WO2021196978A1 - 一种测量方法及设备 - Google Patents

一种测量方法及设备 Download PDF

Info

Publication number
WO2021196978A1
WO2021196978A1 PCT/CN2021/079362 CN2021079362W WO2021196978A1 WO 2021196978 A1 WO2021196978 A1 WO 2021196978A1 CN 2021079362 W CN2021079362 W CN 2021079362W WO 2021196978 A1 WO2021196978 A1 WO 2021196978A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
frequency
measurement
relaxation
terminal device
Prior art date
Application number
PCT/CN2021/079362
Other languages
English (en)
French (fr)
Inventor
王洲
徐海博
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021196978A1 publication Critical patent/WO2021196978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a measurement method and equipment.
  • RRC radio resource control
  • RRC_idle state radio resource control
  • RRC inactive state RRC inactive state
  • RRM measurement is cell measurement, which specifically includes intra-frequency measurement and inter-frequency/different system measurement.
  • the base station that manages the cell in the communication system usually carries the measurement configuration information of the cell in the system message.
  • the measurement configuration information may include, but is not limited to, the following measurement configuration parameters: the priority of the frequency point where the cell is located, the threshold for starting RRM measurement, and so on.
  • the terminal device receives the system message of the serving cell and the target frequency (including the same frequency and/or different frequency) notified by the base station managing the serving cell, it will compare the measurement configuration information in the target frequency to the target frequency.
  • the neighboring cell performs RRM measurement and performs cell reselection based on the measurement result.
  • the terminal device can classify the target frequency points into the following three categories:
  • the high-priority target frequency point that is, the target frequency point whose priority is higher than the priority of the service frequency point.
  • the same priority target frequency point that is, the target frequency point with the same priority as the priority of the service frequency point.
  • the low-priority target frequency point that is, the target frequency point whose priority is lower than the priority of the service frequency point.
  • the communication system sets different cell RRM measurement trigger conditions for different types of target frequency points, and the corresponding cell reselection is set for different types of target frequency points.
  • the rules are also different, so that the terminal device can preferentially reselect to the neighboring cell on the high-priority target frequency point, thereby improving the service quality of the terminal device.
  • the terminal equipment in the RRC idle state and the RRC inactive state performs the above-mentioned RRM measurement and cell reselection is the main source of its power consumption, in order to ensure the communication performance of the terminal equipment, it can also effectively save the power consumption of the terminal equipment In the field of communication, the concept of relaxing RRM measurement has been introduced, but the solution to realize relaxing RRM measurement has not yet been discussed.
  • This application provides an RRM measurement method and device to enable the terminal device to flexibly perform relaxed RRM measurement on the neighboring cell on the target frequency point, thereby ensuring the communication performance of the terminal device and saving the power consumption of the terminal device .
  • an embodiment of the present application provides a measurement method, which includes the following steps:
  • the terminal device determines that the signal quality of the serving cell is greater than the relaxation measurement threshold, where the relaxation measurement threshold is greater than a preset threshold standard starting value and smaller than a measurement threshold, and the threshold standard starting value is a measurement admission threshold; The terminal device performs relaxation measurement on the neighboring cell on the target frequency point.
  • the terminal device can determine whether it is necessary to perform a relaxed measurement on the neighboring cell on the target frequency point by relaxing the measurement threshold. Therefore, the communication system can flexibly set the relaxation measurement threshold, so that the terminal device can flexibly perform the relaxation measurement on the neighboring cell on the target frequency point, thereby ensuring the communication performance of the terminal device and saving the power consumption of the terminal device. .
  • the relaxation measurement threshold is the same-frequency relaxation measurement threshold, and the measurement threshold is the same-frequency measurement threshold; the terminal device performs relaxation measurement on the neighboring cell on the target frequency point, including: The terminal device performs relaxation measurement on the same frequency adjacent cell on the same frequency frequency point, where the same frequency frequency point is the service frequency point where the serving cell is located.
  • the terminal device can relax the measurement threshold according to the same frequency, and realize the relaxed measurement of the adjacent area of the same frequency.
  • the relaxation measurement threshold is an inter-frequency relaxation measurement threshold
  • the measurement threshold is an inter-frequency/different-system measurement threshold
  • the terminal device performs relaxation measurement on the neighboring cell on the target frequency point, including :
  • the terminal device performs relaxation measurements on the different-frequency neighboring cells on the target different-frequency frequency point, where the target different-frequency frequency point belongs to the different-frequency frequency point, and the different-frequency frequency point is a target different from the service frequency point where the serving cell is located Frequency.
  • the terminal device can relax the measurement threshold according to the different frequency, and realize the relaxed measurement of the neighboring area of the different frequency.
  • the number of the same-frequency neighboring cells on the same-frequency frequency point is B0; the terminal device performs relaxation measurement on the same-frequency neighboring cells on the same frequency frequency point, including:
  • the terminal device performs relaxed measurement on the B1 co-frequency adjacent cells on the co-frequency frequency point according to the relaxed co-frequency measurement period T intrarelax; wherein, T intrarelax > normal co-frequency measurement period T intra , and/or, B1 ⁇ B0, the T intra is the measurement period used when the terminal device does not perform relaxation measurement on the same-frequency neighboring cell on the same-frequency frequency point.
  • the terminal device can reduce the measurement frequency of the neighboring cells with the same frequency or reduce the measurement objects, so as to realize the relaxed measurement of the neighboring cells with the same frequency.
  • the number of the same-frequency neighboring cells on the same-frequency frequency point is B0; the terminal device performs relaxation measurement on the same-frequency neighboring cells on the same frequency frequency point, including:
  • the terminal device determines that the signal quality of the serving cell is within the first signal quality range
  • the terminal device compares the B1_1 co-frequency measurement period T intrarelax_1 on the co-frequency frequency point according to the first relaxed co-frequency measurement period T intrarelax_1 Measurement is performed in the neighboring cell
  • the first signal quality range is determined according to two relaxation level thresholds that are adjacent to each other in at least one relaxation level threshold, or the first signal quality range is determined according to the same frequency relaxation measurement threshold and The relaxation level threshold with the smallest value among the at least one relaxation level threshold is determined
  • the terminal device determines that the signal quality of the serving cell is within the second signal quality range
  • the terminal device compares the B1_2 co-frequency frequency points on the co-frequency frequency point according to the second relaxed co-frequency measurement period T intrarelax_2 Measurement is performed in a neighboring cell
  • the second signal quality range is determined according to two adjacent relaxation level thresholds among the at least one relaxation level threshold, or the second signal quality range is determined according to the at least one relaxation level threshold
  • the relaxation level threshold with the largest value among the level thresholds is determined;
  • T intrarelax_1 normal intra- frequency measurement period T intra, and/or, B1_1 ⁇ B0; T intrarelax_2 > the T intra , and/or, B1_2 ⁇ B0, the T intra is that the terminal device is wrong
  • the terminal device can perform relaxation measurements of different relaxation levels in neighboring cells of the same frequency according to the signal quality of the serving cell, and finally realize differentiated relaxation measurements. Therefore, the terminal device can flexibly perform differentiated relaxation measurement on the neighboring cell on the target frequency point, so that the communication performance of the terminal device can be guaranteed and the power consumption of the terminal device can be saved.
  • the inter-frequency frequency points include: high-priority target frequency points, equal-priority target frequency points, and low-priority target frequency points;
  • the target inter-frequency frequency point includes: the high-priority target frequency point, all The target frequency points of the same priority and the target frequency points of the low priority;
  • the target inter-frequency frequency point is the high-priority target frequency point.
  • the terminal device can determine the type of the inter-frequency frequency point that needs to be relaxed and measured among the inter-frequency frequency points based on the signal quality of the current service signal.
  • the number of the target inter-frequency frequency points is N0; the terminal device performs relaxation measurement on the inter-frequency neighboring cell at the target inter-frequency frequency point, including:
  • the terminal device performs relaxation measurement on the inter-frequency neighboring cells at N1 target inter- frequency frequency points according to the relaxation inter-frequency measurement period T nonintrarelax; wherein, the T nonintrarelax> the normal inter- frequency measurement period T nonintra , and/or N1 ⁇ N0, the T nonintra is a measurement period used when the terminal device does not perform relaxation measurement on the inter-frequency neighboring cell at the inter-frequency frequency point.
  • the terminal device can reduce the measurement frequency of the neighboring cell of the different frequency or reduce the measurement objects, so as to realize the relaxed measurement of the neighboring cell of the different frequency.
  • the number of the target inter-frequency frequency points is N0; the terminal device performs relaxation measurement on the inter-frequency neighboring cell at the target inter-frequency frequency point, including:
  • the terminal device determines the inter-frequency neighbors on the N1_1 target inter-frequency points according to the first relaxed inter-frequency measurement period T nonintrarelax_1.
  • Area for measurement; the first signal quality range is determined based on at least one relaxation level threshold that is adjacent to two relaxation level thresholds, or the first signal quality range is determined based on the co-frequency relaxation measurement threshold and all The relaxation level threshold with the smallest value among the at least one relaxation level threshold is determined;
  • the terminal device determines the inter-frequency neighbors on the N1_2 target inter-frequency frequency points according to the second relaxed inter-frequency measurement period T nonintrarelax_2 Area for measurement; the second signal quality range is determined based on two relaxation level thresholds that are adjacent to each other in the at least one relaxation level threshold, or the second signal quality range is determined based on the at least one relaxation level threshold The relaxation level threshold with the largest value among the thresholds is determined;
  • the terminal device can perform different relaxation levels of relaxation measurements on different frequency neighboring cells according to the signal quality of the serving cell, and finally realize differentiated relaxation measurements. Therefore, the terminal device can flexibly perform differentiated relaxation measurement on the neighboring cell on the target frequency point, so that the communication performance of the terminal device can be guaranteed and the power consumption of the terminal device can be saved.
  • the loosening measurement threshold is configured by the base station to the terminal device; or the loosening measurement threshold is stipulated by the protocol and stored in the terminal device; or the loosening measurement threshold is set by The terminal device is calculated according to a setting calculation method, wherein the setting calculation method is configured by the base station for the terminal device or specified by the protocol and stored in the terminal device; or the relaxation of the measurement threshold is determined by Determined by the terminal device.
  • the terminal device receives a first message from the base station, and the first message includes the relaxation measurement threshold.
  • the terminal device can directly obtain the relaxation measurement threshold from the base station.
  • the terminal device receives a second message from the base station, and the second message contains multiple threshold candidates; the terminal device selects among the multiple threshold candidates A threshold candidate value is the relaxation measurement threshold.
  • the terminal device can flexibly select the relaxation measurement threshold according to the current network conditions, and when the current network conditions change, it can also reselect the relaxation measurement among the multiple threshold candidate values. Threshold.
  • the terminal device receives a third message from the base station, the third message includes a relaxation measurement threshold calculation parameter, and the threshold calculation parameter includes: an initial relaxation measurement threshold, and/or, Relaxation measurement threshold adjustment value; the terminal device determines the relaxation measurement threshold according to the relaxation measurement threshold calculation parameter.
  • the terminal device can calculate the relaxation measurement threshold according to the current network conditions and the threshold calculation parameter.
  • the relaxation measurement threshold adjustment value may be an adjustment multiple j, j>1.
  • the terminal device may calculate the relaxation measurement threshold according to another parameter stored locally and the parameter included in the third message.
  • the terminal device receives the third message containing the initial relaxation measurement threshold, the initial relaxation measurement threshold is used as the relaxation measurement threshold, and subsequently according to network conditions, the adjustment factor j is increased or decreased by j times.
  • the method when the relaxation measurement threshold is determined by the terminal device, the method further includes:
  • the terminal device determines the relaxation measurement threshold according to at least one or a combination of the following:
  • the service priority of the terminal device the service frequency priority, and the mobility information of the terminal device;
  • the mobility information of the terminal device includes location information and moving speed of the terminal device.
  • the co-frequency relaxation measurement threshold conforms to the following formula:
  • threshold intrarelaxmeasure k intra *(S intrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold intrarelaxmeasure is the intra- frequency relaxation measurement threshold
  • S intrasearch is the intra- frequency measurement threshold
  • threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k intra ⁇ 1;
  • the inter-frequency relaxation measurement threshold conforms to the following formula:
  • threshold nonintrarelaxmeasure k nonintra *(S nonintrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold nonintrarelaxmeasure is the inter- frequency relaxation measurement threshold
  • S nonintrasearch is the inter- frequency/inter-system measurement threshold
  • the same-frequency relaxation measurement threshold includes: the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and/or, the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q; the same-frequency measurement threshold Including: the same-frequency measurement signal amplitude threshold S intrasearch P, and/or the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q; the threshold intrarelaxmeasure P conforms to the following formula:
  • threshold intrarelaxmeasure P k1*(S intrasearch P-threshold Criterion S)+threshold Criterion S;
  • Threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k1 ⁇ 1, 0 ⁇ k2 ⁇ 1;
  • the threshold intrarelaxmeasure Q conforms to the following formula:
  • threshold intrarelaxmeasure Q k2*(S intrasearch Q-threshold Criterion S)+threshold Criterion S;
  • the inter- frequency relaxation measurement threshold includes: inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P, and/or the inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the inter- frequency/inter-system measurement threshold includes: inter-frequency measurement Signal amplitude threshold S nonintrasearch P, and/or, inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the threshold nonintrarelaxmeasure P conforms to the following formula:
  • threshold nonintrarelaxmeasure P k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S;
  • the threshold nonintrarelaxmeasure Q conforms to the following formula:
  • threshold nonintrarelaxmeasure Q k4*(S nonintrasearch Q-threshold Criterion S)+threshold Criterion S;
  • an embodiment of the present application provides a measurement method, which includes the following steps:
  • the base station determines a relaxation measurement threshold, where the relaxation measurement threshold is greater than a preset threshold standard initial value and less than a measurement threshold, and the threshold standard initial value is the measurement admission threshold; the base station sends the first threshold to the terminal device. Message, the first message includes the relaxation measurement threshold.
  • the base station can configure the relaxation measurement threshold of the terminal device, so that the terminal device can determine whether it is necessary to perform relaxation measurement on the neighboring cell on the target frequency point by relaxing the measurement threshold.
  • the relaxation measurement threshold is stipulated by the protocol and stored in the base station; or the relaxation measurement threshold is calculated by the base station according to a set calculation method.
  • the base station may also send a second message to the terminal device, where the second message further includes: a relaxation measurement threshold adjustment value, and the relaxation measurement threshold adjustment value is used to The relaxation measurement threshold is adjusted.
  • the terminal device can realize the adjustment of the relaxation measurement threshold according to the relaxation measurement threshold adjustment value.
  • the base station may also send a third message to the terminal device, where the third message further includes: at least one relaxation level threshold, or at least one relaxation level threshold Relaxation level threshold adjustment value.
  • the terminal device can obtain the at least one relaxation level threshold, thereby implementing relaxation measurements of different relaxation levels according to the strength of the signal quality of the serving cell, and finally achieving differentiated relaxation measurement.
  • the relaxation measurement threshold is a same-frequency relaxation measurement threshold, and the measurement threshold is a same-frequency measurement threshold; or the relaxation measurement threshold is an inter-frequency relaxation measurement threshold, and the measurement threshold is an inter-frequency measurement threshold. / Different system measurement threshold.
  • the co-frequency relaxation measurement threshold conforms to the following formula:
  • threshold intrarelaxmeasure k intra *(S intrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold intrarelaxmeasure is the intra- frequency relaxation measurement threshold
  • S intrasearch is the intra- frequency measurement threshold
  • threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k intra ⁇ 1;
  • the inter-frequency relaxation measurement threshold conforms to the following formula:
  • threshold nonintrarelaxmeasure k nonintra *(S nonintrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold nonintrarelaxmeasure is the inter- frequency relaxation measurement threshold
  • S nonintrasearch is the inter- frequency/inter-system measurement threshold
  • the same-frequency relaxation measurement threshold includes: the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and/or, the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q; the same-frequency measurement threshold Including: the same frequency measurement signal amplitude threshold S intrasearch P, and/or, the same frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q;
  • the threshold intrarelaxmeasure P conforms to the following formula:
  • threshold intrarelaxmeasure P k1*(S intrasearch P-threshold Criterion S)+threshold Criterion S;
  • the threshold intrarelaxmeasure Q conforms to the following formula:
  • threshold intrarelaxmeasure Q k2*(S intrasearch Q-threshold Criterion S)+threshold Criterion S;
  • Threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k1 ⁇ 1, 0 ⁇ k2 ⁇ 1;
  • the inter- frequency relaxation measurement threshold includes: inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P, and/or the inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the inter- frequency/inter-system measurement threshold includes: inter-frequency measurement Signal amplitude threshold S nonintrasearch P, and/or, inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the threshold nonintrarelaxmeasure P conforms to the following formula:
  • threshold nonintrarelaxmeasure P k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S;
  • the threshold nonintrarelaxmeasure Q conforms to the following formula:
  • threshold nonintrarelaxmeasure Q k4*(S nonintrasearch Q-threshold Criterion S)+threshold Criterion S;
  • an embodiment of the present application provides a measurement method, which includes the following steps:
  • the base station determines multiple threshold candidate values, where each threshold candidate value is greater than a preset threshold standard starting value and smaller than the same-frequency measurement threshold, and the threshold standard starting value is a measurement admission threshold; the base station Send a second message to the terminal device, where the second message includes the multiple threshold candidate values.
  • Each of the threshold candidate values conforms to the formula for calculating the relaxation measurement threshold provided in the above aspects.
  • the base station can configure the relaxation measurement threshold of the terminal device, so that the terminal device can determine whether it is necessary to perform relaxation measurement on the neighboring cell on the target frequency point by relaxing the measurement threshold.
  • each threshold candidate value is stipulated by the protocol and stored in the base station; or each threshold candidate value is calculated by the base station according to a set calculation method.
  • the base station may determine the multiple threshold candidate values according to at least one or a combination of the following: the service priority of the terminal device, the service frequency priority of the terminal device The mobility information of the terminal device; wherein the mobility information of the terminal device includes the location information and the moving speed of the terminal device.
  • the base station can set multiple threshold candidate values for the terminal device according to the current network condition of the terminal device.
  • an embodiment of the present application provides a communication device, including a unit for performing each step in any of the above aspects.
  • an embodiment of the present application provides a communication device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one processing element is used to read and execute The program and data stored by the storage element enable the method provided in any of the above aspects of the present application to be implemented.
  • an embodiment of the present application provides a communication system, including a base station and a terminal device, wherein the base station has the function of performing the base station in the method provided in the second or third aspect of the present application, and the terminal device It has the function of executing the terminal device in the method provided in the first aspect of the present application.
  • the embodiments of the present application also provide a computer program, which when the computer program runs on a computer, causes the computer to execute the method provided in any one of the foregoing aspects.
  • the embodiments of the present application also provide a computer-readable storage medium in which a computer program is stored, and when the computer program is executed by a computer, the computer is caused to execute any of the above The method provided by the aspect.
  • an embodiment of the present application also provides a chip, which is used to read a computer program stored in a memory and execute the method provided in any one of the foregoing aspects.
  • an embodiment of the present application also provides a chip system, which includes a processor, and is configured to support a computer device to implement the method provided in any one of the foregoing aspects.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of this application.
  • 2A is a schematic diagram of an example of a relaxed RRM measurement provided by an embodiment of the application.
  • FIG. 2B is a schematic diagram of another example of relaxing RRM measurement provided by an embodiment of the application.
  • 2C is a schematic diagram of another example of relaxing RRM measurement provided by an embodiment of the application.
  • 2D is a schematic diagram of another example of relaxing RRM measurement provided by an embodiment of this application.
  • FIG. 3 is a flowchart of an RRM measurement method provided by an embodiment of the application.
  • FIG. 4 is a flowchart of another RRM measurement method provided by an embodiment of the application.
  • FIG. 5 is a structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of this application.
  • the present application provides an RRM measurement method and device to enable a terminal device to flexibly perform a relaxed RRM measurement on a neighboring cell on a target frequency point, so as to ensure the communication performance of the terminal device and save the power consumption of the terminal device.
  • the method and the device are based on the same technical concept. Because the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • Terminal equipment is a device that provides users with voice and/or data connectivity.
  • the terminal equipment may also be called user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • Network equipment is the equipment that connects terminal equipment to the wireless network in the communication system.
  • a network device is, for example, a base station, and the network device may also be referred to as a radio access network (RAN) node (or device).
  • RAN radio access network
  • the solution executed on the base station side in the embodiment of the present application may also be executed by other network equipment, which is not limited in the embodiment of the present application.
  • base stations are: gNB, evolved Node B (eNB), transmission reception point (TRP), radio network controller (RNC), node B (Node B) , NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), or baseband unit (baseband unit) , BBU) etc.
  • eNB evolved Node B
  • TRP transmission reception point
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit baseband unit
  • the base station may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure splits the protocol layer of the eNB in the long term evolution (LTE) system. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • Reference signal sent by the base station through the cell managed by it, used to make the terminal equipment perform RRM measurement to realize cell reselection, cell handover, and beam determination procedures.
  • the reference signal may be a synchronization signal block (synchronization signal block, SSB), a channel state information reference signal (channel state information-reference signal, CSI-RS), etc.
  • Signal quality which means that the terminal equipment performs RRM measurement for the cell, and the measurement result obtained may include one or more of the following signal quality parameters:
  • Signal amplitude which can be represented by S rxlev in the subsequent description
  • signal strength which can be represented by S qual in the subsequent description
  • reference signal received power RSRP
  • reference signal received quality reference signal received quality
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • the measurement configuration information of the cell is broadcast by the base station that manages the cell through system messages (for example, system information blocks (SIB2)), and is used for terminal equipment accessing the cell to perform RRM measurement.
  • system messages for example, system information blocks (SIB2)
  • the measurement configuration information includes the priority (cell reselection priority) and the measurement threshold (S search ) of the frequency point where the cell is located.
  • the measurement threshold may include an intra-frequency measurement threshold (Sintrasearch, which may be represented by S intrasearch in the subsequent description), and an inter- frequency/different system measurement threshold (Snonintrasearch, which may be represented by S nonintrasearch in the subsequent description).
  • Intrasearch intra-frequency measurement threshold
  • Nonintrasearch inter- frequency/different system measurement threshold
  • the above threshold also corresponds to multiple.
  • the same frequency measurement threshold includes: the same frequency measurement signal amplitude threshold (SintrasearchP, which can be represented by S intrasearch P in the subsequent description) and the same frequency Measure the signal strength threshold (SintrasearchQ, which can be represented by S intrasearch Q in the following description).
  • S intrasearch P is used to indicate the signal amplitude threshold of the same frequency measurement
  • S intrasearch Q is used to indicate the signal strength threshold of the same frequency measurement.
  • the terminal device when the terminal device using the cell as the serving cell measures the signal quality of the cell to meet the following conditions, the terminal device starts to perform measurement on the neighboring cell on the serving frequency point (the frequency point where the serving cell is located) :
  • the signal amplitude (S rxlev ) in the signal quality of the cell is greater than the S intrasearch P
  • the signal strength (S qual ) in the signal quality of the cell is greater than the S intrasearch Q.
  • the inter-frequency/inter-system measurement threshold includes: inter-frequency measurement signal amplitude threshold (SnonintrasearchP, which can be denoted by S nonintrasearch P in the subsequent description) and inter- frequency measurement signal strength threshold (SnonintrasearchQ, S nonintrasearchQ, which can be used in subsequent descriptions) Q means).
  • S nonintrasearch P is used to indicate the signal amplitude threshold of inter-frequency/different system measurements (This specifies the Srxlev threshold (in dB) for NR inter-frequency and inter-RAT measurements)
  • S nonintrasearch Q is used to indicate inter-frequency/inter-RAT measurements.
  • the signal strength threshold measured by the different system (This specifies the Squal threshold (in dB) for NR inter-frequency and inter-RAT measurements).
  • the terminal equipment when the terminal equipment that uses the cell as the serving cell measures the signal quality of the cell to meet the following conditions, the terminal equipment performs measurement on the neighboring cell on the high-priority target frequency point: the signal of the cell
  • the signal amplitude (S rxlev ) in the quality is greater than the S nonintrasearch P
  • the signal strength (S qual ) in the signal quality of the cell is greater than the S nonintrasearch Q; when the signal quality of the cell measured by the terminal device does not meet the requirement
  • the terminal device performs measurement on the neighboring cells on the high-priority target frequency point, the same-priority target frequency point, and the low-priority target frequency point.
  • the target frequency point of the cell measurement is configured by the base station to the terminal equipment.
  • the terminal device measures the neighboring cell on the target frequency point to perform cell reselection or handover according to the obtained measurement result.
  • the target frequency point configured by the base station can be divided into two types:
  • Inter-frequency frequency point the target frequency point that is different from the service frequency point.
  • the different frequency frequency point can be divided into three categories: high priority target frequency point, equal priority target frequency point, and low priority target frequency point. point.
  • the high-priority target frequency point is the different frequency frequency point with priority higher than the priority of the service frequency point;
  • the same priority target frequency point is the different frequency frequency point with the same priority as the priority of the service frequency point;
  • the frequency point is an inter-frequency frequency point whose priority is lower than the priority of the service frequency point.
  • the neighboring cells on the same frequency frequency point are called the same frequency neighboring cells, and the neighboring cells on the different frequency frequency points are called different frequency neighboring cells.
  • Cell measurement including RRM measurement and radio link monitoring (RLM) measurement.
  • RRM radio link monitoring
  • FIG. 1 shows the architecture of a possible communication system to which the measurement method provided in the embodiment of the present application is applicable.
  • the communication system includes base stations and terminal equipment.
  • the base station provides wireless access-related services for the terminal device through the managed cell, and realizes wireless physical layer functions, resource scheduling and wireless resource management, quality of service (QoS) management, wireless access control, and Mobility management (such as cell reselection and handover) functions.
  • QoS quality of service
  • Mobility management such as cell reselection and handover
  • each base station is responsible for managing at least one cell.
  • base station A is responsible for managing cell a
  • base station B is responsible for managing cell b
  • base station C is responsible for managing cell C.
  • each cell uses spectrum resources of corresponding frequency points to provide access services for terminal devices.
  • the frequency points used by different cells may be the same or different.
  • this application does not limit the communication technology used by each cell, and the communication technology used by different cells may be the same or different.
  • cell a-cell g are all LTE cells using 4G communication technology; or cell a-cell g are all NR cells using 5G communication technology; or some of the cells are LTE cells and some of them are NR cells.
  • the terminal device is a device that accesses the network through a cell managed by the base station.
  • the base station and the terminal device are connected through a Uu interface, so as to realize the communication between the terminal device and the base station.
  • the architecture shown in Figure 1 can be applied to a variety of communication scenarios, for example, the fifth generation (The 5th Generation, 5G) communication system (also known as the new radio (NR) communication system), the future first Sixth-generation communication systems and other evolving communication systems, Long Term Evolution (LTE) communication systems, Vehicle to Everything (V2X), Long Term Evolution-Internet of Vehicles (LTE-vehicle, LTE-V), Vehicles Vehicle to Vehicle (V2V), Internet of Vehicles, Machine Type Communications (MTC), Internet of Things (IoT), Long Term Evolution-Machine to Machine (LTE-machine to machine, LTE-M) ), machine to machine (M2M) and other communication scenarios.
  • LTE Long Term Evolution
  • V2X Vehicle to Everything
  • LTE-vehicle Long Term Evolution-Internet of Vehicles
  • V2V Vehicles Vehicle to Vehicle
  • MTC Machine Type Communications
  • IoT Internet of Things
  • LTE-machine to machine LTE-M
  • M2M machine to machine
  • the terminal equipment can move from the coverage area of one cell to the coverage area of another cell. As shown in the figure, the terminal equipment moves from cell a to Cell b, therefore, the terminal equipment needs to continuously measure the cell and change the cell where it resides to ensure business continuity. In order to achieve the above goals, the terminal equipment needs to be achieved through a cell reselection or cell handover process.
  • the base station that manages each cell broadcasts the measurement configuration information of the cell within the coverage of the cell under its management through system messages, and sends the target of the cell through system messages or RRC messages.
  • Frequency point configuration information includes the target frequency point to be measured, and may also include the neighboring cell to be measured on each target frequency point.
  • the terminal device receives the measurement configuration information of its serving cell and the target frequency configuration information, it performs measurement on the neighboring cell on the target frequency according to the measurement configuration information, and performs cell reselection or handover according to the measurement results .
  • the base station that manages each cell can set the priority of the frequency point where the cell is located according to the quality of service that it can provide.
  • the priority of the frequency point ranges from (0-7), and the larger the value, the higher the priority of the frequency point.
  • cell 1 on frequency 1 may have a larger system bandwidth, better signal quality, or a higher transmission rate (such as a hotspot cell).
  • the base station that manages cell 1 can set the measurement configuration information of cell 1
  • the priority of frequency point 1 is set to 7.
  • the base station that manages cell 2 can prioritize frequency 2 in the measurement configuration information of cell 2.
  • the level is set to 5.
  • the cell on frequency 3 may have a small system bandwidth, poor signal quality, or low transmission rate. Therefore, the base station managing cell 3 can set the priority of frequency 3 in the measurement configuration information of cell 3. Is 3.
  • the inter-frequency frequency points in the target frequency point can be divided into three categories: high priority target frequency point , The target frequency point of the same priority, the target frequency point of the low priority.
  • the terminal equipment measures the low-priority target frequency points and the neighboring cells on the same priority target frequency points to solve the cell coverage problem of the terminal equipment.
  • cell a is the serving cell of the terminal device.
  • the terminal device moves to the edge of cell a, it initiates measurement of neighboring cells (cell b, cell c, etc.) on such frequency points.
  • the terminal device can reselect the neighboring cell with better signal quality.
  • the terminal device measures the neighboring cell on the high-priority target frequency point, hoping to stay in the neighboring cell of this type of frequency point, so as to be able to get better services.
  • the trigger conditions for the terminal equipment to measure the neighboring cells of different priority target frequency points are also different: in general, when the terminal equipment determines that the signal quality of the serving cell is greater than the inter-frequency / Different system measurement threshold, only the neighboring cell on the high priority target frequency point is measured; when the terminal equipment determines that the signal quality is not greater than the different frequency/ different system measurement threshold, the measurement is performed on the high priority target frequency point, Measure the neighboring cells on the same priority target frequency point and the low priority target frequency point.
  • the terminal device can reduce the measurement objects (for example, reduce the number of target frequency points, reduce the number of neighboring cells to be measured), or reduce the frequency of measurement (for example, increase the detection delay T detect , increase the measurement time Delay T measure , or increase the evaluation delay T evaluate ), or do not perform cell measurement.
  • an embodiment of the present application provides a measurement method. This method can be adapted to the communication system shown in FIG. 1.
  • the embodiment of the present application will specifically describe an example in which a communication system expresses signal quality through signal amplitude and signal strength.
  • the terminal equipment saves the relaxation measurement threshold threshold relaxmeasure .
  • the relaxation measurement threshold threshold relaxmeasure is used to determine whether to perform relaxation measurement.
  • the relaxation measurement threshold threshold relaxmeasure includes:
  • Same-frequency relaxation measurement threshold threshold intrarelaxmeasure Same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q;
  • Inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure Inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P, and inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q.
  • the same-frequency relaxation measurement threshold threshold intrarelaxmeasure is used to determine whether to perform relaxation measurement on the same-frequency neighboring cells.
  • the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure is used to determine whether to perform relaxation measurement in the inter-frequency neighboring cell.
  • Co-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P is the signal amplitude threshold of the serving cell to determine whether to perform relaxation measurement on the same-frequency neighboring area
  • same-frequency relaxation measurement signal strength threshold intrarelaxmeasure Q is to determine whether to determine whether to perform the same-frequency neighboring area Signal strength threshold of the serving cell for relaxation measurement
  • inter- frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P is the signal amplitude threshold of the serving cell that determines whether to perform relaxation measurement on inter-frequency neighboring cells
  • inter-frequency relaxation measurement signal strength The threshold nonintrarelaxmeasure Q is the critical value of the signal strength of the serving cell for judging whether to perform relaxation measurement on the inter-frequency neighboring cell.
  • the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure is greater than a preset threshold standard initial value (which may be denoted by threshold Criterion S later), and is less than the intra- frequency measurement threshold S intrasearch in the measurement configuration information of the serving cell.
  • the threshold criterion starting value threshold Criterion S ⁇ the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P ⁇ the same-frequency measurement signal amplitude threshold S intrasearch P;
  • the threshold standard starting value threshold Criterion S ⁇ the same-frequency relaxation measurement signal strength Threshold intrarelaxmeasure Q ⁇ S intrasearch Q, the signal strength threshold for intra-frequency measurement.
  • the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure is greater than a preset threshold standard starting value (which may be denoted by threshold Criterion S later), and is less than the inter- frequency/inter-system measurement threshold S nonintrasearch in the measurement configuration information of the serving cell.
  • threshold Criterion S the threshold criterion starting value threshold Criterion S ⁇ the inter- frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P ⁇ the inter-frequency measurement signal amplitude threshold S nonintrasearch P;
  • the threshold criterion initial value threshold Criterion S is: the measurement admission threshold. That is, the terminal equipment can only measure signals whose signal quality is higher than the threshold Criterion S. When the signal quality of the signal is lower than the threshold Criterion S, the terminal device cannot measure the signal.
  • the co-frequency relaxation measurement threshold threshold intrarelaxmeasure satisfies the above conditions, and the relaxation measurement can be performed on the same-frequency neighboring cell when the signal quality of the serving cell is within the range between the co-frequency relaxation measurement threshold threshold intrarelaxmeasure and the co-frequency measurement threshold S intrasearch ; Otherwise, if the intrarelax measure threshold intrarelaxmeasure is set to be lower than the threshold Criterion S, it will cause the terminal equipment to measure the signal of the serving cell and begin to perform the relaxation measurement on the adjacent cell of the same frequency, resulting in the terminal When the signal quality of the serving cell is poor, the device cannot switch to the neighboring cell with the same frequency in time.
  • the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure satisfies the above conditions, and the inter-frequency neighboring cell can be measured when the signal quality of the serving cell is within the range between the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure and the inter- frequency/inter-system measurement threshold S nonintrasearch.
  • the inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure perform relaxation measurement; otherwise, if the inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure is set to be lower than the threshold standard starting value threshold Criterion S, it will cause the terminal device to start the relaxation measurement of the inter-frequency neighboring cell as long as it measures the signal of the serving cell , Resulting in the terminal equipment being unable to switch to the inter-frequency adjacent cell in time when the signal quality of the serving cell is poor; and if the inter-frequency relaxation measurement threshold nonintrarelaxmeasure is set to be higher than the inter-frequency/inter-system measurement threshold S nonintrasearch , when In a scenario where the signal quality of the serving cell exceeds the inter- frequency/inter-system measurement threshold S nonintrasearch, there may be a logical conflict between the terminal device performing relaxed measurement on the inter-frequency neighboring cell or not measuring the neighboring cell on the non-high priority target frequency point.
  • the trigger mechanism for the relaxation measurement of the terminal device on the same-frequency neighboring cell is as follows:
  • the terminal equipment determines that the signal amplitude of the serving cell S rxlev ⁇ the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and/or, the signal strength of the serving cell S qual ⁇ the same-frequency relaxation measurement signal Intensity threshold threshold intrarelaxmeasure Q, the terminal device performs normal measurement on the same frequency adjacent cell.
  • the terminal device determines that in the signal quality of the serving cell, the signal amplitude S rxlev ⁇ the co-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and the signal strength of the serving cell S qual ⁇ the co-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q:
  • the terminal device performs normal measurement on the same-frequency neighboring cell.
  • the terminal device can perform relaxation measurements on the same-frequency neighboring cells by reducing the measurement frequency of the same-frequency neighboring cells and/or reducing the number of the same-frequency neighboring cells (until no cell measurement is performed).
  • the terminal device may use a relaxed intra- frequency measurement period T intrarelax that is larger than a normal intra-frequency measurement period T intrarelax to perform relaxed measurement on the same-frequency neighboring cell.
  • T intrarelax T intra *A1, A1>1.
  • the normal intra- frequency measurement period T intra is the measurement period used when the terminal device performs a normal measurement on the same-frequency neighboring cell, and the normal measurement is, for example, no relaxation measurement is performed.
  • the terminal device reduces the number of co-frequency adjacent cells from B0 to B1, B0 and B1 are both integers greater than 0, and B1 ⁇ B0.
  • B1 B0/A2, A2>1.
  • the trigger mechanism for the relaxation measurement of the terminal device on the inter-frequency neighboring cell is as follows:
  • the terminal device determines that the signal amplitude S rxlev ⁇ inter- frequency relaxation measurement signal amplitude threshold nonintrarelaxmeasure P in the signal quality of the serving cell, and/or the signal strength of the serving cell S qual ⁇ inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q:
  • the terminal device performs normal measurement on all target frequency points (including high-priority target frequency points, equal-priority target frequency points, and low-priority target frequency points).
  • the terminal device determines that in the signal quality of the serving cell, the signal amplitude S rxlev ⁇ inter- frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P, and the signal strength of the serving cell S qual ⁇ inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q.
  • the terminal device performs normal measurement on all target frequency points (including high-priority target frequency points, equal-priority target frequency points, and low-priority target frequency points).
  • the terminal device may perform relaxed measurement on the different-frequency neighboring cell by reducing the measurement frequency of the different-frequency neighboring cell and/or reducing the number of the different-frequency frequency points.
  • the terminal device may use a relaxed inter-frequency measurement period T nonintrarelax that is larger than the normal inter-frequency measurement period T nonintra to perform a relaxation measurement on the inter-frequency neighboring cell.
  • T nonintrarelax T nonintra *A3, A3>1.
  • the normal inter-frequency measurement period T nonintra is the measurement period used when the terminal device performs a normal measurement on the inter-frequency neighboring cell.
  • the terminal device reduces the number of inter-frequency frequency points from N0 to N1, and both N0 and N1 are integers greater than 0, and N1 ⁇ N0.
  • N1 N0/A4, A4>1.
  • the terminal device may also determine whether it is for all types of inter-frequency frequency points according to the signal quality of the serving cell and the inter-frequency/inter-system measurement threshold S nonintrasearch To perform relaxation measurement on the neighboring cell of different frequency, or to perform relaxation measurement only on the neighboring cell on the high-priority target frequency point.
  • S nonintrasearch To perform relaxation measurement on the neighboring cell of different frequency, or to perform relaxation measurement only on the neighboring cell on the high-priority target frequency point.
  • the inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P the signal quality of the serving cell, the signal amplitude S rxlev ⁇ the inter- frequency/different system measurement signal amplitude threshold S nonintrasearch P, and/or, the inter-frequency relaxation measurement signal
  • the strength threshold threshold nonintrarelaxmeasure Q the signal strength of the serving cell, the signal strength S qual ⁇ the inter- frequency/inter-system measurement signal strength threshold S nonintrasearch Q, that is, when the terminal device needs to measure all types of inter-frequency points, so
  • the terminal device performs relaxation measurement on the inter-frequency neighboring areas on all types of inter-frequency frequency points (including high-priority target frequency points, equal-priority target frequency points, and low-priority target frequency points).
  • the strength threshold S nonintrasearch Q that is, when the terminal device only needs to measure the high priority target frequency point, and does not measure the same priority target frequency point and the low priority target frequency point, the terminal device only needs to measure Relaxation measurement is performed on the different-frequency neighboring area on the high-priority target frequency point.
  • the relaxation measurement threshold threshold relaxmeasure is configured by the base station to the terminal device.
  • a communication system may design a new structure of RRC signaling, and the base station may set the threshold relaxmeasure. It is carried in the RRC signaling.
  • the base station may add a new field to the system message SIB2, and carry the relaxation measurement threshold threshold relaxmeasure in this field.
  • the relaxation measurement threshold threshold relaxmeasure may also be stipulated in a protocol and stored in the terminal device.
  • the relaxation measurement threshold threshold relaxmeasure may also be calculated by the base station or terminal device according to a calculation method defined in the protocol and stored in the terminal device, or calculated by a calculation method configured by the base station for the terminal device.
  • the relaxation measurement threshold threshold relaxmeasure may also be selected by the terminal device from a plurality of threshold candidate values, wherein the plurality of threshold candidate values may be stipulated by the protocol and stored in the terminal device, or Configured to the terminal device for the base station.
  • the terminal device may select the relaxation measurement threshold threshold relaxmeasure according to at least one or a combination of the following: the service priority of the terminal device, the priority of the service frequency point, and the mobility information of the terminal device.
  • the higher traffic priority terminal device the terminal device selects relax measuring the door threshold relaxmeasure larger limit value. In this way, the relaxation measurement threshold is increased when the terminal device performs critical services, so that the terminal device does not perform relaxation measurement as much as possible, thereby ensuring the communication performance of the terminal device.
  • the mobile information of the terminal device indicates that the terminal device is not at the edge of the cell coverage, and/or the mobile speed of the terminal device is low, it means that the serving cell can provide the terminal device with a higher quality of service, and the terminal device chooses to relax the measurement threshold The smaller the threshold relaxmeasure value is. In this way, the terminal device enters the relaxed measurement mode as soon as possible, thereby reducing the power consumption of the terminal device.
  • each parameter in the relaxation measurement threshold threshold relaxmeasure conforms to the following formulas 1 to 4:
  • threshold intrarelaxmeasure P k1*(S intrasearch P-threshold Criterion S)+threshold Criterion S Formula 1
  • threshold intrarelaxmeasure Q k2*(S intrasearch Q-threshold Criterion S)+threshold Criterion S Formula 2
  • threshold nonintrarelaxmeasure P k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S formula 3
  • threshold nonintrarelaxmeasure Q k4*(S nonintrasearch Q-threshold Criterion S)+threshold Criterion S formula 4
  • 0 ⁇ k1 ⁇ 1, 0 ⁇ k2 ⁇ 1, 0 ⁇ k3 ⁇ 1, 0 ⁇ k4 ⁇ 1 in the above formula, and k1 to k4 may be the same or different.
  • the values of k1-k4 in the above formula may be determined by the base station and configured for the terminal device, or stipulated in the protocol and stored in the terminal device, or determined by the terminal device itself.
  • the terminal device or the base station may determine the value of k1-k4 according to at least one or a combination of the following: the service priority of the terminal device, the priority of the service frequency point, the terminal device's priority Mobility information.
  • the mobility information of the terminal device may include, but is not limited to, the location information and moving speed of the terminal device. In this way, the terminal device or the base station can dynamically adjust the relaxation measurement threshold according to the current network state.
  • the value of k1-k4 set by the terminal device or the base station is larger, so that the value of the relaxation measurement threshold obtained according to k1-k4 is also larger.
  • the relaxation measurement threshold is increased when the terminal device performs critical services, so that the terminal device does not perform relaxation measurement as much as possible, thereby ensuring the communication performance of the terminal device.
  • the value of k1-k4 set by the terminal device or the base station is lower.
  • the value of the relaxation measurement threshold obtained from k1-k4 is also lower.
  • the priority of the service frequency it means that the serving cell can provide a higher quality of service for the terminal device, and the requirement for cell reselection or handover of the terminal device is lower.
  • the value of the relaxation measurement threshold threshold relaxmeasure is set to a small value, so that the terminal device enters the relaxation measurement mode as soon as possible, thereby reducing the power consumption of the terminal device.
  • the lower the value of k1-k4 is set by the terminal device or the base station, so , The lower the value of the relaxation measurement threshold obtained according to k1-k4.
  • the movement information of the terminal device indicates that the terminal device is not at the edge of the cell coverage and the moving speed of the terminal device is low, both of which indicate that the serving cell can provide the terminal device with a higher quality of service.
  • the value of the relaxation measurement threshold threshold relaxmeasure is set to a small value, so that the terminal device enters the relaxation measurement mode as soon as possible, thereby reducing the power consumption of the terminal device.
  • the code of SIB2 carrying the relaxation measurement threshold threshold relaxmeasure is as follows:
  • the underlined codes in the above codes are all relaxation measurement thresholds: " threshnonIntraRelaxMeasureP" represents the inter- frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P; “ threshnonIntraRelaxMeasureQ” represents the inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q; “threshIntraRelaxMeasureP” represents the inter-frequency relaxation measurement signal strength threshold threshold threshold nonintrarelaxmeasure Q; The same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P; " threshIntraRelaxMeasureQ " represents the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q.
  • the embodiment of the present application provides a measurement method.
  • the terminal device can relax the measurement threshold to determine whether it is necessary to perform a relaxation measurement on the neighboring cell on the target frequency point. Therefore, the communication system can flexibly set the relaxation measurement threshold, so that the terminal device can flexibly perform the relaxation measurement on the neighboring cell on the target frequency point, thereby ensuring the communication performance of the terminal device and saving the power consumption of the terminal device. .
  • an embodiment of the present application provides a measurement method. This method can be adapted to the communication system shown in FIG. 1.
  • the embodiment of the present application will specifically describe an example in which a communication system expresses signal quality through signal amplitude and signal strength.
  • the terminal equipment saves the relaxation measurement threshold threshold relaxmeasure .
  • the parameters included in the relaxation measurement threshold relaxmeasure and the values of each parameter, and the method for obtaining the relaxation measurement threshold relaxmeasure by the terminal device, etc. can refer to the description in the first embodiment. , I won’t repeat it here.
  • the terminal device also saves multiple co-frequency measurement signal quality ranges, so as to perform relaxation measurements of different relaxation levels in the same-frequency neighboring cells according to the signal quality of the serving cell, so as to finally realize differentiated relaxation measurement and further improve relaxation measurement. Flexibility.
  • each co-frequency measurement signal quality range corresponds to a different co-frequency relaxation level.
  • the greater the co-frequency relaxation level is, the lower the measurement frequency of the same-frequency neighboring cell by the terminal device or the smaller the number of co-frequency neighboring cells.
  • the co-frequency relaxation level corresponds to the power consumption of the terminal device. The larger the terminal device, the lower the power consumption.
  • the terminal device determines that the signal quality of the serving cell is greater than the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure in the relaxation measurement threshold threshold relaxmeasure (for a specific process, refer to the description of the first embodiment), the terminal device can perform the following steps , According to the signal quality of the serving cell, perform differentiated relaxation measurement on the same-frequency neighboring cells:
  • the terminal device determines that the signal quality of the serving cell is within the range of the first co-frequency measurement signal quality
  • the terminal device compares the B1_1 co-frequency frequency points on the co-frequency point according to the first relaxed co-frequency measurement period T intrarelax_1
  • the neighboring area is measured. That is, the terminal device uses the same-frequency relaxation level 1 to perform relaxation measurement on the same-frequency neighboring cells.
  • the terminal device determines that the signal quality of the serving cell is within the range of the second co-frequency measurement signal quality
  • the terminal device compares the B1_2 co-frequency measurements on the serving frequency point according to the second relaxed co-frequency measurement period T intrarelax_2 The neighboring area is measured. That is, the terminal device uses the same-frequency relaxation level 2 to perform relaxation measurements on the same-frequency neighboring cells.
  • Co-frequency relaxation level 2 is higher than co-frequency relaxation level 1.
  • the multiple co-frequency measurement signal quality ranges are determined according to a co-frequency relaxation measurement threshold threshold intrarelaxmeasure and at least one co-frequency relaxation level threshold.
  • the first co-frequency measurement signal quality range corresponding to the first co-frequency relaxation level is (the same-frequency relaxation measurement threshold threshold intrarelaxmeasure , the first co-frequency relaxation level threshold]; the second co-frequency relaxation level corresponds to the second co-frequency measurement
  • the signal quality range is (the first co-frequency relaxation level threshold, the second co-frequency relaxation level threshold]; ... the Lth co-frequency measurement signal quality range corresponding to the L co-frequency relaxation level is (the L-1 co-frequency relaxation level Threshold, + ⁇ ].
  • each co-frequency relaxation level threshold is determined according to the co-frequency relaxation measurement threshold threshold intrarelaxmeasure .
  • the first co-frequency relaxation level threshold the co-frequency relaxation measurement threshold threshold intrarelaxmeasure *j, where j>1.
  • the first co-frequency relaxation level signal amplitude threshold threshold intrarelaxlevel_1 P the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P*j.
  • the second co-frequency relaxation level signal amplitude threshold threshold intrarelaxlevel_2 P the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P*j 2 .
  • the L-1 co-frequency relaxation level signal amplitude threshold threshold intrarelaxlevel_L-1 P the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P*j L-1 .
  • the first co-frequency relaxation level signal strength threshold threshold intrarelaxlevel_1 Q the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q*j.
  • the second co-frequency relaxation level signal strength threshold threshold intrarelaxlevel_2 Q the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q*j 2 .
  • the L-1 co-frequency relaxation level signal amplitude threshold threshold intrarelaxlevel_L-1 Q the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q*j L-1 .
  • the value of j may be calculated by the base station through a set calculation method and configured to the terminal device, or calculated by the terminal device according to a set calculation method.
  • the base station or the terminal device may calculate the value of j according to at least one or a combination of the following: the service priority of the terminal device, the priority of the service frequency point, and the mobility information of the terminal device. In this way, the terminal device or the base station can dynamically adjust the relaxation measurement threshold according to the current network state.
  • the service priority of the terminal device when the service priority of the terminal device is lower, the service frequency priority is higher, or the mobility information of the terminal device indicates that the terminal device is closer to the serving cell center and/or the moving speed of the terminal device is lower, The smaller the value of j is set. In this way, when the terminal device has a low demand for cell reselection or handover, it can enter the relaxed measurement mode as soon as possible, thereby reducing the power consumption of the terminal device.
  • each co-frequency relaxation level threshold is configured by the base station to the terminal device, or stipulated by the protocol and stored in the terminal device.
  • the terminal device also stores multiple inter-frequency measurement signal quality ranges, so as to perform relaxation measurements of different relaxation levels in the inter-frequency neighboring cells according to the signal quality of the serving cell, so as to finally realize differentiated relaxation measurement and further improve relaxation measurement. Flexibility.
  • each inter-frequency measurement signal quality range corresponds to a different inter-frequency relaxation level.
  • the greater the inter-frequency relaxation level the lower the measurement frequency of the terminal equipment to the inter-frequency neighboring cells or the smaller the number of inter-frequency neighboring cells.
  • the inter-frequency relaxation level corresponds to the power consumption of the terminal device. The larger the terminal device, the lower the power consumption.
  • the terminal device can perform the following steps , According to the signal quality of the serving cell, perform differentiated relaxation measurements on the neighboring cells of different frequencies:
  • the terminal device determines that the signal quality of the serving cell is within the range of the first inter- frequency measurement signal quality
  • the terminal device compares the N1_1 inter-frequency frequency points at the inter-frequency frequency point according to the first relaxed inter-frequency measurement period T nonintrarelax_1
  • the neighboring area is measured. That is, the terminal device uses the inter-frequency relaxation level 1 to perform relaxation measurements on the inter-frequency neighboring cells.
  • the terminal device determines that the signal quality of the serving cell is within the range of the second inter-frequency measurement signal quality
  • the terminal device compares N1_2 inter- frequency measurements on the serving frequency point according to the second relaxed inter-frequency measurement period T nonintrarelax_2
  • the neighboring area is measured. That is, the terminal device uses the inter-frequency relaxation level 2 to perform relaxation measurements on the inter-frequency neighboring cells.
  • T nonintrarelax_2 >T nonintrarelax_1 and/or N1_2 ⁇ N1_1, N1_2 and N1_1 are both greater than An integer of 0.
  • Inter-frequency relaxation level 2 is higher than inter-frequency relaxation level 1.
  • the quality ranges of the multiple inter-frequency measurement signals are determined according to an inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure and at least one inter-frequency relaxation level threshold.
  • the first inter-frequency measurement signal quality range corresponding to the first inter-frequency relaxation level is ( inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure, the first inter-frequency relaxation level threshold); the second inter-frequency relaxation level corresponds to the second inter-frequency measurement
  • the signal quality range is (the first inter-frequency relaxation level threshold, the second inter-frequency relaxation level threshold]; ... the L-th inter-frequency relaxation level corresponding to the L-th inter-frequency measurement signal quality range is (the L-1 inter-frequency relaxation level Threshold, + ⁇ ].
  • each inter- frequency relaxation level threshold is determined according to the inter-frequency relaxation measurement threshold threshold intrarelaxmeasure.
  • the first inter- frequency relaxation level threshold inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure *j, where j>1.
  • the first inter- frequency relaxation level signal amplitude threshold threshold nonintrarelaxlevel_1 P the inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P*j.
  • the second inter- frequency relaxation level signal amplitude threshold threshold nonintrarelaxlevel_2 P The inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P j 2 .
  • the L-1th inter- frequency relaxation level signal amplitude threshold threshold nonintrarelaxlevel_L-1 P The inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P j L-1 .
  • the first inter- frequency relaxation level signal strength threshold threshold nonintrarelaxlevel_1 Q The inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q*j.
  • the second inter- frequency relaxation level signal strength threshold threshold nonintrarelaxlevel_2 Q The inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q j 2 .
  • the L-1th inter- frequency relaxation level signal amplitude threshold threshold nonintrarelaxlevel_L-1 Q the inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q j L-1 .
  • the value of j may be calculated by the base station through a set calculation method and configured to the terminal device, or calculated by the terminal device according to a set calculation method.
  • the base station or the terminal device may calculate the value of j according to at least one or a combination of the following: the service priority of the terminal device, the priority of the service frequency point, and the mobility information of the terminal device.
  • the value rule of j can refer to the above value rule when calculating the signal strength threshold of the co-frequency relaxation level, which will not be repeated here.
  • each inter-frequency relaxation level threshold is configured by the base station to the terminal device, or stipulated by the protocol and stored in the terminal device.
  • the embodiment of the present application provides a measurement method.
  • the terminal device determines that it needs to perform relaxation measurement on the neighboring cell on the target frequency point according to the relaxation measurement threshold, according to the signal quality of the serving cell. , Perform relaxation measurements of different relaxation levels on the neighboring area on the target frequency point, and finally achieve differentiated relaxation measurements. Therefore, the terminal device can flexibly perform differentiated relaxation measurement on the neighboring cell on the target frequency point, so that the communication performance of the terminal device can be guaranteed and the power consumption of the terminal device can be saved.
  • an embodiment of the present application provides a measurement method. This method can be adapted to the communication system shown in FIG. 1.
  • the embodiment of the present application will specifically describe an example in which a communication system expresses signal quality through signal amplitude and signal strength.
  • the terminal equipment saves the relaxation measurement threshold threshold relaxmeasure .
  • the parameters included in the relaxation measurement threshold relaxmeasure and the values of each parameter, and the method for obtaining the relaxation measurement threshold relaxmeasure by the terminal device, etc. can refer to the description in the first embodiment. , I won’t repeat it here.
  • the terminal device also saves multiple co-frequency measurement signal quality ranges, so as to perform relaxation measurements of different relaxation levels in the same-frequency neighboring cells according to the signal quality of the serving cell, so as to finally realize differentiated relaxation measurement and further improve relaxation measurement.
  • Figure 2C For the specific process, please refer to the description of performing differential relaxation measurement on the same-frequency neighboring cell in the second embodiment, which will not be repeated here.
  • the multiple co-frequency measurement signal quality ranges are determined according to multiple co-frequency relaxation level thresholds.
  • the first co-frequency measurement signal quality range corresponding to the first co-frequency relaxation level is (the same-frequency relaxation measurement threshold threshold intrarelaxmeasure , the first co-frequency relaxation level threshold]; the second co-frequency relaxation level corresponds to the second co-frequency measurement
  • the signal quality range is (the first co-frequency relaxation level threshold, the second co-frequency relaxation level threshold]; ... the Lth co-frequency measurement signal quality range corresponding to the L co-frequency relaxation level is (the L-1 co-frequency relaxation level Threshold, + ⁇ ].
  • each co-frequency relaxation level threshold is calculated by the base station through a set calculation method and configured to the terminal device, or calculated by the terminal device according to a calculation method specified in the protocol and stored in the terminal device .
  • each co-frequency relaxation level threshold can be calculated by the following formula:
  • threshold intrarelaxlevel_i P k(i)*(S intrasearch P-Threshold Criterion S)+Threshold Criterion S Formula 5
  • threshold intrarelaxlevel_j Q k(j)*(S intrasearch Q-Threshold Criterion S)+Threshold Criterion S Formula 6
  • threshold intrarelaxlevel_i P is the signal amplitude threshold of the i-th co-frequency relaxation level
  • threshold intrarelaxlevel_j Q is the signal strength threshold of the j-th co-frequency relaxation level
  • i is an integer from 1 to L-1
  • j is from 1 to L An integer of -1; 0 ⁇ k(i) ⁇ 1, and k(i) ⁇ k(i+1), 0 ⁇ k(j) ⁇ 1, and k(j) ⁇ k(j+1).
  • the terminal device also stores multiple inter-frequency measurement signal quality ranges, so as to perform relaxation measurements of different relaxation levels in the inter-frequency neighboring cells according to the signal quality of the serving cell, so as to finally realize differentiated relaxation measurement and further improve relaxation measurement.
  • the terminal device also stores multiple inter-frequency measurement signal quality ranges, so as to perform relaxation measurements of different relaxation levels in the inter-frequency neighboring cells according to the signal quality of the serving cell, so as to finally realize differentiated relaxation measurement and further improve relaxation measurement.
  • Figure 2D For flexibility, see Figure 2D.
  • the multiple inter-frequency measurement signal quality ranges are determined according to multiple inter-frequency relaxation level thresholds.
  • the first inter-frequency measurement signal quality range corresponding to the first inter-frequency relaxation level is (the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure, the first inter-frequency relaxation level threshold); the second inter-frequency relaxation level corresponds to the second inter-frequency measurement
  • the signal quality range is (the first inter-frequency relaxation level threshold, the second inter-frequency relaxation level threshold];
  • the L-th inter-frequency relaxation level corresponding to the L-th inter-frequency measurement signal quality range is (the L-1 inter-frequency relaxation level Threshold, + ⁇ ].
  • each inter-frequency relaxation level threshold is calculated by the base station through a set calculation method and configured to the terminal device, or calculated by the terminal device according to a calculation method specified in the protocol and stored in the terminal device .
  • the threshold of each inter-frequency relaxation level can be calculated by the following formula:
  • threshold nonintrarelaxlevel_x P k(x)*(S nonintrasearch P-Threshold Criterion S)+Threshold Criterion S Formula 5
  • threshold nonintrarelaxlevel_y Q k(y)*(S nonintrasearch Q-Threshold Criterion S)+Threshold Criterion S Formula 6
  • threshold nonintrarelaxlevel_x P is the x-th inter- frequency relaxation level signal amplitude threshold
  • threshold nonintrarelaxlevel_y Q is the y-th intra- frequency relaxation level signal strength threshold
  • x is an integer from 1 to L-1
  • y is from 1 to L An integer of -1; 0 ⁇ k(x) ⁇ 1, and k(x) ⁇ k(x+1), 0 ⁇ k(y) ⁇ 1, and k(y) ⁇ k(y+1).
  • the embodiment of the present application provides a measurement method.
  • the terminal device determines that it needs to perform relaxation measurement on the neighboring cell on the target frequency point according to the relaxation measurement threshold, according to the signal quality of the serving cell. , Perform relaxation measurements of different relaxation levels on the neighboring area on the target frequency point, and finally achieve differentiated relaxation measurements. Therefore, the terminal device can flexibly perform differentiated relaxation measurement on the neighboring cell on the target frequency point, so that the communication performance of the terminal device can be guaranteed and the power consumption of the terminal device can be saved.
  • an embodiment of the present application provides a measurement method. This method can be adapted to the communication system shown in FIG. 1. The method will be described in detail below with reference to FIG. 3.
  • Each base station in the communication system sends measurement configuration information for the managed cell through a system message.
  • the measurement configuration information of any cell includes the priority of the frequency point where the cell is located, the intra- frequency measurement threshold S intrasearch, and the inter-frequency/different system measurement threshold S nonintrasearch .
  • each base station sends the target frequency point configuration information of the cell through a system message or an RRC message.
  • the target frequency point configuration information includes the target frequency point to be measured, and may also include the neighboring cell to be measured on each target frequency point.
  • the terminal device receives the measurement configuration information and target frequency point configuration information of its serving cell, and determines the priority of the service frequency point, the same frequency measurement threshold S intrasearch and the different frequency/different system measurement threshold S nonintrasearch , and the target frequency point. In addition, after receiving the measurement configuration information of the neighboring cell, the terminal device determines the priority of each target frequency point.
  • the terminal device may divide the target frequency points into at least one of two types according to the relationship between the target frequency point and the service frequency point: the same frequency frequency point and the different frequency frequency point.
  • the terminal device divides the inter-frequency frequency points into three categories according to the relative relationship between the priority of each target frequency point and the priority of the service frequency point: high-priority target frequency points, and equal-priority target frequency points. Low priority target frequency point.
  • the terminal device determines the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure according to the intra-frequency measurement threshold S intrasearch in the serving cell and the preset threshold criterion starting value threshold Criterion S, so as to ensure the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure
  • the threshold Criterion S is greater than the threshold Criterion S, and less than the intra- frequency measurement threshold S intrasearch in the measurement configuration information of the serving cell
  • the terminal equipment is preset according to the inter-frequency/inter-system measurement threshold S nonintrasearch in the serving cell Determine the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure to ensure that the inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure is greater than the threshold criterion starting value threshold Criterion S and less than the measurement configuration information of the serving cell Inter- frequency/different-system measurement threshold S nonintrasearch in.
  • the terminal device may determine the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P and the same-frequency relaxation measurement in the same-frequency measurement threshold S intrasearch according to Formula 1 and Formula 2 in Embodiment 1.
  • Signal strength threshold threshold intrarelaxmeasure Q may be determined.
  • the terminal apparatus is determined that the inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure the inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P and inter-frequency relaxation measures the signal strength threshold threshold nonintrarelaxmeasure Q.
  • the calculation methods corresponding to formula 1 to formula 4 may be those specified in the protocol and stored in the terminal device, or the base station may be configured to the terminal device.
  • the base station may also carry multiple co-frequency relaxation measurement threshold candidate values and multiple inter-frequency relaxation measurement threshold candidate values in the measurement configuration information.
  • the same-frequency relaxation measurement signal amplitude threshold P candidate value and the same-frequency relaxation measurement signal strength threshold Q candidate value in each same-frequency relaxation measurement threshold candidate value respectively comply with the formula 1 and formula in the first embodiment two.
  • the inter-frequency relaxation measurement signal amplitude threshold P candidate value and the inter-frequency relaxation measurement signal strength threshold Q candidate value respectively comply with Formula 3 and Formula 4 of the first embodiment.
  • the terminal device may relax the same frequency from the plurality of alternative threshold values measured with the frequency select gate threshold measurement relax threshold intrarelaxmeasure, and relax from the plurality of inter-frequency measurement limit value alternatively select gate inter-frequency measurement threshold relax threshold nonintrarelaxmeasure.
  • the terminal device may be selected randomly, or selected according to one or a combination of the following: the service priority of the terminal device, the priority of the service frequency point, and the mobility information of the terminal device.
  • the service priority of the terminal device the priority of the service frequency point
  • the mobility information of the terminal device For the specific process, reference may be made to the description in Embodiment 1, which will not be repeated here.
  • the terminal device may be limited according to the relaxation measure door same frequency threshold intrarelaxmeasure, on the same-frequency neighboring the same frequency point on relax measured; and a frequency relaxation
  • the exclusive measurement threshold threshold nonintrarelaxmeasure for different on different frequency point frequency neighboring Take a relaxation measurement.
  • the terminal device may further combination with one or adjusting said relaxation measurements with the threshold frequency threshold intrarelaxmeasure, and inter-frequency measurement threshold relax threshold nonintrarelaxmeasure: the terminal device service priority, the priority of the service frequency, The mobility information of the terminal device.
  • the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure and the inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure are increased.
  • the relaxation measurement threshold is increased when the terminal device performs critical services, so that the terminal device does not perform relaxation measurement as much as possible, thereby ensuring the communication performance of the terminal device.
  • the intrarelax measurement threshold is relaxed.
  • the value of the inter- frequency relaxation measurement threshold threshold nonintrarelaxmeasure is lowered. In this way, when the cell reselection or handover demand of the terminal device decreases, the relaxation measurement threshold is reduced, so that the terminal device enters the relaxation measurement mode as soon as possible, thereby reducing the power consumption of the terminal device.
  • the terminal device may be a frequency relax accordance with the adjusted measurement threshold threshold intrarelaxmeasure, on the same-frequency neighboring the same frequency point on relax measured; and according to different adjusted time-frequency relaxation measurement threshold threshold nonintrarelaxmeasure, for different frequency point Perform relaxation measurement on the different frequency neighboring area.
  • S304 and S305 are optional steps, and the communication system may implement adjustment of the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure and the inter-frequency relaxation measurement threshold nonintrarelaxmeasure by the terminal device.
  • the embodiment of the present application provides a measurement method.
  • the terminal device can relax the measurement threshold to determine whether it is necessary to perform a relaxation measurement on the neighboring cell on the target frequency point. Therefore, the communication system can flexibly set the relaxation measurement threshold, so that the terminal device can flexibly perform the relaxation measurement on the neighboring cell on the target frequency point, thereby ensuring the communication performance of the terminal device and saving the power consumption of the terminal device. .
  • an embodiment of the present application provides a measurement method. This method can be adapted to the communication system shown in FIG. 1. The method will be described in detail below with reference to FIG. 4.
  • Each base station in the communication system sends measurement configuration information and target frequency configuration information for the managed cell.
  • target frequency configuration information for the specific process, please refer to S301.
  • S301 is different from the measurement cell according to any one of the configuration information further comprises measuring relaxation frequency limit with a door threshold intrarelaxmeasure, inter-frequency measurement threshold relax threshold nonintrarelaxmeasure.
  • the base station may determine the same-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P and the same-frequency relaxation measurement signal in the same-frequency measurement threshold S intrasearch according to Formula 1 and Formula 2 in Embodiment 1. Intensity threshold threshold intrarelaxmeasure Q.
  • the base station may determine the inter- frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P and the inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q in the inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure according to the formula 3 and the equation 4 in the first embodiment. .
  • the base station may determine the intra- frequency relaxation measurement threshold threshold intrarelaxmeasure and the inter-frequency relaxation measurement threshold nonintrarelaxmeasure according to at least one or a combination of the following: the service priority of the terminal device, the terminal device The priority of the service frequency and the mobility information of the terminal device.
  • the terminal device may be limited according to the relaxation measure door same frequency threshold intrarelaxmeasure, on the same-frequency neighboring the same frequency point on relax measured; and a frequency relaxation
  • the exclusive measurement threshold threshold nonintrarelaxmeasure for different on different frequency point frequency neighboring Take a relaxation measurement.
  • the base station may further combination with one or adjusting said relaxation measurements with the threshold frequency threshold intrarelaxmeasure, and inter-frequency measurement threshold relax threshold nonintrarelaxmeasure: the terminal device service priority, the priority of the service frequency, the The mobility information of the terminal device. Then, the base station sends measurement adjustment information to the terminal device, and the measurement adjustment information includes the adjusted intra- frequency relaxation measurement threshold threshold intrarelaxmeasure and the adjusted inter-frequency relaxation measurement threshold threshold nonintrarelaxmeasure .
  • the relaxation measurement threshold sent by the base station to the terminal device may be the threshold before adjustment or the threshold after adjustment.
  • the terminal device may be the following or a combination thereof, adjusting said relaxation measurements with the threshold frequency threshold intrarelaxmeasure, and inter-frequency measurement threshold relax threshold nonintrarelaxmeasure: the terminal device service priority, the priority of the service frequency, The mobility information of the terminal device.
  • the terminal device may be the following or a combination thereof, adjusting said relaxation measurements with the threshold frequency threshold intrarelaxmeasure, and inter-frequency measurement threshold relax threshold nonintrarelaxmeasure: the terminal device service priority, the priority of the service frequency, The mobility information of the terminal device.
  • the terminal device may be a frequency relax accordance with the adjusted measurement threshold threshold intrarelaxmeasure, on the same-frequency neighboring the same frequency point on relax measured; and according to different adjusted time-frequency relaxation measurement threshold threshold nonintrarelaxmeasure, for different frequency point Perform relaxation measurement on the different frequency neighboring area.
  • the communication system may implement the same frequency measurement threshold relax threshold intrarelaxmeasure via a base station and / or the terminal device, and adjusting the inter-frequency measurement threshold relax the threshold nonintrarelaxmeasure .
  • the base station directly configures the relaxation measurement threshold for the terminal device.
  • the base station may send other information to the terminal device to indirectly configure a relaxation measurement threshold for the terminal device.
  • the base station may send multiple co-frequency loosening measurement threshold candidate values and multiple inter-frequency loosening measurement threshold candidate values to the terminal device, so that the terminal device can relax the measurement threshold on multiple co-frequency In the value selection, select the same frequency to relax the measurement threshold, and select the different frequency to relax the measurement threshold from multiple alternative values of the different frequency to relax the measurement threshold.
  • each threshold candidate value complies with the corresponding threshold value rule.
  • the above-mentioned threshold candidate value may be specified in the protocol and stored in the base station, or calculated by the base station according to a set calculation method.
  • the base station may send the same-frequency relaxation measurement threshold calculation parameter and the inter-frequency relaxation measurement threshold calculation parameter to the terminal device, so that the terminal device may calculate the same-frequency relaxation measurement threshold calculation parameter according to the same-frequency relaxation measurement threshold calculation parameter.
  • the measurement threshold is calculated according to the inter-frequency relaxation measurement threshold calculation parameter.
  • the threshold calculation parameters can include the initial same-frequency/different frequency relaxation measurement threshold and/or the threshold adjustment value (for example, k1-k4 in Equation 1-Equation 4, or the basis for the initial same-frequency/different frequency relaxation measurement threshold Increase or decrease the value).
  • the embodiment of the present application provides a measurement method.
  • the terminal device can relax the measurement threshold to determine whether it is necessary to perform a relaxation measurement on the neighboring cell on the target frequency point. Therefore, the communication system can flexibly set the relaxation measurement threshold, so that the terminal device can flexibly perform the relaxation measurement on the neighboring cell on the target frequency point, thereby ensuring the communication performance of the terminal device and saving the power consumption of the terminal device. .
  • an embodiment of the present application also provides a communication device.
  • the structure of the device is shown in FIG. 5 and includes a communication unit 501 and a processing unit 502.
  • the communication device can be applied to the base station or terminal equipment in the communication system shown in FIG. 1, and can implement the measurement methods provided in the above embodiments.
  • the function of each unit in the device 500 is introduced below:
  • the function of the communication unit 501 is to receive and send signals.
  • the communication unit 501 may be implemented by a radio frequency circuit, wherein the radio frequency circuit includes an antenna.
  • the processing unit 502 is configured to determine that the signal quality of the serving cell is greater than a relaxation measurement threshold, where the relaxation measurement threshold is greater than a preset threshold standard starting value and smaller than a measurement threshold, and the threshold standard starting value is a measurement admission Threshold; relax measurement of the neighboring area on the target frequency point.
  • the relaxation measurement threshold is the same-frequency relaxation measurement threshold, and the measurement threshold is the same-frequency measurement threshold; when the processing unit 502 performs relaxation measurement on the neighboring cell on the target frequency point, it specifically uses At:
  • the relaxation measurement threshold is an inter-frequency relaxation measurement threshold, and the measurement threshold is an inter-frequency/inter-system measurement threshold; when the processing unit 502 performs relaxation measurement on the neighboring cell on the target frequency point , Specifically used for:
  • the target different-frequency frequency point belongs to the different-frequency frequency point
  • the different-frequency frequency point is a target frequency point that is different from the service frequency point where the serving cell is located.
  • the number of the same-frequency neighboring cells at the same-frequency frequency point is B0; the processing unit 502 is specifically configured to:
  • the T intrarelax > normal co-frequency measurement period T intra , and/or B1 ⁇ B0, the T intra is used when the terminal device does not perform relaxation measurement on the co-frequency neighboring cell on the co-frequency frequency point The measurement period.
  • the number of the same-frequency neighboring cells at the same-frequency frequency point is B0; the processing unit 502 is specifically configured to:
  • the B1_1 co-frequency adjacent cells on the co-frequency point are measured according to the first relaxed co-frequency measurement period T intrarelax_1;
  • a signal quality range is determined based on two adjacent relaxation level thresholds in at least one relaxation level threshold, or the first signal quality range is determined based on the same frequency relaxation measurement threshold and the at least one relaxation level threshold. The relaxation level threshold with the smallest value is determined;
  • the B1_2 co-frequency adjacent cells on the same frequency point are measured;
  • the second signal quality range is determined according to two adjacent relaxation level thresholds among the at least one relaxation level threshold, or the second signal quality range is determined according to the relaxation level threshold with the largest value among the at least one relaxation level threshold The level threshold is determined;
  • T intrarelax_1 normal intra- frequency measurement period T intra, and/or, B1_1 ⁇ B0; T intrarelax_2 > the T intra , and/or, B1_2 ⁇ B0, the T intra is that the terminal device is wrong
  • the inter-frequency frequency points include: high-priority target frequency points, equal-priority target frequency points, and low-priority target frequency points;
  • the target inter-frequency frequency point includes: the high-priority target frequency point, all The target frequency points of the same priority and the target frequency points of the low priority;
  • the target inter-frequency frequency point is the high-priority target frequency point.
  • the number of the target inter-frequency frequency points is N0; the processing unit 502, when performing relaxation measurements on the inter-frequency neighboring regions at the target inter-frequency frequency points, is specifically used to:
  • the number of the target inter-frequency frequency points is N0; the processing unit 502, when performing relaxation measurements on the inter-frequency neighboring regions at the target inter-frequency frequency points, is specifically used to:
  • the inter-frequency neighboring cells on the N1_1 target inter-frequency points are measured; the first The signal quality range is determined based on two adjacent relaxation level thresholds in at least one relaxation level threshold, or the first signal quality range is selected based on the co-frequency relaxation measurement threshold and the at least one relaxation level threshold. The relaxation level threshold with the smallest value is determined;
  • the second relaxed inter- frequency measurement period T nonintrarelax_2 When it is determined that the signal quality of the serving cell is within the second signal quality range, according to the second relaxed inter- frequency measurement period T nonintrarelax_2, the inter-frequency neighboring cells on the N1_2 target inter-frequency points are measured; the second The signal quality range is determined according to two adjacent relaxation level thresholds among the at least one relaxation level threshold, or the second signal quality range is determined according to the relaxation level with the largest value among the at least one relaxation level threshold The threshold is determined;
  • the relaxed measurement threshold is configured by the base station to the terminal device; or the relaxed measurement threshold is stipulated by the protocol and stored in the terminal device; or the relaxed measurement threshold is determined by the terminal device.
  • the terminal device is calculated according to a setting calculation method, wherein the setting calculation method is configured by the base station for the terminal device or specified by the protocol and stored in the terminal device; or the relaxation of the measurement threshold is determined by the terminal device.
  • the terminal equipment is determined.
  • the communication unit 501 when the relaxation measurement threshold is configured by the base station to the terminal device, the communication unit 501 is configured to receive a first message from the base station, and the first message contains all Describe the relaxation of the measurement threshold.
  • the communication unit 501 when the loosening of the measurement threshold is configured by the base station to the terminal device, the communication unit 501 is configured to receive a second message from the base station, and the second message contains multiple messages. Threshold candidate values; the processing unit 502 is configured to select one threshold candidate value from the multiple threshold candidate values as the relaxation measurement threshold.
  • the communication unit 501 when the relaxation measurement threshold is configured by the base station to the terminal device, the communication unit 501 is configured to receive a third message from the base station, and the third message includes relaxation Measurement threshold calculation parameters, where the threshold calculation parameters include: an initial relaxation measurement threshold, and/or a relaxation measurement threshold adjustment value; the terminal device determines the relaxation measurement threshold according to the relaxation measurement threshold calculation parameter.
  • the processing unit 502 is further configured to: determine the relaxation measurement threshold according to at least one or a combination of the following:
  • the service priority of the terminal device the service frequency priority, and the mobility information of the terminal device;
  • the mobility information of the terminal device includes location information and moving speed of the terminal device.
  • the co-frequency relaxation measurement threshold conforms to the following formula:
  • threshold intrarelaxmeasure k intra *(S intrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold intrarelaxmeasure is the intra- frequency relaxation measurement threshold
  • S intrasearch is the intra- frequency measurement threshold
  • threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k intra ⁇ 1;
  • the inter-frequency relaxation measurement threshold conforms to the following formula:
  • threshold nonintrarelaxmeasure k nonintra *(S nonintrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold nonintrarelaxmeasure is the inter- frequency relaxation measurement threshold
  • S nonintrasearch is the inter- frequency/inter-system measurement threshold
  • the intra- frequency relaxation measurement threshold includes: the intra-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and/or the intra-frequency relaxation measurement signal strength threshold intrarelaxmeasure Q; the intra- frequency measurement threshold includes : The same-frequency measurement signal amplitude threshold S intrasearch P, and/or, the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q;
  • the threshold intrarelaxmeasure P conforms to the following formula:
  • threshold intrarelaxmeasure P k1*(S intrasearch P-threshold Criterion S)+threshold Criterion S;
  • Threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k1 ⁇ 1, 0 ⁇ k2 ⁇ 1;
  • the threshold intrarelaxmeasure Q conforms to the following formula:
  • threshold intrarelaxmeasure Q k2*(S intrasearch Q-threshold Criterion S)+threshold Criterion S;
  • the inter- frequency relaxation measurement threshold includes: inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P, and/or the inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the inter- frequency/inter-system measurement threshold includes: inter-frequency measurement Signal amplitude threshold S nonintrasearch P, and/or, inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the threshold nonintrarelaxmeasure P conforms to the following formula:
  • threshold nonintrarelaxmeasure P k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S;
  • the threshold nonintrarelaxmeasure Q conforms to the following formula:
  • threshold nonintrarelaxmeasure Q k4*(S nonintrasearch Q-threshold Criterion S)+threshold Criterion S;
  • the processing unit 502 is configured to determine a relaxation measurement threshold, where the relaxation measurement threshold is greater than a preset threshold standard starting value and smaller than a measurement threshold, and the threshold standard starting value is a measurement admission threshold;
  • the communication unit 501 is configured to send a first message to a terminal device, where the first message includes the relaxation measurement threshold.
  • the relaxation measurement threshold is stipulated by an agreement and stored in the base station; or the relaxation measurement threshold is calculated by the base station according to a set calculation method.
  • the communication unit 501 is further configured to:
  • the second message further includes: a relaxation measurement threshold adjustment value, and the relaxation measurement threshold adjustment value is used to adjust the relaxation measurement threshold;
  • a third message is sent to the terminal device, where the third message further includes: at least one relaxation level threshold, or a relaxation level threshold adjustment value used to determine at least one relaxation level threshold.
  • the relaxation measurement threshold is a same-frequency relaxation measurement threshold, and the measurement threshold is a same-frequency measurement threshold; or the relaxation measurement threshold is an inter-frequency relaxation measurement threshold, and the measurement threshold is an inter-frequency/ Different system measurement threshold.
  • the co-frequency relaxation measurement threshold conforms to the following formula:
  • threshold intrarelaxmeasure k intra *(S intrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold intrarelaxmeasure is the intra- frequency relaxation measurement threshold
  • S intrasearch is the intra- frequency measurement threshold
  • threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k intra ⁇ 1;
  • the inter-frequency relaxation measurement threshold conforms to the following formula:
  • threshold nonintrarelaxmeasure k nonintra *(S nonintrasearch -threshold Criterion S)+threshold Criterion S;
  • threshold nonintrarelaxmeasure is the inter- frequency relaxation measurement threshold
  • S nonintrasearch is the inter- frequency/inter-system measurement threshold
  • the intra- frequency relaxation measurement threshold includes: the intra-frequency relaxation measurement signal amplitude threshold threshold intrarelaxmeasure P, and/or the intra-frequency relaxation measurement signal strength threshold intrarelaxmeasure Q; the intra- frequency measurement threshold includes : The same-frequency measurement signal amplitude threshold S intrasearch P, and/or, the same-frequency relaxation measurement signal strength threshold threshold intrarelaxmeasure Q;
  • the threshold intrarelaxmeasure P conforms to the following formula:
  • threshold intrarelaxmeasure P k1*(S intrasearch P-threshold Criterion S)+threshold Criterion S;
  • Threshold Criterion S is the initial value of the threshold criterion, 0 ⁇ k1 ⁇ 1, 0 ⁇ k2 ⁇ 1;
  • the threshold intrarelaxmeasure Q conforms to the following formula:
  • threshold intrarelaxmeasure Q k2*(S intrasearch Q-threshold Criterion S)+threshold Criterion S;
  • the inter- frequency relaxation measurement threshold includes: the inter-frequency relaxation measurement signal amplitude threshold threshold nonintrarelaxmeasure P, and/or the inter-frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the inter- frequency/inter-system measurement threshold includes: inter-frequency measurement Signal amplitude threshold S nonintrasearch P, and/or, inter- frequency relaxation measurement signal strength threshold threshold nonintrarelaxmeasure Q;
  • the threshold nonintrarelaxmeasure P conforms to the following formula:
  • threshold nonintrarelaxmeasure P k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S;
  • the threshold nonintrarelaxmeasure Q conforms to the following formula:
  • threshold nonintrarelaxmeasure Q k4*(S nonintrasearch Q-threshold Criterion S)+threshold Criterion S;
  • each function in each embodiment of the present application can be integrated into one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • an embodiment of the present application also provides a communication device, which can be applied to the base station or terminal device in the communication system shown in FIG. 1 and can implement the measurement method provided in the above embodiment.
  • the communication device includes: a transceiver 601, a processor 602, and a memory 603. Wherein, the transceiver 601, the processor 602, and the memory 603 are connected to each other.
  • the transceiver 601, the processor 602, and the memory 603 are connected to each other through a bus 604.
  • the bus 604 may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • the transceiver 601 is used to receive and send signals to realize communication and interaction with other devices.
  • the transceiver 601 can be divided into a transmitting channel and a receiving channel.
  • the transmit channel is composed of a transmit (TX) signal processing unit, a TX radio frequency channel and an antenna
  • the receive channel is composed of a receive (receive, RX) signal processing unit, an RX radio frequency channel and an antenna.
  • the TX signal processing unit implements various signal processing functions for signal transmission, including processes such as channel coding, scrambling, modulation, layer mapping, precoding, and antenna mapping.
  • the RX signal processing unit implements various signal processing functions for signal reception, including synchronization, time-frequency tracking, measurement, channel estimation, equalization, demodulation, descrambling, and decoding.
  • the TX signal processing unit is connected to the antenna through the TX radio frequency channel, so that the baseband signal is modulated to the carrier frequency through the TX radio frequency channel, and finally sent out through the antenna.
  • the RX signal processing unit is connected to the antenna through the RX radio frequency channel, so that the RX radio frequency channel can demodulate the radio frequency signal received from the antenna into a baseband signal, which is processed by the RX signal processing unit.
  • some antennas can be configured to transmit and receive at the same time, so they are connected to the TX radio frequency channel and the RX radio frequency channel at the same time; some antennas are configured to be used only for receiving, so they are only connected to the RX radio frequency channel.
  • the TX radio frequency channel and the RX radio frequency channel can be connected to any antenna, such as TX radio frequency channel 1 and RX radio frequency channel 1 and antenna 2, which can be flexibly configured according to business requirements.
  • the RX signal processing unit is configured with an RX radio frequency channel and antenna so that the RX radio frequency channel and antenna work on the frequency point of the serving cell or neighboring cell.
  • the RX radio frequency channel and antenna receive the reference signal of the serving cell or the neighboring cell, and the RX signal processing unit processes the received reference signal, and calculates the signal quality of the serving cell and the neighboring cell.
  • the processor 602 is configured to implement the measurement method in the above embodiment. For details, reference may be made to the corresponding description in the above embodiment, which will not be repeated here.
  • the memory 603 is used to store program instructions and data.
  • the program instructions may include program code, and the program code includes computer operation instructions.
  • the memory 603 may include a random access memory (RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 602 executes the program instructions stored in the memory 603, and uses the data stored in the memory 603 to implement the above-mentioned functions, thereby realizing the measurement method provided in the above-mentioned embodiment.
  • the memory 603 in FIG. 6 of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiments of the present application also provide a computer program, which when the computer program runs on a computer, causes the computer to execute the measurement method provided in the above embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium in which a computer program is stored.
  • the computer program executes the measurement provided in the above embodiment. method.
  • the storage medium may be any available medium that can be accessed by a computer. Take this as an example but not limited to: computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data in the form of structure The desired program code and any other medium that can be accessed by the computer.
  • an embodiment of the present application also provides a chip, which is used to read a computer program stored in a memory to implement the measurement method provided in the above embodiment.
  • the embodiments of the present application provide a chip system including a processor for supporting a computer device to implement functions related to the base station or terminal equipment in the measurement method provided in the above embodiment.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the embodiments of the present application provide a measurement method and equipment.
  • the terminal device can relax the measurement threshold to determine whether it is necessary to perform a relaxed measurement on the neighboring cell on the target frequency point. Therefore, the communication system can flexibly set the relaxation measurement threshold, so that the terminal device can flexibly perform the relaxation measurement on the neighboring cell on the target frequency point, thereby ensuring the communication performance of the terminal device and saving the power consumption of the terminal device.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • Table 1 gives the power saving gain when extending measurement periodicality.
  • the extension factor is configured by network.
  • network can configure different relaxation factor for different scenario.
  • the relaxation factor can also consider the UE mobility factor degree or location etc. ⁇ 2,8 ⁇ .
  • Proposal 1 The extension factor for relaxed measurement can be configured by network for scenario #1 and #2.
  • RAN2 has aggregated that network indicators option a or option b.
  • option a it was already already agreed at RAN4#93 meeting that UE is not required to meet the intra-frequency and inter-frequency measurement of neighbours #3 the UE behavior is clear.
  • UE can perform relaxation when either low mobility or not-at-cell-edge criteria is fulfilled. If both don criteria are fulfilled. 't think that UE shall stop measurement in this case. Since network indicators option b to UE, it means that network expects relaxation measurement and expects the measurement results reported by UE Otherwise to the network society. satisfied, UE can choose any one, it is up to UE implementation.
  • Proposal 2 When network configures the parameters of both low mobility and not-at-cell-edge criteria,
  • UE stops intra-frequency and inter-frequency neighbour cell measurements when both criteria are fulfilled.
  • UE performs corresponding relaxed measurement according to which criteria is met. If both criteria are satisfied, it is left to UE implementation to choose one (either low mobility or not-at cell-edge) and perform the corresponding relaxed measurements.
  • NB Iot the following relaxed monitoring measurement rules are specified in TS 36.304.
  • the time interval since the last measurement for cell reselection is defined as 24 hours.
  • UE will stop intra-frequency and inter-frequency neighbour cell measurements.
  • the interval since last measure for cell reselection lys the hall before 24 hours. is not suitable for power saving UE.
  • This value shall consider the network deployment, propagation, environment, UE mobility direction, UE speed, UE location and etc. Too long interval may impact UE mobility performance and power reduction short value the will. Generally we think time interval for measurement relaxation (stop measurements) since last measurement for cell reselection is minutes level.
  • Proposal 3 Time interval for measurement relaxation (stop measurements) since last measurement for cell reselection is minutes level.
  • RAN4 discussed the RRM measurement for inter-frequency layer with higher priority during last meeting.
  • the UE behaviour is to perform measure inter-frequency layers of higher,equal or lower priority layers.
  • the measurement requirements for higher,equal or lower priority layers is the same in this case.
  • the power saving benefit can be foreseen if the measurement of higher priority layers is relaxed(the gain is shown in table 1).
  • the measurement result validity due to the measurement relaxation on higher priority is not a big issue.Since the power saving trigger criteria is specified for low mobility or not-at-cell edge scenario,in both cases,there is no strong command of obtaining fast measurement results.However if different priority layers(high,equal and lower) have the same requirements of measurement, this is contradictory with the motivation of introduction of different priority layers.So S rxlev ⁇ S nonIntraSearchP or S qual ⁇ S nonIntraSearchQ ,the relaxed requirement for the frequency layer of higher priority can use different relaxed measurement requirement as those
  • Proposal 4 When S rxlev >S nonIntraSearchP and S qual >S nonIntraSearchQ ,no relaxation of the current measurement delay requirement is expected for inter-frequency measurement with higher priority.
  • S rxlev ⁇ S nonIntraSearchP or S qual ⁇ S nonIntraSearchQ the relaxed requirement for the frequency layer of higher priority can use the different relaxed measurement requirement as those for the frequency layer of equal/lower priority.
  • Paging occasion is essential and can not be missed from UE point of view.
  • UE can perform intra-frequency measurement during the paging occasion, which means that intra-frequency measurement doesn’t introduce extra power.
  • inter-frequency measurement For inter-frequency measurement, UE needs to wake up additionally during DRX-OFF in order to avoid the degradation on the paging reception.
  • the measurement requirements for inter-frequency are scaling with the frequency that it’s normalized number. power is not increased when multiple inter-frequency layers are configured.
  • Proposal 5 Reducing the inter-frequency layers for measurement in idle mode cannot not bring power saving gain.
  • Proposal 6 In scenario #1 and #2, the measurement result derived from relaxation measurement can still be applied in EMR.
  • UE may stop the neighbour cell measurements when UE is in power saving mode.
  • UE may need to establish CA or DC due to service load. It is reasonable to perform EMR measurement.
  • UE can perform relaxation measurement.
  • Proposal 7 In scenario #3, when UE is configured with EMR, UE will perform relaxation measurements.
  • RAN1 is discussing the cross-slot scheduling power saving during last meeting.
  • the framework of the impact the BWP switching is basically shown in the followings (duplicated from RAN1 chairman notes).
  • Proposal 8 The DCI based BWP switching delay requirements in RAN4 is not impacted by cross-slot scheduling.
  • Proposal 1 The extension factor for relaxed measurement can be configured by network for scenario #1 and #2.
  • Proposal 2 When network configures the parameters of both low mobility and not-at-cell-edge criteria,
  • UE stops intra-frequency and inter-frequency neighbour cell measurements when both criteria are fulfilled.
  • UE performs corresponding relaxed measurement according to which criteria is met. If both criteria are satisfied, it is left to UE implementation to choose one (either low mobility or not-at cell-edge) and perform the corresponding relaxed measurements.
  • Proposal 3 Time interval for measurement relaxation (stop measurements) since last measurement for cell reselection is minutes level.
  • Proposal 4 When S rxlev >S nonIntraSearchP and S qual >S nonIntraSearchQ ,no relaxation of the current measurement delay requirement is expected for inter-frequency measurement with higher priority.
  • S rxlev ⁇ S nonIntraSearchP or S qual ⁇ S nonIntraSearchQ the relaxed requirement for the frequency layer of higher priority can use the different relaxed measurement requirement as those for the frequency layer of equal/lower priority.
  • Proposal 5 Reducing the inter-frequency layers for measurement in idle mode cannot not bring power saving gain.
  • Proposal 6 In scenario #1 and #2, the measurement result derived from relaxation measurement can still be applied in EMR.
  • Proposal 7 In scenario #3, when UE is configured with EMR, UE will perform relaxation measurements.
  • Proposal 8 The DCI based BWP switching delay requirements in RAN4is not impacted by cross-slot scheduling.
  • Table 18 UE power consumption model for FR1
  • Table 24 UE power consumption of the combined neighbor cell measurements and cell search
  • the network may have different preferences in different scenarios, a flexible method is to configure the expansion factor according to the network.
  • the network can configure different relaxation factors for different scenarios.
  • the relaxation factor may also consider the degree of movement or location of the UE.
  • the value range of relaxation factor is ⁇ 2,8 ⁇ .
  • Recommendation 1 For scenarios #1 and #2, the expansion factor can be loosely measured according to the network configuration.
  • the network side broadcasts the corresponding relaxation trigger criterion parameter, and turns on the RRM measurement relaxation feature.
  • the UE can perform measurement relaxation according to one of the following options indicated by the network:
  • UE uses low mobility standards and non-cell edge standards, that is, only when these two conditions are met at the same time, the UE can perform relaxation.
  • the specific relaxation behavior depends on the discussion and decision-making of RAN4;
  • UE uses low mobility standard or non-cell edge standard (the choice can be left to the UE to implement), that is, when the low mobility or non-cell edge criterion is met, the UE can relax.
  • the detailed relaxation behavior is the same as when the network is only configured with standards.
  • the UE can relax only when both the RSRP and RSRQ thresholds are met.
  • FFS of RAN4-the parameters we need (for example, the measurement relaxation time interval after the last measurement since the cell reselection, and the value range of the time interval).
  • RAN2 has agreed to the network indicating option a or option b.
  • option a it has been agreed in the RAN4#93 meeting that the UE does not need to meet the same-frequency and inter-frequency adjacent cell measurement requirements of scenario #3. Therefore, the behavior of the UE is clear.
  • the UE when the network configures the parameters of low mobility and non-cell edge criteria at the same time, the UE can perform relaxation when the low mobility or non-cell edge criteria are met. If both criteria are met, we believe that the UE will not stop measurement in this case. Since the network indicates option b to the UE, this means that the network expects to relax the measurement and expects the measurement result reported by the UE. Otherwise, the network will indicate option a to the UE. Therefore, if both criteria are met, the UE can choose either one, depending on the UE implementation.
  • Recommendation 2 When the network is configured with both low mobility and non-edge cell standard parameters,
  • the UE stops the intra-frequency and inter-frequency neighbor cell measurement.
  • the UE performs the corresponding loose measurement according to which conditions are met. If these two conditions are met, the UE selects one (low mobility or non-edge cell) and performs the corresponding loose measurement.
  • NB-IoT the following loose delay monitoring and measurement rules are defined in TS 36.304.
  • the time interval from the last cell reselection measurement is defined as 24 hours.
  • the UE When the UE is required to perform intra-frequency or inter-frequency measurement according to the measurement rules in subsection 5.2.4.2 or 5.2.4.2a, the UE may choose not to perform intra-frequency or inter-frequency measurement in the following situations:
  • the UE After the UE selects or reselects to a new cell, it has performed at least TSearchDeltaP intra-frequency or inter-frequency measurements.
  • the UE In the power saving mode, if both conditions are met, and the network indicates option a, the UE will stop the same-frequency and inter-frequency neighbor cell measurement. In this case, the interval from the last cell reselection measurement should be considered. Obviously, 24 hours is not suitable for power saving terminals. This value should consider network deployment, propagation environment, UE moving direction, UE speed, UE location, etc. Too long a period configuration will affect the UE's mobility performance, and a too short period configuration will reduce the power saving gain. Generally speaking, we consider the time interval of measurement relaxation (stop measurement), because the last measurement of cell reselection was in the order of minutes.
  • Recommendation 3 Starting from the last cell reselection measurement, the time interval for measurement relaxation (measurement stop) is on the order of minutes.
  • Option 1 When S rxlev > S nonIntraSearchP and S qual > S nonIntraSearchQ , for higher priority inter-frequency measurement, it is not expected to relax the current measurement delay requirement.
  • S rxlev ⁇ S nonIntraSearchP or S qual ⁇ S nonIntraSearchQ loose measure high-priority frequency layers of the same requirements like / low priority loose layer is required to measure the frequency.
  • Option 2 In a high-speed mobile scenario, the measurement of high-priority carriers should not be relaxed (scene #2).
  • RAN2 is also discussing the same issue.
  • the UE behavior is to measure inter-frequency layers with higher, same or lower priority layers.
  • the measurement requirements for high priority, equal priority, or low priority are the same in this case.
  • energy-saving benefits can be foreseen (as shown in Table 1).
  • the validity of the measurement results is not a big issue. Since the energy-saving trigger criteria are specified for low mobility and non-cell edge scenarios, in both cases, there is no powerful command to quickly obtain measurement results.
  • the paging opportunity is indispensable and cannot be missed.
  • the UE can perform co-frequency measurement at the paging moment, which means that co-frequency measurement will not introduce additional large power consumption.
  • the UE For inter-frequency measurement, the UE needs to wake up during the DRX-OFF period to avoid a decrease in paging reception.
  • the measurement requirements for different frequencies scale with the number of frequencies. That is, when the number of inter-frequency layers is greater than one layer, the normalized power is not raised.
  • Recommendation 5 Reduce the number of inter-frequency layers for idle state measurement, which cannot bring energy-saving gains.
  • CA/DC enhancement introduces the function of reporting the measurement report in advance.
  • the purpose of EMR is to speed up the establishment of CA/DC when the UE enters the connected state. If the UE is in the power saving mode, it may affect the normal measurement. There are two situations that need to be discussed separately.
  • Proposal 6 In scenarios #1 and #2, the measurement results obtained from the relaxation measurement can still be applied to EMR.
  • the UE when the UE is in the power saving mode, the UE can stop the neighbor cell measurement.
  • the UE if the UE also configures the EMR configuration in the RRC release, when the UE is ready to enter the RRC connected mode, the UE has no information about the neighbor cell measurement results. In this case, the UE may need to establish CA or DC due to traffic load. The EMR measurement is reasonable. Considering power saving, the UE can perform relaxation measurements.
  • Recommendation 7 In scenario #3, when the UE configures EMR, the UE will perform relaxation measurement.
  • the impact framework of BWP switching is basically as follows.
  • the minimum applicable scheduling offset indication field (if present in the DCI format) ) Indicates the minimum scheduling offset limit applied to the target BWP. Note: The specifications do not need to be changed.
  • Recommendation 8 BWP handover delay requirements based on DCI in RAN4 are not affected by cross-slot scheduling.
  • Recommendation 1 For scenarios #1 and #2, the expansion factor can be loosely measured according to the network configuration.
  • Recommendation 2 When the network is configured with low mobility and non-edge cell standard parameters at the same time,-if the network indicates option a, when these two standards are met, the UE stops the same-frequency and inter-frequency adjacent cell measurement. -If the network indicates option b, the UE performs the corresponding loose measurement according to which conditions are met. If these two conditions are met, the UE selects one (low mobility or non-edge cell) and performs the corresponding loose measurement.
  • Recommendation 3 Starting from the last cell reselection measurement, the time interval for measurement relaxation (measurement stop) is on the order of minutes.
  • Recommendation 5 Reduce the number of inter-frequency layers for idle state measurement, which cannot bring energy-saving gains.
  • Recommendation 6 In scenarios #1 and #2, the measurement results obtained from the relaxation measurement can still be applied to EMR.
  • Recommendation 7 In scenario #3, when the UE configures EMR, the UE will perform relaxation measurement.
  • Recommendation 8 BWP handover delay requirements based on DCI in RAN4 are not affected by cross-slot scheduling.
  • Table 24 UE power consumption overhead combined with neighbor cell measurement and cell search

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种测量方法及设备。在该方法中,终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。因此,通信系统可以通过灵活地设置该放松测量门限,使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。

Description

一种测量方法及设备
相关申请的交叉引用
本申请要求在2020年03月31日提交中国专利局、申请号为202010242285.5、申请名称为“”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2020年04月10日提交中国专利局、申请号为202010281215.0、申请名称为“一种测量方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量方法及设备。
背景技术
在通信系统中,由于终端设备的移动性,为了保证终端设备的业务连续性和通信质量,处于无线资源控制(radio resource control,RRC)空闲态(简称为RRC_idle态)和RRC非激活态(简称为RRC_inactive态)的终端设备通常需要进行无线资源管理(radio resource management,RRM)测量,从而实现小区重选(reselection),从而改变其驻留的小区以获得连续不断的服务。其中RRM测量即为小区测量,其具体包括同频测量、异频/异系统测量。
为了保证终端设备能够实现小区重选,通信系统中管理小区的基站通常会在系统消息中携带该小区的测量配置信息。其中,所述测量配置信息可以但不限于包括以下测量配置参数:该小区所在频点的优先级、启动RRM测量的门限等。终端设备接收到服务小区的系统消息,以及管理服务小区的基站通知的目标频点(包含同频频点和/或异频频点),就会根据其中的测量配置信息对所述目标频点上的邻区执行RRM测量,并根据测量结果进行小区重选。
其中,在终端设备执行RRM测量过程中,根据目标频点的优先级与服务频点(服务小区所在的频点)的优先级的相对关系,终端设备可以将目标频点分为以下三类:
高优先级目标频点,即优先级高于服务频点的优先级的目标频点。
同等优先级目标频点,即优先级与服务频点的优先级相同的目标频点。
低优先级目标频点,即优先级低于服务频点的优先级的目标频点。
由于在高优先级的目标频点上的邻区能够提供更好的服务,通信系统针对不同类目标频点设置的小区RRM测量触发条件不同,相应的针对不同类目标频点设置的小区重选规则也不同,这样可以使所述终端设备能够优先重选到在高优先级目标频点上的邻区,从而提高终端设备的服务质量。
由于目前处于RRC空闲态和RRC非激活态的终端设备执行上述RRM测量和小区重选是其功耗的主要来源,为了既可以保证终端设备的通信性能,还可以有效地节省终端设备的功耗,通信领域引出了放松RRM测量的概念,但是还未讨论实现放松RRM测量的方案。
发明内容
本申请提供了一种RRM测量方法及设备,用以使终端设备能够灵活地对目标频点上的邻区执行放松RRM测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
第一方面,本申请实施例提供了一种测量方法,该方法包括以下步骤:
终端设备确定服务小区的信号质量大于放松测量门限,其中,所述放松测量门限大于预设的门限标准起始值,且小于测量门限,所述门限标准起始值为测量准入门限;所述终端设备对目标频点上的邻区进行放松测量。
通过该方法,终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。因此,通信系统可以通过灵活地设置所述放松测量门限,使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
在一种可能的设计中,所述放松测量门限为同频放松测量门限,所述测量门限为同频测量门限;所述终端设备对目标频点上的邻区进行放松测量,包括:所述终端设备对在同频频点上同频邻区进行放松测量,其中,所述同频频点为所述服务小区所在服务频点。
通过该设计,所述终端设备可以根据同频放松测量门限,实现对同频邻区的放松测量。
在一种可能的设计中,所述放松测量门限为异频放松测量门限,所述测量门限为异频/异系统测量门限;所述终端设备对目标频点上的邻区进行放松测量,包括:
所述终端设备对在目标异频频点上异频邻区进行放松测量,其中,所述目标异频频点属于异频频点,所述异频频点为与所述服务小区所在服务频点不同的目标频点。
通过该设计,所述终端设备可以根据异频放松测量门限,实现对异频邻区的放松测量。
在一种可能的设计中,在所述同频频点上的同频邻区的数量为B0;所述终端设备对在同频频点上同频邻区进行放松测量,包括:
所述终端设备根据放松同频测量周期T intrarelax对在所述同频频点上的B1个同频邻区进行放松测量;其中,所述T intrarelax>正常同频测量周期T intra,和/或,B1<B0,所述T intra为所述终端设备不对在所述同频频点上的同频邻区进行放松测量时使用的测量周期。
通过该设计,所述终端设备可以通过降低对同频邻区的测量频率或者减少测量对象,实现对同频邻区的放松测量。
在一种可能的设计中,在所述同频频点上的同频邻区的数量为B0;所述终端设备对在同频频点上同频邻区进行放松测量,包括:
当所述终端设备确定所述服务小区的信号质量在第一信号质量范围内时,所述终端设备按照第一放松同频测量周期T intrarelax_1,对在所述同频频点上的B1_1个同频邻区进行测量;所述第一信号质量范围是根据至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第一信号质量范围根据所述同频放松测量门限与所述至少一个放松等级门限中取值最小的放松等级门限确定的;
当所述终端设备确定所述服务小区的信号质量在第二信号质量范围内时,所述终端设备按照第二放松同频测量周期T intrarelax_2,对在所述同频频点上的B1_2个同频邻区进行测量;所述第二信号质量范围是根据所述至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第二信号质量范围是根据所述至少一个放松等级门限中取值最大的放松等级门限确定的;
其中,T intrarelax_1>正常同频测量周期T intra,和/或,B1_1<B0;T intrarelax_2>所述T intra,和 /或,B1_2<B0,所述T intra为所述终端设备不对在所述同频频点上的同频邻区进行放松测量时使用的测量周期;所述第二信号质量范围内的任一数值大于所述第一信号质量范围内的数值,T intrarelax_2>T intrarelax_1和/或B1_2<B1_1。
通过该设计,所述终端设备可以根据服务小区的信号质量强弱,对同频邻区进行不同放松等级的放松测量,最终实现差异化放松测量。因此,终端设备能够灵活地对目标频点上的邻区执行差异化放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
在一种可能的设计中,所述异频频点包含:高优先级目标频点、同等优先级目标频点、低优先级目标频点;
当所述服务信号的信号质量大于所述异频放松测量门限,且小于或等于所述异频/异系统测量门限时,所述目标异频频点包含:所述高优先级目标频点、所述同等优先级目标频点、所述低优先级目标频点;
当所述服务信号的信号质量大于所述异频/异系统测量门限时,所述目标异频频点为所述高优先级目标频点。
通过该设计,所述终端设备可以当前服务信号的信号质量强弱,在异频频点中确定需要进行放松测量的异频频点的种类。
在一种可能的设计中,所述目标异频频点的数量为N0;所述终端设备对在目标异频频点上异频邻区进行放松测量,包括:
所述终端设备根据放松异频测量周期T nonintrarelax对在N1个目标异频频点上的异频邻区进行放松测量;其中,所述T nonintrarelax>正常异频测量周期T nonintra,和/或,N1<N0,所述T nonintra为所述终端设备不对在所述异频频点上的异频邻区进行放松测量时使用的测量周期。
通过该设计,所述终端设备可以通过降低对异频邻区的测量频率或者减少测量对象,实现对异频邻区的放松测量。
在一种可能的设计中,所述目标异频频点的数量为N0;所述终端设备对在目标异频频点上异频邻区进行放松测量,包括:
当所述终端设备确定所述服务小区的信号质量在第一信号质量范围内时,所述终端设备按照第一放松异频测量周期T nonintrarelax_1,对在N1_1个目标异频频点上的异频邻区进行测量;所述第一信号质量范围是根据至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第一信号质量范围根据所述同频放松测量门限与所述至少一个放松等级门限中取值最小的放松等级门限确定的;
当所述终端设备确定所述服务小区的信号质量在第二信号质量范围内时,所述终端设备按照第二放松异频测量周期T nonintrarelax_2,对在N1_2个目标异频频点上的异频邻区进行测量;所述第二信号质量范围是根据所述至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第二信号质量范围是根据所述至少一个放松等级门限中取值最大的放松等级门限确定的;
其中,T nonintrarelax_1>正常异频测量周期T nonintra,和/或,N1_1<N0;T nonintrarelax_2>所述T nonintra,和/或,N1_2<N0,所述T nonintra为所述终端设备不对在所述异频频点上的异频邻区进行放松测量时使用的测量周期;所述第二信号质量范围内的任一数值大于所述第一信号质量范围内的数值,T nonintrarelax_2>T nonintrarelax_1和/或N1_2<N1_1。
通过该设计,所述终端设备可以根据服务小区的信号质量强弱,对异频邻区进行不同 放松等级的放松测量,最终实现差异化放松测量。因此,终端设备能够灵活地对目标频点上的邻区执行差异化放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
在一种可能的设计中,所述至少一个放松等级门限为所述终端设备根据所述放松测量门限确定的,其中,第t个放松等级门限threshold intrarelaxlevel_t符合公式:threshold intrarelaxlevel_t=所述放松测量门限*放松等级门限调整值 t;或者,所述至少一个放松等级门限是由基站配置给所述终端设备的;或者,所述至少一个放松等级门限是协议规定并存储到所述终端设备的。
在一种可能的设计中,所述放松测量门限是由基站配置给所述终端设备的;或者所述放松测量门限是协议规定并存储到所述终端设备的;或者所述放松测量门限是由所述终端设备根据设定计算方法计算得到的,其中,所述设定计算方法为基站配置给所述终端设备的或者协议规定并存储到所述终端设备的;或者所述放松测量门限是由所述终端设备确定的。
通过该设计,可以提高通信系统配置所述放松测量门限灵活性。
在一种可能的设计中,所述终端设备从所述基站接收第一消息,所述第一消息中包含所述放松测量门限。通过该设计,所述终端设备可以直接从基站获取所述放松测量门限。
在一种可能的设计中,所述终端设备从所述基站接收第二消息,所述第二消息中包含多个门限备选值;所述终端设备在所述多个门限备选值中选择一个门限备选值为所述放松测量门限。通过该设计,所述终端设备可以根据当前网络情况,灵活地选择所述放松测量门限,并且在当前网络情况发生变化时,还可以在所述多个门限备选值中重新选择所述放松测量门限。
在一种可能的设计中,所述终端设备从所述基站接收第三消息,所述第三消息中包含放松测量门限计算参数,所述门限计算参数包含:初始放松测量门限,和/或,放松测量门限调整值;所述终端设备根据所述放松测量门限计算参数,确定所述放松测量门限。通过该设计,所述终端设备可以根据当前网络情况,根据所述门限计算参数计算所述放松测量门限。示例性的,所述放松测量门限调整值可以为调整倍数j,j>1。当所述第三消息中包含任一个参数时,所述终端设备中可以根据本地保存的另一个参数,以及第三消息中包含的参数,计算所述放松测量门限。所述终端设备在接收到包含所述初始放松测量门限的第三消息时,将初始放松测量门限作为放松测量门限,后续根据网络情况,根据所述调整倍数j,增加或降低j倍。
在一种可能的设计中,当所述放松测量门限是由所述终端设备确定的时,所述方法还包括:
所述终端设备根据以下至少一项或组合,确定所述放松测量门限:
所述终端设备的业务优先级、所述服务频点优先级、所述终端设备的移动性信息;
其中,所述终端设备的移动性信息包含所述终端设备的位置信息和移动速度。
在一种可能的设计中,所述同频放松测量门限符合以下公式:
threshold intrarelaxmeasure=k intra*(S intrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold intrarelaxmeasure为所述同频放松测量门限,S intrasearch为所述同频测量门限,threshold Criterion S为所述门限标准起始值,0<k intra<1;
所述异频放松测量门限符合以下公式:
threshold nonintrarelaxmeasure=k nonintra*(S nonintrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold nonintrarelaxmeasure为所述异频放松测量门限,S nonintrasearch为所述异频/异系统测量门限,0<k nonintra<1。
在一种可能的设计中,所述同频放松测量门限包含:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述同频测量门限包含:同频测量信号幅值门限S intrasearchP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述threshold intrarelaxmeasureP符合以下公式:
threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S;
其中,Threshold Criterion S为所述门限标准起始值,0<k1<1,0<k2<1;
所述threshold intrarelaxmeasureQ符合以下公式:
threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S;
所述异频放松测量门限包含:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;所述异频/异系统测量门限包含:异频测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;
所述threshold nonintrarelaxmeasureP符合以下公式:
threshold nonintrarelaxmeasureP=k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S;
所述threshold nonintrarelaxmeasureQ符合以下公式:
threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S;
其中,0<k3<1,0<k4<1。
第二方面,本申请实施例提供了一种测量方法,该方法包括以下步骤:
基站确定放松测量门限,其中,所述放松测量门限大于预设的门限标准起始值,且小于测量门限,所述门限标准起始值为测量准入门限;所述基站向终端设备发送第一消息,所述第一消息中包含所述放松测量门限。
通过该方法,所述基站可以对终端设备的放松测量门限进行配置,以使终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。
在一种可能的设计中,所述放松测量门限是协议规定并存储到所述基站的;或者所述放松测量门限是由所述基站根据设定计算方法计算得到的。
在一种可能的设计中,所述基站还可以向所述终端设备发送第二消息,其中,所述第二消息中还包括:放松测量门限调整值,所述放松测量门限调整值用于对所述放松测量门限进行调整。通过该设计,所述终端设备可以根据所述放松测量门限调整值,实现对所述放松测量门限的调整。
在一种可能的设计中,所述基站还可以向所述终端设备发送第三消息,其中,所述第三消息中还包括:至少一个放松等级门限,或者用于确定至少一个放松等级门限的放松等级门限调整值。通过该设计,所述终端设备可以得到所述至少一个放松等级门限,从而实现根据服务小区的信号质量的强弱,进行不同放松等级的放松测量,最终实现差异化放松测量。
在一种可能的设计中,所述放松测量门限为同频放松测量门限,所述测量门限为同频 测量门限;或者所述放松测量门限为异频放松测量门限,所述测量门限为异频/异系统测量门限。
在一种可能的设计中,所述同频放松测量门限符合以下公式:
threshold intrarelaxmeasure=k intra*(S intrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold intrarelaxmeasure为所述同频放松测量门限,S intrasearch为所述同频测量门限,threshold Criterion S为所述门限标准起始值,0<k intra<1;
所述异频放松测量门限符合以下公式:
threshold nonintrarelaxmeasure=k nonintra*(S nonintrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold nonintrarelaxmeasure为所述异频放松测量门限,S nonintrasearch为所述异频/异系统测量门限,0<k nonintra<1。
在一种可能的设计中,所述同频放松测量门限包含:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述同频测量门限包含:同频测量信号幅值门限S intrasearchP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;
所述threshold intrarelaxmeasureP符合以下公式:
threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S;
所述threshold intrarelaxmeasureQ符合以下公式:
threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S;
其中,Threshold Criterion S为所述门限标准起始值,0<k1<1,0<k2<1;
所述异频放松测量门限包含:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;所述异频/异系统测量门限包含:异频测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;
所述threshold nonintrarelaxmeasureP符合以下公式:
threshold nonintrarelaxmeasureP=k3*(S nonintrasearch P-threshold Criterion S)+threshold Criterion S;
所述threshold nonintrarelaxmeasureQ符合以下公式:
threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S;
其中,0<k3<1,0<k4<1。
第三方面,本申请实施例提供了一种测量方法,该方法包括以下步骤:
基站确定多个门限备选值,其中,每个门限备选值大于预设的门限标准起始值,且小于同频测量门限,所述门限标准起始值为测量准入门限;所述基站向终端设备发送第二消息,所述第二消息中包含所述多个门限备选值。其中每个门限备选值都符合以上方面提供的计算放松测量门限的公式。
通过该方法,所述基站可以对终端设备的放松测量门限进行配置,以使终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。
在一种可能的设计中,每个门限备选值是协议规定并存储到所述基站的;或者每个门限备选值是由所述基站根据设定计算方法计算得到的。
在一种可能的设计中红,所述基站可以根据以下至少一项或组合,确定所述多个门限 备选值:所述终端设备的业务优先级、所述终端设备的服务频点优先级、所述终端设备的移动性信息;其中,所述终端设备的移动性信息包含所述终端设备的位置信息和移动速度。
通过该设计,所述基站可以根据当前所述终端设备的网络情况,为所述终端设备设置多个门限备选值。
第四方面,本申请实施例提供了一种通信装置,包括用于执行以上任一方面中各个步骤的单元。
第五方面,本申请实施例提供了一种通信设备,包括至少一个处理元件和至少一个存储元件,其中该至少一个存储元件用于存储程序和数据,该至少一个处理元件用于读取并执行存储元件存储的程序和数据,以使得本申请以上任一方面提供的方法被实现。
第六方面,本申请实施例提供了一种通信系统,包括基站和终端设备,其中,所述基站具有执行本申请以上第二方面或第三方面提供的方法中基站的功能,所述终端设备具有执行本申请第一方面提供的方法中终端设备的功能。
第七方面,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述任一方面提供的方法。
第八方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行上述任一方面提供的方法。
第九方面,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述任一方面提供的方法。
第十方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种通信系统的架构图;
图2A为本申请实施例提供的一种放松RRM测量的实例示意图;
图2B为本申请实施例提供的再一种放松RRM测量的实例示意图;
图2C为本申请实施例提供的又一种放松RRM测量的实例示意图;
图2D为本申请实施例提供的又一种放松RRM测量的实例示意图;
图3为本申请实施例提供的一种RRM测量方法流程图;
图4为本申请实施例提供的另一种RRM测量方法流程图;
图5为本申请实施例提供的一种通信装置的结构图;
图6为本申请实施例提供的一种通信设备的结构图。
具体实施方式
本申请提供一种RRM测量方法及设备,用以使终端设备能够灵活地对目标频点上的邻区执行放松RRM测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。其中,方法和设备是基于同一技术构思的,由于方法及设备解决问题的原理相似,因 此设备与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,是一种向用户提供语音和/或数据连通性的设备。终端设备又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。
例如,终端设备可以为具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、网络设备,是通信系统中将终端设备接入到无线网络的设备。网络设备作为无线接入网中的节点,其例如为基站,网络设备还可以称为无线接入网(radio access network,RAN)节点(或设备)。本申请实施例中基站侧执行的方案也可以由其他网络设备执行,本申请实施例不作限制。
目前,一些基站的举例为:gNB、演进型节点B(evolved Node B,eNB)、传输接收点(transmission reception point,TRP)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB),或基带单元(base band unit,BBU)等。
另外,在一种网络结构中,所述基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)、参考信号,由基站通过其管理的小区发送的,用于使终端设备进行RRM测量,以实现小区重选和小区切换以及确定波束等流程。示例性的,在本申请实施例中,所述参考信号可以为同步信号块(synchronization signal block,SSB),信道状态信息参考信号(channel state information-reference signal,CSI-RS)等。
4)、信号质量,为终端设备针对小区进行RRM测量,得到的测量结果,可以包含以下信号质量参数中的一项或多项:
信号幅值(Srxlev,后续描述中可以用S rxlev表示),信号强度(Squal,后续描述中可以用S qual表示)、参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、信噪比(signal to noise ratio,SNR)、信干噪比(signal to interference plus noise ratio,SINR)等。
5)、小区的测量配置信息,为管理该小区的基站通过系统消息(例如系统消息块2(system information blocks,SIB2))广播的,用于接入该小区的终端设备执行RRM测量。
其中,该测量配置信息中包含该小区所在频点的优先级(cell reselection priority)、测量门限(S search)。其中,所述测量门限中可以包括同频测量门限(Sintrasearch,后续描述中可以用S intrasearch表示),以及异频/异系统测量门限(Snonintrasearch,后续描述中可以用 S nonintrasearch表示)。需要说明的是,当通信系统中通过一个信号质量参数表示信号质量时,以上同频测量门限和异频/异系统测量门限也对应为1个;当通信系统中通过多个信号质量参数表示时,以上门限也对应为多个。
示例性的,当通信系统通过信号幅值和信号强度表示信号质量时,所述同频测量门限包括:同频测量信号幅值门限(SintrasearchP,后续描述中可以用S intrasearchP表示)和同频测量信号强度门限(SintrasearchQ,后续描述中可以用S intrasearchQ表示)。其中,S intrasearchP用于指示同频测量的信号幅值门限,S intrasearchQ用于指示同频测量的信号强度门限。在目前的测量策略中,以该小区为服务小区的终端设备测量到该小区信号质量满足以下条件时,所述终端设备开始对在服务频点(服务小区所在频点)上的邻区执行测量:该小区的信号质量中的信号幅值(S rxlev)大于所述S intrasearchP,且该小区的信号质量中信号强度(S qual)大于所述S intrasearchQ。
同时,所述异频/异系统测量门限包括:异频测量信号幅值门限(SnonintrasearchP,后续描述中可以用S nonintrasearchP表示)和异频测量信号强度门限(SnonintrasearchQ,后续描述中可以用S nonintrasearchQ表示)。其中,S nonintrasearchP用于指示异频/异系统测量的信号幅值门限(This specifies the Srxlev threshold(in dB)for NR inter-frequency and inter-RAT measurements),S nonintrasearchQ用于指示异频/异系统测量的信号强度门限(This specifies the Squal threshold(in dB)for NR inter-frequency and inter-RAT measurements)。在目前的测量策略中,以该小区为服务小区的终端设备测量到该小区信号质量满足以下条件时,所述终端设备对在高优先级目标频点上的邻区执行测量:该小区的信号质量中的信号幅值(S rxlev)大于所述S nonintrasearchP,且该小区的信号质量中信号强度(S qual)大于所述S nonintrasearchQ;当终端设备测量到的该小区信号质量不满足该条件时,所述终端设备对高优先级目标频点、同等优先级目标频点和低优先级目标频点上的邻区执行测量。
6)、小区测量的目标频点,为基站配置给终端设备的。所述终端设备对在该目标频点上的邻区进行测量,以根据得到的测量结果进行小区重选或切换。
根据目标频点与服务频点(即终端设备的服务小区所在频点)的关系,基站配置的目标频点可以分为两类:
同频频点:即服务频点。
异频频点:与服务频点不同的目标频点。进一步的,根据异频频点的优先级与服务频点的优先级的相对关系,可以将异频频点分为三类:高优先级目标频点,同等优先级目标频点,低优先级目标频点。其中,高优先级目标频点为优先级高于服务频点的优先级的异频频点;同等优先级目标频点为优先级与服务频点的优先级相同的异频频点;低优先级目标频点为优先级低于服务频点的优先级的异频频点。
另外,为了便于区分和描述,在本申请实施例中,将在同频频点上的邻区称为同频邻区,将在异频频点上的邻区称为异频邻区。
7)、小区测量,包括RRM测量和无线链路监测(radio link monitoring,RLM)测量。
8)、“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述 的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面结合附图,对本申请实施例进行具体说明。
图1示出了本申请实施例提供的测量方法适用的一种可能的通信系统的架构。参阅图1所示,在该通信系统中包括基站和终端设备。
所述基站,通过管理的小区为所述终端设备提供无线接入有关的服务,实现无线物理层功能、资源调度和无线资源管理、服务质量(Quality of Service,QoS)管理、无线接入控制以及移动性管理(例如小区的重选和切换)功能。
其中,每个基站负责管理至少一个小区。如图所示,基站A负责管理小区a,基站B负责管理小区b,基站C负责管理小区C。
在该通信系统中,每个小区均使用相应的频点的频谱资源为终端设备提供接入服务。需要说明的是,不同小区使用的频点可能相同,也可能不相同。另外,本申请不限定每个小区使用的通信技术,且不同的小区使用的通信技术可以相同,也可以不同。示例性的,小区a-小区g均为使用4G通信技术的LTE小区;或者小区a-小区g均为使用5G通信技术的NR小区;或者其中部分小区为LTE小区,部分小区为NR小区。
所述终端设备,为通过所述基站管理的小区接入网络的设备。
所述基站和所述终端设备之间通过Uu接口连接,从而实现所述终端设备和所述基站之间的通信。
另外,图1所示的架构可以应用到多种通信场景中,例如,第五代(The 5th Generation,5G)通信系统(又称为新无线(new radio,NR)通信系统)、未来的第六代通信系统和演进的其他通信系统、长期演进(Long Term Evolution,LTE)通信系统、车到万物(vehicle to everything,V2X)、长期演进-车联网(LTE-vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)、车联网、机器类通信(Machine Type Communications,MTC)、物联网(internet of things,IoT)、长期演进-机器到机器(LTE-machine to machine,LTE-M)、机器到机器(machine to machine,M2M)等通信场景中。
在图1所示的通信系统中,由于终端设备的移动性,终端设备可以从一个小区的覆盖范围内移动到另一个小区的覆盖范围内,如图中所示的终端设备从小区a移动到小区b,因此,终端设备需要不断通过小区测量,改变其驻留的小区,以保证业务的连续性。为了实现上述目标,终端设备需要通过小区重选或小区切换过程实现。
为了保证终端设备能够实现小区重选或小区切换,管理每个小区的基站通过系统消息在其管理的小区覆盖范围内广播该小区的测量配置信息,并通过系统消息或RRC消息发送该小区的目标频点配置信息。其中,所述目标频点配置信息中包含待测量的目标频点,还可以包含在每个目标频点上的待测量的邻区。这样,当终端设备在接收到其服务小区的测量配置信息和目标频点配置信息后,根据该测量配置信息,对目标频点上的邻区执行测量,并根据测量结果进行小区重选或切换。
为了使终端设备的小区重选或小区切换更灵活,管理每个小区的基站可以依据自身能够提供的服务质量等情况设置该小区所在频点的优先级。通常频点的优先级的取值范围为(0-7),取值越大表示频点的优先级越高。
例如,在频点1上的小区1可能系统带宽较大、信号质量较优,或能够提供更高的传 输速率(例如热点小区),管理小区1的基站可以在小区1的测量配置信息中将频点1的优先级设置为7。
又例如,在频点2上的小区,其系统带宽、信号质量和传输速率不及在频点1上的小区,那么管理小区2的基站可以在小区2的测量配置信息中将频点2的优先级设置为5。
再例如,在频点3上的小区可能系统带宽较小、信号质量较差,或传输速率较低,因此管理小区3的基站可以在小区3的测量配置信息中将频点3的优先级设置为3。
这样,终端设备在进行小区测量时,根据每个目标频点的优先级与服务频点的优先级相对关系,可以将目标频点中的异频频点分为三类:高优先级目标频点,同等优先级目标频点,低优先级目标频点。
通过以上描述可知,终端设备对低优先级目标频点和同等优先级目标频点上的邻区进行测量,是为了解决终端设备的小区覆盖问题。如图1所示,小区a为终端设备的服务小区,当终端设备移动到小区a的边缘时,发起对这类频点上邻区(小区b、小区c等)的测量。这样,当终端移动到这类频点上的邻区的覆盖范围内时,终端设备可以重选到信号质量更好的邻区上去。而终端设备对高优先级目标频点上的邻区进行测量,是希望在这类频点的邻区驻留,以便能够得到的更好的服务。
为了兼顾终端设备的小区覆盖问题和服务质量问题,终端设备对不同的优先级目标频点的邻区进行测量的触发条件也存在差异:一般情况下,当终端设备确定服务小区信号质量大于异频/异系统测量门限时,仅对在高优先级目标频点上的邻区进行测量;当终端设备确定信号质量不大于该异频/异系统测量门限时,对在高优先级目标频点、同等优先级目标频点和低优先级目标频点上的邻区进行测量。
由于终端设备执行小区测量也是终端设备的功耗来源,因此为了既可以保证终端设备的通信性能,还可以有效地节省终端设备的功耗,通信领域引出了放松测量的概念。在执行放松测量时,终端设备可以减少测量对象(例如,减少目标频点的数量、减少待测量的邻区的数量),或者减少测量的频率(例如,增加检测时延T detect,增加测量时延T measure,或者增加评估时延T evaluate),或者不进行小区测量。
实施例一:
为了使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既可以保证终端设备的通信性能又可以节省终端设备功耗,本申请实施例提供了一种测量方法。该方法可以适应于图1所示的通信系统中。本申请实施例以通信系统通过信号幅值和信号强度表示信号质量为例进行具体说明。
终端设备保存有放松测量门限threshold relaxmeasure。所述放松测量门限threshold relaxmeasure用于判断是否进行放松测量。所述放松测量门限threshold relaxmeasure包含:
同频放松测量门限threshold intrarelaxmeasure:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和同频放松测量信号强度门限threshold intrarelaxmeasureQ;
异频放松测量门限threshold nonintrarelaxmeasure:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和异频放松测量信号强度门限threshold nonintrarelaxmeasureQ。
其中,所述同频放松测量门限threshold intrarelaxmeasure用于判断是否对同频邻区进行放松测量。所述异频放松测量门限threshold nonintrarelaxmeasure用于判断是否对异频邻区进行放松测量。同频放松测量信号幅值门限threshold intrarelaxmeasureP为判断是否对同频邻区进行放松测 量的服务小区的信号幅值临界值;同频放松测量信号强度门限threshold intrarelaxmeasureQ为判断是否对同频邻区进行放松测量的服务小区的信号强度临界值;异频放松测量信号幅值门限threshold nonintrarelaxmeasureP为判断是否对异频邻区进行放松测量的服务小区的信号幅值临界值;异频放松测量信号强度门限threshold nonintrarelaxmeasureQ为判断是否对异频邻区进行放松测量的服务小区的信号强度临界值。
另外,所述同频放松测量门限threshold intrarelaxmeasure大于预设的门限标准起始值(后续可以用threshold Criterion S表示),且小于服务小区的测量配置信息中的同频测量门限S intrasearch。具体的,门限标准起始值threshold Criterion S<同频放松测量信号幅值门限threshold intrarelaxmeasureP<同频测量信号幅值门限S intrasearchP;门限标准起始值threshold Criterion S<同频放松测量信号强度门限threshold intrarelaxmeasureQ<同频测量信号强度门限S intrasearchQ。
所述异频放松测量门限threshold nonintrarelaxmeasure大于预设的门限标准起始值(后续可以用threshold Criterion S表示),且小于服务小区的测量配置信息中的异频/异系统测量门限S nonintrasearch。具体的,门限标准起始值threshold Criterion S<异频放松测量信号幅值门限threshold nonintrarelaxmeasureP<异频测量信号幅值门限S nonintrasearchP;门限标准起始值threshold Criterion S<异频放松测量信号强度门限threshold nonintrarelaxmeasureQ<异频测量信号强度门限S nonintrasearchQ。
其中,所述门限标准起始值threshold Criterion S为:测量准入门限。即终端设备只能测量到信号质量高于该门限标准起始值threshold Criterion S的信号。当信号的信号质量低于该门限标准起始值threshold Criterion S时,终端设备无法测量到该信号。
所述同频放松测量门限threshold intrarelaxmeasure满足上述条件,可以在服务小区的信号质量在同频放松测量门限threshold intrarelaxmeasure与同频测量门限S intrasearch之间的范围内时,对同频邻区执行放松测量;否则,若设置所述同频放松测量门限threshold intrarelaxmeasure低于门限标准起始值threshold Criterion S,则会导致终端设备只要测量到服务小区的信号即开始对同频邻区进行放松测量,导致终端设备在服务小区的信号质量较差的情况下无法及时切换到同频邻区中。
所述异频放松测量门限threshold nonintrarelaxmeasure满足上述条件,可以在服务小区的信号质量在异频放松测量门限threshold nonintrarelaxmeasure与异频/异系统测量门限S nonintrasearch之间的范围内时,对异频邻区执行放松测量;否则,若设置所述异频放松测量门限threshold nonintrarelaxmeasure低于门限标准起始值threshold Criterion S,则会导致终端设备只要测量到服务小区的信号即开始对异频邻区进行放松测量,导致终端设备在服务小区的信号质量较差的情况下无法及时切换到异频邻区中;而若设置所述异频放松测量门限threshold nonintrarelaxmeasure高于异频/异系统测量门限S nonintrasearch,当服务小区的信号质量超过异频/异系统测量门限S nonintrasearch的场景中,终端设备会存在对异频邻区进行放松测量还是不对非高优先级目标频点上的邻区进行测量的逻辑冲突。
在本申请实施例中,终端设备对同频邻区的放松测量触发机制如下:
方式一:当所述终端设备确定服务小区的信号质量中信号幅值S rxlev>同频放松测量信号幅值门限threshold intrarelaxmeasureP,且服务小区的信号强度S qual>同频放松测量信号强度门限threshold intrarelaxmeasureQ,所述终端设备对同频邻区进行放松测量,如图2A所示。
对应的,当所述终端设备确定服务小区的信号质量中信号幅值S rxlev≤同频放松测量信 号幅值门限threshold intrarelaxmeasureP,和/或,服务小区的信号强度S qual≤同频放松测量信号强度门限threshold intrarelaxmeasureQ,所述终端设备对同频邻区进行正常测量。
方式二:当所述终端设备确定服务小区的信号质量中信号幅值S rxlev>同频放松测量信号幅值门限threshold intrarelaxmeasureP,或服务小区的信号强度S qual>同频放松测量信号强度门限threshold intrarelaxmeasureQ,所述终端设备对同频邻区进行放松测量。
对应的,当所述终端设备确定服务小区的信号质量中信号幅值S rxlev≤同频放松测量信号幅值门限threshold intrarelaxmeasureP,且服务小区的信号强度S qual≤同频放松测量信号强度门限threshold intrarelaxmeasureQ,所述终端设备对同频邻区进行正常测量。
在一种设计中,所述终端设备可以通过降低同频邻区的测量频率和/或降低同频邻区的数量(直至低至不进行小区测量),对同频邻区进行放松测量。
例如,所述终端设备可以使用比正常同频测量周期T intra更大的放松同频测量周期T intrarelax对同频邻区进行放松测量。可选的,T intrarelax=T intra*A1,A1>1。其中,正常同频测量周期T intra为终端设备对同频邻区进行正常测量时使用的测量周期,正常测量例如为:不进行放松测量。
又例如,所述终端设备将同频邻区的数量从B0降到B1,B0和B1均为大于0的整数,B1<B0。可选的,B1=B0/A2,A2>1。
在本申请实施例中,终端设备对异频邻区的放松测量触发机制如下:
方式一:当所述终端设备确定服务小区的信号质量中信号幅值S rxlev>异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,且服务小区的信号强度S qual>threshold nonintrarelaxmeasureQ,所述终端设备对目标频点上的异频邻区进行放松测量,如图2B所示。
当所述终端设备确定服务小区的信号质量中信号幅值S rxlev≤异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,服务小区的信号强度S qual≤异频放松测量信号强度门限threshold nonintrarelaxmeasureQ,所述终端设备对所有目标频点(包含高优先级目标频点、同等优先级目标频点、低优先级目标频点)均进行正常测量。
方式二:当所述终端设备确定服务小区的信号质量中信号幅值S rxlev>异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,或服务小区的信号强度S qual>threshold nonintrarelaxmeasureQ,所述终端设备对目标频点上的异频邻区进行放松测量。
当所述终端设备确定服务小区的信号质量中信号幅值S rxlev≤异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,且服务小区的信号强度S qual≤异频放松测量信号强度门限threshold nonintrarelaxmeasureQ,所述终端设备对所有目标频点(包含高优先级目标频点、同等优先级目标频点、低优先级目标频点)均进行正常测量。
在一种设计中,所述终端设备可以系通过降低对异频邻区的测量频率和/或降低异频频点的数量,对异频邻区进行放松测量。
例如,所述终端设备可以使用比正常异频测量周期T nonintra更大的放松异频测量周期T nonintrarelax对异频邻区进行放松测量。可选的,T nonintrarelax=T nonintra*A3,A3>1。其中,正常异频测量周期T nonintra为终端设备对异频邻区进行正常测量时使用的测量周期。
又例如,所述终端设备将异频频点的数量从N0降到N1,N0和N1均为大于0的整数,N1<N0。可选的,N1=N0/A4,A4>1。
还需要说明的是,在上述方式一和方式二中,所述终端设备还可以根据服务小区的信号质量与所述异频/异系统测量门限S nonintrasearch,确定是对所有种类的异频频点上的异频邻 区进行放松测量,还是仅对高优先级目标频点上的邻区进行放松测量。具体的判断机制如下:
当异频放松测量信号幅值门限threshold nonintrarelaxmeasureP<服务小区的信号质量中信号幅值S rxlev≤所述异频/异系统测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ<服务小区的信号质量中信号强度S qual≤所述异频/异系统测量信号强度门限S nonintrasearchQ,即终端设备需要对所有类别的异频频点进行测量的情况下,所述终端设备对在所有类别的异频频点(包含高优先级目标频点、同等优先级目标频点、低优先级目标频点)上的异频邻区均执行放松测量。
当服务小区的信号质量中信号幅值S rxlev>所述异频/异系统测量信号幅值门限S nonintrasearchP,且服务小区的信号质量中信号强度S qual>所述异频/异系统测量信号强度门限S nonintrasearchQ时,即在终端设备仅需要对高优先级目标频点进行测量,且不对同等优先级目标频点和低优先级目标频点进行测量的情况下,所述终端设备仅对高优先级目标频点上的异频邻区执行放松测量。
需要说明的是,在本申请实施例中,所述放松测量门限threshold relaxmeasure是由基站配置给所述终端设备的,例如,通信系统可以设计一种新结构的RRC信令,基站可以将threshold relaxmeasure携带在该RRC信令中。又例如,所述基站可以在系统消息SIB2中新增加一个字段,并将所述放松测量门限threshold relaxmeasure携带该字段中。所述放松测量门限threshold relaxmeasure也可以是协议规定并存储在所述终端设备内的。所述放松测量门限threshold relaxmeasure还可以是基站或终端设备按照协议定义并存储在所述终端设备内的计算方法计算得到的,或基站配置给终端设备的计算方法计算得到的。所述放松测量门限threshold relaxmeasure还可以是所述终端设备在多个门限备选值中选择的,其中,所述多个门限备选值可以为协议规定并存储在所述终端设备内的,或者为基站配置给所述终端设备的。例如,终端设备可以根据以下至少一项或组合选择所述放松测量门限threshold relaxmeasure:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。
所述终端设备的业务优先级越高,所述终端设备选择的放松测量门限threshold relaxmeasure取值越大。这样,在终端设备进行关键性业务时提高放松测量门限,以使终端设备尽量不进行放松测量,从而保证终端设备的通信性能。
所述终端设备的服务频点优先级越高(服务小区数据传输速率好、网络覆盖好等),表示服务小区能够为终端设备提供较高的服务质量,所述终端设备选择的放松测量门限threshold relaxmeasure取值越小。这样,所述终端设备尽快进入放松测量模式,从而降低终端设备的功耗。
所述终端设备的移动信息指示终端设备不处于小区覆盖边缘,和/或终端设备的移动速度较低时,表示服务小区能够终端设备提供较高的服务质量,所述终端设备选择的放松测量门限threshold relaxmeasure取值越小。这样,所述终端设备尽快进入放松测量模式,从而降低终端设备的功耗。
示例性的,所述放松测量门限threshold relaxmeasure中各参数分别符合以下公式一至公式四:
threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S                                          公式一
threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S                              公式二
threshold nonintrarelaxmeasureP=k3*(S nonintrasearchP-threshold Criterion S)+threshold Criterion S                             公式三
threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S                             公式四
其中,上述公式中的0<k1<1,0<k2<1,0<k3<1,0<k4<1,k1至k4可以相同也可以不同。另外,上述公式中的k1-k4的取值可以为基站确定并配置给所述终端设备的,或者协议规定并存储在终端设备内的,又或者为终端设备自行确定的。
在一种设计中,所述终端设备或所述基站可以根据以下至少一项或组合确定k1-k4的取值:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。其中,所述终端设备的移动性信息可以但不限于包含所述终端设备的位置信息和移动速度等。这样,终端设备或基站可以根据当前网络状态,动态调整所述放松测量门限。
示例性的,当终端设备的业务优先级越高,终端设备或基站设置k1-k4的取值越大,这样,根据k1-k4得到的放松测量门限的取值也越大。这样,在终端设备进行关键性业务时提高放松测量门限,以使终端设备尽量不进行放松测量,从而保证终端设备的通信性能。
示例性的,当服务频点优先级越高,终端设备或基站设置k1-k4的取值越低,这样,根据k1-k4得到的放松测量门限的取值也越低。由于服务频点优先级越高,表示服务小区能够为终端设备提供较高的服务质量,终端设备小区重选或切换的需求越低。将放松测量门限threshold relaxmeasure取值设置较小,这样,所述终端设备尽快进入放松测量模式,从而降低终端设备的功耗。
示例性的,当所述终端设备的移动信息指示终端设备不处于小区覆盖边缘,和/或所述终端设备的移动速度较低时,终端设备或基站设置k1-k4的取值越低,这样,根据k1-k4得到的放松测量门限的取值也越低。所述终端设备的移动信息指示终端设备不处于小区覆盖边缘和所述终端设备的移动速度较低,均表示服务小区能够终端设备提供较高的服务质量。将放松测量门限threshold relaxmeasure取值设置较小,这样所述终端设备尽快进入放松测量模式,从而降低终端设备的功耗。
示例性的,携带所述放松测量门限threshold relaxmeasure的SIB2的代码如下:
Figure PCTCN2021079362-appb-000001
Figure PCTCN2021079362-appb-000002
其中,上述代码中加下划线的代码均为放松测量门限:“ threshnonIntraRelaxMeasureP”代表异频放松测量信号幅值门限threshold nonintrarelaxmeasureP;“ threshnonIntraRelaxMeasureQ”代表异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;“ threshIntraRelaxMeasureP”代表同频放松测量信号幅值门限threshold intrarelaxmeasureP;“ threshIntraRelaxMeasureQ”代表同频放松测量信号强度门限threshold intrarelaxmeasureQ。
本申请实施例提供了一种测量方法,在该方法中,终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。因此,通信系统可以通过灵活地设置所 述放松测量门限,使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
实施例二:
为了使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既可以保证终端设备的通信性能又可以节省终端设备功耗,本申请实施例提供了一种测量方法。该方法可以适应于图1所示的通信系统中。本申请实施例以通信系统通过信号幅值和信号强度表示信号质量为例进行具体说明。
终端设备保存有放松测量门限threshold relaxmeasure。其中,在本申请实施例中,所述放松测量门限threshold relaxmeasure中包含的参数以及各个参数的取值,以及所述终端设备获取所述放松测量门限threshold relaxmeasure方法等可以参考实施例一中的描述,此处不再赘述。
所述终端设备还保存有多个同频测量信号质量范围,以根据服务小区的信号质量强弱,对同频邻区进行不同放松等级的放松测量,最终实现差异化放松测量,进一步提高放松测量的灵活性。其中,每个同频测量信号质量范围对应不同的同频放松等级,同频测量信号质量范围中包含的数值越大,其对应的同频放松等级也越大,参阅图2C所示。而同频放松等级越大,终端设备对同频邻区的测量频率越低或者同频邻区的数量越小,换句话说,同频放松等级与终端设备的功耗对应,同频放松等级越大终端设备的功耗越低。
因此,当终端设备确定服务小区的信号质量大于所述放松测量门限threshold relaxmeasure中的同频放松测量门限threshold intrarelaxmeasure(具体过程可以参考实施例一种的描述)时,所述终端设备可以通过以下步骤,根据服务小区的信号质量强弱对同频邻区进行差异化放松测量:
当所述终端设备确定所述服务小区的信号质量在第一同频测量信号质量范围内时,所述终端设备按照第一放松同频测量周期T intrarelax_1,对同频频点上的B1_1个同频邻区进行测量。即所述终端设备使用同频放松等级1,对同频邻区进行放松测量。
当所述终端设备确定所述服务小区的信号质量在第二同频测量信号质量范围内时,所述终端设备按照第二放松同频测量周期T intrarelax_2,对服务频点上的B1_2个同频邻区进行测量。即所述终端设备使用同频放松等级2,对同频邻区进行放松测量。
其中,所述第二同频测量信号质量范围内的任一数值大于所述第一同频测量信号质量范围内的数值,T intrarelax_2>T intrarelax_1和/或B1_2<B1_1,B1_2和B1_1均为大于0的整数。示例性的,T intrarelax_2=T intrarelax_1*A5,B1_2=B1_1/A6,A5>1,A6>1。同频放松等级2高于同频放松等级1。
其中,所述多个同频测量信号质量范围是根据同频放松测量门限threshold intrarelaxmeasure和至少一个同频放松等级门限确定的。其中,第一同频放松等级对应的第一同频测量信号质量范围为(同频放松测量门限threshold intrarelaxmeasure,第一同频放松等级门限];第二同频放松等级对应的第二同频测量信号质量范围为(第一同频放松等级门限,第二同频放松等级门限];……第L同频放松等级对应的第L同频测量信号质量范围为(第L-1同频放松等级门限,+∞]。
在一种设计中,每个同频放松等级门限是根据同频放松测量门限threshold intrarelaxmeasure确定的。
例如,第一同频放松等级门限=同频放松测量门限threshold intrarelaxmeasure*j,其中j>1。
具体的,第一同频放松等级信号幅值门限threshold intrarelaxlevel_1P=同频放松测量信号幅值门限threshold intrarelaxmeasureP*j。第二同频放松等级信号幅值门限threshold intrarelaxlevel_2P=同频放松测量信号幅值门限threshold intrarelaxmeasureP*j 2。第L-1同频放松等级信号幅值门限threshold intrarelaxlevel_L-1P=同频放松测量信号幅值门限threshold intrarelaxmeasureP*j L-1
第一同频放松等级信号强度门限threshold intrarelaxlevel_1Q=同频放松测量信号强度门限threshold intrarelaxmeasureQ*j。第二同频放松等级信号强度门限threshold intrarelaxlevel_2Q=同频放松测量信号强度门限threshold intrarelaxmeasureQ*j 2。第L-1同频放松等级信号幅值门限threshold intrarelaxlevel_L-1Q=同频放松测量信号强度门限threshold intrarelaxmeasureQ*j L-1
其中,j的取值可以为所述基站通过设定计算方法计算出来配置给所述终端设备的,或者为终端设备根据设定计算方法计算的。例如,所述基站或所述终端设备可以根据以下至少一项或组合计算j的取值:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。这样,终端设备或基站可以根据当前网络状态,动态调整所述放松测量门限。
例如,当所述终端设备的业务优先级越低,服务频点优先级越高,或者终端设备的移动性信息指示终端设备距离服务小区中心越近和/或终端设备的移动速度越低时,设置j值越小。这样,可以在终端设备对小区重选或切换需求较低时,尽快进入放松测量模式,从而降低终端设备的功耗。
在另一种设计中,每个同频放松等级门限为基站配置给所述终端设备的,或者协议规定并保存在所述终端设备中的。
所述终端设备还保存有多个异频测量信号质量范围,以根据服务小区的信号质量强弱,对异频邻区进行不同放松等级的放松测量,最终实现差异化放松测量,进一步提高放松测量的灵活性。其中,每个异频测量信号质量范围对应不同的异频放松等级,异频测量信号质量范围中包含的数值越大,其对应的异频放松等级也越大,参阅图2D。而异频放松等级越大,终端设备对异频邻区的测量频率越低或者异频邻区的数量越小,换句话说,异频放松等级与终端设备的功耗对应,异频放松等级越大终端设备的功耗越低。
因此,当终端设备确定服务小区的信号质量大于所述放松测量门限threshold relaxmeasure中的异频放松测量门限threshold nonintrarelaxmeasure(具体过程可以参考实施例一种的描述)时,所述终端设备可以通过以下步骤,根据服务小区的信号质量强弱对异频邻区进行差异化放松测量:
当所述终端设备确定所述服务小区的信号质量在第一异频测量信号质量范围内时,所述终端设备按照第一放松异频测量周期T nonintrarelax_1,对异频频点上的N1_1个异频邻区进行测量。即所述终端设备使用异频放松等级1,对异频邻区进行放松测量。
当所述终端设备确定所述服务小区的信号质量在第二异频测量信号质量范围内时,所述终端设备按照第二放松异频测量周期T nonintrarelax_2,对服务频点上的N1_2个异频邻区进行测量。即所述终端设备使用异频放松等级2,对异频邻区进行放松测量。
其中,所述第二异频测量信号质量范围内的任一数值大于所述第一异频测量信号质量范围内的数值,T nonintrarelax_2>T nonintrarelax_1和/或N1_2<N1_1,N1_2和N1_1均为大于0的整数。示例性的,T nonintrarelax_2=T nonintrarelax_1*A7,N1_2=N1_1/A8,A7>1,A8>1。异频放松等级2高于异频放松等级1。
其中,所述多个异频测量信号质量范围是根据异频放松测量门限threshold nonintrarelaxmeasure和至少一个异频放松等级门限确定的。其中,第一异频放松等级对应的第一异频测量信号质量范围为(异频放松测量门限threshold nonintrarelaxmeasure,第一异频放松等级门限];第二异频放松等级对应的第二异频测量信号质量范围为(第一异频放松等级门限,第二异频放松等级门限];……第L异频放松等级对应的第L异频测量信号质量范围为(第L-1异频放松等级门限,+∞]。
在一种设计中,每个异频放松等级门限是根据异频放松测量门限threshold intrarelaxmeasure确定的。
例如,第一异频放松等级门限=异频放松测量门限threshold nonintrarelaxmeasure*j,其中j>1。
具体的,第一异频放松等级信号幅值门限threshold nonintrarelaxlevel_1P=异频放松测量信号幅值门限threshold nonintrarelaxmeasureP*j。第二异频放松等级信号幅值门限threshold nonintrarelaxlevel_2P=异频放松测量信号幅值门限threshold nonintrarelaxmeasureP j 2。第L-1异频放松等级信号幅值门限threshold nonintrarelaxlevel_L-1P=异频放松测量信号幅值门限threshold nonintrarelaxmeasureP j L-1
第一异频放松等级信号强度门限threshold nonintrarelaxlevel_1Q=异频放松测量信号强度门限threshold nonintrarelaxmeasureQ*j。第二异频放松等级信号强度门限threshold nonintrarelaxlevel_2Q=异频放松测量信号强度门限threshold nonintrarelaxmeasureQ j 2。第L-1异频放松等级信号幅值门限threshold nonintrarelaxlevel_L-1Q=异频放松测量信号强度门限threshold nonintrarelaxmeasureQ j L-1
其中,j的取值可以为所述基站通过设定计算方法计算出来配置给所述终端设备的,或者为终端设备根据设定计算方法计算的。例如,所述基站或所述终端设备可以根据以下至少一项或组合计算j的取值:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。j的取值规则可以参考以上计算同频放松等级信号强度门限时的取值规则,此处不再赘述。
在另一种设计中,每个异频放松等级门限为基站配置给所述终端设备的,或者协议规定并保存在所述终端设备中的。
本申请实施例提供了一种测量方法,在该方法中,终端设备在根据放松测量门限,确定需要对目标频点上的邻区进行放松测量的情况下,可以根据服务小区的信号质量强弱,对目标频点上的邻区进行不同放松等级的放松测量,最终实现差异化放松测量。因此,终端设备能够灵活地对目标频点上的邻区执行差异化放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
实施例三:
为了使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既可以保证终端设备的通信性能又可以节省终端设备功耗,本申请实施例提供了一种测量方法。该方法可以适应于图1所示的通信系统中。本申请实施例以通信系统通过信号幅值和信号强度表示信号质量为例进行具体说明。
终端设备保存有放松测量门限threshold relaxmeasure。其中,在本申请实施例中,所述放松测量门限threshold relaxmeasure中包含的参数以及各个参数的取值,以及所述终端设备获取所述放松测量门限threshold relaxmeasure方法等可以参考实施例一中的描述,此处不再赘述。
所述终端设备还保存有多个同频测量信号质量范围,以根据服务小区的信号质量强弱, 对同频邻区进行不同放松等级的放松测量,最终实现差异化放松测量,进一步提高放松测量的灵活性,参阅图2C所示。具体过程可以参考实施例二中对同频邻区进行差异化放松测量的描述,此处不再赘述。
其中,所述多个同频测量信号质量范围是根据多个同频放松等级门限确定的。其中,第一同频放松等级对应的第一同频测量信号质量范围为(同频放松测量门限threshold intrarelaxmeasure,第一同频放松等级门限];第二同频放松等级对应的第二同频测量信号质量范围为(第一同频放松等级门限,第二同频放松等级门限];……第L同频放松等级对应的第L同频测量信号质量范围为(第L-1同频放松等级门限,+∞]。
可选的,每个同频放松等级门限为所述基站通过设定计算方法计算出来配置给所述终端设备的,或者为终端设备根据协议规定并保存在所述终端设备中的计算方法计算的。
示例性的,每个同频放松等级门限可以通过以下公式计算:
threshold intrarelaxlevel_iP=k(i)*(S intrasearchP-Threshold Criterion S)+Threshold Criterion S                                 公式五
threshold intrarelaxlevel_jQ=k(j)*(S intrasearchQ-Threshold Criterion S)+Threshold Criterion S                                 公式六
其中,threshold intrarelaxlevel_iP为第i个同频放松等级信号幅值门限,threshold intrarelaxlevel_jQ为第j个同频放松等级信号强度门限;i为1-~L-1的整数,j为1-~L-1的整数;0<k(i)<1,且k(i)<k(i+1),0<k(j)<1,且k(j)<k(j+1)。
所述终端设备还保存有多个异频测量信号质量范围,以根据服务小区的信号质量强弱,对异频邻区进行不同放松等级的放松测量,最终实现差异化放松测量,进一步提高放松测量的灵活性,参阅图2D所示。具体过程可以参考实施例二中对异频邻区进行差异化放松测量的描述,此处不再赘述。
其中,所述多个异频测量信号质量范围是根据多个异频放松等级门限确定的。其中,第一异频放松等级对应的第一异频测量信号质量范围为(异频放松测量门限threshold nonintrarelaxmeasure,第一异频放松等级门限];第二异频放松等级对应的第二异频测量信号质量范围为(第一异频放松等级门限,第二异频放松等级门限];……第L异频放松等级对应的第L异频测量信号质量范围为(第L-1异频放松等级门限,+∞]。
可选的,每个异频放松等级门限为所述基站通过设定计算方法计算出来配置给所述终端设备的,或者为终端设备根据协议规定并保存在所述终端设备中的计算方法计算的。
示例性的,每个异频放松等级门限可以通过以下公式计算:
threshold nonintrarelaxlevel_xP=k(x)*(S nonintrasearchP-Threshold Criterion S)+Threshold Criterion S                                  公式五
threshold nonintrarelaxlevel_yQ=k(y)*(S nonintrasearchQ-Threshold Criterion S)+Threshold Criterion S                                  公式六
其中,threshold nonintrarelaxlevel_xP为第x个异频放松等级信号幅值门限,threshold nonintrarelaxlevel_yQ为第y个同频放松等级信号强度门限;x为1-~L-1的整数,y为1-~L-1的整数;0<k(x)<1,且k(x)<k(x+1),0<k(y)<1,且k(y)<k(y+1)。
本申请实施例提供了一种测量方法,在该方法中,终端设备在根据放松测量门限,确定需要对目标频点上的邻区进行放松测量的情况下,可以根据服务小区的信号质量强弱, 对目标频点上的邻区进行不同放松等级的放松测量,最终实现差异化放松测量。因此,终端设备能够灵活地对目标频点上的邻区执行差异化放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
实施例四:
为了使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既可以保证终端设备的通信性能又可以节省终端设备功耗,本申请实施例提供了一种测量方法。该方法可以适应于图1所示的通信系统中。下面参阅图3对该方法进行详细描述。
S301:通信系统中的每个基站针对管理的小区通过系统消息发送测量配置信息。任一小区的测量配置信息中包含该小区所在频点的优先级、同频测量门限S intrasearch和异频/异系统测量门限S nonintrasearch。每个基站针对管理的小区通过系统消息或RRC消息发送该小区的目标频点配置信息。其中,所述目标频点配置信息中包含待测量的目标频点,还可以包含在每个目标频点上的待测量的邻区。
终端设备接收到其服务小区的测量配置信息和目标频点配置信息,确定服务频点的优先级、同频测量门限S intrasearch和异频/异系统测量门限S nonintrasearch,以及目标频点。另外,终端设备接收到邻区的测量配置信息后,确定每个目标频点的优先级。
所述终端设备可以根据目标频点与服务频点的关系,将所述目标频点分为两类中的至少一类:同频频点、异频频点。
进一步的,所述终端设备根据每个目标频点的优先级与服务频点的优先级的相对关系,将异频频点分为三类:高优先级目标频点,同等优先级目标频点,低优先级目标频点。
S302:所述终端设备根据服务小区中的同频测量门限S intrasearch和预设的门限标准起始值threshold Criterion S,确定同频放松测量门限threshold intrarelaxmeasure,以保证所述同频放松测量门限threshold intrarelaxmeasure大于所述门限标准起始值threshold Criterion S,且小于服务小区的测量配置信息中的同频测量门限S intrasearch;所述终端设备根据服务小区中的异频/异系统测量门限S nonintrasearch和预设的门限标准起始值threshold Criterion S,确定异频放松测量门限threshold nonintrarelaxmeasure,以保证所述异频放松测量门限threshold nonintrarelaxmeasure大于所述门限标准起始值threshold Criterion S,且小于服务小区的测量配置信息中的异频/异系统测量门限S nonintrasearch
在一种设计中,所述终端设备可以根据实施例一中的公式一和公式二,确定所述同频测量门限S intrasearch中的同频放松测量信号幅值门限threshold intrarelaxmeasureP和同频放松测量信号强度门限threshold intrarelaxmeasureQ。
所述终端设备可以根据实施例一中的公式三和公式四,确定所述异频放松测量门限threshold nonintrarelaxmeasure中的异频放松测量信号幅值门限threshold nonintrarelaxmeasureP和异频放松测量信号强度门限threshold nonintrarelaxmeasureQ。
其中,公式一至公式四对应的计算方法可以为协议规定并存储到所述终端设备的,或者为基站配置给所述终端设备的。
在一种设计中,所述基站还可以在所述测量配置信息中携带多个同频放松测量门限备选值,以及多个异频放松测量门限备选值。其中,每个同频放松测量门限备选值中的同频放松测量信号幅值门限P备选值和同频放松测量信号强度门限Q备选值,分别符合实施例一中的公式一和公式二。每个异频放松测量门限备选值中的异频放松测量信号幅值门限P 备选值和异频放松测量信号强度门限Q备选值分别符合实施例一种的公式三和公式四。
终端设备可以从所述多个同频放松测量门限备选值中选择同频放松测量门限threshold intrarelaxmeasure,以及从所述多个异频放松测量门限备选值中选择异频放松测量门限threshold nonintrarelaxmeasure。例如,所述终端设备可以随机选择,或者根据以下一项或组合选择:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。具体过程可以参考实施例一中的描述,此处不再赘述。
S303:所述终端设备可以根据同频放松测量门限threshold intrarelaxmeasure,对同频频点上的同频邻区进行放松测量;以及根据异频放松测量门限threshold nonintrarelaxmeasure,对异频频点上的异频邻区进行放松测量。具体过程可以参考实施例一至实施例三中的具体描述,此处不再赘述。
S304:所述终端设备还可以根据以下一项或组合,调整所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。
例如,当终端设备的业务优先级升高,则将所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure的取值调高。这样,在终端设备进行关键性业务时提高放松测量门限,以使终端设备尽量不进行放松测量,从而保证终端设备的通信性能。
又例如,当服务频点的优先级升高、或者终端设备的移动信息指示终端设备距离小区覆盖中心越近和/或终端设备的移动速度越低,则将所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure的取值调低。这样,在终端设备的小区重选或切换需求降低时,降低放松测量门限,使所述终端设备尽快进入放松测量模式,从而降低终端设备的功耗。
S305:所述终端设备可以根据调整后的同频放松测量门限threshold intrarelaxmeasure,对同频频点上的同频邻区进行放松测量;以及根据调整后的异频放松测量门限threshold nonintrarelaxmeasure,对异频频点上的异频邻区进行放松测量。
需要说明的是,上述S304和S305为可选步骤,所述通信系统可以所述终端设备实现对所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure的调整。
本申请实施例提供了一种测量方法,在该方法中,终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。因此,通信系统可以通过灵活地设置所述放松测量门限,使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
实施例五:
为了使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既可以保证终端设备的通信性能又可以节省终端设备功耗,本申请实施例提供了一种测量方法。该方法可以适应于图1所示的通信系统中。下面参阅图4对该方法进行详细描述。
S401:通信系统中的每个基站针对管理的小区发送测量配置信息,以及目标频点配置信息。具体过程可以参考S301。与S301不同的是,任一小区的测量配置信息中还包括同频放松测量门限threshold intrarelaxmeasure,异频放松测量门限threshold nonintrarelaxmeasure
在一种设计中,所述基站可以根据实施例一中的公式一和公式二,确定所述同频测量 门限S intrasearch中的同频放松测量信号幅值门限threshold intrarelaxmeasureP和同频放松测量信号强度门限threshold intrarelaxmeasureQ。
所述基站可以根据实施例一中的公式三和公式四,确定所述异频放松测量门限threshold nonintrarelaxmeasure中的异频放松测量信号幅值门限threshold nonintrarelaxmeasureP和异频放松测量信号强度门限threshold nonintrarelaxmeasureQ。
在一种设计中,所述基站可以根据以下至少一项或组合,确定所述同频放松测量门限threshold intrarelaxmeasure,异频放松测量门限threshold nonintrarelaxmeasure:所述终端设备的业务优先级、所述终端设备的服务频点优先级、所述终端设备的移动性信息。
S402:所述终端设备可以根据同频放松测量门限threshold intrarelaxmeasure,对同频频点上的同频邻区进行放松测量;以及根据异频放松测量门限threshold nonintrarelaxmeasure,对异频频点上的异频邻区进行放松测量。具体过程可以参考实施例一至实施例三中的具体描述,此处不再赘述。
S403:所述基站还可以根据以下一项或组合,调整所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。然后,所述基站向所述终端设备发送测量调整信息,所述测量调整信息中包含调整后的所述同频放松测量门限threshold intrarelaxmeasure,和调整后的异频放松测量门限threshold nonintrarelaxmeasure。具体调整规则可以参考实施例四种的S304中的描述此处不再赘述。基站发送给终端设备的放松测量门限可以为调整前的门限,也可以调整后的门限。
S404:所述终端设备也可以根据以下一项或组合,调整所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure:所述终端设备的业务优先级、服务频点优先级、所述终端设备的移动性信息。具体调整规则可以参考实施例四种的S304中的描述此处不再赘述。
S405:所述终端设备可以根据调整后的同频放松测量门限threshold intrarelaxmeasure,对同频频点上的同频邻区进行放松测量;以及根据调整后的异频放松测量门限threshold nonintrarelaxmeasure,对异频频点上的异频邻区进行放松测量。
需要说明的是,上述S403-S405为可选步骤,所述通信系统可以通过基站和/或所述终端设备实现对所述同频放松测量门限threshold intrarelaxmeasure,和异频放松测量门限threshold nonintrarelaxmeasure的调整。
还需要说明的是,本申请实施例是以所述基站直接为所述终端设备配置放松测量门限为例进行说明。可选的,所述基站可以向所述终端设备发送其他信息,间接为所述终端设备配置放松测量门限。
例如,所述基站可以向所述终端设备发送多个同频放松测量门限备选值以及多个异频放松测量门限备选值,这样,所述终端设备可以在多个同频放松测量门限备选值中选择同频放松测量门限,在多个异频放松测量门限备选值中选择异频放松测量门限。其中,每个门限备选值均符合相应的门限的取值规则。另外,上述门限备选值可以为协议规定并存储到所述基站的,或者是由基站根据设定计算方法计算得到的。
又例如,所述基站可以向所述终端设备发送同频放松测量门限计算参数、异频放松测量门限计算参数,这样,所述终端设备可以根据同频放松测量门限计算参数计算所述同频放松测量门限,根据异频放松测量门限计算参数计算所述异频放松测量门限。其中,门限 计算参数中可以包含初始同频/异频放松测量门限和/或门限调整值(例如公式一-公式四中的k1-k4,或者为在初始同频/异频放松测量门限的基础上增加或减少的值)。
本申请实施例提供了一种测量方法,在该方法中,终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。因此,通信系统可以通过灵活地设置所述放松测量门限,使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该装置的结构如图5所示,包括通信单元501和处理单元502。所述通信装置可以应用于图1所示的通信系统中的基站或终端设备,并可以实现以上各个实施例中提供的测量方法。下面对装置500中的各个单元的功能进行介绍:
所述通信单元501的功能为接收和发送信号。所述通信单元501可以通过射频电路实现,其中,所述射频电路中包含天线。
下面对所述通信装置500应用于终端设备实现以上各个实施例时,各个单元的功能进行介绍。
处理单元502,用于确定服务小区的信号质量大于放松测量门限,其中,所述放松测量门限大于预设的门限标准起始值,且小于测量门限,所述门限标准起始值为测量准入门限;对目标频点上的邻区进行放松测量。
在一种实施方式中,所述放松测量门限为同频放松测量门限,所述测量门限为同频测量门限;所述处理单元502在对目标频点上的邻区进行放松测量时,具体用于:
对在同频频点上同频邻区进行放松测量,其中,所述同频频点为所述服务小区所在服务频点。
在一种实施方式中,所述放松测量门限为异频放松测量门限,所述测量门限为异频/异系统测量门限;所述处理单元502在对目标频点上的邻区进行放松测量时,具体用于:
对在目标异频频点上异频邻区进行放松测量,其中,所述目标异频频点属于异频频点,所述异频频点为与所述服务小区所在服务频点不同的目标频点。
在一种实施方式中,在所述同频频点上的同频邻区的数量为B0;所述处理单元502在对在同频频点上同频邻区进行放松测量时,具体用于:
根据放松同频测量周期T intrarelax对在所述同频频点上的B1个同频邻区进行放松测量;
其中,所述T intrarelax>正常同频测量周期T intra,和/或,B1<B0,所述T intra为所述终端设备不对在所述同频频点上的同频邻区进行放松测量时使用的测量周期。
在一种实施方式中,在所述同频频点上的同频邻区的数量为B0;所述处理单元502在对在同频频点上同频邻区进行放松测量时,具体用于:
当确定所述服务小区的信号质量在第一信号质量范围内时,按照第一放松同频测量周期T intrarelax_1,对在所述同频频点上的B1_1个同频邻区进行测量;所述第一信号质量范围是根据至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第一信号质量范围根据所述同频放松测量门限与所述至少一个放松等级门限中取值最小的放松等级门限确定的;
当确定所述服务小区的信号质量在第二信号质量范围内时,按照第二放松同频测量周期T intrarelax_2,对在所述同频频点上的B1_2个同频邻区进行测量;所述第二信号质量范围 是根据所述至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第二信号质量范围是根据所述至少一个放松等级门限中取值最大的放松等级门限确定的;
其中,T intrarelax_1>正常同频测量周期T intra,和/或,B1_1<B0;T intrarelax_2>所述T intra,和/或,B1_2<B0,所述T intra为所述终端设备不对在所述同频频点上的同频邻区进行放松测量时使用的测量周期;所述第二信号质量范围内的任一数值大于所述第一信号质量范围内的数值,T intrarelax_2>T intrarelax_1和/或B1_2<B1_1。
在一种实施方式中,所述异频频点包含:高优先级目标频点、同等优先级目标频点、低优先级目标频点;
当所述服务信号的信号质量大于所述异频放松测量门限,且小于或等于所述异频/异系统测量门限时,所述目标异频频点包含:所述高优先级目标频点、所述同等优先级目标频点、所述低优先级目标频点;
当所述服务信号的信号质量大于所述异频/异系统测量门限时,所述目标异频频点为所述高优先级目标频点。
在一种实施方式中,所述目标异频频点的数量为N0;所述处理单元502,在对在目标异频频点上异频邻区进行放松测量时,具体用于:
根据放松异频测量周期T nonintrarelax对在N1个目标异频频点上的异频邻区进行放松测量;
其中,所述T nonintrarelax>正常异频测量周期T nonintra,和/或,N1<N0,所述T nonintra为所述终端设备不对在所述异频频点上的异频邻区进行放松测量时使用的测量周期。
在一种实施方式中,所述目标异频频点的数量为N0;所述处理单元502,在对在目标异频频点上异频邻区进行放松测量时,具体用于:
当确定所述服务小区的信号质量在第一信号质量范围内时,按照第一放松异频测量周期T nonintrarelax_1,对在N1_1个目标异频频点上的异频邻区进行测量;所述第一信号质量范围是根据至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第一信号质量范围根据所述同频放松测量门限与所述至少一个放松等级门限中取值最小的放松等级门限确定的;
当确定所述服务小区的信号质量在第二信号质量范围内时,按照第二放松异频测量周期T nonintrarelax_2,对在N1_2个目标异频频点上的异频邻区进行测量;所述第二信号质量范围是根据所述至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第二信号质量范围是根据所述至少一个放松等级门限中取值最大的放松等级门限确定的;
其中,T nonintrarelax_1>正常异频测量周期T nonintra,和/或,N1_1<N0;T nonintrarelax_2>所述T nonintra,和/或,N1_2<N0,所述T nonintra为所述终端设备不对在所述异频频点上的异频邻区进行放松测量时使用的测量周期;所述第二信号质量范围内的任一数值大于所述第一信号质量范围内的数值,T nonintrarelax_2>T nonintrarelax_1和/或N1_2<N1_1。
在一种实施方式中,所述至少一个放松等级门限为所述终端设备根据所述放松测量门限确定的,其中,第t个放松等级门限threshold intrarelaxlevel_t符合公式:threshold intrarelaxlevel_t=所述放松测量门限*放松等级门限调整值 t;或者,所述至少一个放松等级门限是由基站配置给所述终端设备的;或者,所述至少一个放松等级门限是协议规定并存储到所述终端设备的。
在一种实施方式中,所述放松测量门限是由基站配置给所述终端设备的;或者所述放松测量门限是协议规定并存储到所述终端设备的;或者所述放松测量门限是由所述终端设 备根据设定计算方法计算得到的,其中,所述设定计算方法为基站配置给所述终端设备的或者协议规定并存储到所述终端设备的;或者所述放松测量门限是由所述终端设备确定的。
在一种实施方式中,当所述放松测量门限是由所述基站配置给所述终端设备时,所述通信单元501用于从所述基站接收第一消息,所述第一消息中包含所述放松测量门限。
在一种实施方式中,当所述放松测量门限是由所述基站配置给所述终端设备时,所述通信单元501用于从所述基站接收第二消息,所述第二消息中包含多个门限备选值;所述处理单元502用于在所述多个门限备选值中选择一个门限备选值为所述放松测量门限。
在一种实施方式中,当所述放松测量门限是由所述基站配置给所述终端设备时,所述通信单元501用于从所述基站接收第三消息,所述第三消息中包含放松测量门限计算参数,所述门限计算参数包含:初始放松测量门限,和/或,放松测量门限调整值;所述终端设备根据所述放松测量门限计算参数,确定所述放松测量门限。
在一种实施方式中,当所述放松测量门限是由所述终端设备确定的时,所述处理单元502,还用于:根据以下至少一项或组合,确定所述放松测量门限:
所述终端设备的业务优先级、所述服务频点优先级、所述终端设备的移动性信息;
其中,所述终端设备的移动性信息包含所述终端设备的位置信息和移动速度。
在一种实施方式中,所述同频放松测量门限符合以下公式:
threshold intrarelaxmeasure=k intra*(S intrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold intrarelaxmeasure为所述同频放松测量门限,S intrasearch为所述同频测量门限,threshold Criterion S为所述门限标准起始值,0<k intra<1;
所述异频放松测量门限符合以下公式:
threshold nonintrarelaxmeasure=k nonintra*(S nonintrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold nonintrarelaxmeasure为所述异频放松测量门限,S nonintrasearch为所述异频/异系统测量门限,0<k nonintra<1。
在一种实施方式中,所述同频放松测量门限包含:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述同频测量门限包含:同频测量信号幅值门限S intrasearchP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;
所述threshold intrarelaxmeasureP符合以下公式:
threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S;
其中,Threshold Criterion S为所述门限标准起始值,0<k1<1,0<k2<1;
所述threshold intrarelaxmeasureQ符合以下公式:
threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S;
所述异频放松测量门限包含:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;所述异频/异系统测量门限包含:异频测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;
所述threshold nonintrarelaxmeasureP符合以下公式:
threshold nonintrarelaxmeasureP=k3*(S nonintrasearchP-threshold Criterion S)+threshold Criterion S;
所述threshold nonintrarelaxmeasureQ符合以下公式:
threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S;
其中,0<k3<1,0<k4<1。
下面对所述通信装置500应用于基站实现以上各个实施例时,各个单元的功能进行介绍。
处理单元502,用于确定放松测量门限,其中,所述放松测量门限大于预设的门限标准起始值,且小于测量门限,所述门限标准起始值为测量准入门限;
通信单元501,用于向终端设备发送第一消息,所述第一消息中包含所述放松测量门限。
在一种实施方式中,所述放松测量门限是协议规定并存储到所述基站的;或者所述放松测量门限是由所述基站根据设定计算方法计算得到的。
在一种实施方式中,所述通信单元501,还用于:
向所述终端设备发送第二消息,其中,所述第二消息中还包括:放松测量门限调整值,所述放松测量门限调整值用于对所述放松测量门限进行调整;
向所述终端设备发送第三消息,其中,所述第三消息中还包括:至少一个放松等级门限,或者用于确定至少一个放松等级门限的放松等级门限调整值。
在一种实施方式中,所述放松测量门限为同频放松测量门限,所述测量门限为同频测量门限;或者所述放松测量门限为异频放松测量门限,所述测量门限为异频/异系统测量门限。
在一种实施方式中,所述同频放松测量门限符合以下公式:
threshold intrarelaxmeasure=k intra*(S intrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold intrarelaxmeasure为所述同频放松测量门限,S intrasearch为所述同频测量门限,threshold Criterion S为所述门限标准起始值,0<k intra<1;
所述异频放松测量门限符合以下公式:
threshold nonintrarelaxmeasure=k nonintra*(S nonintrasearch-threshold Criterion S)+threshold Criterion S;
其中,threshold nonintrarelaxmeasure为所述异频放松测量门限,S nonintrasearch为所述异频/异系统测量门限,0<k nonintra<1。
在一种实施方式中,所述同频放松测量门限包含:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述同频测量门限包含:同频测量信号幅值门限S intrasearchP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;
所述threshold intrarelaxmeasureP符合以下公式:
threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S;
其中,Threshold Criterion S为所述门限标准起始值,0<k1<1,0<k2<1;
所述threshold intrarelaxmeasureQ符合以下公式:
threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S;
所述异频放松测量门限包含:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;所述异频/异系统测量门限包含: 异频测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;
所述threshold nonintrarelaxmeasureP符合以下公式:
threshold nonintrarelaxmeasureP=k3*(S nonintrasearchP-threshold Criterion S)+threshold Criterion S;
所述threshold nonintrarelaxmeasureQ符合以下公式:
threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S;
其中,0<k3<1,0<k4<1。
需要说明的是,本申请以上实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于相同的技术构思,本申请实施例还提供了一种通信设备,该通信设备可以应用于图1所示的通信系统中的基站或终端设备,并可以实现以上实施例提供的测量方法。参阅图6所示,所述通信设备包括:收发器601、处理器602以及存储器603。其中,所述收发器601、所述处理器602以及所述存储器603之间相互连接。
可选的,所述收发器601、所述处理器602以及所述存储器603之间通过总线604相互连接。所述总线604可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述收发器601,用于接收和发送信号,实现与其他设备之间的通信交互。在一种实施方式中,按照接收信号功能和发送信号功能划分,所述收发器601可以划分为发射通道和接收通道。如图所示,其中,所述发射通道由发送(transmit,TX)信号处理单元,TX射频通道以及天线组成,所述接收通道由接收(receive,RX)信号处理单元、RX射频通道以及天线组成。
TX信号处理单元实现信号发送的各种信号处理功能,包括信道编码、加扰、调制、层映射、预编码和天线映射等过程。RX信号处理单元实现信号接收的各种信号处理功能,包括同步、时频跟踪、测量、信道估计、均衡、解调、解扰、译码等过程。
TX信号处理单元通过TX射频通道与天线相连,从而通过TX射频通道将基带信号调 制到载波频率,并最终通过天线发送出去。RX信号处理单元通过RX射频通道与天线相连,这样RX射频通道可以将从天线接收到的射频信号解调为基带信号,交由RX信号处理单元处理。
可选的,部分天线可配置为同时发送和接收,因此同时与TX射频通道和RX射频通道相连;部分天线配置为只用于接收,因此只与RX射频通道相连。另外TX射频通道和RX射频通道可与任一天线相连,如TX射频通道1和RX射频通道1与天线2相连,可根据业务需求灵活配置。
在本申请中,当所述通信设备600应用于终端设备时,RX信号处理单元配置RX射频通道和天线,使RX射频通道和天线工作在服务小区或邻区的频点上。RX射频通道和天线接收服务小区或邻区的参考信号,RX信号处理单元处理接收到的参考信号,计算服务小区及邻区的信号质量。
所述处理器602,用于实现以上实施例中的测量方法,具体可以参照以上实施例中的相应描述,此处不再赘述。
所述存储器603,用于存放程序指令和数据等。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作指令。存储器603可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器602执行存储器603所存放的程序指令,并使用所述存储器603中存储的数据,实现上述功能,从而实现上述实施例提供的测量方法。
可以理解,本申请图6中的存储器603可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行以上实施例提供的测量方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行以上实施例提供的测量方法。其中,存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现以上实施例提供的测量方法。
基于以上实施例,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现以上实施例提供的测量方法中基站或终端设备所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
综上所述,本申请实施例提供了一种测量方法及设备。在该方法中,终端设备可以通过放松测量门限,确定是否需要对目标频点上的邻区进行放松测量。因此,通信系统可以通过灵活地设置所述放松测量门限,使终端设备能够灵活地对目标频点上的邻区执行放松测量,从而既能够保证终端设备的通信性能又能够节省终端设备的功耗。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
●Relaxation of measurement/cell identification/evaluation requirements
In RAN4 three scenarios are listed,
– #1:Low mobility scenario
– #2:Not in cell-edge scenario
– #3:Low-mobility+Not in cell-edge scenario
It was agreed in the last RAN4 meeting[1]that the RRM measurement relaxation will be applied for scenario #1 and #2.
Figure PCTCN2021079362-appb-000003
Figure PCTCN2021079362-appb-000004
Regarding how to relax the measurement,the power consumption results were discussed during SI phase.
The details of simulation assumption are in annex which is captured in TS38.840.The simulation results are given in Table 1[3].Table 1 gives the power saving gain when extending measurement periodicity.
Table 1.Power saving gain when extending measurement periodicity
  DRX=0.32 DRX=0.64 DRX=1.28s DRX=2.56
N=4 27.9% 24.75% 19.7% 14.2%
N=8 32.5% 28.6 23.0% 16.5%
It can be observed that extending N times of measurement interval can bring obvious power saving gain.When the DRX is larger,the gain got from 8 times extension compared with 4 times extension is not outstanding.As network may have different preference in different scenario,the flexible method is that the extension factor is configured by network.For example,network can configure different relaxation factor for different scenario.Or the relaxation factor can also consider the UE mobility degree or location etc.The relaxation factor can be within the range of{2,8}.
Proposal 1:The extension factor for relaxed measurement can be configured by network for scenario  #1 and #2.
In the last meeting,RAN2 sent an LS to RAN4[2].The agreement was duplicated as below,
Figure PCTCN2021079362-appb-000005
RAN2 has agreed that network indicates option a or option b.For option a,it was already agreed at RAN4#93 meeting that UE is not required to meet the intra-frequency and inter-frequency neighbour cell  measurement requirements for scenario #3.So the UE behaviour is clear.
For option b when network configures the parameters of both low mobility and not-at-cell-edge criteria,UE can perform relaxation when either low mobility or not-at-cell-edge criterion is fulfilled.If both criteria are satisfied,we don’t think that UE shall stop measurement in this case.Since network indicates option b to UE,it means that network expects relaxation measurement and expects the measurement results reported by UE.Otherwise network will indicate option a to UE.So if both criteria are satisfied,UE can choose any one,it is up to UE implementation.
Proposal 2:When network configures the parameters of both low mobility and not-at-cell-edge criteria,
-if network indicates option a,UE stops intra-frequency and inter-frequency neighbour cell  measurements when both criteria are fulfilled.
-if network indicates option b,UE performs corresponding relaxed measurement according to  which criteria is met.If both criteria are satisfied,it is left to UE implementation to choose one (either low mobility or not-at cell-edge)and perform the corresponding relaxed measurements.
In NB Iot,the following relaxed monitoring measurement rules are specified in TS 36.304.The time interval since the last measurement for cell reselection is defined as 24 hours.
Figure PCTCN2021079362-appb-000006
In power saving,if both criteria are satisfied and option a is indicated by network,UE will stop intra-frequency and inter-frequency neighbour cell measurements.In this case the interval since last measurement for cell reselection shall be considered.Obviously the 24 hours is not suitable for power saving UE.This value shall consider the network deployment,propagation environment,UE mobility direction,UE speed,UE location and etc.Too long interval may impact UE mobility performance and too short value will reduce the power saving gain.Generally we think time interval for measurement relaxation(stop measurements)since last measurement for cell reselection is minutes level.
Proposal 3:Time interval for measurement relaxation(stop measurements)since last measurement for  cell reselection is minutes level.
●RRM measurement relaxation for inter-frequency layer with higher priority
RAN4 discussed the RRM measurement for inter-frequency layer with higher priority during last meeting.
Three options are captured in[1]as following.
Figure PCTCN2021079362-appb-000007
Figure PCTCN2021079362-appb-000008
In parallel,RAN2 was discussing the same issue as well[2].
Figure PCTCN2021079362-appb-000009
In current specification if S rxlev>S nonIntraSearchP and S qual>S nonIntraSearchQ then the UE shall search for inter-RAT E-UTRAN layers of higher priority at least every T higher_priority_search where T higher_priority_search=(60*N layers)seconds.The requirements for this case is already very relaxed,so the benefit of further relaxation is negligible.
For the case where S rxlev<S nonIntraSearchP or S qual<S nonIntraSearchQ,the UE behaviour is to perform measure inter-frequency layers of higher,equal or lower priority layers.In the current specification,the measurement requirements for higher,equal or lower priority layers is the same in this case.In power saving scenario,the power saving benefit can be foreseen if the measurement of higher priority layers is relaxed(the gain is shown in table 1).In addition,the measurement result validity due to the measurement relaxation on higher priority is not a big issue.Since the power saving trigger criteria is specified for low mobility or not-at-cell edge scenario,in both cases,there is no strong command of obtaining fast measurement results.However if different priority layers(high,equal and lower)have the same requirements of measurement,this is contradictory with the motivation of introduction of different priority layers.So S rxlev≤S nonIntraSearchP or S qual≤S nonIntraSearchQ,the relaxed requirement for the frequency layer of higher priority can use different relaxed measurement requirement as those for the frequency layer of equal/lower priority.
Proposal 4:When S rxlev>S nonIntraSearchP and S qual>S nonIntraSearchQ,no relaxation of the current  measurement delay requirement is expected for inter-frequency measurement with higher priority. When S rxlev≤S nonIntraSearchP or S qual≤S nonIntraSearchQ,the relaxed requirement for the frequency layer  of higher priority can use the different relaxed measurement requirement as those for the frequency  layer of equal/lower priority.
●Reducing the frequency layer number
Paging occasion is essential and can not be missed from UE point of view.In theory,UE can perform intra-frequency measurement during the paging occasion,which means that intra-frequency measurement doesn’t introduce extra large power consumption.
For inter-frequency measurement,UE needs to wake up additionally during DRX-OFF in order to avoid the degradation on the paging reception.As we know,the measurement requirements for inter-frequency are scaling with the frequency number.It means that the normalized power is not increased when multiple inter-frequency layers are configured.
Proposal 5:Reducing the inter-frequency layers for measurement in idle mode can not bring power  saving gain.
●Impact on early measurement reporting
Early measurement reporting is introduced in CA/DC enhancement.The intention of EMR is to fasten the CA/DC setup when UE enters to connected mode.If UE is in power saving mode,the normal measurement may be impacted.There are two cases to be discussed separately.
In scenario #1 and #2,the relaxation measurement shall be performed.In our understanding,EMR is not an urgent functionality and the measurement result derived from relaxation measurement on the carriers indicated by EMR configuration can still be applied in EMR.
Proposal 6:In scenario #1 and #2,the measurement result derived from relaxation measurement can  still be applied in EMR.
In scenario #3,UE may stop the neighbour cell measurements when UE is in power saving mode.However if the UE was configured with EMR configuration in RRC release as well,UE has no information about the neighbour cell measurement results when UE is going to enter RRC connected mode.For this case UE may need to establish CA or DC due to service load.It is reasonable to perform EMR measurement.Considering the power saving,UE can perform relaxation measurement.
Proposal 7:In scenario #3,when UE is configured with EMR,UE will perform relaxation  measurements.
●RRM impact due to cross-slot scheduling power saving technique
RAN1 is discussing the cross-slot scheduling power saving during last meeting.The framework of the impact the BWP switching is basically shown in the followings(duplicated from RAN1 chairman notes).
Figure PCTCN2021079362-appb-000010
Thus in RAN4 it is no need to discuss extending the BWP switching delay.In other words,the DCI based BWP switching delay requirements in RAN4 is unchanged.
Proposal 8:The DCI based BWP switching delay requirements in RAN4 is not impacted by cross-slot  scheduling.
This contribution provides the discussion on measurement relaxation in power saving.The proposals are provided as below:
Proposal 1:The extension factor for relaxed measurement can be configured by network for scenario #1 and #2.
Proposal 2:When network configures the parameters of both low mobility and not-at-cell-edge criteria,
-if network indicates option a,UE stops intra-frequency and inter-frequency neighbour cell  measurements when both criteria are fulfilled.
-if network indicates option b,UE performs corresponding relaxed measurement according to  which criteria is met.If both criteria are satisfied,it is left to UE implementation to choose one (either low mobility or not-at cell-edge)and perform the corresponding relaxed measurements.
Proposal 3:Time interval for measurement relaxation(stop measurements)since last measurement for  cell reselection is minutes level.
Proposal 4:When S rxlev>S nonIntraSearchP and S qual>S nonIntraSearchQ,no relaxation of the current  measurement delay requirement is expected for inter-frequency measurement with higher priority. When S rxlev≤S nonIntraSearchP or S qual≤S nonIntraSearchQ,the relaxed requirement for the frequency layer  of higher priority can use the different relaxed measurement requirement as those for the frequency  layer of equal/lower priority.
Proposal 5:Reducing the inter-frequency layers for measurement in idle mode can not bring power  saving gain.
Proposal 6:In scenario #1 and #2,the measurement result derived from relaxation measurement can  still be applied in EMR.
Proposal 7:In scenario #3,when UE is configured with EMR,UE will perform relaxation  measurements.
Proposal 8:The DCI based BWP switching delay requirements in RAN4is not impacted by cross-slot  scheduling.
Table 18:UE power consumption model for FR1
Figure PCTCN2021079362-appb-000011
Table 22:UE power consumption for the RRM measurements
Figure PCTCN2021079362-appb-000012
Table 24:UE power consumption of the combined neighbor cell measurements and cell search
Figure PCTCN2021079362-appb-000013
放松测量/小区识别/评估要求,主要有三种场景。
#1:低移动性场景
#2:非小区边缘场景
#3:低速+非小区边缘场景
RRM放松方法对场景#1和场景#2的适用性:
场景#1:
协议-RRM测量放松加长
场景二:
协议-RRM测量放松加长
测量间隔缩放因子FFS
选项1:固定值
场景#1和场景#2的FFS值相同
场景#1和场景#2的单独值有待进一步研究
选项2:网络可配值
RRM放松方法对场景#1和场景#2的适用性:讨论了如何放宽测量,在SI阶段功耗结果进行了讨论。仿真假设的细节在TS38.840的附件中。仿真结果如表1[3]所示。表1给出了 延长测量周期时的省电增益。
表1.延长测量周期的省电增益
  DRX=0.32 DRX=0.64 DRX=1.28s DRX=2.56
N=4 27.9% 24.75% 19.7% 14.2%
N=8 32.5% 28.6 23.0% 16.5%
可以看出,延长N倍的测量间隔可以带来明显的节能增益。当DRX越大,8倍扩展比4倍扩展的增益不明显。由于网络在不同场景下可能有不同的偏好,因此灵活的方法是按网络配置扩展因子。例如,网络可以针对不同的场景配置不同的放松因子。或者,放松因子也可以考虑UE的移动程度或位置等。放松因子的取值范围为{2,8}。
建议1:针对场景#1和#2,可以按网络配置宽松测量扩展因子。
在上次会议上,RAN2向RAN4[2]发送了一个LS。协议复制如下:
RAN2讨论了与NR节能RRM测量相关的问题,并达成了以下协议:
1.网络侧广播相应的放松触发准则参数,开启RRM测量放松特性。
2.当网络同时配置低移动性和非边缘准则参数时。UE可以根据网络指示的以下选项之一进行测量放松:
-选项a:UE使用低移动性标准和非小区边缘标准,即:只有同时满足这两个条件,UE才能执行放松。具体的放松行为取决于RAN4的讨论和决策;
-选项b:UE使用低移动性标准或非小区边缘标准(选择可以留给UE实现),即:当满足低移动性或非小区边缘准则时,UE可以进行放松。而详细的放松行为与网络仅配置标准的情况相同。
3.在非小区边缘标准中,当网络侧配置RSRP和RSRQ阈值时,只有当RSRP和RSRQ阈值都满足时,UE可以进行放松。
4.RAN4的FFS-我们需要的参数(例如自小区重选中的上一次测量后的测量放松时间间隔,和该时间间隔的取值范围)。
RAN2已经同意网络指示选项a或选项b。对于选项a,在RAN4#93会议上已经商定,不需要UE满足场景#3的同频和异频邻区测量要求。因此,UE的行为是明确的。
对于选项b,当网络同时配置低移动性和非小区边缘准则的参数时,UE可以在满足低移动性或非小区边缘准则时执行放松。如果两个标准都满足,我们认为在这种情况下UE不会停止测量。由于网络向UE指示选项b,这意味着网络期望放松测量并期望UE报告的测量结果。否则,网络将向UE指示选项a。因此,如果两个标准都满足,UE可以选择任意一个,这取决于UE实现。
建议2:当网络同时配置了低移动性和非边缘小区标准参数时,
-如果网络指示选项a,则当满足这两个标准时,UE停止同频和异频邻区测量。
-如果网络指示选项b,则UE根据满足哪些条件执行相应的宽松测量。如果满足这两个条件,则由UE实现选择一个(低移动性或非边缘小区)并执行相应的宽松测量。
NB-IoT中,以下宽松时延的监控测量规则在TS 36.304中定义。距离上次小区重选测量的时间间隔定义为24小时。
5.2.4.12.0宽松监控度量规则
当要求UE根据5.2.4.2或5.2.4.2a小节中的测量规则执行同频或异频测量时,在以下情况下,UE可以选择不执行同频或异频测量:
-在TSearchDeltaP期间满足5.2.4.12.1小节中的宽松监控标准,并且
-自上次执行小区重选测量以来,已经过去了不到24小时,并且
-UE在选择或重选到新小区后,至少进行了TSearchDeltaP次同频或异频测量。
在省电模式中,如果两个条件都满足,且网络指示了选项a,则UE将停止同频和异频邻区测量。在这种情况下,应该考虑从上次小区重选测量开始的间隔。很明显,24小时不适合省电终端。这个值应该考虑网络部署、传播环境、UE移动方向、UE速度、UE位置等。周期配置过长会影响UE的移动性能,周期配置过短会降低省电增益。一般来说,我们认为测量放松(停止测量)的时间间隔,因为上次测量小区重选是分钟级。
建议3:从上次小区重选测量开始,测量放松(停止测量)的时间间隔为分钟级。
l RRM测量放松优先级高的异频层RAN4讨论了异频层优先级更高的RRM测量。
"RRM测量放松高优先级异频层
选项1:当S rxlev>S nonIntraSearchP且S qual>S nonIntraSearchQ时,对于更高优先级的异频测量,不期望放宽当前测量时延要求。当S rxlev≤S nonIntraSearchP或S qual≤S nonIntraSearchQ时,对高优先级频率层的宽松测量要求与对等/低优先级频率层的宽松测量要求相同。
选项2:在高速移动场景下,高优先级载波的测量不应放松(场景#2)。
选项3:不应放松对优先度较高的承运人的衡量。
与此同时,RAN2也在讨论同样的问题。
RAN2以前已经达成的协议:
1.高优先级频点是否宽松,取决于网络配置。关于如何进行配置,有待进一步研究。RAN2正在讨论高优先级测量放松指示,并想询问RAN4关于高优先级载波放松行为:
一、对于S rxlev>S nonIntraSearchP且S qual>S nonIntraSearchQ的情况,如果满足RAN2定义的放松准则,RAN4是否设想进一步放宽比Thigher_priority_search更高优先级载波的测量?
二、对于S rxlev<S nonIntraSearchP或S qual<S nonIntraSearchQ的情况,如果满足RAN2定义的放松标准,是否有性能或系统优势只放松同等/低优先级载波的测量,而不放松高优先级载波的测量?
在目前的规范中,如果S rxlev>S nonIntraSearchP且S qual>S nonIntraSearchQ,则UE应至少在每个Thigher_priority_search中搜索具有较高优先级的异系统E-UTRAN层,其中Thigher_priority_search=(60*Nlayers)秒后生效。对于这种情况,要求已经很宽松了,所以进一步放宽的好处可以忽略不计。
对于S rxlev<S nonIntraSearchP或S qual<S nonIntraSearchQ的情况,UE行为是测量具有较高、相同或较低优先级层的异频层。在当前规范中,对于高优先级、等优先级或低优先级的测量要求在此情况下是相同的。在节能场景下,如果放松对高优先级层的测量,可以预见节能收益(如表1所示)。此外,由于测量放宽到更高的优先级,因此测量结果的有效性不是大问题。由于节能触发标准被指定为低移动性和非小区边缘场景指定的,在这两种情况下,都没有快速获得测量结果的强大命令。然而,如果不同的优先级层(高、同等和低)具有相同的测量要求,这与引入不同优先级层的动机是矛盾的。因此,S rxlev≤S nonIntraSearchP或S qual≤S nonIntraSearchQ,高优先级频率层的放松要求可以与同等优先级/低优先级频率层的放松要求不同。
建议4:当S rxlev>S nonIntraSearchP且S qual>S nonIntraSearchQ时,对高优先级的异频测量不放宽当前测量时延要求。当S rxlev≤S nonIntraSearchP或S qual≤S nonIntraSearchQ时,对高优先级频率层宽松测量需求与等/低优先级频率层宽松测量需求不同。
减少频率层数
从UE的角度来看,寻呼时机是必不可少的,不能错过。理论上,UE可以在寻呼时刻进行同频测量,这意味着同频测量不会引入额外的大功耗。
对于异频测量,UE需要在DRX-OFF期间额外唤醒,以避免寻呼接收下降。我们知道,对异频的测量要求是随着频率数目而缩放。即当异频层数大于1层时,不抬升归一化功率。
建议5:减少空闲态测量的异频层数,无法带来节能增益。
对早期测量报告的影响
CA/DC增强引入提前上报测量报告功能。EMR的目的是在UE进入连接态时加快CA/DC的建立。如果UE处于省电模式,可能会影响正常的测量。有两种情况需要分别讨论。
在场景#1和#2中,应执行放松测量。据我们了解,EMR并不是一个迫切的功能,在EMR配置指示的载波上进行弛豫测量得到的测量结果仍然可以应用于EMR。
提案6:在场景#1和#2中,放松测量得到的测量结果仍可应用于EMR。
在场景#3中,当UE处于省电模式时,UE可以停止邻区测量。然而,如果UE在RRC释放中也配置了EMR配置,则当UE准备进入RRC连接模式时,UE没有关于邻区测量结果的信息。这种情况下,UE可能由于业务负载需要建立CA或DC。EMR测量是合理的。考虑到省电,UE可以进行放松测量。
建议7:在场景#3中,当UE配置EMR时,UE将执行放松测量。
跨时隙调度节能技术对RRM的影响
RAN1上次会议正在讨论跨时隙调度节能。BWP切换的影响框架基本如下所示。
总结:"如果DCI格式1_1(或0_1)指示不同于激活的DL(或UL)BWP的目标DL(或UL)BWP,。所述最小适用调度偏移指示域(如果存在于所述DCI格式中)指示应用于所述目标BWP的最小调度偏移限制。注:规格无需变更。
因此,在RAN4中,无需讨论延长BWP切换时延。换句话说,RAN4中基于DCI的BWP切换时延要求不变。
建议8:RAN4中基于DCI的BWP切换时延要求不受跨时隙调度的影响。
本文就节能中的测量放松问题进行了探讨。提议如下:
建议1:针对场景#1和#2,可以按网络配置宽松测量扩展因子。
建议2:当网络同时配置了低移动性和非边缘小区标准参数时,-如果网络指示选项a,则当满足这两个标准时,UE停止同频和异频邻区测量。-如果网络指示选项b,则UE根据满足哪些条件执行相应的宽松测量。如果满足这两个条件,则由UE实现选择一个(低移动性或非边缘小区)并执行相应的宽松测量。
建议3:从上次小区重选测量开始,测量放松(停止测量)的时间间隔为分钟级。
建议4:当S rxlev>S nonIntraSearchP且S qual>S nonIntraSearchQ时,对高优先级的异频测量不放宽当前测量时延要求。当S rxlev≤S nonIntraSearchP或S qual≤S nonIntraSearchQ时,对高优先级频率层宽松测量需求与等/低优先级频率层宽松测量需求不同。
建议5:减少空闲态测量的异频层数,无法带来节能增益。
建议6:在场景#1和#2中,放松测量得到的测量结果仍可应用于EMR。
建议7:在场景#3中,当UE配置EMR时,UE将执行放松测量。
建议8:RAN4中基于DCI的BWP切换时延要求不受跨时隙调度的影响。
表18.FR1场景下UE的功耗开销模型
Figure PCTCN2021079362-appb-000014
表22.RRM测量场景下的UE功耗开销
Figure PCTCN2021079362-appb-000015
表24.在结合邻区测量和小区搜索中UE的功耗开销
Figure PCTCN2021079362-appb-000016

Claims (24)

  1. 一种测量方法,其特征在于,包括:
    终端设备确定服务小区的信号质量大于放松测量门限,其中,所述放松测量门限大于预设的门限标准起始值,且小于测量门限,所述门限标准起始值为测量准入门限;
    所述终端设备对目标频点上的邻区进行放松测量。
  2. 如权利要求1所述的方法,其特征在于,所述放松测量门限为同频放松测量门限,所述测量门限为同频测量门限;所述终端设备对目标频点上的邻区进行放松测量,包括:
    所述终端设备对在同频频点上同频邻区进行放松测量,其中,所述同频频点为所述服务小区所在服务频点;
    或者
    所述放松测量门限为异频放松测量门限,所述测量门限为异频/异系统测量门限;所述终端设备对目标频点上的邻区进行放松测量,包括:
    所述终端设备对在目标异频频点上异频邻区进行放松测量,其中,所述目标异频频点属于异频频点,所述异频频点为与所述服务小区所在服务频点不同的目标频点。
  3. 如权利要求2所述的方法,其特征在于,在所述同频频点上的同频邻区的数量为B0;所述终端设备对在同频频点上同频邻区进行放松测量,包括:
    所述终端设备根据放松同频测量周期T intrarelax对在所述同频频点上的B1个同频邻区进行放松测量;
    其中,所述T intrarelax>正常同频测量周期T intra,和/或,B1<B0,所述T intra为所述终端设备不对在所述同频频点上的同频邻区进行放松测量时使用的测量周期。
  4. 如权利要求2所述的方法,其特征在于,在所述同频频点上的同频邻区的数量为B0;
    所述终端设备对在同频频点上同频邻区进行放松测量,包括:
    当所述终端设备确定所述服务小区的信号质量在第一信号质量范围内时,所述终端设备按照第一放松同频测量周期T intrarelax_1,对在所述同频频点上的B1_1个同频邻区进行测量;所述第一信号质量范围是根据至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第一信号质量范围根据所述同频放松测量门限与所述至少一个放松等级门限中取值最小的放松等级门限确定的;
    当所述终端设备确定所述服务小区的信号质量在第二信号质量范围内时,所述终端设备按照第二放松同频测量周期T intrarelax_2,对在所述同频频点上的B1_2个同频邻区进行测量;所述第二信号质量范围是根据所述至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第二信号质量范围是根据所述至少一个放松等级门限中取值最大的放松等级门限确定的;
    其中,T intrarelax_1>正常同频测量周期T intra,和/或,B1_1<B0;T intrarelax_2>所述T intra,和/或,B1_2<B0,所述T intra为所述终端设备不对在所述同频频点上的同频邻区进行放松测量时使用的测量周期;所述第二信号质量范围内的任一数值大于所述第一信号质量范围内的数值,T intrarelax_2>T intrarelax_1和/或B1_2<B1_1。
  5. 如权利要求2所述的方法,其特征在于,所述异频频点包含:高优先级目标频点、同等优先级目标频点、低优先级目标频点;
    当所述服务信号的信号质量大于所述异频放松测量门限,且小于或等于所述异频/异系 统测量门限时,所述目标异频频点包含:所述高优先级目标频点、所述同等优先级目标频点、所述低优先级目标频点;
    当所述服务信号的信号质量大于所述异频/异系统测量门限时,所述目标异频频点为所述高优先级目标频点。
  6. 如权利要求2或5所述的方法,其特征在于,所述目标异频频点的数量为N0;
    所述终端设备对在目标异频频点上异频邻区进行放松测量,包括:
    所述终端设备根据放松异频测量周期T nonintrarelax对在N1个目标异频频点上的异频邻区进行放松测量;
    其中,所述T nonintrarelax>正常异频测量周期T nonintra,和/或,N1<N0,所述T nonintra为所述终端设备不对在所述异频频点上的异频邻区进行放松测量时使用的测量周期。
  7. 如权利要求2或5所述的方法,其特征在于,所述目标异频频点的数量为N0;所述终端设备对在目标异频频点上异频邻区进行放松测量,包括:
    当所述终端设备确定所述服务小区的信号质量在第一信号质量范围内时,所述终端设备按照第一放松异频测量周期T nonintrarelax_1,对在N1_1个目标异频频点上的异频邻区进行测量;所述第一信号质量范围是根据至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第一信号质量范围根据所述同频放松测量门限与所述至少一个放松等级门限中取值最小的放松等级门限确定的;
    当所述终端设备确定所述服务小区的信号质量在第二信号质量范围内时,所述终端设备按照第二放松异频测量周期T nonintrarelax_2,对在N1_2个目标异频频点上的异频邻区进行测量;所述第二信号质量范围是根据所述至少一个放松等级门限中取值相邻的两个放松等级门限确定的,或者所述第二信号质量范围是根据所述至少一个放松等级门限中取值最大的放松等级门限确定的;
    其中,T nonintrarelax_1>正常异频测量周期T nonintra,和/或,N1_1<N0;T nonintrarelax_2>所述T nonintra,和/或,N1_2<N0,所述T nonintra为所述终端设备不对在所述异频频点上的异频邻区进行放松测量时使用的测量周期;所述第二信号质量范围内的任一数值大于所述第一信号质量范围内的数值,T nonintrarelax_2>T nonintrarelax_1和/或N1_2<N1_1。
  8. 如权利要求4或7所述的方法,其特征在于,所述至少一个放松等级门限为所述终端设备根据所述放松测量门限确定的,其中,第t个放松等级门限threshold intrarelaxlevel_t符合公式:threshold intrarelaxlevel_t=所述放松测量门限*放松等级门限调整值 t;或者,所述至少一个放松等级门限是由基站配置给所述终端设备的;或者,所述至少一个放松等级门限是协议规定并存储到所述终端设备的。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述放松测量门限是由基站配置给所述终端设备的;或者
    所述放松测量门限是协议规定并存储到所述终端设备的;或者
    所述放松测量门限是由所述终端设备根据设定计算方法计算得到的,其中,所述设定计算方法为基站配置给所述终端设备的或者协议规定并存储到所述终端设备的;或者
    所述放松测量门限是由所述终端设备确定的。
  10. 如权利要求9所述的方法,其特征在于,当所述放松测量门限是由所述基站配置给所述终端设备时,所述方法还包括:
    所述终端设备从所述基站接收第一消息,所述第一消息中包含所述放松测量门限;或 者
    所述终端设备从所述基站接收第二消息,所述第二消息中包含多个门限备选值;所述终端设备在所述多个门限备选值中选择一个门限备选值为所述放松测量门限;或者
    所述终端设备从所述基站接收第三消息,所述第三消息中包含放松测量门限计算参数,所述门限计算参数包含:初始放松测量门限,和/或,放松测量门限调整值;所述终端设备根据所述放松测量门限计算参数,确定所述放松测量门限。
  11. 如权利要求9所述的方法,其特征在于,当所述放松测量门限是由所述终端设备确定的时,所述方法还包括:
    所述终端设备根据以下至少一项或组合,确定所述放松测量门限:
    所述终端设备的业务优先级、所述服务频点优先级、所述终端设备的移动性信息;
    其中,所述终端设备的移动性信息包含所述终端设备的位置信息和移动速度。
  12. 如权利要求2-8任一项所述的方法,其特征在于,
    所述同频放松测量门限符合以下公式:
    threshold intrarelaxmeasure=k intra*(S intrasearch-threshold Criterion S)+threshold Criterion S;
    其中,threshold intrarelaxmeasure为所述同频放松测量门限,S intrasearch为所述同频测量门限,threshold Criterion S为所述门限标准起始值,0<k intra<1;
    所述异频放松测量门限符合以下公式:
    threshold nonintrarelaxmeasure=k nonintra*(S nonintrasearch-threshold Criterion S)+threshold Criterion S;
    其中,threshold nonintrarelaxmeasure为所述异频放松测量门限,S nonintrasearch为所述异频/异系统测量门限,0<k nonintra<1。
  13. 如权利要求2-8任一项所述的方法,其特征在于,
    所述同频放松测量门限包含:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述同频测量门限包含:同频测量信号幅值门限S intrasearchP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;
    所述threshold intrarelaxmeasureP符合以下公式:
    threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S;
    所述threshold intrarelaxmeasureQ符合以下公式:
    threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S;
    其中,Threshold Criterion S为所述门限标准起始值,0<k1<1,0<k2<1;
    所述异频放松测量门限包含:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;所述异频/异系统测量门限包含:异频测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;
    所述threshold nonintrarelaxmeasureP符合以下公式:
    threshold nonintrarelaxmeasureP=k3*(S nonintrasearchP-threshold Criterion S)+threshold Criterion S;
    所述threshold nonintrarelaxmeasureQ符合以下公式:
    threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S;
    其中,0<k3<1,0<k4<1。
  14. 一种测量方法,其特征在于,包括:
    基站确定放松测量门限,其中,所述放松测量门限大于预设的门限标准起始值,且小于测量门限,所述门限标准起始值为测量准入门限;
    所述基站向终端设备发送第一消息,所述第一消息中包含所述放松测量门限。
  15. 如权利要求14所述的方法,其特征在于,所述放松测量门限是协议规定并存储到所述基站的;或者所述放松测量门限是由所述基站根据设定计算方法计算得到的。
  16. 如权利要求1或15所述的方法,其特征在于,所述方法还包括:
    所述基站向所述终端设备发送第二消息,其中,所述第二消息中还包括:放松测量门限调整值,所述放松测量门限调整值用于对所述放松测量门限进行调整;
    所述基站向所述终端设备发送第三消息,其中,所述第三消息中还包括:至少一个放松等级门限,或者用于确定至少一个放松等级门限的放松等级门限调整值。
  17. 如权利要求14-16任一项所述的方法,其特征在于,所述放松测量门限为同频放松测量门限,所述测量门限为同频测量门限;或者
    所述放松测量门限为异频放松测量门限,所述测量门限为异频/异系统测量门限。
  18. 如权利要求17所述的方法,其特征在于,
    所述同频放松测量门限符合以下公式:
    threshold intrarelaxmeasure=k intra*(S intrasearch-threshold Criterion S)+threshold Criterion S;
    其中,threshold intrarelaxmeasure为所述同频放松测量门限,S intrasearch为所述同频测量门限,threshold Criterion S为所述门限标准起始值,0<k intra<1;
    所述异频放松测量门限符合以下公式:
    threshold nonintrarelaxmeasure=k nonintra*(S nonintrasearch-threshold Criterion S)+threshold Criterion S;
    其中,threshold nonintrarelaxmeasure为所述异频放松测量门限,S nonintrasearch为所述异频/异系统测量门限,0<k nonintra<1。
  19. 如权利要求17所述的方法,其特征在于,
    所述同频放松测量门限包含:同频放松测量信号幅值门限threshold intrarelaxmeasureP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;所述同频测量门限包含:同频测量信号幅值门限S intrasearchP,和/或,同频放松测量信号强度门限threshold intrarelaxmeasureQ;
    所述threshold intrarelaxmeasureP符合以下公式:
    threshold intrarelaxmeasureP=k1*(S intrasearchP-threshold Criterion S)+threshold Criterion S;
    所述threshold intrarelaxmeasureQ符合以下公式:
    threshold intrarelaxmeasureQ=k2*(S intrasearchQ-threshold Criterion S)+threshold Criterion S;
    其中,Threshold Criterion S为所述门限标准起始值,0<k1<1,0<k2<1;
    所述异频放松测量门限包含:异频放松测量信号幅值门限threshold nonintrarelaxmeasureP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;所述异频/异系统测量门限包含:异频测量信号幅值门限S nonintrasearchP,和/或,异频放松测量信号强度门限threshold nonintrarelaxmeasureQ;
    所述threshold nonintrarelaxmeasureP符合以下公式:
    threshold nonintrarelaxmeasureP=k3*(S nonintrasearchP-threshold Criterion S)+threshold Criterion S;
    所述threshold nonintrarelaxmeasureQ符合以下公式:
    threshold nonintrarelaxmeasureQ=k4*(S nonintrasearchQ-threshold Criterion S)+threshold Criterion S;
    其中,0<k3<1,0<k4<1。
  20. 一种终端设备,其特征在于,包括:
    收发器,用于接收和发送信号;
    存储器,用于存储程序指令和数据;
    处理器,用于读取所述存储器中的程序指令和数据,通过所述收发器实现权利要求1-13任一项所述的方法。
  21. 一种网络设备,其特征在于,包括:
    收发器,用于接收和发送信号;
    存储器,用于存储程序指令和数据;
    处理器,用于读取所述存储器中的程序指令和数据,通过所述收发器实现权利要求14-19任一项所述的方法。
  22. 一种通信系统,其特征在于,包括:
    如权利要求20所述的终端设备和如权利要求21所述的网络设备。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行权利要求1-19任一项所述的方法。
  24. 一种芯片,其特征在于,所述芯片与存储器耦合,所述芯片读取存储器中存储的计算机程序,执行权利要求1-19任一项所述的方法。
PCT/CN2021/079362 2020-03-31 2021-03-05 一种测量方法及设备 WO2021196978A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010242285.5 2020-03-31
CN202010242285 2020-03-31
CN202010281215.0 2020-04-10
CN202010281215.0A CN113473555B (zh) 2020-03-31 2020-04-10 一种测量方法及设备

Publications (1)

Publication Number Publication Date
WO2021196978A1 true WO2021196978A1 (zh) 2021-10-07

Family

ID=77865847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079362 WO2021196978A1 (zh) 2020-03-31 2021-03-05 一种测量方法及设备

Country Status (2)

Country Link
CN (1) CN113473555B (zh)
WO (1) WO2021196978A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082104A1 (zh) * 2021-11-10 2023-05-19 北京小米移动软件有限公司 一种触发ue测量的方法、装置、通信设备及存储介质
WO2023141872A1 (zh) * 2022-01-27 2023-08-03 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2024045898A1 (zh) * 2022-08-30 2024-03-07 深圳市中兴微电子技术有限公司 频点测量控制方法、装置、存储介质及电子装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033475A (zh) * 2021-10-26 2023-04-28 中国移动通信有限公司研究院 一种信息传输方法、装置、通信设备和存储介质
CN117981398A (zh) * 2021-11-26 2024-05-03 Oppo广东移动通信有限公司 无线通信方法、第一终端设备和网络设备
CN116724606A (zh) * 2022-01-07 2023-09-08 北京小米移动软件有限公司 一种测量放松方法及设备/存储介质/装置
CN117412339A (zh) * 2022-07-06 2024-01-16 华为技术有限公司 通信方法及装置
CN117715133B (zh) * 2024-02-02 2024-06-25 荣耀终端有限公司 频点优先级的优化方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612119A (zh) * 2011-01-19 2012-07-25 华为技术有限公司 一种处理方法、通信方法及装置
WO2019194731A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods for reducing user equipment power consumption in presence of wake-up signal
WO2020164903A1 (en) * 2019-02-14 2020-08-20 Sony Corporation Communications device and method for adapting relaxed radio measurement procedure
CN111615119A (zh) * 2019-04-30 2020-09-01 维沃移动通信有限公司 测量方法、配置方法、终端及网络侧设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469491B (zh) * 2010-11-05 2016-08-10 北京三星通信技术研究有限公司 一种在异构网场景下的无线资源测量方法
CN106559872B (zh) * 2015-09-30 2021-01-29 华为技术有限公司 一种资源分配方法、装置及无线接入系统
CN109309938B (zh) * 2017-07-27 2022-01-28 维沃移动通信有限公司 一种测量方法、用户终端和网络侧设备
CN108882321B (zh) * 2018-06-13 2021-01-29 Oppo广东移动通信有限公司 一种小区重选方法、终端及计算机可读存储介质
CN110839254B (zh) * 2018-08-17 2021-12-24 维沃移动通信有限公司 测量方法和设备
CN110856190B (zh) * 2019-10-21 2022-05-13 中国移动通信集团江苏有限公司 信号质量提升方法、装置、设备及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612119A (zh) * 2011-01-19 2012-07-25 华为技术有限公司 一种处理方法、通信方法及装置
WO2019194731A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods for reducing user equipment power consumption in presence of wake-up signal
WO2020164903A1 (en) * 2019-02-14 2020-08-20 Sony Corporation Communications device and method for adapting relaxed radio measurement procedure
CN111615119A (zh) * 2019-04-30 2020-09-01 维沃移动通信有限公司 测量方法、配置方法、终端及网络侧设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Discussion on UE power Consumption Reduction in RRM Measurements", 3GPP DRAFT; R1-1902816_DISCUSSION ON UE POWER CONSUMPTION REDUCTION IN RRM MEASUREMENTS_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 15 February 2019 (2019-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051600511 *
OPPO: "UE power Consumption Reduction in RRM Measurements", 3GPP DRAFT; R1-1903351, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 1 March 2019 (2019-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 8, XP051601027 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082104A1 (zh) * 2021-11-10 2023-05-19 北京小米移动软件有限公司 一种触发ue测量的方法、装置、通信设备及存储介质
WO2023141872A1 (zh) * 2022-01-27 2023-08-03 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2024045898A1 (zh) * 2022-08-30 2024-03-07 深圳市中兴微电子技术有限公司 频点测量控制方法、装置、存储介质及电子装置

Also Published As

Publication number Publication date
CN113473555B (zh) 2022-12-27
CN113473555A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2021196978A1 (zh) 一种测量方法及设备
US11510215B2 (en) Electronic device and method for radio resource management (RRM) measurement relaxation
US11483720B2 (en) Communications device and method
US11129191B2 (en) Signal transmission method and device
KR101910725B1 (ko) 공유된 스펙트럼에서의 채널 선택 스캐닝
US10098003B2 (en) Access node, a communication device, respective method performed thereby for carrier hopping
WO2021197241A1 (zh) 一种放松测量方法和通信装置
CN113545119B (zh) 具有功率节省功能的波束管理电子设备和方法
US20210258841A1 (en) Cell measurement method and terminal device
US20210321335A1 (en) Method and device for rrm measurement
WO2020200120A1 (zh) 一种测量方法、设备及装置
WO2021196979A1 (zh) 一种rrm测量方法及设备
US11546044B2 (en) Wireless communication method, terminal device and network device
JP2015513281A (ja) ヘテロジニアスネットワークにおける電力適応方法および装置
CN110235468B (zh) 共享通信介质上的移动性知悉式争用规程
CN113473554B (zh) 一种测量方法及设备
WO2021088770A1 (zh) 一种测量配置方法及设备
WO2021169378A1 (zh) 一种测量配置方法及设备
WO2021169380A1 (zh) 一种测量配置方法及设备
WO2021031004A1 (zh) 载波测量方法和装置
WO2024026897A1 (zh) 信息处理方法、信息发送方法和装置
WO2023130427A1 (zh) 小区选择或重选方法、装置和系统
CN118265096A (zh) 小区切换方法、装置、终端及基站
CN116828605A (zh) 载波选择方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779403

Country of ref document: EP

Kind code of ref document: A1