2.5升/s之间;在一些实施例中,压组组件100的流率在约1.5升/s至2.2升/s之间(即90升/分钟至132升/分钟);在一些实施例中,压组组件100的流率在约1升/s至2升/s之间。可以是1.4升/秒;1.8升/秒等等。
在本实施例中,气缸4的数量为2个,转速可以是120rpm~400rpm。当然,在其它实施方式中,气缸4可以是单缸;转速可以是400rpm~560rpm。
常规气动工具(如:气动射钉枪(F30))每次击发所需气量为700毫升。在本实施例中,所述供气机的供气量约1升/s至2.2升/s,因此,供气机每秒可使气动射钉枪击发2~3次,可以满足气动工具持续工作。
由此可见,本实施方式中较佳地设计了冲程频率(输出轴的转速)和气缸4的单次冲程位移,其中,本实施例的气缸4采用大直径,大行程,进而单次压缩气量大,从而使得供气机具有较高流率,满足气动工具持续工作的需求;冲程频率(输出轴的转速)的合理设计,又不会使气缸的温度不会上升很高,便于携带及避免能量损失。
在一些实施例中,由于电池600具有大约20V的额定输出电压,所以供气机可以具有介于大约0.05升/s每伏特和大约0.11升/s每伏特之间的电池电压比Q:V。例如,流率与电池电压比Q:V可以是约0.07升/s每伏特。供气机10的高流率0和相应的流率与电池电压比Q:V有利地使得供气机可以快速地并满足气动工具进行工作并持续工作。
为了提供一种能耗小、排量大的供气机,最佳地设计了供气机的流率相对于额定功率的比例。额定功率是一种功率,在供气机的连续运行中消耗了功率并且在供气机中转换所述功率。在一些实施例中,所述电机400的额定功率在1200W以内,所述供气机的额定功率相对于流率的最佳比例的结果:供气机的电池包供电时间长,且排量不受影响。由于供气机能耗小,提高电池包的续航能力,而且并不会减少供气量。
所述压缩组件100的流率在约1升/s至2.2升/s之间。对于1200W的功率范围内,所述压 缩组件100的流率相对于所述额定功率的比例所述额定功率的比例不小于1.18cm 3/S/W。如果供气机的流率在相对于所述额定功率的比例中太小,那么同等功率小,流率则太小,不能满足供气需求。在一些实施方式中,所述压缩组件的流率相对于所述额定功率的比例处于1.25cm 3/S/W至2.75cm 3/S/W。在一些实施方式中,所述压缩组件的流率相对于所述额定功率的比例处于1.3cm 3/S/W至2.3cm 3/S/W。由此,在提高电池包的续航能力下(能耗小),并不会减少供气量,从而可以提供一种能耗小、排量大的供气机。
同样,最佳地设计了气缸4的单次冲程位移相对于额定功率的比例。在一些实施例中,所述电机400的额定功率在1200W以内,所述每个气缸4的单次冲程位移相对于所述额定功率的比例处于0.12cm 3/W至0.98cm 3/W;在一些实施例中,所述每个气缸的单次冲程位移相对于所述额定功率的比例处于0.18cm 3/W至0.42cm 3/W。
为了获得一种便携、排量大的供气机,则最佳地设计了所述供气机的重量相对于所述额定功率的比例。对于1200W以内的额定功率,本申请实施例中的供气机的重量在6千克以下,进而可以解决用户携带供气机的繁重体力活。对于1200W以内的额定功率,所述供气机的重量相对于所述额定功率的比不大于7.5g/W。如果供气机的重量在相对于所述额定功率的比例中太大,那么供气机就比较笨重,不方便携带。作为无需连接市电的直流供气机而言,重量轻,性能好则更适合气动工具使用。
优选的,例处于所述供气机的重量相对于所述额定功率的比例处于4.38g/W至7.5g/W。
优选的,所述供气机的重量相对于所述额定功率的比例处于3.8g/W至6.2g/W。由此可见,供气机的性能不受影响的情况下,整机重量较轻便于携带。
具体的,对于1200W以内的额定功率,所述供气机的重量小于6kg。在一些实施例中,所述供气机的重量在3kg至5kg。在一些实施例中,所述供气机的重量在4kg至5.5kg。
供气机的重量是所有组件的总重量,包括电池包600的重量,电池包约600~800克。没有考虑气动工具的重量,也没有考虑用于连接气动工具连接气管的重量。
其中驱动组件包括电机和传动机构。电机400采用无刷无感高速电机,转速高,重量约500~600克。;传动机构包括减速机构等,重量约350~450克。
压缩组件100包括气缸4和设置在所述气缸4内的并与所述气缸4滑动配合的活塞1,由于气体接近等温压缩,气缸4发热量小,可以无需设置散热片进行散热;而且气缸、活塞均采用轻质、耐磨材料制成,可以铝制或塑料材料,压缩组件100整体重量为400~550g克。
由于设置了大排量的气缸,则无需设置大体积的储气罐,不仅减轻整机重量,而且无超压爆炸风险,增加安全系数。
为了获得一种便携、排量大的供气机,本实施方式中,还设计了所述供气机的重量相对于流率的比例,使得该供气机供气机具有较高流率,又重量轻,便于携带。所述供气机的流率相对于所述供气机的重量的比不小于0.16升/s/Kg。如果供气机的流率在相对于供气机的重量的比例中太小,那么同等重量的供气机,流率则太小,不能满足供气需求。在一 些实施例中,所述供气机的流率相对于所述供气机的重量的比范围是0.2升/s/kg至0.7升/s/kg。在一些实施例中,所述供气机的流率相对于所述供气机的重量的比范围是0.25升/s/kg至0.4升/s/kg。当然,所述供气机的流率相对于所述供气机的重量的比可以是0.35升/s/kg、0.29升/s/kg等等。
由此,在不增加重量下,最佳地设计了供气机的流率。作为无需连接市电的直流供气机而言,在满足气动工具持续工作的需求,重量轻,则更适合需要更换不同场所的气动工具使用。而供气机由于重量较轻,可以任意选择背在身上;或挂在腰部;或是随手放置在合适的位置。
在使用本实施例所提供的供气机时,可以参考图20所示的工作状态,供气机2000体积小、重量轻可随身携带,操作人员1000通过供气机2000上的背带将供气机2000随身背起,气动工具(如气动射钉枪)4000通过连接气管5000与供气机2000上的快速接头80相连接实现高压气体的供给。操作人员1000操作气动射钉枪4000对目标工作面6000进行射钉操作。
不同目前普遍采用的低排量,高转速(高频)技术,由于绝热压缩造成现今技术气缸容易发烫,压缩效率低,同时压缩频次升高带来机械磨损损耗也增加,所以整体压缩效率受影响,使锂电池单包的有效输出气量减少。而本实施例的供气机采用的大排量,低频压缩技术与上述技术刚好相反,该供气机便于随身携带,气缸的发热不会影响到使用者,可以实现即插即用,无需用户等待。
供气机还包括用于减速增扭的减速机构200。减速机构200用于把高转速的电机400速度降下来,同时增大扭矩带动负载运转。减速机构200动力输入端接收电机400的动力(具体为下述齿轮20,在这里,齿轮20即为离合装置300的输出端的齿轮,也是减速机构200的输入端的齿轮),减速机构200的输出端连接曲柄8,进而带动活塞1在气缸4内作直线往复运动。在本实施方式中,减速机构200为三级齿轮减速,总传动比约30~150;或30~100;或50~100。在一些实施方式中,减速机构的总传动比为50~80;当然,传动比也可以是55;60或70等。减速机构200的总传动在合适的范围内,使得高速电机经由减速机构传递给的输出轴有最佳的转速。从而使供气机即可以有较大的排量又不会因频率过高,气缸发热。
具体的,如图9、图17所示,减速机构200包括:减速机构外壳60,初级齿圈61,次级齿圈62,次级行星架64,轴承65,减速机构输出轴66,三级销轴67,三级齿轮68,次级销轴69,次级齿轮70,初级行星架71,初级齿轮72,初级销轴73,齿轮20。其中,初级销轴73过盈压入初级行星架71圆盘上孔,初级齿轮72可以是多个,通过初级销轴73设置在初级行星架71上;同样,次级齿轮70通过次级销轴69设置在次级行星架64上;三级齿轮68通过三级销轴67设置在输出轴66上。
其中,减速机构200具有位于输入端的齿轮20(重新描述)和位于输出端的减速机构输出轴66。减速机构外壳60的端部连接有法兰盘15。减速机构输出轴66可围绕输出轴66的轴线可旋转地设于法兰盘15内,并且,减速机构输出轴66和法兰盘15之间套设 有轴承17以及轴承挡圈18。在本实施方式中,输出轴66的轴线与电机400的电机轴线X重合。所述输入端的输入齿轮20由电机400的电机轴56驱动。所述减速机构200的输出端的减速机构输出轴66的前端(图9中为上端)连接曲柄8。该减速机构200还包括初级齿圈61和次级齿圈62,初级齿圈61和次级齿圈62的两个内齿圈的齿轮模数不同,其中初级齿圈61的内齿圈与次级齿轮70、初级齿轮72啮合。齿圈61、62的外表面轴向方向有数条突出部,截面形状是三角形或其它几何形状,这些几何形状的突出部套嵌于固定的减速机构外壳60。
在动力传动时齿轮20动力来自于电机400,相当于初级的中心轮。齿轮20旋转,带动初级齿轮72绕初级齿轮72自身轴线自转,同时初级齿轮72通过带动初级行星架71围绕输出轴66的轴线公转。从而初级行星架71上的齿轮(未标号)与次级齿轮70啮合,带动次级齿轮70绕次级齿轮70自身轴线转动的同时也会通过次级销轴69带动次级行星架64绕输出轴66的轴线公转。进而次级行星架64的齿轮(未标号)与三级齿轮68啮合,带动三级齿轮68绕自身轴线转动的同时带动输出轴66转动。从而,减速机构200的动力经过初级行星齿轮72和初级销轴73,传递到初级行星架71,初级行星架71上的突出部被加工成中心齿轮,或是齿轮设置在突出部上,作为下一级的中心轮使用,同理,动力再经过次级齿轮70、次级销轴69、次级行星架64、三级齿轮68、三级销轴67最终把动力传递给减速机构输出轴66,轴承65起支撑起减速机构输出轴66作用。因此,本实施方式中,采用了行星齿轮减速系统,在体积小的优势下还可以输出较大扭矩。
当压缩组件100带载停在某一随机位置时,可能由于压力的存在会使连杆曲柄机构反转起来,使压好的高压气体又变成了低压气体。为避免浪费电池包600电力,本实施例所提供的供气机增设了防反转机构。该防反转机构使得所述减速机构200的输出轴66单向旋转。防反转机构包括设置在输出轴66上的单向离合器。
在一些实施方式中,单向离合器包括单向滚针轴承16,单向滚针轴承16的内圈与输出轴66固定连接,单向滚针轴承16的外圈与减速机构外壳60固定连接(过盈紧配)。如此可以保证减速机构输出轴66不能反转,避免浪费电池包600电力。
如图10、图11所示,所述气缸4连通有用于存储压缩气体的缓存管82,无需设置体积较大的储气罐。缓存管82设置于气缸4上,缓存管82的外径小于气缸4的内径。所述缓存管82的容量与所述气缸4的容量相当。缓存管82的长度在气缸4的长度以下。缓存管82上具有快速接头80,以将压缩气体输出至气动工具。缓存管82与气缸4相连通,缓存管82的两端具有端盖85,端盖85通过出气管12连接气缸4,气缸4的两端分别通过出口单向阀11连接出气管12,避免缓存管82中的高压气体回流。缓存管82上还设有安全阀83,在缓存管82内的压力超过一定压力时安全阀83自动打开进行泄压,提升设备安全性能。缓存管82提供部分压缩气体的容纳空间,并且为安全阀83、快速接头80、下述压力传感器88提供安装位置。
供气机还包括离合装置300,用于在电机运转过程中,通过离合装置来选择是否将动力传递至驱动组件。离合装置300设置在电机400和所述传动机构之间,可选择地将所述 电机400的动力传递至所述驱动组件。即,离合装置300使电机轴56可选择带动驱动组件运动。如此,供气机可以根据气动工具的实际工况,无需关闭电机就可以选择切断动力传输还是接通动力传输,而不会频繁启动电机,从而保证了供气机的使用寿命。
所述离合装置300用于在所述缓存管82的气压(压力值)低于预设压力时允许所述电机400传递动力并在所述缓存管82的气压高于预设压力时切断所述电机400传递动力。其中,离合装置300的功能就是切断动力和接通动力,切断和接通受执行器件(例如下述吸拉电磁铁90)的控制,其输入端连接电机400,输出端连接减速机构200。
其中,预设压力可以为一个设定值,也可以为一个范围值,为避免电机400的频繁启动,该预设压力优选为一范围值,该预设压力可以包括预设最高值以及预设最低值。具体的,所述离合装置300用于在所述缓存管82的气压(压力值)低于预设最低值时允许所述电机400传递动力并在所述缓存管82的气压高于预设最高值时切断所述电机400传递动力。其中,预设最高值可以为按照用户期望(例如目标工具的额定工作气压)自行设定的压力值,预设最低值可以与预设最高值之间具有一固定差值,进而在用户设定预设最高值后无需额外设置预设最低值。如此设定后,在缓存管82内的压力处于预设压力(范围)内,也即处于预设最高值和预设最低值之间时,在工作状态下电机400不会启动,进而可以避免电机400频繁启动的问题,降低使用噪声,提升用户使用体验。
为方便自动控制离合装置,所述供气机具有控制器500、以及用于检测气体压力值的压力传感器88。控制器500电连接电池包600。压力传感器88可以设置在控制器500或缓存管上,主要用于检测由供气机的出口压力值,也即气缸4排出的气体的压力值。控制器500和所述压力传感器88、离合装置300相连接,所述控制器通过所述压力传感器的检测压力控制所述离合装置300的切断和接通。具体的,缓存管82上设有压力传感器接头81。所述压力传感器接头81通过气管87连接控制器中的压力传感器88。当然,也可以把压力传感器88安装在缓存管82上,具体的,可以与压力传感器接头81做成一体,再把压力传感器88的引线连入控制器500中,如此连接比较简单,加工方便,成本低。
本申请实施例所提供的供气机控制原理主要是根据气体压力的变化情况来控制离合装置300的分离状态,从而使压缩组件100处于工作和非工作状态,在每次停在非工作状态时都是随机的,有可能压气正处于高压负载情况的压气状态,当第二次启动时如果气压没有泄掉,电机400扭力特性是很难带载重新启动的,目前常见的做法在启动前通过电磁气动阀先把气压卸掉再行启动,但是把气压直接卸掉会产生很大的浪费,使单个电池包的做功能力下降压气效率降低。
为了解决这个问题,避免电机400无法带载启动(启动力矩小),为此该本实施例的供气机设置有飞轮储能机构(离合装置300)。在压缩组件100工作前通过控制器500先行启动电机400并高速空转,这样与电机400同轴的飞轮39在电机400空转时存储了很大的一部旋转动能,这时候启动离合装置300即使有负载,飞轮39的动能释放会帮助电机400带载启动。这样就能顺利完成供气机的带载启动,从而使带载时电机400不能启动的问题得到顺利解决。
具体的,可参见图12、图13,离合装置300包括由所述电机轴支撑的第一离合件39、第二离合件30以及移动组件,第二离合件30设有与驱动组件啮合的驱动件,移动组件促使第二离合件39和第一离合件30接合和分离。当第二离合件39和第一离合件30接合,可以将可以将电机400的动力传递至驱动组件(减速机构200);当第二离合件39和第一离合件30分离,无法将电机400的动力传递至驱动组件(减速机构200),电机400进行空转。如此,离合装置则可以将可以将电机400的动力可选择地传递至驱动组件,即可选择地将电机400的动力传递至减速机构200,起到动力离合的作用。在本实施例中,第一离合件39为飞轮,固定于电机400的电机轴56上。飞轮39作为离合装置300的一部分,当其重量达到一定质量时可以作为储能件,电机400的动力可以通过飞轮39旋转动能存储起来,在需要的时候飞轮39的动能可以释放出来给电机轴56,二者相互作用,同时也会起到使整机降低抖动的作用。
飞轮39凹面有一个摩擦斜面301,也即摩擦面,因而飞轮39也叫摩擦盘I。第二离合件30也可以称为摩擦盘II,可沿电机轴线X移动,实现与第一离合件39接合和分离。该摩擦面301与摩擦盘II 30的斜面紧密无缝压合成对出现,通过摩擦力来传递动力,如此电机400的动力可通两个斜面压合,把动力传递给减速机构200,起到动力离合的作用。
第二离合件30通过滚针轴承40可滑动地设置在电机轴56上。驱动件为齿轮20,其可以与第二离合件30一体成型;也可以与第二离合件30固定连接。在这里,齿轮20也是减速机构的输入端。当第二离合件39和第一离合件30接合,则电机轴56的动力传递至驱动组件,即可通过减速机构200的输出轴66还带曲柄8运动,从而促使活塞做往复运动。而当第二离合件39和第一离合件30分离,则电机轴56的动力无法传递至驱动组件,电机400进行空转,存储能量。
壳体210包括收容离合装置300的离合器外壳34。移动组件包括设置在离合器外壳34上的静滚道盘33、动滚道盘32和滚道钢球35,其中动滚道盘和所述静滚道盘设置有容纳所述滚道钢球35的滚道。为了让第二离合件39的轴向移动比较平稳,可设置若干均匀分布的滚道。在本实施例中,滚道设置在静滚道盘33和动滚道盘32相面对的端面上,且均匀分布有3个滚道。具体的,可参见图14a和14b,滚道为螺旋滚道(仅显示了静滚道盘33,而动滚道盘33是一样的)。滚道钢球35在滚道中滚动时轴向位移是渐进抬升到的,滚道有深、浅端,滚道中心离端面深(距离大)的一端是深端,离滚道端面浅(距离小)的一端是浅端;且由深端至浅端平滑过渡。如此,滚道钢球35在滚道中滚动时轴向位移是渐进运动的。当动滚道盘32转动时,在滚道钢球35的作用下产生轴向移动,推动第二离合件39与所述第一离合件30接合分离。移动组件还包括设置在动滚道盘32和第二离合件30之间设有推力轴承38。推力轴承38一端相抵于第二离合件30(摩擦盘II 30),可以与第二离合件30一起旋转;一端相抵于动滚道盘32,可以与动滚道盘32一起旋转。且当动滚道盘32沿电机轴线X朝着第一离合件39运动时,会带动第二离合件30朝着与第一离合件39相接合的方向运动。
移动组件还包括电磁管90(是吸位电磁铁)、收容在所述电磁管内的铁芯93、连接铁 芯93和动滚道盘32的连接元件91。在本实施方式中,连接元件91为拉索,动滚道盘上设有拉索连接头92,拉索91的一端连接拉索连接头92,另一端与铁芯93连接。吸位电磁铁90通电后带动铁芯93沿自身轴向移动,进而拉动动滚道盘32转动。
移动组件还包括复位机构,复位机构包括复位弹簧36,复位弹簧36提供所述第二离合件39朝着与第一离合件30分离方向移动的弹簧力。即当无需驱动活塞1运动时,复位弹簧36则推动摩擦盘II 30脱离飞轮39的摩擦斜面,处于初始位置。
进一步,复位机构还包括限位件37,在本实施方式中,限位件也可称位钢球限位罩37,复位弹簧36设置在钢球限位罩37和第二离合件30之间,且在钢球限位罩37和电机轴56之间设有限位钢球31。具体的,限位钢球31内装于钢球限位罩37内孔中,且抵接电机轴56。如此,限位钢球31与钢球限位罩37和电机轴56均为点接触,即使电机轴56高速旋转,也可减少磨损。复位弹簧36一端相抵于第二离合件30内孔底部,一端相抵于钢球限位罩37台沿,复位弹簧36在装配好后存在一定的预紧力,即当无需驱动活塞1运动时,复位弹簧36则推动摩擦盘II 30脱离飞轮39的摩擦斜面。
通过上述结构描述可知,离合装置300主要分为3个功能部分,第一个是产生推力的静滚道盘33和动滚道盘32组合,第二个是飞轮39与摩擦盘II 30离合主体,第三个是摩擦盘II复位机构,图13是离合装置装配图,图14a-图16b是离合装置工作原理图。下面分别详细描述该3个功能部分,以便更好地理解本申请。第一个功能部分:静滚道盘33和动滚道盘32组合。所述静滚道盘33与离合器外壳34过盈贴紧,动滚道32与离合器外壳34留有间隙,动滚道盘32可以绕轴线方向转动。静滚道33和动滚道盘32之间通过滚道中的钢球35在来传递轴向动力。动滚道盘32设置有一凸台为拉索连接头92,拉索91的另一头与吸拉电磁铁90的铁芯93连接。由于静滚道盘33和动滚道盘32均设有滚道,装配时静滚道盘33和动滚道盘32的滚道深、浅端相对应,初始状态下,即吸位电磁铁90未通电,还无需离合装置300将动力传递至减速机构200时,滚道钢球35处在两个滚道的深端,且两个端面的距离最小,如图16a所示约为7.2毫米。当滚道钢球35处于两个滚道的浅端时,两个端面的距离为最大,约为9.2毫米,距离差为9.2-7.2=2毫米。这个距离差值也即是离合装置的动作行程。滚道的深端和浅端的中心环形距离(20毫米)除以这个距离差再乘以2就是离合装置的倍增倍数如下:P=(20/2)×2=20。可以看出本实施例的离合装置300的倍增倍数作用:使吸拉电磁铁90的吸力放大20倍。因此,离合装置的倍增倍数为20,即可以加大拉索91作用到第二离合件30上的力,可增大20倍。
当吸拉电磁铁90通电后铁芯93拉动拉索91带动动滚道盘32旋转,滚道钢球35则由深端至浅端移动,促使动滚道盘32轴向移动,由于有倍增的关系,在轴向方向会产生一个比较大的力,可以克服复位弹簧36的推力推动摩擦盘II 30沿电机轴线X方向移动,使摩擦盘II 30与摩擦盘I摩擦接合来传递动力。
第二个功能部分:第一离合件39(摩擦盘I 39)与第二离合件30(摩擦盘II 30)离合主体;根据摩擦力学的原理,摩擦力与正压力成正比,摩擦盘II 30与摩擦盘I的摩擦力越大,对传递动力更为有利。因此,本实施例中第一离合件39设有驱动第二离合件30的 摩擦斜面。也就是说,摩擦盘II 30与摩擦盘I采用了摩擦面为斜面的方式。如图18所示,摩擦斜面在轴向方向长度为h,径向距离为m,倍增比:P=h/m,P约为3。那么整个离合装置300的倍增约等于20×3≈60。也就是说,使吸拉电磁铁90的吸力放大60倍,即由拉索91传递的力直至作用到摩擦盘II 30和摩擦盘I之间的摩擦力增大60倍,对传递动力更为有利。为了增加摩擦斜面的摩擦系数和寿命,摩擦斜面可以嵌套铜质等非金属耐磨材料。
第三个功能部分:摩擦盘II复位机构;复位机构包括:复位弹簧36,限位钢球31,钢球限位罩37,滚针轴承40,推力轴承38,摩擦盘II 30。所述推力轴承38一端相抵于摩擦盘II 30与摩擦盘I(飞轮39)一起旋转,一端相抵于动滚道盘32与动滚道盘32一起旋转。复位弹簧36,限位钢球31,钢球限位罩37内装于摩擦盘II 30中,复位弹簧36一端相抵于摩擦盘II 30内孔底部,一端相抵于钢球限位罩37台沿,限位钢球31内装于钢球限位罩37内孔中,复位弹簧36在装配好后存在一定的预紧力,使得复位弹簧36推动摩擦盘II 30脱离摩擦斜面。
该复位机构的工作过程如下:当吸拉电磁铁90通电,铁芯63受力通过拉索91拉动动滚道盘32旋转,由于有倍增的关系,在轴向方向会产生一个比较大的力,它克服复位弹簧36的推力推动摩擦盘II 30轴向电机方向移动,使摩擦盘II 30与摩擦盘I摩擦接触来传递动力。当吸拉电磁铁90断电,在复位弹簧36的作用下摩擦盘II 30与摩擦盘I摩擦脱离接触,使动力传递解除。吸拉电磁铁90通电以及通电时间的长短均由控制器500(MCU)来控制。
下面结合附图21所提供的本实施例的供气机的控制流程图来详细描述该供气机的工作过程,以便更好地理解本申请。
打开供气机的电源开关,电池包600向各个组件供电。控制吸拉电磁铁90断电,确保离合装置300处于分离状态,并且设定当前供气机的状态为初始状态。启动电机400进行空转。
然后,控制器500接收压力传感器88对缓存管82的检测压力信号。将来自压力信号的供气机的出口压力值与预设压力值进行比较,在压力传感器88的检测压力值位于预设最高值以上时,控制器500则控制离合装置使其位于分离状态。因为压力传感器88的检测压力值位于预设最高值以上时,则表明缓存管82内的压力过大,控制器500则控制吸拉电磁铁90断电,在复位机构的作用下,第一离合件、第二离合件分离,即摩擦盘II 30与摩擦盘I 39相脱离接触,离合装置300不会将电机400的动力传递至驱动组件,也就是说,离合装置300切断电机400的动力传递,此时,控制电机400空转预定时间以上(在本实施例中电机继续空转10秒以上),然后关闭电机。当所述压力值低于所述预设最低值时,在压力传感器88的检测压力值低于预设最高值时,(控制器500)继续判断检测压力值是否低于预设最低值。在压力传感器88的检测压力值低于或等于预设最低值时,控制器500则需控制离合装置300使其位于接合状态。将供气机的初始状态更正为工作状态。判断电机400是否处于启动状态。
在电机400未启动时,确定离合装置300是否处于分离状态(摩擦盘II 30与摩擦盘I  39是否脱离或接触,具体的,可以通过吸拉电磁铁90的通电状态确定离合装置300的分离状态)。在离合装置300未处于分离状态时将吸拉电磁铁90断电,启动电机400,然后再接通吸拉电磁铁90,摩擦盘II 30与摩擦盘I 39接合,离合装置300将电机400的动力传递至驱动组件(减速机构200),从而促使活塞1进行往复运动进行压缩空气,直至压力值大于预设最高值时停止电机400。
在电机400启动的情况下,接通吸拉电磁铁90,使离合装置300传递动力进行压缩空气。
在所检测的压力值小于预设最高值但是大于预设最低值时,则确定供气机的当前状态是否为初始状态还是工作状态,在确定为初始状态时,则循环判断是否大于预设最高值直至压力值在预设最低值以下,在此过程中不进行压缩空气。在确定为工作状态时,则进入判断电机是否启动的步骤,直至启动电机400将压力值超过预设最高值,再关闭电机400。
如此,本实施方式提供的供气机,根据供气机的压缩后的气体的压力变化情况来控制离合装置300的分离状态,从而可以智能地控制压缩组件100是工作还是不工作,如此,可以无需设置储气罐,实现即插即用、且可按需供应气体。
本文引用的任何数字值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。举例来说,如果阐述了一个部件的数量或过程变量(例如温度、压力、时间等)的值是从1到90,优选从20到80,更优选从30到70,则目的是为了说明该说明书中也明确地列举了诸如15到85、22到68、43到51、30到32等值。对于小于1的值,适当地认为一个单位是0.0001、0.001、0.01、0.1。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。
披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由...构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。
多个元件、部件或步骤能够由单个集成元件、部件或步骤来提供。另选地,单个集成元件、部件或步骤可以被分成分离的多个元件、部件或步骤。用来描述元件、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、部件或步骤。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的 任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (15)

  1. 一种供气机,其特征在于:所述供气机包括:
    壳体;
    电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴;
    电池包,连接在所述壳体上;
    压缩组件,包括气缸和设置在所述气缸内的活塞;
    驱动组件,用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动,所述驱动组件包括减速机构,所述减速机构用于将所述电机轴的转速降低并通过所述减速机构的输出轴带动所述活塞往复运动;所述气缸的内径为50毫米到100毫米,所述活塞的行程为40毫米到100毫米;所述输出轴的转速范围为60rpm~600rpm。
  2. 根据权利要求1所述供气机,其特征在于:所述输出轴的转速范围为120rpm~400rpm。
  3. 根据权利要求1所述供气机,其特征在于:所述输出轴的转速范围为360rpm~600rpm。
  4. 根据权利要求1所述供气机,其特征在于:所述气缸的内径范围为50毫米到80毫米。
  5. 根据权利要求1所述供气机,其特征在于:所述活塞的行程为40毫米到70毫米。
  6. 根据权利要求1所述供气机,其特征在于:所述减速机构为三级齿轮减速,总传动比为50~80。
  7. 根据权利要求1所述供气机,其特征在于:所述电机的额定功率在600W~1200W。
  8. 根据权利要求1所述供气机,其特征在于:所述电机的空转转速为18000rpm~30000rpm。
  9. 根据权利要求1所述供气机,其特征在于:所述压缩组件的流率在约1升/s至2.2升/s之间。
  10. 一种供气机,其特征在于:所述供气机包括:
    壳体;
    电池包,连接在所述壳体上;
    电机,位于所述壳体内,所述电机限定电机轴线且包括能够围绕所述电机轴线旋转的电机轴,
    压缩组件,包括气缸和设置在所述气缸内的活塞;驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;
    所述电机的额定功率在1200W以内;所述压缩组件的流率相对于所述额定功率的比例不小于1.18cm 3/S/W。
  11. 根据权利要求10所述供气机,其特征在于:所述压缩组件的流率相对于所述额定功率的比例处于1.25cm 3/S/W至2.75cm 3/S/W。
  12. 根据权利要求10所述供气机,其特征在于:所述压缩组件的流率相对于所述额定功率的比例处于1.3cm 3/S/W至2.3cm 3/S/W。
  13. 一种供气机,其特征在于:所述供气机包括:
    壳体;
    电池包,连接在所述壳体上;
    电机,位于所述壳体内;压缩组件,包括气缸和设置在所述气缸内的活塞;
    驱动组件,所述驱动组件用于将所述电机轴的旋转运动转换为所述活塞在所述气缸内的往复运动;
    所述压缩组件的流率相对于所述供气机的重量的比不小于0.16升/s/kg。
  14. 根据权利要求13所述供气机,其特征在于:所述压缩组件的流率相对于所述供气机的重量的比范围是0.2升/s/kg至0.7升/s/kg。
  15. 根据权利要求13所述供气机,其特征在于:所述压缩组件的流率相对于所述供气机的重量的比范围是0.25升/s/kg至0.4升/s/kg。
PCT/CN2021/085571 2020-04-03 2021-04-06 供气机 WO2021197490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020478797 2020-04-03
CN202020478797.7 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021197490A1 true WO2021197490A1 (zh) 2021-10-07

Family

ID=77927693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085571 WO2021197490A1 (zh) 2020-04-03 2021-04-06 供气机

Country Status (2)

Country Link
CN (2) CN113494437A (zh)
WO (1) WO2021197490A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115435013A (zh) * 2022-08-31 2022-12-06 江苏毅合捷汽车科技股份有限公司 一种氢燃料电池空压机用空气轴承

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1407917A (zh) * 1999-10-05 2003-04-02 米欧克私人有限公司 便携式工具箱
JP2003254241A (ja) * 2002-02-27 2003-09-10 Tokico Ltd 空気圧縮機
US20110203425A1 (en) * 2010-02-22 2011-08-25 Luis Gerardo OYERVIDES OCHOA Manually driven and self-contained, controlled tightening hydraulic wrench
KR20110104858A (ko) * 2010-03-17 2011-09-23 류재기 압축공기의 이용 방법
CN202789409U (zh) * 2012-08-17 2013-03-13 成都德奇维机械有限公司 单向复合阀组式压缩机供气机构
CN107351024A (zh) * 2016-06-23 2017-11-17 浙江荣鹏气动工具有限公司 供气装置
CN207795504U (zh) * 2018-01-27 2018-08-31 福建斯特机电科技股份有限公司 一种便携式空压机
CN109404084A (zh) * 2018-11-15 2019-03-01 北京理工大学 一种对置活塞二冲程发动机的可变配气相位机构
CN110374683A (zh) * 2019-07-22 2019-10-25 六安永贞匠道机电科技有限公司 一种双向间歇式气动马达
CN212734305U (zh) * 2020-07-24 2021-03-19 石家庄矿安机械设备有限公司 一种气动手持式钻机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1407917A (zh) * 1999-10-05 2003-04-02 米欧克私人有限公司 便携式工具箱
JP2003254241A (ja) * 2002-02-27 2003-09-10 Tokico Ltd 空気圧縮機
US20110203425A1 (en) * 2010-02-22 2011-08-25 Luis Gerardo OYERVIDES OCHOA Manually driven and self-contained, controlled tightening hydraulic wrench
KR20110104858A (ko) * 2010-03-17 2011-09-23 류재기 압축공기의 이용 방법
CN202789409U (zh) * 2012-08-17 2013-03-13 成都德奇维机械有限公司 单向复合阀组式压缩机供气机构
CN107351024A (zh) * 2016-06-23 2017-11-17 浙江荣鹏气动工具有限公司 供气装置
CN207795504U (zh) * 2018-01-27 2018-08-31 福建斯特机电科技股份有限公司 一种便携式空压机
CN109404084A (zh) * 2018-11-15 2019-03-01 北京理工大学 一种对置活塞二冲程发动机的可变配气相位机构
CN110374683A (zh) * 2019-07-22 2019-10-25 六安永贞匠道机电科技有限公司 一种双向间歇式气动马达
CN212734305U (zh) * 2020-07-24 2021-03-19 石家庄矿安机械设备有限公司 一种气动手持式钻机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115435013A (zh) * 2022-08-31 2022-12-06 江苏毅合捷汽车科技股份有限公司 一种氢燃料电池空压机用空气轴承

Also Published As

Publication number Publication date
CN215805014U (zh) 2022-02-11
CN113494437A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2021197490A1 (zh) 供气机
US6755336B2 (en) Return mechanism for a cyclic tool
EP2326840B1 (en) Turbine
KR100783778B1 (ko) 에어콤프레서
JP2007239733A (ja) 携帯可能な空気/ガスコンプレッサー
EP3418567A1 (en) Portable pump
EP2122170A1 (en) Reciprocating compressor
CN106795768A (zh) 螺旋压缩机
US11181106B2 (en) Pump assembly with electric starter
EP2093427A2 (en) Capacity Varying Device for a Scroll Compressor
CN214560603U (zh) 电动工具
CN101348013B (zh) 离合器式电动螺旋压力机
US11433522B2 (en) Nailing apparatus
CN107984429B (zh) 打钉设备
EP2035758B1 (en) A cooling device
CN108999736A (zh) 一种柴油机减阻起动装置
CN113374851B (zh) 一种自由导轮
CN210829724U (zh) 压缩机变容结构、压缩机及空调器
WO2022041908A1 (zh) 一种空压机
CN210371068U (zh) 双向电磁驱动空气压缩机
CN108194311B (zh) 一种氯气磁悬浮压缩机
JP5040488B2 (ja) 密閉型圧縮機
CN203822574U (zh) 一种电动压缩机
WO2017217348A1 (ja) 密閉型電動圧縮機及びこれを用いた冷凍装置
CN104747451A (zh) 压缩机油分离器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781453

Country of ref document: EP

Kind code of ref document: A1