WO2017050143A1 - 一种基于ofdma的数据传输方法及相关设备 - Google Patents

一种基于ofdma的数据传输方法及相关设备 Download PDF

Info

Publication number
WO2017050143A1
WO2017050143A1 PCT/CN2016/098715 CN2016098715W WO2017050143A1 WO 2017050143 A1 WO2017050143 A1 WO 2017050143A1 CN 2016098715 W CN2016098715 W CN 2016098715W WO 2017050143 A1 WO2017050143 A1 WO 2017050143A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
frame
subchannels
allocated
access point
Prior art date
Application number
PCT/CN2016/098715
Other languages
English (en)
French (fr)
Inventor
李云波
李彦淳
韩霄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017050143A1 publication Critical patent/WO2017050143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an OFDMA-based data transmission method and related device.
  • the IEEE 802.11ax standard adopts OFDMA (orthogonal frequency division multiple access) technology to implement uplink multi-user and downlink multi-user transmission.
  • OFDMA orthogonal frequency division multiple access
  • the required subchannel sizes are the same, so the channel is usually divided into fixed-size subchannels, for example, the 20 MHz channel is divided into 9 subchannels.
  • each station can be assigned one subchannel, two subchannels, four subchannels or the entire channel, and the like. Since the number of uplink transmission stations can be changed, it is easy to appear that subchannels cannot be completely allocated to multiple sites under the above subchannel allocation rules. For example, in the case of three sites, only each site can be given at most. Two subchannels are allocated, so the remaining three subchannels are not allocated, resulting in wasted system resources and low system resource utilization.
  • the embodiment of the invention discloses an OFDMA-based data transmission method and related equipment, which can improve resource utilization of the system.
  • the first aspect of the embodiments of the present invention discloses an OFDMA-based data transmission method, including:
  • the access point sends a trigger frame in at least one of the total transmission channels, where the trigger frame is used to indicate allocation of multiple subchannels in the total transmission channel;
  • the access point receives a data frame transmitted by the station on a subchannel allocated for the station;
  • the access point receives data frames that the station transmits in a contentive manner on the subchannels that are not allocated for any of the stations.
  • a second aspect of the embodiments of the present invention discloses an OFDMA-based data transmission method, including:
  • the station When there is a subchannel allocated for the station among the plurality of subchannels, the station transmits a data frame on a subchannel allocated for the station;
  • the station When there is no subchannel allocated for the station among the plurality of subchannels, the station transmits the data frame in a contentive manner on a subchannel allocated to any station in the total transmission channel.
  • a third aspect of the embodiment of the present invention discloses an access point, including:
  • a first sending unit configured to send a trigger frame in at least one subchannel of the total transport channel, where the trigger frame is used to indicate allocation of multiple subchannels in the total transport channel;
  • a first receiving unit configured to: when a subchannel allocated for a station is included in the multiple subchannels, receive a data frame that is transmitted by the station on a subchannel allocated for the station;
  • a second receiving unit configured to: when the plurality of subchannels include subchannels that are not allocated to any station, receive data frames that are transmitted in a contentive manner on the subchannels that are not allocated by any station.
  • a fourth aspect of the embodiments of the present invention discloses a station, including:
  • a first receiving unit configured to receive a trigger frame sent by the access point, where the trigger frame is used to indicate allocation of multiple subchannels in the total transport channel;
  • a determining unit configured to determine, according to an allocation situation of the multiple subchannels in the total transmission channel, whether a subchannel allocated for the station exists in the multiple subchannels
  • a first sending unit configured to: when the determining unit determines that a subchannel allocated to the station exists in the multiple subchannels, transmit a data frame on a subchannel allocated for the station;
  • a second sending unit configured to: when the determining unit determines that the subchannel allocated for the station does not exist in the multiple subchannels, use a contention mode on a subchannel allocated to any station in the total transport channel Transfer data frames.
  • an access point in an OFDMA data transmission, may send a trigger frame in at least one subchannel of the total transmission channel, where the trigger frame may be used to indicate allocation of multiple subchannels in the total transmission channel, when When the plurality of subchannels include a subchannel allocated for the station, the access point may receive a data frame transmitted by the station on the subchannel allocated for the station, and when the plurality of subchannels include subchannels not allocated for any station The access point may receive data frames that the station transmits in a contentive manner on the subchannels that are not allocated for any of the stations.
  • the embodiment can not only receive the data frames transmitted by the station to which the subchannel is allocated on the subchannel, but also can receive the data frames of the unallocated subchannels on the subchannels not allocated to any station, so that the data frames are not allocated.
  • the subchannels can also be used reasonably, thereby improving the resource utilization of the system.
  • FIG. 1 is a schematic diagram of a network architecture of an OFDMA-based data transmission according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an OFDMA-based data transmission method according to an embodiment of the present invention
  • 3a is a schematic flowchart of an OFDMA-based resource allocation indication according to an embodiment of the present invention.
  • FIG. 3b is a schematic flowchart of another OFDMA-based resource allocation indication according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a signaling flow of multi-user data transmission based on OFDMA according to an embodiment of the present invention
  • 5a is a schematic diagram of signaling flow of another OFDMA-based multi-user data transmission disclosed in an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of signaling flow of another OFDMA-based multi-user data transmission according to an embodiment of the present invention.
  • 6a is a schematic diagram of signaling flow of another OFDMA-based multi-user data transmission disclosed in an embodiment of the present invention.
  • FIG. 6b is a schematic diagram of signaling flow of another OFDMA-based multi-user data transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of another OFDMA-based data transmission method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an access point according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another access point according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another access point according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of still another access point according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of still another access point according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a station according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another station according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of still another station according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of still another station according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of still another station according to an embodiment of the present invention.
  • the embodiment of the invention discloses an OFDMA-based data transmission method and related device, which can not only receive data frames transmitted by stations of the allocated subchannels on the subchannel, but also can not receive the unallocated subchannels.
  • the data frames of the transmission are contending on the subchannels of any station, so that unallocated subchannels can also be used reasonably, thereby improving the resource utilization of the system.
  • the details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture of an OFDMA-based data transmission according to an embodiment of the present invention.
  • an access point and multiple sites may be included, where the access point may be in communication connection with multiple sites through a Wireless Local Area Networks (WLAN).
  • WLAN Wireless Local Area Networks
  • the access point is a core part of the wireless network, and may include, but is not limited to, a base station, a gateway, a bridge, and the like.
  • An access point can connect to multiple sites at the same time, where the site can include mobile phones, tablets, PDAs, personal digital assistants (PDAs), mobile Internet devices (MIDs), and smart watches.
  • the device is not limited in the embodiment of the present invention.
  • the access point and each station perform data transmission through a channel, wherein the access point sends data to the station for downlink data transmission, and the station sends data to the access point for uplink data transmission.
  • the access point may divide the total transmission channel into several subchannels (or frequency domain subchannels), and may assign one or more subchannels to the station, and may assign one or more subchannels to each station, but only one subchannel Can be assigned to a site and cannot be assigned to multiple sites at the same time.
  • the access point can not only receive data frames transmitted by stations of the allocated subchannels on the subchannel, but also receive subchannels of stations that are not allocated subchannels that are not allocated to any station.
  • the data frames that are contending for transmission are used so that unallocated subchannels can also be used reasonably, thereby improving the resource utilization of the system.
  • FIG. 2 is a schematic flowchart diagram of an OFDMA-based data transmission method according to an embodiment of the present invention. As shown in FIG. 2, the OFDMA-based data transmission method may include the following steps:
  • the access point sends a trigger frame in at least one of the total transmission channels, where the trigger frame is used to indicate the total The allocation of multiple subchannels in a transport channel.
  • the total transmission channel may be divided into a plurality of subchannels, and the access point may send a trigger frame in at least one of the total transmission channels, where the trigger frame is used to indicate multiple subchannels in the total transmission channel.
  • An allocation situation that is, indicating which station or each subchannel to which each of the plurality of subchannels is allocated, and which station is scheduled by using the trigger frame to allocate multiple uplink frequency domain subchannels in the total transmission channel to multiple The stations perform uplink data transmission, wherein the subchannels allocated for different stations are different.
  • the access point sends a trigger frame in at least one subchannel of the total transmission channel, so that the station that receives the trigger frame determines the multiple sub-subsections according to the allocation situation of the multiple subchannels indicated by the trigger frame. Whether there are subchannels allocated for the station in the channel.
  • the station that receives the trigger frame needs to establish a communication connection with the access point, that is, the station that receives the trigger frame has been associated with the access point or is ready to apply for association.
  • the trigger frame may indicate allocation of multiple subchannels in the total transmission channel, where may include which subchannels are allocated to which stations, which subchannels are not allocated to the station, and the like, and the present invention The embodiment is not limited.
  • the signaling about the uplink resource allocation in the trigger frame may be in the physical layer (as shown in FIG. 3a) or in the MAC layer (as shown in FIG. 3b).
  • FIG. 3a is a schematic flowchart of an OFDMA-based resource allocation indication according to an embodiment of the present invention.
  • the frame structure when indicated by the physical layer, the frame structure usually includes a legacy preamble, a high efficiency signaling A, a high efficiency signaling B, and the like.
  • the uplink resource allocation is usually placed in the High Efficiency Signaling B field.
  • the physical layer signaling indication can be applied to all downlink frames transmitted in a high efficiency frame format. Referring to FIG. 3b, FIG.
  • the MAC frame structure when indicated by the MAC layer, usually includes a Frame Control field, a Duration field, a Receive Address field, a Send Address field, a Frame body field, and a frame check. Frame Check Sequence (FCS) field.
  • FCS Frame Check Sequence
  • the uplink resource allocation is usually placed in the frame body field.
  • the MAC layer indication is usually applied to a scenario in which no downlink data needs to be sent, but a downlink trigger frame is used to trigger uplink multi-user transmission, for example, a Multi-user Block Acknowledgment Request (MU-BAR) frame or Multi-user Request To Send (MU-RTS) frame.
  • MU-BAR Multi-user Block Acknowledgment Request
  • MU-RTS Multi-user Request To Send
  • the access point receives the data frame transmitted by the station on the subchannel allocated for the station.
  • the station when there is one or more subchannels allocated for one station among the plurality of subchannels indicated by the trigger frame, the station may perform uplink data frame transmission on the subchannel allocated for the station, and the access point Then, the data frame transmitted by the station on the subchannel allocated for the station can be received.
  • the site can be regarded as a scheduling site.
  • the uplink data transmission performed by the station can be regarded as a scheduled transmission.
  • the access point may further send an acknowledgement frame or a response frame to the site after receiving the data frame transmitted by the site, to The uplink transmission of the station is acknowledged or responded; when the uplink transmission performed by the station does not need to be acknowledged, the access point does not need to send an acknowledgement frame or a response frame to the station.
  • the access point receives data frames that the station transmits in a contentive manner on the subchannels that are not allocated for any station.
  • the station may select some or all of the subchannels that have not been assigned to any station for uplink data frame transmission in a competitive manner, and the access point may receive the data frames that the station transmits in a contentive manner on the subchannels that have not been allocated to any station.
  • the station can be regarded as a non-scheduled site, and the uplink data transmission performed by the station in a competitive manner can be regarded as a contention transmission.
  • the contention access method for transmitting data frames in a contentive manner on a subchannel allocated by the station in the total transmission channel for any station is not limited, and an access probability may be set for access.
  • the CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) mechanism may be used to generate a backoff counter. When the backoff counter value is backed off to 0, the contention is accessed, and the specific backoff is performed. The method may be to backoff according to the number of subchannels not allocated for any station, the backoff counter is decremented by 1 for each subchannel allocated to any station until 0, or equivalently the backoff counter minus not for any station The total number of allocated subchannels is up to 0 or negative.
  • the scheduled transmission of the scheduling station and the contention transmission of the non-scheduled station together constitute an uplink OFDMA transmission. Since the access point does not indicate the number of subchannels occupied by the non-scheduled station, the non-scheduled station may select a subchannel that has not been allocated to any station as the transmission bandwidth by default to reduce the collision generated in the competition.
  • the trigger frame may also be used to indicate the uplink sending duration, that is, the maximum sending duration when the station uplinks data.
  • the duration of the data frame transmitted by the station on the subchannel allocated to the station does not exceed the uplink transmission duration indicated by the trigger frame; or, in the multiple subchannels
  • the length of time that the station transmits the data frame in a contention manner on the subchannel allocated by the station does not exceed the uplink transmission duration indicated by the trigger frame.
  • the uplink transmission duration of multiple sites is controlled within the uplink transmission duration, so that uplink data transmissions of multiple sites can be aligned in the time domain.
  • the method depicted in Figure 2 can also include the following steps:
  • the access point After receiving the data frame transmitted by the station in a contentive manner, the access point sends an acknowledgement frame or a response frame to the station.
  • the access point may acknowledge or respond to the transmission of the station, and send an acknowledgement frame to the station to confirm the transmission of the station. Or respond to the transmission of the site by sending a response frame to the site.
  • the acknowledgment frame may include an acknowledgment frame for a single data transmission, and may also include a block acknowledgment frame for a plurality of aggregated data transmissions.
  • the response frame determines the type of the corresponding response frame according to the type of the data frame sent by the station.
  • the acknowledgment of the acknowledgment frame or the response frame may be sent separately or in the data or in a new trigger frame, which is not limited in the embodiment of the present invention.
  • the step 21) after receiving the data frame transmitted by the site in the contention manner the access point may send the acknowledgement frame or the response frame to the site, and the specific implementation manner may include the following steps:
  • the access point After receiving the data frame transmitted by the station in the contention mode, the access point sends an acknowledgement frame or a response frame to the station at intervals of SIFS (Short Interframe Space).
  • SIFS Short Interframe Space
  • the time interval at which the access point receives the data frame transmitted by the station in the contention mode to the access point to send the acknowledgement frame or the response frame to the station is the SIFS time.
  • FIG. 4 is a schematic diagram of a signaling flow of multi-user data transmission based on OFDMA according to an embodiment of the present invention.
  • the station that receives the trigger frame may determine the multiple subframes according to the allocation of multiple subchannels indicated by the trigger frame. Is there a subchannel allocated for itself in the channel, and the station 1, the station 2, and the station 3 in FIG.
  • the 4 are scheduling stations, that is, the subchannels allocated for themselves in the plurality of subchannels indicated by the trigger frame; the dotted line portion in the figure indicates The non-scheduled station transmitted through the contention access mode, that is, the sub-channel allocated for itself is not present in the plurality of sub-channels indicated by the trigger frame.
  • the access point receives the data frame transmitted by the non-scheduled station through the contention mode, the access point sends an acknowledgement frame or a response frame to the non-scheduled station.
  • the trigger frame may be a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • step 202 the access point receives the data transmitted by the station on the subchannel allocated for the station.
  • the specific implementation of the frame may include the following steps:
  • the access point receives a block acknowledgement frame or acknowledgement frame transmitted by the station on the subchannel allocated for the station.
  • the downlink multi-user transmission frame may refer to that the access point sends multiple sites simultaneously by using OFDMA or MU-MIMO (Multi-User Multiple-Input Multiple-Output).
  • a frame format for data that can increase system efficiency with multi-user diversity gain.
  • the trigger frame is a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • the downlink multi-user transmission frame or the multi-user block acknowledgment request MU-BAR frame includes the transmission of the block acknowledgment frame corresponding to the multi-user data.
  • Subchannel allocation information Referring to FIG. 5a, FIG. 5a is a schematic diagram of a signaling flow of another OFDMA-based multi-user data transmission according to an embodiment of the present invention.
  • the trigger frame sent by the access point is a downlink multi-user transmission frame.
  • multiple sites send corresponding addresses on the sub-channels allocated to themselves.
  • Block acknowledgement frame or acknowledgement frame when the trigger frame indicates that no subchannels are allocated for multiple sites, multiple sites may transmit data frames on the sub-channels that are not occupied by the block acknowledgement frame or the acknowledgement frame by means of contention access.
  • the access point After receiving the data frame SIFS time sent by the contention mode, the access point sends an acknowledgement frame or a response frame to the corresponding station.
  • the block acknowledgment frame is a acknowledgment method commonly used in the current standard, and the block acknowledgment frame can be used to confirm the data frame transmitted in an aggregate manner.
  • an acknowledgement frame may be sent instead of a block acknowledgement frame.
  • an acknowledgment frame may be sent instead of a block acknowledgment frame when there are multiple MPDUs in the aggregated frame and all MPDUs are correctly received by the station, because the length of the acknowledgment frame is shorter than the block acknowledgment frame, so that it can be reduced when transmitting the acknowledgment frame. Signaling overhead.
  • the sub-channel occupied by the transmission block acknowledgement frame or the acknowledgement frame may be allocated in an implicit manner, that is, the broadcast frame may be sent by the protocol or the access point to notify the block acknowledgement frame or the acknowledgement frame in the downlink OFDMA data.
  • the transmission is performed on a certain subchannel occupied.
  • the order can be agreed by the protocol or notified by the access point.
  • the sub-channel occupied by the transmission block acknowledgement frame or the acknowledgement frame may also be allocated in an explicit manner, and the explicit allocation is more flexible, that is, the block acknowledgement frame or the acknowledgement frame may be scheduled in the downlink data transmission.
  • the number of subchannels occupied by the block acknowledgment frame or the acknowledgment frame may be one, or may be multiple, and multiple block acknowledgment frames or acknowledgment frames are occupied.
  • the number of subchannels may be the same or different. Regardless of the manner in which the block acknowledgment frame or the acknowledgment frame is scheduled, the subchannels whose uplink transmission is not occupied can be uplinked by the non-scheduled station in a contention manner.
  • the sub-channels of the OFDMA competition may be indicated in an explicit or implicit manner. It is recommended to use an implicit manner for allocation, that is, a sub-channel that is not allocated to any station is an OFDMA competing sub-channel.
  • the advantage of this approach is that it is simple and does not require signaling overhead.
  • the trigger frame further indicates an uplink transmission duration
  • the plurality of stations transmit the corresponding block acknowledgement frame or the duration of the acknowledgement frame on the subchannel allocated to itself, or the plurality of stations confirm in the block by means of contention.
  • the duration of the transmission of the data frame on the subchannel that is not occupied by the frame or the acknowledgment frame does not exceed the uplink transmission duration.
  • acknowledgement frame involved in step 23 is different from the acknowledgement frame involved in step 21), and is two different frames sent by different senders to different receivers.
  • first and second can be used to distinguish them.
  • the method described in FIG. 2 may further include the following steps:
  • the access point transmits a downlink multi-user transmission frame in at least one of the total transmission channels.
  • FIG. 5b is a schematic diagram of signaling flow of another OFDMA-based multi-user data transmission according to an embodiment of the present invention.
  • the access point sends the downlink multi-user transmission frame, and then sends a multi-user block acknowledgment request MU-BAR frame to schedule the uplink multi-user block acknowledgment frame or the acknowledgment frame
  • the multi-user block acknowledgment request MU- The BAR frame is the trigger frame.
  • the trigger frame may send a MU-RTS frame for a multi-user request
  • the specific implementation manner of the step 202 for the access point to receive the data frame transmitted by the station on the subchannel allocated for the station may include The following steps:
  • the access point receives an Enhanced Clear to Send (E-CTS) frame transmitted by the station on the subchannel allocated for the station.
  • E-CTS Enhanced Clear to Send
  • the RTS/CTS (Request To Send/Clear To Send) interaction mechanism is a channel protection mechanism in the current IEEE 802.11 standard, and is applicable to channel protection of a single-site user.
  • the multi-user transmission mechanism is introduced in the IEEE802.11ax standard.
  • a multi-user request to transmit MU-RTS frames/enhanced clear multi-site channel protection for transmitting E-CTS frames is proposed.
  • the mechanism, wherein the multi-user requests to send the MU-RTS frame as a channel protection frame sent by the access point to multiple sites, and the enhanced clearing and sending of the E-CTS frame is a multi-user request to send multiple sites indicated in the MU-RTS frame.
  • the uplink frame sent by the OFDMA method is used for performing identity indication, so that the access point can know which stations have correctly received the multi-user request to send the MU-RTS frame.
  • the method described in FIG. 2 may further include the following steps:
  • the access point receives the clear transmit CTS frame sent by the station on the total transport channel.
  • the access point sends the trigger frame (ie, the multi-user requests to send the MU-RTS frame)
  • the station that receives the trigger frame indicates that there is a subchannel allocated to itself in the acknowledge trigger frame
  • the station confirms itself as a scheduling site, and all scheduling stations can simultaneously transmit CTS frames with the same content and format to complete channel protection for all stations including traditional sites.
  • There are two different flows for the transmission of CTS frames as shown in Figures 6a and 6b, respectively.
  • the access point sends a multi-user request to send a MU-RTS frame as a trigger frame, and all scheduling stations first send CTS frames in the entire channel at the same time, and then the scheduling station sends the enhanced respectively on the sub-channels allocated to itself. Clear the E-CTS frame sent.
  • the non-scheduled station may perform uplink transmission in a contention manner on the subchannel on which the enhanced clearing of the E-CTS frame is not occupied.
  • the duration of the uplink transmission of the scheduling station and the contention of the non-scheduled station are controlled within the uplink transmission duration indicated by the trigger frame.
  • the access point After receiving the data frame of the non-scheduled station contention transmission, the access point sends an acknowledgement frame or response frame to the non-scheduled station for confirmation or response.
  • FIG. 6b the difference between FIG. 6b and FIG. 6a is that, in FIG. 6b, the access point sends a multi-user request to send a MU-RTS frame as a trigger frame, and all scheduling stations first send an enhanced clear transmission E- on the subchannel allocated for itself. CTS frames, then all scheduling stations send CTS frames simultaneously.
  • the step 26) can be performed after the step 201 is performed, before the step 25) is performed, and the step 26) can also be performed after the step 25) is performed, which is not limited by the embodiment of the present invention.
  • the access point can not only receive data frames transmitted by the station to which the subchannel is allocated on the subchannel, but also can receive the unallocated subchannels on the subchannels that are not allocated to any station.
  • the data frames of the transmission are competed so that unallocated subchannels can also be used reasonably, thereby improving the resource utilization of the system.
  • the duration of the data frame transmitted by the station on the subchannel allocated by the station or the duration of the station contending for the transmission of the data frame on the subchannel not allocated to any station are controlled within the uplink transmission duration, thereby enabling the uplink of each station.
  • the transmission is aligned on the time domain.
  • FIG. 7 is a schematic flowchart diagram of another OFDMA-based data transmission method according to an embodiment of the present invention. As shown in FIG. 7, the OFDMA-based data transmission method may include the following steps:
  • the station receives a trigger frame sent by the access point, where the trigger frame is used to indicate allocation of multiple subchannels in the total transmission channel.
  • the access point is an access point that has been associated with the site, or the access point is an access point that the site is ready to apply for association.
  • the allocation of the plurality of subchannels in the total transmission channel indicated by the trigger frame may be indicating which station or each subchannel of each of the plurality of subchannels is allocated to which station.
  • the station determines whether there is a subchannel allocated to the station in the multiple subchannels, and if yes, performs step Step 703; if no, step 704 is performed.
  • the station may determine, according to the allocation situation of the multiple subchannels in the total transmission channel indicated by the received trigger frame, whether there is a subchannel allocated to the station in the multiple subchannels, and in the multiple subchannels.
  • the station can be regarded as a scheduling station, and step 703 can be further performed; when there is no subchannel allocated for the station in the multiple subchannels, the station can be regarded as It is a non-scheduled site, and step 704 can be further performed.
  • the station transmits a data frame on a subchannel allocated for the station.
  • the station transmits the data frame in a contentive manner on a subchannel that is not allocated to any station in the total transmission channel.
  • the trigger frame may also be used to indicate the uplink transmission duration, the duration of the data frame transmitted by the station on the subchannel allocated for the station, or the station competes on the subchannel allocated to any station in the total transmission channel.
  • the duration of the data transmission mode does not exceed the uplink transmission duration.
  • the method described in FIG. 7 may further include the following steps:
  • the station receives an acknowledgement frame or a response frame sent by the access point after receiving the data frame transmitted by the station in a contention manner to confirm or respond to the contention transmission of the station.
  • the trigger frame may be a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • the specific implementation manner of the step 703 that the station transmits the data frame on the subchannel allocated for the station may include The following steps:
  • the station transmits a block acknowledgment frame or an acknowledgment frame on the subchannel allocated for the station.
  • acknowledgement frame involved in step 72 is different from the acknowledgement frame involved in step 71), and is two different frames transmitted by different senders to different receivers.
  • first and second can be used to distinguish them.
  • the method described in FIG. 7 may further include the following steps:
  • the station receives the downlink multi-user transmission frame sent by the access point.
  • the trigger frame may send the MU-RTS frame for the multi-user request
  • the specific implementation manner of the step 703 for transmitting the data frame on the sub-channel allocated to the station may include the following steps:
  • the station transmits an enhanced clear transmission E-CTS frame on the subchannel allocated for the station.
  • the method described in FIG. 7 may further include the following steps:
  • the station sends a clear CTS frame on the total transport channel.
  • the step 75) may be performed after the step 702 is performed, before the step 74) is performed, or after the step 74) is performed, which is not limited by the embodiment of the present invention.
  • the station when an access point allocates a subchannel to a station, the station can transmit a data frame on the allocated subchannel, and when the access point does not allocate a subchannel for the station, the station can The data frames are transmitted in a contentive manner on the subchannels allocated to any station, so that the unallocated subchannels can also be used reasonably, thereby improving the resource utilization of the system.
  • the duration of the data frame transmitted by the station on the subchannel allocated by the station or the duration of the station contending for the transmission of the data frame on the subchannel not allocated to any station are controlled within the uplink transmission duration, thereby enabling the uplink of each station.
  • the transmission is aligned on the time domain.
  • FIG. 8 is a schematic structural diagram of an access point according to an embodiment of the present invention, which may be used to perform an OFDMA-based data transmission method disclosed in an embodiment of the present invention.
  • the access point may include:
  • the first sending unit 801 is configured to send, in the at least one subchannel of the total transmission channel, a trigger frame, where the trigger frame is used to indicate allocation of multiple subchannels in the total transmission channel.
  • the triggering frame indicates that the allocation of the multiple subchannels in the total transmission channel may be specifically used to indicate to which station or each subchannel to which each of the plurality of subchannels is allocated.
  • the trigger frame allocates multiple uplink frequency domain subchannels in the total transmission channel to multiple stations for uplink data transmission, wherein the subchannels allocated for different stations are different.
  • the first receiving unit 802 is configured to: when the plurality of subchannels include the subchannel allocated for the station, receive the data frame transmitted by the station on the subchannel allocated for the station.
  • the station when there is one or more subchannels allocated to one station among the plurality of subchannels indicated by the trigger frame, the station may perform uplink data frame transmission on the subchannel allocated for the station.
  • the first sending unit 801 sends the trigger frame, it may send a trigger signal to the first receiving unit 802 to trigger the first receiving unit 802 to receive the data frame transmitted by the station on the subchannel allocated for the station.
  • the station can be regarded as a scheduling station, and the uplink data transmission performed by the station can be regarded as a scheduled transmission.
  • the second receiving unit 803 is configured to: when the plurality of subchannels include subchannels that are not allocated to any station, receive data frames that are transmitted by the station in a contention manner on the subchannels that are not allocated by any station.
  • the uplink data frame transmission is selected in a competitive manner by selecting some or all of the subchannels that have not been assigned to any of the stations.
  • the first sending unit 801 may send a trigger signal to the second receiving unit 803 to trigger the second receiving unit 803 to receive the data transmitted by the station in a contention manner on the subchannel that has not been allocated to any station. frame.
  • the station can be regarded as a non-scheduled site, and the uplink data transmission performed by the station in a competitive manner can be regarded as a contention transmission.
  • the trigger frame may also be used to indicate the uplink sending duration, that is, the maximum sending duration when the station uplinks data.
  • the duration of the data frame transmitted by the station on the subchannel allocated to the station does not exceed the uplink transmission duration indicated by the trigger frame; or, in the multiple subchannels
  • the length of time that the station transmits the data frame in a contention manner on the subchannel allocated by the station does not exceed the uplink transmission duration indicated by the trigger frame.
  • the uplink transmission duration of multiple sites is controlled within the uplink transmission duration, so that uplink data transmissions of multiple sites can be aligned in the time domain.
  • the trigger frame may be a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • the first receiving unit 802 receives the data frame transmitted by the station on the subchannel allocated for the station.
  • the specific implementation can be:
  • the first receiving unit 802 receives a block acknowledgement frame or an acknowledgement frame transmitted by the station on a subchannel allocated for the station.
  • FIG. 9 is a schematic structural diagram of another access point according to an embodiment of the present invention. It can be used to perform the OFDMA-based data transmission method disclosed in the embodiments of the present invention.
  • the access point shown in FIG. 9 is further optimized based on the access point shown in FIG. 8. Compared with the access point shown in FIG. 8, the access point shown in FIG. 9 may further include:
  • the second sending unit 804 is configured to send the downlink multi-user transmission frame in at least one of the total transmission channels before the first sending unit 801 sends the trigger frame in the at least one of the total transmission channels.
  • the trigger frame may send a MU-RTS frame for the multi-user request
  • the first receiving unit 802 may receive the data frame transmitted by the station on the subchannel allocated for the station.
  • the first receiving unit 802 receives the enhanced clear transmission E-CTS frame transmitted by the station on the subchannel allocated for the station.
  • FIG. 10 is a schematic structural diagram of another access point according to an embodiment of the present disclosure, which may be used to perform an OFDMA-based data transmission method disclosed in the embodiment of the present invention.
  • the access point shown in FIG. 10 is further optimized based on the access point shown in FIG. 8.
  • the access point shown in FIG. 10 may further include:
  • the third receiving unit 805 is configured to send, in the first sending unit 801, at least one subchannel in the total transmission channel. After the frame is triggered, the clear CTS frame sent by the station on the total transmission channel is received.
  • the third receiving unit 805 may trigger the first receiving unit 802 to receive the enhanced clearing and sending E transmitted by the station on the subchannel allocated for the station after receiving the clear sending CTS frame sent by the station on the total transmission channel. a CTS frame; or the first receiving unit 802 receives the enhanced clearing and transmitting E-CTS frame transmitted by the station on the subchannel allocated for the station, and triggers the third receiving unit 805 to receive the station on the total transmission channel.
  • the sent clear sends a CTS frame. That is, the third receiving unit 805 may be located before the first receiving unit 802, or may be located after the first receiving unit 802, which is not limited by the embodiment of the present invention.
  • FIG. 11 is a structure of another access point according to an embodiment of the present invention.
  • the schematic diagram may be used to perform an OFDMA-based data transmission method disclosed in the embodiments of the present invention.
  • the access point shown in FIG. 11 is further optimized based on the access point shown in FIG. 8. Compared with the access point shown in FIG. 8, the access point shown in FIG. 11 may further include:
  • the third sending unit 806 is configured to send an acknowledgement frame or a response frame to the station after the second receiving unit 803 receives the data frame transmitted by the station in a contentive manner.
  • the third sending unit 806 may be specifically configured to: after the second receiving unit 803 receives the data frame transmitted by the station in a contention manner, send an acknowledgement frame or a response frame to the station at an interval of SIFS.
  • the third sending unit 806 may send a trigger signal to trigger the third sending unit 806 to send an acknowledgement frame to the station. Or response frame.
  • acknowledgement frame sent by the third sending unit 806 is different from the acknowledgement frame received by the first receiving unit 802.
  • the first and the second can be used to distinguish the frame.
  • implementing the access point shown in FIG. 8 to FIG. 11 can not only receive the data frame transmitted by the station to which the subchannel is allocated on the subchannel, but also can receive the unallocated subchannel without being assigned to any station.
  • the data frames of the sub-channel are contending for transmission so that the unallocated sub-channels can be used reasonably, thereby improving the resource utilization of the system.
  • the duration of the data frame transmitted by the station on the subchannel allocated by the station or the duration of the station contending for the transmission of the data frame on the subchannel not allocated to any station are controlled within the uplink transmission duration, thereby enabling the uplink of each station.
  • the transmission is aligned on the time domain.
  • FIG. 12 is a schematic structural diagram of another access point according to an embodiment of the present disclosure, which may be used to perform the basis disclosed in the embodiment of the present invention.
  • Data transmission method for OFDMA can include at least one processor 1201, such as a CPU (Central Processing Unit), at least one input device 1202, at least one output device 1203, a memory 1204, and the like.
  • these components are communicatively connected through one or more buses 1205.
  • the structure of the access point shown in FIG. 12 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may also include FIG. Show more or fewer parts, or combine some parts, or different parts. among them:
  • the input device 1202 may include a wired interface, a wireless interface, and the like, and may be used to receive a data frame that is uplinked by the station.
  • the output device 1203 may include a wired interface, a wireless interface, etc., and may be used to send data frames to the downlink in the downlink.
  • the memory 1204 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
  • the memory 1204 can optionally also be at least one storage device located remotely from the aforementioned processor 1201.
  • the operating system, the application program, the data, and the like may be included in the memory 1204 as a computer storage medium, which is not limited in the embodiment of the present invention.
  • the processor 1201 can be used to call an application stored in the memory 1204 to perform the following operations:
  • the control output device 1203 sends a trigger frame in at least one of the total transmission channels, where the trigger frame is used to indicate allocation of multiple subchannels in the total transmission channel;
  • the control input device 1202 receives the data frame transmitted by the station on the subchannel allocated for the station;
  • the control input device 1202 receives the data frames transmitted by the station in a contention manner on the subchannels not allocated for any of the stations.
  • the trigger frame is further used to indicate an uplink transmission duration, a duration of a data frame transmitted by a station on a subchannel allocated for the station, or a station transmits data in a contentive manner on the subchannel allocated to the station.
  • the duration of the frame does not exceed the uplink transmission duration.
  • the trigger frame is a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • the processor 1201 controls the input device 1202 to receive the transmission of the station on the subchannel allocated for the station.
  • the specific implementation of the data frame can be:
  • Control input device 1202 receives a block acknowledgment frame or a first acknowledgment frame transmitted by the station on a subchannel allocated for the station.
  • the processor The 1201 control output device 1203 may also call the application stored in the memory 1204 before transmitting the trigger frame in at least one of the total transmission channels, and perform the following operations:
  • Control output device 1203 transmits a downlink multi-user transmission frame in at least one of the total transmission channels.
  • the trigger frame is a multi-user request to send a MU-RTS frame
  • the processor 1201 controls the input device 1202 to receive a data frame that is transmitted by the station on a subchannel allocated for the station. for:
  • Control input device 1202 receives the enhanced clear transmission E-CTS frame transmitted by the station on the subchannel allocated for the station.
  • the processor 1201 may also call the application stored in the memory 1204 and perform the following operations:
  • Control input device 1202 receives the clear transmit CTS frame transmitted by the station on the total transport channel.
  • the processor 1201 may also invoke an application stored in the memory 1204 and perform the following operations:
  • control input device 1202 After the control input device 1202 receives the data frame transmitted by the station in a contentive manner, the control output device 1203 transmits a second acknowledgement frame or response frame to the station.
  • the access point shown in FIG. 12 enables a subchannel that is not allocated to any station in the total transmission channel to be used reasonably, thereby improving resource utilization of the system.
  • the duration of the data transmission frame of the station is controlled within the uplink transmission duration, so that the uplink transmission of each station can be aligned in the time domain.
  • FIG. 13 is a schematic structural diagram of a station according to an embodiment of the present invention, which may be used to perform an OFDMA-based data transmission method disclosed in an embodiment of the present invention.
  • the site can include:
  • the first receiving unit 1301 is configured to receive a trigger frame sent by the access point, where the trigger frame is used to indicate allocation of multiple subchannels in the total transport channel.
  • the access point is an access point that has been associated with the site, or the access point is an access point that the site is ready to apply for association.
  • the allocation of the plurality of subchannels in the total transmission channel indicated by the trigger frame may be indicating which station or each subchannel of each of the plurality of subchannels is allocated to which station.
  • the determining unit 1302 is configured to determine, according to the allocation situation of the plurality of subchannels in the total transmission channel, whether the subchannel allocated for the station exists in the plurality of subchannels.
  • the first sending unit 1303 is configured to: when the determining unit 1302 determines that the subchannel allocated to the station exists in the multiple subchannels, transmit the data frame on the subchannel allocated for the station.
  • the second sending unit 1304 is configured to: when the determining unit 1302 determines that the subchannel allocated for the station does not exist in the multiple subchannels, the data frame is transmitted in a contentive manner on a subchannel allocated to any station in the total transport channel.
  • the trigger frame may also be used to indicate the uplink transmission duration, the duration of the data frame transmitted by the first sending unit 1303 on the subchannel allocated for the station, or the second sending unit 1304 does not have any in the total transmission channel.
  • the duration of the data frame transmitted by the contention on the subchannel allocated by the station does not exceed the uplink transmission duration.
  • the trigger frame may be a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • the first sending unit 1303 transmits a data frame on a subchannel allocated for the station.
  • the first transmitting unit 1303 transmits a block acknowledgement frame or an acknowledgement frame on the subchannel allocated for the station.
  • FIG. 14 is a schematic structural diagram of another station disclosed in the embodiment of the present invention.
  • An OFDMA-based data transmission method for performing the embodiments of the present invention is further optimized based on the site shown in FIG. Compared with the site shown in FIG. 13, the site shown in FIG. 14 may further include:
  • the second receiving unit 1305 is configured to receive, after the first receiving unit 1301 receives the trigger frame sent by the access point, the downlink multi-user transmission frame sent by the access point.
  • the trigger frame is a multi-user request to send a MU-RTS frame
  • the specific implementation manner that the first sending unit 1303 transmits the data frame on the subchannel allocated to the station may be:
  • the first transmitting unit 1303 transmits an enhanced clear transmission E-CTS frame on the subchannel allocated for the station.
  • FIG. 15 is a schematic structural diagram of another station according to an embodiment of the present disclosure, which may be used to perform an OFDMA-based data transmission method disclosed in an embodiment of the present invention.
  • the site shown in FIG. 15 is further optimized based on the site shown in FIG. Compared with the site shown in FIG. 13, the site shown in FIG. 15 may further include:
  • the third sending unit 1306 is configured to: after the determining unit 1302 determines that there is a subchannel allocated to the station in the multiple subchannels, send a clear sending CTS frame on the total transport channel.
  • the third sending unit 1306 may be configured to trigger the first sending unit 1303 to transmit an enhanced clear sending E-CTS frame on the subchannel allocated for the station after transmitting the clear sending CTS frame on the total transmission channel. After the transmitting unit 1303 transmits the enhanced clear transmission E-CTS frame on the subchannel allocated for the station, the third transmitting unit 1306 is triggered to send the clear transmission CTS frame on the total transmission channel. That is, the third sending unit 1306 may be located before the first sending unit 1303, or may be located after the first sending unit 1303, which is not limited by the embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of another station according to an embodiment of the present disclosure, which may be used to perform an OFDMA-based data transmission method disclosed in an embodiment of the present invention.
  • the site shown in FIG. 16 is further optimized based on the site shown in FIG. Compared with the site shown in FIG. 13, the site shown in FIG. 16 may further include:
  • the third receiving unit 1307 is configured to receive an acknowledgement frame or a response frame that is sent by the access point after receiving the data frame transmitted by the second sending unit 1304 in a contention manner.
  • a trigger signal may be sent to the third receiving unit 1307 to trigger the third receiving unit 1307 to receive the acknowledgement sent by the access point. Frame or response frame.
  • acknowledgement frame received by the third receiving unit 1307 is different from the acknowledgement frame sent by the first sending unit 1303.
  • the first and second may be distinguished.
  • the station shown in FIG. 13 to FIG. 16 when the access point allocates a subchannel to the station, the station can transmit a data frame on the allocated subchannel, and when the access point does not allocate a subchannel for the station, the The station can transmit data frames in a contentive manner on subchannels that are not allocated to any station, so that unallocated subchannels can also be used reasonably, thereby improving system resource utilization.
  • the duration of the data frame transmitted by the station on the subchannel allocated by the station or the duration of the station contending for the transmission of the data frame on the subchannel not allocated to any station are controlled within the uplink transmission duration, thereby enabling the uplink of each station.
  • the transmission is aligned on the time domain.
  • FIG. 17 is a schematic structural diagram of another station according to an embodiment of the present disclosure, which may be used to perform an OFDMA-based data transmission method disclosed in an embodiment of the present invention.
  • the site 1700 can include at least one processor 1701, such as a CPU, at least one input device 1702, at least one output device 1703, a memory 1704, and the like. Among them, these components are communicatively connected by one or more buses 1705.
  • the structure of the site shown in FIG. 17 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the illustration or Fewer parts, or a combination of some parts, or different parts. among them:
  • the input device 1702 may include a wired interface, a wireless interface, and the like, and may be used to receive a data frame sent by the access point in the downlink.
  • the output device 1703 can include a wired interface, a wireless interface, etc., and can be used to uplink data frames to the access point.
  • the memory 1704 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 1704 can optionally be at least one Located at a storage device remote from the aforementioned processor 1701. As shown in FIG. 17, the operating system, the application program, the data, and the like may be included in the memory 1704 as a computer storage medium, which is not limited in the embodiment of the present invention.
  • the processor 1701 can be used to call an application stored in the memory 1704 to perform the following operations:
  • the control input device 1702 receives a trigger frame sent by the access point, where the trigger frame is used to indicate allocation of multiple subchannels in the total transmission channel;
  • control output device 1703 transmits a data frame on the subchannel allocated for the station;
  • control output device 1703 transmits the data frame in a contention manner on the subchannels not allocated to any station in the total transmission channel.
  • the trigger frame may also be used to indicate an uplink transmission duration, where the station transmits the data frame on the subchannel allocated for the station or the station passes the subchannel allocated to the station in the total transmission channel. The duration of the data frame transmitted in the contention mode does not exceed the uplink transmission duration.
  • the trigger frame is a downlink multi-user transmission frame or a multi-user block acknowledgment request MU-BAR frame
  • the processor 1701 controls the output device 1703 to transmit the data frame on the subchannel allocated for the station.
  • the implementation can be:
  • the control output device 1703 transmits a block acknowledgement frame or a first acknowledgement frame on the subchannel allocated for the station.
  • the processor 1701 may also call the memory 1704 before the input device 1702 receives the trigger frame sent by the access point. Application and do the following:
  • Control input device 1702 receives the downlink multi-user transmission frame transmitted by the access point.
  • the trigger frame is a multi-user request to send a MU-RTS frame
  • the processor 1701 controls the output device 1703 to transmit a data frame on a subchannel allocated for the station.
  • Control output device 1703 transmits an enhanced clear transmit E-CTS frame on the subchannel allocated for the station.
  • the processor 1701 may also invoke an application stored in the memory 1704 and perform the following operations:
  • the control output device 1703 transmits a clear transmission CTS frame on the total transmission channel.
  • the processor 1701 can also call the application stored in the memory 1704 and perform the following operations:
  • the control input device 1702 receives a second acknowledgement frame or response frame that is sent by the access point after receiving the data frame transmitted by the station in a contentive manner.
  • the station shown in FIG. 17 enables the subchannels not allocated to any stations in the total transmission channel to be used reasonably, thereby improving the resource utilization of the system.
  • the duration of the data transmission frame of the station is controlled within the uplink transmission duration, so that the uplink transmission of each station can be aligned in the time domain.
  • the access point or the unit in the site in the embodiment of the present invention may be merged, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基于OFDMA的数据传输方法及相关设备,其中,该方法包括:接入点在总传输信道中的至少一个子信道中发送触发帧,所述触发帧用于指示所述总传输信道中的多个子信道的分配情况;当所述多个子信道中包括为站点分配的子信道时,所述接入点接收所述站点在为所述站点分配的子信道上传输的数据帧;当所述多个子信道中包括未为任何站点分配的子信道时,所述接入点接收站点在所述未为任何站点分配的子信道上通过竞争方式传输的数据帧。实施本发明实施例,能够提高系统的资源利用率。

Description

一种基于OFDMA的数据传输方法及相关设备
本申请要求于2015年9月25日提交中国专利局、申请号为201510622186.9、发明名称为“一种基于OFDMA的数据传输方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种基于OFDMA的数据传输方法及相关设备。
背景技术
目前IEEE802.11ax标准采用OFDMA(orthogonal frequency division multiple access,正交频分多址接入)技术实现上行多用户和下行多用户传输。在多个用户采用上行OFDMA同时发送长度相同的控制帧时,所需的子信道大小是相同的,因此通常将信道划分为固定大小的子信道,例如将20MHz信道划分为9个子信道。在给各个站点分配子信道时,往往需要遵守特定的分配规则,例如:可以给每个站点分配一个子信道、两个子信道、四个子信道或整个信道等等。由于上行传输的站点数目是可以变化的,在上述子信道分配规则下很容易出现子信道不能完全分配给多个站点的情况,例如:在三个站点的情况下,最多只能给每个站点分配两个子信道,因此将会剩余三个子信道未被分配,从而造成系统资源的浪费,使得系统资源利用率低下。
发明内容
本发明实施例公开了一种基于OFDMA的数据传输方法及相关设备,能够提高系统的资源利用率。
本发明实施例第一方面公开了一种基于OFDMA的数据传输方法,包括:
接入点在总传输信道中的至少一个子信道中发送触发帧,所述触发帧用于指示所述总传输信道中的多个子信道的分配情况;
当所述多个子信道中包括为站点分配的子信道时,所述接入点接收所述站点在为所述站点分配的子信道上传输的数据帧;
当所述多个子信道中包括未为任何站点分配的子信道时,所述接入点接收站点在所述未为任何站点分配的子信道上通过竞争方式传输的数据帧。
本发明实施例第二方面公开了一种基于OFDMA的数据传输方法,包括:
站点接收接入点发送的触发帧,所述触发帧用于指示总传输信道中的多个子信道的分配情况;
所述站点根据所述总传输信道中的多个子信道的分配情况,判断所述多个子信道中是否存在为所述站点分配的子信道;
当所述多个子信道中存在为所述站点分配的子信道时,所述站点在为所述站点分配的子信道上传输数据帧;
当所述多个子信道中不存在为所述站点分配的子信道时,所述站点在所述总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
本发明实施例第三方面公开了一种接入点,包括:
第一发送单元,用于在总传输信道中的至少一个子信道中发送触发帧,所述触发帧用于指示所述总传输信道中的多个子信道的分配情况;
第一接收单元,用于当所述多个子信道中包括为站点分配的子信道时,接收所述站点在为所述站点分配的子信道上传输的数据帧;
第二接收单元,用于当所述多个子信道中包括未为任何站点分配的子信道时,接收站点在所述未为任何站点分配的子信道上通过竞争方式传输的数据帧。
本发明实施例第四方面公开了一种站点,包括:
第一接收单元,用于接收接入点发送的触发帧,所述触发帧用于指示总传输信道中的多个子信道的分配情况;
判断单元,用于根据所述总传输信道中的多个子信道的分配情况,判断所述多个子信道中是否存在为所述站点分配的子信道;
第一发送单元,用于当所述判断单元判断所述多个子信道中存在为所述站点分配的子信道时,在为所述站点分配的子信道上传输数据帧;
第二发送单元,用于当所述判断单元判断所述多个子信道中不存在为所述站点分配的子信道时,在所述总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
本发明实施例中,在OFDMA数据传输中接入点可以在总传输信道中的至少一个子信道中发送触发帧,该触发帧可以用于指示总传输信道中的多个子信道的分配情况,当上述多个子信道中包括为站点分配的子信道时,接入点可以接收该站点在为该站点分配的子信道上传输的数据帧,当上述多个子信道中包括未为任何站点分配的子信道时,接入点可以接收站点在该未为任何站点分配的子信道上通过竞争方式传输的数据帧。可见,本发明实 施例不仅可以接收已分配子信道的站点在该子信道上传输的数据帧,还可以接收未分配子信道的站点在未分配给任何站点的子信道上竞争传输的数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种基于OFDMA的数据传输的网络架构示意图;
图2是本发明实施例公开的一种基于OFDMA的数据传输方法的流程示意图;
图3a是本发明实施例公开的一种基于OFDMA的资源分配指示的流程示意图;
图3b是本发明实施例公开的另一种基于OFDMA的资源分配指示的流程示意图;
图4是本发明实施例公开的一种基于OFDMA的多用户数据传输的信令流程示意图;
图5a是本发明实施例公开的另一种基于OFDMA的多用户数据传输的信令流程示意图;
图5b是本发明实施例公开的又一种基于OFDMA的多用户数据传输的信令流程示意图;
图6a是本发明实施例公开的又一种基于OFDMA的多用户数据传输的信令流程示意图;
图6b是本发明实施例公开的又一种基于OFDMA的多用户数据传输的信令流程示意图;
图7是本发明实施例公开的另一种基于OFDMA的数据传输方法的流程示意图;
图8是本发明实施例公开的一种接入点的结构示意图;
图9是本发明实施例公开的另一种接入点的结构示意图;
图10是本发明实施例公开的又一种接入点的结构示意图;
图11是本发明实施例公开的又一种接入点的结构示意图;
图12是本发明实施例公开的又一种接入点的结构示意图;
图13是本发明实施例公开的一种站点的结构示意图;
图14是本发明实施例公开的另一种站点的结构示意图;
图15是本发明实施例公开的又一种站点的结构示意图;
图16是本发明实施例公开的又一种站点的结构示意图;
图17是本发明实施例公开的又一种站点的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种基于OFDMA的数据传输方法及相关设备,不仅可以接收已分配子信道的站点在该子信道上传输的数据帧,还可以接收未分配子信道的站点在未分配给任何站点的子信道上竞争传输的数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。以下分别进行详细说明。
为了更好的理解本发明实施例,下面先对本发明实施例公开的一种基于OFDMA的数据传输的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种基于OFDMA的数据传输的网络架构示意图。在图1所示的网络架构中,可以包括接入点和多个站点,其中,接入点可以通过无线局域网(Wireless Local Area Networks,WLAN)与多个站点进行通信连接。在图1所示的网络构架中,接入点作为无线网络的核心部分,可以包括但不限于基站、网关、网桥等设备。接入点可以同时和多个站点进行连接,其中,站点可以包括移动手机、平板电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)以及智能手表等设备,本发明实施例不作限定。
在图1所示的网络构架中,接入点和各站点通过信道进行数据传输,其中,接入点向站点发送数据为下行数据传输,站点向接入点发送数据为上行数据传输。接入点可以将总传输信道划分为若干个子信道(或频域子信道),并且可以将一个或多个子信道分配给站点,可以为每个站点分配一个或多个子信道,但一个子信道只能分配给一个站点,不能同时分配给多个站点。此外,总传输信道中还可能存在未分配给任何站点的子信道,对于未分配有任何子信道的站点,可以在未分配给任何站点的子信道上通过竞争的方式进行数据传输。通过实施图1所示的网络构架,接入点不仅可以接收已分配子信道的站点在该子信道上传输的数据帧,还可以接收未分配子信道的站点在未分配给任何站点的子信道上竞争传输的数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。
基于图1所示的网络构架,本发明实施例公开了一种基于OFDMA的数据传输方法。请参阅图2,图2是本发明实施例公开的一种基于OFDMA的数据传输方法的流程示意图。如图2所示,该基于OFDMA的数据传输方法可以包括以下步骤:
201、接入点在总传输信道中的至少一个子信道中发送触发帧,该触发帧用于指示总 传输信道中的多个子信道的分配情况。
本发明实施例中,总传输信道可以划分为若干个子信道,接入点可以在总传输信道中的至少一个子信道中发送触发帧,该触发帧用于指示总传输信道中的多个子信道的分配情况,即用于指示上述多个子信道中每一个子信道分配给哪个站点或每一个子信道被哪个站点调度,通过触发帧将总传输信道中的多个上行的频域子信道分配给多个站点进行上行数据传输,其中,为不同站点分配的子信道不同。
本发明实施例中,接入点在总传输信道中的至少一个子信道中发送触发帧,以使接收到该触发帧的站点根据该触发帧指示的上述多个子信道的分配情况判断上述多个子信道中是否存在为该站点分配的子信道。其中,接收到该触发帧的站点需与接入点建立通信连接,即接收到该触发帧的站点与接入点已进行关联或准备申请关联。
作为一种可选的实施方式,触发帧中可以指示总传输信道中的多个子信道的分配情况,其中可以包括哪些子信道分配给哪些站点,哪些子信道未分配给站点等等情况,本发明实施例不作限定。
本发明实施例中,触发帧中关于上行资源分配的信令既可以在物理层中(如图3a所示),也可以在MAC层中(如图3b所示)。请参阅图3a,图3a是本发明实施例公开的一种基于OFDMA的资源分配指示的流程示意图。如图3a所示,在物理层指示时,帧结构通常包括传统前导(Legacy preamble)、高效率信令A、高效率信令B等等。上行资源分配通常放置在高效率信令B字段中。物理层信令指示可以应用于所有以高效率帧格式发送的下行帧中。请参阅图3b,图3b是本发明实施例公开的另一种基于OFDMA的资源分配指示的流程示意图。如图3b所示,在MAC层指示时,MAC帧结构通常包括帧控制(Frame Control)字段、长度(Duration)字段、接收地址字段、发送地址字段、帧主体(Frame body)字段和帧校验序列(Frame Check Sequence,简称FCS)字段。上行资源分配通常放置在帧主体字段中。MAC层指示通常应用于没有下行数据需要发送,而单独采用一个下行触发帧来触发上行多用户发送的场景中,例如多用户块确认请求(Multi-user Block Acknowledgment Request,简称MU-BAR)帧或多用户请求发送(Multi-user Request To Send,简称MU-RTS)帧。
202、当上述多个子信道中包括为站点分配的子信道时,接入点接收该站点在为该站点分配的子信道上传输的数据帧。
本发明实施例中,当触发帧指示的上述多个子信道中存在为一个站点分配的一个或多个子信道时,该站点可以在为该站点分配的子信道上进行上行数据帧传输,接入点则可以接收该站点在为该站点分配的子信道上传输的数据帧。其中,该站点可以看作是调度站点, 该站点进行的上行数据传输可以看作是调度传输。
作为一种可选的实施方式,当该站点进行的上行传输为需要进行确认的情况时,接入点在接收到该站点传输的数据帧后还可以向该站点发送确认帧或响应帧,以对该站点的上行传输进行确认或响应;当该站点进行的上行传输不需要进行确认的情况时,则接入点无需向该站点发送确认帧或响应帧。
203、当上述多个子信道中包括未为任何站点分配的子信道时,接入点接收站点在该未为任何站点分配的子信道上通过竞争方式传输的数据帧。
本发明实施例中,当触发帧指示的上述多个子信道中包括未为任何站点分配的子信道(即尚未分配给任何站点的子信道)时,对于未分配有任何子信道的站点,则该站点可以通过竞争的方式选择部分或全部尚未分配给任何站点的子信道进行上行数据帧传输,接入点则可以接收该站点在尚未分配给任何站点的子信道上通过竞争方式传输的数据帧。其中,该站点可以看作是非调度站点,该站点通过竞争方式进行的上行数据传输可以看作是竞争传输。
本发明实施例中,对于站点在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧的竞争接入方法不作限定,既可以是设定一个接入概率进行接入,也可以是类似CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance,带冲突避免的载波侦听多接入)机制来产生一个退避计数器,当退避计数器数值退避至0后进行竞争接入,具体退避的一种方式可以为根据未为任何站点分配的子信道的个数进行退避,既退避计数器为每一个未为任何站点分配的子信道减1直到0,或等效地退避计数器减去未为任何站点分配的子信道的总数直到0或负数。
本发明实施例中,调度站点的调度传输和非调度站点的竞争传输共同构成了上行OFDMA传输。由于接入点并未对非调度站点占用的子信道数目进行指示,非调度站点可以缺省地选用一个尚未分配给任何站点的子信道作为传输带宽,以减少竞争中产生的碰撞。
本发明实施例中,触发帧还可以用于指示上行发送时长,即站点上行传输数据时的最大发送时长。当上述多个子信道中包括为站点分配的子信道时,该站点在为该站点分配的子信道上传输数据帧的时长不超过该触发帧指示的上行发送时长;或者,当上述多个子信道中包括未为任何站点分配的子信道时,站点在该未为任何站点分配的子信道上通过竞争方式传输数据帧的时长也不超过该触发帧指示的上行发送时长。将多个站点的上行传输时长控制在该上行发送时长内,从而能够使得多个站点的上行数据传输在时域上对齐。
作为一种可选的实施方式,当上述多个子信道中包括未为任何站点分配的子信道时, 图2所描述的方法还可以包括以下步骤:
21)接入点在接收到该站点通过竞争方式传输的数据帧后,向该站点发送确认帧或响应帧。
在该实施方式中,接入点在接收到该站点通过竞争方式传输的数据帧后,可以对该站点的传输进行确认或响应,通过向该站点发送确认帧来对该站点的传输进行确认,或者通过向该站点发送响应帧来对该站点的传输进行响应。
在该实施方式中,确认帧可以包括对单个数据传输的确认帧,也可以包括针对多个聚合数据传输的块确认帧。响应帧则根据该站点发送的数据帧的类型来确定对应的响应帧的类型。确认帧或响应帧的发送既可以是单独发送,也可以携带在数据或新的触发帧中发送,本发明实施例不作限定。
作为一种可选的实施方式,步骤21)接入点在接收到该站点通过竞争方式传输的数据帧后,向该站点发送确认帧或响应帧的具体实施方式可以包括以下步骤:
22)接入点在接收到该站点通过竞争方式传输的数据帧后,间隔SIFS(Short Interframe Space,短帧间间隔)时间向该站点发送确认帧或响应帧。
在该实施方式中,接入点接收到该站点通过竞争方式传输的数据帧到接入点向该站点发送确认帧或响应帧的时间间隔为SIFS时间。
请一并参阅图4,图4是本发明实施例公开的一种基于OFDMA的多用户数据传输的信令流程示意图。如图4所示,接入点在总传输信道中的至少一个子信道中下行发送触发帧后,接收到该触发帧的站点可以根据该触发帧指示的多个子信道的分配情况判断上述多个子信道中是否存在为自身分配的子信道,图4中的站点1、站点2和站点3为调度站点,即触发帧指示的上述多个子信道中存在为自身分配的子信道;图中虚线部分表示的是通过竞争接入方式传输的非调度站点,即触发帧指示的上述多个子信道中不存在为自身分配的子信道。当接入点接收到非调度站点通过竞争方式传输的数据帧时,接入点向该非调度站点下行发送确认帧或响应帧。
作为一种可选的实施方式,该触发帧可以为下行多用户传输帧或多用户块确认请求MU-BAR帧,步骤202接入点接收该站点在为该站点分配的子信道上传输的数据帧的具体实施方式可以包括以下步骤:
23)接入点接收该站点在为该站点分配的子信道上传输的块确认帧或确认帧。
在该实施方式中,下行多用户传输帧可以指接入点使用OFDMA或MU-MIMO(Multi-User Multiple-Input Multiple-Output,多用户多入多出)的方式同时为多个站点发送 数据的一种帧格式,可以利用多用户分集增益提高系统效率。当触发帧为下行多用户传输帧或多用户块确认请求MU-BAR帧时,下行多用户传输帧或多用户块确认请求MU-BAR帧中包含与多用户数据相对应的块确认帧的发送子信道分配信息。请参阅图5a,图5a是本发明实施例公开的另一种基于OFDMA的多用户数据传输的信令流程示意图。如图5a所示,接入点发送的触发帧为下行多用户传输帧,当触发帧中指示了为多个站点分配的子信道时,多个站点在分配给自身的子信道上发送对应的块确认帧或确认帧;当触发帧中指示未为多个站点分配子信道时,多个站点则可以通过竞争接入的方式在块确认帧或确认帧未占用的子信道上传输数据帧,接入点在接收到竞争方式发送的数据帧SIFS时间后,向对应的站点发送确认帧或响应帧。
在该实施方式中,块确认帧是目前标准中普遍采用的一种确认方式,块确认帧可以用来对以聚合方式发送的数据帧进行确认的。但是在一些特殊情况下,例如发送的数据为非聚合帧,或者聚合帧中只有一个MPDU(MAC Protocol Data Unit,MAC协议数据单元)时可以发送确认帧而不是块确认帧。另外,当聚合帧中有多个MPDU而所有MPDU都被站点接收正确时也可以发送确认帧而不是块确认帧,因为确认帧的长度比块确认帧短,从而在发送确认帧时可以减小信令开销。
在该实施方式中,发送块确认帧或确认帧所占用的子信道可以通过隐式的方式进行分配,即可以通过协议约定或者接入点发送广播帧告知块确认帧或确认帧在下行OFDMA数据所占用的某个子信道上进行发送。例如,在下行OFDMA数据所占用的第一个子信道上进行块确认帧或确认帧发送;又如,每个站点根据该站点在下行多用户传输中的多个站点的顺序在总传输信道中选择对应的子信道上进行块确认帧或确认帧的发送,如第一个站点在第一个子信道上进行发送,第n个站点在第n个子信道上进行发送,子信道的宽度和排列顺序可以由协议进行约定或者接入点进行通知。
在该实施方式中,发送块确认帧或确认帧所占用的子信道也可以通过显式的方式进行分配,显式分配更加灵活,即可以将块确认帧或确认帧调度在下行数据传输对应的子信道上,也可以调度在非下行数据传输的子信道上,块确认帧或确认帧所占用的子信道数目即可以是一个,也可以是多个,多个块确认帧或确认帧所占用的子信道数目即可以相同也可以不同。无论块确认帧或确认帧以何种方式进行调度,其上行传输未占用的子信道即可以被非调度站点通过竞争方式来进行上行传输。
在该实施方式中,OFDMA竞争的子信道可以通过显式或隐式的方式进行指示,这里推荐使用隐式的方式进行分配,也就是未分配给任何站点的子信道即为OFDMA竞争子信道, 这种方式的优点是简单、无需信令开销。
在该实施方式中,触发帧中还指示了上行发送时长,多个站点在分配给自身的子信道上发送对应的块确认帧或确认帧的时长,或者多个站点通过竞争的方式在块确认帧或确认帧未占用的子信道上传输数据帧的时长均不超过该上行发送时长。
可以理解的是,步骤23)中涉及的确认帧与步骤21)中涉及的确认帧为不同的帧,为不同的发送端向不同的接收端发送的两个不同的帧。为了方便理解,可以采用“第一”和“第二”对其进行区分。
作为一种可选的实施方式,当该触发帧为多用户块确认请求MU-BAR帧时,接入点在执行步骤201之前,图2所描述的方法还可以包括以下步骤:
24)接入点在总传输信道中的至少一个子信道中发送下行多用户传输帧。
在该实施方式中,当触发帧为多用户块确认请求MU-BAR帧时,接入点在发送触发帧之前,可以先发送下行多用户传输帧。请参阅图5b,图5b是本发明实施例公开的又一种基于OFDMA的多用户数据传输的信令流程示意图。如图5b所示,接入点发送下行多用户传输帧之后,接着发送一个多用户块确认请求MU-BAR帧来调度上行多用户块确认帧或确认帧,则该多用户块确认请求MU-BAR帧即为触发帧。
作为一种可选的实施方式,该触发帧可以为多用户请求发送MU-RTS帧,步骤202接入点接收该站点在为该站点分配的子信道上传输的数据帧的具体实施方式可以包括以下步骤:
25)接入点接收该站点在为该站点分配的子信道上传输的增强的清除发送(Enhanced Clear to Send,简称E-CTS)帧。
在该实施方式中,RTS/CTS(Request To Send/Clear To Send,请求发送/清除发送)交互机制是目前IEEE802.11标准中的一种信道保护机制,适用于单站点用户的信道保护,当前的IEEE802.11ax标准中引入了多用户传输机制,为了更好地对多站点进行信道保护,提出了一种多用户请求发送MU-RTS帧/增强的清除发送E-CTS帧的多站点信道保护机制,其中,多用户请求发送MU-RTS帧为接入点给多个站点发送的信道保护帧,增强的清除发送E-CTS帧为多用户请求发送MU-RTS帧中所指示的多个站点采用OFDMA的方式发送的上行帧,其作用是用于进行身份指示,以使得接入点能够得知哪些站点已经正确接收了多用户请求发送MU-RTS帧。
作为一种可选的实施方式,接入点在执行步骤201之后,图2所描述的方法还可以包括以下步骤:
26)接入点接收该站点在总传输信道上发送的清除发送CTS帧。
在该实施方式中,当接入点发送触发帧(即多用户请求发送MU-RTS帧)之后,接收到该触发帧的站点在确认触发帧中指示有分配给自身的子信道时,则这些站点确认自身为调度站点,所有的调度站点可以同时发送内容和格式完全相同的CTS帧以完成对包括传统站点在内的所有站点的信道保护。CTS帧的发送有两种不同的流程,分别如图6a和6b所示。其中,图6a中接入点发送多用户请求发送MU-RTS帧作为触发帧,所有调度站点首先同时在整个信道中发送CTS帧,然后调度站点再在分配给自身的子信道上分别发送增强的清除发送E-CTS帧。非调度站点可以在增强的清除发送E-CTS帧没有占用的子信道上通过竞争的方式进行上行传输。此外,调度站点的上行传输和非调度站点的竞争传输的时长均控制在触发帧指示的上行发送时长内。接入点接收到非调度站点竞争传输的数据帧后,向该非调度站点发送确认帧或响应帧进行确认或响应。而图6b与图6a的区别在于,在图6b中接入点发送多用户请求发送MU-RTS帧作为触发帧,所有调度站点首先在为自身分配的子信道上分别发送增强的清除发送E-CTS帧,然后所有调度站点再同时发送CTS帧。可以理解为,步骤26)可以在执行完步骤201之后,在执行步骤25)之前执行,步骤26)也可以在执行完步骤25)之后执行,本发明实施例不作限定。
通过实施图2所述的方法,接入点不仅可以接收已分配子信道的站点在该子信道上传输的数据帧,还可以接收未分配子信道的站点在未分配给任何站点的子信道上竞争传输的数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。此外,将站点在该站点分配的子信道上传输数据帧的时长或站点在未分配给任何站点的子信道上竞争传输数据帧的时长均控制在上行发送时长内,从而可以使得各个站点的上行传输在时域上对齐。
基于图1所示的网络构架,本发明实施例公开了另一种基于OFDMA的数据传输方法。请参阅图7,图7是本发明实施例公开的另一种基于OFDMA的数据传输方法的流程示意图。如图7所示,该基于OFDMA的数据传输方法可以包括以下步骤:
701、站点接收接入点发送的触发帧,该触发帧用于指示总传输信道中的多个子信道的分配情况。
本发明实施例中,该接入点为与站点已进行关联的接入点,或者该接入点为站点准备申请关联的接入点。触发帧指示的总传输信道中的多个子信道的分配情况可以是指示上述多个子信道中每一个子信道分配给哪个站点或每一个子信道被哪个站点调度。
702、站点判断上述多个子信道中是否存在为该站点分配的子信道,若是,则执行步 骤703;若否,则执行步骤704。
本发明实施例中,站点根据接收到的触发帧指示的总传输信道中的多个子信道的分配情况,可以判断上述多个子信道中是否存在为该站点分配的子信道,当上述多个子信道中存在为该站点分配的子信道时,可以将该站点看作是调度站点,并可以进一步执行步骤703;当上述多个子信道中不存在为该站点分配的子信道时,可以将该站点看作是非调度站点,并可以进一步执行步骤704。
703、站点在为该站点分配的子信道上传输数据帧。
704、站点在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
本发明实施例中,触发帧还可以用于指示上行发送时长,站点在为该站点分配的子信道上传输数据帧的时长或站点在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过该上行发送时长。
作为一种可选的实施方式,在执行步骤704之后,图7所描述的方法还可以包括以下步骤:
71)站点接收接入点在接收到该站点通过竞争方式传输的数据帧后发送的确认帧或响应帧,以对该站点的竞争传输进行确认或响应。
作为一种可选的实施方式,触发帧可以为下行多用户传输帧或多用户块确认请求MU-BAR帧,步骤703站点在为该站点分配的子信道上传输数据帧的具体实施方式可以包括以下步骤:
72)站点在为该站点分配的子信道上传输块确认帧或确认帧。
可以理解的是,步骤72)中涉及的确认帧与步骤71)中涉及的确认帧为不同的帧,为不同的发送端向不同的接收端发送的两个不同的帧。为了方便理解,可以采用“第一”和“第二”对其进行区分。
作为一种可选的实施方式,当触发帧为多用户块确认请求MU-BAR帧时,站点在执行步骤701之前,图7所描述的方法还可以包括以下步骤:
73)站点接收接入点发送的下行多用户传输帧。
作为一种可选的实施方式,触发帧可以为多用户请求发送MU-RTS帧,步骤703站点在为该站点分配的子信道上传输数据帧的具体实施方式可以包括以下步骤:
74)站点在为该站点分配的子信道上传输增强的清除发送E-CTS帧。
相应地,当站点执行步骤702判断上述多个子信道中存在为该站点分配的子信道之后,图7所描述的方法还可以包括以下步骤:
75)站点在总传输信道上发送清除发送CTS帧。
其中,步骤75)可以在执行完步骤702之后,执行步骤74)之前执行,也可以在执行完步骤74)之后执行,本发明实施例不作限定。
通过实施图7所述的方法,当接入点为站点分配子信道时,该站点可以在分配的子信道上传输数据帧,当接入点未为站点分配子信道时,该站点可以在未分配给任何站点的子信道上通过竞争的方式传输数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。此外,将站点在该站点分配的子信道上传输数据帧的时长或站点在未分配给任何站点的子信道上竞争传输数据帧的时长均控制在上行发送时长内,从而可以使得各个站点的上行传输在时域上对齐。
基于图1所示的网络构架,本发明实施例公开了一种接入点。请参阅图8,图8是本发明实施例公开的一种接入点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。如图8所示,该接入点可以包括:
第一发送单元801,用于在总传输信道中的至少一个子信道中发送触发帧,该触发帧用于指示总传输信道中的多个子信道的分配情况。
本发明实施例中,触发帧指示总传输信道中的多个子信道的分配情况可以是具体用于指示上述多个子信道中每一个子信道分配给哪个站点或每一个子信道被哪个站点调度,通过触发帧将总传输信道中的多个上行的频域子信道分配给多个站点进行上行数据传输,其中,为不同站点分配的子信道不同。
第一接收单元802,用于当上述多个子信道中包括为站点分配的子信道时,接收该站点在为该站点分配的子信道上传输的数据帧。
本发明实施例中,当触发帧指示的上述多个子信道中存在为一个站点分配的一个或多个子信道时,该站点可以在为该站点分配的子信道上进行上行数据帧传输。当第一发送单元801发送完触发帧后,可以向第一接收单元802发送一个触发信号,以触发第一接收单元802接收该站点在为该站点分配的子信道上传输的数据帧。其中,该站点可以看作是调度站点,该站点进行的上行数据传输可以看作是调度传输。
第二接收单元803,用于当上述多个子信道中包括未为任何站点分配的子信道时,接收站点在该未为任何站点分配的子信道上通过竞争方式传输的数据帧。
本发明实施例中,当触发帧指示的上述多个子信道中包括未为任何站点分配的子信道(即尚未分配给任何站点的子信道)时,对于未分配有任何子信道的站点,则该站点可以 通过竞争的方式选择部分或全部尚未分配给任何站点的子信道进行上行数据帧传输。当第一发送单元801发送完触发帧后,可以向第二接收单元803发送一个触发信号,以触发第二接收单元803接收该站点在尚未分配给任何站点的子信道上通过竞争方式传输的数据帧。其中,该站点可以看作是非调度站点,该站点通过竞争方式进行的上行数据传输可以看作是竞争传输。
本发明实施例中,触发帧还可以用于指示上行发送时长,即站点上行传输数据时的最大发送时长。当上述多个子信道中包括为站点分配的子信道时,该站点在为该站点分配的子信道上传输数据帧的时长不超过该触发帧指示的上行发送时长;或者,当上述多个子信道中包括未为任何站点分配的子信道时,站点在该未为任何站点分配的子信道上通过竞争方式传输数据帧的时长也不超过该触发帧指示的上行发送时长。将多个站点的上行传输时长控制在该上行发送时长内,从而能够使得多个站点的上行数据传输在时域上对齐。
作为一种可选的实施方式,触发帧可以为下行多用户传输帧或多用户块确认请求MU-BAR帧,第一接收单元802接收该站点在为该站点分配的子信道上传输的数据帧的具体实施方式可以为:
第一接收单元802接收该站点在为该站点分配的子信道上传输的块确认帧或确认帧。
作为一种可选的实施方式,当该触发帧为多用户块确认请求MU-BAR帧时,请一并参阅图9,图9是本发明实施例公开的另一种接入点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。其中,图9所示的接入点是在图8所示的接入点的基础上进一步优化得到的。与图8所示的接入点相比,图9所示的接入点还可以包括:
第二发送单元804,用于在第一发送单元801在总传输信道中的至少一个子信道中发送触发帧之前,在总传输信道中的至少一个子信道中发送下行多用户传输帧。
作为一种可选的实施方式,触发帧可以为多用户请求发送MU-RTS帧,第一接收单元802接收该站点在为该站点分配的子信道上传输的数据帧的具体实施方式可以为:
第一接收单元802接收该站点在为该站点分配的子信道上传输的增强的清除发送E-CTS帧。
相应地,请一并参阅图10,图10是本发明实施例公开的又一种接入点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。其中,图10所示的接入点是在图8所示的接入点的基础上进一步优化得到的。与图8所示的接入点相比,图10所示的接入点还可以包括:
第三接收单元805,用于在第一发送单元801在总传输信道中的至少一个子信道中发送 触发帧之后,接收该站点在总传输信道上发送的清除发送CTS帧。
其中,可以是第三接收单元805接收该站点在总传输信道上发送的清除发送CTS帧之后,触发第一接收单元802接收该站点在为该站点分配的子信道上传输的增强的清除发送E-CTS帧;也可以是第一接收单元802接收该站点在为该站点分配的子信道上传输的增强的清除发送E-CTS帧之后,触发第三接收单元805接收该站点在总传输信道上发送的清除发送CTS帧。即第三接收单元805可以位于第一接收单元802之前,也可以位于第一接收单元802之后,本发明实施例不作限定。
作为一种可选的实施方式,当上述多个子信道中包括未为任何站点分配的子信道时,请一并参阅图11,图11是本发明实施例公开的又一种接入点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。其中,图11所示的接入点是在图8所示的接入点的基础上进一步优化得到的。与图8所示的接入点相比,图11所示的接入点还可以包括:
第三发送单元806,用于在第二接收单元803接收到该站点通过竞争方式传输的数据帧后,向该站点发送确认帧或响应帧。
其中,第三发送单元806具体可以用于在第二接收单元803接收到该站点通过竞争方式传输的数据帧后,间隔SIFS时间向该站点发送确认帧或响应帧。
在该实施方式中,当第二接收单元803接收到该站点通过竞争方式传输的数据帧后,可以向第三发送单元806发送一个触发信号,以触发第三发送单元806向该站点发送确认帧或响应帧。
可以理解的是,第三发送单元806发送的确认帧与第一接收单元802接收到的确认帧为不同的帧,为了方便理解,可以采用“第一”和“第二”对其进行区分。
可见,实施图8至图11所示的接入点,不仅可以接收已分配子信道的站点在该子信道上传输的数据帧,还可以接收未分配子信道的站点在未分配给任何站点的子信道上竞争传输的数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。此外,将站点在该站点分配的子信道上传输数据帧的时长或站点在未分配给任何站点的子信道上竞争传输数据帧的时长均控制在上行发送时长内,从而可以使得各个站点的上行传输在时域上对齐。
基于图1所示的网络构架,本发明实施例公开了又一种接入点。请参阅图12,图12是本发明实施例公开的又一种接入点的结构示意图,可以用于执行本发明实施例公开的基 于OFDMA的数据传输方法。如图12所示,该接入点1200可以包括:至少一个处理器1201,例如CPU(Central Processing Unit,中央处理器),至少一个输入装置1202,至少一个输出装置1203,存储器1204等组件。其中,这些组件通过一条或多条总线1205进行通信连接。本领域技术人员可以理解,图12中示出的接入点的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图12所示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置1202可以包括有线接口、无线接口等,可以用于接收站点上行传输的数据帧。输出装置1203可以包括有线接口、无线接口等,可以用于向站点下行发送数据帧。
本发明实施例中,存储器1204可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1204可选的还可以是至少一个位于远离前述处理器1201的存储装置。如图12所示,作为一种计算机存储介质的存储器1204中可以包括操作系统、应用程序和数据等,本发明实施例不作限定。
在图12所示的接入点中,处理器1201可以用于调用存储器1204中存储的应用程序以执行以下操作:
控制输出装置1203在总传输信道中的至少一个子信道中发送触发帧,该触发帧用于指示总传输信道中的多个子信道的分配情况;
当上述多个子信道中包括为站点分配的子信道时,控制输入装置1202接收该站点在为该站点分配的子信道上传输的数据帧;
当上述多个子信道中包括未为任何站点分配的子信道时,控制输入装置1202接收站点在该未为任何站点分配的子信道上通过竞争方式传输的数据帧。
本发明实施例中,该触发帧还用于指示上行发送时长,站点在为该站点分配的子信道上传输数据帧的时长或站点在该未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过该上行发送时长。
作为一种可选的实施方式,该触发帧为下行多用户传输帧或多用户块确认请求MU-BAR帧,处理器1201控制输入装置1202接收该站点在为该站点分配的子信道上传输的数据帧的具体实施方式可以为:
控制输入装置1202接收该站点在为该站点分配的子信道上传输的块确认帧或第一确认帧。
作为一种可选的实施方式,当该触发帧为多用户块确认请求MU-BAR帧时,处理器 1201控制输出装置1203在总传输信道中的至少一个子信道中发送触发帧之前,还可以调用存储器1204中存储的应用程序,并执行以下操作:
控制输出装置1203在总传输信道中的至少一个子信道中发送下行多用户传输帧。
作为一种可选的实施方式,该触发帧为多用户请求发送MU-RTS帧,处理器1201控制输入装置1202接收该站点在为该站点分配的子信道上传输的数据帧的具体实施方式可以为:
控制输入装置1202接收该站点在为该站点分配的子信道上传输的增强的清除发送E-CTS帧。
相应地,处理器1201控制输出装置1203在总传输信道中的至少一个子信道中发送触发帧之后,还可以调用存储器1204中存储的应用程序,并执行以下操作:
控制输入装置1202接收该站点在总传输信道上发送的清除发送CTS帧。
作为一种可选的实施方式,当上述多个子信道中包括未为任何站点分配的子信道时,处理器1201还可以调用存储器1204中存储的应用程序,并执行以下操作:
在控制输入装置1202接收到该站点通过竞争方式传输的数据帧后,控制输出装置1203向该站点发送第二确认帧或响应帧。
可见,实施图12所示的接入点,能够使总传输信道中未分配给任何站点的子信道合理被使用,从而提高了系统的资源利用率。此外,将站点传输数据帧的时长控制在上行发送时长内,从而可以使得各个站点的上行传输在时域上对齐。
基于图1所示的网络构架,本发明实施例公开了一种站点。请参阅图13,图13是本发明实施例公开的一种站点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。如图13所示,该站点可以包括:
第一接收单元1301,用于接收接入点发送的触发帧,该触发帧用于指示总传输信道中的多个子信道的分配情况。
本发明实施例中,该接入点为与站点已进行关联的接入点,或者该接入点为站点准备申请关联的接入点。触发帧指示的总传输信道中的多个子信道的分配情况可以是指示上述多个子信道中每一个子信道分配给哪个站点或每一个子信道被哪个站点调度。
判断单元1302,用于根据总传输信道中的多个子信道的分配情况,判断上述多个子信道中是否存在为该站点分配的子信道。
第一发送单元1303,用于当判断单元1302判断上述多个子信道中存在为该站点分配的子信道时,在为该站点分配的子信道上传输数据帧。
第二发送单元1304,用于当判断单元1302判断上述多个子信道中不存在为该站点分配的子信道时,在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
本发明实施例中,触发帧还可以用于指示上行发送时长,第一发送单元1303在为该站点分配的子信道上传输数据帧的时长或第二发送单元1304在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过该上行发送时长。
作为一种可选的实施方式,触发帧可以为下行多用户传输帧或多用户块确认请求MU-BAR帧,第一发送单元1303在为该站点分配的子信道上传输数据帧的具体实施方式可以为:
第一发送单元1303在为该站点分配的子信道上传输块确认帧或确认帧。
作为一种可选的实施方式,当该触发帧为多用户块确认请求MU-BAR帧时,请一并参阅图14,图14是本发明实施例公开的另一种站点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。其中,图14所示的站点是在图13所示的站点的基础上进一步优化得到的。与图13所示的站点相比,图14所示的站点还可以包括:
第二接收单元1305,用于在第一接收单元1301接收接入点发送的触发帧之前,接收该接入点发送的下行多用户传输帧。
作为一种可选的实施方式,触发帧为多用户请求发送MU-RTS帧,第一发送单元1303在为该站点分配的子信道上传输数据帧的具体实施方式可以为:
第一发送单元1303在为该站点分配的子信道上传输增强的清除发送E-CTS帧。
相应地,请一并参阅图15,图15是本发明实施例公开的又一种站点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。其中,图15所示的站点是在图13所示的站点的基础上进一步优化得到的。与图13所示的站点相比,图15所示的站点还可以包括:
第三发送单元1306,用于在判断单元1302判断上述多个子信道中存在为该站点分配的子信道之后,在总传输信道上发送清除发送CTS帧。
其中,可以是第三发送单元1306在总传输信道上发送清除发送CTS帧之后,触发第一发送单元1303在为该站点分配的子信道上传输增强的清除发送E-CTS帧;也可以是第一发送单元1303在为该站点分配的子信道上传输增强的清除发送E-CTS帧之后,触发第三发送单元1306在总传输信道上发送清除发送CTS帧。即第三发送单元1306可以位于第一发送单元1303之前,也可以位于第一发送单元1303之后,本发明实施例不作限定。
作为一种可选的实施方式,当上述多个子信道中不存在为该站点分配的子信道时,请 一并参阅图16,图16是本发明实施例公开的又一种站点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。其中,图16所示的站点是在图13所示的站点的基础上进一步优化得到的。与图13所示的站点相比,图16所示的站点还可以包括:
第三接收单元1307,用于接收该接入点在接收到第二发送单元1304通过竞争方式传输的数据帧后发送的确认帧或响应帧。
在该实施方式中,当第二发送单元1304通过竞争方式向接入点传输数据帧后,可以向第三接收单元1307发送一个触发信号,以触发第三接收单元1307接收接入点发送的确认帧或响应帧。
可以理解的是,第三接收单元1307接收到的确认帧与第一发送单元1303发送的确认帧为不同的帧,为了方便理解,可以采用“第一”和“第二”对其进行区分。
可见,实施图13至图16所示的站点,当接入点为站点分配子信道时,该站点可以在分配的子信道上传输数据帧,当接入点未为站点分配子信道时,该站点可以在未分配给任何站点的子信道上通过竞争的方式传输数据帧,以使得未分配的子信道也能合理被使用,从而提高了系统的资源利用率。此外,将站点在该站点分配的子信道上传输数据帧的时长或站点在未分配给任何站点的子信道上竞争传输数据帧的时长均控制在上行发送时长内,从而可以使得各个站点的上行传输在时域上对齐。
基于图1所示的网络构架,本发明实施例公开了又一种站点。请参阅图17,图17是本发明实施例公开的又一种站点的结构示意图,可以用于执行本发明实施例公开的基于OFDMA的数据传输方法。如图17所示,该站点1700可以包括:至少一个处理器1701,例如CPU,至少一个输入装置1702,至少一个输出装置1703,存储器1704等组件。其中,这些组件通过一条或多条总线1705进行通信连接。本领域技术人员可以理解,图17中示出的站点的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,输入装置1702可以包括有线接口、无线接口等,可以用于接收接入点下行发送的数据帧。输出装置1703可以包括有线接口、无线接口等,可以用于向接入点上行传输数据帧。
本发明实施例中,存储器1704可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1704可选的还可以是至少一个 位于远离前述处理器1701的存储装置。如图17所示,作为一种计算机存储介质的存储器1704中可以包括操作系统、应用程序和数据等,本发明实施例不作限定。
在图17所示的接入点中,处理器1701可以用于调用存储器1704中存储的应用程序以执行以下操作:
控制输入装置1702接收接入点发送的触发帧,该触发帧用于指示总传输信道中的多个子信道的分配情况;
根据总传输信道中的多个子信道的分配情况,判断上述多个子信道中是否存在为该站点分配的子信道;
当上述多个子信道中存在为该站点分配的子信道时,控制输出装置1703在为该站点分配的子信道上传输数据帧;
当上述多个子信道中不存在为该站点分配的子信道时,控制输出装置1703在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
本发明实施例中,该触发帧还可以用于指示上行发送时长,站点在为该站点分配的子信道上传输数据帧的时长或站点在总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过该上行发送时长。
作为一种可选的实施方式,该触发帧为下行多用户传输帧或多用户块确认请求MU-BAR帧,处理器1701控制输出装置1703在为该站点分配的子信道上传输数据帧的具体实施方式可以为:
控制输出装置1703在为该站点分配的子信道上传输块确认帧或第一确认帧。
作为一种可选的实施方式,当该触发帧为多用户块确认请求MU-BAR帧时,处理器1701控制输入装置1702接收接入点发送的触发帧之前,还可以调用存储器1704中存储的应用程序,并执行以下操作:
控制输入装置1702接收接入点发送的下行多用户传输帧。
作为一种可选的实施方式,该触发帧为多用户请求发送MU-RTS帧,处理器1701控制输出装置1703在为该站点分配的子信道上传输数据帧的具体实施方式可以为:
控制输出装置1703在为该站点分配的子信道上传输增强的清除发送E-CTS帧。
相应地,处理器1701在判断上述多个子信道中存在为该站点分配的子信道之后,还可以调用存储器1704中存储的应用程序,并执行以下操作:
控制输出装置1703在总传输信道上发送清除发送CTS帧。
作为一种可选的实施方式,当上述多个子信道中不存在为该站点分配的子信道时,处 理器1701还可以调用存储器1704中存储的应用程序,并执行以下操作:
控制输入装置1702接收接入点在接收到该站点通过竞争方式传输的数据帧后发送的第二确认帧或响应帧。
可见,实施图17所示的站点,能够使总传输信道中未分配给任何站点的子信道合理被使用,从而提高了系统的资源利用率。此外,将站点传输数据帧的时长控制在上行发送时长内,从而可以使得各个站点的上行传输在时域上对齐。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例接入点或站点中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例公开的一种基于OFDMA的数据传输方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (28)

  1. 一种基于OFDMA的数据传输方法,其特征在于,包括:
    接入点在总传输信道中的至少一个子信道中发送触发帧,所述触发帧用于指示所述总传输信道中的多个子信道的分配情况;
    当所述多个子信道中包括为站点分配的子信道时,所述接入点接收所述站点在为所述站点分配的子信道上传输的数据帧;
    当所述多个子信道中包括未为任何站点分配的子信道时,所述接入点接收站点在所述未为任何站点分配的子信道上通过竞争方式传输的数据帧。
  2. 根据权利要求1所述的方法,其特征在于,所述触发帧还用于指示上行发送时长,所述站点在为所述站点分配的子信道上传输数据帧的时长或所述站点在所述未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过所述上行发送时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述触发帧为下行多用户传输帧或多用户块确认请求帧,所述接入点接收所述站点在为所述站点分配的子信道上传输的数据帧,包括:
    所述接入点接收所述站点在为所述站点分配的子信道上传输的块确认帧或第一确认帧。
  4. 根据权利要求3所述的方法,其特征在于,当所述触发帧为所述多用户块确认请求帧时,所述接入点在总传输信道中的至少一个子信道中发送触发帧之前,所述方法还包括:
    所述接入点在所述总传输信道中的至少一个子信道中发送下行多用户传输帧。
  5. 根据权利要求1或2所述的方法,其特征在于,所述触发帧为多用户请求发送帧,所述接入点接收所述站点在为所述站点分配的子信道上传输的数据帧,包括:
    所述接入点接收所述站点在为所述站点分配的子信道上传输的增强的清除发送帧。
  6. 根据权利要求5所述的方法,其特征在于,所述接入点在总传输信道中的至少一个子信道中发送触发帧之后,所述方法还包括:
    所述接入点接收所述站点在所述总传输信道上发送的清除发送CTS帧。
  7. 根据权利要求1或2所述的方法,其特征在于,当所述多个子信道中包括未为任何站点分配的子信道时,所述方法还包括:
    所述接入点在接收到所述站点通过竞争方式传输的数据帧后,向所述站点发送第二确认帧或响应帧。
  8. 一种基于OFDMA的数据传输方法,其特征在于,包括:
    站点接收接入点发送的触发帧,所述触发帧用于指示总传输信道中的多个子信道的分配情况;
    所述站点根据所述总传输信道中的多个子信道的分配情况,判断所述多个子信道中是否存在为所述站点分配的子信道;
    当所述多个子信道中存在为所述站点分配的子信道时,所述站点在为所述站点分配的子信道上传输数据帧;
    当所述多个子信道中不存在为所述站点分配的子信道时,所述站点在所述总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
  9. 根据权利要求8所述的方法,其特征在于,所述触发帧还用于指示上行发送时长,所述站点在为所述站点分配的子信道上传输数据帧的时长或所述站点在所述总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过所述上行发送时长。
  10. 根据权利要求8或9所述的方法,其特征在于,所述触发帧为下行多用户传输帧或多用户块确认请求帧,所述站点在为所述站点分配的子信道上传输数据帧,包括:
    所述站点在为所述站点分配的子信道上传输块确认帧或第一确认帧。
  11. 根据权利要求10所述的方法,其特征在于,当所述触发帧为所述多用户块确认请求帧时,所述站点接收接入点发送的触发帧之前,所述方法还包括:
    所述站点接收所述接入点发送的下行多用户传输帧。
  12. 根据权利要求8或9所述的方法,其特征在于,所述触发帧为多用户请求发送帧,所述站点在为所述站点分配的子信道上传输数据帧,包括:
    所述站点在为所述站点分配的子信道上传输增强的清除发送帧。
  13. 根据权利要求12所述的方法,其特征在于,所述站点判断所述多个子信道中存在为所述站点分配的子信道之后,所述方法还包括:
    所述站点在所述总传输信道上发送清除发送CTS帧。
  14. 根据权利要求8或9所述的方法,其特征在于,当所述多个子信道中不存在为所述站点分配的子信道时,所述方法还包括:
    所述站点接收所述接入点在接收到所述站点通过竞争方式传输的数据帧后发送的第二确认帧或响应帧。
  15. 一种接入点,其特征在于,包括:
    第一发送单元,用于在总传输信道中的至少一个子信道中发送触发帧,所述触发帧用于指示所述总传输信道中的多个子信道的分配情况;
    第一接收单元,用于当所述多个子信道中包括为站点分配的子信道时,接收所述站点在为所述站点分配的子信道上传输的数据帧;
    第二接收单元,用于当所述多个子信道中包括未为任何站点分配的子信道时,接收站点在所述未为任何站点分配的子信道上通过竞争方式传输的数据帧。
  16. 根据权利要求15所述的接入点,其特征在于,所述触发帧还用于指示上行发送时长,所述站点在为所述站点分配的子信道上传输数据帧的时长或所述站点在所述未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过所述上行发送时长。
  17. 根据权利要求15或16所述的接入点,其特征在于,所述触发帧为下行多用户传输帧或多用户块确认请求帧,所述第一接收单元接收所述站点在为所述站点分配的子信道上传输的数据帧的方式具体为:
    所述第一接收单元接收所述站点在为所述站点分配的子信道上传输的块确认帧或第一确认帧。
  18. 根据权利要求17所述的接入点,其特征在于,当所述触发帧为所述多用户块确认请求帧时,所述接入点还包括:
    第二发送单元,用于在所述第一发送单元在总传输信道中的至少一个子信道中发送触发帧之前,在所述总传输信道中的至少一个子信道中发送下行多用户传输帧。
  19. 根据权利要求15或16所述的接入点,其特征在于,所述触发帧为多用户请求发送帧,所述第一接收单元接收所述站点在为所述站点分配的子信道上传输的数据帧的方式具体为:
    所述第一接收单元接收所述站点在为所述站点分配的子信道上传输的增强的清除发送帧。
  20. 根据权利要求19所述的接入点,其特征在于,所述接入点还包括:
    第三接收单元,用于在所述第一发送单元在总传输信道中的至少一个子信道中发送触发帧之后,接收所述站点在所述总传输信道上发送的清除发送CTS帧。
  21. 根据权利要求15或16所述的接入点,其特征在于,当所述多个子信道中包括未为任何站点分配的子信道时,所述接入点还包括:
    第三发送单元,用于在所述第二接收单元接收到所述站点通过竞争方式传输的数据帧后,向所述站点发送第二确认帧或响应帧。
  22. 一种站点,其特征在于,包括:
    第一接收单元,用于接收接入点发送的触发帧,所述触发帧用于指示总传输信道中的 多个子信道的分配情况;
    判断单元,用于根据所述总传输信道中的多个子信道的分配情况,判断所述多个子信道中是否存在为所述站点分配的子信道;
    第一发送单元,用于当所述判断单元判断所述多个子信道中存在为所述站点分配的子信道时,在为所述站点分配的子信道上传输数据帧;
    第二发送单元,用于当所述判断单元判断所述多个子信道中不存在为所述站点分配的子信道时,在所述总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧。
  23. 根据权利要求22所述的站点,其特征在于,所述触发帧还用于指示上行发送时长,所述第一发送单元在为所述站点分配的子信道上传输数据帧的时长或所述第二发送单元在所述总传输信道中未为任何站点分配的子信道上通过竞争方式传输数据帧的时长均不超过所述上行发送时长。
  24. 根据权利要求22或23所述的站点,其特征在于,所述触发帧为下行多用户传输帧或多用户块确认请求帧,所述第一发送单元在为所述站点分配的子信道上传输数据帧的方式具体为:
    所述第一发送单元在为所述站点分配的子信道上传输块确认帧或第一确认帧。
  25. 根据权利要求24所述的站点,其特征在于,当所述触发帧为所述多用户块确认请求帧时,所述站点还包括:
    第二接收单元,用于在所述第一接收单元接收接入点发送的触发帧之前,接收所述接入点发送的下行多用户传输帧。
  26. 根据权利要求22或23所述的站点,其特征在于,所述触发帧为多用户请求发送帧,所述第一发送单元在为所述站点分配的子信道上传输数据帧的方式具体为:
    所述第一发送单元在为所述站点分配的子信道上传输增强的清除发送帧。
  27. 根据权利要求26所述的站点,其特征在于,所述站点还包括:
    第三发送单元,用于在所述判断单元判断所述多个子信道中存在为所述站点分配的子信道之后,在所述总传输信道上发送清除发送CTS帧。
  28. 根据权利要求22或23所述的站点,其特征在于,当所述多个子信道中不存在为所述站点分配的子信道时,所述站点还包括:
    第三接收单元,用于接收所述接入点在接收到所述第二发送单元通过竞争方式传输的数据帧后发送的第二确认帧或响应帧。
PCT/CN2016/098715 2015-09-25 2016-09-12 一种基于ofdma的数据传输方法及相关设备 WO2017050143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510622186.9A CN106559192B (zh) 2015-09-25 2015-09-25 一种基于ofdma的数据传输方法及相关设备
CN201510622186.9 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017050143A1 true WO2017050143A1 (zh) 2017-03-30

Family

ID=58385579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098715 WO2017050143A1 (zh) 2015-09-25 2016-09-12 一种基于ofdma的数据传输方法及相关设备

Country Status (2)

Country Link
CN (1) CN106559192B (zh)
WO (1) WO2017050143A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672512B (zh) * 2017-10-16 2021-06-08 华为技术有限公司 一种数据联合传输方法及相关设备
CN109039404A (zh) * 2018-08-03 2018-12-18 佛山市甜慕链客科技有限公司 一种用于操作无线接入点的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534559A (zh) * 2008-03-11 2009-09-16 朗讯科技公司 资源分配器及资源分配方法
WO2012146164A1 (zh) * 2011-04-29 2012-11-01 华为技术有限公司 无线局域网中多用户传输数据的方法及装置
CN103974447A (zh) * 2013-02-06 2014-08-06 华为技术有限公司 数据传输方法、装置和系统
CN104219780A (zh) * 2014-09-26 2014-12-17 上海交通大学 一种支持全双工ofdma的随机接入介质访问控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534559A (zh) * 2008-03-11 2009-09-16 朗讯科技公司 资源分配器及资源分配方法
WO2012146164A1 (zh) * 2011-04-29 2012-11-01 华为技术有限公司 无线局域网中多用户传输数据的方法及装置
CN103974447A (zh) * 2013-02-06 2014-08-06 华为技术有限公司 数据传输方法、装置和系统
CN104219780A (zh) * 2014-09-26 2014-12-17 上海交通大学 一种支持全双工ofdma的随机接入介质访问控制方法

Also Published As

Publication number Publication date
CN106559192A (zh) 2017-04-05
CN106559192B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
JP7394920B2 (ja) 通信装置、通信方法および集積回路
US10959266B2 (en) OFDMA contention method and access point
US10623219B2 (en) Multi-user communication in wireless networks
CN107211323B (zh) 用于在无线lan多用户传输机会中传输数据的系统和方法
CN107113782B (zh) 用于数字通信中避免干扰的系统和方法
KR20180098613A (ko) 액세스 방법 및 장치
US20210029722A1 (en) Wireless communication method for uplink multiple-user transmission schedule and wireless communication terminal using the method
WO2017140177A1 (zh) 一种通信方法、接入点以及站点
KR20200080339A (ko) 다중 사용자 상향 전송을 위한 무선 통신 단말 및 무선 통신 방법
US11937294B2 (en) Communication method, apparatus, computer-readable medium and electronic device
TWI575989B (zh) 應用於競爭協定下的無線通訊系統、無線通訊方法及無線通訊裝置
US10367615B2 (en) Access point AP, station STA, communications system, and data transmission method
WO2017050143A1 (zh) 一种基于ofdma的数据传输方法及相关设备
JP2023546232A (ja) 通信方法および装置
EP3389312B1 (en) Determination of a transmission opportunity by an access point
KR20230144638A (ko) Rta 트래픽과 edca txop 공유
US20200389905A1 (en) Devices, systems and methods for low latency data transmission in wireless network
WO2021056287A1 (zh) 一种通信方法及装置
CN117769047A (zh) 数据传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848025

Country of ref document: EP

Kind code of ref document: A1