WO2021196984A1 - Led驱动电路、灯管和照明装置 - Google Patents

Led驱动电路、灯管和照明装置 Download PDF

Info

Publication number
WO2021196984A1
WO2021196984A1 PCT/CN2021/079523 CN2021079523W WO2021196984A1 WO 2021196984 A1 WO2021196984 A1 WO 2021196984A1 CN 2021079523 W CN2021079523 W CN 2021079523W WO 2021196984 A1 WO2021196984 A1 WO 2021196984A1
Authority
WO
WIPO (PCT)
Prior art keywords
input terminal
unit
terminal
electrically connected
output terminal
Prior art date
Application number
PCT/CN2021/079523
Other languages
English (en)
French (fr)
Inventor
周家明
蒲纪忠
甘彩英
赵艺佼
Original Assignee
晨辉光宝科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨辉光宝科技股份有限公司 filed Critical 晨辉光宝科技股份有限公司
Priority to US17/612,578 priority Critical patent/US11770886B2/en
Publication of WO2021196984A1 publication Critical patent/WO2021196984A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects

Definitions

  • the embodiment of the present invention relates to the field of lighting technology, in particular to an LED drive circuit, a lamp tube and a lighting device.
  • Ballasts can be divided into two types: Instant Start ballasts and Program Start ballasts.
  • the ballast has a resonant circuit, and its drive design matches the load characteristics of the fluorescent lamp. When starting, it outputs high frequency and high voltage (50-100KHZ, 600-1200V).
  • LED tubes will be replaced with fluorescent lamps. Since fluorescent lamp caps are mostly standard caps, the caps of LED tubes are also standard caps. Therefore, LED tubes are compatible with traditional lighting devices.
  • the lamp holder can be matched in structure.
  • LED tubes include TYPE A replacement type, TYPE B trimming type and TYPE A+B compatible type, etc.
  • TYPE A replacement type and TYPE A+B compatible type can be applied to ballasts, while TYPE B-cutting type is only suitable for AC power supply.
  • TYPE B-cutting type is only suitable for AC power supply.
  • the embodiment of the present invention provides an LED driving circuit, a lamp tube and a lighting device to improve the safety of the lighting device.
  • an embodiment of the present invention provides an LED driving circuit, including: a first AC input terminal, a second AC input terminal, a driving module, a first protection unit, a first DC output terminal, and a second DC output terminal ;
  • the driving module includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the driving module is electrically connected to the first AC input terminal.
  • the second input terminal is electrically connected to the second AC input terminal, the first output terminal of the drive module is electrically connected to the first DC output terminal, and the second output terminal of the drive module is electrically connected to the second
  • the DC output terminal is electrically connected;
  • the driving module is used to convert the AC voltage input from the first AC input terminal and the second AC input terminal into a DC voltage, and pass the first DC output terminal and the second DC output terminal output;
  • the first protection unit includes a voltage detection sub-unit and an abnormal cut-off sub-unit, the voltage detection sub-unit is connected in parallel between two corresponding voltage nodes in the drive module, and the voltage detection sub-unit is used to detect The voltage value of the drive module; the abnormal cut-off sub-unit is connected in series between the second input terminal of the drive module and the second AC input terminal; the first protection unit is used to detect the drive module When the voltage of the module is abnormal, the circuit of the drive module is disconnected.
  • the driving module includes: a rectifying unit and a filtering unit;
  • the rectification unit includes a first input terminal, a second input terminal, an output terminal, and a ground terminal.
  • the first input terminal of the rectification unit serves as the first input terminal of the driving module, and the second input terminal of the rectification unit Electrically connected to the second input terminal of the drive module, and electrically connected to the first ground wire of the ground terminal of the rectifier unit;
  • the filter unit includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the filter unit is electrically connected to the output terminal of the rectifier unit.
  • the second input terminal is electrically connected to the first ground wire, the first output terminal of the filter unit serves as the first output terminal of the drive module, and the second output terminal of the filter unit serves as the first output terminal of the drive module.
  • the voltage detection subunit is connected in parallel between the first input terminal and the second input terminal of the rectification unit; or,
  • the voltage detection subunit is connected in parallel between the first output terminal and the second output terminal of the rectification unit; or,
  • the voltage detection subunit is connected in parallel between the first output terminal and the second output terminal of the filter unit.
  • the voltage detection subunit includes a varistor, and the temperature of the varistor increases as the voltage increases.
  • the abnormal cut-off subunit includes a thermal fuse.
  • the LED driving circuit further includes: a spike voltage absorbing unit connected between the first AC input terminal and the second AC input terminal.
  • the spike voltage absorbing unit includes a first capacitor, and the first capacitor is connected between the first AC input terminal and the second AC input terminal.
  • the driving module further includes a rectifying unit, a filtering unit, and a voltage regulating unit;
  • the rectification unit includes a first input terminal, a second input terminal, an output terminal, and a ground terminal.
  • the first input terminal of the rectification unit serves as the first input terminal of the driving module, and the second input terminal of the rectification unit Electrically connected to the second input terminal of the driving module, and the ground terminal of the rectifier unit is electrically connected to the first ground wire;
  • the filter unit includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the filter unit is electrically connected to the output terminal of the rectifier unit.
  • the second input terminal is electrically connected to the first ground wire, the first output terminal of the filter unit serves as the first output terminal of the drive module, and the second output terminal of the filter unit serves as the first output terminal of the drive module.
  • the voltage regulating unit includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the voltage regulating unit is electrically connected to the first output terminal of the filter unit, so
  • the second input terminal of the voltage regulating unit is electrically connected with the second input terminal of the filter unit, the first output terminal of the voltage regulating unit is electrically connected with the first DC output terminal, and the The second output terminal is electrically connected to the second DC output terminal.
  • the voltage regulating unit includes a first control chip and a transformer
  • the first end of the primary coil of the transformer is electrically connected to the first output end of the filter unit through a first diode, and the second end of the primary coil is electrically connected to the second DC output end;
  • the signal input end of the first control chip is electrically connected to the first end of the primary coil of the transformer, the signal output end of the first control chip is electrically connected to the second output end of the filter unit, and the first control chip is electrically connected to the second output end of the filter unit.
  • a control chip is used to control the output voltage of the voltage regulating unit.
  • the drive module further includes a frequency detection unit and a switch unit;
  • the first control chip further includes a control signal input terminal;
  • the input terminal of the frequency detection unit is electrically connected to the second AC input terminal, and the control signal output terminal of the frequency detection unit is electrically connected to the control signal input terminal of the first control chip and the control terminal of the switch unit. connect;
  • the first end of the switch unit is electrically connected to the second end of the primary coil of the transformer, and the second end of the switch unit is electrically connected to the first ground wire.
  • the LED driving circuit further includes: a second protection unit, the second protection unit includes an input terminal and a ground terminal, the input terminal of the second protection unit is electrically connected to the second input terminal of the filter unit, The second protection unit is used to detect the impedance of the second input end of the filter unit to the ground, and control the second input end of the filter unit to be connected to or disconnected from the ground according to the magnitude of the detected impedance.
  • a second protection unit the second protection unit includes an input terminal and a ground terminal, the input terminal of the second protection unit is electrically connected to the second input terminal of the filter unit, The second protection unit is used to detect the impedance of the second input end of the filter unit to the ground, and control the second input end of the filter unit to be connected to or disconnected from the ground according to the magnitude of the detected impedance.
  • an embodiment of the present invention also provides a lamp tube, including: a first pin, a second pin, and the LED driving circuit according to any embodiment of the present invention, the first pin and the The first AC input terminal of the driving circuit is electrically connected, and the second pin is electrically connected with the second AC input terminal.
  • an embodiment of the present invention also provides a lighting device, including: a ballast and the lamp tube according to any embodiment of the present invention, the ballast including a first terminal, a second terminal, The first output terminal and the second output terminal, the first terminal and the second terminal of the ballast are connected to the mains, the first output terminal of the ballast is connected to the first pin of the lamp tube Electrically connected, the second output end of the ballast is electrically connected to the second pin of the lamp tube.
  • the embodiment of the present invention provides a first protection unit in the LED drive circuit.
  • the first protection unit includes a voltage detection subunit and an abnormal cutoff subunit.
  • the voltage detection subunit is connected in parallel between two corresponding voltage nodes in the drive module.
  • the detection sub-unit is used to detect the voltage value of the drive module;
  • the abnormal cut-off sub-unit is connected in series between the second input terminal and the second AC input terminal of the drive module;
  • the first protection unit is used to detect an abnormal voltage of the drive module , Disconnect the circuit of the drive module. It can be seen that the first protection unit can detect the high voltage output by the ballast through the voltage detection subunit. When the detected high voltage lasts for a long time, the first protection unit can cut off the input circuit of the LED drive circuit by abnormally cutting the subunit.
  • the embodiment of the present invention starts the protection by detecting the abnormal voltage value in the LED driving circuit, and disconnects the circuit of the driving module after the protection is started, the applicable abnormal conditions are more extensive, and it is compatible with various types of lighting devices.
  • FIG. 1 is a circuit diagram of an LED driving circuit provided by an embodiment of the present invention
  • FIG. 2 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • FIG. 5 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • Fig. 6 is a circuit diagram of yet another LED driving circuit provided by an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a lamp tube provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a lighting device provided by an embodiment of the present invention.
  • FIG. 1 is a circuit diagram of an LED driving circuit provided by an embodiment of the present invention.
  • the LED drive circuit includes: a first AC input terminal ( Figure 1 exemplarily shows that the first AC input terminal includes two short-circuited terminals, which are terminal X1 and terminal X2, respectively),
  • the second AC input terminal ( Figure 1 exemplarily shows that the second AC input terminal includes two short-circuited terminals, namely terminal X3 and terminal X4)
  • drive module 100 The first protection unit 200,
  • the first DC output terminal VO+ and the second DC output terminal VO- The first DC output terminal VO+ and the second DC output terminal VO-.
  • the driving module 100 includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the driving module 100 is electrically connected to the first AC input terminal, and the second input terminal of the driving module 100 is electrically connected to the The second AC input terminal is electrically connected, the first output terminal of the driving module 100 is electrically connected with the first DC output terminal VO+, and the second output terminal of the driving module 100 is electrically connected with the second DC output terminal VO-.
  • the driving module 100 is configured to convert the AC voltage input from the first AC input terminal and the second AC input terminal into a DC voltage, and output it through the first DC output terminal VO+ and the second DC output terminal VO-.
  • the first protection unit 200 includes a voltage detection sub-unit 210 and an abnormal cut-off sub-unit 220.
  • the voltage detection sub-unit 210 is connected in parallel between two corresponding voltage nodes in the driving module 100.
  • the voltage detection sub-unit 210 is used to detect the driving module 100.
  • the abnormal cut-off sub-unit 220 is connected in series between the second input terminal and the second AC input terminal of the drive module 100; the first protection unit 200 is used to disconnect the drive when an abnormal voltage of the drive module 100 is detected The circuit of the module 100.
  • the two corresponding voltage nodes in the driving module 100 refer to nodes in the driving module 100 that are used to transmit AC voltage or DC voltage.
  • the driving module 100 includes a first rectifier subunit DB1.
  • the first rectifier subunit DB1 includes a first input terminal, a second input terminal, an output terminal, and a ground terminal.
  • the first rectifier subunit DB1 The first input terminal of is used as the first input terminal of the driving module 100, and the second input terminal of the first rectifier unit DB1 is electrically connected to the second input terminal of the driving module 100.
  • the voltage between the first input terminal and the second input terminal of the first rectifier unit DB1 is an AC voltage
  • the voltage between the output terminal and the ground terminal of the first rectifier unit DB1 is a DC voltage.
  • the first input terminal and the second input terminal of the first rectifier subunit DB1 are two corresponding voltage nodes
  • the output terminal and the ground terminal of the first rectifier subunit DB1 are two corresponding voltage nodes
  • the voltage detection subunit 210 may be connected in parallel between the first input terminal and the second input terminal of the first rectifier subunit DB1, or connected in parallel between the output terminal of the first rectifier subunit DB1 and the ground terminal.
  • the first DC output terminal VO+ and the second DC output terminal VO- can be connected to the LED lamp beads on the lamp tube ( Figure 1 exemplarily shows that a plurality of LED lamp beads in the lamp tube are connected in series) ,
  • the first AC input terminal and the second AC input terminal of the LED drive circuit are connected to the AC voltage output by the ballast.
  • the ballast When the ballast starts, it outputs high frequency and high voltage 50-100KHZ, 600-1200V. After starting, the LED drive circuit can The output voltage of the ballast is clamped at the normal working voltage, and the normal working voltage is around 100V.
  • the LED drive circuit cannot make the ballast output voltage clamp at the normal working voltage of about 100V, and the ballast output 600 -1200V high voltage is applied to the entire circuit loop for a long time, and exceeds the stress of the electronic components in the LED drive circuit.
  • the electronic components will generate overvoltage or overcurrent, which will generate heat and damage, and there is a hidden danger of fire.
  • the voltage detection subunit 210 is connected in parallel between two corresponding voltage nodes in the driving module 100, and can detect the high voltage output by the ballast.
  • the subunit is abnormally cut off 220 is disconnected, that is, the abnormal cut-off subunit 220 cuts off the input circuit of the LED drive circuit, so that the LED drive circuit stops working, disconnects the LED drive circuit and the power grid, and disconnects the LED drive circuit and other devices.
  • the connection of the LED drive circuit improves the safety of the LED drive circuit, thereby enhancing the safety of the lighting device.
  • the embodiment of the present invention starts the protection by detecting the abnormal voltage value in the LED driving circuit, and disconnects the circuit of the driving module 100 after the protection is started, the applicable abnormal conditions are more extensive, and it is compatible with various types of lighting devices.
  • Fig. 2 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • the voltage detection subunit 210 includes a varistor RV1, and the temperature of the varistor RV1 increases as the voltage increases.
  • the temperature of the varistor RV1 can gradually increase under high pressure.
  • the ballast is in the start-up phase, its output high voltage sequence time is shorter, and the temperature of the varistor RV1 is lower.
  • the ballast continues to be high, The temperature of the varistor RV1 is high, which triggers the disconnection of the abnormal cut-off subunit 220.
  • the embodiments of the present invention are arranged in this way, so that the structure of the LED driving circuit is simple, the cost is low, and the implementation is easy.
  • the abnormal cut-off subunit 220 includes a thermal fuse F3.
  • the thermal fuse F3 is also called a thermal fuse, which is a temperature sensing circuit cut-off device.
  • the thermal fuse F3 can sense the heat and temperature generated by the varistor RV1. When the temperature of the varistor RV1 reaches the working temperature of the thermal fuse F3, the temperature The fuse F3 is open, which cuts off the input circuit of the LED drive circuit and makes the LED drive circuit stop working.
  • the embodiments of the present invention are arranged in this way, so that the structure of the LED driving circuit is simple, the cost is low, and the implementation is easy.
  • the LED driving circuit further includes a spike voltage absorbing unit 300, which is connected to one of the first AC input terminal and the second AC input terminal between.
  • the spike voltage absorbing unit 300 is connected between the output lines of the ballast, and is used to absorb the high frequency and high voltage spikes output by the ballast when the ballast is started, so that the voltage received by the drive module 100 is in the line components.
  • the electronic components of the driving module 100 are protected, thereby further improving the safety of the LED driving circuit.
  • the spike voltage absorbing unit 300 includes a first capacitor CX2, and the first capacitor CX2 is connected to one of the first AC input terminal and the second AC input terminal. between.
  • the first capacitor CX2 has the function of passing AC and blocking DC, which is a non-polar electronic component that resists the impact of high voltage and large current.
  • the output voltage of the ballast is within the stress range of the electronic components in the LED drive circuit, which is beneficial to avoid the early failure and premature damage of the electronic components caused by high voltage .
  • the voltage detection subunit 210 in the first protection unit 200 is exemplarily connected to one of the first output terminal and the second output terminal of the first rectifier unit DB1 in parallel.
  • the voltage detection subunit 210 can also be arranged in other positions. The connection position of the voltage detection subunit 210 in the driving module 100 will be described below.
  • FIG. 3 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • the driving module includes: a rectifying unit 110 and a filtering unit 120.
  • the rectifier unit 110 includes a first input terminal, a second input terminal, an output terminal, and a ground terminal.
  • the first input terminal of the rectifier unit 110 serves as the first input terminal of the driving module, and the second input terminal of the rectifier unit 110 is connected to the first input terminal of the driving module.
  • the two input terminals are electrically connected, and the ground terminal of the rectifier unit 110 is electrically connected with the first ground wire.
  • the filter unit 120 includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the filter unit 120 is electrically connected to the output terminal of the rectifier unit 110, and the second input terminal of the filter unit 120 Electrically connected to the first ground wire, the first output terminal of the filter unit 120 serves as the first output terminal of the drive module, and the second output terminal of the filter unit 120 serves as the second output terminal of the drive module.
  • the rectifier unit 110 may be a rectifier circuit unit commonly used in the technical field, for example, a bridge rectifier circuit unit.
  • the rectifier unit 110 includes a first rectifier unit DB1 and a second rectifier unit DB2.
  • the first rectifier unit DB1 includes two input terminals (both input terminals are represented by AC) and two output terminals (two output terminals). The output terminals are represented by V+ and V- respectively).
  • the two input ends of the first rectifier unit DB1 are respectively electrically connected to the first AC input end of the LED drive circuit (the first AC input end is represented by L1 and N1 in Figure 3) and the second AC input end (the second AC input end in Figure 3).
  • the AC input terminal includes two short-circuited terminals, denoted by AC2 and AC3 respectively).
  • One of the two output terminals of the first rectifier unit DB1 is electrically connected to the first input terminal of the filter unit 120, and the other is connected to the first input terminal of the filter unit 120.
  • the ground wire is electrically connected;
  • the two input terminals of the second rectifier unit DB2 both input terminals are represented by AC
  • the two output terminals of the second rectifier unit DB2 (The two output terminals are denoted by V+ and V- respectively) one of them is electrically connected to the first input terminal of the filter unit 120, and the other is electrically connected to the first ground wire.
  • the filter unit 120 includes a second capacitor C1, a third capacitor C2, a first inductor L1, a second inductor L2, a first resistor R10, and a second resistor R7.
  • the second capacitor C1 is electrically connected between the output terminal of the rectifying unit 110 and the first ground
  • the third capacitor C2 is electrically connected between the first output terminal and the second output terminal of the filter unit 120
  • the second output terminal of the filter unit 120 The output terminal is electrically connected to the second ground wire.
  • the first inductor L1 and the first resistor R10 are connected in parallel, the first end of the first inductor L1 is electrically connected to the second input end of the filter unit 120, the second end of the first inductor L1 is electrically connected to the second ground wire, and the first end of the first inductor L1 is electrically connected to the second ground.
  • the two inductors L2 and the second resistor R7 are connected in parallel, and the first end of the second inductor L2 is electrically connected to the first output end of the rectifying unit 110, and the second end of the second inductor L2 is electrically connected to the first output end of the filter unit 120. connect.
  • the filter unit 120 is used to eliminate EMI interference in the circuit.
  • the voltage detection subunit 210 is connected in parallel between the first output terminal and the second output terminal of the rectifier unit 110. That is, the voltage detection sub-unit 210 is connected in parallel between the first output terminal and the second output terminal of the second rectifier sub-unit DB2. Since the second rectifier subunit DB2 rectifies and outputs the input AC voltage, if the input AC voltage is greater, the output voltage of the second rectifier subunit DB2 is greater. Therefore, by detecting the output voltage of the second rectifier unit DB2, the input AC voltage is detected.
  • FIG. 4 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • the voltage detection subunit 210 is connected in parallel between the first input terminal and the second input terminal of the rectifier unit 110. That is, the voltage detection subunit 210 is connected in parallel between the first input terminal and the second input terminal of the first rectifying unit 110DB1, so as to detect the input AC voltage.
  • FIG. 5 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • the voltage detection subunit 210 is connected in parallel between the first output terminal and the second output terminal of the filter unit 120. Since the filter unit 120 filters the signal output by the rectifier unit 110, if the input AC voltage is greater, the voltage output by the second rectifier subunit DB2 will be greater, and then the voltage output by the filter unit 120 will be greater. On the contrary, if the voltage The greater the output voltage of the filter unit 120 detected by the detection sub-unit 210, the greater the input AC voltage. Therefore, by detecting the output voltage of the filter unit 120, the AC voltage is detected as input.
  • FIG. 6 is a circuit diagram of another LED driving circuit provided by an embodiment of the present invention.
  • the driving module further includes a voltage regulating unit 130.
  • the voltage regulating unit 130 includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal.
  • the first input terminal of the voltage regulating unit 130 is electrically connected to the first output terminal of the filter unit 120.
  • the voltage regulating unit 130 The second input terminal of the voltage regulating unit 130 is electrically connected to the second output terminal of the filter unit 120, the first output terminal of the voltage regulating unit 130 is electrically connected to the first DC output terminal VO+, and the second output terminal of the voltage regulating unit 130 is electrically connected to the second DC output terminal VO+.
  • the output terminal VO- is electrically connected.
  • the voltage regulating unit 130 is used for converting the DC voltage input from the first input terminal and the second input terminal into another or multiple DC voltages.
  • the voltage regulating unit 130 includes a first control chip U1 and a transformer.
  • the first end of the primary coil of the transformer is electrically connected to the first output end of the filter unit 120 through the first diode D3.
  • the second end of the coil is electrically connected to the second DC output end VO-.
  • the secondary coil of the transformer is used to supply power to the first control chip U1.
  • the signal input terminal of the first control chip U1 (hereinafter the drain terminal Drain) is electrically connected to the first terminal of the primary coil of the transformer, and the signal output terminal of the first control chip U1 is electrically connected to the second output terminal of the filter unit 120,
  • the first control chip U1 is used to control the output voltage of the voltage regulating unit 130.
  • the first control chip U1 can adopt a PWM control chip. Due to the energy storage effect of the transformer T1, the node voltage inside the first control chip U1 will slowly rise. Compared with the voltage, when the reference voltage is reached, the first control chip U1 sends out a PWM signal to disconnect the switch between the drain terminal Drain and the ground terminal GND, and the voltage between the anode of the first diode D3 and the second ground When the connection is disconnected, due to the energy storage effect of the transformer T1, the load will continue to be discharged through the first diode D3. When the resistor divider voltage inside the first control chip U1 is 0, a working cycle inside the first control chip U1 ends and the next cycle starts. Since the transformer T1 has the function of preventing current changes, if the switching frequency of the switch tube inside the first control chip U1 is large enough, for example, 50K-80K, the current can be made stable enough to prevent the LED tube from flickering.
  • the driving module further includes a frequency detection unit 140 and a switch unit Q2; the first control chip U1 also includes a control signal input terminal EN.
  • the input end of the frequency detection unit 140 is electrically connected to the second input end of the rectification unit 110, and the control signal output end of the frequency detection unit 140 is electrically connected to the control signal input end EN of the first control chip U1 and the control end of the switch unit Q2.
  • the first end of the switch unit Q2 is electrically connected to the second end of the primary coil of the transformer, and the second end of the switch unit Q2 is electrically connected to the first ground wire.
  • the working process of the LED driving circuit is that when the ballast is started, it outputs high frequency and high voltage 50-100KHZ, 600-1200V, and the start-up time is 100-600 milliseconds.
  • the high-frequency and high-voltage current first passes through the rectifier unit 110
  • the first capacitor CX2 is connected before the rectifier unit 110, that is, the first capacitor CX2 is directly connected between the output lines of the ballast.
  • the first capacitor CX2 has the function of passing AC and blocking DC, and can resist the impact of high voltage and large current without polarity.
  • the ballast is started, the high frequency and high voltage is absorbed and coupled by the first capacitor CX2.
  • the voltage After flowing into the rectifier unit 110, the voltage is greatly reduced (the voltage is about Around 400V).
  • the high frequency and high voltage are kept within the stress range of the electronic components of the LED drive module, which is beneficial to avoid the early failure and premature damage of the electronic components in the LED drive module caused by the high voltage.
  • the input AC current passes through the abnormal cut-off sub-unit 220, and then absorbs and couples through the first capacitor CX2, and flows into the first rectifier subunit DB1 and the second rectifier subunit DB2 of the rectifier unit 110 for rectification, so that the high-frequency AC changes to DC.
  • the voltage detection sub-unit 210 is rectified by the second rectifier sub-unit DB2, the voltage detection sub-unit 210 will not operate if the voltage is normal (the voltage is about 300-400V).
  • the current and voltage are filtered by the second capacitor, the third capacitor, the first inductor, and the second inductor, and then the fourth capacitor CD1 (for example, the fourth capacitor CD1 is an electrolytic capacitor) becomes a stable direct current.
  • the switching unit Q2 is directly turned on (Q1-D is used in Figure 6 to indicate the connection point of the transformer T1 and the switching unit Q2 , HIF is used to indicate the connection point between the frequency detection unit 140 and the second input terminal of the rectifier unit 110), the first control chip U1 does not work, the current flows through the switch unit Q2 to the ground, and then to the first ground wire of the rectifier unit 110, LED The drive circuit forms a complete loop. If the frequency detection unit 140 detects a normal working voltage of about 100V, the first control chip U1 is operated through the control signal input terminal EN to adjust the output DC voltage. That is equivalent to the BUCK circuit.
  • the ballast will output high frequency and high voltage.
  • the high frequency and high voltage passes through the first rectifier unit DB1 and the second rectifier unit DB2, and the DC voltage is 600-1200V.
  • high voltage is detected on the varistor RV1 in the voltage detection subunit 210, and the varistor RV1 generates heat ,
  • the heat and temperature reach the operating temperature of the thermal fuse F3 in the abnormal cut-off subunit 220, the thermal fuse F3 opens, and the input circuit of the LED drive circuit is cut off, and the LED tube and circuit stop working.
  • the embodiment of the present invention prevents the high frequency and high voltage output by the ballast from exceeding the stress of the electronic components, thereby avoiding the phenomenon of overvoltage, overcurrent, heating and damage of the electronic components, avoiding the hidden danger of fire, and improving the LED The safety of the drive circuit.
  • the LED driving circuit further includes a second protection unit 400
  • the second protection unit 400 includes an input terminal and a ground terminal
  • the input terminal of the second protection unit 400 is connected to the The second input end of the filter unit 120 is electrically connected.
  • the second protection unit 400 is used to detect the impedance of the second input end of the filter unit 120 to ground, and control the second input end of the filter unit 120 to connect to the ground according to the detected impedance.
  • the human body resistance of the contact is connected to the loop of the LED drive circuit.
  • a loop is formed from the first AC input terminal, the rectifier unit 110, and the filter unit 120 to the human body.
  • the impedance of the second input terminal to the first ground wire is abnormal, and the second protection unit 400 detects that the impedance of the second input terminal of the filter unit 120 to the first ground wire is abnormal, and the input terminal of the second protection unit 400 is disconnected from the ground terminal , That is, the second input terminal of the first filter unit 120 is disconnected from the first ground wire, and is disconnected from the circuit between the live wire L, the rectifier unit 110, the first filter unit 120 and the human body, thus realizing electric shock protection and ensuring Personal safety. Since the input terminal of the second protection unit 400 is disconnected from the ground terminal, the loop formed by the human body's electric shock is disconnected, and electric shock protection is realized.
  • the second protection unit 400 includes a second control chip U2, a third resistor R1, a fourth resistor R2, a fifth resistor R3, a sixth resistor R4, a seventh resistor R5, The eighth resistor R6, the ninth resistor R7, the tenth resistor R8, the eleventh resistor R9, and the twelfth resistor RS1 (sampling resistor).
  • the second control chip U2 includes a power input terminal Vcc, a first voltage monitoring terminal VS, and a Two voltage monitoring terminal TRG, current monitoring terminal CS, isolation input terminal DRN and ground terminal GND.
  • the first power input terminal Vcc is electrically connected to the output terminal of the rectifier unit 110 through the third resistor R1, the fourth resistor R2, and the fifth resistor R3, and the first voltage monitoring terminal VS is through the sixth resistor R4, the seventh resistor R5, and the eighth resistor.
  • R6 is electrically connected to the isolated input terminal DRN
  • the current monitoring terminal CS is electrically connected to the first ground wire through the twelfth resistor RS1
  • the second control chip U2 can control the conduction or disconnection between the isolated input terminal DRN and the ground terminal GND ( In FIG. 6, Vbus- is used to indicate the connection point between the isolation input terminal DRN and the second input terminal of the filter unit 120, and Vbus+ is used to indicate the connection point between the second protection unit 400 and the second output terminal of the rectifier unit 110).
  • the first power input terminal Vcc normally receives the working voltage
  • the current monitoring terminal CS of the second control chip U2 continuously collects the difference between the second input terminal of the filter unit 120 and the first ground wire.
  • Current Vbus- in FIG. 6 represents the signal of the second input terminal of the filter unit 120
  • the first voltage monitoring terminal VS and the second voltage monitoring terminal TRG continuously collect between the second input terminal of the filter unit 120 and the first ground Therefore, the grid impedance between the second input terminal of the filter unit 120 and the first ground wire is calculated.
  • the isolated input terminal DRN and the current monitoring terminal Cs are connected, and the current flowing through the sampling resistor of the current monitoring terminal Cs forms a path with the first ground wire. Conversely, if the impedance is determined to be within the abnormal range, the isolated input terminal DRN is disconnected from the current monitoring terminal Cs, and the second input terminal of the filter unit 120 is disconnected from the first ground wire, thereby realizing electric shock protection and ensuring personal safety.
  • the embodiment of the present invention uses the design of the LED drive circuit itself to realize electric shock protection. Once the risk of electric shock is detected, the entire circuit can be disconnected, which reduces the risks and safety hazards when the user uses the lamp tube, and further improves the performance of the LED drive circuit. safety.
  • the embodiment of the present invention also provides a lamp tube, which may be, for example, an LED straight tube lamp or a U tube lamp.
  • Fig. 7 is a schematic structural diagram of a lamp tube provided by an embodiment of the present invention.
  • the lamp tube includes: a first pin A, a second pin B, and an LED drive circuit 10 as provided in any embodiment of the present invention.
  • the first pin A is connected to the first AC input terminal of the drive circuit.
  • the second pin B is electrically connected to the second AC input terminal.
  • the lamp tube provided by the embodiment of the present invention includes the LED driving circuit 10 provided by any embodiment of the present invention, and its technical principles and implementation effects will not be repeated.
  • FIG. 8 is a schematic structural diagram of a lighting device provided by an embodiment of the present invention.
  • the lighting device includes: a ballast 2 and a lamp tube 1 as provided in any embodiment of the present invention.
  • the ballast 2 includes a first terminal L, a second terminal N, a first output terminal, and a second output terminal.
  • the first terminal L and the second terminal N of the ballast 2 are connected to the mains (for example, AC120-277V/60HZ), the first output end of the ballast 2 is electrically connected to the first pin of the lamp tube, and the second output end of the ballast 2 is electrically connected to the second pin of the lamp tube.
  • the ballast 2 includes at least one of an electronic ballast and an inductive ballast.
  • the lighting provided by the embodiment of the present invention includes the LED driving circuit provided by any embodiment of the present invention, and its technical principles and implementation effects will not be repeated.

Abstract

提供了一种LED驱动电路、灯管和照明装置。该LED驱动电路包括:第一交流输入端、第二交流输入端、驱动模块(100)、第一保护单元(200)、第一直流输出端和第二直流输出端;第一保护单元(200)包括电压检测子单元(210)和异常切断子单元(220),电压检测子单元(210)并联连接于驱动模块(100)中对应的两个电压节点之间,电压检测子单元(210)用于检测驱动模块(100)的电压值;异常切断子单元(220)串联连接于驱动模块(100)的第二输入端和第二交流输入端之间;第一保护单元(200)用于在检测到驱动模块(100)的电压异常时,断开驱动模块(100)的回路。与现有技术相比,提升了LED驱动电路的安全性,从而提升了照明装置的安全性。

Description

LED驱动电路、灯管和照明装置 技术领域
本发明实施例涉及照明技术领域,尤其涉及一种LED驱动电路、灯管和照明装置。
背景技术
镇流器主要可分成瞬时启动型(Instant Start)镇流器、预热启动型(Program Start)镇流器两种。镇流器具有谐振电路,其驱动设计与日光灯的负载特性匹配,启动时,输出高频高压(50-100KHZ,600-1200V)。在现有技术中,为了满足节能改造的要求,会将LED灯管替换日光灯,由于日光灯的灯头多为标准灯头,LED灯管的灯头也多为标准灯头,因此,LED灯管与传统照明装置的灯座在结构上能够匹配。
LED灯管包括TYPE A替换型、TYPE B剪线型和TYPE A+B兼容型等。其中,TYPE A替换型和TYPE A+B兼容型能够适用于镇流器,而TYPE B剪线型只适用于交流供电。照明装置在使用过程中,会出现电子元器件损坏和失效等风险,以及TYPE B剪线型误用误接镇流器的风险,存在用电安全的问题。
技术问题
本发明实施例提供一种LED驱动电路、灯管和照明装置,以提升照明装置的安全性。
技术解决方案
第一方面,本发明实施例提供了一种LED驱动电路,包括:第一交流输入端、第二交流输入端、驱动模块、第一保护单元、第一直流输出端和第二直流输出端;
所述驱动模块包括第一输入端、第二输入端、第一输出端和第二输出端,所述驱动模块的第一输入端与所述第一交流输入端电连接,所述驱动模块的第二输入端与所述第二交流输入端电连接,所述驱动模块的第一输出端与所述第一直流输出端电连接,所述驱动模块的第二输出端与所述第二直流输出端电连接;所述驱动模块用于将所述第一交流输入端和第二交流输入端输入的交流电压转换为直流电压,并通过所述第一直流输出端和所述第二直流输出端输出;
所述第一保护单元包括电压检测子单元和异常切断子单元,所述电压检测子单元并联连接于所述驱动模块中对应的两个电压节点之间,所述电压检测子单元用于检测所述驱动模块的电压值;所述异常切断子单元串联连接于所述驱动模块的第二输入端和所述第二交流输入端之间;所述第一保护单元用于在检测到所述驱动模块的电压异常时,断开所述驱动模块的回路。
可选地,所述驱动模块包括:整流单元和滤波单元;
所述整流单元包括第一输入端、第二输入端、输出端和接地端,所述整流单元的第一输入端作为所述驱动模块的第一输入端,所述整流单元的第二输入端与所述驱动模块的第二输入端电连接,所述整流单元的接地端与第一地线电连接;
所述滤波单元包括第一输入端、第二输入端、第一输出端和第二输出端,所述滤波单元的第一输入端与所述整流单元的输出端电连接,所述滤波单元的第二输入端与所述第一地线电连接,所述滤波单元的第一输出端作为所述驱动模块的第一输出端,所述滤波单元的第二输出端作为所述驱动模块的第二输出端;
所述电压检测子单元并联连接于所述整流单元的第一输入端和第二输入端之间;或者,
所述电压检测子单元并联连接于所述整流单元的第一输出端和第二输出端之间;或者,
所述电压检测子单元并联连接于所述滤波单元的第一输出端和第二输出端之间。
可选地,所述电压检测子单元包括压敏电阻,所述压敏电阻随电压的增大温度升高。
可选地,所述异常切断子单元包括温度保险丝。
可选地,LED驱动电路还包括:尖峰电压吸收单元,所述尖峰电压吸收单元连接于所述第一交流输入端和所述第二交流输入端之间。
可选地,所述尖峰电压吸收单元包括第一电容,所述第一电容连接于所述第一交流输入端和所述第二交流输入端之间。
可选地,所述驱动模块还包括整流单元、滤波单元和调压单元;
所述整流单元包括第一输入端、第二输入端、输出端和接地端,所述整流单元的第一输入端作为所述驱动模块的第一输入端,所述整流单元的第二输入端与所述驱动模块的第二输入端,所述整流单元的接地端与第一地线电连接;
所述滤波单元包括第一输入端、第二输入端、第一输出端和第二输出端,所述滤波单元的第一输入端与所述整流单元的输出端电连接,所述滤波单元的第二输入端与所述第一地线电连接,所述滤波单元的第一输出端作为所述驱动模块的第一输出端,所述滤波单元的第二输出端作为所述驱动模块的第二输出端;
所述调压单元包括第一输入端、第二输入端、第一输出端和第二输出端,所述调压单元的第一输入端与所述滤波单元的第一输出端电连接,所述调压单元的第二输入端与所述滤波单元的第二输入端电连接,所述调压单元的第一输出端与所述第一直流输出端电连接,所述调压单元的第二输出端与所述第二直流输出端电连接。
可选地,所述调压单元包括第一控制芯片和变压器;
所述变压器的初级线圈的第一端通过第一二极管电连接至所述滤波单元的第一输出端,所述初级线圈的第二端与所述第二直流输出端电连接;
所述第一控制芯片的信号输入端与所述变压器的初级线圈的第一端电连接,所述第一控制芯片的信号输出端与所述滤波单元的第二输出端电连接,所述第一控制芯片用于控制所述调压单元输出电压的大小。
可选地,所述驱动模块还包括频率检测单元和开关单元;所述第一控制芯片还包括控制信号输入端;
所述频率检测单元的输入端与所述第二交流输入端电连接,所述频率检测单元的控制信号输出端与所述第一控制芯片的控制信号输入端以及所述开关单元的控制端电连接;
所述开关单元的第一端与所述变压器的初级线圈的第二端电连接,所述开关单元的第二端与所述第一地线电连接。
可选地,LED驱动电路还包括:第二保护单元,所述第二保护单元包括输入端和接地端,所述第二保护单元的输入端与所述滤波单元的第二输入端电连接,所述第二保护单元用于检测所述滤波单元的第二输入端对地阻抗,根据检测到的阻抗大小,控制所述滤波单元的第二输入端与地导通或断开。
第二方面,本发明实施例还提供了一种灯管,包括:第一管脚、第二管脚和如本发明任意实施例所述的LED驱动电路,所述第一管脚与所述驱动电路的第一交流输入端电连接,所述第二管脚与所述第二交流输入端电连接。
第三方面,本发明实施例还提供了一种照明装置,包括:镇流器和如本发明任意实施例所述的灯管,所述镇流器包括第一接线端、第二接线端、第一输出端和第二输出端,所述镇流器的第一接线端和第二接线端接入市电,所述镇流器的第一输出端与所述灯管的第一管脚电连接,所述镇流器的第二输出端与所述灯管的第二管脚电连接。
有益效果
本发明实施例在LED驱动电路中设置第一保护单元,第一保护单元包括电压检测子单元和异常切断子单元,电压检测子单元并联连接于驱动模块中对应的两个电压节点之间,电压检测子单元用于检测驱动模块的电压值;异常切断子单元串联连接于驱动模块的第二输入端和第二交流输入端之间;第一保护单元用于在检测到驱动模块的电压异常时,断开驱动模块的回路。由此可见,第一保护单元能够通过电压检测子单元检测镇流器输出的高压,当检测到的高压持续时间较长时,第一保护单元能够通过异常切断子单元切断LED驱动电路的输入回路,使得LED驱动电路停止工作,断开了LED驱动电路和电网之间的连接,断开了LED驱动电路和其他设备之间的连接,提升了LED驱动电路的安全性,从而提升了照明装置的安全性。另外,本发明实施例通过检测LED驱动电路中的异常电压值启动保护,且在启动保护后断开驱动模块的回路,可适用的异常状况更加广泛,且可兼容各种类型的照明装置。
附图说明
图1为本发明实施例提供的一种LED驱动电路的电路图;
图2为本发明实施例提供的另一种LED驱动电路的电路图;
图3为本发明实施例提供的又一种LED驱动电路的电路图;
图4为本发明实施例提供的又一种LED驱动电路的电路图;
图5为本发明实施例提供的又一种LED驱动电路的电路图;
图6为本发明实施例提供的又一种LED驱动电路的电路图;
图7为本发明实施例提供的一种灯管的结构示意图;
图8为本发明实施例提供的一种照明装置的结构示意图。
本发明的实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
本发明实施例提供了一种LED驱动电路。图1为本发明实施例提供的一种LED驱动电路的电路图。参见图1,该LED驱动电路包括:第一交流输入端(图1中示例性地示出了第一交流输入端包括短接的两个接线端子,分别为接线端子X1和接线端子X2)、第二交流输入端(图1中示例性地示出了第二交流输入端包括短接的两个接线端子,分别为接线端子X3和接线端子X4)、驱动模块100、第一保护单元200、第一直流输出端VO+和第二直流输出端VO-。
驱动模块100包括第一输入端、第二输入端、第一输出端和第二输出端,驱动模块100的第一输入端与第一交流输入端电连接,驱动模块100的第二输入端与第二交流输入端电连接,驱动模块100的第一输出端与第一直流输出端VO+电连接,驱动模块100的第二输出端与第二直流输出端VO-电连接。驱动模块100用于将第一交流输入端和第二交流输入端输入的交流电压转换为直流电压,并通过第一直流输出端VO+和第二直流输出端VO-输出。
第一保护单元200包括电压检测子单元210和异常切断子单元220,电压检测子单元210并联连接于驱动模块100中对应的两个电压节点之间,电压检测子单元210用于检测驱动模块100的电压值;异常切断子单元220串联连接于驱动模块100的第二输入端和第二交流输入端之间;第一保护单元200用于在检测到驱动模块100的电压异常时,断开驱动模块100的回路。
其中,驱动模块100中对应的两个电压节点是指驱动模块100中用于传输交流电压或者直流电压的节点。示例性地,如图1所示,驱动模块100包括第一整流子单元DB1,第一整流子单元DB1包括第一输入端、第二输入端、输出端和接地端,第一整流子单元DB1的第一输入端作为驱动模块100的第一输入端,第一整流子单元DB1的第二输入端与驱动模块100的第二输入端电连接。第一整流子单元DB1的第一输入端和第二输入端之间的电压为交流电压,第一整流子单元DB1的输出端和接地端之间的电压为直流电压。那么,第一整流子单元DB1的第一输入端和第二输入端为对应的两个电压节点,第一整流子单元DB1的输出端和接地端为对应的两个电压节点,电压检测子单元210可以并联连接于第一整流子单元DB1的第一输入端和第二输入端之间,或者并联连接于第一整流子单元DB1的输出端和接地端之间。
示例性地,第一直流输出端VO+和第二直流输出端VO-可连接灯管上的LED灯珠(图1中示例性地示出了灯管中的多个LED灯珠串联连接),LED驱动电路的第一交流输入端和第二交流输入端接入镇流器输出的交流电压,镇流器启动时输出高频高压50-100KHZ,600-1200V,启动后,LED驱动电路能够使镇流器输出电压嵌位在正常工作电压,正常工作电压工作在100V左右。然而,当LED驱动电路中的电子元器件损坏或失效后,或者LED灯珠损坏后,LED驱动电路不能使镇流器输出的电压嵌位在100V左右的正常工作电压,镇流器输出的600-1200V高压长时间施加在整个电路回路中,超过了LED驱动电路中的电子元器件的应力,电子元器件就会产生过压或过流的现象,从而发热和损坏,存在着火的隐患。
本发明实施例设置电压检测子单元210并联连接于驱动模块100中对应的两个电压节点之间,能够检测镇流器输出的高压,当检测到的高压持续时间较长时,异常切断子单元220断开,即异常切断子单元220切断了LED驱动电路的输入回路,使得LED驱动电路停止工作,断开了LED驱动电路和电网之间的连接,断开了LED驱动电路和其他设备之间的连接,提升了LED驱动电路的安全性,从而提升了照明装置的安全性。另外,本发明实施例通过检测LED驱动电路中的异常电压值启动保护,且在启动保护后断开驱动模块100的回路,可适用的异常状况更加广泛,且可兼容各种类型的照明装置。
图2为本发明实施例提供的另一种LED驱动电路的电路图。参见图2,在上述各实施例的基础上,可选地,电压检测子单元210包括压敏电阻RV1,压敏电阻RV1随电压的增大温度升高。其中,压敏电阻RV1可以在高压下温度逐渐升高,当镇流器在启动阶段时,其输出的高压时序时间较短,压敏电阻RV1的温度较低,当镇流器持续高压时,压敏电阻RV1的温度较高,触发异常切断子单元220断开。本发明实施例这样设置,使得LED驱动电路的结构简单、成本较低且易于实现。
继续参见图2,在上述各实施例的基础上,可选地,异常切断子单元220包括温度保险丝F3。其中,温度保险丝F3也叫做热熔断体,是温度感应回路切断装置,温度保险丝F3能感应压敏电阻RV1产生的热量和温度,当压敏电阻RV1的温度达到温度保险丝F3的工作温度时,温度保险丝F3开路,切断了LED驱动电路的输入回路,使得LED驱动电路停止工作。本发明实施例这样设置,使得LED驱动电路的结构简单、成本较低且易于实现。
结合图1和图2,在上述各实施例的基础上,可选地,LED驱动电路还包括尖峰电压吸收单元300,尖峰电压吸收单元300连接于第一交流输入端和第二交流输入端之间。其中,尖峰电压吸收单元300接在镇流器的输出线之间,用于在镇流器启动时,吸收镇流器输出的高频高压尖峰,使驱动模块100接收到的电压在线路元器件应力范围之内,保护驱动模块100的电子元器件,从而进一步提升了LED驱动电路的安全性。
继续参见图1和图2,在上述各实施例的基础上,可选地,尖峰电压吸收单元300包括第一电容CX2,第一电容CX2连接于第一交流输入端和第二交流输入端之间。其中,第一电容CX2有通交流隔直流的作用,是一种无极性抗高压大电流冲击的电子元器件,镇流器启动时,高频高压被第一电容CX2吸收耦合,使得流入驱动模块100的整流单元之后的电压大大降低(约在400V左右)。经过第一电容CX2对高频高压尖峰的吸收后,使镇流器的输出电压在LED驱动电路中的电子元器件的应力范围之内,有利于避免高压导致电子元器件早期失效和过早损坏。
需要说明的是,在上述各实施例中,示例性地示出了第一保护单元200中的电压检测子单元210并联连接于第一整流子单元DB1的第一输出端和第二输出端之间,并非对本发明的限定。在其他实施例中,还可以将电压检测子单元210设置在其他位置,下面就电压检测子单元210在驱动模块100中的连接位置进行说明。
图3为本发明实施例提供的又一种LED驱动电路的电路图。参见图3,在上述各实施例的基础上,可选地,驱动模块包括:整流单元110和滤波单元120。整流单元110包括第一输入端、第二输入端、输出端和接地端,整流单元110的第一输入端作为驱动模块的第一输入端,整流单元110的第二输入端与驱动模块的第二输入端电连接,整流单元110的接地端与第一地线电连接。滤波单元120包括第一输入端、第二输入端、第一输出端和第二输出端,滤波单元120的第一输入端与整流单元110的输出端电连接,滤波单元120的第二输入端与第一地线电连接,滤波单元120的第一输出端作为驱动模块的第一输出端,滤波单元120的第二输出端作为驱动模块的第二输出端。
其中,整流单元110可以是本技术领域通用的整流电路单元,例如可以是桥式整流电路单元。可选地,整流单元110包括第一整流子单元DB1和第二整流子单元DB2,第一整流子单元DB1包括两个输入端(两个输入端均用AC表示)和两个输出端(两个输出端分别用V+和V-表示)。第一整流子单元DB1的两个输入端分别电连接LED驱动电路的第一交流输入端(图3中第一交流输入端用L1和N1表示)和第二交流输入端(图3中第二交流输入端包括短接两个接线端,分别用AC2和AC3表示),第一整流子单元DB1的两个输出端中的一个与滤波单元120的第一输入端电连接,另一个与第一地线电连接;第二整流子单元DB2的两个输入端(两个输入端均用AC表示)均电连接LED驱动电路的第二交流输入端,第二整流子单元DB2的两个输出端(两个输出端分别用V+和V-表示)中的一个与滤波单元120的第一输入端电连接,另一个与第一地线电连接。
可选地,滤波单元120包括第二电容C1、第三电容C2、第一电感L1、第二电感L2、第一电阻R10和第二电阻R7。第二电容C1电连接于整流单元110的输出端与第一地线之间,第三电容C2电连接于滤波单元120的第一输出端和第二输出端之间,滤波单元120的第二输出端与第二地线电连接。第一电感L1和第一电阻R10并联连接,第一电感L1的第一端与滤波单元120的第二输入端电连接,第一电感L1的第二端与第二地线电连接,且第二电感L2和第二电阻R7并联连接,且第二电感L2的第一端与整流单元110的第一输出端电连接,第二电感L2的第二端与滤波单元120的第一输出端电连接。滤波单元120用以消除电路中的EMI干扰。
继续参见图3,在本发明的一种实施例中,可选地,电压检测子单元210并联连接于整流单元110的第一输出端和第二输出端之间。即电压检测子单元210并联连接于第二整流子单元DB2的第一输出端和第二输出端之间。由于第二整流子单元DB2会将输入的交流电压进行整流输出,若输入的交流电压越大,则第二整流子单元DB2输出的电压越大。因此,通过检测第二整流子单元DB2的输出电压即为检测输入的交流电压。
图4为本发明实施例提供的又一种LED驱动电路的电路图。参见图4,在本发明的一种实施例中,可选地,电压检测子单元210并联连接于整流单元110的第一输入端和第二输入端之间。即电压检测子单元210并联连接于第一整流单元110DB1的第一输入端和第二输入端之间,从而检测输入的交流电压。
图5为本发明实施例提供的又一种LED驱动电路的电路图。参见图5,在本发明的一种实施例中,可选地,电压检测子单元210并联连接于滤波单元120的第一输出端和第二输出端之间。由于滤波单元120会将整流单元110输出的信号进行滤波,若输入的交流电压越大,则第二整流子单元DB2输出的电压越大,进而滤波单元120输出的电压越大,相反,若电压检测子单元210检测到的滤波单元120的输出电压越大,则输入的交流电压越大。因此,通过检测滤波单元120的输出电压即为检测输入的交流电压。
图6为本发明实施例提供的又一种LED驱动电路的电路图。参见图6,在上述各实施例的基础上,可选地,驱动模块还包括调压单元130。调压单元130包括第一输入端、第二输入端、第一输出端和第二输出端,调压单元130的第一输入端与滤波单元120的第一输出端电连接,调压单元130的第二输入端与滤波单元120的第二输出端电连接,调压单元130的第一输出端与第一直流输出端VO+电连接,调压单元130的第二输出端与第二直流输出端VO-电连接。调压单元130用于将其第一输入端和第二输入端输入的直流电压转换为另一种或多种直流电压。
继续参见图6,可选地,调压单元130包括第一控制芯片U1和变压器,变压器的初级线圈的第一端通过第一二极管D3电连接至滤波单元120的第一输出端,初级线圈的第二端与第二直流输出端VO-电连接。变压器的次级线圈用于向第一控制芯片U1供电。第一控制芯片U1的信号输入端(下文中的漏极端Drain)与变压器的初级线圈的第一端电连接,第一控制芯片U1的信号输出端与滤波单元120的第二输出端电连接,第一控制芯片U1用于控制调压单元130输出电压的大小。
具体地,第一控制芯片U1可采用PWM控制芯片,由于变压器T1的储能作用,第一控制芯片U1内部的节点电压会缓慢上升,采样端SNP采样后,与第一控制芯片U1内部的基准电压比较,达到基准电压时,第一控制芯片U1内部发出一个PWM信号,使漏极端Drain和接地端GND之间开关管断开,第一二极管D3的阳极和第二地线之间的连接断开,由于变压器T1的储能作用,会通过第一二极管D3继续给负载放电。当第一控制芯片U1内部的电阻分压为0时,第一控制芯片U1内部的一个工作周期结束,开始下一个周期。由于变压器T1具有阻止电流变化的功能,如果第一控制芯片U1内部的开关管开关频率足够大,比如达到50K-80K,就可以使得电流变得足够平稳,使LED灯管无频闪。
继续参见图6,在上述各实施例的基础上,可选地,驱动模块还包括频率检测单元140和开关单元Q2;第一控制芯片U1还包括控制信号输入端EN。频率检测单元140的输入端与整流单元110的第二输入端电连接,频率检测单元140的控制信号输出端与第一控制芯片U1的控制信号输入端EN以及开关单元Q2的控制端电连接。开关单元Q2的第一端与变压器的初级线圈的第二端电连接,开关单元Q2的第二端与第一地线电连接。
示例性地,该LED驱动电路的工作过程为,镇流器启动时输出高频高压50-100KHZ,600-1200V,启动时间100-600毫秒,启动时间里,高频高压电流先通过整流单元110之前的电路,第一电容CX2接在整流单元110之前,即第一电容CX2直接接在镇流器输出线之间。第一电容CX2有通交流隔直流的作用,能够无极性抗高压大电流冲击,镇流器启动时,高频高压被第一电容CX2吸收耦合,流入整流单元110之后,电压大大降低(电压大约在400V左右)。经过第一电容CX2的吸收后,使高频高压在LED驱动模块的电子元器件应力范围之内,有利于避免高压导致LED驱动模块中的电子元器件早期失效和过早损坏。
输入的交流电流经过异常切断子单元220,再经过第一电容CX2吸收耦合,流入整流单元110的第一整流子单元DB1和第二整流子单元DB2整流,由此高频交流变直流。电压检测子单元210在第二整流子单元DB2整流之后,正常电压(电压大约在300-400V左右),电压检测子单元210不会动作。电流电压经过第二电容、第三电容、第一电感、第二电感滤波,经过第四电容CD1(示例性地,第四电容CD1为电解电容)变为稳定直流。经过第一直流输出端VO+输出,再经过第二直流输出端VO-输入LED驱动电路的回路中,再经过第二二极管D5和变压器T1。若频率检测单元140检测到是高频高压50-100KHZ,600-1200V的镇流器工作模式时,开关单元Q2直接导通(图6中采用Q1-D表示变压器T1和开关单元Q2的连接点,采用HIF表示频率检测单元140与整流单元110的第二输入端的连接点),第一控制芯片U1不工作,电流流过开关单元Q2到地,再到整流单元110的第一地线,LED驱动电路形成一个完整的回路。若频率检测单元140检测到是100V左右的正常工作电压,则通过控制信号输入端EN使第一控制芯片U1工作,调整输出的直流电压。即相当于BUCK电路。
当LED驱动电路的使用寿命结束,有电子元器件损坏或LED灯珠损坏处于开路状态,LED驱动电路不能正常工作和嵌位电压,镇流器就会输出高频高压。该高频高压经过第一整流子单元DB1和第二整流子单元DB2,直流电压在600-1200V,此时电压检测子单元210中的压敏电阻RV1上检测到高压,压敏电阻RV1产生热量,热量和温度达到异常切断子单元220中的温度保险丝F3的工作温度,温度保险丝F3开路,切断LED驱动电路的输入回路,LED灯管和线路停止工作。因此,本发明实施例避免了镇流器输出的高频高压超过电子元器件的应力,从而避免了电子元器件过压、过流、发热和损坏的现象,避免了着火的隐患,提升了LED驱动电路的安全性。
继续参见图6,在上述各实施例的基础上,可选地,LED驱动电路还包括第二保护单元400,第二保护单元400包括输入端和接地端,第二保护单元400的输入端与滤波单元120的第二输入端电连接,第二保护单元400用于检测滤波单元120的第二输入端对地阻抗,根据检测到的阻抗大小,控制滤波单元120的第二输入端与地导通或断开。示例性地,当操作人员触电时,触点人体电阻接入LED驱动电路的回路,具体地,从第一交流输入端、整流单元110、滤波单元120到人体形成一个回路,滤波单元120的第二输入端对第一地线的阻抗异常,第二保护单元400检测到滤波单元120的第二输入端对第一地线的阻抗异常,则第二保护单元400的输入端与接地端断开,即第一滤波单元120的第二输入端与第一地线为断开状态,从火线L、整流单元110、第一滤波单元120和人体之间的回路断开,实现了触电保护,保障了人身安全。由于第二保护单元400的输入端与接地端断开,人体触电形成的回路被断开,实现了触电保护。
在上述各实施例的基础上,可选地,第二保护单元400包括第二控制芯片U2、第三电阻R1、第四电阻R2、第五电阻R3、第六电阻R4、第七电阻R5、第八电阻R6、第九电阻R7、第十电阻R8、第十一电阻R9和第十二电阻RS1(取样电阻),第二控制芯片U2包括电源输入端Vcc、第一电压监测端VS、第二电压监测端TRG、电流监测端CS、隔离输入端DRN和接地端GND。第一电源输入端Vcc通过第三电阻R1、第四电阻R2和第五电阻R3电连接整流单元110的输出端,第一电压监测端VS通过第六电阻R4、第七电阻R5和第八电阻R6电连接隔离输入端DRN,电流监测端CS通过第十二电阻RS1与第一地线电连接,第二控制芯片U2能够控制其隔离输入端DRN和接地端GND之间导通或断开(图6中采用Vbus-表示隔离输入端DRN和滤波单元120的第二输入端的连接点,采用Vbus+表示第二保护单元400与整流单元110的第二输出端的连接点)。
示例性地,第一电源输入端Vcc端正常接收工作电压,灯管正常工作时,第二控制芯片U2的电流监测端CS不断采集滤波单元120的第二输入端与第一地线之间的电流(图6中用Vbus-表示滤波单元120的第二输入端的信号),第一电压监测端VS和第二电压监测端TRG不断采集滤波单元120的第二输入端与第一地线之间的电压,从而计算出滤波单元120的第二输入端与第一地线之间的电网阻抗。若阻抗判定在正常范围内,则隔离输入端DRN与电流监测端Cs导通,电流流过电流监测端Cs的取样电阻与第一地线构成通路。反之,若阻抗判定在异常范围内,则隔离输入端DRN与电流监测端Cs断开,滤波单元120的第二输入端与第一地线断开,实现了触电保护,保障了人身安全。
本发明实施例利用LED驱动电路本身的设计来实现触电保护,一旦检测到有触电风险,即可断开整个回路,降低了用户使用灯管时的风险和安全隐患,进一步提升了LED驱动电路的安全性。
本发明实施例还提供了一种灯管,该灯管例如可以是LED直管灯或者U管灯等。图7为本发明实施例提供的一种灯管的结构示意图。参见图7,该灯管包括:第一管脚A、第二管脚B和如本发明任意实施例所提供的LED驱动电路10,第一管脚A与驱动电路的第一交流输入端电连接,第二管脚B与第二交流输入端电连接。本发明实施例提供的灯管包括本发明任意实施例所提供的LED驱动电路10,其技术原理和实现的效果,不再赘述。
本发明实施例还提供了一种照明装置。图8为本发明实施例提供的一种照明装置的结构示意图。参见图8该照明装置包括:镇流器2和如本发明任意实施例所提供的灯管1。镇流器2包括第一接线端L、第二接线端N、第一输出端和第二输出端,镇流器2的第一接线端L和第二接线端N接入市电(例如,AC120-277V/60HZ),镇流器2的第一输出端与灯管的第一管脚电连接,镇流器2的第二输出端与灯管的第二管脚电连接。镇流器2包括电子镇流器和电感镇流器中的至少一种。本发明实施例提供的照明包括本发明任意实施例所提供的LED驱动电路,其技术原理和实现的效果,不再赘述。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (12)

  1. 一种LED驱动电路,其特征在于,包括:第一交流输入端、第二交流输入端、驱动模块、第一保护单元、第一直流输出端和第二直流输出端;
    所述驱动模块包括第一输入端、第二输入端、第一输出端和第二输出端,所述驱动模块的第一输入端与所述第一交流输入端电连接,所述驱动模块的第二输入端与所述第二交流输入端电连接,所述驱动模块的第一输出端与所述第一直流输出端电连接,所述驱动模块的第二输出端与所述第二直流输出端电连接;所述驱动模块用于将所述第一交流输入端和第二交流输入端输入的交流电压转换为直流电压,并通过所述第一直流输出端和所述第二直流输出端输出;
    所述第一保护单元包括电压检测子单元和异常切断子单元,所述电压检测子单元并联连接于所述驱动模块中对应的两个电压节点之间,所述电压检测子单元用于检测所述驱动模块的电压值;所述异常切断子单元串联连接于所述驱动模块的第二输入端和所述第二交流输入端之间;所述第一保护单元用于在检测到所述驱动模块的电压异常时,断开所述驱动模块的回路。
  2. 根据权利要求1所述的LED驱动电路,其特征在于,所述驱动模块包括:整流单元和滤波单元;
    所述整流单元包括第一输入端、第二输入端、输出端和接地端,所述整流单元的第一输入端作为所述驱动模块的第一输入端,所述整流单元的第二输入端作为所述驱动模块的第二输入端,所述整流单元的接地端与第一地线电连接;
    所述滤波单元包括第一输入端、第二输入端、第一输出端和第二输出端,所述滤波单元的第一输入端与所述整流单元的输出端电连接,所述滤波单元的第二输入端与所述第一地线电连接,所述滤波单元的第一输出端作为所述驱动模块的第一输出端,所述滤波单元的第二输出端作为所述驱动模块的第二输出端;
    所述电压检测子单元并联连接于所述整流单元的第一输入端和第二输入端之间;或者,
    所述电压检测子单元并联连接于所述整流单元的第一输出端和第二输出端之间;或者,
    所述电压检测子单元并联连接于所述滤波单元的第一输出端和第二输出端之间。
  3. 根据权利要求1所述的LED驱动电路,其特征在于,所述电压检测子单元包括压敏电阻,所述压敏电阻随电压的增大温度升高。
  4. 根据权利要求1所述的LED驱动电路,其特征在于,所述异常切断子单元包括温度保险丝。
  5. 根据权利要求1所述的LED驱动电路,其特征在于,还包括:尖峰电压吸收单元,所述尖峰电压吸收单元连接于所述第一交流输入端和所述第二交流输入端之间。
  6. 根据权利要求5所述的LED驱动电路,其特征在于,所述尖峰电压吸收单元包括第一电容,所述第一电容连接于所述第一交流输入端和所述第二交流输入端之间。
  7. 根据权利要求1所述的LED驱动电路,其特征在于,所述驱动模块还包括整流单元、滤波单元和调压单元;
    所述整流单元包括第一输入端、第二输入端、输出端和接地端,所述整流单元的第一输入端作为所述驱动模块的第一输入端,所述整流单元的第二输入端作为所述驱动模块的第二输入端,所述整流单元的接地端与第一地线电连接;
    所述滤波单元包括第一输入端、第二输入端、第一输出端和第二输出端,所述滤波单元的第一输入端与所述整流单元的输出端电连接,所述滤波单元的第二输入端与所述第一地线电连接,所述滤波单元的第一输出端作为所述驱动模块的第一输出端,所述滤波单元的第二输出端作为所述驱动模块的第二输出端;
    所述调压单元包括第一输入端、第二输入端、第一输出端和第二输出端,所述调压单元的第一输入端与所述滤波单元的第一输出端电连接,所述调压单元的第二输入端与所述滤波单元的第二输入端电连接,所述调压单元的第一输出端与所述第一直流输出端电连接,所述调压单元的第二输出端与所述第二直流输出端电连接。
  8. 根据权利要求7所述的LED驱动电路,其特征在于,所述调压单元包括第一控制芯片和变压器;
    所述变压器的初级线圈的第一端通过第一二极管电连接至所述滤波单元的第一输出端,所述初级线圈的第二端与所述第二直流输出端电连接;
    所述第一控制芯片的信号输入端与所述变压器的初级线圈的第一端电连接,所述第一控制芯片的信号输出端与所述滤波单元的第二输出端电连接,所述第一控制芯片用于控制所述调压单元输出电压的大小。
  9. 根据权利要求8所述的LED驱动电路,其特征在于,所述驱动模块还包括频率检测单元和开关单元;所述第一控制芯片还包括控制信号输入端;
    所述频率检测单元的输入端与所述第二交流输入端电连接,所述频率检测单元的控制信号输出端与所述第一控制芯片的控制信号输入端以及所述开关单元的控制端电连接;
    所述开关单元的第一端与所述变压器的初级线圈的第二端电连接,所述开关单元的第二端与所述第一地线电连接。
  10. 根据权利要求8所述的LED驱动电路,其特征在于,还包括:第二保护单元,所述第二保护单元包括输入端和接地端,所述第二保护单元的输入端与所述滤波单元的第二输入端电连接,所述第二保护单元用于检测所述滤波单元的第二输入端对地阻抗,根据检测到的阻抗大小,控制所述滤波单元的第二输入端与地导通或断开。
  11. 一种灯管,其特征在于,包括:第一管脚、第二管脚和如权利要求1~10任一项所述的LED驱动电路,所述第一管脚与所述驱动电路的第一交流输入端电连接,所述第二管脚与所述第二交流输入端电连接。
  12. 一种照明装置,其特征在于,包括:镇流器和如权利要求11所述的灯管,所述镇流器包括第一接线端、第二接线端、第一输出端和第二输出端,所述镇流器的第一接线端和第二接线端接入市电,所述镇流器的第一输出端与所述灯管的第一管脚电连接,所述镇流器的第二输出端与所述灯管的第二管脚电连接。
PCT/CN2021/079523 2020-03-30 2021-03-08 Led驱动电路、灯管和照明装置 WO2021196984A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/612,578 US11770886B2 (en) 2020-03-30 2021-03-08 LED driving circuit, light tube and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010237907.5 2020-03-30
CN202010237907.5A CN111343759B (zh) 2020-03-30 2020-03-30 Led驱动电路、灯管和照明装置

Publications (1)

Publication Number Publication Date
WO2021196984A1 true WO2021196984A1 (zh) 2021-10-07

Family

ID=71184583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079523 WO2021196984A1 (zh) 2020-03-30 2021-03-08 Led驱动电路、灯管和照明装置

Country Status (3)

Country Link
US (1) US11770886B2 (zh)
CN (1) CN111343759B (zh)
WO (1) WO2021196984A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343759B (zh) * 2020-03-30 2022-06-10 晨辉光宝科技股份有限公司 Led驱动电路、灯管和照明装置
CN113056057A (zh) * 2021-03-10 2021-06-29 晨辉光宝科技股份有限公司 Led驱动电路和led直管灯

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485059A (en) * 1992-07-03 1996-01-16 Koito Manufacturing Co., Ltd. Lighting circuit for vehicular discharge lamp
CN101420121A (zh) * 2007-10-26 2009-04-29 台达电子工业股份有限公司 突波保护电路
CN201860487U (zh) * 2010-10-14 2011-06-08 张永富 高转换效率led驱动装置
CN203553897U (zh) * 2013-10-28 2014-04-16 厦门赛尔特电子有限公司 一种直流保护器
CN104682338A (zh) * 2013-11-27 2015-06-03 深圳市海洋王照明工程有限公司 一种保护电路及照明设备
CN204376381U (zh) * 2014-12-17 2015-06-03 东莞市纳川盈海照明有限公司 用于led高压灯带的过压保护电路
CN104812122A (zh) * 2014-01-27 2015-07-29 李顺华 具有短路保护和开路保护的镇流式led灯的驱动电路
CN110753421A (zh) * 2018-07-04 2020-02-04 晨辉光宝科技有限公司 一种led驱动电路和灯管
CN110798927A (zh) * 2019-11-04 2020-02-14 佛山电器照明股份有限公司 一种基于t型灯管的led驱动电路
CN111343759A (zh) * 2020-03-30 2020-06-26 晨辉光宝科技股份有限公司 Led驱动电路、灯管和照明装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1565470A (en) * 1977-01-12 1980-04-23 Atari Inc Apparatus for producing a plurality of audio sound effects
US7911149B2 (en) * 2007-02-19 2011-03-22 Marlex Engineering Inc. Impedance controlled electronic lamp circuit
WO2009136322A1 (en) * 2008-05-05 2009-11-12 Philips Intellectual Property & Standards Gmbh Light emitting diode system
US9338853B2 (en) * 2014-09-17 2016-05-10 Greco Tech Industries Inc. LED tube driver circuitry for ballast and non-ballast fluorescent tube replacement
CN204378381U (zh) 2014-12-08 2015-06-10 谷风 一种多功能折叠式课桌
JP5924437B1 (ja) * 2015-04-30 2016-05-25 株式会社リコー 照明灯、照明装置、及び点灯制御回路
CN205005320U (zh) * 2015-10-16 2016-01-27 浙江阳光美加照明有限公司 一种led日光灯管驱动电路
CN208337937U (zh) * 2018-03-26 2019-01-04 漳州立达信灯具有限公司 Led灯管驱动电路及led照明设备
CN110557868B (zh) * 2019-09-19 2024-04-05 横店集团得邦照明股份有限公司 一种可兼容高频和工频的灯管及其实现方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485059A (en) * 1992-07-03 1996-01-16 Koito Manufacturing Co., Ltd. Lighting circuit for vehicular discharge lamp
CN101420121A (zh) * 2007-10-26 2009-04-29 台达电子工业股份有限公司 突波保护电路
CN201860487U (zh) * 2010-10-14 2011-06-08 张永富 高转换效率led驱动装置
CN203553897U (zh) * 2013-10-28 2014-04-16 厦门赛尔特电子有限公司 一种直流保护器
CN104682338A (zh) * 2013-11-27 2015-06-03 深圳市海洋王照明工程有限公司 一种保护电路及照明设备
CN104812122A (zh) * 2014-01-27 2015-07-29 李顺华 具有短路保护和开路保护的镇流式led灯的驱动电路
CN204376381U (zh) * 2014-12-17 2015-06-03 东莞市纳川盈海照明有限公司 用于led高压灯带的过压保护电路
CN110753421A (zh) * 2018-07-04 2020-02-04 晨辉光宝科技有限公司 一种led驱动电路和灯管
CN110798927A (zh) * 2019-11-04 2020-02-14 佛山电器照明股份有限公司 一种基于t型灯管的led驱动电路
CN111343759A (zh) * 2020-03-30 2020-06-26 晨辉光宝科技股份有限公司 Led驱动电路、灯管和照明装置

Also Published As

Publication number Publication date
US20220240361A1 (en) 2022-07-28
CN111343759A (zh) 2020-06-26
CN111343759B (zh) 2022-06-10
US11770886B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
US10091858B2 (en) Retrofit light emitting diode tube
US8779679B2 (en) LED lamp, illumination device including the LED lamp and current control method of the LED lamp
CN109068442B (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
WO2017124742A1 (zh) 一种开关电源用指示电路及其使用方法
EP3599794B1 (en) Led lamp arrangement
WO2021196984A1 (zh) Led驱动电路、灯管和照明装置
CN110753421B (zh) 一种led驱动电路和灯管
US10667344B2 (en) Retrofit LED lamp
CN104080221B (zh) 一种led驱动电路及led灯
US10612731B2 (en) LED tube lamp
JP7178068B2 (ja) 感電防止保護機能を有し、多様な電流安定供給モードに対応する照明器具
CN112771997B (zh) 照明驱动电源电路、装置及灯管
WO2019080360A1 (zh) 输出检测保护电路及hid灯用交流电子镇流器
CN214960209U (zh) 驱动电路、驱动装置以及灯具
CN110972365A (zh) 一种基于高效离线式led调光可控硅电路
US20230225029A1 (en) A rectifying arrangement of a driver for an led lighting unit
CN104144548A (zh) 一种荧光灯电子镇流器电弧抑制电路
CN216253301U (zh) Led驱动电路、灯管和照明装置
WO2020029006A1 (zh) 一种兼容电子镇流器和市电的led驱动电路及led灯具
TWI669024B (zh) 適用於電子式安定器或市電之發光二極體燈管
KR101228303B1 (ko) 세라믹-유리질 복합체 전극을 사용한 형광램프용 디밍용 전자식 안정기
CN208285232U (zh) 恒流保护稳压电源
CN1874645B (zh) 用于将灯安全连接到设备地的装置
CN101695212A (zh) 一种用于宽电压高功率因数大功率节能灯的电子镇流器
JP4696688B2 (ja) 放電灯点灯装置及び照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782208

Country of ref document: EP

Kind code of ref document: A1