WO2021197324A1 - 通信方法及相关装置 - Google Patents

通信方法及相关装置 Download PDF

Info

Publication number
WO2021197324A1
WO2021197324A1 PCT/CN2021/083966 CN2021083966W WO2021197324A1 WO 2021197324 A1 WO2021197324 A1 WO 2021197324A1 CN 2021083966 W CN2021083966 W CN 2021083966W WO 2021197324 A1 WO2021197324 A1 WO 2021197324A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
time slice
time
spectrum
frequency spectrum
Prior art date
Application number
PCT/CN2021/083966
Other languages
English (en)
French (fr)
Inventor
赵望生
石操
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021197324A1 publication Critical patent/WO2021197324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and related devices.
  • the 802.11ax standard (also known as high-efficiency wireless (HEW)) prior to the 802.11 standard supports distributed coordination function (DCF), that is, access point (AP) and station (station). , STAs compete with each other for spectrum to transmit packets.
  • DCF distributed coordination function
  • AP access point
  • station station
  • STAs compete with each other for spectrum to transmit packets.
  • the 802.11ax standard supports uplink scheduling. That is, STAs based on the 802.11ax standard do not need to compete for spectrum on their own. Instead, the AP centrally schedules the spectrum used by the STAs to transmit messages to avoid conflicts and competition with each other, improve resource utilization and transmission efficiency, and improve Support low-latency services well.
  • multiple STAs communicating with the AP often include STAs supporting the 802.11ax standard, which may be called 11axSTAs, and STAs supporting the 802.11 standard before the 802.11ax standard, which may be called legacy STAs.
  • 11axSTAs STAs supporting the 802.11ax standard
  • legacy STAs supporting the 802.11 standard before the 802.11ax standard which may be called legacy STAs.
  • AP still needs to compete with legacySTA for spectrum transmission packets.
  • AP cannot control the transmission process of legacySTA.
  • legacySTA occupies spectrum for a long period of time, APs that have not competed for spectrum
  • the service delay and transmission efficiency of the scheduled 11axSTA cannot be guaranteed. Therefore, how to guarantee the delay requirement of the 11ax STA service is a technical problem that needs to be solved by those skilled in the art.
  • the embodiments of the present application disclose a communication method and related devices, which can effectively guarantee the delay requirements of STA services.
  • an embodiment of the present application discloses a communication method, and the method includes:
  • the access point AP sends first indication information to the first STA of the multiple station STAs at the beginning of the first time slice; the first indication information is used to instruct the first STA to compete for transmission on the first spectrum Message opportunity;
  • the AP sends second indication information to the second STA of the multiple STAs in the second time slice; the second indication information is used to instruct the second STA to use the second indication information in the second time slice.
  • the AP receives the packet sent by the second STA using the second frequency spectrum in the second time slice; wherein, the first time slice and the second time slice do not overlap, and the first time slice The frequency spectrum and the second frequency spectrum do not overlap.
  • the AP communicates with the first STA and the second STA through different frequency spectra in different time slices.
  • the AP works The frequency spectrum of is also switched from the first frequency spectrum to the second frequency spectrum, and the AP communicates with the second STA through the second frequency spectrum in the second time slice, thereby effectively guaranteeing the delay requirement of the second STA service.
  • the method further includes: if the AP competes for an opportunity to send a message on the first spectrum within the first time slice, then Use the first frequency spectrum to send a message to the first STA in the first time slice.
  • the method further includes: the AP uses the second frequency spectrum to send a message to the second STA in the second time slice.
  • the second indication information is specifically used to instruct the second STA to use the first spectrum and the second spectrum to transmit within the second time slice.
  • the receiving, by the AP, within the second time slice, a packet sent by the second STA using the second frequency spectrum includes:
  • the AP receives, within the second time slice, a packet sent by the second STA by using the first frequency spectrum and the second frequency spectrum.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the first frequency spectrum in the second time slice.
  • the second frequency spectrum sends a message, that is, the AP and the second STA can communicate using the first frequency spectrum and the second frequency spectrum in the second time slice.
  • the AP and the second STA can use the first frequency spectrum and the second frequency spectrum to communicate in the second time slice, so that the second time slice can be effectively used.
  • the idle first spectrum in the chip improves the spectrum utilization rate, so that more services of the second STA can be carried in the second time chip, and the transmission efficiency of the second STA service is improved.
  • the method further includes:
  • the AP uses the first frequency spectrum to send third indication information to the first STA at the expiration time of the first time slice; the third indication information is used to indicate that the first STA does not compete in the Opportunity to send messages on the first spectrum.
  • the AP can send indication information to the first STA at both the start time and the end time of the first time slice, so that the first STA does not compete in the second time slice to send packets on the first spectrum.
  • Opportunity that is, the first frequency spectrum is idle at the beginning of the second time slice, so the AP can use the first frequency spectrum and the second frequency spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more More services of the second STA improve the transmission efficiency of the second STA service.
  • the method further includes:
  • the AP sends fourth indication information to the first STA; the fourth indication information is used to indicate that the first STA competes for an opportunity to send data on the first spectrum within the first time slice.
  • the fourth indication information is specifically used to indicate that the first STA competes for an opportunity to send data on the first spectrum every first preset duration, and the duration of each competition is the second preset duration.
  • the first The moment when a STA starts to compete is the start moment of the first time slice
  • the first preset time length is the sum of the time lengths of the first time slice and the second time slice
  • the second preset time length is the time length of the first time slice .
  • the AP may indicate through the fourth indication information that the first STA only competes for the opportunity to send packets on the first spectrum in the first time slice, so that the first spectrum at the start time of the second time slice is Idle state, so the AP can use the first spectrum and the second spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more services of the second STA, improving the transmission efficiency of the second STA service .
  • the first indication information is a probe response frame or a beacon frame in the process of establishing an association relationship between the first STA and the AP.
  • the method further includes:
  • the second time slice is extended by a second preset length.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • the method further includes:
  • the time domain length of the first time slice and the time domain length of the second time slice are dynamically adjusted according to the service traffic of the first STA and the service traffic of the second STA in a preset time period.
  • the AP can flexibly adjust the time domain length of different time slices according to the service requirements of different STAs, so as to avoid wasting or insufficient time domain resources in the transmission process, thereby maximizing the transmission efficiency of the device.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the first time slice. 2. The cut-off time of the time slice.
  • an embodiment of the present application discloses an access point AP, and the AP includes:
  • the first sending unit is configured to send first indication information to the first STA of the multiple station STAs at the beginning of the first time slice; the first indication information is used to indicate that the first STA competes for the first STA. Opportunities to send messages on the spectrum;
  • a first receiving unit configured to receive, within the first time slice, a packet sent by the first STA using the first frequency spectrum
  • the second sending unit is configured to send second indication information to a second STA among the plurality of STAs in a second time slice; the second indication information is used to indicate that the second STA is in the second time slice Use the second frequency spectrum to send messages within;
  • the second receiving unit is configured to receive, within the second time slice, the message sent by the second STA using the second frequency spectrum; wherein, the first time slice and the second time slice do not overlap, The first frequency spectrum and the second frequency spectrum do not overlap.
  • the AP communicates with the first STA and the second STA through different frequency spectra in different time slices.
  • the AP works The frequency spectrum of is also switched from the first frequency spectrum to the second frequency spectrum, and the AP communicates with the second STA through the second frequency spectrum in the second time slice, thereby effectively guaranteeing the delay requirement of the second STA service.
  • the AP further includes:
  • the third sending unit is configured to, if the AP competes for an opportunity to send a message on the first frequency spectrum in the first time slice, use the first frequency spectrum to send messages in the first time slice.
  • the first STA sends a message.
  • the AP further includes:
  • the fourth sending unit is configured to send a message to the second STA by using the second frequency spectrum in the second time slice.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the second frequency spectrum to send data within the second time slice.
  • the second receiving unit is specifically configured to receive, within the second time slice, the message sent by the second STA using the first frequency spectrum and the second frequency spectrum.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the first frequency spectrum in the second time slice.
  • the second frequency spectrum sends a message, that is, the AP and the second STA can communicate using the first frequency spectrum and the second frequency spectrum in the second time slice.
  • the AP and the second STA can use the first frequency spectrum and the second frequency spectrum to communicate in the second time slice, which can effectively use the first frequency spectrum in the second time slice.
  • the idle first spectrum in the chip improves the spectrum utilization rate, so that more services of the second STA can be carried in the second time chip, and the transmission efficiency of the second STA service is improved.
  • the AP further includes:
  • the fifth sending unit is configured to use the first frequency spectrum to send third indication information to the first STA at the end of the first time slice; the third indication information is used to instruct the first STA not to Contend for an opportunity to send a message on the first frequency spectrum.
  • the AP can send indication information to the first STA at both the start time and the end time of the first time slice, so that the first STA does not compete for sending packets on the first spectrum in the second time slice.
  • Opportunity that is, the first frequency spectrum is idle at the beginning of the second time slice, so the AP can use the first frequency spectrum and the second frequency spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more More services of the second STA improve the transmission efficiency of the second STA service.
  • the AP further includes:
  • the sixth sending unit is configured to send fourth indication information to the first STA; the fourth indication information is used to indicate that the first STA competes for sending data on the first spectrum within the first time slice Chance.
  • the fourth indication information is specifically used to indicate that the first STA competes for an opportunity to send data on the first spectrum every first preset duration, and the duration of each competition is the second preset duration.
  • the first The moment when a STA starts to compete is the start moment of the first time slice
  • the first preset time length is the sum of the time lengths of the first time slice and the second time slice
  • the second preset time length is the time length of the first time slice .
  • the AP can instruct the first STA to only compete for the opportunity to send packets on the first spectrum in the first time slice through the fourth indication information, so that the first spectrum at the start time of the second time slice is Idle state, so the AP can use the first spectrum and the second spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more services of the second STA, improving the transmission efficiency of the second STA service .
  • the first indication information is a probe response frame or a beacon frame in the process of establishing an association relationship between the first STA and the AP.
  • the AP further includes:
  • a first extension unit configured to extend the first time slice by a first preset length if there is an interference signal on the second frequency spectrum before the cut-off time of the first time slice;
  • the second extension unit is configured to extend the second time slice by a second preset length if there is an interference signal on the first frequency spectrum before the cut-off time of the second time slice.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • the AP further includes:
  • the adjusting unit is configured to dynamically adjust the time domain length of the first time slice and the time domain of the second time slice according to the service flow of the first STA and the service flow of the second STA in a preset time period length.
  • the AP can flexibly adjust the time domain length of different time slices according to the service requirements of different STAs, so as to avoid wasting or insufficient time domain resources in the transmission process, thereby maximizing the transmission efficiency of the device.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the first time slice. 2. The cut-off time of the time slice.
  • an embodiment of the present application discloses an access point AP.
  • the AP includes a communication interface, a processor, and a memory.
  • the memory is used to store a computer program, and the processor is used to call the computer program and control the
  • the communication interface performs the following operations:
  • first indication information is sent to the first STA of the multiple station STAs; the first indication information is used to indicate that the first STA competes for an opportunity to send packets on the first spectrum ;
  • the message sent by the second STA using the second frequency spectrum is received within the second time slice; wherein, the first time slice and the second time slice do not overlap, and the first frequency spectrum and the second time slice do not overlap.
  • the second frequency spectrum does not overlap.
  • the AP communicates with the first STA and the second STA through different frequency spectra in different time slices.
  • the AP works The frequency spectrum of is also switched from the first frequency spectrum to the second frequency spectrum, and the AP communicates with the second STA through the second frequency spectrum in the second time slice, thereby effectively guaranteeing the delay requirement of the second STA service.
  • the processor is further configured to control the communication interface to execute: if an opportunity to send a message on the first spectrum is contended within the first time slice , Then use the first frequency spectrum to send a message to the first STA within the first time slice.
  • the processor is further configured to control the communication interface to execute: use the second frequency spectrum to send a report to the second STA in the second time slice. Arts.
  • the second indication information is specifically used to instruct the second STA to use the first spectrum and the second spectrum to transmit within the second time slice.
  • the processor controls the communication interface to execute the reception of the message sent by the second STA using the second frequency spectrum in the second time slice, the processor controls the communication interface to execute: Receiving, within the second time slice, a packet sent by the second STA by using the first frequency spectrum and the second frequency spectrum.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the first frequency spectrum in the second time slice.
  • the second frequency spectrum sends a message, that is, the AP and the second STA can communicate using the first frequency spectrum and the second frequency spectrum in the second time slice.
  • the AP and the second STA can use the first frequency spectrum and the second frequency spectrum to communicate in the second time slice, which can effectively use the first frequency spectrum in the second time slice.
  • the idle first spectrum in the slice improves the spectrum utilization, so that more services of the second STA can be carried in the second time slice, and the transmission efficiency of the second STA service is improved.
  • the processor is further configured to control the communication interface to execute:
  • the third indication information is used to indicate that the first STA does not compete in the first spectrum Opportunity to send messages.
  • the AP can send indication information to the first STA at both the start time and the end time of the first time slice, so that the first STA does not compete for sending packets on the first spectrum in the second time slice.
  • Opportunity that is, the first frequency spectrum is idle at the beginning of the second time slice, so the AP can use the first frequency spectrum and the second frequency spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more More services of the second STA improve the transmission efficiency of the second STA service.
  • the processor is further configured to control the communication interface to execute:
  • the fourth indication information is specifically used to indicate that the first STA competes for an opportunity to send data on the first spectrum every first preset duration, and the duration of each competition is the second preset duration.
  • the first The moment when a STA starts to compete is the start moment of the first time slice
  • the first preset time length is the sum of the time lengths of the first time slice and the second time slice
  • the second preset time length is the time length of the first time slice .
  • the AP may indicate through the fourth indication information that the first STA only competes for the opportunity to send packets on the first spectrum in the first time slice, so that the first spectrum at the start time of the second time slice is Idle state, so the AP can use the first spectrum and the second spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more services of the second STA, improving the transmission efficiency of the second STA service .
  • the first indication information is a probe response frame or a beacon frame in the process of establishing an association relationship between the first STA and the AP.
  • the processor is further configured to execute:
  • the second time slice is extended by a second preset length.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • the processor is further configured to execute:
  • the time domain length of the first time slice and the time domain length of the second time slice are dynamically adjusted according to the service traffic of the first STA and the service traffic of the second STA in a preset time period.
  • the AP can flexibly adjust the time domain length of different time slices according to the service requirements of different STAs, so as to avoid wasting or insufficient time domain resources in the transmission process, thereby maximizing the transmission efficiency of the device.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the first time slice. 2. The cut-off time of the time slice.
  • an embodiment of the present application discloses a communication method, and the method includes:
  • the access point AP sends first indication information to the first STA of the multiple station STAs; the first indication information is used to allocate the first spectrum and the first main channel to the first STA;
  • the AP Sending, by the AP, second indication information to a second STA among the multiple STAs; the second indication information is used to allocate the working channel and the second primary channel of the AP to the second STA;
  • the AP receives the message sent by the second STA using the working channel in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first frequency spectrum and the second time slice do not overlap.
  • the second frequency spectrum is two non-overlapping frequency spectra in the working channel, the first main channel is in the first frequency spectrum, and the second main channel is in the second frequency spectrum.
  • the AP monitors different primary channels in different time slices, and communicates with the first STA and the second STA through different frequency spectrums of the primary channel. For example, at the beginning of the second time slice, the AP will The monitored main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the method further includes:
  • the second time slice is extended by a second preset length.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • an embodiment of the present application discloses an access point AP, and the AP includes:
  • the first sending unit is configured to send first indication information to a first STA of a plurality of station STAs; the first indication information is used to allocate a first spectrum and a first main channel to the first STA;
  • the second sending unit is used to send second indication information to a second STA among the multiple STAs; the second indication information is used to allocate the working channel and the second main channel of the AP to the second STA ;
  • a second receiving unit configured to receive a message sent by the first STA by using the first frequency spectrum in a first time slice
  • the second receiving unit is configured to receive a message sent by the second STA using the working channel in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first time slice
  • the first frequency spectrum and the second frequency spectrum are two non-overlapping frequency spectra in the working channel, the first main channel is in the first frequency spectrum, and the second main channel is in the second frequency spectrum.
  • the AP monitors different main channels in different time slices, and communicates with the first STA and the second STA through different frequency spectra of the main channels. For example, at the beginning of the second time slice, the AP will The monitored main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the AP further includes:
  • the first extension unit is configured to extend the first time slice by a first preset length if there is an interference signal on the second frequency spectrum before the cut-off time of the first time slice;
  • the second extension unit is configured to extend the second time slice by a second preset length if there is an interference signal on the first frequency spectrum before the cut-off time of the second time slice.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • an embodiment of the present application discloses an access point AP.
  • the AP includes a communication interface, a processor, and a memory.
  • the memory is used to store a computer program, and the processor is used to call the computer program and control
  • the communication interface performs the following operations:
  • the second indication information is used to allocate the working channel and the second primary channel of the AP to the second STA;
  • the message sent by the second STA using the working channel is received in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first frequency spectrum and the second frequency spectrum are Two non-overlapping frequency spectra in the working channel, the first main channel is in the first frequency spectrum, and the second main channel is in the second frequency spectrum.
  • the AP monitors different main channels in different time slices, and communicates with the first STA and the second STA through different frequency spectra of the main channels. For example, at the beginning of the second time slice, the AP will The monitored main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the processor is further configured to:
  • the second time slice is extended by a second preset length.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • an embodiment of the present application discloses a communication method, and the method includes:
  • the access point AP sends first indication information to the first STA of the multiple station STAs; the first indication information is used to allocate the working channel and the first primary channel of the AP to the first STA;
  • Second indication information Sending, by the AP, second indication information to a second STA among the multiple STAs; the second indication information is used to allocate the working channel and the second primary channel to the second STA;
  • the AP receives the message sent by the second STA using the working channel in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first main channel and The second main channel is two different sub-channels in the working channel.
  • the AP monitors different primary channels in different time slices, and communicates with the first STA and the second STA through different frequency spectrums of the primary channel. For example, at the beginning of the second time slice, the AP will The monitored main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the first main channel is in a first frequency spectrum
  • the second main channel is in a second frequency spectrum
  • the first frequency spectrum and the second frequency spectrum are all Two non-overlapping frequency spectra in the working channel; the method further includes:
  • the second time slice is extended by a second preset length.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • an embodiment of the present application discloses an access point AP, and the AP includes:
  • the first sending unit is configured to send first indication information to a first STA of a plurality of station STAs; the first indication information is used to allocate the working channel and the first main channel of the AP to the first STA;
  • a second sending unit configured to send second indication information to a second STA among the multiple STAs; the second indication information is used to allocate the working channel and the second main channel to the second STA;
  • a second receiving unit configured to receive a message sent by the first STA by using the working channel in a first time slice
  • the second receiving unit is configured to receive a message sent by the second STA using the working channel in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first time slice A main channel and the second main channel are two different sub-channels in the working channel.
  • the AP monitors different main channels in different time slices, and communicates with the first STA and the second STA through different frequency spectra of the main channels. For example, at the beginning of the second time slice, the AP will The monitored main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the first main channel is in a first frequency spectrum
  • the second main channel is in a second frequency spectrum
  • the first frequency spectrum and the second frequency spectrum are all Two non-overlapping frequency spectra in the working channel
  • the AP further includes:
  • a first extension unit configured to extend the first time slice by a first preset length if there is an interference signal on the second frequency spectrum before the cut-off time of the first time slice;
  • the second extension unit is configured to extend the second time slice by a second preset length if there is an interference signal on the first frequency spectrum before the cut-off time of the second time slice.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • an embodiment of the present application discloses an access point AP.
  • the AP includes a communication interface, a processor, and a memory.
  • the memory is used to store a computer program, and the processor is used to call the computer program and control
  • the communication interface performs the following operations:
  • the message sent by the second STA using the working channel is received in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first main channel and the second time slice do not overlap.
  • the two main channels are two different sub-channels in the working channel.
  • the AP monitors different main channels in different time slices, and communicates with the first STA and the second STA through different frequency spectra of the main channels. For example, at the beginning of the second time slice, the AP will The monitored main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the first main channel is in a first frequency spectrum
  • the second main channel is in a second frequency spectrum
  • the first frequency spectrum and the second frequency spectrum are all Two non-overlapping frequency spectra in the working channel; the processor is also used for:
  • the second time slice is extended by a second preset length.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference situation of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • an embodiment of the present application provides a communication system, including an access point AP, a first station STA, and a second station STA, where: the AP is the second aspect, or any one of the second aspects is optional
  • the AP described in the solution, or the AP is the AP described in the third aspect, or any one of the optional solutions of the third aspect
  • the first STA is the second aspect, or any of the second aspects
  • the first STA described in an optional solution, or the first STA is the first STA described in the third aspect, or any one of the optional solutions of the third aspect
  • the second STA is The second aspect, or the second STA described in any of the optional solutions of the second aspect, or the second STA is the third aspect, or the second STA described in any of the optional solutions of the third aspect
  • the second STA is the second aspect, or the second STA described in any of the optional solutions of the second aspect, or the second STA is the third aspect, or the second STA described in any of the optional solutions of the third aspect The second
  • an embodiment of the present application provides a communication system, including an access point AP, a first station STA, and a second station STA, where: the AP is the fifth aspect, or any one of the fifth aspects can be used.
  • the AP described in the selected solution, or the AP is the AP described in the sixth aspect, or any one of the optional solutions of the fifth aspect;
  • the first STA is the fifth aspect, or the fifth aspect
  • the first STA described in any one of the optional solutions, or the first STA is the first STA described in the sixth aspect, or any one of the optional solutions in the sixth aspect;
  • the second STA The second STA described in the fifth aspect, or any one of the optional solutions of the fifth aspect, or the second STA is the sixth aspect, or described in any optional solution of the sixth aspect The second STA.
  • an embodiment of the present application provides a communication system, including an access point AP, a first station STA, and a second station STA, where: the AP is the eighth aspect, or any one of the eighth aspect The AP described in the selected solution, or the AP is the AP described in the ninth aspect, or any one of the optional solutions of the ninth aspect; the first STA is the eighth aspect, or the eighth aspect The first STA described in any one of the optional solutions, or the first STA is the first STA described in the ninth aspect, or any one of the optional solutions in the ninth aspect; the second STA The second STA described in the eighth aspect, or any one of the optional solutions of the eighth aspect, or, the second STA is the ninth aspect, or described in any one of the optional solutions of the ninth aspect The second STA.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer-readable storage medium runs on a processor, it implements the first, fourth, and seventh aspects. The method described in any one of the aspects or an optional solution of any one of the aspects.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • Figure 2A shows a schematic diagram of resource division in a communication process
  • FIG. 2B shows a schematic diagram of resource division in an uplink scheduling process
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIGS. 4A-4B are schematic diagrams of resource division in some scanning stages provided by embodiments of the present application.
  • 5A-5B are schematic diagrams of some resource divisions of a communication method provided by an embodiment of the present application.
  • 6A-6C are schematic diagrams of resource division of some spectrum resource allocation methods provided by embodiments of the present application.
  • FIG. 7 is a schematic diagram of resource division in a time domain resource allocation method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another resource division of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of resource division of another communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another resource division of another communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another access point provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another access point provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another access point provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • the communication system includes an access point (AP) 110 and multiple stations (stations, STAs) 120, and multiple STAs 120
  • AP access point
  • STAs stations
  • STA121, STA122, STA123, and STA124 are taken as examples for illustration. In fact, the number of STAs can be more or less.
  • the virtual logical ports on the AP 110 and multiple STAs 120 may be referred to as air interfaces (air interfaces for short).
  • the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard defines a set of wireless transmission specifications on the air interface. The specifications can include the frequency, bandwidth, access timing, and coding method of each wireless channel.
  • the link established between the air interfaces is called a wireless link (for example, WIFI, Bluetooth, mobile device network, etc.).
  • the AP110 in the embodiment of the application may be a device that communicates with multiple STAs120 through wireless links.
  • the AP110 may support the 802.11ax standard (also known as high-efficiency wireless (HEW)), or after supporting the 802.11ax standard The 802.11 standard.
  • HEW high-efficiency wireless
  • the STA in the embodiment of the present application may be a smart phone, a tablet computer, a notebook computer, a desktop computer, a sensor device (such as a smart watch), or other devices with communication functions.
  • the STA supports the 802.11 standard before 802.11ax, or supports the 802.11ax standard.
  • the 802.11 standard before 802.11ax can be high throughput enhancement (enhancements for higher throughput, 802.11n), very high rate wireless standard ( Very high throughput wireless, 802.11ac) and other 802.11 standards.
  • STAs that support this type of 802.11 standard can be collectively referred to as legacy STAs; and the 802.11ax standard includes the 802.11ax standard itself and/or is proposed after the 802.11ax standard
  • the spectrum resources used by the STAs to transmit packets can be subject to the 802.11 standard scheduled by the AP.
  • the STAs supporting this type of 802.11 standard are collectively referred to as 11ax STAs.
  • the 802.11 standards supported by any two STAs can be the same or different, that is, any two STAs can be the same legacy STA, or the same 11ax STA, or one is the legacy STA and the other is the 11ax STA.
  • network elements such as AP110 and multiple STA120 communicate through working channels, and different network elements use the working channels in different time domains, for example:
  • FIG. 2A shows a schematic diagram of resource division in a scenario where a first STA and a second STA coexist.
  • the horizontal indicates the time
  • the vertical indicates the frequency of the working channel.
  • the bandwidth of the working channel is 80MHz.
  • the working channel includes four 20MHz sub-channels.
  • Sub-channel 1 is the main channel and the other sub-channels are auxiliary channels. illustrate.
  • the first STA is an STA that uses a distributed coordination function (DCF) to compete for the opportunity to send messages on the working channel.
  • the first STA can be a legacySTA or an 11axSTA;
  • the second STA supports uplink scheduling. That is, the spectrum resource used by the second STA to transmit packets is centrally scheduled by the AP, and the second STA may be 11axSTA.
  • DCF distributed coordination function
  • the time domain resources shown horizontally may be divided into multiple frames, and each frame may include a contention period and a transmission period.
  • the AP and the first STA can use their respective competition parameters to compete for the opportunity to send messages on the working channel whose main channel is subchannel 1 during the contention period, and the network element that successfully competes can use the working channel for the message during the transmission period. transmission.
  • the AP can centrally schedule the spectrum resources used by the second STA to transmit packets during the transmission period.
  • the second STA When the AP centrally schedules the spectrum resources used by the second STA to transmit packets, in the uplink direction, the second STA transmits uplink packets based on the trigger frame sent by the AP, and the second STA can allocate the spectrum resources according to the trigger frame ( And/or time domain resources) send a message to the AP; in the downlink direction, the AP can use the working channel to send a message to the second STA when the working channel is not allocated to the second STA.
  • An example of the uplink scheduling process can be shown in Figure 2B below.
  • the horizontal direction represents time and the vertical direction represents the frequency of the working channel.
  • STA124 is the first STA
  • STA121, STA122, and STA123 are the second STAs.
  • FIG. 2B takes the working channel including three spectrum resources as an example for illustration, and each spectrum resource may include at least one resource unit (RU).
  • RU resource unit
  • the AP may send a trigger frame to the second STA through any spectrum resource in the working channel.
  • the trigger frame may include, but is not limited to, the second STA's multi-user multiple-input multiple-output (multi-user multiple-input multiple-output, MU-MIMO) configuration, orthogonal frequency division multiple access (OFDMA) configuration (such as frequency and RU size), power control information and transmission period, etc.
  • the second STA may send a physical layer protocol data unit (PPDU) to the AP according to the spectrum resource (and/or the transmission period) specified by the trigger frame sent by the AP.
  • PPDU physical layer protocol data unit
  • the AP receives the PPDU sent by the second STA, it sends an acknowledgement frame (acknowledge character, ACK) to the second STA through any spectrum resource in the working channel, thereby completing an uplink scheduling process.
  • acknowledgement frame acknowledgement frame
  • the AP can use spectrum resource 1 of the above three spectrum resources to send a trigger frame to the second STA to indicate the spectrum resource used by the second STA for the next uplink transmission. For example, instruct STA121 to transmit uplink PPDUs through spectrum resource 1, instruct STA122 to transmit uplink PPDUs through spectrum resource 2, and instruct STA123 to transmit uplink PPDUs through spectrum resource 3.
  • the trigger frame can also be used to indicate the transmission period of the second STA's next uplink transmission: the first period, so as to ensure that the second STA can start and end uplink transmission at the same time.
  • the AP uses the aforementioned spectrum resource 1 to send an ACK to the second STA to identify the success of receiving the packet, thereby completing an uplink scheduling process.
  • the working channel may also include other numbers of spectrum resources.
  • the spectrum resources and time domain resources indicated by the trigger frame may also be allocated in other ways.
  • the sending method of the trigger frame shown in FIG. 2B is a broadcast sending method. In a specific implementation, the sending method of the trigger frame may also be a unicast sending method or other methods.
  • the interval between two adjacent APs successfully competing for the working channel is the first waiting period.
  • the first waiting period includes three contention periods and two transmission periods. Since the AP cannot control the transmission process of the first STA, if The first STA occupies a long transmission period, and the AP cannot use the working channel for a long period of time. Therefore, the service delay and transmission efficiency of the second STA scheduled by the AP cannot be guaranteed, which affects the user’s performance of the second STA. Sense of experience.
  • the waiting period for the successful interval between two adjacent APs to compete for the working channel may be longer.
  • the AP cannot control the service delay of the second STA, although the AP and the first STA can be adjusted.
  • the contention parameters of the STA make it easier for the AP to compete successfully, or reduce or avoid the frame aggregation capability of the first STA as much as possible to shorten the length of the transmission period during which the first STA occupies the working channel once.
  • the embodiment of the present application provides a communication method, which can guarantee the delay requirement of the second STA service, as shown in FIG. 3 in detail.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application. The method may be implemented based on the communication system shown in FIG. The method includes but is not limited to the following steps:
  • Step S301 The AP sends first indication information to the first STA.
  • the multiple STAs may be some STAs communicating with the AP.
  • the multiple STAs can be divided into at least two types.
  • One type of STA can be called a first STA, and another type of STA can be called a second STA.
  • it can be divided into different types based on different ways of acquiring spectrum.
  • Can also be divided into different types based on different types of protocols supported, can also be divided into different types based on different services provided, or can be divided into different types based on different performance parameters.
  • the following description is based on the different types of spectrum acquisition methods.
  • the first STA is an STA that acquires spectrum in a competitive manner to send packets to the AP, and the first STA may be the aforementioned legacySTA. , May also be the above-mentioned 11axSTA; the second STA is an STA that acquires a spectrum through AP centralized scheduling to send a message to the AP, and the second STA may be an 11axSTA.
  • the working channel of the AP includes a first frequency spectrum and a second frequency spectrum.
  • the first frequency spectrum and the second frequency spectrum do not overlap at all in the frequency domain.
  • the first indication information is used to indicate an opportunity for the first STA to compete for sending a message on the first spectrum, that is, the first indication information is used to allocate the first spectrum to the first STA.
  • Step S302 The first STA receives the first indication information sent by the AP.
  • the first STA may first establish an association relationship before communicating with the AP.
  • the process of establishing an association relationship between the first STA and the AP generally includes three stages: scanning, link authentication, and association.
  • scanning can be a process in which the first STA actively discovers the AP through a probe request frame, or the AP uses the primary channel in the first spectrum (which may be referred to as the first primary channel) to send to the first STA.
  • Link authentication is a process in which the first STA and the AP negotiate related parameters of wireless link authentication through an authentication request frame (authentication request) and an authentication response frame (authentication response).
  • the AP in response to the first STA's association request frame (associate request), the AP sends an association response frame (associate response) to the first STA; after the first STA receives the associate response, the association relationship is established, that is, the first STA passes The first main channel went online successfully.
  • the authentication method of the wireless link may include, but is not limited to, open system authentication (open system authentication) and shared-key authentication (shared-key authentication). Subsequently, the first STA may perform authentication based on the parameters negotiated in the link authentication process, and the first STA can communicate with the AP only when the link authentication passes.
  • the first indication information may be the beacon.
  • the beacon may include the identification information of the first main channel and the bandwidth information of the first frequency spectrum, and subsequently the first STA may send a message to the AP based on the first main channel and the first frequency spectrum indicated by the beacon.
  • the first indication information may be a probe response frame (probe response) of the AP in response to the probe request.
  • the probe response may include the identification information of the first main channel and the bandwidth information of the first spectrum, and subsequently the first STA may send a message to the AP based on the first main channel and the first spectrum indicated by the probe response.
  • the sub-channel used by the first STA to send the probe request to the AP may be the first main channel or the main channel in the second frequency spectrum (hereinafter may be referred to as the second main channel).
  • Figures 4A and 4B show some schematic diagrams of resource division in scanning phases, where the horizontal represents time, and the vertical axis represents the frequency of the working channel. Take the working channel with a bandwidth of 80MHz as an example.
  • the working channel includes four 20MHz sub-channels, namely sub-channel 1, sub-channel 2, sub-channel 3, and sub-channel 4.
  • Sub-channel 1 is the first main channel, the bandwidth of the first spectrum is 40 MHz, and sub-channel 4 It is the second main channel, and the bandwidth of the second spectrum is 40MHz.
  • the sub-channel used by the first STA to send the probe request to the AP is the first main channel.
  • the first STA can send a probe request to the AP through subchannel 1.
  • the AP receives the probe request through subchannel 1.
  • the AP works on subchannel 1, so the AP responds
  • a probe response is sent to the first STA through subchannel 1.
  • the probe response may include the identification information of the first main channel and the bandwidth information of the first spectrum.
  • the first STA may confirm the first main channel and the first spectrum according to the probe response, so that the first STA can subsequently pass the confirmed first spectrum Communicate with AP.
  • the sub-channel used by the first STA to send the probe request to the AP is the second main channel.
  • the first STA can send a probe request to the AP through subchannel 4; the AP receives the probe request through subchannel 4, according to the AP’s built-in classification rule: the first STA works on subchannel 1, so the AP responds
  • guide information (such as a message frame of the IEEE 802.11v standard) is sent to the first STA through subchannel 4.
  • the guide information may include identification information of sub-channel 1.
  • the guide information is used to instruct the first STA to switch from sub-channel 4 to sub-channel 1.
  • the first STA determines sub-channel 1 as the main channel according to the guide information, and then passes Subchannel 1 sends a probe request to the AP; the AP receives the probe request through subchannel 1 and confirms that it conforms to the AP's built-in classification rules, so it sends a probe response to the first STA through subchannel 1.
  • the probe response may include bandwidth information of the first frequency spectrum, the first STA may confirm the first frequency spectrum according to the probe response, and subsequently the first STA communicates with the AP through the confirmed first frequency spectrum.
  • Step S303 The first STA competes for an opportunity to send a message on the first spectrum according to the first indication information.
  • the first STA determines the first spectrum according to the foregoing first indication information, it competes for an opportunity to send a message on the first spectrum. For example, if the bandwidth of the working channel is 80MHz, the working channel includes four 20MHz subchannels, the first main channel is subchannel 2, and the bandwidth of the first spectrum is 40MHz, and the first indication information includes the identification information of subchannel 2. And the bandwidth information of the first spectrum.
  • the first STA may determine, according to the first indication information, that the first spectrum includes subchannel 1 and subchannel 2, and the main channel in the first spectrum is subchannel 2. It should be noted that, considering the allocation and utilization of actual spectrum resources, the first spectrum is not a spectrum including subchannel 2 and subchannel 3, so as to prevent subchannel 1 from being wasted.
  • Step S304 The AP receives a message sent by the first STA using the first frequency spectrum in the first time slice, or the AP sends a message to the first STA using the first frequency spectrum in the first time slice.
  • the AP may only receive messages sent by the first STA using the first spectrum in the first time slice, or may compete with the first STA for the opportunity to send messages on the first spectrum in the first time slice. If the AP competes for an opportunity to send a message on the first frequency spectrum, the AP uses the first frequency spectrum to send a message to the first STA within the first time slice.
  • the message can be a data message, for example, it can be web page data, voice data, video data, etc.; the message can also be a management message, for example, it can be a beacon, guidance information, information indicating a time of competition or a time of competition Wait.
  • the transmission period during which the AP communicates with multiple STAs may include multiple transmission periods, and the first transmission period is one transmission period among the multiple transmission periods.
  • the AP can communicate with two types of STAs (namely, the first STA and the second STA); therefore, corresponding to these two types of STAs, the first time slice and the second time slice exist in the first transmission period.
  • the first time slice and the second time slice do not overlap in the time domain.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the second time The cut-off time of the film.
  • the expiration time of the first time slice is the start time of the second time slice as an example for description.
  • the working channel includes a first frequency spectrum and a second frequency spectrum that do not overlap each other in the frequency domain.
  • the AP communicates with the first STA through the first frequency spectrum in the first time slice, and the AP communicates with the second STA through the second frequency spectrum or working channel (including the first frequency spectrum and the second frequency spectrum) in the second time slice.
  • the first time slice may include multiple frames, and each frame includes a contention period and a transmission period.
  • each frame includes a contention period and a transmission period.
  • multiple first STAs can compete for the opportunity to send packets on the first spectrum, or it can be the AP and multiple first STAs compete together for the opportunity to send packets on the first spectrum.
  • the network element that successfully competes can use the first frequency spectrum to transmit the message.
  • the AP may send indication information to the first STA during the packet transmission process, so that the first STA can compete for the opportunity to send the packet on the first spectrum in the first time slice, and at the second time There is no intra-chip competition for the opportunity to send messages on the first spectrum.
  • the following is an explanation of the situation:
  • Case 1 The first indication information sent by the AP to the first STA at the start time of the first time slice is used to indicate that the first STA competes for the opportunity to send packets on the first spectrum; the AP is at the end time of the first time slice Send third indication information to the first STA, where the third indication information is used to indicate that the first STA does not compete for an opportunity to send a message on the first spectrum.
  • the first indication information is specifically used to instruct the first STA to compete for the opportunity to send packets on the first spectrum from the start time of the first time slice
  • the third indication information is specifically used to instruct the first STA to start at the first time.
  • the cut-off time of the slice ends the competition for the opportunity to send messages on the first spectrum.
  • the AP may send the fourth indication information to the first STA during the process of establishing an association relationship between the AP and the first STA, or the AP may send the fourth indication information to the first STA before the start time of the first time slice, The AP may also send the fourth indication information to the first STA in the first time slice.
  • the fourth indication information is used to instruct the first STA to compete for the opportunity to send data on the first frequency spectrum in the first time slice.
  • the fourth indication information is used to instruct the first STA to compete for the first time every first preset duration.
  • An opportunity to send data on a spectrum, and the duration of each competition is the second preset duration; optionally, the moment when the first STA starts the competition is the start moment of the first time slice, and the first preset duration is the first The sum of the time length of the time slice and the second time slice, the second preset time length is the time length of the first time slice; optionally, the moment when the first STA starts to compete is any time in the first time slice (subsequent It can be called the first time), the first preset time length is the sum of the time lengths of the first time slice and the second time slice, the second preset time length is the length of time between the first time and the second time, and the second The time is any time between the first time and the cut-off time of the first time slice or the cut-off time of the first time slice.
  • the AP may also not send the information indicating the contention moment or the contention period to the first STA during the message transmission process.
  • the first indication information is the information of the AP establishing an association relationship with the first STA in step S302. Beacon or probe response in the process. After the first STA establishes an association relationship with the AP through the first spectrum, the first STA always competes for an opportunity to send a message on the first spectrum in the subsequent transmission process.
  • the first time slice may include the time period during which the AP and the first STA transmit data packets, and may also include the time period during which the AP and the first STA establish an association relationship; optionally, the start time of the first time slice is the time between the AP and the first STA. The deadline for the first STA to establish an association relationship.
  • Step S305 The AP sends second indication information to the second STA.
  • the second STA may establish an association relationship with the AP before communicating, and the process of establishing an association relationship between the second STA and the AP is the same as the above-mentioned process of establishing an association relationship between the first STA and the AP, and will not be repeated here.
  • the sequence of the process of establishing an association relationship between the first STA and the AP, and the order of the process of establishing an association relationship with the second STA and the AP is not limited.
  • the second indication information is used to instruct the second STA to use the second frequency spectrum to send a message to the AP in the second time slice.
  • Step S306 The second STA receives the second indication information sent by the AP.
  • Step S307 The second STA uses the second frequency spectrum to send a message to the AP in the second time slice according to the second indication information.
  • the second indication information may also be used to instruct the second STA to use the working channel (including the first frequency spectrum and the second frequency spectrum) to send packets to the AP in the second time slice, that is, the second indication information is specifically used To allocate a second spectrum or working channel for the second STA.
  • the working channel including the first frequency spectrum and the second frequency spectrum
  • Case 1 If the first spectrum is not available at the cut-off time of the first time slice, the second indication information is specifically used to allocate the second spectrum to the second STA, and the second STA passes the first frequency spectrum in the second time slice according to the second indication information.
  • the second spectrum sends a message to the AP; if the first spectrum is free at the end of the first time slice, the second indication information is used to allocate a working channel for the second STA, and the second STA is in the second time slice according to the second indication information Use the working channel to send messages to the AP.
  • the second indication information may be the trigger frame described in FIG. 2B. If the first spectrum is not free at the end of the first time slice, the RUs allocated to the second STA in the trigger frame are all RUs in the second spectrum, and the second STA sends a message to the AP through the RU allocated by the second indication information; if At the end of the first time slice, the first spectrum is free, and the RU allocated by the trigger frame to the second STA may include the RU in the second spectrum and the RU in the first spectrum. The second STA sends to the AP through the RU allocated by the second indication information. Message.
  • Case 2 Regardless of whether the first spectrum is free at the end of the first time slice, the second indication information is specifically used to allocate the second spectrum to the second STA, and the second STA sends a packet to the AP through the second spectrum according to the second indication information .
  • the second indication information may be the beacon or probe response described in step S302.
  • the second indication information includes the main channel in the second frequency spectrum (hereinafter may be referred to as the second main channel). ) Identification information and bandwidth information of the second frequency spectrum.
  • Case 3 Regardless of whether the first spectrum is free at the end of the first time slice, the second indication information is specifically used to allocate a working channel for the second STA, and the second STA uses the working channel to send a message to the AP according to the second indication information.
  • the second indication information may be the beacon or probe response described in step S302.
  • the second indication information includes the identification information of the second main channel and the bandwidth information of the working channel.
  • Step S308 The AP receives a message sent by the second STA using the second frequency spectrum in the second time slice, or the AP sends a message to the second STA using the second frequency spectrum in the second time slice.
  • the AP centrally schedules the spectrum resources used by the second STA to transmit packets.
  • the second STA sends a message to the AP according to the spectrum resource (and/or time domain resource) indicated by the trigger frame sent by the AP, and the AP receives the second STA in the second time slice and uses the spectrum resource indicated by the trigger frame to send Message.
  • the AP uses the second spectrum or working channel to send a message to the second STA.
  • the AP receives the second STA through the second spectrum in the second time slice. Message sent; in the downlink direction, the AP sends a message to the second STA through the unallocated second spectrum in the second time slice. If the first spectrum is free at the end of the first time slice, in the uplink direction, the AP receives the message sent by the second STA through the working channel in the second time slice; in the downlink direction, the AP passes the unavailable spectrum in the second time slice. The assigned working channel sends a message to the second STA.
  • the AP receives the message sent by the second STA through the second frequency spectrum in the second time slice.
  • the AP sends a message to the second STA through the unallocated second frequency spectrum in the second time slice.
  • the AP receives the message sent by the second STA through the working channel in the second time slice.
  • the AP sends a message to the second STA through an unallocated working channel in the second time slice.
  • the first frequency spectrum and the second frequency spectrum in the embodiments of the present application respectively have main channels, the main channel in the first frequency spectrum is the first main channel, the main channel in the second frequency spectrum is the second main channel, and the first main channel and the second main channel are The two main channels are two different sub-channels in the working channel.
  • the process in which the AP communicates with different STAs through different frequency spectra in different time slices is actually that the AP monitors different main channels in different time slices, and uses different frequency spectra and different main channels in different time slices.
  • the communication process of the STA is actually that the AP monitors different main channels in different time slices, and uses different frequency spectra and different main channels in different time slices.
  • the AP monitors the first main channel in the first spectrum in the first time slice, and communicates with the first STA through the first spectrum; the AP monitors the second main channel in the second spectrum in the second time slice , And communicate with the second STA through the second spectrum or working channel.
  • the horizontal axis represents time
  • the vertical axis represents the frequency of the working channel.
  • the working channel has a bandwidth of 80MHz as an example.
  • the working channel includes four 20MHz sub-channels, namely sub-channel 1, sub-channel 2, sub-channel 3, and sub-channel 4, and sub-channel 1 is the first main channel. Channel, the bandwidth of the first spectrum is 40MHz, subchannel 4 is the second main channel, and the bandwidth of the second spectrum is 40MHz.
  • the AP monitors the first main channel (that is, subchannel 1), and the first STA communicates with the AP through the first frequency spectrum (including subchannel 1 and subchannel 2). .
  • the first main channel that is, subchannel 1
  • the first STA communicates with the AP through the first frequency spectrum (including subchannel 1 and subchannel 2).
  • multiple first STAs compete for the opportunity to send messages to the AP on the first spectrum, or the AP and multiple first STAs compete for the opportunity to send messages on the first spectrum together.
  • the first spectrum is not idle; therefore, in the second time slice of the first transmission period, the AP monitors the second main channel (ie subchannel 4), and the AP and the second time slice
  • the two STAs communicate through the second frequency spectrum (including subchannel 3 and subchannel 4).
  • the second STA uses the spectrum resource in the second spectrum scheduled by the AP to send a message to the AP, or the AP sends a message to the second STA when the second spectrum is free.
  • the AP monitors the first main channel (that is, subchannel 1), and the first STA communicates with the AP through the first spectrum (including subchannel 1 and subchannel 2) .
  • the second transmission period is a transmission period excluding the first transmission period among the foregoing multiple transmission periods.
  • the first spectrum is idle; therefore, in the second time slice of the second transmission period, the AP monitors the second main channel (ie subchannel 4), and the AP and the second time slice
  • the STA communicates through the working channel (including the first frequency spectrum and the second frequency spectrum).
  • the second STA uses the spectrum resource in the working channel scheduled by the AP to send a message to the AP, or the AP sends a message to the second STA when the working channel is idle.
  • the time period between two adjacent APs and the second STA communication interval is the first time slice.
  • the embodiment of the present application can reduce the uncontrollable service delay (as shown in the first The waiting period) is converted into a controllable time slice (the first time slice shown in FIG. 5A and FIG. 5B), which effectively guarantees the service delay of the second STA.
  • the AP only monitors the second primary channel in the second time slice. Even if the first STA still uses the first spectrum to send packets to the AP in the second time slice, the AP cannot receive it normally. Therefore, the first spectrum in the second time slice of FIG. 5A is wasted, and the first spectrum in the second time slice of FIG. 5B is effectively used. In order to avoid the situation that the first spectrum in the second time slice is wasted as much as possible as shown in FIG. 5A, the indication information in the case 1 and/or case 2 in step S304 can be used to indicate that the first STA is in the second time slice. Do not compete for the opportunity to send data on the first spectrum.
  • the method may further include:
  • the AP dynamically adjusts the bandwidth of the first spectrum and the bandwidth of the second spectrum according to the service traffic of the first STA and the service traffic of the second STA in the preset time period.
  • the first ratio and the second ratio are positively correlated.
  • the first ratio is the ratio of the service flow of the first STA to the service flow of the second STA
  • the second ratio is the ratio of the bandwidth of the first spectrum to the bandwidth of the second spectrum.
  • the horizontal direction represents time
  • the vertical direction represents the frequency of the working channel.
  • Fig. 6A takes the working channel bandwidth of 80MHz, subchannel 1 as the first main channel, and subchannel 4 as the second main channel as an example.
  • Fig. 6B and Fig. 6C take the working channel bandwidth as 160MHz, and subchannel 1 as the second main channel. Take a main channel and sub-channel 8 as the second main channel as an example for description.
  • the bandwidth of the working channel is 80MHz
  • the first ratio is 1:3, the second ratio can also be 1:3, that is, the bandwidth of the first spectrum is 20MHz, and the bandwidth of the second spectrum is 60MHz
  • FIG. 6A A schematic diagram of resource division corresponding to the foregoing spectrum resource allocation method is shown in FIG. 6A.
  • the bandwidth of the working channel is 160MHz
  • the first ratio is 1:3
  • the second ratio can also be 1:3, that is, the bandwidth of the first spectrum is 40MHz
  • the bandwidth of the second spectrum is 120MHz.
  • the schematic diagram of resource division corresponding to the spectrum resource allocation method is shown in FIG. 6B.
  • the second ratio can also be 1:7, that is, the bandwidth of the first spectrum is 20MHz, and the bandwidth of the second spectrum is 140MH.
  • the resource division corresponding to the above-mentioned spectrum resource allocation method The schematic diagram is shown in Figure 6C.
  • the method may further include:
  • the AP dynamically adjusts the time length of the first time slice and the time length of the second time slice according to the service flow of the first STA and the service flow of the second STA in the preset time period.
  • the above-mentioned dynamic adjustment process may be before step S301, for example, during the process of establishing an association relationship between the AP and the STA; the above-mentioned dynamic adjustment process may also be before any transmission period in the transmission process, for example, a preset time period. It is a time period before the start time of the first time slice.
  • the first ratio and the third ratio are positively correlated.
  • the first ratio is the ratio of the service flow of the first STA to the service flow of the second STA
  • the third ratio is the ratio of the time domain length of the first time slice to the time domain length of the second time slice.
  • the third ratio is also 3:2.
  • the resource division diagram corresponding to this time domain resource allocation method is shown in Fig. 7, and the time domain of the first time slice in Fig. 7
  • the ratio of the length to the time domain length of the second time slice is 3:2.
  • the resource division diagram shown in Fig. 7 shows time in the horizontal direction and frequency in the vertical direction.
  • Fig. 7 takes the bandwidth of the working channel as 80MHz, subchannel 1 as the first main channel, and subchannel 4 as the second main channel for illustration. .
  • the AP may direct an STA working on the second frequency spectrum (currently the STA is classified as the second STA) to the first frequency spectrum , So that the STA competes for the opportunity to send data on the first spectrum to perform the subsequent process of transmitting the message, that is, the STA is subsequently classified as the first STA.
  • the AP can also guide another STA working in the first spectrum (currently the STA is classified as the first STA) to the second spectrum, so that the STA can use the AP for centralized scheduling
  • the second frequency spectrum or working channel of the second spectrum or working channel performs a subsequent packet transmission process, that is, the STA is subsequently classified as the second STA.
  • the AP can flexibly adjust the classification of the STA according to the STA's business conditions, so as to maximize the transmission efficiency of the device.
  • an 11axSTA is currently classified as a second STA, and the 11axSTA uses the second spectrum or working channel centrally scheduled by the AP to send a message to the AP; the AP sends a fifth indication to the 11axSTA before the start of the first time slice Information to enable the 11axSTA to switch from the second spectrum to the first spectrum according to the fifth instruction information.
  • the 11axSTA competes for the opportunity to send messages on the first spectrum, thereby making use of the first spectrum.
  • a spectrum sends a message to the AP, that is, the 11axSTA is subsequently classified as the first STA.
  • the method may further include:
  • the second time slice is extended by a second preset length.
  • Fig. 8 shows a schematic diagram of an optional resource division.
  • the horizontal direction represents time and the vertical direction represents frequency.
  • Figure 8 takes the working channel bandwidth of 80MHz as an example for illustration.
  • the working channel includes four 20MHz sub-channels, namely sub-channel 1, sub-channel 2, sub-channel 3, and sub-channel 4, and sub-channel 1 is the first main channel.
  • the bandwidth of the first spectrum is 40MHz
  • subchannel 4 is the second main channel
  • the bandwidth of the second spectrum is 40MHz.
  • the presence of interference signals on the first frequency spectrum may be the presence of interference signals on subchannel 1, the presence of interference signals on subchannel 2, or the presence of interference signals on both subchannel 1 and subchannel 2.
  • the foregoing interference signal on the second frequency spectrum may be an interference signal on the subchannel 3, an interference signal on the subchannel 4, or an interference signal on both the subchannel 3 and the subchannel 4.
  • the AP can shorten the first time slice by a third preset length.
  • the third preset length may be the time length of the period between the middle time of the first time slice and the cut-off time. That is to say, the AP can flexibly adjust the time domain length of the time slice according to the interference situation of the spectrum resources, thereby maximizing the transmission efficiency in the interference scenario, and avoiding the situation that the AP and the STA cannot transmit packets when there are interference signals on part of the spectrum.
  • the frequency width of the working channel can also be 160MHz, 40MHz, 20MHz, etc.
  • the number of subchannels can also be 6, 4, 2, 1, etc.
  • multiple STAs may include three types of STAs.
  • the working channel may include three main channels
  • the first transmission period may include three time slices.
  • the AP uses different working channels of the main channel in different time slices. Communication with different types of STAs, that is, the number of STA groups and the number of main channels and/or the number of time slices can correspond one-to-one.
  • the AP communicates with the first STA (such as legacy STA or 11axSTA) and the second STA (such as 11axSTA) through different frequency spectra in the working channel in different time slices.
  • the AP's working spectrum is switched from the first spectrum to the second spectrum, and the AP communicates with the second STA through the second spectrum in the second time slice, which is effective This guarantees the delay requirements of the second STA service.
  • the AP can flexibly adjust the time domain length of the time slice according to the interference situation of the spectrum, and communicate with the corresponding STA through the spectrum where there is no interference signal, so as to maximize the efficiency of packet transmission in the interference scenario and improve The spectrum utilization rate is improved.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application. This method can be implemented based on the communication system shown in FIG. 1. The method includes but is not limited to the following steps:
  • Step S901 The AP sends first indication information to the first STA.
  • the multiple STAs may be some STAs communicating with the AP.
  • the multiple STAs can be divided into at least two types.
  • One type of STA can be called a first STA
  • another type of STA can be called a second STA.
  • it can be divided into different types based on different ways of acquiring spectrum.
  • Can also be divided into different types based on different types of protocols supported can also be divided into different types based on different services provided, or can be divided into different types based on different performance parameters.
  • the service of the first STA is a preset service with non-low latency requirements
  • the service of the second STA is a pre-determined service. Set up low-latency services. The following is a description of the situation:
  • Case 1 The first STA is a legacy STA, and the second STA is an 11ax STA with a higher service delay requirement.
  • the first STA is an 11ax STA with low service delay requirements
  • the second STA is an 11ax STA with high service delay requirements
  • the working channel of the AP includes the first frequency spectrum and the second frequency spectrum.
  • the first frequency spectrum and the second frequency spectrum do not overlap at all in the frequency domain.
  • the first main channel is in the first frequency spectrum
  • the second main channel is in the second frequency spectrum.
  • the first indication information is used to allocate the first spectrum and the first main channel to the first STA.
  • the first indication information is used to allocate the working channel and the first main channel for the first STA.
  • Step S902 The first STA receives the first indication information sent by the AP.
  • the first STA may first establish an association relationship before communicating with the AP.
  • the process of establishing an association relationship between the first STA and the AP has the same principle as the process of establishing an association relationship in step S302 of FIG. 3, and will not be repeated here.
  • the first indication information includes the identification information of the first primary channel and the bandwidth information of the first frequency spectrum. If the first indication information is instructed according to the second case above, the first indication information includes the identification information of the first primary channel and the bandwidth information of the working channel.
  • the AP uses the first primary channel to send a beacon to the first STA, so that the first STA can discover the AP.
  • the first indication information may be the beacon.
  • the first indication information may be the probe response of the AP in response to the probe request.
  • Step S903 The AP sends second indication information to the second STA.
  • the second indication information is used to allocate the working channel and the second main channel for the second STA.
  • Step S904 The second STA receives the second indication information sent by the AP.
  • the second STA may first establish an association relationship before communicating with the AP.
  • the process of establishing an association relationship between the second STA and the AP has the same principle as the process of establishing an association relationship in step S302 of FIG. 3, and will not be repeated here.
  • the sequence of the process of establishing an association relationship between the first STA and the AP, and the order of the process of establishing an association relationship with the second STA and the AP is not limited.
  • the second indication information includes identification information of the second main channel and bandwidth information of the working channel.
  • the AP uses the first primary channel to send a beacon to the first STA, so that the first STA can discover the AP.
  • the first indication information may be the beacon.
  • the first indication information may be the probe response of the AP in response to the probe request.
  • Step S905 The first STA uses the first spectrum or working channel to send a message to the AP according to the first indication information.
  • the first STA determines the first primary channel and the first spectrum according to the first indication information, it will compete for those who send packets on the first spectrum within the first time slice. Opportunity; when the competition reaches the opportunity to send a message on the first spectrum, the first STA uses the first spectrum to send a message to the AP.
  • the first STA determines the first main channel and the working channel according to the first indication information, and then uses the working channel centrally scheduled by the AP to send a message to the AP in the first time slice.
  • the first STA sends a message to the AP based on the spectrum resources (and/or time domain resources) in the working channel allocated based on the trigger frame sent by the AP in the first time slice.
  • Step S906 The AP receives a message sent by the first STA using the first frequency spectrum or working channel in the first time slice, or the AP sends a message to the first STA using the first frequency spectrum or working channel in the first time slice.
  • the AP receives the packet sent by the first STA using the first frequency spectrum in the first time slice.
  • the AP may also compete with the first STA for an opportunity to send a message on the first spectrum in the first time slice.
  • the AP uses the first frequency spectrum to send a message to the first STA within the first time slice.
  • the second STA sends a packet to the AP according to the spectrum resource (and/or time domain resource) indicated by the trigger frame sent by the AP, and the AP is in the second time slice Receive a message sent by the second STA using the spectrum resource indicated by the trigger frame.
  • the AP uses the working channel to send a message to the second STA when the working channel is not allocated.
  • the above message may be a data message, for example, it may be webpage data, voice data, video data, etc.; the message may also be a management message, for example, it may be a beacon, guide information, trigger frame, or competition indication Time or competition period information, etc.
  • the AP may also send information indicating a contention moment or a contention period to the first STA before the start time of the first time slice, for example, instruct the first STA to compete for transmission on the first frequency spectrum in the first time slice.
  • Message opportunity for a detailed description of this information, refer to the first and second cases described in step S304 of FIG. 3, which will not be repeated here.
  • the transmission period during which the AP communicates with multiple STAs may include multiple transmission periods, and the first transmission period is one transmission period among the multiple transmission periods.
  • the AP can communicate with two types of STAs (namely, the first STA and the second STA); therefore, corresponding to these two types of STAs, the first time slice and the second time slice exist in the first transmission period.
  • the first time slice and the second time slice do not overlap in the time domain.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the second time The cut-off time of the film.
  • the expiration time of the first time slice is the start time of the second time slice as an example for description.
  • the working channel includes a first frequency spectrum and a second frequency spectrum that do not overlap each other in the frequency domain, the first main channel is in the first frequency spectrum, and the second main channel is in the second frequency spectrum.
  • the AP communicates with the first STA through the first frequency spectrum whose primary channel is the first primary channel in the above-mentioned first time slice, and the AP communicates with the first STA through the working channel (including the first frequency spectrum) whose primary channel is the second primary channel in the above-mentioned second time slice.
  • the second spectrum communicate with the second STA.
  • Step S907 The second STA uses the working channel to send a message to the AP according to the second indication information.
  • the second STA uses the working channel centrally scheduled by the AP to send a message to the AP in the second time slice.
  • the second STA sends a message to the AP based on the spectrum resources (and/or time domain resources) in the working channel allocated based on the trigger frame sent by the AP in the second time slice.
  • the trigger frame can be used to allocate spectrum resources of the entire working channel to the second STA, or can be used to allocate spectrum resources of the second spectrum to the second STA. For details, refer to case 1 in step S307 of FIG. 3 above. I won’t repeat it here.
  • Step S908 The AP receives the message sent by the second STA by using the working channel in the second time slice, or the AP sends the message to the second STA by using the working channel in the second time slice.
  • the AP centrally schedules the spectrum resources used by the second STA to transmit packets.
  • the second STA sends a message to the AP according to the spectrum resource (and/or time domain resource) indicated by the trigger frame sent by the AP, and the AP receives the second STA in the second time slice and uses the spectrum resource indicated by the trigger frame to send
  • the spectrum resource indicated by the trigger frame can be only in the second spectrum or in the entire working channel.
  • the AP uses the spectrum resources in the working channel to send a message to the second STA.
  • the AP monitors different primary channels in different time slices, and communicates with different STAs through different frequency spectrums of the primary channel in different time slices.
  • the AP monitors the first main channel in the first spectrum in the first time slice, and uses the first spectrum or working channel (including the first spectrum and the second spectrum) to communicate with the first STA; the AP is in the second
  • the second main channel in the second frequency spectrum is monitored in the time slice, and the working channel (including the first frequency spectrum and the second frequency spectrum) is used to communicate with the second STA.
  • Fig. 10 takes the working channel bandwidth of 80MHz as an example for illustration.
  • the working channel includes four 20MHz sub-channels, namely sub-channel 1, sub-channel 2, sub-channel 3, and sub-channel 4, and sub-channel 1 is the first main channel.
  • the bandwidth of the first spectrum is 40MHz
  • subchannel 4 is the second main channel
  • the bandwidth of the second spectrum is 40MHz.
  • the AP monitors the first main channel (that is, subchannel 1), and the first STA and the AP pass through the first spectrum (including subchannel 1 and subchannel 2), or Working channel (including sub-channel 1, sub-channel 2, sub-channel 3 and sub-channel 4) communication.
  • the AP monitors the second main channel (that is, subchannel 4), and the second STA and AP pass through the second spectrum (including subchannel 3 and subchannel 4) or working channel (including subchannel 1. Sub-channel 2, sub-channel 3 and sub-channel 4) communication.
  • the method may further include:
  • the second time slice is extended by a second preset length.
  • Fig. 11 shows a schematic diagram of an optional resource division.
  • the horizontal axis represents time
  • the vertical axis represents the frequency of the working channel.
  • Figure 11 illustrates the working channel with a bandwidth of 80MHz as an example.
  • the working channel includes four 20MHz sub-channels, namely sub-channel 1, sub-channel 2, sub-channel 3, and sub-channel 4, and sub-channel 1 is the first main channel.
  • the bandwidth of the first spectrum is 40MHz
  • subchannel 4 is the second main channel
  • the bandwidth of the second spectrum is 40MHz.
  • the presence of interference signals on the first frequency spectrum may be the presence of interference signals on subchannel 1, the presence of interference signals on subchannel 2, or the presence of interference signals on both subchannel 1 and subchannel 2.
  • the foregoing interference signal on the second frequency spectrum may be an interference signal on the subchannel 3, an interference signal on the subchannel 4, or an interference signal on both the subchannel 3 and the subchannel 4.
  • the AP can shorten the first time slice by a third preset length.
  • the third preset length may be the time length of the period between the middle time of the first time slice and the cut-off time. That is to say, the AP can flexibly adjust the time domain length of the time slice according to the interference situation of the spectrum resources, thereby maximizing the transmission efficiency in the interference scenario, and avoiding the situation that the AP and STA cannot transmit packets when there are interference signals on part of the spectrum.
  • the frequency width of the working channel can also be 160MHz, 40MHz, 20MHz, etc.
  • the number of subchannels can also be 6, 4, 2, 1, etc.
  • multiple STAs may include three types of STAs.
  • the working channel may include three main channels
  • the first transmission period may include three time slices.
  • the AP uses different working channels of the main channel in different time slices. Communication with different types of STAs, that is, the number of STA groups and the number of main channels and/or the number of time slices can correspond one-to-one.
  • the AP monitors different primary channels in different time slices, and communicates with the first STA and the second STA through different frequency spectra of the primary channels, for example, at the beginning of the second time slice ,
  • the AP switches the monitored main channel from the first main channel to the second main channel, and communicates with the second STA through the working channel of the second main channel, which effectively guarantees the delay requirement of the STA service.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference of the spectrum, so as to avoid the device being unable to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device in interference scenarios.
  • the AP 1200 may include a first sending unit 1201, a first receiving unit 1202, a second sending unit 1203, and a second receiving unit 1204.
  • the detailed description of each unit is as follows:
  • the first sending unit 1201 is configured to send first indication information to the first STA among the multiple STAs at the beginning of the first time slice; the first indication information is used to indicate that the first STA competes for the first STA. Opportunities to send messages on the spectrum;
  • the first receiving unit 1202 is configured to receive, within the first time slice, a packet sent by the first STA using the first frequency spectrum;
  • the second sending unit 1203 is configured to send second indication information to a second STA of the multiple STAs within a second time slice; the second indication information is used to indicate that the second STA is at the second time Use the second frequency spectrum to send messages in the chip;
  • the second receiving unit 1204 is configured to receive, within the second time slice, a message sent by the second STA using the second frequency spectrum; wherein, the first time slice and the second time slice do not overlap , The first frequency spectrum and the second frequency spectrum do not overlap.
  • the AP communicates with the first STA and the second STA through different frequency spectra in different time slices.
  • the AP works The frequency spectrum is also switched from the first frequency spectrum to the second frequency spectrum, and the AP communicates with the second STA through the second frequency spectrum in the second time slice, thereby effectively guaranteeing the delay requirement of the second STA service.
  • AP1200 may also include:
  • the third sending unit is configured to, if the AP competes for an opportunity to send a message on the first frequency spectrum in the first time slice, use the first frequency spectrum to send messages in the first time slice.
  • the first STA sends a message.
  • AP1200 may also include:
  • the fourth sending unit is configured to send a message to the second STA by using the second frequency spectrum in the second time slice.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the second frequency spectrum to send a message within the second time slice;
  • the second receiving unit 1204 is specifically configured to receive, within the second time slice, a packet sent by the second STA using the first frequency spectrum and the second frequency spectrum.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the first frequency spectrum in the second time slice.
  • the second frequency spectrum sends a message, that is, the AP and the second STA can communicate using the first frequency spectrum and the second frequency spectrum in the second time slice.
  • the AP and the second STA can use the first frequency spectrum and the second frequency spectrum to communicate in the second time slice, which can effectively use the first frequency spectrum in the second time slice.
  • the first frequency spectrum that is free in the internal space improves the spectrum utilization rate, so that more services of the second STA can be carried in the second time slice, and the transmission efficiency of the second STA service is improved.
  • AP1200 may also include:
  • the fifth sending unit is configured to use the first frequency spectrum to send third indication information to the first STA at the end of the first time slice; the third indication information is used to instruct the first STA not to Contend for an opportunity to send a message on the first frequency spectrum.
  • the AP can send indication information to the first STA at both the start time and the end time of the first time slice, so that the first STA does not compete for the opportunity to send packets on the first spectrum in the second time slice.
  • the first frequency spectrum is idle at the beginning of the second time slice, so the AP can use the first frequency spectrum and the second frequency spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more
  • the second STA service improves the transmission efficiency of the second STA service.
  • AP1200 may also include:
  • the sixth sending unit is configured to send fourth indication information to the first STA; the fourth indication information is used to indicate that the first STA competes for sending data on the first spectrum within the first time slice Chance.
  • the fourth indication information is specifically used to indicate that the first STA competes for an opportunity to send data on the first spectrum every first preset duration, and the duration of each competition is the second preset duration.
  • the first The moment when a STA starts to compete is the start moment of the first time slice
  • the first preset time length is the sum of the time lengths of the first time slice and the second time slice
  • the second preset time length is the time length of the first time slice .
  • the AP can instruct the first STA to only compete for the opportunity to send packets on the first spectrum in the first time slice through the fourth indication information, so that the first spectrum is idle at the beginning of the second time slice Therefore, the AP can use the first frequency spectrum and the second frequency spectrum to communicate with the second STA in the second time slice, and the second time slice can carry more services of the second STA, which improves the transmission efficiency of the second STA service.
  • the first indication information is a probe response frame or a beacon frame in the process of establishing an association relationship between the first STA and the AP.
  • AP1200 may also include:
  • a first extension unit configured to extend the first time slice by a first preset length if there is an interference signal on the second frequency spectrum before the cut-off time of the first time slice;
  • the second extension unit is configured to extend the second time slice by a second preset length if there is an interference signal on the first frequency spectrum before the cut-off time of the second time slice.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference of the spectrum, so as to avoid the inability of the device to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device under interference scenarios.
  • AP1200 may also include:
  • the adjusting unit is configured to dynamically adjust the time domain length of the first time slice and the time domain of the second time slice according to the service flow of the first STA and the service flow of the second STA in a preset time period length.
  • the AP can flexibly adjust the time domain length of different time slices according to the service requirements of different STAs, so as to avoid wasting or insufficient time domain resources in the transmission process, thereby maximizing the transmission efficiency of the device.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the start time of the second time slice Deadline.
  • the AP 1200 is an access point in the method embodiment shown in FIG. 3.
  • FIG. 13 is a schematic structural diagram of another AP provided by an embodiment of the present application.
  • the AP 1300 may include a first sending unit 1301, a second sending unit 1302, a first receiving unit 1303, and a second receiving unit 1304. Among them, the detailed description of each unit is as follows:
  • the first sending unit 1301 is configured to send first indication information to a first STA among a plurality of STAs; the first indication information is used to allocate a first spectrum and a first main channel to the first STA;
  • the second sending unit 1302 is configured to send second indication information to a second STA among the plurality of STAs; the second indication information is used to allocate the working channel of the AP and the second master to the second STA. channel;
  • the first receiving unit 1303 is configured to receive a packet sent by the first STA using the first frequency spectrum in a first time slice;
  • the second receiving unit 1304 is configured to receive a message sent by the second STA using the working channel in a second time slice; wherein, the first time slice and the second time slice do not overlap, the The first frequency spectrum and the second frequency spectrum are two non-overlapping frequency spectra in the working channel, the first main channel is in the first frequency spectrum, and the second main channel is in the second frequency spectrum.
  • the AP monitors different main channels in different time slices, and communicates with the first STA and the second STA through different frequency spectrums of the main channel, for example, at the beginning of the second time slice, the AP will monitor
  • the main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirements of the STA service.
  • AP1300 may also include:
  • a first extension unit configured to extend the first time slice by a first preset length if there is an interference signal on the second frequency spectrum before the cut-off time of the first time slice;
  • the second extension unit is configured to extend the second time slice by a second preset length if there is an interference signal on the first frequency spectrum before the cut-off time of the second time slice.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference of the spectrum, so as to avoid the inability of the device to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device under interference scenarios.
  • the first sending unit 1301 is configured to send first indication information to a first STA among a plurality of STAs; the first indication information is used to allocate the working channel and the first main channel of the AP to the first STA;
  • the second sending unit 1302 is configured to send second indication information to a second STA of the multiple STAs; the second indication information is used to allocate the working channel and the second main channel to the second STA;
  • the first receiving unit 1303 is configured to receive a message sent by the first STA using the working channel in a first time slice;
  • the second receiving unit 1304 is configured to receive a message sent by the second STA using the working channel in a second time slice; wherein, the first time slice and the second time slice do not overlap, the The first main channel and the second main channel are two different sub-channels in the working channel.
  • the AP monitors different main channels in different time slices, and communicates with the first STA and the second STA through different frequency spectrums of the main channel, for example, at the beginning of the second time slice, the AP will monitor
  • the main channel is switched from the first main channel to the second main channel, and communicates with the second STA through the working channel where the main channel is the second main channel, which effectively guarantees the delay requirements of the STA service.
  • the first main channel is in a first frequency spectrum
  • the second main channel is in a second frequency spectrum
  • the first frequency spectrum and the second frequency spectrum are in the working channel.
  • Two non-overlapping spectrums; AP1300 can also include:
  • a first extension unit configured to extend the first time slice by a first preset length if there is an interference signal on the second frequency spectrum before the cut-off time of the first time slice;
  • the second extension unit is configured to extend the second time slice by a second preset length if there is an interference signal on the first frequency spectrum before the cut-off time of the second time slice.
  • the AP can flexibly adjust the time domain length of different time slices according to the interference of the spectrum, so as to avoid the inability of the device to transmit packets when there are interference signals on part of the spectrum, resulting in the waste of the spectrum without interference signals. This maximizes the transmission efficiency of the device under interference scenarios.
  • the AP1300 is an access point in the method embodiment shown in FIG. 9.
  • the AP1400 may include a processor 1401, a memory 1402, and a communication interface 1403.
  • the processor 1401, the memory 1402, and the communication interface 1403 are connected to each other through a bus. .
  • the memory 1402 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM Compact disc read-only memory
  • the memory 1402 is used to store related computer programs and messages.
  • the communication interface 1403 is used to receive and send messages.
  • the processor 1401 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1401 in the AP1400 may be used to read computer program codes stored in the memory 1402, and control the communication interface 1403 to perform the following operations:
  • first indication information is sent to the first STA of the multiple station STAs; the first indication information is used to indicate that the first STA competes for an opportunity to send packets on the first spectrum ;
  • the message sent by the second STA using the second frequency spectrum is received within the second time slice; wherein, the first time slice and the second time slice do not overlap, and the first frequency spectrum and the second time slice do not overlap.
  • the second frequency spectrum does not overlap.
  • the processor 1401 is further configured to control the communication interface 1403 to execute: if an opportunity to send a message on the first frequency spectrum is contended within the first time slice, then in the first time slice, Use the first frequency spectrum to send a message to the first STA within a time slice.
  • the processor 1401 is further configured to control the communication interface 1403 to execute: use the second frequency spectrum to send a message to the second STA in the second time slice.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the second frequency spectrum to send a message within the second time slice;
  • the processor 1401 controls the communication interface 1403 to receive the message sent by the second STA using the second spectrum in the second time slice, the processor 1401 controls the communication interface 1403 to specifically execute: Receiving on-chip a packet sent by the second STA by using the first frequency spectrum and the second frequency spectrum.
  • the second indication information is specifically used to instruct the second STA to use the first frequency spectrum and the first frequency spectrum in the second time slice.
  • the second frequency spectrum sends a message, that is, the AP and the second STA can communicate using the first frequency spectrum and the second frequency spectrum in the second time slice.
  • the processor 1401 is further configured to control the communication interface 1403 to execute:
  • the third indication information is used to indicate that the first STA does not compete in the first spectrum Opportunity to send messages.
  • the processor 1401 is further configured to control the communication interface 1403 to execute:
  • the fourth indication information is specifically used to indicate that the first STA competes for an opportunity to send data on the first spectrum every first preset duration, and the duration of each competition is the second preset duration.
  • the first The moment when a STA starts to compete is the start moment of the first time slice
  • the first preset time length is the sum of the time lengths of the first time slice and the second time slice
  • the second preset time length is the time length of the first time slice .
  • the first indication information is a probe response frame or a beacon frame in the process of establishing an association relationship between the first STA and the AP.
  • processor 1401 is further configured to execute:
  • the second time slice is extended by a second preset length.
  • processor 1401 is further configured to execute:
  • the time domain length of the first time slice and the time domain length of the second time slice are dynamically adjusted according to the service traffic of the first STA and the service traffic of the second STA in a preset time period.
  • the end time of the first time slice is the start time of the second time slice, or the start time of the first time slice is the start time of the second time slice Deadline.
  • the AP1400 is an access point in the method embodiment shown in FIG. 3.
  • FIG. 15 is a schematic structural diagram of another AP provided by an embodiment of the present application.
  • the AP1500 may include a processor 1501, a memory 1502, and a communication interface 1503.
  • the processor 1501, the memory 1502, and the communication interface 1503 are connected to each other through a bus. .
  • the memory 1502 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM Compact disc read-only memory
  • the memory 1502 is used to store related computer programs and messages.
  • the communication interface 1503 is used to receive and send messages.
  • the processor 1501 may be one or more central processing units (CPU). In the case where the processor 1501 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1501 in the AP1500 may be used to read computer program codes stored in the memory 1502, and control the communication interface 1503 to perform the following operations:
  • the second indication information is used to allocate the working channel and the second primary channel of the AP to the second STA;
  • the message sent by the second STA using the working channel is received in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first frequency spectrum and the second frequency spectrum are Two non-overlapping frequency spectra in the working channel, the first main channel is in the first frequency spectrum, and the second main channel is in the second frequency spectrum.
  • processor 1501 is further configured to:
  • the second time slice is extended by a second preset length.
  • the processor 1501 in the AP1500 may also be used to read computer program codes stored in the memory 1502, and control the communication interface 1503 to perform the following operations:
  • the message sent by the second STA using the working channel is received in a second time slice; wherein, the first time slice and the second time slice do not overlap, and the first main channel and the second time slice do not overlap.
  • the two main channels are two different sub-channels in the working channel.
  • the first main channel is in a first frequency spectrum
  • the second main channel is in a second frequency spectrum
  • the first frequency spectrum and the second frequency spectrum are in the working channel.
  • Two non-overlapping frequency spectra; the processor 1501 is also used for:
  • the second time slice is extended by a second preset length.
  • the AP1500 is an access point in the method embodiment shown in FIG. 9.
  • An embodiment of the present application also provides a chip system.
  • the chip system includes at least one processor, a memory, and an interface circuit.
  • the memory, a communication interface, and at least one processor are interconnected by wires, and the at least one memory stores a computer program.
  • the computer program When the computer program is executed by the processor, it implements the operations performed by the AP in the embodiment shown in FIG. 3, or implements the operations performed by the AP in the embodiment shown in FIG. 9.
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored in the computer-readable storage medium. When it runs on a processor, it implements the operations performed by the AP in the embodiment shown in FIG. 3, or implements Figure 9 shows the operation performed by the AP in the embodiment.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product runs on a processor, it realizes the operations performed by the AP in the embodiment shown in FIG. 3, or realizes the operations performed by the AP in the embodiment shown in FIG. 9 operate.
  • the computer program can be stored in a computer readable storage medium.
  • the computer program During execution, it may include the procedures of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store computer program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及相关装置,该通信方法包括:接入点AP在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;第一指示信息用于指示第一STA竞争在第一频谱上发送报文的机会;AP在第一时间片内接收第一STA利用第一频谱发送的报文;AP在第二时间片内向多个STA中的第二STA发送第二指示信息;第二指示信息用于指示所述第二STA在第二时间片内利用第二频谱发送报文;AP在第二时间片内接收第二STA利用第二频谱发送的报文;其中,第一时间片和第二时间片不重叠,第一频谱和第二频谱不重叠。采用本申请实施例,能够有效保障STA业务的时延要求。

Description

通信方法及相关装置
本申请要求于2020年03月31日提交中国专利局、申请号为202010249406.9、申请名称为“通信方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及相关装置。
背景技术
802.11ax标准(又称高效率无线标准(high-efficiency wireless,HEW))之前的802.11标准支持分布式协调功能(distributed coordination function,DCF),即接入点(access point,AP)和站点(station,STA)互相竞争频谱以此传输报文。802.11ax标准支持上行调度,即基于802.11ax标准的STA可以无需自行竞争频谱,而是由AP集中调度STA传输报文所用的频谱,以免彼此冲突竞争,提高了资源利用率和传输效率,能够更好地支撑低时延业务。
但在实际中,与AP通信的多个STA中往往既包括支持802.11ax标准的STA,可称为11axSTA,也包括支持802.11ax标准之前的802.11标准的STA,可称为传统(legacy)STA。在legacy STA和11ax STA共存的业务场景下,AP仍需和legacySTA互相竞争频谱传输报文,AP无法控制legacySTA的传输过程,在legacySTA占用频谱的时段较长的情况下,未竞争到频谱的AP所调度的11axSTA的业务时延和传输效率无法得到保障。因此,如何保障11ax STA业务的时延要求是本领域的技术人员需要解决的技术问题。
发明内容
本申请实施例公开了一种通信方法及相关装置,能够有效保障STA业务的时延要求。
第一方面,本申请实施例公开一种通信方法,所述方法包括:
接入点AP在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
所述AP在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
所述AP在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
所述AP在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
在上述方法中,AP在不同的时间片内通过不同的频谱分别与第一STA和第二STA通信,在第二时间片的起始时刻,即使第一STA仍在占用第一频谱,AP工作的频谱也从第一频谱切换到第二频谱,并且AP在第二时间片内通过第二频谱与第二STA通信,从而有效地保障了第二STA业务的时延要求。
在第一方面的一种可选的方案中,所述方法还包括:若所述AP在所述第一时间片内 竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
在第一方面的又一种可选的方案中,所述方法还包括:所述AP在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
在第一方面的又一种可选的方案中,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
所述AP在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文,包括:
所述AP在所述第二时间片内接收所述第二STA利用所述第一频谱和所述第二频谱发送的报文。
具体地,若第二时间片的起始时刻第一频谱空闲,则所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文,即AP和第二STA可以在第二时间片内利用所述第一频谱和所述第二频谱通信。
在上述方法中,若第二时间片的起始时刻第一频谱空闲,则AP和第二STA可以在第二时间片内利用第一频谱和第二频谱通信,从而能够有效利用在第二时间片内空闲的第一频谱,提升频谱利用率,使在第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第一方面的又一种可选的方案中,所述方法还包括:
所述AP在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
在上述方法中,AP可以通过在第一时间片的起始时刻和截止时刻均向第一STA发送指示信息,以使第一STA不在第二时间片内竞争在第一频谱上发送报文的机会,即第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第一方面的又一种可选的方案中,所述方法还包括:
所述AP向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
具体地,第四指示信息具体用于指示第一STA每隔第一预设时长竞争在第一频谱上发送数据的机会,且每次竞争的时长为第二预设时长,可选的,第一STA开始竞争的时刻为第一时间片的起始时刻,第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时间片的时间长度。
在上述方法中,AP可以通过第四指示信息指示第一STA仅在第一时间片内竞争在第一频谱上发送报文的机会,以使第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第一方面的又一种可选的方案中,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
在第一方面的又一种可选的方案中,所述方法还包括:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述方法中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
在第一方面的又一种可选的方案中,所述方法还包括:
根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
在上述方法中,AP可以根据不同STA的业务需求灵活调整不同时间片的时域长度,从而避免传输过程中时域资源浪费或不足的情况,以此最大化设备的发送效率。
在第一方面的又一种可选的方案中,所述第一时间片的截止时刻为所述第二时间片的起始时刻,或者所述第一时间片的起始时刻为所述第二时间片的截止时刻。
第二方面,本申请实施例公开一种接入点AP,所述AP包括:
第一发送单元,用于在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
第一接收单元,用于在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
第二发送单元,用于在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
第二接收单元,用于在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
在上述装置中,AP在不同的时间片内通过不同的频谱分别与第一STA和第二STA通信,在第二时间片的起始时刻,即使第一STA仍在占用第一频谱,AP工作的频谱也从第一频谱切换到第二频谱,并且AP在第二时间片内通过第二频谱与第二STA通信,从而有效地保障了第二STA业务的时延要求。
在第二方面的一种可选的方案中,所述AP还包括:
第三发送单元,用于若所述AP在所述第一时间片内竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
在第二方面的又一种可选的方案中,所述AP还包括:
第四发送单元,用于在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
在第二方面的又一种可选的方案中,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
所述第二接收单元,具体用于在所述第二时间片内接收所述第二STA利用所述第一频 谱和所述第二频谱发送的报文。
具体地,若第二时间片的起始时刻第一频谱空闲,则所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文,即AP和第二STA可以在第二时间片内利用所述第一频谱和所述第二频谱通信。
在上述装置中,若第二时间片的起始时刻第一频谱空闲,则AP和第二STA可以在第二时间片内利用第一频谱和第二频谱通信,从而能够有效利用在第二时间片内空闲的第一频谱,提升频谱利用率,使在第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第二方面的又一种可选的方案中,所述AP还包括:
第五发送单元,用于在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
在上述装置中,AP可以通过在第一时间片的起始时刻和截止时刻均向第一STA发送指示信息,以使第一STA不在第二时间片内竞争在第一频谱上发送报文的机会,即第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第二方面的又一种可选的方案中,所述AP还包括:
第六发送单元,用于向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
具体地,第四指示信息具体用于指示第一STA每隔第一预设时长竞争在第一频谱上发送数据的机会,且每次竞争的时长为第二预设时长,可选的,第一STA开始竞争的时刻为第一时间片的起始时刻,第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时间片的时间长度。
在上述装置中,AP可以通过第四指示信息指示第一STA仅在第一时间片内竞争在第一频谱上发送报文的机会,以使第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第二方面的又一种可选的方案中,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
在第二方面的又一种可选的方案中,所述AP还包括:
第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述装置中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
在第二方面的又一种可选的方案中,所述AP还包括:
调整单元,用于根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
在上述装置中,AP可以根据不同STA的业务需求灵活调整不同时间片的时域长度,从而避免传输过程中时域资源浪费或不足的情况,以此最大化设备的发送效率。
在第二方面的又一种可选的方案中,所述第一时间片的截止时刻为所述第二时间片的起始时刻,或者所述第一时间片的起始时刻为所述第二时间片的截止时刻。
第三方面,本申请实施例公开一种接入点AP,所述AP包括通信接口、处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,控制所述通信接口执行如下操作:
在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
在上述装置中,AP在不同的时间片内通过不同的频谱分别与第一STA和第二STA通信,在第二时间片的起始时刻,即使第一STA仍在占用第一频谱,AP工作的频谱也从第一频谱切换到第二频谱,并且AP在第二时间片内通过第二频谱与第二STA通信,从而有效地保障了第二STA业务的时延要求。
在第三方面的一种可选的方案中,所述处理器还用于控制所述通信接口执行:若在所述第一时间片内竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
在第三方面的又一种可选的方案中,所述处理器还用于控制所述通信接口执行:在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
在第三方面的又一种可选的方案中,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
所述处理器控制所述通信接口执行在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文时,所述处理器控制所述通信接口具体执行:在所述第二时间片内接收所述第二STA利用所述第一频谱和所述第二频谱发送的报文。
具体地,若第二时间片的起始时刻第一频谱空闲,则所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文,即AP和第二STA可以在第二时间片内利用所述第一频谱和所述第二频谱通信。
在上述装置中,若第二时间片的起始时刻第一频谱空闲,则AP和第二STA可以在第二时间片内利用第一频谱和第二频谱通信,从而能够有效利用在第二时间片内空闲的第一频谱,提升频谱利用率,使在第二时间片内能够承载更多的第二STA的业务,提高第二STA 业务的传输效率。
在第三方面的又一种可选的方案中,所述处理器还用于控制所述通信接口执行:
在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
在上述装置中,AP可以通过在第一时间片的起始时刻和截止时刻均向第一STA发送指示信息,以使第一STA不在第二时间片内竞争在第一频谱上发送报文的机会,即第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第三方面的又一种可选的方案中,所述处理器还用于控制所述通信接口执行:
向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
具体地,第四指示信息具体用于指示第一STA每隔第一预设时长竞争在第一频谱上发送数据的机会,且每次竞争的时长为第二预设时长,可选的,第一STA开始竞争的时刻为第一时间片的起始时刻,第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时间片的时间长度。
在上述装置中,AP可以通过第四指示信息指示第一STA仅在第一时间片内竞争在第一频谱上发送报文的机会,以使第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在第三方面的又一种可选的方案中,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
在第三方面的又一种可选的方案中,所述处理器还用于执行:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述装置中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
在第三方面的又一种可选的方案中,所述处理器还用于执行:
根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
在上述装置中,AP可以根据不同STA的业务需求灵活调整不同时间片的时域长度,从而避免传输过程中时域资源浪费或不足的情况,以此最大化设备的发送效率。
在第三方面的又一种可选的方案中,所述第一时间片的截止时刻为所述第二时间片的起始时刻,或者所述第一时间片的起始时刻为所述第二时间片的截止时刻。
第四方面,本申请实施例公开一种通信方法,所述方法包括:
接入点AP向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配第一频谱和第一主信道;
所述AP向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述AP的工作信道和第二主信道;
所述AP在第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
所述AP在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和第二频谱为所述工作信道中两个互不重叠的频谱,所述第一主信道在所述第一频谱内,所述第二主信道在所述第二频谱内。
在上述方法中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在第四方面的一种可选的方案中,所述方法还包括:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述方法中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
第五方面,本申请实施例公开了一种接入点AP,所述AP包括:
第一发送单元,用于向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配第一频谱和第一主信道;
第二发送单元,用于向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述AP的工作信道和第二主信道;
第二接收单元,用于在第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
第二接收单元,用于在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和第二频谱为所述工作信道中两个互不重叠的频谱,所述第一主信道在所述第一频谱内,所述第二主信道在所述第二频谱内。
在上述装置中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在第五方面的一种可选的方案中,所述AP还包括:
第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信 号,则将所述第一时间片延长第一预设长度;
第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述装置中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
第六方面,本申请实施例公开了一种接入点AP,所述AP包括通信接口、处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,控制所述通信接口执行如下操作:
向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配第一频谱和第一主信道;
向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述AP的工作信道和第二主信道;
在第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和第二频谱为所述工作信道中两个互不重叠的频谱,所述第一主信道在所述第一频谱内,所述第二主信道在所述第二频谱内。
在上述装置中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在第六方面的一种可选的方案中,所述处理器还用于:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述装置中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
第七方面,本申请实施例公开一种通信方法,所述方法包括:
接入点AP向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配所述AP的工作信道和第一主信道;
所述AP向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述工作信道和第二主信道;
所述AP在第一时间片内接收所述第一STA利用所述工作信道发送的报文;
所述AP在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所 述第一时间片和所述第二时间片不重叠,所述第一主信道和所述第二主信道为所述工作信道中两个不同的子信道。
在上述方法中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在第七方面的一种可选的方案中,所述第一主信道在第一频谱内,所述第二主信道在第二频谱内,所述第一频谱和所述第二频谱为所述工作信道中两个互不重叠的频谱;所述方法还包括:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述方法中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
第八方面,本申请实施例公开了一种接入点AP,所述AP包括:
第一发送单元,用于向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配所述AP的工作信道和第一主信道;
第二发送单元,用于向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述工作信道和第二主信道;
第二接收单元,用于在第一时间片内接收所述第一STA利用所述工作信道发送的报文;
第二接收单元,用于在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一主信道和所述第二主信道为所述工作信道中两个不同的子信道。
在上述装置中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在第八方面的一种可选的方案中,所述第一主信道在第一频谱内,所述第二主信道在第二频谱内,所述第一频谱和所述第二频谱为所述工作信道中两个互不重叠的频谱;所述AP还包括:
第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述装置中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避 免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
第九方面,本申请实施例公开了一种接入点AP,所述AP包括通信接口、处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,控制所述通信接口执行如下操作:
向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配所述AP的工作信道和第一主信道;
向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述工作信道和第二主信道;
在第一时间片内接收所述第一STA利用所述工作信道发送的报文;
在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一主信道和所述第二主信道为所述工作信道中两个不同的子信道。
在上述装置中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在第九方面的一种可选的方案中,所述第一主信道在第一频谱内,所述第二主信道在第二频谱内,所述第一频谱和所述第二频谱为所述工作信道中两个互不重叠的频谱;所述处理器还用于:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在上述装置中,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
第十方面,本申请实施例提供一种通信系统,包括接入点AP、第一站点STA和第二站点STA,其中:所述AP为第二方面,或者第二方面的任意一种可选的方案所描述的AP,或者,所述AP为第三方面,或者第三方面的任意一种可选的方案所描述的AP;所述第一STA为第二方面,或者第二方面的任意一种可选的方案所描述的第一STA,或者,所述第一STA为第三方面,或者第三方面的任意一种可选的方案所描述的第一STA;所述第二STA为第二方面,或者第二方面的任意一种可选的方案所描述的第二STA,或者,所述第二STA为第三方面,或者第三方面的任意一种可选的方案所描述的第二STA。
第十一方面,本申请实施例提供一种通信系统,包括接入点AP、第一站点STA和第二站点STA,其中:所述AP为第五方面,或者第五方面的任意一种可选的方案所描述的AP,或者,所述AP为第六方面,或者第五方面的任意一种可选的方案所描述的AP;所述 第一STA为第五方面,或者第五方面的任意一种可选的方案所描述的第一STA,或者,所述第一STA为第六方面,或者第六方面的任意一种可选的方案所描述的第一STA;所述第二STA为第五方面,或者第五方面的任意一种可选的方案所描述的第二STA,或者,所述第二STA为第六方面,或者第六方面的任意一种可选的方案所描述的第二STA。
第十二方面,本申请实施例提供一种通信系统,包括接入点AP、第一站点STA和第二站点STA,其中:所述AP为第八方面,或者第八方面的任意一种可选的方案所描述的AP,或者,所述AP为第九方面,或者第九方面的任意一种可选的方案所描述的AP;所述第一STA为第八方面,或者第八方面的任意一种可选的方案所描述的第一STA,或者,所述第一STA为第九方面,或者第九方面的任意一种可选的方案所描述的第一STA;所述第二STA为第八方面,或者第八方面的任意一种可选的方案所描述的第二STA,或者,所述第二STA为第九方面,或者第九方面的任意一种可选的方案所描述的第二STA。
第十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在处理器上运行时,实现第一方面、第四方面和第七方面中任意一方面或者任意一方面的可选的方案所描述的方法。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2A示出了一种通信过程的资源划分示意图;
图2B示出了一种上行调度过程的资源划分示意图;
图3是本申请实施例提供的一种通信方法的流程示意图;
图4A-图4B是本申请实施例提供的一些扫描阶段的资源划分示意图;
图5A-图5B是本申请实施例提供的一种通信方法的一些资源划分示意图;
图6A-图6C是本申请实施例提供的一些频谱资源分配方式的资源划分示意图;
图7是本申请实施例提供的一种时域资源分配方式的资源划分示意图;
图8是本申请实施例提供的一种通信方法的又一种资源划分示意图;
图9是本申请实施例提供的又一种通信方法的流程示意图;
图10是本申请实施例提供的又一种通信方法的一种资源划分示意图;
图11是本申请实施例提供的又一种通信方法的又一种资源划分示意图;
图12是本申请实施例提供的一种接入点的结构示意图;
图13是本申请实施例提供的又一种接入点的结构示意图;
图14是本申请实施例提供的又一种接入点的结构示意图;
图15是本申请实施例提供的又一种接入点的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种通信系统的架构示意图,该通信系统包括接入点(access point,AP)110和多个站点(station,STA)120,多个STA120在图1 中以STA121、STA122、STA123和STA124为例进行示意,实际上STA的数量还可以更多或更少。
AP110和多个STA120上的虚拟逻辑端口可以称为空中接口(简称空口)。电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11标准在空口上定义了一组无线传输规范,该规范可以包括每个无线信道的使用频率、带宽、接入定时和编码方法,在空口之间建立的链路称为无线链路(例如,WIFI、蓝牙和移动设备网络等)。本申请实施例中的AP110可以是与多个STA120通过无线链路通信的设备,AP110可以支持802.11ax标准(又称高效率无线标准(high-efficiency wireless,HEW)),或支持802.11ax标准之后的802.11标准。
本申请实施例中的STA可以是智能手机、平板电脑、笔记本电脑、台式计算机、传感器件(如智能手表)、或者其他具有通信功能的设备。需要说明的是,STA支持802.11ax之前的802.11标准,或者支持802.11ax标准,其中,802.11ax之前的802.11标准可以为高吞吐量增强(enhancements for higher throughput,802.11n)、很高速率无线标准(very high throughput wireless,802.11ac)等802.11标准,为了便于描述后续可以统称支持这类802.11标准的STA为传统(legacy)STA;而802.11ax标准包括802.11ax标准本身和/或在802.11ax标准之后提出的STA传输报文所用的频谱资源可以受AP调度的802.11标准,为了便于描述后续统称支持这类802.11标准的STA为11ax STA。另外,任意两个的STA支持的802.11标准可以相同也可以不同,即任意两个STA可以同为legacy STA,或者同为11ax STA,或者一个为legacy STA另一个为11ax STA。
本申请实施例中,AP110和多个STA120这些网元通过工作信道进行通信,不同的网元分别在不同的时域上使用该工作信道,例如:
请参见图2A,图2A示出了一种第一STA和第二STA共存场景下的资源划分示意图。其中,横向表示时间,纵向表示工作信道的频率,下面以工作信道的频宽为80MHz,该工作信道包括4个20MHz的子信道,子信道1为主信道,其他子信道为辅信道为例进行说明。
其中,第一STA为采用分布式协调功能(distributed coordination function,DCF)竞争在工作信道上发送报文的机会的STA,第一STA可以为legacySTA,也可以为11axSTA;第二STA为支持上行调度的STA,即第二STA传输报文所用的频谱资源受AP集中调度,第二STA可以为11axSTA。
如图2A所示,横向所示的时域资源可以被划分为多个帧,每个帧可以包括竞争期和传输期。AP和第一STA可以在竞争期内采用各自的竞争参数竞争在主信道为子信道1的工作信道上发送报文的机会,并由竞争成功的网元在传输期内使用工作信道进行报文传输。其中,若AP竞争工作信道成功,AP可以在传输期内集中调度第二STA传输报文所用的频谱资源。
AP集中调度第二STA传输报文所用的频谱资源时,在上行方向,第二STA进行上行报文的传输是基于AP发送的触发帧进行的,第二STA可以根据触发帧分配的频谱资源(和/或时域资源)向AP发送报文;在下行方向,AP可以在工作信道未被分配给第二STA的情况下利用工作信道向第二STA发送报文。上行调度过程的示例可如下图2B所示。
图2B所示的资源划分示意图中,横向表示时间,纵向表示工作信道的频率,与AP通信的多个STA中STA124为第一STA,STA121、STA122和STA123为第二STA。图2B以工作信道包括3个频谱资源为例进行说明,每个频谱资源可以包括至少一个资源单位(resource unit,RU)。
具体地,AP可以通过工作信道中的任意一个频谱资源向第二STA发送触发帧,触发帧可以包括但不限于第二STA的多用户多入多出(multi-user multiple-input multiple-output,MU-MIMO)配置、正交频分多址接入(orthogonal frequency division multiple access,OFDMA)配置(如频率和RU的大小)、功率控制信息和传输时段等。第二STA可以按照AP发送的触发帧规定的频谱资源(和/或传输时段)向AP发送物理层协议报文单元(physical layer protocol data unit,PPDU)。AP在接收到第二STA发送的PPDU的情况下,通过工作信道中的任意一个频谱资源向第二STA发送确认帧(acknowledge character,ACK),从而完成一次上行调度过程。
如图2B所示,AP可以利用上述3个频谱资源中的频谱资源1向第二STA发送触发帧,以指示第二STA下一次上行传输所使用的频谱资源。例如,指示STA121通过频谱资源1传输上行的PPDU,指示STA122通过频谱资源2传输上行的PPDU及指示STA123通过频谱资源3传输上行的PPDU。同时,触发帧还可以用于指示第二STA下一次上行传输的传输时段:第一时段,从而确保第二STA能够同时开始和结束上行传输。然后,AP在接收到STA121、STA122和STA123发送的PPDU后,利用上述频谱资源1向第二STA发送ACK以此标识接收报文成功,从而完成一次上行调度的过程。
不限于上述列举的情况,在具体实现中,工作信道也可以包括其他数量的频谱资源。另外,触发帧指示的频谱资源和时域资源还可以有其他分配方式。图2B所示的触发帧的发送方式为广播发送方式,在具体实现中,触发帧的发送方式还可以为单播发送方式或者其他方式。
如图2A所示,相邻两次AP竞争工作信道成功的间隔为第一等待时段,第一等待时段包括三个竞争期和两个传输期,由于AP无法控制第一STA的传输过程,若第一STA占用的传输期较长,AP在很长一段时间内就无法使用工作信道,因此受AP调度的第二STA的业务时延和传输效率无法得到保障,从而影响第二STA使用者的体验感。
在具体实现中,与AP关联的STA非常多,相邻两次AP竞争工作信道成功间隔的等待时段可能更长,导致AP无法控制第二STA的业务时延,虽然可以通过调整AP和第一STA的竞争参数使AP更容易竞争成功,或者尽量降低或避免第一STA的帧聚合能力来缩短第一STA单次占用工作信道的传输期的长度。但是在第一STA与AP的距离较远,传输速率较低的情况下,第一STA单次占用工作信道的传输期仍然较长,受AP调度的第二STA的业务时延仍然无法得到保障。对此本申请实施例提供一种通信方法,能够保障第二STA业务的时延要求,具体如图3所示。
请参见图3,图3是本申请实施例提供的一种通信方法的流程示意图,该方法可以基于图1所示的通信系统实现。该方法包括但不限于如下步骤:
步骤S301:AP向第一STA发送第一指示信息。
本申请实施例中存在多个STA,可选的,该多个STA可以是与AP通信的部分STA。该多个STA可以至少分为两类,其中一类的STA可以称为第一STA,其中又一类的STA可以称为第二STA,例如,可以基于获取频谱的方式不同而分为不同类型,也可以基于支持的协议类型不同而分为不同类型,也可以基于提供的业务不同而分为不同的类型,也可以基于其他性能参数不同而分为不同的类型。为了便于描述,下面以基于获取频谱的方式不同而分为不同类型为例进行说明,所述第一STA为采用竞争方式获取频谱以此向AP发送报文的STA,第一STA可以为上述legacySTA,也可以为上述11axSTA;所述第二STA为通过AP集中调度的方式获取频谱来向AP发送报文的STA,第二STA可以为11axSTA。
AP的工作信道包括第一频谱和第二频谱,可选的,第一频谱与第二频谱在频域上完全不重叠。第一指示信息用于指示第一STA竞争在第一频谱上发送报文的机会,也就是说,第一指示信息用于为第一STA分配第一频谱。
步骤S302:第一STA接收AP发送的第一指示信息。
具体地,第一STA在与AP通信之前可以先建立关联关系。第一STA与AP建立关联关系的过程一般包括扫描、链路认证和关联三个阶段。
详细地,扫描可以是第一STA通过探测请求帧(probe request)主动发现AP的过程,也可以是AP利用第一频谱内的主信道(后续可称为第一主信道)向第一STA发送信标帧(beacon),以使第一STA被动发现AP的过程。链路认证是第一STA和AP通过认证请求帧(authentication request)和认证响应帧(authentication response)协商无线链路认证的相关参数的过程。关联过程中,响应于第一STA的关联请求帧(associate request),AP向第一STA发送关联响应帧(associate response);第一STA接收到associate response后,关联关系建立,即第一STA通过第一主信道上线成功。其中,无线链路的认证方式可以包括但不限于开放系统认证(open system authentication)和共享密钥认证(shared-key authentication)等。后续第一STA可基于链路认证过程协商的参数进行认证,第一STA在链路认证通过的情况下才能与AP通信。
可选的,若扫描过程中,AP利用第一主信道向第一STA发送beacon,以使第一STA主动发现AP,则第一指示信息可以是该beacon。该beacon可以包括第一主信道的标识信息和第一频谱的频宽信息,后续第一STA可以基于beacon指示的第一主信道和第一频谱向AP发送报文。
可选的,若扫描过程中,第一STA通过probe request主动发现AP,则第一指示信息可以是AP响应于probe request的探测响应帧(probe response)。该probe response可以包括第一主信道的标识信息和第一频谱的频宽信息,后续第一STA可以基于probe response指示的第一主信道和第一频谱向AP发送报文。
下面以第一STA主动发现AP的扫描阶段为例进行说明。其中,第一STA向AP发送probe request所使用的子信道可以是第一主信道,也可以是第二频谱内的主信道(后续可称为第二主信道)。
请参见图4A和图4B,图4A和图4B示出了一些扫描阶段的资源划分示意图,其中,横向表示时间,纵轴表示工作信道的频率,以工作信道的频宽为80MHz为例进行示意,该工作信道包括4个20MHz的子信道,分别为子信道1、子信道2、子信道3和子信道4, 子信道1为第一主信道,第一频谱的频宽为40MHz,子信道4为第二主信道,第二频谱的频宽为40MHz。
可选的,第一STA向AP发送probe request所使用的子信道是第一主信道。如图4A所示,第一STA可以通过子信道1向AP发送probe request;AP通过子信道1接收该probe request,根据AP内置的分类规则:第一STA工作在子信道1上,因此AP响应于该probe request,通过子信道1向第一STA发送probe response。该probe response可以包括第一主信道的标识信息和第一频谱的频宽信息,第一STA可以根据该probe response确认第一主信道和第一频谱,以便后续第一STA通过确认的第一频谱与AP通信。
可选的,第一STA向AP发送probe request所使用的子信道是第二主信道。如图4B所示,第一STA可以通过子信道4向AP发送probe request;AP通过子信道4接收该probe request,根据AP内置的分类规则:第一STA工作在子信道1上,因此AP响应于该probe request,通过子信道4向第一STA发送引导信息(如IEEE 802.11v标准的消息帧)。该引导信息可以包括子信道1的标识信息,该引导信息用于指示第一STA从子信道4切换到子信道1上,第一STA根据该引导信息将子信道1确定为主信道,然后通过子信道1向AP发送probe request;AP通过子信道1接收该probe request,确认符合AP内置的分类规则,因此通过子信道1向第一STA发送probe response。该probe response可以包括第一频谱的频宽信息,第一STA可以根据该probe response确认第一频谱,后续第一STA通过确认的第一频谱与AP通信。
步骤S303:第一STA根据第一指示信息竞争在第一频谱上发送报文的机会。
具体地,第一STA根据上述第一指示信息确定出第一频谱后,竞争在该第一频谱上发送报文的机会。例如,假若工作信道的频宽为80MHz,工作信道包括4个20MHz的子信道,第一主信道为子信道2,第一频谱的频宽为40MHz,第一指示信息包括子信道2的标识信息和第一频谱的频宽信息。第一STA根据第一指示信息可以确定出第一频谱包括子信道1和子信道2,以及第一频谱内的主信道为子信道2。需要说明的是,考虑到实际频谱资源的分配和利用,第一频谱不为包括子信道2和子信道3的频谱,以免子信道1被浪费。
步骤S304:AP在第一时间片内接收第一STA利用第一频谱发送的报文,或者,AP在第一时间片内利用第一频谱向第一STA发送报文。
具体地,AP可以在第一时间片内仅接收第一STA利用第一频谱发送的报文,也可以在第一时间片内与第一STA一同竞争在第一频谱上发送报文的机会,若AP竞争到了在第一频谱上发送报文的机会,则AP在第一时间片内利用第一频谱向第一STA发送报文。该报文可以是数据报文,例如,可以是网页数据、语音数据、视频数据等;该报文也可以是管理报文,例如,可以是beacon、引导信息、指示竞争时刻或竞争时段的信息等。
具体地,AP与多个STA通信的传输时段可以包括多个传输周期,第一传输周期是多个传输周期中的一个传输周期。在第一传输周期中,AP可以与两类STA(即第一STA和第二STA)通信;因此,对应这两类STA,第一传输周期内存在第一时间片和第二时间片,第一时间片和第二时间片在时域上不重叠,可选的,第一时间片的截止时刻为第二时间片的起始时刻,或者,第一时间片的起始时刻为第二时间片的截止时刻。本申请实施例以第一时间片的截止时刻为第二时间片的起始时刻为例进行说明。
另外,工作信道包括在频域上互不重叠的第一频谱和第二频谱。AP在上述第一时间片内通过第一频谱与第一STA通信,AP在上述第二时间片内通过第二频谱或工作信道(包括第一频谱和第二频谱)与第二STA通信。
可选的,第一时间片可以包括多个帧,每个帧包括竞争期和传输期。在每个帧的竞争期内,可以是多个第一STA竞争在第一频谱上发送报文的机会,也可以是AP和多个第一STA一同竞争在第一频谱上发送报文的机会;在每个帧的传输期内,竞争成功的网元可以利用第一频谱传输报文。
本申请实施例中,AP可以在报文传输的过程中向第一STA发送指示信息,以使第一STA在第一时间片内竞争在第一频谱上发送报文的机会,在第二时间片内不竞争在第一频谱上发送报文的机会,下面分情况说明:
情况一,AP在第一时间片的起始时刻向第一STA发送的第一指示信息用于指示第一STA竞争在第一频谱上发送报文的机会;AP在第一时间片的截止时刻向第一STA发送第三指示信息,第三指示信息用于指示第一STA不竞争在第一频谱上发送报文的机会。例如,第一指示信息具体用于指示第一STA从第一时间片的起始时刻开始竞争在第一频谱上发送报文的机会,第三指示信息具体用于指示第一STA在第一时间片的截止时刻结束竞争在第一频谱上发送报文的机会。
情况二,可以在AP与第一STA建立关联关系的过程中AP向第一STA发送第四指示信息,也可以在第一时间片的起始时刻之前AP向第一STA发送第四指示信息,也可以在第一时间片内AP向第一STA发送第四指示信息。第四指示信息用于指示第一STA在第一时间片内竞争在第一频谱上发送数据的机会,详细地,第四指示信息用于指示第一STA每隔第一预设时长竞争在第一频谱上发送数据的机会,且每次竞争的时长为第二预设时长;可选的,第一STA开始竞争的时刻为第一时间片的起始时刻,第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时间片的时间长度;可选的,第一STA开始竞争的时刻为第一时间片中的任一时刻(后续可称为第一时刻),第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时刻与第二时刻之间的时间长度,第二时刻为第一时刻与第一时间片的截止时刻之间的任一时刻或第一时间片的截止时刻。
不限于上述列举的情况,AP也可以在报文传输过程中不向第一STA发送指示竞争时刻或竞争时段的信息,第一指示信息为步骤S302所述的AP与第一STA建立关联关系的过程中的beacon或probe response。第一STA通过第一频谱与AP建立关联关系后,在后续传输过程中第一STA一直竞争在第一频谱上发送报文的机会。其中,第一时间片可以包括AP与第一STA传输数据报文的时段,也可以包括AP与第一STA建立关联关系过程的时段;可选的,第一时间片的起始时刻为AP与第一STA建立关联关系的过程的截止时刻。
步骤S305:AP向第二STA发送第二指示信息。
具体地,第二STA与AP在通信之前可以先建立关联关系,第二STA与AP建立关联关系的过程和上述第一STA与AP建立关联关系的过程原理相同,此处不予赘述。另外,第一STA和AP建立关联关系的过程,与第二STA和AP建立关联关系的过程的顺序不做限制。
具体地,第二指示信息用于指示第二STA在第二时间片内利用第二频谱向AP发送报文。
步骤S306:第二STA接收AP发送的第二指示信息。
步骤S307:第二STA根据第二指示信息在第二时间片内利用第二频谱向AP发送报文。
具体地,第二指示信息还可以用于指示第二STA在第二时间片内利用工作信道(包括第一频谱和第二频谱)向AP发送报文,也就是说,第二指示信息具体用于为第二STA分配第二频谱或工作信道。下面分情况说明:
情况一,若第一时间片的截止时刻第一频谱不空闲,则第二指示信息具体用于为第二STA分配第二频谱,第二STA根据第二指示信息在第二时间片内通过第二频谱向AP发送报文;若第一时间片的截止时刻第一频谱空闲,则第二指示信息用于为第二STA分配工作信道,第二STA根据第二指示信息在第二时间片内利用工作信道向AP发送报文。
在上述情况一的前提下,第二指示信息可以是上述图2B所述的触发帧。若第一时间片的截止时刻第一频谱不空闲,触发帧为第二STA分配的RU均为第二频谱中的RU,第二STA通过第二指示信息分配的RU向AP发送报文;若第一时间片的截止时刻第一频谱空闲,触发帧为第二STA分配的RU可以包括第二频谱中的RU和第一频谱的RU,第二STA通过第二指示信息分配的RU向AP发送报文。
情况二,不管第一时间片的截止时刻第一频谱是否空闲,第二指示信息具体用于为第二STA分配第二频谱,第二STA根据第二指示信息通过第二频谱向AP发送报文。
在上述情况二的前提下,第二指示信息可以是上述步骤S302所述的beacon或probe response,此时,该第二指示信息包括第二频谱内的主信道(后续可称为第二主信道)的标识信息和第二频谱的频宽信息。
情况三,不管第一时间片的截止时刻第一频谱是否空闲,第二指示信息具体用于为第二STA分配工作信道,第二STA根据第二指示信息利用工作信道向AP发送报文。
在上述情况三的前提下,第二指示信息可以是上述步骤S302所述的beacon或probe response,此时,第二指示信息包括第二主信道的标识信息和工作信道的频宽信息。
步骤S308:AP在第二时间片内接收第二STA利用第二频谱发送的报文,或者,AP在第二时间片内利用第二频谱向第二STA发送报文。
具体地,在第二时间片内,AP集中调度第二STA传输报文所用的频谱资源。在上行方向,第二STA按照AP发送的触发帧指示的频谱资源(和/或时域资源)向AP发送报文,AP在第二时间片内接收第二STA利用触发帧指示的频谱资源发送的报文。在下行方向,AP在第二频谱或工作信道未被分配的情况下,利用第二频谱或工作信道向第二STA发送报文。其中,AP上行调度第二STA传输报文所用的频谱资源的资源划分示意图可参见图2B的描述,此处不予赘述。
如果第二指示信息按照步骤S307所述的情况一进行指示,则若第一时间片的截止时刻第一频谱不空闲,在上行方向,AP在第二时间片内通过第二频谱接收第二STA发送的报文;在下行方向,AP在第二时间片内通过未被分配的第二频谱向第二STA发送报文。若第一时间片的截止时刻第一频谱空闲,在上行方向,AP在第二时间片内通过工作信道接收第二STA发送的报文;在下行方向,AP在第二时间片内通过未被分配的工作信道向第二 STA发送报文。
如果第二指示信息按照步骤S307所述的情况二进行指示,则在上行方向,AP在第二时间片内通过第二频谱接收第二STA发送的报文。在下行方向,AP在第二时间片内通过未被分配的第二频谱向第二STA发送报文。
如果第二指示信息按照步骤S307所述的情况三进行指示,则在上行方向,AP在第二时间片内通过工作信道接收第二STA发送的报文。在下行方向,AP在第二时间片内通过未被分配的工作信道向第二STA发送报文。
本申请实施例中的第一频谱和第二频谱分别存在主信道,第一频谱内的主信道为第一主信道,第二频谱内的主信道为第二主信道,第一主信道和第二主信道为工作信道中两个不同的子信道。AP在不同的时间片内通过不同的频谱与不同的STA进行通信的过程实际上是AP在不同的时间片内监听不同的主信道,并在不同的时间片内通过主信道不同的频谱与不同的STA进行通信的过程。具体来说,AP在第一时间片内监听第一频谱内的第一主信道,并通过第一频谱和第一STA通信;AP在第二时间片内监听第二频谱内的第二主信道,并通过第二频谱或工作信道与第二STA通信。
为了更好的理解上述方案,下面结合图5A和图5B进行举例说明,图5A和图5B所示的资源划分示意图中,横向表示时间,纵轴表示工作信道的频率。其中,以工作信道的频宽为80MHz为例进行示意,该工作信道包括4个20MHz的子信道,分别为子信道1、子信道2、子信道3和子信道4,子信道1为第一主信道,第一频谱的频宽为40MHz,子信道4为第二主信道,第二频谱的频宽为40MHz。
如图5A所示,在第一传输周期的第一时间片内,AP监听第一主信道(即子信道1),第一STA与AP通过第一频谱(包括子信道1和子信道2)通信。详细地,多个第一STA竞争在第一频谱上向AP发送报文的机会,或者,AP与多个第一STA一同竞争在第一频谱上发送报文的机会。
在第一传输周期的第一时间片的截止时刻,第一频谱不空闲;因此,在第一传输周期的第二时间片内,AP监听第二主信道(即子信道4),AP与第二STA通过第二频谱(包括子信道3和子信道4)通信。详细地,第二STA利用AP调度的第二频谱内的频谱资源向AP发送报文,或者,AP在第二频谱空闲的情况下向第二STA发送报文。
如图5B所示,在第二传输周期的第一时间片内,AP监听第一主信道(即子信道1),第一STA与AP通过第一频谱(包括子信道1和子信道2)通信。其中,第二传输周期是上述多个传输周期中除第一传输周期外的一个传输周期。
在第二传输周期的第一时间片的截止时刻,第一频谱空闲;因此,在第二传输周期的第二时间片内,AP监听第二主信道(即子信道4),AP与第二STA通过工作信道(包括第一频谱和第二频谱)通信。详细地,第二STA利用AP调度的工作信道内的频谱资源向AP发送报文,或者,AP在工作信道空闲的情况下向第二STA发送报文。
在图5A和图5B中,相邻两次AP与第二STA通信间隔的时间段为第一时间片,本申请实施例能够将不可控的业务时延(如上述图2A所示的第一等待时段)转换为可控的时间片(如图5A和图5B所示的第一时间片),有效保障了第二STA的业务时延。
本申请实施例中,AP在第二时间片内只监听第二主信道,即使在第二时间片内仍有第 一STA利用第一频谱向AP发送报文,AP也无法正常接收。因此,在上述图5A的第二时间片内第一频谱被浪费,而上述图5B的第二时间片内第一频谱得到有效利用。为了尽量避免上述图5A所示的第二时间片内第一频谱被浪费的情况,可以通过步骤S304中的情况一和/或情况二中的指示信息来指示第一STA在第二时间片内不竞争在第一频谱上发送数据的机会。
在一种可选的方案中,在步骤S301之前,该方法还可以包括:
AP根据预设时间段内第一STA的业务流量和第二STA的业务流量动态调整第一频谱的频宽和第二频谱的频宽。
可选的,第一比值与第二比值呈正相关。其中,第一比值为第一STA的业务流量与第二STA的业务流量的比值,第二比值为第一频谱的频宽与第二频谱的频宽的比值。上述方法的示例可参见下述图6A、图6B和图6C。其中,图6A、图6B和图6C所示的资源划分示意图中的横向表示时间,纵向表示工作信道的频率。图6A以工作信道的带宽为80MHz,子信道1为第一主信道,子信道4为第二主信道为例进行说明,图6B和图6C以工作信道的带宽为160MHz,子信道1为第一主信道,子信道8为第二主信道为例进行说明。
例如,工作信道的带宽为80MHz时,在第一比值为1:3的情况下,第二比值也可以是1:3,即第一频谱的频宽为20MHz,第二频谱的频宽为60MHz,上述频谱资源分配方式对应的资源划分示意图如图6A所示。工作信道的带宽为160MHz时,在第一比值为1:3的情况下,第二比值也可以是1:3,即第一频谱的频宽为40MHz,第二频谱的频宽为120MHz,上述频谱资源分配方式对应的资源划分示意图如图6B所示。在第一比值为1:7的情况下,第二比值也可以是1:7,即第一频谱的频宽为20MHz,第二频谱的频宽为140MH,上述频谱资源分配方式对应的资源划分示意图如图6C所示。
在又一种可选的方案中,该方法还可以包括:
AP根据预设时间段内第一STA的业务流量和第二STA的业务流量动态调整第一时间片的时间长度和第二时间片的时间长度。
具体地,上述动态调整的过程可以在步骤S301之前,例如,AP与STA建立关联关系的过程中;上述动态调整的过程也可以在传输过程中的任意一个传输周期之前,例如,预设时间段为第一时间片的起始时刻之前的一个时间段。
可选的,第一比值与第三比值呈正相关。其中,第一比值为第一STA的业务流量与第二STA的业务流量的比值,第三比值为第一时间片的时域长度与第二时间片的时域长度的比值。
例如,在第一比值为3:2的情况下,第三比值也为3:2,该时域资源分配方式对应的资源划分示意图如图7所示,图7中第一时间片的时域长度与第二时间片的时域长度的比值为3:2。其中,图7所示的资源划分示意图中横向表示时间,纵向表示频率,图7以工作信道的带宽为80MHz,子信道1为第一主信道,子信道4为第二主信道为例进行说明。
在又一种可选的方案中,在第一时间片的起始时刻之前AP可以将工作在第二频谱上的一个STA(当前该STA被归类为第二STA)引导到第一频谱上,以使该STA竞争在第一频谱上发送数据的机会以进行后续传输报文的过程,也就是说,该STA后续被归类为第一STA。在第一时间片的起始时刻之前AP也可以将工作在第一频谱的另一个STA(当前 该STA被归类为第一STA)引导到第二频谱上,以使该STA利用AP集中调度的第二频谱或工作信道进行后续传输报文的过程,也就是说,该STA后续被归类为第二STA。也就是说,AP可以根据STA的业务情况灵活调整STA的分类,以此最大化设备的发送效率。
例如,一个11axSTA当前被归类为第二STA,该11axSTA利用AP集中调度的第二频谱或工作信道向AP发送报文;在第一时间片的起始时刻之前AP向该11axSTA发送第五指示信息,以使该11axSTA根据该第五指示信息从第二频谱切换到第一频谱上,在后续传输报文的过程中,该11axSTA竞争在第一频谱上发送报文的机会,以此利用第一频谱向AP发送报文,也就是说,该11axSTA后续被归类为第一STA。
在又一种可选的方案中,该方法还可以包括:
若第一时间片的截止时刻之前在第二频谱上存在干扰信号,则将第一时间片延长第一预设长度;
若第二时间片的截止时刻之前在第一频谱上存在干扰信号,则将第二时间片延长第二预设长度。
图8示意了一种可选的资源划分示意图。图8所示的资源划分示意图中,横向表示时间,纵向表示频率。图8以工作信道的频宽为80MHz为例进行示意,该工作信道包括4个20MHz的子信道,分别为子信道1、子信道2、子信道3和子信道4,子信道1为第一主信道,第一频谱的频宽为40MHz,子信道4为第二主信道,第二频谱的频宽为40MHz。
如图8所示,第一时间片的截止时刻之前在第二频谱上存在干扰信号,则即使AP在第一时间片的截止时刻将监听的主信道从第一主信道切换为第二主信道也无法和第二STA通信,因此AP可以继续监听第一主信道,即AP可以将第一时间片延长第一预设长度。在延长第一预设长度的时间段内AP可以通过第一频谱与第一STA通信,从而避免在第二频谱上存在干扰信号的情况下切换到第二时间片导致无法传输报文,不存在干扰信号的第一频谱浪费的情况。
如图8所示,第二时间片的截止时刻之前在第一频谱上存在干扰信号,则即使AP在第二时间片的截止时刻将监听的主信道从第二主信道切换为第一主信道也无法和第一STA通信,因此AP可以继续监听第二主信道,即AP可以将第二时间片延长第二预设长度。在延长第二预设长度的时间段内AP可以通过第二频谱与第二STA通信,从而避免在第一频谱上存在干扰信号的情况下切换到第一时间片导致无法传输报文,不存在干扰信号的第二频谱浪费的情况。
其中,上述在第一频谱上存在干扰信号可以是在子信道1上存在干扰信号、在子信道2上存在干扰信号或者在子信道1和子信道2上均存在干扰信号。上述在第二频谱上存在干扰信号可以是在子信道3上存在干扰信号、在子信道4上存在干扰信号或者在子信道3和子信道4上均存在干扰信号。
不限于上述列举的情况,在具体实现中,也可以是第一时间片的中间时刻到截止时刻之间在第一频谱上存在干扰信号,则AP可以将第一时间片缩短第三预设长度,第三预设长度可以是第一时间片的中间时刻到截止时刻之间的时段的时间长度。也就是说AP可以根据频谱资源的干扰情况灵活调整时间片的时域长度,从而在干扰场景下最大化发送效率,避免在部分频谱上存在干扰信号时AP和STA无法传输报文的情况。
不限于上述示例的情况,工作信道的频宽也可以为160MHz、40MHz、20MHz等,子信道的个数也可以为6个、4个、2个、1个等。
可以理解地,多个STA可以包括三类STA,相应地,工作信道可以包括三个主信道,第一传输周期可以包括三个时间片,AP在不同的时间片内通过主信道不同的工作信道与不同类的STA通信,也就是说,STA的分组数与主信道的个数和/或时间片的个数可以一一对应。
在图3描述的方法中,AP在不同的时间片内通过工作信道中不同的频谱分别与第一STA(如legacy STA或11axSTA)和第二STA(如11axSTA)通信,在第二时间片的起始时刻,即使第一STA仍在占用第一频谱,AP工作的频谱也从第一频谱切换到第二频谱,并且AP在第二时间片内通过第二频谱与第二STA通信,从而有效地保障了第二STA业务的时延要求。
除此之外,AP还可以根据频谱的干扰情况灵活调整时间片的时域长度,并通过不存在干扰信号的频谱和对应的STA通信,以此最大化干扰场景下报文的发送效率,提升了频谱利用率。
请参见图9,图9是本申请实施例提供的又一种通信方法的流程示意图。该方法可以基于图1所示的通信系统实现。该方法包括但不限于如下步骤:
步骤S901:AP向第一STA发送第一指示信息。
本申请实施例中存在多个STA,可选的,该多个STA可以是与AP通信的部分STA。该多个STA可以至少分为两类,其中一类的STA可以称为第一STA,其中又一类的STA可以称为第二STA,例如,可以基于获取频谱的方式不同而分为不同类型,也可以基于支持的协议类型不同而分为不同类型,也可以基于提供的业务不同而分为不同的类型,也可以基于其他性能参数不同而分为不同的类型。为了便于描述,下面以基于提供的业务不同而分为不同的类型为例进行说明,所述第一STA的业务为预设的非低时延要求的业务,所述第二STA的业务为预设的低时延要求的业务。下面分情况说明:
情况一,第一STA为legacy STA,第二STA为业务的时延要求较高的11ax STA。
情况二,第一STA为业务的时延要求不高的11ax STA,第二STA为业务的时延要求较高的11ax STA。
AP的工作信道包括第一频谱和第二频谱,可选的,第一频谱与第二频谱在频域上完全不重叠,第一主信道在第一频谱内,第二主信道在第二频谱内。
在上述情况一的前提下,第一指示信息用于为第一STA分配第一频谱和第一主信道。
在上述情况二的前提下,第一指示信息用于为第一STA分配工作信道和第一主信道。
步骤S902:第一STA接收AP发送的第一指示信息。
具体地,第一STA在与AP通信之前可以先建立关联关系。第一STA与AP建立关联关系的过程与上述图3的步骤S302中建立关联关系的过程原理相同,此处不予赘述。
具体地,如果第一指示信息按照上述情况一进行指示,则第一指示信息包括第一主信道的标识信息和第一频谱的频宽信息。如果第一指示信息按照上述情况二进行指示,则第一指示信息包括第一主信道的标识信息和工作信道的频宽信息。
可选的,若扫描过程中,AP利用第一主信道向第一STA发送beacon,以使第一STA发现AP。第一指示信息可以是该beacon。
可选的,若扫描过程中,第一STA通过probe request主动发现AP,则第一指示信息可以是AP响应于probe request的probe response。
步骤S903:AP向第二STA发送第二指示信息。
具体地,第二指示信息用于为第二STA分配工作信道和第二主信道。
步骤S904:第二STA接收AP发送的第二指示信息。
具体地,第二STA在与AP通信之前可以先建立关联关系。第二STA与AP建立关联关系的过程与上述图3的步骤S302中建立关联关系的过程原理相同,此处不予赘述。另外,第一STA和AP建立关联关系的过程,与第二STA和AP建立关联关系的过程的顺序不做限制。
具体地,第二指示信息包括第二主信道的标识信息和工作信道的频宽信息。
可选的,若扫描过程中,AP利用第一主信道向第一STA发送beacon,以使第一STA发现AP。第一指示信息可以是该beacon。
可选的,若扫描过程中,第一STA通过probe request主动发现AP,则第一指示信息可以是AP响应于probe request的probe response。
步骤S905:第一STA根据第一指示信息利用第一频谱或工作信道向AP发送报文。
如果第一指示信息按照上述情况一进行指示,则第一STA根据第一指示信息确定出第一主信道和第一频谱后,在第一时间片内竞争在该第一频谱上发送报文的机会;当竞争到在该第一频谱上发送报文的机会,第一STA利用第一频谱向AP发送报文。
如果第一指示信息按照上述情况二进行指示,则第一STA根据第一指示信息确定出第一主信道和工作信道后,在第一时间片内利用AP集中调度的工作信道向AP发送报文;详细地,第一STA在第一时间片内基于AP发送的触发帧分配的工作信道内的频谱资源(和/或时域资源)向AP发送报文。
步骤S906:AP在第一时间片内接收第一STA利用第一频谱或工作信道发送的报文,或者,AP在第一时间片内利用第一频谱或工作信道向第一STA发送报文。
如果第一指示信息按照上述情况一进行指示,AP在第一时间片内接收第一STA利用第一频谱发送的报文。可选的,AP也可以在第一时间片内与第一STA一同竞争在第一频谱上发送报文的机会。当AP竞争到在第一频谱上发送报文的机会时,AP在第一时间片内利用第一频谱向第一STA发送报文。
如果第一指示信息按照上述情况二进行指示,在上行方向,第二STA按照AP发送的触发帧指示的频谱资源(和/或时域资源)向AP发送报文,AP在第二时间片内接收第二STA利用触发帧指示的频谱资源发送的报文。可选的,在下行方向,AP在工作信道未被分配的情况下,利用工作信道向第二STA发送报文。
具体地,上述报文可以是数据报文,例如,可以是网页数据、语音数据、视频数据等;该报文也可以是管理报文,例如,可以是beacon、引导信息、触发帧、指示竞争时刻或竞争时段的信息等。
可选的,AP也可以在第一时间片的起始时刻之前向第一STA发送指示竞争时刻或竞 争时段的信息,例如,指示第一STA在第一时间片内竞争在第一频谱上发送报文的机会;该信息的详细说明可参见上述图3的步骤S304所述的情况一和情况二,此处不予赘述。
具体地,AP与多个STA通信的传输时段可以包括多个传输周期,第一传输周期是多个传输周期中的一个传输周期。在第一传输周期中,AP可以与两类STA(即第一STA和第二STA)通信;因此,对应这两类STA,第一传输周期内存在第一时间片和第二时间片,第一时间片和第二时间片在时域上不重叠,可选的,第一时间片的截止时刻为第二时间片的起始时刻,或者,第一时间片的起始时刻为第二时间片的截止时刻。本申请实施例以第一时间片的截止时刻为第二时间片的起始时刻为例进行说明。
另外,工作信道包括在频域上互不重叠的第一频谱和第二频谱,第一主信道在第一频谱内,第二主信道在第二频谱内。AP在上述第一时间片内通过主信道为第一主信道的第一频谱与第一STA通信,AP在上述第二时间片内通过主信道为第二主信道的工作信道(包括第一频谱和第二频谱)与第二STA通信。
步骤S907:第二STA根据第二指示信息利用工作信道向AP发送报文。
具体地,第二STA根据第二指示信息确定出第二主信道和工作信道后,在第二时间片内利用AP集中调度的工作信道向AP发送报文。详细地,第二STA在第二时间片内基于AP发送的触发帧分配的工作信道内的频谱资源(和/或时域资源)向AP发送报文。可选的,该触发帧可以用于为第二STA分配整个工作信道的频谱资源,也可以用于为第二STA分配第二频谱的频谱资源,具体可参见上述图3的步骤S307中情况一的说明,此处不予赘述。
步骤S908:AP在第二时间片内接收第二STA利用工作信道发送的报文,或者,AP在第二时间片内利用工作信道向第二STA发送报文。
具体地,在第二时间片内,AP集中调度第二STA传输报文所用的频谱资源。在上行方向,第二STA按照AP发送的触发帧指示的频谱资源(和/或时域资源)向AP发送报文,AP在第二时间片内接收第二STA利用触发帧指示的频谱资源发送的报文;可选的,上述触发帧指示的频谱资源可以仅在第二频谱内,也可以在整个工作信道内。在下行方向,AP在工作信道未被分配的情况下,利用工作信道内的频谱资源向第二STA发送报文。其中,AP上行调度第二STA传输报文所用的频谱资源的资源划分示意图可参见图2B的描述,此处不予赘述。
具体地,AP在不同的时间片内监听不同的主信道,并在不同的时间片内通过主信道不同的频谱与不同的STA进行通信。具体来说,AP在第一时间片内监听第一频谱内的第一主信道,并利用第一频谱或工作信道(包括第一频谱和第二频谱)和第一STA通信;AP在第二时间片内监听第二频谱内的第二主信道,并利用工作信道(包括第一频谱和第二频谱)与第二STA通信。
为了更好的理解上述方案,下面结合图10进行举例说明,图10所示的资源划分示意图中,横向表示时间,纵轴表示工作信道的频率。图10以工作信道的频宽为80MHz为例进行示意,该工作信道包括4个20MHz的子信道,分别为子信道1、子信道2、子信道3和子信道4,子信道1为第一主信道,第一频谱的频宽为40MHz,子信道4为第二主信道,第二频谱的频宽为40MHz。
如图10所示,在第一传输周期的第一时间片内,AP监听第一主信道(即子信道1), 第一STA与AP通过第一频谱(包括子信道1和子信道2)或者工作信道(包括子信道1、子信道2、子信道3和子信道4)通信。在第一传输周期的第二时间片内,AP监听第二主信道(即子信道4),第二STA与AP通过第二频谱(包括子信道3和子信道4)或者工作信道(包括子信道1、子信道2、子信道3和子信道4)通信。
在一种可选的方案中,该方法还可以包括:
若第一时间片的截止时刻之前在第二频谱上存在干扰信号,则将第一时间片延长第一预设长度;
若第二时间片的截止时刻之前在第一频谱上存在干扰信号,则将第二时间片延长第二预设长度。
图11示意了一种可选的资源划分示意图。图11所示的资源划分示意图中,横向表示时间,纵轴表示工作信道的频率。图11以工作信道的频宽为80MHz为例进行示意,该工作信道包括4个20MHz的子信道,分别为子信道1、子信道2、子信道3和子信道4,子信道1为第一主信道,第一频谱的频宽为40MHz,子信道4为第二主信道,第二频谱的频宽为40MHz。
如图11所示,第一时间片的截止时刻之前在第二频谱上存在干扰信号,则即使AP在第一时间片的截止时刻将监听的主信道从第一主信道切换为第二主信道也无法和第二STA通信,因此AP可以继续监听第一主信道,即AP可以将第一时间片延长第一预设长度。在延长第一预设长度的时间段内AP可以通过第一频谱与第一STA通信,从而避免在第二频谱上存在干扰信号的情况下切换到第二时间片导致无法传输报文,不存在干扰信号的第一频谱浪费的情况。
如图11所示,第二时间片的截止时刻之前在第一频谱上存在干扰信号,则即使AP在第二时间片的截止时刻将监听的主信道从第二主信道切换为第一主信道也无法和第一STA通信,因此AP可以继续监听第二主信道,即AP可以将第二时间片延长第二预设长度。在延长第二预设长度的时间段内AP可以通过第二频谱与第二STA通信,从而避免在第一频谱上存在干扰信号的情况下切换到第一时间片导致无法传输报文,不存在干扰信号的第二频谱浪费的情况。
其中,上述在第一频谱上存在干扰信号可以是在子信道1上存在干扰信号、在子信道2上存在干扰信号或者在子信道1和子信道2上均存在干扰信号。上述在第二频谱上存在干扰信号可以是在子信道3上存在干扰信号、在子信道4上存在干扰信号或者在子信道3和子信道4上均存在干扰信号。
不限于上述列举的情况,在具体实现中,也可以是第一时间片的中间时刻到截止时刻之间在第一频谱上存在干扰信号,则AP可以将第一时间片缩短第三预设长度,第三预设长度可以是第一时间片的中间时刻到截止时刻之间的时段的时间长度。也就是说AP可以根据频谱资源的干扰情况灵活调整时间片的时域长度,从而在干扰场景下最大化发送效率,避免在部分频谱上存在干扰信号时AP和STA无法传输报文的情况。
不限于上述示例的情况,工作信道的频宽也可以为160MHz、40MHz、20MHz等,子信道的个数也可以为6个、4个、2个、1个等。
可以理解地,多个STA可以包括三类STA,相应地,工作信道可以包括三个主信道, 第一传输周期可以包括三个时间片,AP在不同的时间片内通过主信道不同的工作信道与不同类的STA通信,也就是说,STA的分组数与主信道的个数和/或时间片的个数可以一一对应。
在图9描述的方法中,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
除此以外,AP还可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图12,图12是本申请实施例提供的一种AP的结构示意图,AP1200可以包括第一发送单元1201、第一接收单元1202、第二发送单元1203和第二接收单元1204,其中,各个单元的详细描述如下:
第一发送单元1201,用于在第一时间片的起始时刻向多个STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
第一接收单元1202,用于在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
第二发送单元1203,用于在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
第二接收单元1204,用于在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
可以看出,AP在不同的时间片内通过不同的频谱分别与第一STA和第二STA通信,在第二时间片的起始时刻,即使第一STA仍在占用第一频谱,AP工作的频谱也从第一频谱切换到第二频谱,并且AP在第二时间片内通过第二频谱与第二STA通信,从而有效地保障了第二STA业务的时延要求。
在一种可选的方案中,AP1200还可以包括:
第三发送单元,用于若所述AP在所述第一时间片内竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
在又一种可选的方案中,AP1200还可以包括:
第四发送单元,用于在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
在又一种可选的方案中,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
第二接收单元1204,具体用于在所述第二时间片内接收所述第二STA利用所述第一频谱和所述第二频谱发送的报文。
具体地,若第二时间片的起始时刻第一频谱空闲,则所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文,即AP和第二STA可以在第二时间片内利用所述第一频谱和所述第二频谱通信。
可以看出,若第二时间片的起始时刻第一频谱空闲,则AP和第二STA可以在第二时间片内利用第一频谱和第二频谱通信,从而能够有效利用在第二时间片内空闲的第一频谱,提升频谱利用率,使在第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在又一种可选的方案中,AP1200还可以包括:
第五发送单元,用于在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
可以看出,AP可以通过在第一时间片的起始时刻和截止时刻均向第一STA发送指示信息,以使第一STA不在第二时间片内竞争在第一频谱上发送报文的机会,即第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在又一种可选的方案中,AP1200还可以包括:
第六发送单元,用于向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
具体地,第四指示信息具体用于指示第一STA每隔第一预设时长竞争在第一频谱上发送数据的机会,且每次竞争的时长为第二预设时长,可选的,第一STA开始竞争的时刻为第一时间片的起始时刻,第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时间片的时间长度。
可以看出,AP可以通过第四指示信息指示第一STA仅在第一时间片内竞争在第一频谱上发送报文的机会,以使第一频谱在第二时间片的起始时刻为空闲状态,因此AP能在第二时间片内利用第一频谱和第二频谱与第二STA通信,第二时间片内能够承载更多的第二STA的业务,提高第二STA业务的传输效率。
在又一种可选的方案中,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
在又一种可选的方案中,AP1200还可以包括:
第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
可以看出,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
在又一种可选的方案中,AP1200还可以包括:
调整单元,用于根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
可以看出,AP可以根据不同STA的业务需求灵活调整不同时间片的时域长度,从而避免传输过程中时域资源浪费或不足的情况,以此最大化设备的发送效率。
在又一种可选的方案中,所述第一时间片的截止时刻为所述第二时间片的起始时刻,或者所述第一时间片的起始时刻为所述第二时间片的截止时刻。
需要说明的是,各个操作的实现还可以对应参照图3所示的方法实施例的相应描述。该AP1200为图3所示的方法实施例中的接入点。
请参见图13,图13是本申请实施例提供的又一种AP的结构示意图,AP1300可以包括第一发送单元1301、第二发送单元1302、第一接收单元1303和第二接收单元1304。其中,各个单元的详细描述如下:
第一发送单元1301,用于向多个STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配第一频谱和第一主信道;
第二发送单元1302,用于向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述AP的工作信道和第二主信道;
第一接收单元1303,用于在第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
第二接收单元1304,用于在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和第二频谱为所述工作信道中两个互不重叠的频谱,所述第一主信道在所述第一频谱内,所述第二主信道在所述第二频谱内。
可以看出,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在一种可选的方案中,AP1300还可以包括:
第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
可以看出,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
在一种可能的实现方式中,各个单元的详细描述如下:
第一发送单元1301,用于向多个STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配所述AP的工作信道和第一主信道;
第二发送单元1302,用于向所述多个STA中的第二STA发送第二指示信息;所述第 二指示信息用于为所述第二STA分配所述工作信道和第二主信道;
第一接收单元1303,用于在第一时间片内接收所述第一STA利用所述工作信道发送的报文;
第二接收单元1304,用于在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一主信道和所述第二主信道为所述工作信道中两个不同的子信道。
可以看出,AP在不同的时间片内监听不同的主信道,并通过主信道不同的频谱分别与第一STA和第二STA通信,例如,在第二时间片的起始时刻,AP将监听的主信道从第一主信道切换为第二主信道,并通过主信道为第二主信道的工作信道与第二STA通信,有效地保障了STA业务的时延要求。
在一种可选的方案中,所述第一主信道在第一频谱内,所述第二主信道在第二频谱内,所述第一频谱和所述第二频谱为所述工作信道中两个互不重叠的频谱;AP1300还可以包括:
第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
可以看出,AP可以根据频谱的干扰情况灵活调整不同时间片的时域长度,从而避免在部分频谱上存在干扰信号时设备无法传输报文,导致不存在干扰信号的频谱被浪费的情况,以此在干扰场景下最大化设备的发送效率。
需要说明的是,各个操作的实现还可以对应参照图9所示的方法实施例的相应描述。该AP1300为图9所示的方法实施例中的接入点。
请参见图14,图14是本申请实施例提供的又一种AP的结构示意图,AP1400可以包括处理器1401、存储器1402和通信接口1403,处理器1401、存储器1402和通信接口1403通过总线相互连接。
存储器1402包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。该存储器1402用于存储相关计算机程序及报文。通信接口1403用于接收和发送报文。
处理器1401可以是一个或多个中央处理器(central processing unit,CPU)。在处理器1401是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
AP1400中的处理器1401可以用于读取存储器1402中存储的计算机程序代码,控制通信接口1403执行以下操作:
在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
在一种可选的方案中,处理器1401还用于控制通信接口1403执行:若在所述第一时间片内竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
在又一种可选的方案中,处理器1401还用于控制通信接口1403执行:在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
在又一种可选的方案中,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
处理器1401控制通信接口1403执行在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文时,处理器1401控制通信接口1403具体执行:在所述第二时间片内接收所述第二STA利用所述第一频谱和所述第二频谱发送的报文。
具体地,若第二时间片的起始时刻第一频谱空闲,则所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文,即AP和第二STA可以在第二时间片内利用所述第一频谱和所述第二频谱通信。
在又一种可选的方案中,处理器1401还用于控制通信接口1403执行:
在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
在又一种可选的方案中,处理器1401还用于控制通信接口1403执行:
向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
具体地,第四指示信息具体用于指示第一STA每隔第一预设时长竞争在第一频谱上发送数据的机会,且每次竞争的时长为第二预设时长,可选的,第一STA开始竞争的时刻为第一时间片的起始时刻,第一预设时长为第一时间片和第二时间片的时间长度之和,第二预设时长为第一时间片的时间长度。
在又一种可选的方案中,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
在又一种可选的方案中,处理器1401还用于执行:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在又一种可选的方案中,处理器1401还用于执行:
根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
在又一种可选的方案中,所述第一时间片的截止时刻为所述第二时间片的起始时刻,或者所述第一时间片的起始时刻为所述第二时间片的截止时刻。
需要说明的是,各个操作的实现还可以对应参照图3所示的方法实施例的相应描述。 该AP1400为图3所示的方法实施例中的接入点。
请参见图15,图15是本申请实施例提供的又一种AP的结构示意图,AP1500可以包括处理器1501、存储器1502和通信接口1503,处理器1501、存储器1502和通信接口1503通过总线相互连接。
存储器1502包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。该存储器1502用于存储相关计算机程序及报文。通信接口1503用于接收和发送报文。
处理器1501可以是一个或多个中央处理器(central processing unit,CPU)。在处理器1501是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
AP1500中的处理器1501可以用于读取存储器1502中存储的计算机程序代码,控制通信接口1503执行以下操作:
向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配第一频谱和第一主信道;
向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述AP的工作信道和第二主信道;
在第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和第二频谱为所述工作信道中两个互不重叠的频谱,所述第一主信道在所述第一频谱内,所述第二主信道在所述第二频谱内。
在一种可选的方案中,处理器1501还用于:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
在一种可能的实现方式中,AP1500中的处理器1501还可以用于读取存储器1502中存储的计算机程序代码,控制通信接口1503执行以下操作:
向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于为所述第一STA分配所述AP的工作信道和第一主信道;
向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于为所述第二STA分配所述工作信道和第二主信道;
在第一时间片内接收所述第一STA利用所述工作信道发送的报文;
在第二时间片内接收所述第二STA利用所述工作信道发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一主信道和所述第二主信道为所述工作信道中两个不同的子信道。
在一种可选的方案中,所述第一主信道在第一频谱内,所述第二主信道在第二频谱内,所述第一频谱和所述第二频谱为所述工作信道中两个互不重叠的频谱;处理器1501还用于:
若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
需要说明的是,各个操作的实现还可以对应参照图9所示的方法实施例的相应描述。该AP1500为图9所示的方法实施例中的接入点。
本申请实施例还提供一种芯片系统,芯片系统包括至少一个处理器,存储器和接口电路,存储器、通信接口和至少一个处理器通过线路互联,至少一个存储器中存储有计算机程序。计算机程序被处理器执行时,实现图3所示实施例中AP所执行的操作,或者实现图9所示实施例中AP所执行的操作。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在处理器上运行时,实现图3所示实施例中AP所执行的操作,或者实现图9所示实施例中AP所执行的操作。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在处理器上运行时,实现图3所示实施例中AP所执行的操作,或者实现图9所示实施例中AP所执行的操作。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    接入点AP在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
    所述AP在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
    所述AP在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
    所述AP在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述AP在所述第一时间片内竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述AP在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
    所述AP在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文,包括:
    所述AP在所述第二时间片内接收所述第二STA利用所述第一频谱和所述第二频谱发送的报文。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述AP在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
  6. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述AP向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
  8. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时 间片延长第一预设长度;
    若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述第一时间片的截止时刻为所述第二时间片的起始时刻,或者所述第一时间片的起始时刻为所述第二时间片的截止时刻。
  11. 一种接入点AP,其特征在于,包括:
    第一发送单元,用于在第一时间片的起始时刻向多个站点STA中的第一STA发送第一指示信息;所述第一指示信息用于指示所述第一STA竞争在第一频谱上发送报文的机会;
    第一接收单元,用于在所述第一时间片内接收所述第一STA利用所述第一频谱发送的报文;
    第二发送单元,用于在第二时间片内向所述多个STA中的第二STA发送第二指示信息;所述第二指示信息用于指示所述第二STA在所述第二时间片内利用第二频谱发送报文;
    第二接收单元,用于在所述第二时间片内接收所述第二STA利用所述第二频谱发送的报文;其中,所述第一时间片和所述第二时间片不重叠,所述第一频谱和所述第二频谱不重叠。
  12. 如权利要求11所述的接入点,其特征在于,所述AP还包括:
    第三发送单元,用于若所述AP在所述第一时间片内竞争到了在所述第一频谱上发送报文的机会,则在所述第一时间片内利用所述第一频谱向所述第一STA发送报文。
  13. 如权利要求11或12所述的接入点,其特征在于,所述AP还包括:
    第四发送单元,用于在所述第二时间片内利用所述第二频谱向所述第二STA发送报文。
  14. 如权利要求11-13任一项所述的接入点,其特征在于,所述第二指示信息具体用于指示所述第二STA在所述第二时间片内利用所述第一频谱和所述第二频谱发送报文;
    所述第二接收单元,具体用于在所述第二时间片内接收所述第二STA利用所述第一频谱和所述第二频谱发送的报文。
  15. 如权利要求14所述的接入点,其特征在于,所述AP还包括:
    第五发送单元,用于在所述第一时间片的截止时刻利用所述第一频谱向所述第一STA发送第三指示信息;所述第三指示信息用于指示所述第一STA不竞争在所述第一频谱上发送报文的机会。
  16. 如权利要求14所述的接入点,其特征在于,所述AP还包括:
    第六发送单元,用于向所述第一STA发送第四指示信息;所述第四指示信息用于指示所述第一STA在所述第一时间片内竞争在第一频谱上发送数据的机会。
  17. 如权利要求11-16任一项所述的接入点,其特征在于,所述第一指示信息为所述第一STA与AP建立关联关系过程中的探测响应帧或信标帧。
  18. 如权利要求16或17所述的接入点,其特征在于,所述AP还包括:
    第一延长单元,用于若所述第一时间片的截止时刻之前在所述第二频谱上存在干扰信号,则将所述第一时间片延长第一预设长度;
    第二延长单元,用于若所述第二时间片的截止时刻之前在所述第一频谱上存在干扰信号,则将所述第二时间片延长第二预设长度。
  19. 如权利要求11-18任一项所述的接入点,其特征在于,所述AP还包括:
    调整单元,用于根据预设时间段内所述第一STA的业务流量和所述第二STA的业务流量动态调整所述第一时间片的时域长度和所述第二时间片的时域长度。
  20. 一种通信系统,其特征在于,包括接入点AP、第一站点STA和第二站点STA,其中,所述AP为权利要求11-19任一项所述的AP。
PCT/CN2021/083966 2020-03-31 2021-03-30 通信方法及相关装置 WO2021197324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010249406.9A CN113473527B (zh) 2020-03-31 2020-03-31 通信方法及相关装置
CN202010249406.9 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197324A1 true WO2021197324A1 (zh) 2021-10-07

Family

ID=77865902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083966 WO2021197324A1 (zh) 2020-03-31 2021-03-30 通信方法及相关装置

Country Status (2)

Country Link
CN (1) CN113473527B (zh)
WO (1) WO2021197324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116366570B (zh) * 2023-05-30 2023-08-18 新华三技术有限公司 一种报文转发方法、装置及可编程器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180091284A1 (en) * 2016-09-23 2018-03-29 Intel Corporation Access point (ap), station (sta) and method for allocation of resources for full-duplex (fd) communication in high-efficiency (he) arrangements
US20180124778A1 (en) * 2016-11-01 2018-05-03 Qualcomm Incorporated Back-to-back uplink transmissions from multiple stations
CN110831215A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 数据调度的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460999B (zh) * 2013-12-17 2021-09-14 华为技术有限公司 一种调度方法、接入点、调度服务器及调度系统
KR20160045023A (ko) * 2014-10-16 2016-04-26 뉴라컴 인코포레이티드 고효율 무선랜에서 상향링크 채널 액세스 방법 및 장치
ES2811831T3 (es) * 2014-12-16 2021-03-15 Lg Electronics Inc Método de transmisión de datos en un sistema de comunicación inalámbrica y dispositivo para el mismo
US9788317B2 (en) * 2015-03-30 2017-10-10 Intel IP Corporation Access point (AP), user station (STA) and method for channel sounding using sounding trigger frames
CN114745802A (zh) * 2017-12-29 2022-07-12 华为技术有限公司 无线局域网中多信道混合传输方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180091284A1 (en) * 2016-09-23 2018-03-29 Intel Corporation Access point (ap), station (sta) and method for allocation of resources for full-duplex (fd) communication in high-efficiency (he) arrangements
US20180124778A1 (en) * 2016-11-01 2018-05-03 Qualcomm Incorporated Back-to-back uplink transmissions from multiple stations
CN110831215A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 数据调度的方法和装置

Also Published As

Publication number Publication date
CN113473527B (zh) 2023-07-18
CN113473527A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
US10194468B2 (en) Wireless channel reservation
US10542557B2 (en) System and method for digital communications with interference avoidance
TWI571153B (zh) 用於一無線通訊系統之基地台及裝置對裝置使用者裝置
WO2015169025A1 (zh) 并行数据传输处理方法、装置及计算机存储介质
WO2020173322A1 (en) Data transmission preemption
JP2018201254A (ja) 無線通信装置および無線通信方法
US10050746B2 (en) System and method for orthogonal frequency division multiple access power-saving poll transmission
EP2995152B1 (en) Systems and methods for operation of wireless user devices with cellular and wi-fi interfaces
WO2017140177A1 (zh) 一种通信方法、接入点以及站点
US20200084796A1 (en) Sr/bsr triggering method and device
US9622115B2 (en) Channel negotiation method, device, and system
WO2017005040A1 (zh) 多站点的传输指示、传输触发、传输执行方法及装置
JP7193609B2 (ja) データ送信方法及び関連する装置
CN108337297A (zh) 点对点无线通信网络中的操作方法及其通信设备
US20200252960A1 (en) Wireless communication method for saving power and wireless communication terminal using same
RU2687162C1 (ru) Способ передачи данных, точка доступа и станция
WO2021197324A1 (zh) 通信方法及相关装置
US10028298B2 (en) System and method for indicating periodic allocations
CN112714499B (zh) 通信方法及装置
WO2017050143A1 (zh) 一种基于ofdma的数据传输方法及相关设备
EP3531786B1 (en) Data transmission method and apparatus
WO2019214743A1 (zh) 一种调度方法及装置
CN107534999A (zh) 一种数据传输方法及接入点、站点
Kim et al. Multi-Connection Scheduling for Resource Fairness in Bluetooth Low Energy Networks
WO2024067184A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780637

Country of ref document: EP

Kind code of ref document: A1