WO2021196869A1 - 彩色电子纸的驱动方法及彩色电子纸 - Google Patents

彩色电子纸的驱动方法及彩色电子纸 Download PDF

Info

Publication number
WO2021196869A1
WO2021196869A1 PCT/CN2021/074885 CN2021074885W WO2021196869A1 WO 2021196869 A1 WO2021196869 A1 WO 2021196869A1 CN 2021074885 W CN2021074885 W CN 2021074885W WO 2021196869 A1 WO2021196869 A1 WO 2021196869A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving signal
sub
particles
displayed
electrode
Prior art date
Application number
PCT/CN2021/074885
Other languages
English (en)
French (fr)
Inventor
张胜波
陈立春
程前庚
Original Assignee
京东方科技集团股份有限公司
重庆京东方智慧电子系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方智慧电子系统有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/599,670 priority Critical patent/US11747703B2/en
Publication of WO2021196869A1 publication Critical patent/WO2021196869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/068Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays

Definitions

  • the present disclosure belongs to the field of electronic paper display technology, and in particular relates to a driving method of color electronic paper and color electronic paper.
  • E-paper also known as electronic ink
  • electronic ink Electronic paper
  • the electronic paper display device includes a plurality of microcapsules and a first electrode and a second electrode arranged on opposite sides of each microcapsule. Each microcapsule is encapsulated with electrophoretic particles.
  • the electrophoretic particles include positively charged black particles and yellow particles. Particles and negatively charged white particles.
  • the electronic paper display device controls the movement of electrophoretic particles by controlling the electric field generated by the first electrode and the second electrode.
  • the microcapsule When the electric field generated by the first electrode and the second electrode drives the black particles to move to the top of the microcapsule, the microcapsule displays black ; When the electric field generated by the first electrode and the second electrode drives the white particles to the top of the microcapsule, the microcapsule appears white; when the electric field generated by the first electrode and the second electrode drives the yellow particles to move to the top of the microcapsule , The microcapsules show yellow. Based on this, by controlling multiple microcapsules to display different colors, display can be achieved.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and provide a driving method for color electronic paper and color electronic paper.
  • an embodiment of the present disclosure provides a method for driving color electronic paper.
  • the color electronic paper includes a plurality of microcapsules, and second microcapsules disposed on two opposite sides of each of the plurality of microcapsules.
  • An electrode and a second electrode; each of the plurality of microcapsules includes: black particles, white particles, and colored particles; wherein the electric charges carried by the black particles and the white particles are opposite; The electric charge carried by the black particles and the colored particles is the same, and the charge-to-mass ratio of the black particles is greater than the charge-to-mass ratio of the colored particles;
  • the driving method includes:
  • a first driving signal is applied to the first electrode of the microcapsule to be displayed in white, and a second driving signal is applied to the first electrode of the microcapsule to be displayed in black;
  • the first driving signal includes: a first sub-driving signal applied to the first electrode in the display phase; the first sub-driving signal is used to drive the white particles in the microcapsules to be displayed white relative to the The black particles and the colored particles are close to the display side;
  • the second driving signal includes: a second sub-driving signal applied to the first electrode in the display phase, and the second sub-driving signal is used to drive the black particles in the microcapsules to be displayed black relative to all The white particles and the colored particles are close to the display side;
  • the start time of the effective voltage of the second sub-driving signal is not earlier than the end time of the effective voltage of the first sub-driving signal.
  • the start time of the effective voltage of the first sub-driving signal is the end time of the effective voltage of the first sub-driving signal.
  • the absolute values of the effective voltages of the first sub-driving signal and the second sub-driving signal are equal, and the voltages are electrically opposite.
  • the second driving signal further includes a third sub-driving signal;
  • the third sub-driving signal is used to drive the black particles in the microcapsules to be displayed black relative to the white particles during the display phase. And the colored particles are close to the display side;
  • the third sub-driving signal is written into the first electrode of the microcapsule to be displayed in black after the second sub-driving signal.
  • the effective voltage value and the effective voltage duration of the third sub-driving signal and the second sub-driving signal are the same.
  • the driving method further includes:
  • a third driving signal is applied to the first electrode of the microcapsule to be displayed in color, and the third driving signal includes a fourth sub-driving signal, and the fourth sub-driving signal is used for driving
  • the colored particles in the microcapsules of the color to be displayed are closer to the display side relative to the white particles and the black particles.
  • the fourth sub-driving signal includes a plurality of pulse repetition units, and each of the pulse repetition units includes: a first voltage, a zero voltage, and a second voltage that are sequentially applied to the first electrode;
  • the first voltage is used to drive the white particles closer to the display side relative to the black particles and the colored particles
  • the second voltage is used to drive the colored particles closer to the display side relative to the white particles and the black particles. ⁇ display side.
  • the fourth sub-driving signal further includes a zero-voltage driving signal located between the two pulse repetition units.
  • the third drive signal further includes: the third drive signal further includes: while the second sub-drive signal is applied to the first electrode of the microcapsule to be displayed black, the The first electrode of the microcapsule to be displayed in color applies a fifth sub-driving signal to drive the black particles in the microcapsule to approach the display side relative to the white particles and the colored particles.
  • the effective voltage value of the fifth sub-driving signal is the same as the effective voltage value and the effective voltage duration of the second sub-driving signal.
  • the method further includes a balance stage before the display stage, and the third drive signal further includes a sixth sub-drive signal applied to the first electrode of the color microcapsule to be displayed in the balance stage; wherein
  • the electrical property of the effective voltage of the sixth sub-driving signal is the same as the electrical property of the first voltage; the product of the absolute value of the effective voltage of the sixth sub-driving signal and the time of applying the effective voltage is equal to the first The difference between the product of the absolute value of a voltage and the time during which the first voltage is applied and the product of the absolute value of the second voltage and the time during which the second voltage is applied.
  • the first driving signal includes a seventh sub-driving signal applied to the first electrode of the microcapsule to be displayed in the balance phase
  • the second driving signal includes the The eighth sub-driving signal applied by the first electrode of the microcapsule to be displayed black and white; wherein the electrical property of the effective voltage of the seventh sub-driving signal is the same as the electrical property of the effective voltage of the first sub-driving signal On the contrary; the electrical property of the effective voltage of the eighth sub-driving signal is opposite to the electrical property of the effective voltage of the second sub-driving signal;
  • the product of the absolute value of the effective voltage of the seventh sub-driving signal and the time of applying the effective voltage is equal to the product of the absolute value of the effective voltage and the time of applying the effective voltage during the display phase;
  • the product of the absolute value of the effective voltage of the eighth sub-driving signal and the effective voltage application time is equal to the product of the absolute value of the effective voltage applied during the display phase and the effective voltage application time.
  • a homogenization phase is further included between the display phase and the balancing phase, and the first driving signal, the second driving signal, and the third driving signal respectively include all the components in the homogenization phase.
  • the ninth sub-driving signal, the tenth sub-driving signal, and the eleventh sub-driving signal; wherein, the ninth sub-driving signal, the tenth sub-driving signal, and the eleventh sub-driving signal Both include pulse signals with alternating positive and negative voltages.
  • the method before applying the first driving signal to the first electrode corresponding to the white part of the picture to be displayed, the method further includes:
  • the electrode applies a first driving signal.
  • the preset temperature range is greater than or equal to 40°C.
  • a colored electronic paper includes: a plurality of microcapsules, and a first electrode and a second electrode provided on two opposite sides of each of the plurality of microcapsules; the plurality of microcapsules Each of them includes: black particles, white particles, and colored particles; wherein the electric charges carried by the black particles and the white particles are opposite; the electric charges carried by the black particles and the colored particles The same, and the charge-to-mass ratio of the black particles is greater than the charge-to-mass ratio of the colored particles; the color electronic paper further includes: a processor; wherein,
  • the processor is configured to apply a first driving signal to the first electrode of the microcapsule to be displayed in white, and apply a second driving signal to the first electrode of the microcapsule to be displayed in black according to the image to be displayed;
  • the first driving signal includes: a first sub-driving signal applied to the first electrode in the display phase; the first sub-driving signal is used to drive the white particles in the microcapsules to be displayed white to face all the white particles.
  • the black particles and the colored particles are close to the display side;
  • the second driving signal includes: a second sub-driving signal applied to the first electrode in the display phase, and the second sub-driving signal is used to drive the black particles in the microcapsules to be displayed black relative to all The white particles and the colored particles are close to the display side; wherein the start time of the effective voltage of the second sub-driving signal is no earlier than the end time of the effective voltage of the first sub-driving signal.
  • the color electronic paper further includes: a temperature sensor for detecting the ambient temperature and feeding it back to the processor for the processor to determine whether the detected ambient temperature is within a preset range If it is within the preset range, apply a first driving signal to the first electrode of the microcapsule to be displayed in white.
  • a temperature sensor for detecting the ambient temperature and feeding it back to the processor for the processor to determine whether the detected ambient temperature is within a preset range If it is within the preset range, apply a first driving signal to the first electrode of the microcapsule to be displayed in white.
  • embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned color electronic paper driving method is implemented.
  • Figure 1 is a schematic diagram of the structure of a microcapsule
  • FIG. 2 is a flowchart of a driving method for color electronic paper according to an embodiment of the disclosure
  • FIG. 3 is a timing diagram of the display stage of the driving method of color electronic paper according to the embodiment of the disclosure.
  • FIG. 4 is another timing diagram of the display stage of the driving method for color electronic paper according to an embodiment of the disclosure.
  • FIG. 5 is another timing diagram of the display stage of the driving method of color electronic paper according to an embodiment of the disclosure.
  • FIG. 6 is another timing diagram of the display stage of the driving method of color electronic paper according to an embodiment of the disclosure.
  • FIG. 7 is a timing diagram of the display phase and the balance phase of the driving method of color electronic paper according to an embodiment of the disclosure.
  • FIG. 8 is a timing diagram of the display phase, the homogenization phase, and the balance phase of the color electronic paper driving method according to an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a structure of a color electronic paper according to an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a structure of a color electronic paper according to an embodiment of the disclosure.
  • an exemplary colored electronic paper includes a plurality of microcapsules 10, and a first electrode 11 and a second electrode 12 disposed on two opposite sides of each of the plurality of microcapsules;
  • Each of the microcapsules 10 includes three colors of charged particles; the three colors of charged particles are white particles, black particles, and colored particles.
  • the colored particles include but are not limited to yellow particles.
  • the colored particles are yellow particles 103 as an example for description.
  • the black particles 101 and the white particles 102 have opposite electrical properties, which are the same as the electrical properties of the yellow particles 103, and the charge-to-mass ratio of the black particles 101 is greater than the charge-to-mass ratio of the yellow particles 103.
  • the black particles 101 and the yellow particles 103 have the same electrical properties, and the charge-to-mass ratio of the black particles 101 is greater than the charge-to-mass ratio of the yellow particles 103, the first electrode 11 A voltage is applied to the second electrode 12 to generate an electric field, and the moving speed of the black particles 101 is greater than the moving speed of the yellow particles 103.
  • the positions of the first electrode 11 and the second electrode 12 on opposite sides of the microcapsule 10 are not limited; it may be that the first electrode 11 is closer to the display side than the second electrode 12, that is, the first substrate The side where it is located is the display side; it can also be that the second electrode 12 is closer to the display side than the first electrode 11, that is, the side where the second substrate is located is the display side.
  • the second electrode 12 shown in FIG. 1 is closer to the display side than the first electrode 11 as an example for description.
  • the second electrodes 12 corresponding to each microcapsule 10 can be electrically connected together.
  • the voltage signal applied by each second electrode 12 is the same.
  • the second electrode 12 can be called a common electrode (also It can be called a Vcom electrode); of course, the second electrodes 12 corresponding to each microcapsule 10 may not be electrically connected together. In this case, the voltage signals applied by each second electrode 12 may be the same or different .
  • the second electrode 12 may be grounded (ie, 0V voltage).
  • the black particles 101 and yellow particles 103 can be positively charged, and the white particles 102 can be negatively charged. It can also be black particles 101 and yellow particles.
  • the particles 103 are negatively charged, and the white particles 102 are positively charged; in the embodiment of the present disclosure, the black particles 101 and the yellow particles 103 are positively charged, and the white particles 102 are negatively charged.
  • the color electronic paper capable of displaying black/white/yellow images belongs to the bright-color electronic paper, which has bright colors and is favored by consumers.
  • this type of electronic paper The problem of unclear display occurs, especially when the black screen on a white background (such as black text on a white background) is displayed, the black part is displayed, and then the white part is displayed, causing the white particles 102 in the white part to interfere with the black particles 101 in the black part. Display, causing the black part of the image to be unclear.
  • an embodiment of the present disclosure provides a method for driving color electronic paper.
  • the method includes:
  • a first driving signal 01 is applied to the first electrode 11 of the microcapsule 10 to be displayed in white
  • a second driving signal 02 is applied to the first electrode 11 of the microcapsule 10 to be displayed in black.
  • the first driving signal 01 includes a first sub-driving signal 011 applied to the first electrode 11 of the microcapsule 10 to be displayed in white during the display phase T1, and the first sub-driving signal 011 is used to drive the microcapsule 10 to be displayed in white.
  • the white particles 102 are closer to the display side; that is, the first sub-driving signal 011 is applied to the first electrode 11 of the microcapsule 10 to be displayed white.
  • An electric field is generated with the second electrode 12 to drive the white particles 102 to move to the side of the second electrode 12, so that the side of the microcapsule 10 close to the display side displays white, thereby realizing the display of the white part of the image to be displayed.
  • the first sub-driving signal 011 applied to the first electrode 11 should be a negative voltage signal, and the voltage value should be sufficient to drive the white particles 102 to move.
  • the second driving signal 02 includes a second sub-driving signal 012 applied to the first electrode 11 of the microcapsule 10 to be displayed in black during the display phase T1, and the second sub-driving signal 012 is used to drive the black color in the microcapsule 10 to be displayed in black.
  • the particles 101 are closer to the display side than the white particles 102 and the yellow particles 103; that is, the second sub-driving signal 012 is applied to the first electrode 11 of the microcapsule 10 to be displayed black, the first electrode 11 and the second electrode 12
  • An electric field is generated to drive the black particles 101 to move to the side of the second electrode 12, so that the side of the microcapsule 10 close to the display side displays black, thereby realizing the display of the white and black parts of the image to be displayed.
  • the second sub-driving signal 012 applied to the first electrode 11 should be a positive voltage signal, and the voltage value should be sufficient to drive the black particles 101 to move.
  • the start time of the effective voltage of the second sub-driving signal 012 is not earlier than the end time of the effective voltage of the first sub-driving signal 011. That is to say, in the display stage T1, the color electronic paper first displays the white part of the image to be displayed, and then displays the black part after the display is completed, thereby effectively avoiding displaying the black part and then displaying the white part in the prior art. It causes the black part to be interfered by the white part, which leads to the problem of unclear black display.
  • the effective voltage start time of the second sub-driving signal 012 is the end time of the effective voltage of the first sub-driving signal 011. That is to say, the black part is displayed immediately after the white part of the image to be displayed on the color electronic paper is displayed, thereby effectively increasing the refresh frequency, so that the display effect of the color electronic paper is better.
  • the start time of the second sub-driving signal 012 does not need to be earlier than the end time of the first sub-driving signal 011.
  • the second driving signal 02 may also include the data written to the first electrode 11 during the display phase T1.
  • the zero voltage signal is located before the start time of the second sub-driving signal 012.
  • the black part will be displayed after a certain interval of time after the white part of the display screen is displayed, and the interval of time is It depends on the duration of the zero voltage signal of the second driving signal 02 before the second sub-driving signal 012 in the display phase T1.
  • the second driving signal 02 further includes a third sub-driving signal 013.
  • the third sub-driving signal 013 is used to drive the microcapsule 10 to be displayed in black on the second sub-driving signal 012.
  • the black particles 101 in the microcapsules 10 to be displayed black are driven to be closer to the display side relative to the white particles 102 and the yellow particles 103. In this way, that is, when displaying the image to be displayed, the black particles 101 in the microcapsule 10 to be displayed in black are driven twice to move, thereby more effectively avoiding the problem of unclear display of the black part.
  • the second sub-driving signal 012 and the third sub-driving signal 013 of the second driving signal 02 usually includes a zero-voltage driving signal (that is, 0V voltage) for a period of time, that is, between The first electrode 11 of the microcapsule 10 to be displayed black applies the second sub-driving signal 012. After the black particles 101 in the microcapsule 10 are closer to the display side relative to the white particles 102 and the yellow particles 103, the second sub-driving signal 012 is stopped. A voltage is applied to one electrode 11.
  • the black particles 101 are driven again to ensure that all the microcapsules 10 are as much as possible.
  • the black particles 101 are both closer to the display side relative to the white particles 102 and the yellow particles 103. In this case, the possibility of the black particles 101 being interfered by the white particles 102 is greatly reduced.
  • the effective voltage value and the effective voltage duration of the third sub-driving signal 013 and the second sub-driving signal 012 are the same, so as to ensure that the black microcapsule 10 to be displayed is more uniform.
  • the driving method of the color electronic paper not only includes the above steps, but also includes the step of applying the third driving signal 03 to the first electrode 11 of the microcapsule 10 to be displayed yellow.
  • the third driving signal 03 includes a fourth sub-driving signal 014 applied to the first electrode 11 in the display phase T1
  • the fourth sub-driving signal 014 is used to drive the microcapsule 10 to be displayed in yellow.
  • the yellow particles 103 are closer to the display side relative to the white particles 102 and the black particles 101, so that the microcapsule 10 corresponding to the yellow portion displays yellow.
  • the fourth sub-driving signal 014 includes at least one pulse repeating unit 0141; each pulse repeating unit 0141 includes a first voltage V1, a zero voltage (0V), and a second voltage V2 that are sequentially applied to the first electrode;
  • the first voltage V1 is used to drive the white particles 102 closer to the display side relative to the black particles 101 and the yellow particles 103
  • the second voltage V2 is used to drive the yellow particles 103 closer to the display side relative to the white particles 102 and the black particles 101.
  • the fourth sub-driving signal 014 in the embodiment of the present disclosure includes a plurality of pulse repeating units 0141 to make the yellow part of the picture to be displayed uniformly displayed.
  • the reason why the first voltage is applied to the first electrode 11 before the second voltage is applied to the first electrode 11 is that the white is driven by the first voltage.
  • the particles 102 move closer to the display side relative to the black particles 101 and the yellow particles 103, and then the yellow part corresponding to the microcapsule 10 is allowed to stand still with zero voltage, so that the yellow part with the display screen appears white, and finally the first electrode 11 is applied to the first electrode 11.
  • Two voltages drive the yellow particles 103 to move closer to the display side of the white particles 102 and the black particles 101, so that the layer adjacent to the yellow particles 103 is the layer where the white particles 102 are located. In this way, the white particles 102 relieve the yellow particles 103 from displaying yellow , The yellow is too bright to make the yellow part appear more gentle.
  • the fourth sub-driving signal 014 further includes a zero-voltage driving signal (that is, 0V voltage) between the two repetitive pulse units 014, that is, every time the image to be displayed is displayed
  • a zero voltage is applied to the first electrode 11 to make each particle in the microcapsule 10 in the yellow part stand still, and finally the yellow part Part of the first electrode 11 corresponding to the pulse repeating unit 0141 signal is applied to make the yellow part display more uniform.
  • the third driving signal 03 further includes the fifth sub-driving signal 012 applied to the first electrode 11 corresponding to the yellow portion when the second sub-driving signal 012 is applied to the first electrode 11 of the microcapsule 10 to be displayed in color.
  • the driving signal as shown in FIG. 6, the fifth sub-driving signal 015 is used to drive the black particles 101 in the yellow part of the microcapsules 10 relative to the yellow particles 103 and white while the black microcapsules 10 to be displayed in the display stage T1 display black.
  • the particles 102 are close to the display side.
  • the microcapsules 10 to be displayed yellow in the display stage T1 display black before displaying yellow. In this way, the problem of unclear display of black in the black screen on the yellow background can be avoided. .
  • the driving method of color electronic paper further includes a balance stage T2 before the display stage T1
  • the third driving signal 03 includes a fourth sub-driving signal 014
  • the fourth sub-driving signal 014 includes At least one pulse repetition unit 0141
  • each pulse repetition unit 0141 includes the first voltage V1, zero voltage (0V) and the second voltage V2 applied in sequence
  • the third driving signal 03 also includes the first electrode 11 in the balance phase T2
  • the applied sixth sub-driving signal 016 wherein, the electrical property of the effective voltage of the sixth sub-driving signal 016 is the same as the electrical property of the first voltage V1; the absolute value of the effective voltage of the sixth sub-driving signal 016 is the same as that of the applied effective voltage
  • the product of time is equal to the difference between the product of the absolute value of the first voltage and the time during which the first voltage is applied in the fourth sub-driving signal 014 and the product of the absolute value of the second voltage and the time during which the second voltage is applied.
  • the first voltage is a negative voltage and the second voltage is a negative voltage as an example, the electrical property of the effective voltage of the sixth sub-driving signal 016 is negative; it should be understood that If the first voltage is a positive voltage, the electrical property of the effective voltage of the sixth sub-driving signal 016 is positive.
  • the balance stage T2 is added before the display stage T1, the absolute value of the effective voltage of the third driving signal 03 applied to the sixth sub-driving signal 016 of the first electrode 11 in the balance stage T2 and the applied effective voltage
  • the product of the time is equal to the difference between the product of the absolute value of the first voltage and the time of applying the first voltage and the product of the absolute value of the second voltage and the time of applying the second voltage in the fourth sub-driving signal 014, so ,
  • the voltage of the third driving signal 03 in the display phase T1 can be balanced to prevent the white particles 102, black particles 101, and yellow particles 103 in the microcapsules 10 to be displayed yellow in the picture to be displayed from generating a built-in electric field due to the imbalance of the electric field, This leads to polarization.
  • the effective voltage of the sixth sub-driving signal 016 may be equal to the first voltage, of course, it may not be equal.
  • the effective voltage of the sixth sub-driving signal 016 is equal to the first voltage.
  • the example is schematic.
  • the effective voltage of the sixth sub-driving signal 016 is equal to the first voltage, so that the voltage of the third driving signal 03 in the display phase T1 can be further balanced, and the total time of maintaining the positive and negative voltages can be more effectively avoided.
  • the white particles 102, the black particles 101, and the yellow particles 103 in the microcapsule 10 to be displayed yellow in the image to be displayed have a built-in electric field due to the imbalance of the electric field, which in turn leads to polarization.
  • the first driving signal 01 applied to the first electrode 11 of the microcapsule 10 to be displayed in white includes a first sub-driving signal 011, and the first driving signal 01 applied to an electrode 11 of the microcapsule 10 to be displayed in black is
  • the second driving signal 02 includes the second sub-driving signal 012
  • the first driving signal 01 includes the seventh sub-driving signal 017 applied to the first electrode 11 in the balance stage T2
  • the second driving signal 02 includes the first sub-driving signal 017 applied to the first electrode 11 in the balance stage T2.
  • the time product of the voltage is equal to the product of the absolute value of the effective voltage applied in the display phase T1 and the effective voltage time; the absolute value of the effective voltage of the second driving signal 02 in the balance phase T2 (the effective voltage of the eighth sub-driving signal 018) and
  • the product of the effective voltage applied time is equal to the product of the absolute value of the effective voltage applied during the display period T1 and the effective voltage applied time.
  • the effective voltage of the first drive signal 01 in the display phase T1 When the effective voltage of the first drive signal 01 in the display phase T1 is positive, the effective voltage of the first drive signal 01 in the balance phase T2 is a negative voltage; the effective voltage of the first drive signal 01 in the display phase T1 is In the case of a negative voltage, the effective voltage of the first drive signal 01 in the balance phase T2 is a positive voltage; for the electrical relationship of the second drive signal 02 in the balance phase T2 and the display phase T1, you can refer to the first drive signal 01, so This will not be repeated here.
  • the balance stage T2 is added before the display stage T1, and the absolute value of the effective voltage of the first driving signal 01 in the balance stage T2 (that is, the effective voltage of the seventh sub-driving signal 017) and the effective voltage applied
  • the time product is equal to the product of the absolute value of the effective voltage applied in the display phase T1 and the effective voltage time; the absolute value of the effective voltage of the second driving signal 02 in the balance phase T2 (the effective voltage of the eighth sub-driving signal 018)
  • the time product of the voltage is equal to the product of the absolute value of the effective voltage applied during the display phase T1 and the effective voltage time, thereby effectively avoiding the black microcapsules 10 and white microcapsules 10 in the to-be-displayed screen.
  • the black particles 101 and the yellow particles 103 generate a built-in electric field due to the imbalance of the electric field, which in turn leads to polarization.
  • the absolute value of the effective voltage of the first driving signal 01 in the display phase T1 and the balance phase T2 may be equal or unequal; the same is true for the second driving signal 02, and the first driving signal is shown in FIG. 7
  • the signal 01 and the second driving signal 02 are both in the display phase T1 and the balance phase T2 that the absolute values of the effective voltages are equal as an example for illustration.
  • the eighth sub-driving signal 018 of the second driving signal 02 in the balance phase T2 in FIG. 7 is based on the second driving signal 02 and only the second sub-driving signal 012 in the display phase T1.
  • the second driving signal 02 in the display phase T1 also includes the third sub-driving signal 013
  • the voltage relationship between the balance phase T2 and the actual phase should be used to compare the eighth sub-driving signal 018 of the balancing phase T2.
  • the waveform is adjusted.
  • the absolute values of the effective voltages of the first driving signal 01 and the second driving signal 02 in the display phase T1 and the balancing phase T2 are equal, so that the first driving signal 01 and the second driving signal 02 can be further balanced.
  • the voltage in the display phase T1 maintains the total time of the positive and negative voltages, which can more effectively avoid the white particles 102, black particles 101, and yellow particles in the microcapsules 10 to be displayed white and the microcapsules 10 to be displayed black in the image to be displayed.
  • a built-in electric field is generated due to an unbalanced electric field, which in turn leads to polarization.
  • a homogenization stage T3 (Shaking) is further included.
  • the first drive signal 01, the second drive signal 02, and the third drive signal 03 are respectively The ninth sub-driving signal 019, the tenth sub-driving signal 020, and the eleventh sub-driving signal 021 included in the homogenization stage T3; among them, the ninth sub-driving signal 019, the tenth sub-driving signal 020, and the eleventh sub-driving signal
  • the signals 021 all include pulse signals with alternating positive and negative voltages.
  • the number of pulse signals of the ninth sub-driving signal 019, the tenth sub-driving signal 020, and the eleventh sub-driving signal 021 are not limited, and can be specifically set according to the needs.
  • Fig. 8 is merely an example of including 4 pulse signals.
  • the equalization phase T3 is added between the display phase T1 and the balance phase T2, and the first drive signal 01, the second drive signal 02, and the third drive signal 03 are included in the equalization phase T3.
  • the ninth sub-driving signal 019, the tenth sub-driving signal 020, and the eleventh sub-driving signal 021; and the ninth sub-driving signal 019, the tenth sub-driving signal 020, and the eleventh sub-driving signal 021 all include alternating positive and negative voltages. Therefore, the white particles 102, black particles 101, and yellow particles 103 in each microcapsule 10 are fully separated and mixed uniformly in the homogenization stage T3, which is convenient for moving quickly and accurately in the display stage T1, so as to achieve a better display Effect.
  • the method for driving the color electronic paper further includes detecting the ambient temperature, and determining whether the ambient temperature is greater than a preset value, and when the ambient temperature is greater than or equal to the preset value, using the image to be displayed according to the image to be displayed.
  • the first electrode 11 of the microcapsule 10 to be displayed in white is applied with a first driving signal 01
  • the first electrode 11 of the microcapsule 10 to be displayed in black is applied with a second driving signal 02; wherein, the first driving signal 01 is included in the display stage T1 applies the first sub-driving signal 011 to the first electrode 11 of the microcapsule 10 to be displayed white.
  • the first sub-driving signal 011 is used to drive the white particles 102 in the microcapsule 10 to be displayed white compared to the black particles 101 and 101.
  • the yellow particles 103 are close to the display side;
  • the second driving signal 02 includes a second sub-driving signal 012 applied to the first electrode 11 of the microcapsule 10 to be displayed in black during the display phase T1, and the second sub-driving signal 012 is used to drive the display to be displayed
  • the black particles 101 in the black microcapsules 10 are closer to the display side than the white particles 102 and the yellow particles 103; wherein, the start time of the second sub-driving signal 012 is not earlier than the end time of the first sub-driving signal 011. That is to say, in the display stage T1, the color electronic paper first displays the white part of the image to be displayed, and then displays the black part after the display is completed.
  • the start time of the first sub-driving signal 011 applied to the first electrode 11 corresponding to the white part is no earlier than the end time of the second sub-driving signal 012. That is, in the display stage T1, the color electronic paper first displays the black portion of the image to be displayed, and then displays the white portion after the display is completed.
  • the preset value of the ambient temperature includes but is not limited to 40°C.
  • an embodiment of the present disclosure provides a color electronic paper, a plurality of microcapsules 10, and first electrodes 11 and second electrodes 11 and second electrodes disposed on opposite sides of each of the plurality of microcapsules.
  • Electrode 12; each of the plurality of microcapsules 10 includes: including three colors of charged particles; the three colors of charged particles are white (White) particles, black (Black) particles, and colored particles.
  • the colored particles include but are not limited to yellow particles.
  • the colored particles are yellow particles 103 as an example for description.
  • the black particles 101 and the white particles 102 have opposite electrical properties, which are the same as the electrical properties of the yellow particles 103, and the charge-to-mass ratio of the black particles 101 is greater than the charge-to-mass ratio of the yellow particles 103.
  • the color electronic paper in the embodiment of the present disclosure further includes a processor 20, which, according to the image to be displayed, applies a first driving signal 01 to the first electrode 11 of the microcapsule 10 to be displayed in white in the image to be displayed.
  • the second driving signal 02 is applied to the first electrode 11 of the microcapsule 10; the first driving signal 01 and the second driving signal 02 can be the driving signals in the above driving method, and the description is not repeated here.
  • the white microcapsules 10 to be displayed for the image to be displayed are first driven for display, and after the display is completed, the black microcapsules to be displayed for the image to be displayed are driven. 10 to display, thereby effectively avoiding the problem that the black part is displayed and then the white part is displayed in the prior art, which causes the black part to be interfered by the white part, which causes the black display to be unclear.
  • the processor is also used to apply a third driving signal 03 to the first electrode 11 of the microcapsule to be displayed yellow in the picture to be displayed, where the third driving signal 03 can be any of the above driving methods.
  • the third driving signal 03 can be any of the above driving methods.
  • Kind, so I won’t repeat the description here.
  • the color electronic paper further includes a temperature sensor 30, which is used to detect the ambient temperature and feed it back to the processor, so that the processor responds to the first driving signal 01, The driving waveforms of the second driving signal 02 and the third driving signal 03 are adjusted.
  • embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, any one of the aforementioned color electronic paper driving methods is implemented.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • a communication medium usually contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本公开提供一种彩色电子纸的驱动方法,包括:根据待显示图像,给待显示白色的微胶囊的第一电极施加第一驱动信号,向待显示黑色的微胶囊的第一电极施加第二驱动信号;其中,第一驱动信号包括:在显示阶段为待显示白色的微胶囊第一电极施加的第一子驱动信号;第一子驱动信号,用于驱动待显示白色的微胶囊中的白色粒子相对黑色粒子和彩色粒子靠近显示侧;第二驱动信号包括:在显示阶段为待显示黑色的微胶囊的第一电极施加的第二子驱动信号,第二子驱动信号,用于驱动待显示黑色的微胶囊中的所述黑色粒子相对白色粒子和彩色粒子靠近显示侧;其中,第二子驱动信号的有效电压起始时间不早于第一子驱动信号的有效电压终止时间。

Description

彩色电子纸的驱动方法及彩色电子纸 技术领域
本公开属于电子纸显示技术领域,具体涉及一种彩色电子纸的驱动方法及彩色电子纸。
背景技术
电子纸(E-paper,又称为电子墨水)显示装置具有护眼、省电的效果,因此受到了广泛的关注。
电子纸显示装置包括多个微胶囊以及设置在每个微胶囊相对两侧的第一电极和第二电极,每个微胶囊内均封装有电泳粒子,电泳粒子包括带正电的黑色粒子和黄色粒子以及带负电的白色粒子。电子纸显示装置通过控制第一电极和第二电极产生的电场来控制电泳粒子的移动,当第一电极和第二电极产生的电场驱动黑色粒子移动至微胶囊的顶端时,该微胶囊显示黑色;当第一电极和第二电极产生的电场驱动白色粒子移动至微胶囊的顶端时,该微胶囊显示白色;当第一电极和第二电极产生的电场驱动黄色粒子移动至微胶囊的顶端时,该微胶囊显示黄色。基于此,通过控制多个微胶囊显示不同的颜色,从而可以实现显示。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种彩色电子纸的驱动方法及彩色电子纸。
第一方面,本公开实施例提供一种一种彩色电子纸的驱动方法,所述彩色电子纸包括多个微胶囊,以及设置在所述多个微胶囊中的每个的两相对侧的第一电极和第二电极;所述多个微胶囊中的每个包括:黑色粒子、白色粒子,以及彩色粒子;其中,所述黑色粒子和所述白色粒子所带电荷的电性相反;所述黑色粒子和所述彩色粒子所带电荷的电性相同,且所述黑色粒子的电荷质量比大于所述彩色粒子的电荷质量比;所述驱动方法包括:
根据待显示图像,向待显示白色的微胶囊的第一电极施加第一驱动信 号,向待显示黑色的微胶囊的第一电极施加第二驱动信号;其中,
所述第一驱动信号包括:在显示阶段为第一电极施加的第一子驱动信号;所述第一子驱动信号用于驱动所述待显示白色的微胶囊中的所述白色粒子相对所述黑色粒子和所述彩色粒子靠近显示侧;
所述第二驱动信号包括:在显示阶段为第一电极施加的第二子驱动信号,所述第二子驱动信号,用于驱动所述待显示黑色的微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧;
其中,所述第二子驱动信号的有效电压的起始时间不早于所述第一子驱动信号的有效电压的终止时间。
可选地,在所述第一子显示阶段,所述第子驱动信号的有效电压的起始时间为所述第一子驱动信号的有效电压的终止时间。
可选地,所述第一子驱动信号和所述第二子驱动信号的有效电压的绝对值相等、电压电性相反。
可选地,所述第二驱动信号还包括第三子驱动信号;所述第三子驱动信号用于在显示阶段驱动所述待显示黑色的微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧;
其中,所述第三子驱动信号在所述第二子驱动信号之后被写入所述待显示黑色的微胶囊的第一电极。
可选地,所述第三子驱动信号和所述第二子驱动信号的有效电压值、有效电压的持续时间均相同。
可选地,所述驱动方法还包括:
根据所述待显示图像的彩色部分,给待显示彩色的微胶囊的第一电极施加第三驱动信号,所述第三驱动信号包括第四子驱动信号,所述第四子驱动信号用于驱动所述待显示彩色的微胶囊中的所述彩色粒子相对所述白色粒子和所述黑色粒子靠近显示侧。
7.可选地,所述第四子驱动信号包括多个脉冲重复单元,每个所述脉冲 重复单元包括:依次施加在第一电极上的第一电压、零电压和第二电压;
所述第一电压用于驱动所述白色粒子相对所述黑色粒子和所述彩色粒子靠近所述显示侧,第二电压用于驱动所述彩色粒子相对所述白色粒子和所述黑色粒子靠近所述显示侧。
可选地,所述第四子驱动信号还包括位于两个所述脉冲重复单元之间的零电压驱动信号。
可选地,所述第三驱动信号还包括:所述第三驱动信号还包括:在所述给所述待显示黑色的微胶囊的第一电极施加第二子驱动信号的同时,给所述待显示彩色的微胶囊的所述第一电极施加第五子驱动信号,驱动所述微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧。
可选地,所述第五子驱动信号的有效电压值与所述第二子驱动信号的有效电压值、有效电压的持续时间均相同。
可选地,所述方法还包括显示阶段之前的平衡阶段,所述第三驱动信号还包括在所述平衡阶段向所述待显示彩色微胶囊的第一电极施加的第六子驱动信号;其中,所述第六子驱动信号的有效电压的电性与所述第一电压的电性相同;所述第六子驱动信号的有效电压的绝对值与施加有效电压的时间的乘积等于所述第一电压的绝对值与施加所述第一电压的时间的乘积和所述第二电压的绝对值与施加所述第二电压的时间的乘积之差。
可选地,所述第一驱动信号包括在所述平衡阶段向所述待显示白色的微胶囊的第一电极施加的第七子驱动信号,所述第二驱动信号包括在所述平衡阶段向所述待显示白黑色的微胶囊的第一电极施加的第八子驱动信号;其中,所述第七子驱动信号的有效电压的电性与所述第一子驱动信号的有效电压的电性相反;所述第八子驱动信号的有效电压的电性与所述第二子驱动信号的有效电压的电性相反;
所述第七子驱动信号的有效电压的绝对值与施加有效电压的时间乘积等于在所述显示阶段施加有效电压的绝对值与施加有效电压时间的乘积;
所述第八子驱动信号的有效电压的绝对值与施加有效电压的时间乘积 等于在所述显示阶段施加有效电压的绝对值与施加有效电压时间的乘积。
可选地,在所述显示阶段和所述平衡阶段之间还包括均匀化阶段,所述第一驱动信号、所述第二驱动信号、所述第三驱动信号分别包括在均匀化阶段的所述第九子驱动信号、所述第十子驱动信号、所述第十一子驱动信号;其中,所述第九子驱动信号、所述第十子驱动信号、所述第十一子驱动信号均包括正负电压交替的脉冲信号。
可选地,在给所述待显示画面的白色部分所对应的第一电极施加第一驱动信号之前,还包括:
检测环境温度,并反馈给处理器,以供所述处理器判断所检测到的环境温度是否在预设范围内;若在预设范围内,则向所述待显示白色的微胶囊的第一电极施加第一驱动信号。
可选地,所述预设温度范围为大于或者等于40℃。
第二方面,一种彩色电子纸,其包括:多个微胶囊,以及设置在所述多个微胶囊中的每个的两相对侧的第一电极和第二电极;所述多个微胶囊中的每个包括:黑色粒子、白色粒子,以及彩色粒子;其中,所述黑色粒子和所述白色粒子所带电荷的电性相反;所述黑色粒子和所述彩色粒子所带电荷的电性相同,且所述黑色粒子的电荷质量比大于所述彩色粒子的电荷质量比;所述彩色电子纸还包括:处理器;其中,
所述处理器,用于根据待显示图像,给向待显示白色的微胶囊的第一电极施加第一驱动信号,向待显示黑色的微胶囊的第一电极施加第二驱动信号;其中,
所述第一驱动信号包括:在显示阶段为第一电极施加的第一子驱动信号;所述第一子驱动信号,用于驱动所述待显示白色的微胶囊中的所述白色粒子相对所述黑色粒子和所述彩色粒子靠近显示侧;
所述第二驱动信号包括:在显示阶段为第一电极施加的第二子驱动信号,所述第二子驱动信号,用于驱动所述待显示黑色的微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧;其中,所述第二子驱动 信号的有效电压的起始时间不早于所述第一子驱动信号的有效电压的终止时间。
可选地,所述的彩色电子纸,还包括:温度传感器,用于检测环境温度,并反馈给所述处理器,以供所述处理器判断所检测到的环境温度是否在预设范围内;若在预设范围内,则向所述待显示白色的微胶囊的第一电极施加第一驱动信号。
第三方面,本公开实施例提供一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现上述的彩色电子纸的驱动方法。
附图说明
图1为一种微胶囊的结构示意图;
图2为本公开实施例的彩色电子纸的驱动方法的流程;
图3为本公开实施例的彩色电子纸的驱动方法的显示阶段的一种时序图;
图4为本公开实施例的彩色电子纸的驱动方法的显示阶段的另一种时序图;
图5为本公开实施例的彩色电子纸的驱动方法的显示阶段的另一种时序图;
图6为本公开实施例的彩色电子纸的驱动方法的显示阶段的另一种时序图;
图7为本公开实施例的彩色电子纸的驱动方法的显示阶段和平衡阶段的时序图;
图8为本公开实施例的彩色电子纸的驱动方法的显示阶段、均匀化阶段和平衡阶段的时序图;
图9为本公开实施例的彩色电子纸的一种结构示意图;
图10为本公开实施例的彩色电子纸的一种结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如图1所示,一种示例性的彩色电子纸包括多个微胶囊10,以及设置在多个微胶囊中的每个的两相对侧的第一电极11和第二电极12;所述多个微胶囊10中的每个包括:三种颜色带电粒子;三种颜色的带电粒子分别为白色(White)粒子、黑色(Black)粒子以及彩色粒子。彩色粒子包括但不限于黄色(Yellow)粒子,在本公开实施例中以彩色粒子为黄色粒子103为例进行说明。黑色粒子101与白色粒子102所带电荷的电性相反,与黄色粒子103所点电荷的电性相同,且黑色粒子101的电荷质量比大于黄色粒子103的电荷质量比。
本领域技术人员应当理解的是,由于黑色粒子101和黄色粒子103的所带电荷的电性相同,且黑色粒子101的电荷质量比大于黄色粒子103的电荷质量比,因此在给第一电极11和第二电极12施加电压产生电场,黑色粒子101的移动速度大于黄色粒子103的移动速度。
在此待要说明的是,第一电极11和第二电极12在微胶囊10相对两侧的位置不进行限定;可以是第一电极11较第二电极12靠近显示侧,也即第一基底所在侧为显示侧;也可以是,第二电极12较第一电极11靠近显示侧,也即第二基底所在侧为显示侧。在本公开实施例中,以图1中所示的第二电 极12较第一电极11靠近显示侧为例进行说明。
此外,各个微胶囊10对应的第二电极12可以电连接在一起,在此情况下,每个第二电极12所施加的电压信号相同,此时第二电极12可以称之为公共电极(也可以称之为Vcom电极);当然,各个微胶囊10对应的第二电极12也可以不电连接在一起,在此情况下,各个第二电极12所施加的电压信号可以相同,也可以不相同。在一些实施例中第二电极12可以接地(也即0V电压)。
对于黑色粒子101、白色粒子102、黄色粒子103所带电荷的电性不进行限制,可以是黑色粒子101和黄色粒子103带正电荷,白色粒子102带负电荷,也可以是黑色粒子101和黄色粒子103带负电荷,白色粒子102带正电荷;在本公开实施例中,以黑色粒子101和黄色粒子103带正电荷,白色粒子102带负电荷为例进行说明。
在现有技术中,能够显示黑/白/黄图像的画面的彩色电子纸属于亮色类电子纸,颜色鲜艳,得到广大消费者的青睐,但是发明人发现,在高温情况下,该种电子纸出现显示不清晰的问题,特别是在,白底黑色画面(例如白底黑字)显示时,显示黑色部分,再显示白色部分,导致白色部分的白色粒子102干扰黑色部分中的黑色粒子101的显示,造成黑色部分图像显示不清晰。
对此在本公开实施例中提供以下技术方案。
第一方面,针对图1所示的彩色电子纸,如图2和3所示,本公开实施例提供一种彩色电子纸的驱动方法,该方法包括:
S100、根据待显示图像,向待显示白色的微胶囊10的第一电极11施加第一驱动信号01,向待显示黑色的微胶囊10的第一电极11施加第二驱动信号02。
其中,第一驱动信号01包括在显示阶段T1向待显示白色的微胶囊10第一电极11施加的第一子驱动信号011,第一子驱动信号011用于驱动待显示白色的微胶囊10中的白色粒子102相较黑色粒子101和黄色粒子103靠 近显示侧;也即,将第一子驱动信号011施加给待待显示白色的微胶囊10的第一电极11,此时该第一电极11和第二电极12产生电场,驱动白色粒子102向第二电极12侧移动,以使该微胶囊10靠近显示侧的侧面显示白色,从而实现待显示图像的白色部分的显示。应当理解的是,由于白色粒子102带负电,此时给第一电极11所施加的第一子驱动信号011应为一负电压信号,且电压值应当满足能够带动白色粒子102进行移动。
第二驱动信号02包括在显示阶段T1向待显示黑色的微胶囊10第一电极11施加的第二子驱动信号012,第二子驱动信号012用于驱动待显示黑色的微胶囊10中的黑色粒子101相较白色粒子102和黄色粒子103靠近显示侧;也即,将第二子驱动信号012施加给待显示黑色的微胶囊10的第一电极11,该第一电极11和第二电极12产生电场,驱动黑色粒子101向第二电极12侧移动,以使该微胶囊10靠近显示侧的侧面显示黑色,从而实现待显示图像的白黑色部分的显示。应当理解的是,由于黑色粒子101带负电,此时给第一电极11所施加的第二子驱动信号012应为一正电压信号,且电压值应当满足能够带动黑色粒子101进行移动。
特别的是,在本公开实施例中第二子驱动信号012的有效电压的起始时间不早于第一子驱动信号011的有效电压的终止时间。也就是说,在显示阶段T1,彩色电子纸先对待显示图像的白色部分进行显示,显示完成之后再对黑色部分进行显示,从而的有效的避免了现有技术中显示黑色部分再显示白色部分,造成黑色部分被白色部分干扰的,而导致黑色显示不清晰的问题。
在一些实施例中,第二子驱动信号012的有效电压起始时间为第一子驱动信号011的有效电压的终止时间。也就是说,在彩色电子纸的待显示图像的白色部分显示完成即刻显示黑色部分,从而有效的提高刷新频率,以使彩色电子纸的显示效果更佳。
当然,第二子驱动信号012的起始时间只要不早于第一子驱动信号011的终止时间就可以,例如,第二驱动信号02还可以包括在显示阶段T1向第一电极11写入的零电压信号,该零电压信号位于第二子驱动信号012的起始时间之前,此种情况下,待显示画面的白色部分显示完成之后间隔一定的 时间才会显示黑色部分,所间隔的时间则取决于第二驱动信号02在显示阶段T1的第二子驱动信号012之前的零电压信号所的持续的时间。
在一些实施例中,如图4所示,第二驱动信号02还包括第三子驱动信号013,第三子驱动信号013用于在第二子驱动信号012驱动待显示黑色的微胶囊10显示黑色之后,再次给驱动待显示黑色的微胶囊10中的黑色粒子101相对于白色粒子102和黄色粒子103靠近显示侧。这样一来,也就是说,在对待显示画面的进行显示时,两次驱动待显示黑色的微胶囊10中的黑色粒子101移动,从而更有效的避免了黑色部分显示不清晰的问题。
在此待要说明的是,第二驱动信号02的第二子驱动信号012和第三子驱动信号013之间通常包括一段时间的零电压驱动信号(也即0V电压),也就是说,在待显示黑色的微胶囊10的第一电极11施加第二子驱动信号012,微胶囊10中的黑色粒子101相对白色粒子102和黄色粒子103靠近显示侧后,停止给这部分微胶囊10的第一电极11施加电压,这样一来,再次给这部分微胶囊10的第一电极11施加第三子驱动信号013后,对黑色粒子101再次驱动,以尽可能保证所有的微胶囊10中的所有黑色粒子101均相对白色粒子102和黄色粒子103靠近显示侧,此时则大大降低了黑色粒子101被白色粒子102干扰的可能。
其中,第三子驱动信号013与第二子驱动信号012的有效电压值和有效电压的持续时间均相同,从而保证待显示黑色的微胶囊10显示的黑色更加均匀。
在一些实施例中,彩色电子纸的驱动方法不仅包括上述步骤,还包括:向待显示黄色的微胶囊10的第一电极11施加第三驱动信号03的步骤。其中,如图5所示,第三驱动信号03包括在显示阶段T1为第一电极11施加的第四子驱动信号014,第四子驱动信号014用于驱动待显示黄色的微胶囊10中的黄色粒子103相对白色粒子102和黑色粒子101靠近显示侧,以使黄色部分对应的微胶囊10显示黄色。
在一些实施例中,第四子驱动信号014包括至少一个脉冲重复单元 0141;每个脉冲重复单元0141包括依次施加在第一电极的第一电压V1、零电压(0V)和第二电压V2;其中,第一电压V1用于驱动白色粒子102相对黑色粒子101和黄色粒子103靠近显示侧,第二电压V2用于驱动黄色粒子103相对白色粒子102和黑色粒子101靠近显示侧。
在此待要说明的是,由于黄色粒子103的电荷质量比小于黑色粒子101的电荷质量比,因此驱动黄色粒子103移动的第二电压的电压值,要小于第二子驱动信号012的有效电压的电压值,故在本公开实施例中的第四子驱动信号014包括多个脉冲重复单元0141,以使待显示画面的黄色部分显示均匀。
在驱动彩色电子纸待显示黄色的微胶囊10时,之所以在给第一电极11施加上第二电压之前,先给第一电极11施加第一电压的原因是,先通过第一电压驱动白色粒子102移动至相对黑色粒子101和黄色粒子103靠近显示侧,之后通过零电压让黄色部分对应微胶囊10静置,以使带显示画面的黄色部分显示白色,最后再给第一电极11施加第二电压,驱动黄色粒子103移动至对白色粒子102和黑色粒子101靠近显示侧,从而使得和黄色粒子103相邻的是白色粒子102所在层,如此,通过白色粒子102缓解黄色粒子103显示黄色时,黄色过于鲜亮的问题,以使黄色部分显示更加温和。
在一些实施例中,如图5所示,第四子驱动信号014还包括两个重复脉冲单元014之间的零电压驱动信号(也即0V电压),也就是说,每给待显示画面的黄色部分所对应的第一电极11施加脉冲重复单元0141的第二电压后,再给该第一电极11施加一零电压,以使该黄色部分的微胶囊10中的各个粒子静置,最后黄色部分所对应的第一电极11施加脉冲重复单元0141信号,以使黄色部分显示更加均匀。
在一些实施例中,第三驱动信号03还包括给待显示彩色的微胶囊10的第一电极11施加第二子驱动信号012时,给黄色部分所对应的第一电极11施加的第五子驱动信号,如图6所示,第五子驱动信号015用于在显示阶段T1待显示黑色的微胶囊10显示黑色的同时,驱动黄色部分的微胶囊10中黑色粒子101相对黄色粒子103和白色粒子102靠近显示侧,简言之,也就 是在显示阶段T1待显示黄色的微胶囊10在显示黄色之前先显示黑色,这样一来,可以避免黄底黑字画面中的黑色显示不清晰的问题。
在一些实施例中,如图7所示,彩色电子纸的驱动方法还包括在显示阶段T1之前的平衡阶段T2,第三驱动信号03包括第四子驱动信号014,第四子驱动信号014包括至少一个脉冲重复单元0141,每个脉冲重复单元0141包括依次施加在第一电压V1、零电压(0V)和第二电压V2时,第三驱动信号03还包括在平衡阶段T2向第一电极11施加的第六子驱动信号016;其中,第六子驱动信号016的有效电压的电性与第一电压V1的电性相同;第六子驱动信号016的有效电压的绝对值与施加有效电压的时间的乘积等于第四子驱动信号014中的第一电压的绝对值与施加第一电压的时间的乘积和第二电压的绝对值与施加第二电压的时间的乘积之差。
由于在本公开实施例中是以第一电压为负电压、第二电压为负电压为例进行说明的,因此,第六子驱动信号016的有效电压的电性为负;应当理解的是,若第一电压为正电压,那么第六子驱动信号016的有效电压的电性则为正。
由于在本公开实施例中,在显示阶段T1之前增加平衡阶段T2,第三驱动信号03在平衡阶段T2施加给第一电极11的第六子驱动信号016的有效电压的绝对值与施加有效电压的时间的乘积等于第四子驱动信号014中的第一电压的绝对值与施加第一电压的时间的乘积和第二电压的绝对值与施加第二电压的时间的乘积之差,这样一来,可以平衡第三驱动信号03在显示阶段T1的电压,避免待显示画面中待显示黄色的微胶囊10中白色粒子102、黑色粒子101、黄色粒子103,因电场不平衡而产生内建电场,进而导致极化。
在本公开实施例中,第六子驱动信号016的有效电压可以与第一电压相等,当然也可以不相等,在图7中是以第六子驱动信号016的有效电压与第一电压相等为例进行示意的。
在本公开实施例中,第六子驱动信号016的有效电压与第一电压相等, 这样可以进一步平衡第三驱动信号03在显示阶段T1的电压,维持正负电压的时间总和,更有效的避免待显示画面中待显示黄色的微胶囊10中的白色粒子102、黑色粒子101、黄色粒子103,因电场不平衡而产生内建电场,进而导致极化。
如图7所示,在向待显示白色的微胶囊10的第一电极11施加的第一驱动信号01包括第一子驱动信号011,向待显示黑色的微胶囊10的一电极11施加的第二驱动信号02包括第二子驱动信号012时,第一驱动信号01包括在平衡阶段T2给第一电极11施加的第七子驱动信号017,第二驱动信号02包括在平衡阶段T2给第一电极11施加的第八子驱动信号018;其中,第七子驱动信号017的有效电压的电性与第一子驱动信号011的有效电压的电性相反;第八子驱动信号018的有效电压的电性与第二子驱动信号012的有效电压的电性相反;而且,第一驱动信号01在平衡阶段T2的有效电压(也即第七子驱动信号017的有效电压)的绝对值与施加有效电压的时间乘积等于在显示阶段T1施加有效电压的绝对值与施加有效电压时间的乘积;第二驱动信号02在平衡阶段T2的有效电压(第八子驱动信号018的有效电压)的绝对值与施加有效电压的时间乘积等于在显示阶段T1施加有效电压的绝对值与施加有效电压时间的乘积。
第一驱动信号01在显示阶段T1的有效电压的为正电压的情况,第一驱动信号01在平衡阶段T2的有效电压则为负电压;第一驱动信号01在显示阶段T1的有效电压的为负电压的情况,第一驱动信号01在平衡阶段T2的有效电压则为正电压;对于第二驱动信号02在平衡阶段T2和显示阶段T1的电性关系可以参考第一驱动信号01,故在此不再赘述。
在本公开实施例中,在显示阶段T1之前增加平衡阶段T2,第一驱动信号01在平衡阶段T2的有效电压(也即第七子驱动信号017的有效电压)的绝对值与施加有效电压的时间乘积等于在显示阶段T1施加有效电压的绝对值与施加有效电压时间的乘积;第二驱动信号02在平衡阶段T2的有效电压(第八子驱动信号018的有效电压)的绝对值与施加有效电压的时间乘积等于在显示阶段T1施加有效电压的绝对值与施加有效电压时间的乘积,从而 有效的避免了待显示画面中待显示黑色的微胶囊10和白色的微胶囊10中白色粒子102、黑色粒子101、黄色粒子103,因电场不平衡而产生内建电场,进而导致极化。
此处,第一驱动信号01在显示阶段T1和平衡阶段T2的有效电压的绝对值可以相等,也可以不相等;同理,第二驱动信号02也是如此,附图7中是以第一驱动信号01、第二驱动信号02均在显示阶段T1和平衡阶段T2的有效电压的绝对值相等为例进行示意的。
在此还待要说明的是,附图7中的第二驱动信号02在平衡阶段T2的第八子驱动信号018是按照第二驱动信号02在显示阶段T1仅包括第二子驱动信号012为例进行示意的,若在显示阶段T1第二驱动信号02还包括第三子驱动信号013,此时应按照上述平衡阶段T2与现实阶段的电压关系对平衡阶段T2的第八子驱动信号018的波形进行调整。
在本公开实施例中,第一驱动信号01、第二驱动信号02均在显示阶段T1和平衡阶段T2的有效电压的绝对值相等,这样可以进一步平衡第一驱动信号01和第二驱动信号02在显示阶段T1的电压,维持正负电压的时间总和,更有效的避免待显示画面中待显示白色的微胶囊10和待显示黑色的微胶囊10中的白色粒子102、黑色粒子101、黄色粒子103,因电场不平衡而产生内建电场,进而导致极化。
在一些实施例中,如图8所示,在显示阶段T1和平衡阶段T2之间还包括均匀化阶段T3(Shaking),第一驱动信号01、第二驱动信号02、第三驱动信号03分别包括在均匀化阶段T3的第九子驱动信号019、第十子驱动信号020、第十一子驱动信号021;其中,第九子驱动信号019、第十子驱动信号020、第十一子驱动信号021均包括正负电压交替的脉冲信号。
此处,对于第九子驱动信号019、第十子驱动信号020、第十一驱子动信号021的脉冲信号的个数均不做限定,可以根据待要进行具体设置。附图8中只是以包含4个脉冲信号为例进行示意的。
在本公开实施例中,由于在显示阶段T1和平衡阶段T2之间增加均匀化 阶段T3,且第一驱动信号01、第二驱动信号02、第三驱动信号03分别包括在均匀化阶段T3的第九子驱动信号019、第十子驱动信号020、第十一子驱动信号021;而第九子驱动信号019、第十子驱动信号020、第十一子驱动信号021均包括正负电压交替的脉冲信号,因此每个微胶囊10中白色粒子102、黑色粒子101、黄色粒子103在均匀化阶段T3充分分开、混合均匀,便于在显示阶段T1快速精准地移动,从而可以实现更好的显示效果。
在一些实施例中,彩色电子纸的驱动方法还包括检测环境温度,并判断环境温度是否大于预设值,当环境温度大于或者等于预设值时,采用根据待显示图像,给所述待显示图像中待显示白色的微胶囊10的第一电极11施加第一驱动信号01,待显示黑色微胶囊10的第一电极11施加第二驱动信号02;其中,第一驱动信号01包括在显示阶段T1向待显示白色的微胶囊10的第一电极11施加的第一子驱动信号011,第一子驱动信号011用于驱动待显示白色的微胶囊10中的白色粒子102相较黑色粒子101和黄色粒子103靠近显示侧;第二驱动信号02包括在显示阶段T1向待显示黑色的微胶囊10的第一电极11施加的第二子驱动信号012,第二子驱动信号012用于驱动待显示黑色的微胶囊10中的黑色粒子101相较白色粒子102和黄色粒子103靠近显示侧;其中,第二子驱动信号012的起始时间不早于第一子驱动信号011的终止时间。也就是说,在显示阶段T1,彩色电子纸先对待显示图像的白色部分进行显示,显示完成之后再对黑色部分进行显示。
当环境温度大于或者等于预设值时,则给白色部分所对应的第一电极11施加的第一子驱动信号011的起始时间不早于第二子驱动信号012的终止时间。也就是说,在显示阶段T1,彩色电子纸先对待显示图像的黑色部分进行显示,显示完成之后再对白色部分进行显示。
其中,环境温度的预设值包括但不限于40℃。
第二方面,如图9所示,本公开实施例提供一种彩色电子纸,多个微胶囊10,以及设置在多个微胶囊中的每个的两相对侧的第一电极11和第二电极12;所述多个微胶囊10中的每个包括:包括三种颜色带电粒子;三种颜色的带电粒子分别为白色(White)粒子、黑色(Black)粒子,以及彩色粒子。 彩色粒子包括但不限于黄色(Yellow)粒子,在本公开实施例中以彩色粒子为黄色粒子103为例进行说明。黑色粒子101与白色粒子102所带电荷的电性相反,与黄色粒子103所点电荷的电性相同,且黑色粒子101的电荷质量比大于黄色粒子103的电荷质量比。
本公开实施例中的彩色电子纸还包括处理器20,该处理器根据待显示图像,向待显示图像中待显示白色的微胶囊10的第一电极11施加第一驱动信号01,待显示黑色的微胶囊10的第一电极11施加第二驱动信号02;其中,第一驱动信号01和第二驱动信号02可以为上述驱动方法中的驱动信号,在此不再重复描述。这样一来,本公开实施例中的彩色电子纸,在显示阶段T1,先驱动待显示图像的待显示白色的微胶囊10进行显示,显示完成之后再驱动待显示图像的待显示黑色的微胶囊10进行显示,从而的有效的避免了现有技术中显示黑色部分再显示白色部分,造成黑色部分被白色部分干扰的,而导致黑色显示不清晰的问题。
在本公开实施例中处理器还用于为待显示画面中的待显示黄色的微胶囊的第一电极11施加第三驱动信号03,其中第三驱动信号03可以为上述驱动方法中的任意一种,故在此不再重复描述。
在一些实施例中,如图10所示,彩色电子纸还包括温度传感器30,该温度传感器用于检测环境温度,并反馈给处理器,以使处理器根据环境温度对第一驱动信号01、第二驱动信号02、第三驱动信号03的驱动波形进行调整。
在此待要说明的是,对于处理器的解释及效果可以参考彩色电子纸的驱动方法,在此不再重复描述。
第三方面,本公开实施例提供一种计算机可读介质,其上存储有计算机程序,程序被处理器执行时实现上述任意一种彩色电子纸的驱动方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的 划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (18)

  1. 一种彩色电子纸的驱动方法,所述彩色电子纸包括多个微胶囊,以及设置在所述多个微胶囊中的每个的两相对侧的第一电极和第二电极;所述多个微胶囊中的每个包括:黑色粒子、白色粒子,以及彩色粒子;其中,所述黑色粒子和所述白色粒子所带电荷的电性相反;所述黑色粒子和所述彩色粒子所带电荷的电性相同,且所述黑色粒子的电荷质量比大于所述彩色粒子的电荷质量比;所述驱动方法包括:
    根据待显示图像,向待显示白色的微胶囊的第一电极施加第一驱动信号,向待显示黑色的微胶囊的第一电极施加第二驱动信号;其中,
    所述第一驱动信号包括:在显示阶段为第一电极施加的第一子驱动信号;所述第一子驱动信号用于驱动所述待显示白色的微胶囊中的所述白色粒子相对所述黑色粒子和所述彩色粒子靠近显示侧;
    所述第二驱动信号包括:在显示阶段为第一电极施加的第二子驱动信号,所述第二子驱动信号,用于驱动所述待显示黑色的微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧;
    其中,所述第二子驱动信号的有效电压的起始时间不早于所述第一子驱动信号的有效电压的终止时间。
  2. 根据权利要求1所述的驱动方法,其中,所述第二子驱动信号的有效电压的起始时间为所述第一子驱动信号的有效电压的终止时间。
  3. 根据权利要求1所述的驱动方法,其中,所述第一子驱动信号和所述第二子驱动信号的有效电压的绝对值相等、电压电性相反。
  4. 根据权利要求1所述的驱动方法,其中,所述第二驱动信号还包括第三子驱动信号;所述第三子驱动信号用于在显示阶段驱动所述待待显示黑色的微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧;
    其中,所述第三子驱动信号在所述第二子驱动信号之后被写入所述待显示黑色的微胶囊的第一电极。
  5. 根据权利要求4所述的驱动方法,其中,所述第三子驱动信号和所述第二子驱动信号的有效电压值、有效电压的持续时间均相同。
  6. 根据权利要求1-5中任一项所述驱动方法,其中,还包括:
    根据所述待显示图像的彩色部分,给待显示彩色的微胶囊的第一电极施加第三驱动信号,所述第三驱动信号包括第四子驱动信号,所述第四子驱动信号用于驱动所述待显示彩色的微胶囊中的所述彩色粒子相对所述白色粒子和所述黑色粒子靠近显示侧。
  7. 根据权利要求6所述的驱动方法,其中,所述第四子驱动信号包括多个脉冲重复单元,每个所述脉冲重复单元包括:依次施加在第一电极上的第一电压、零电压和第二电压;
    所述第一电压用于驱动所述白色粒子相对所述黑色粒子和所述彩色粒子靠近所述显示侧,第二电压用于驱动所述彩色粒子相对所述白色粒子和所述黑色粒子靠近所述显示侧。
  8. 根据权利要求7所述的驱动方法,所述第四子驱动信号还包括位于两个所述脉冲重复单元之间的零电压驱动信号。
  9. 根据权利要求6-8中任一项所述的驱动方法,其中,所述第三驱动信号还包括:在所述给所述待显示黑色的微胶囊的第一电极施加第二子驱动信号的同时,给所述待显示彩色的微胶囊的所述第一电极施加第五子驱动信号,驱动所述微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧。
  10. 根据权利要求9所述的驱动方法,其中,所述第五子驱动信号的有效电压值与所述第二子驱动信号的有效电压值、有效电压的持续时间均相同。
  11. 根据要求7所述的待驱动方法,其中,还包括显示阶段之前的平衡阶段,所述第三驱动信号还包括在所述平衡阶段向所述待显示彩色的微胶囊的第一电极施加的第六子驱动信号;其中,所述第六子驱动信号的有效电压的电性与所述第一电压的电性相同;所述第六子驱动信号的有效电压的绝对 值与施加有效电压的时间的乘积等于所述第一电压的绝对值与施加所述第一电压的时间的乘积和所述第二电压的绝对值与施加所述第二电压的时间的乘积之差。
  12. 根据要求11所述的驱动方法,其中,所述第一驱动信号包括在所述平衡阶段向所述待显示白色的微胶囊的第一电极施加的第七子驱动信号,所述第二驱动信号包括在所述平衡阶段向所述待显示白黑色的微胶囊的第一电极施加的第八子驱动信号;其中,所述第七子驱动信号的有效电压的电性与所述第一子驱动信号的有效电压的电性相反;所述第八子驱动信号的有效电压的电性与所述第二子驱动信号的有效电压的电性相反;
    所述第七子驱动信号的有效电压的绝对值与施加有效电压的时间乘积等于在所述显示阶段施加有效电压的绝对值与施加有效电压时间的乘积;
    所述第八子驱动信号的有效电压的绝对值与施加有效电压的时间乘积等于在所述显示阶段施加有效电压的绝对值与施加有效电压时间的乘积。
  13. 根据权利要求12所述的驱动方法,其中,在所述显示阶段和所述平衡阶段之间还包括均匀化阶段,所述第一驱动信号、所述第二驱动信号、所述第三驱动信号分别包括在均匀化阶段的所述第九子驱动信号、所述第十子驱动信号、所述第十一子驱动信号;其中,所述第九子驱动信号、所述第十子驱动信号、所述第十一子驱动信号均包括正负电压交替的脉冲信号。
  14. 根据权利要求1所述的驱动方法,其中,在给所述待显示画面的白色部分所对应的第一电极施加第一驱动信号之前,还包括:
    检测环境温度,并反馈给处理器,以供所述处理器判断所检测到的环境温度是否在预设范围内;若在预设范围内,则向所述待显示白色的微胶囊的第一电极施加第一驱动信号。
  15. 根据权利要求14所述的驱动方法,其中,所述预设温度范围为大于或等于40℃。
  16. 一种彩色电子纸,其包括:多个微胶囊,以及设置在所述多个微胶囊中的每个的两相对侧的第一电极和第二电极;所述多个微胶囊中的每个包 括:黑色粒子、白色粒子,以及彩色粒子;其中,所述黑色粒子和所述白色粒子所带电荷的电性相反;所述黑色粒子和所述彩色粒子所带电荷的电性相同,且所述黑色粒子的电荷质量比大于所述彩色粒子的电荷质量比;所述彩色电子纸还包括:处理器;其中,
    所述处理器,用于根据待显示图像,给向待显示白色的微胶囊的第一电极施加第一驱动信号,向待显示黑色的微胶囊的第一电极施加第二驱动信号;其中,
    所述第一驱动信号包括:在显示阶段为第一电极施加的第一子驱动信号;所述第一子驱动信号,用于驱动所述待显示白色的微胶囊中的所述白色粒子相对所述黑色粒子和所述彩色粒子靠近显示侧;
    所述第二驱动信号包括:在显示阶段为第一电极施加的第二子驱动信号,所述第二子驱动信号,用于驱动所述待显示黑色的微胶囊中的所述黑色粒子相对所述白色粒子和所述彩色粒子靠近显示侧;其中,所述第二子驱动信号的有效电压的起始时间不早于所述第一子驱动信号的有效电压的终止时间。
  17. 根据权利要求16所述的彩色电子纸,其中,还包括:
    温度传感器,用于检测环境温度,并反馈给所述处理器,以供所述处理器判断所检测到的环境温度是否在预设范围内;若在预设范围内,则向所述待显示白色的微胶囊的第一电极施加第一驱动信号。
  18. 一种计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现权利要求1-15中任意一项所述的方法。
PCT/CN2021/074885 2020-03-31 2021-02-02 彩色电子纸的驱动方法及彩色电子纸 WO2021196869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/599,670 US11747703B2 (en) 2020-03-31 2021-02-02 Method for driving color electronic paper and color electronic paper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010245014.5A CN111402818A (zh) 2020-03-31 2020-03-31 彩色电子纸的驱动方法及彩色电子纸
CN202010245014.5 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021196869A1 true WO2021196869A1 (zh) 2021-10-07

Family

ID=71429323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074885 WO2021196869A1 (zh) 2020-03-31 2021-02-02 彩色电子纸的驱动方法及彩色电子纸

Country Status (3)

Country Link
US (1) US11747703B2 (zh)
CN (1) CN111402818A (zh)
WO (1) WO2021196869A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402818A (zh) * 2020-03-31 2020-07-10 重庆京东方智慧电子系统有限公司 彩色电子纸的驱动方法及彩色电子纸
CN114550662B (zh) * 2020-11-26 2023-11-21 京东方科技集团股份有限公司 电子纸显示装置及其驱动方法
CN113380201B (zh) * 2021-06-22 2023-06-30 北京京东方光电科技有限公司 电子纸显示屏及其显示控制方法、电子纸显示装置
CN113450729B (zh) * 2021-07-14 2023-01-03 中国科学院重庆绿色智能技术研究院 一种三色柔性电子纸的驱动方法及系统
CN113917758B (zh) * 2021-10-18 2024-07-30 京东方科技集团股份有限公司 一种电子纸显示装置及其驱动方法
WO2023070494A1 (zh) * 2021-10-29 2023-05-04 京东方科技集团股份有限公司 一种电子纸显示装置及其驱动方法、计算机可读介质
KR20230087135A (ko) * 2021-12-09 2023-06-16 엘지디스플레이 주식회사 표시 장치, 데이터 드라이버 및 타이밍 제어부
WO2023184423A1 (zh) * 2022-03-31 2023-10-05 京东方科技集团股份有限公司 电子纸显示装置的驱动方法、装置和可读介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782350A (zh) * 2017-01-04 2017-05-31 深圳市国华光电科技有限公司 一种电泳显示器减弱鬼影边界的方法
CN107210023A (zh) * 2015-02-04 2017-09-26 伊英克公司 以黑暗模式和明亮模式显示的电光显示器以及相关的装置和方法
CN107393486A (zh) * 2017-08-16 2017-11-24 华南师范大学 一种减弱电泳电子纸边缘现象的方法及系统
CN108461066A (zh) * 2017-02-20 2018-08-28 达意科技股份有限公司 电子纸显示器以及电子纸显示面板的驱动方法
CN110780505A (zh) * 2019-11-13 2020-02-11 京东方科技集团股份有限公司 一种电子纸显示装置及其驱动方法
CN111402818A (zh) * 2020-03-31 2020-07-10 重庆京东方智慧电子系统有限公司 彩色电子纸的驱动方法及彩色电子纸

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985113B2 (ja) 2006-07-28 2012-07-25 セイコーエプソン株式会社 電気泳動表示パネルの駆動方法並びに駆動装置、電気泳動表示装置、および電子機器
JP5695299B2 (ja) 2009-03-23 2015-04-01 セイコーエプソン株式会社 電気泳動表示装置の駆動方法、電気泳動表示装置、及び電子機器
US20100309112A1 (en) * 2009-06-09 2010-12-09 Aditya Rajagopal Color display materials and related methods and devices
US8558786B2 (en) * 2010-01-20 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
JP5601470B2 (ja) 2010-12-01 2014-10-08 セイコーエプソン株式会社 電気泳動表示装置の駆動方法、電気泳動表示装置、及び電子機器
JP5888554B2 (ja) 2011-02-08 2016-03-22 Nltテクノロジー株式会社 メモリ性を有する画像表示装置
TWI550332B (zh) * 2013-10-07 2016-09-21 電子墨水加利福尼亞有限責任公司 用於彩色顯示裝置的驅動方法
US10380931B2 (en) 2013-10-07 2019-08-13 E Ink California, Llc Driving methods for color display device
CN107003583B (zh) * 2014-11-17 2020-10-20 伊英克加利福尼亚有限责任公司 彩色显示装置
US10783839B2 (en) * 2015-06-01 2020-09-22 Tianman Microelectronics Co., Ltd. Display device with memory function, terminal device, and driving method thereof
WO2018128040A1 (ja) * 2017-01-06 2018-07-12 凸版印刷株式会社 表示装置及び駆動方法
CN110366747B (zh) * 2017-04-25 2022-10-18 伊英克加利福尼亚有限责任公司 用于彩色显示设备的驱动方法
JP2019113742A (ja) * 2017-12-25 2019-07-11 凸版印刷株式会社 電気泳動表示装置及び電気泳動表示装置の駆動方法
CN110010080B (zh) * 2018-01-05 2020-11-17 元太科技工业股份有限公司 电泳显示器及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210023A (zh) * 2015-02-04 2017-09-26 伊英克公司 以黑暗模式和明亮模式显示的电光显示器以及相关的装置和方法
CN106782350A (zh) * 2017-01-04 2017-05-31 深圳市国华光电科技有限公司 一种电泳显示器减弱鬼影边界的方法
CN108461066A (zh) * 2017-02-20 2018-08-28 达意科技股份有限公司 电子纸显示器以及电子纸显示面板的驱动方法
CN107393486A (zh) * 2017-08-16 2017-11-24 华南师范大学 一种减弱电泳电子纸边缘现象的方法及系统
CN110780505A (zh) * 2019-11-13 2020-02-11 京东方科技集团股份有限公司 一种电子纸显示装置及其驱动方法
CN111402818A (zh) * 2020-03-31 2020-07-10 重庆京东方智慧电子系统有限公司 彩色电子纸的驱动方法及彩色电子纸

Also Published As

Publication number Publication date
CN111402818A (zh) 2020-07-10
US11747703B2 (en) 2023-09-05
US20220317538A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021196869A1 (zh) 彩色电子纸的驱动方法及彩色电子纸
US10522100B2 (en) Method of driving a display panel and display apparatus performing the same
US9390671B2 (en) Liquid crystal display device and driving method thereof
TWI691774B (zh) 電泳顯示器及其驅動方法
US10127882B2 (en) Method of driving a display apparatus, a display apparatus performing the same and a timing controller included in the display apparatus
US7439949B2 (en) Display apparatus in which reset or signal voltages is corrected for residual DC voltage and driving method for the same
US20110216104A1 (en) Driving methods for electrophoretic displays
US8970473B2 (en) Bistable display and method of driving a panel thereof
KR101242727B1 (ko) 신호 생성 회로 및 이를 포함하는 액정 표시 장치
CN110010081B (zh) 电泳显示器及其驱动方法
WO2012161701A1 (en) Application of voltage to data lines during vcom toggling
US10127869B2 (en) Timing controller, display apparatus including the same and method of driving the display apparatus
US20140267449A1 (en) Display panel, method of driving the same and display apparatus having the same
CN102214443B (zh) 电泳显示器及其驱动方法
US10540939B2 (en) Display apparatus and a method of driving the same
US9767759B2 (en) Gate driver, display apparatus including the same and method of driving display panel using the same
US8098420B2 (en) Display method of electrophoresis display device
CN114550662B (zh) 电子纸显示装置及其驱动方法
US20210158768A1 (en) Display control method and apparatus, and display apparatus
US10235951B2 (en) Liquid crystal display device
KR102416343B1 (ko) 표시 장치 및 이의 구동 방법
US20160140916A1 (en) Method of operating display panel and display apparatus performing the same
KR102633163B1 (ko) 표시 장치 및 이의 구동 방법
US20130321377A1 (en) Driving device of image display medium, image display apparatus, driving method of image display medium, and non-transitory computer readable medium
US10446108B2 (en) Display apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780350

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21780350

Country of ref document: EP

Kind code of ref document: A1