WO2021196728A1 - 一种永磁体的充磁方法及高速转子的制造方法 - Google Patents

一种永磁体的充磁方法及高速转子的制造方法 Download PDF

Info

Publication number
WO2021196728A1
WO2021196728A1 PCT/CN2020/135907 CN2020135907W WO2021196728A1 WO 2021196728 A1 WO2021196728 A1 WO 2021196728A1 CN 2020135907 W CN2020135907 W CN 2020135907W WO 2021196728 A1 WO2021196728 A1 WO 2021196728A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
dynamic balance
inner hole
permanent magnet
Prior art date
Application number
PCT/CN2020/135907
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2021196728A1 publication Critical patent/WO2021196728A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the invention relates to the field of processing and manufacturing of permanent magnets, in particular to a method for magnetizing permanent magnets and a method for manufacturing high-speed rotors.
  • the technical solution of the present invention is to overcome the shortcomings of the prior art, provide a permanent magnet magnetization method and a high-speed rotor manufacturing method, in the permanent magnet production and manufacturing stage, control the deviation of the permanent magnet magnetization angle, and avoid the later stage Cost waste caused by screening.
  • the technical solution of the present invention is: a permanent magnet magnetizing method, including the following steps:
  • S400 Perform finishing machining on the permanent magnet blank with the detected magnetizing direction as the axial direction according to the included angle ⁇ to obtain a permanent magnet of a predetermined size, and make the magnetizing direction of the permanent magnet and the geometric axial direction of the permanent magnet parallel.
  • step of S300 detecting the included angle ⁇ between the magnetizing direction of the permanent magnet blank and the geometric axis of the permanent magnet blank includes:
  • S320 Use a magnetically conductive material to make a magnetic pointer, fix the pointer near the geometric center of the permanent magnet blank, and enable the pointer to rotate freely, and the direction when the pointer stops is the direction of the magnetic field of the permanent magnet blank;
  • the high-speed rotor includes a shaft one, a shaft two, and a motor core;
  • the diameter of the second inner hole, the outer circumference corresponding to the first inner hole is provided with a first bearing position;
  • the second shaft includes a first shaft section and a second shaft section with different diameters, the diameter of the first shaft section is larger than the diameter of the second shaft section
  • the first shaft section of the second shaft is provided with an inner hole;
  • the motor magnetic core is installed in the second inner hole of the shaft one, and one end of the first shaft section of the second shaft passes through the second inner hole of the shaft and the motor magnetic core abuts Connected;
  • the outer circumference of the first shaft section of the second shaft not inserted into the second inner hole is provided with a second bearing position;
  • the speed of the high-speed rotor is 150000rpm-160000rpm;
  • the manufacturing method includes the following steps:
  • the surface treatment time is 1-60 seconds.
  • the on-line microwave surface treatment is completed to release the thermal stress. After the rotor is cooled to room temperature and the stress is relieved, a rough part is obtained;
  • the dynamic balance level reaches G0.4-2.5.
  • the steps of machining axis one include:
  • the steps of processing axis two include:
  • the bar material used to process the second axis is subjected to stress relief and rough machining of the outer circle, leaving a margin in the second bearing position, which meets the subsequent combined machining requirements;
  • SB120 finish machining the outer circle except the second bearing position to size; machining the inner hole to size; finish machining both ends of the assembly end face to size;
  • SB140 single-piece dynamic balance
  • the second axis is dynamically balanced
  • the dynamic balance position takes the inner hole
  • the dynamic balance speed is lower than the first-order critical speed of the high-speed rotor
  • the dynamic balance level reaches G0.4-2.5;
  • step of finishing in step S400 includes:
  • High-frequency wave finishing Based on the clamping reference plane, use the high-frequency wave surface treatment process to finish the part with a distortion exceeding 0.1mm and a margin exceeding 0.05mm. During the high-frequency wave finishing process, leave a margin.
  • the quantity meets the requirements of subsequent combined processing; the removed parts include the first bearing position, the second bearing position and the welding position; the frequency of the high-frequency wave is 0.1-1MHz;
  • the high-speed rotor further includes a thrust disc, which is fixedly sleeved on one end side of the outer circle corresponding to the second inner hole of the shaft;
  • the step S100 also includes processing the thrust plate to a predetermined size, including the following steps:
  • SC120 finish machining the inner hole of the thrust plate to the size, the surface roughness of the inner hole after finishing is Ra0.2-Ra0.4, and leave a margin on the end face of the thrust disc, which meets the requirements of subsequent combined processing;
  • SC130 single-piece dynamic balance, to dynamically balance the thrust plate, the dynamic balance position takes the outer circumferential surface of the thrust plate, the dynamic balance speed is lower than the first-order critical speed of the high-speed rotor, and the dynamic balance level reaches G0 .4-2.5;
  • steps of assembling and welding in the step S200 include:
  • the removed parts in the step S420 include the first bearing position, the second bearing position, the welding position and the end surface of the thrust plate;
  • the step S450 also includes making the perpendicularity between the thrust plate and the shaft one 0.001-0.03 mm.
  • the high-speed rotor further includes a compressor, a turbine, and a lock nut.
  • the compressor and the turbine are fixedly sleeved on the second shaft section of the second shaft in turn and fastened by the lock nut;
  • the step S500 dynamic balancing includes the following steps:
  • step S510 Place the rotor after step S400 in a dynamic balancing device, and perform dynamic balancing on the basis of the first bearing position and/or the second bearing position. In the process of dynamic balancing, remove the amount of non-working surface of the rotor to achieve the removal of unbalance. , So that the dynamic balance level reaches G0.4-2.5;
  • step S530 includes:
  • the dynamic balance level is selected as G1.
  • the permanent magnet magnetization method of the present invention detects the magnetization direction of the permanent magnet, and performs finishing processing on the permanent magnet blank according to the magnetization direction of the permanent magnet to eliminate the deviation of the magnetization direction of the permanent magnet.
  • the high-speed rotor manufacturing method of the present invention combines special processes such as rough machining, welding, hot fitting, heat treatment, finishing, surface treatment, tooling, measurement and clamping control in a specific way, sequence and process requirements. To achieve high-precision and high-yield production of high-speed rotors.
  • Figure 1 is a schematic structural view of the permanent magnet blank of the present invention with an angle between the magnetizing direction and the axial direction;
  • FIG. 2 is a schematic diagram of the structure of processing permanent magnet blanks according to the magnetizing direction according to the present invention
  • FIG. 3 is a schematic diagram of the structure of the high-speed rotor of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the high-speed rotor of Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the high-speed rotor of Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the high-speed rotor of Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the shaft 1 of the present invention.
  • Figure 8 is a schematic structural diagram of the second shaft of the present invention.
  • Figure 9 is a schematic diagram of the structure of the thrust plate of the present invention.
  • FIG. 10 is a schematic diagram of the assembly structure corresponding to Embodiments 1 and 2 of the present invention.
  • FIG. 11 is a schematic diagram of the assembly structure corresponding to Embodiments 3 and 4 of the present invention.
  • FIG. 12 is a schematic diagram of the clamping structure corresponding to Embodiments 1 and 2 of the present invention.
  • FIG. 13 is a schematic diagram of the clamping structure corresponding to Embodiments 3 and 4 of the present invention.
  • the first aspect of the present invention provides a permanent magnet magnetizing method, as shown in Fig. 1 and Fig. 2:
  • step S300 includes the following steps:
  • S320 Use a magnetically conductive material to make a magnetic pointer, fix the pointer near the geometric center of the permanent magnet blank, and enable the pointer to rotate freely, and the direction when the pointer stops is the direction of the magnetic field of the permanent magnet blank;
  • S400 Perform finishing machining on the permanent magnet blank with the detected magnetizing direction as the axial direction according to the included angle ⁇ to obtain a permanent magnet of a predetermined size, and make the magnetizing direction of the permanent magnet and the geometric axial direction of the permanent magnet parallel.
  • the permanent magnet obtained by the above-mentioned permanent magnet magnetizing method eliminates the deviation between the magnetizing direction and the axial direction.
  • the second aspect of the present invention provides a method for manufacturing a high-speed rotor.
  • the speed of the high-speed rotor is 150,000 rpm to 160,000 rpm, preferably 155,000 rpm, and the structure is shown in Figures 1-4.
  • FIG. 3 The structure of the high-speed rotor of embodiment 1 is shown in Fig. 3, including shaft one 1 and shaft two 2.
  • Shaft one includes a first inner hole and a second inner hole with different diameters, wherein the diameter of the first inner hole is smaller than that of the second inner hole.
  • the diameter of the inner hole, the outer circumference corresponding to the first inner hole is provided with a first bearing position 8;
  • the second shaft 2 includes a first shaft section and a second shaft section with different diameters, and the diameter of the first shaft section is larger than that of the second shaft section.
  • the shaft 1 of the high-speed rotor is fixedly installed in the second inner hole of the motor magnetic core 6, and one end of the first shaft section of the shaft 2 passes through the shaft 1 second inner hole and abuts against the motor magnetic core 6
  • One end of the shaft 1 is fixedly connected, and the outer circumference of the portion where the first shaft section of the shaft 2 2 is not inserted into the second inner hole is provided with a second bearing position 9.
  • the first shaft section of the second shaft 2 is provided with an inner hole to reduce the weight.
  • the outer diameter of the part where the first shaft section of the shaft two 2 is inserted into the second inner hole of the shaft -1 is larger than the outer diameter of the part of the second bearing position 9 that is not inserted into the outer circumference of the second inner hole of the shaft -1.
  • the structure of the high-speed rotor of Embodiment 2 is shown in Figure 4. On the basis of the structure of the high-speed rotor of Embodiment 1, it also includes a compressor 3, a turbine 4 and a lock nut 5. The compressor 3 and the turbine 4 are fixedly sleeved in sequence The second shaft section of the second shaft 2 is fastened by a lock nut 5.
  • a spacer ring (not shown in the figure) is arranged between the compressor 3 and the turbine 4 to strengthen the rigidity of the rotor.
  • the structure of the high-speed rotor of Embodiment 3 is shown in Figure 5. Based on the structure of the high-speed rotor of Embodiment 1, it also includes a thrust plate 7, which is fixedly sleeved on one end of the outer circle corresponding to the second inner hole of the shaft 1. side. The position where the thrust plate 7 is sleeved corresponds to the position where the first shaft section of the shaft two 2 is inserted into the second inner hole of the shaft one.
  • the structure of the high-speed rotor of Embodiment 4 is shown in Fig. 6. On the basis of the structure of the high-speed rotor of Embodiment 3, it also includes a compressor 3, a turbine 4 and a lock nut 5. The compressor 3 and the turbine 4 are fixed and sleeved in sequence The second shaft section of the second shaft 2 is fastened by a lock nut 5.
  • a spacer ring (not shown in the figure) is arranged between the compressor 3 and the turbine 4 to strengthen the rigidity of the rotor.
  • the method for manufacturing a high-speed rotor as described above specifically includes the following steps:
  • FIG. 7 is a schematic diagram of the structure of the shaft 1, and the processing method of the shaft 1 includes the following steps:
  • the shaft-1 is dynamically balanced
  • the dynamic balance position is at the second inner hole
  • the dynamic balance speed is lower than the first-order critical speed of the high-speed rotor
  • the dynamic balance level reaches G0.4-2.5, preferably G1.
  • Fig. 8 is a schematic diagram of the structure of the second shaft 2.
  • the processing method of the second shaft 2 includes the following steps:
  • SB120 finish machining the outer circle except the second bearing position 9 to size; machining the inner hole to size; finish machining both ends of the assembly end face to size;
  • the shaft two 2 is dynamically balanced, the dynamic balance position takes the inner hole, the dynamic balance speed is lower than the first-order critical speed of the high-speed rotor, and the dynamic balance level reaches G0.4 -2.5, preferably G1.
  • step S100' also includes processing the thrust plate 7.
  • FIG. 9 is a schematic diagram of the structure of the thrust plate, and the processing method of the thrust plate includes the following steps:
  • the dynamic balance position takes the outer circumferential surface of the thrust plate, the dynamic balance speed is lower than the first-order critical speed of the high-speed rotor, and the dynamic balance level reaches G0.4-2.5, preferably G1.
  • step S200' the drawings corresponding to Embodiment 1 and Embodiment 2 are shown in FIG. 10, and the drawings corresponding to Embodiment 3 and Embodiment 4 are shown in FIG. 11.
  • the outer circle corresponding to the motor core 6 (the embodiment without the motor core 6 according to the second inner hole of the shaft 1) as the clamping reference surface 12 for positioning and clamping to ensure that the clamping reference surface 12 of the entire rotor is aligned with the shaft 1
  • the coaxiality of the inner hole on the right side is maintained at 0.001-0.03mm, preferably 0.02mm.
  • step S400' the drawings corresponding to Embodiment 1 and Embodiment 2 are shown in FIG. 12, and the drawings corresponding to Embodiment 3 and Embodiment 4 are shown in FIG. 13.
  • the rotor shown in Figure 12-13 is a rotor with microscopic distortion.
  • use high-frequency wave (0.1-1MHz) surface treatment process to process the part with distortion exceeding 0.1mm and margin exceeding 0.05mm.
  • the high-frequency wave finishing process leave a margin, and the margin meets
  • the above-mentioned removal parts are the first bearing position 8, the second bearing position 9, the welding position and the end surface of the thrust plate 7, etc., thereby improving the processing accuracy and surface roughness of the entire rotor.
  • the entire rotor is hardened to improve the surface roughness, hardness and fatigue resistance of the entire rotor.
  • the second shaft section of the second shaft is finished to the size, preferably using a grinding process.
  • the fine grinding process is used to remove the margin to size at one time to ensure that the surface roughness of the rotor is Ra0.05-0.2, the coaxiality is 0.001-0.03mm, and the perpendicularity between the thrust plate 7 and the shaft 1 is 0.001-0.03mm.
  • the fine grinding process adopts a special grinding wheel mold
  • the special grinding wheel mold is provided with an inner cavity, and the shape and size of the inner wall of the inner cavity are the same as the designed outer shape and size of the rotor, and the rotor after step S440 is placed In the special grinding wheel mold (here, the rotor is aligned and clamped on the precision grinding tool, and then placed in the special grinding wheel mold as a whole), and the inner cavity of the special grinding wheel mold is used for grinding the rotor to the size.
  • steps S100'-400' in the finishing step, the size of each piece is inspected.
  • step S510' Place the rotor after step S450' in the dynamic balancing device, and perform dynamic balancing based on the first bearing position 8 and/or the second bearing position 9.
  • the amount of the non-working surface of the rotor is removed by Realize the removal of unbalance, so that the dynamic balance level can reach G0.4-2.5 dynamic balance accuracy, preferably G1.
  • the amount of the non-working surface of the rotor is removed using a non-contact process such as automatic laser rust removal or 0.1-1 GHz high frequency wave.
  • a motor is used to drive the rotor to rotate for a dynamic balance test.
  • the stator of the motor is non-contact sleeved on the outer circle corresponding to the motor core 6 which serves as the rotor of the motor.
  • the motors and/or bearings used in the dynamic balancing equipment are the motors and/or bearings that are originally matched when the rotor is working.
  • the bearing is an air bearing.
  • the non-working surface includes but is not limited to the first inner hole of the shaft 1 and the boss of the thrust plate 7.
  • the single-piece dynamically balanced compressor 3, the turbine 4, and the lock nut 5 are sequentially fixed and sleeved on the second shaft 2 and tightened with a torque wrench; the single-piece dynamically balanced compressor 3, the turbine 4.
  • the dynamic balance level of the lock nut 5 reaches G0.4-2.5 dynamic balance accuracy, preferably G1.
  • the stator of the motor is sleeved on the outer circle corresponding to the motor core 6 in a non-contact manner, and the motor core 6 serves as the rotor of the motor.
  • the gas supply component blows the turbine 4 to drive the rotor to rotate.
  • the non-working surface of the rotor includes but is not limited to the first inner hole of the shaft 1, the boss of the thrust plate 7, the lock nut 5, and the part where the shaft 2 passes through the lock nut 5.
  • the amount of the non-working surface of the rotor is removed using a non-contact process such as automatic laser rust removal or 0.1-1 GHz high frequency wave.
  • the pneumatic drive components are the compressor 3 and the turbine 4, and after the compressor 3 and the turbine 4 are installed to the rotor system from the right side, they are locked with a lock nut 5.
  • the details are shown in Figure 6.
  • a spacer ring (not shown in the figure) for axial positioning is provided between the compressor 3 and the turbine 4, and the compressor 3, spacer ring, turbine 4, and lock nut 5 are fixed and sleeved in sequence.
  • the second shaft 2 is tightened with a torque wrench; the single-piece dynamically balanced compressor 3, spacer ring, turbine 4, and lock nut 5 have a dynamic balance level of G0.4-2.5 dynamic balance accuracy, preferably G1 .
  • the motors and/or bearings used in the dynamic balancing equipment are the motors and/or bearings that are originally matched when the rotor is working.
  • a motor or air blowing is used to drive the rotor to rotate, and the first bearing position 8 and/or the second bearing position 9 are used as a reference for dynamic balancing.
  • the amount of the non-working surface of the rotor is removed to achieve unevenness
  • make the dynamic balance level reach G0.4-2.5 dynamic balance accuracy, preferably G1, including the following steps:
  • S532' use a motor or air blowing to drive the rotor up to 20000-25000rpm and detect dynamic balance, remove the amount of non-working surface of the rotor to achieve the removal of unbalance, and make the dynamic balance level reach G0.4-2.5 dynamic balance accuracy, preferably G1 ;
  • the present invention provides a method for manufacturing a high-speed rotor.
  • the high-speed rotor includes a first shaft and a second shaft; the first shaft includes a first inner hole and a second inner hole with different diameters; and the second shaft includes a second inner hole with different diameters.
  • the manufacturing method includes the following steps: separately processing shaft one and shaft two to a predetermined size; assembling and welding shaft one and shaft two to form a rotor; performing surface treatment and finishing on the assembled rotor so that the surface roughness of the rotor is Ra0.05 -0.2.
  • the coaxiality is 0.001-0.03mm; the final dynamic balance makes the dynamic balance level reach G0.4 ⁇ 2.5.
  • This method can manufacture high-precision and high-yield high-speed rotors, and realize fully automated production.
  • the present invention provides a permanent magnet magnetization method and a high-speed rotor manufacturing method.
  • the magnetization method detects the angle between the magnetization direction of the permanent magnet blank and the geometric axis of the permanent magnet blank. And processed to make the magnetizing direction parallel to the geometric axis to eliminate the deviation of the magnetizing direction of the permanent magnets.
  • the permanent magnets obtained by this method are used as the motor cores in the high-speed rotor.
  • the magnetizing method of the permanent magnets is used as the high-speed rotor. In some steps in the manufacturing method, the high-speed rotor manufactured has the performance of high precision and high yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种永磁体的充磁方法及高速转子的制造方法,该充磁方法通过检测永磁体坯料的充磁方向与永磁体坯料几何轴向之间的夹角、并加工使其充磁方向与几何轴向平行,以消除永磁体充磁方向偏差,由此方法得到的永磁体作为电机磁芯应用到高速转子中,该永磁体的充磁方法作为高速转子的制造方法中的部分步骤,制造得出的高速转子具有高精度、高成品率的性能。

Description

一种永磁体的充磁方法及高速转子的制造方法 技术领域
本发明涉及永磁体的加工制造领域,具体涉及一种永磁体的充磁方法以及高速转子的制造方法。
背景技术
由于永磁体的用途越来越广泛,尤其是在高精度磁电设备中使用的情况,不只是需要关注永磁体的磁能积、剩磁、矫顽力、温度系数等特性,永磁体的实际充磁方向与永磁体几何轴向之间的误差即充磁角度偏差形状作为一个重要指标,在较大程度上会影响高精密磁电设备的性能,充磁角度偏差的存在,会导致系统的不对称,在一定程度上导致偏心,如若用在转子上会导致转子的动力学性能变差,当转子在高速旋转时,会产生较大的不平衡力,增加转子的能量损耗和震动,影响设备的稳定性,当用在高精度磁性设备时,会影响设备的精度和性能,充磁角度偏差的存在,严重制约了精密磁性设备的发现。并且,目前行业内,尚无一个成熟的方案来保证永磁体的充磁角度。现有做法是通过产品适配后,根据产品表现出的性能筛选合格产品。但这种方法费时费力,成品率较低,生产成本较高。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种永磁体的充磁方法及高速转子的制造方法,在永磁体生产制造阶段,控制住永磁体充磁角度的偏差,避免后期筛选造成的成本浪费。
本发明的技术解决方案是:一种永磁体的充磁方法,包括如下步骤:
S100,制作永磁体坯料,对所述坯料预留预定加工余量;
S200,对永磁体坯料充磁;
S300,检测永磁体坯料的充磁方向和永磁体坯料几何轴向之间的夹角θ;
S400,根据所述夹角θ以检测到的充磁方向为轴向对所述永磁体坯料进行精加工,得到预定尺寸的永磁体,并使永磁体的充磁方向与永磁体的几何轴向平行。
进一步的,所述S300检测永磁体坯料的充磁方向和永磁体坯料几何轴向之间的夹角θ的步骤包括:
S310,将所述永磁体坯料固定;
S320,用导磁材料制成磁性指针,将指针固定在所述永磁体坯料的几何中心附近,并使指针可自由旋转,指针停止时的方向即是所述永磁体坯料的磁场方向;
S330,标定所述磁场方向。
进一步的,一种高速转子的制造方法,所述高速转子包括轴一、轴二和电机磁芯;轴一包括不同孔径的第一内孔和第二内孔,第一内孔的孔径小于第二内孔的孔径,第一内孔对应的外圆周设置有第一轴承位;轴二包括不同直径的第一轴段和第二轴段,第一轴段的直径大于第二轴段的直径;所述轴二第一轴段设置有内孔;电机磁芯安装于轴一的第二内孔中,轴二第一轴段的一端穿过轴一第二内孔与该电机磁芯抵接;轴二第一轴段未插入第二内孔部位的外圆周设置有第二轴承位;所述高速转子的转速为150000rpm-160000rpm;
所述制造方法包括如下步骤:
S100、分别加工轴一、轴二和电机磁芯至预定尺寸;所述电机磁芯由上述的永磁体的充磁方法加工得到;
S200、装配、焊接:
S210、将制作得到的电机磁芯过盈热装入轴一的第二内孔;将所述轴二第一轴段插入所述第二内孔与所述电机磁芯抵接;
S220、使用焊接工艺焊接轴一和轴二的配合面;
S300、表面处理:
表面处理时间为1-60秒,完成在线微波表面处理,释放热应力,待转子冷 却到室温去应力后得粗成件;
S400、精加工:精加工至转子表面粗糙度为Ra0.05-0.2、同轴度为0.001-0.03mm;
S500、动平衡:
将精加工后的转子置于动平衡设备中,以第一轴承位和/或第二轴承位为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5。
进一步的,所述步骤S100中:
加工轴一的步骤包括:
SA110、将用于加工轴一的棒料去应力后粗加工外圆,第一轴承位留余量,所述余量满足后序组合加工需求;
SA120、精加工除第一轴承位外的其他外圆至尺寸;在工装辅具下,使用镗床精加工所述轴一两侧的内孔至尺寸;精加工两端装配端面至尺寸;
SA130、单件动平衡,对所述轴一进行动平衡,动平衡位取第二内孔处,所述动平衡转速低于所述高速转子的一阶临界转速,动平衡等级达到G0.4-2.5;
加工轴二的步骤包括:
SB110、将用于加工轴二的棒料去应力后粗加工外圆,第二轴承位留余量,所述余量满足后序组合加工需求;
SB120、精加工除第二轴承位外的其他外圆至尺寸;加工内孔至尺寸;精加工两端装配端面至尺寸;
SB130、精加工焊接面至尺寸;
SB140、单件动平衡,对所述轴二进行动平衡,动平衡位取内孔,所述动平衡转速低于所述高速转子的一阶临界转速,动平衡等级达到G0.4-2.5;
进一步的,所述步骤S400精加工的步骤包括:
S410、装夹:以电机磁芯对应的外圆作为装夹基准面定位夹紧,保证整个转子的装夹基准面与轴一右侧内孔的同轴度保持在0.001-0.03mm;
S420、高频波精加工:以装夹基准面为准,使用高频波表面处理工艺将歪曲度超过0.1mm和余量超过0.05mm的部分进行精加工,高频波精加工过程中,留余量,所述余量满足后序组合加工需求;去除部位包括第一轴承位、第二轴承位和焊接位;所述高频波的频率为0.1~1MHz;
S430、硬化处理:对整个转子进行硬化处理;
S440、精加工:精加工轴二的第二轴段至尺寸;
S450、整体精加工:使用精磨工艺一次性去除余量至尺寸,使得转子表面粗糙度为Ra0.05-0.2、同轴度为0.001-0.03mm。
进一步的,所述高速转子还包括推力盘,固定套接在所述轴一第二内孔对应的外圆的一端侧;
所述步骤S100中还包括加工推力盘至预定尺寸,包括如下步骤:
SC110、将用于加工推力盘的坯料去应力后粗加工;
SC120、精加工推力盘的内孔至尺寸,精加工后的内孔表面粗糙度为Ra0.2-Ra0.4,推力盘的盘端面留余量,所述余量满足后序组合加工需求;
SC130、单件动平衡,对所述推力盘进行动平衡,动平衡位取推力盘外圆周面,所述动平衡转速低于所述高速转子的一阶临界转速,所述动平衡等级达到G0.4-2.5;
进一步的,所述步骤S200中装配、焊接的步骤包括:
S210、将精加工后的电机磁芯过盈热装入轴一的第二内孔;将轴二的第一轴段插入轴一的第二内孔与所述电机磁芯抵接;将所述推力盘采用过盈热装的方式套接在所述轴一第二内孔对应的外圆的一端侧,所述推力盘的端侧与所述轴一第二内孔对应的外圆的端侧对齐;
S220、使用焊接工艺,在推力盘和轴一端对齐侧分别焊接推力盘和轴一的配合面,以及轴一和轴二的配合面;
进一步的,所述步骤S420中去除部位包括第一轴承位、第二轴承位、焊接位和推力盘的端面;
所述步骤S450中还包括使得推力盘与轴一的垂直度为0.001-0.03mm。
进一步的,所述高速转子还包括压气机、涡轮和锁紧螺母,压气机和涡轮依次固定套接在轴二的第二轴段并通过锁紧螺母紧固;
所述步骤S500动平衡包括如下步骤:
S510、将经过步骤S400的转子置于动平衡设备中,以第一轴承位和/或第二轴承位为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
S520、将单件动平衡后的压气机、涡轮和锁紧螺母依次固定套装在所述轴二上,并使用矩扳手拧紧;所述单件动平衡的压气机、涡轮和锁紧螺母的动平衡等级达到G0.4-2.5;
S530、使用电机或者气吹带动所述转子旋转,以第一轴承位和/或第二轴承位为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5。
进一步的,所述步骤S530包括:
S531、使用电机或者气吹带动转子升速至8000-12000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
S532、使用电机或者气吹带动转子升速至20000-25000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
S533、使用电机或者气吹带动转子升速至25000-60000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
S534、使用电机或者气吹带动转子升速至120000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
S535、使用电机或者气吹带动转子升速至全速并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5。
进一步的,所述动平衡等级选择为G1。
本发明与现有技术相比的优点在于:
本发明的上述技术方案具有如下有益的技术效果:
1、本发明的永磁体的充磁方法,检测永磁体的充磁方向,根据永磁体的充磁方向对永磁体坯料进行精加工,消除永磁体充磁方向偏差。
2、本发明的高速转子制造方法通过将粗加工、焊接、热套装配、热处理、精加工、表面处理、工装、测量和装夹控制等特殊工艺以特定方式、顺序和工艺要求的方式组合起来,实现高速转子的高精度和高成品率的生产。
附图说明
图1是本发明的永磁体坯料的充磁方向与轴向方向有夹角的结构示意图;
图2是本发明按照充磁方向加工永磁体坯料的结构示意图;
图3是本发明的实施例1的高速转子的结构示意图;
图4是本发明的实施例2的高速转子的结构示意图;
图5是本发明的实施例3的高速转子的结构示意图;
图6是本发明的实施例4的高速转子的结构示意图;
图7是本发明的轴一的结构示意图;
图8是本发明的轴二的结构示意图;
图9是本发明的推力盘的结构示意图;
图10是本发明的实施例1和2对应的装配结构示意图;
图11是本发明的实施例3和4对应的装配结构示意图;
图12是本发明的实施例1和2对应的装夹结构示意图;
图13是本发明的实施例3和4对应的装夹结构示意图。
附图标记:
1:轴一;2:轴二;3:压气机;4:涡轮;5:锁紧螺母;6:电机磁芯;7:推力盘;8:第一轴承位;9:第二轴承位;10:余量;11:焊接面;12:装夹基准面。
具体实施方式
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长 度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明的第一方面提供了一种永磁体的充磁方法,具体如图1和图2所示:
包括如下步骤:
S100,制作永磁体坯料,对所述坯料预留预定加工余量。
S200,对永磁体坯料充磁。
S300,检测永磁体坯料的充磁方向和永磁体坯料几何轴向之间的夹角θ。
具体的,步骤S300包括如下步骤:
S310,将所述永磁体坯料固定;
S320,用导磁材料制成磁性指针,将指针固定在所述永磁体坯料的几何中心附近,并使指针可自由旋转,指针停止时的方向即是所述永磁体坯料的磁场方向;
S330,标定所述磁场方向。
S400,根据所述夹角θ以检测到的充磁方向为轴向对所述永磁体坯料进行精加工,得到预定尺寸的永磁体,并使永磁体的充磁方向与永磁体的几何轴向平行。
由上述永磁体的充磁方法得到的永磁体,消除了充磁方向与轴向方向的偏差。
本发明的第二方面提供了一种高速转子的制造方法,该高速转子的转速为150000rpm-160000rpm,优选155000rpm,结构形式如图1-4所示。
实施例1
实施例1的高速转子结构如图3所示,包括轴一1和轴二2;轴一1包括不同孔径的第一内孔和第二内孔,其中,第一内孔的孔径小于第二内孔的孔径,第一内孔对应的外圆周设置有第一轴承位8;轴二2包括不同直径的第一轴段和第二轴段,第一轴段的直径大于第二轴段的直径;该高速转子的轴一1第二内孔中固定安装有电机磁芯6,轴二2第一轴段的一端穿过轴一1第二内孔与该电机磁芯6抵接且与轴一1的一端固定连接,轴二2第一轴段未插入第二内孔部位的外圆周设置有第二轴承位9。
优选的,轴二2第一轴段设置有内孔,以实现轻量化。
优选的,轴二2第一轴段插入轴一1第二内孔一端的部分的外径大于未插入轴一1第二内孔的外圆周的第二轴承位9部分的外径。
实施例2
实施例2的高速转子结构如图4所示,在实施例1的高速转子的结构基础上,还包括压气机3、涡轮4和锁紧螺母5,压气机3和涡轮4依次固定套接在轴二2的第二轴段并通过锁紧螺母5紧固。
优选的,所述压气机3和涡轮4之间设置有隔环(图中未示出),以加强转子刚度。
实施例3
实施例3的高速转子结构如图5所示,在实施例1的高速转子的结构基础上,还包括推力盘7,固定套接在所述轴一1第二内孔对应的外圆的一端侧。该推力盘7套接的位置与轴二2的第一轴段插入轴一1第二内孔部分的位置相对应。
实施例4
实施例4的高速转子结构如图6所示,在实施例3的高速转子的结构基础上,还包括压气机3、涡轮4和锁紧螺母5,压气机3和涡轮4依次固定套接在轴二2的第二轴段并通过锁紧螺母5紧固。
优选的,所述压气机3和涡轮4之间设置有隔环(图中未示出),以加强转子刚度。
如上述的高速转子的制造方法,具体包括如下步骤:
S100’、分别加工轴一1、轴二2和电机磁芯6,其中该电机磁芯6由如上所述的永磁体的充磁方法得到。
如图7所示,所述图7为轴一1的结构示意图,所述轴一1的加工方法包括如下步骤:
SA110、将用于加工轴一1的棒料去应力后粗加工外圆,第一轴承位8留余量,所述余量满足后序组合加工需求;
SA120、精加工除第一轴承位8外的其他外圆至尺寸;在工装辅具下,使用镗床精加工所述轴一1两侧的内孔至尺寸;精加工两端装配端面至尺寸;
SA130、单件动平衡,对所述轴一1进行动平衡,动平衡位取第二内孔处,所述动平衡转速低于所述高速转子的一阶临界转速,所述动平衡等级达到G0.4-2.5,优选G1。
如图8所示,所述图8为轴二2的结构示意图,所述轴二2的加工方法包括如下步骤:
SB110、将用于加工轴二2的棒料去应力后粗加工外圆,第二轴承位9留余量,所述余量满足后序组合加工需求;
SB120、精加工除第二轴承位9外的其他外圆至尺寸;加工内孔至尺寸;精加工两端装配端面至尺寸;
SB130、精加工焊接面11至尺寸;
SB140、单件动平衡,对所述轴二2进行动平衡,动平衡位取内孔,所述动 平衡转速低于所述高速转子的一阶临界转速,所述动平衡等级达到G0.4-2.5,优选G1。
进一步的,所述步骤S100’还包括加工推力盘7。
如图9所示,所述图9为推力盘的结构示意图,所述推力盘的加工方法包括如下步骤:
SC110、将用于加工推力盘7的坯料去应力后粗加工;
SC120、精加工内孔至尺寸,精加工后的内孔表面粗糙度为Ra0.2-Ra0.4,推力盘的盘端面留余量10,所述余量满足后序组合加工需求;
SC130、单件动平衡,对所述推力盘7进行动平衡,动平衡位取推力盘外圆周面,所述动平衡转速低于所述高速转子的一阶临界转速,所述动平衡等级达到G0.4-2.5,优选G1。
S200’、装配,焊接。具体的,包括如下步骤:
S210’、将精加工后的电机磁芯6过盈热装入第二内孔;将所述轴二2第一轴段插入所述第二内孔与所述电机磁芯6抵接;将所述推力盘7采用过盈热装的方式套接在所述轴一1第二内孔对应的外圆的一端侧,所述推力盘7的端侧与所述轴一1第二内孔对应的外圆的端侧对齐;
S220’、使用焊接工艺,优选激光焊在推力盘7和轴一1端对齐侧分别焊接推力盘7和轴一1的配合面,以及轴一1和轴二2的配合面,即附图11中的焊接面11。
其中,步骤S200’中,实施例1和实施例2对应的附图参见图10,实施例3和实施例4对应的附图参见图11。
S300’、表面处理
1-60秒,优选10秒,完成在线(不下装夹工装、不下流水线)微波表面处理,释放热应力,待转子冷却到室温去应力后得粗成件。
S400’、精加工
S410’、装夹
以电机磁芯6(无电机磁芯6的实施例按照轴一1第二内孔)对应的外圆作为装夹基准面12定位夹紧,保证整个转子的装夹基准面12与轴一1右侧内孔的同轴度保持在0.001-0.03mm,优选0.02mm。
其中,步骤S400’中,实施例1和实施例2对应的附图参见图12,实施例3和实施例4对应的附图参见图13。
S420’、高频波精加工
如图12-13所示的转子,其是一个有微观扭曲的转子。此刻以装夹基准面为准,使用高频波(0.1-1MHz)表面处理工艺将歪曲度超过0.1mm和余量超过0.05mm的部分加工,高频波精加工过程中,留余量,所述余量满足后序组合加工需求,上述去除部位为第一轴承位8、第二轴承位9、焊接位和推力盘7的端面等,进而提高整个转子的加工精度和表面粗糙度。
S430’、硬化处理
对整个转子进行硬化处理,以提高整个转子的表面粗糙度和硬度及抗疲劳性。
S440’、精加工
精加工轴二2第二轴段至尺寸,优选采用磨削工艺。
S450’、整体精加工
使用精磨工艺一次性去除余量至尺寸,保证转子表面粗糙度为Ra0.05-0.2、同轴度为0.001-0.03mm,推力盘7与轴一1的垂直度在0.001-0.03mm。
其中,所述精磨工艺采用专用砂轮模,所述专用砂轮模设置有内腔,所述内腔的内壁形状及尺寸与所述转子的设计外形及尺寸相同,将经过步骤S440的转子置于所述专用砂轮模内(此处先将转子对齐夹在精磨工装上,再整体置于专用砂轮模内),所述专用砂轮模的内腔精磨所述转子至尺寸。
优选的,步骤S100’-400’中,精加工步骤,每件检验尺寸。
S500’、动平衡
S510’、将经过步骤S450’的转子置于动平衡设备中,以第一轴承位8和 /或第二轴承位9为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1。
优选的,去除转子非工作面的量使用自动化激光除锈或0.1-1GHz高频波等非接触式工艺。
优选的,使用电机带动所述转子旋转进行动平衡试验,具体将电机的定子非接触的套接在电机磁芯6对应的外圆处,所述电机磁芯6作为电机的转子。
优选的,动平衡设备中,使用的电机和/或轴承为所述转子工作时原装配套的电机和/或轴承。进一步优选的,所述轴承为空气轴承。
优选的,非工作面包括但不限于轴一1的第一内孔,推力盘7的凸台。
S520’、将单件动平衡后的压气机3、涡轮4、锁紧螺母5依次固定套装在所述轴二2上,并使用矩扳手拧紧;所述单件动平衡的压气机3、涡轮4、锁紧螺母5的动平衡等级达到G0.4-2.5动平衡精度,优选G1。
S530’、使用电机或者气吹带动所述转子旋转,以第一轴承位8和/或第二轴承位9为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1。
优选的,使用电机带动所述转子旋转时,将电机的定子非接触的套接在电机磁芯6对应的外圆处,所述电机磁芯6作为电机的转子。
优选的,使用气吹带动所述转子旋转时,气体供给部件吹动所述涡轮4带动所述转子旋转。
优选的,转子非工作面包括但不限于轴一1第一内孔,推力盘7的凸台,锁紧螺母5,轴二2穿出锁紧螺母5的部分。
优选的,去除转子非工作面的量使用自动化激光除锈或0.1-1GHz高频波等非接触式工艺。
优选的,所述气动驱动部件为压气机3和涡轮4,将所述压气机3、涡轮4由右侧安装至所述转子系统后,使用锁紧螺母5锁紧。具体如图6所示。
优选的,所述压气机3和涡轮4之间设置有用于轴向定位的隔环(图中未 示出),所述压气机3、隔环、涡轮4、锁紧螺母5依次固定套装在所述轴二2上,并使用矩扳手拧紧;所述单件动平衡的压气机3、隔环、涡轮4、锁紧螺母5的动平衡等级达到G0.4-2.5动平衡精度,优选G1。
优选的,动平衡设备中,使用的电机和/或轴承为所述转子工作时原装配套的电机和/或轴承。
优选的,使用电机或者气吹带动所述转子旋转,以第一轴承位8和/或第二轴承位9为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1,包括如下步骤:
S531’、使用电机或者气吹带动转子升速至8000-12000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1;
S532’、使用电机或者气吹带动转子升速至20000-25000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1;
S533’、使用电机或者气吹带动转子升速至25000-60000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1;
S534’、使用电机或者气吹带动转子升速至120000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1;
S535’、使用电机或者气吹带动转子升速至全速并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5动平衡精度,优选G1。
综上所述,本发明提供了一种高速转子的制造方法,该高速转子包括轴一和轴二;轴一包括不同孔径的第一内孔和第二内孔;轴二包括不同直径的第一 轴段和第二轴段;轴二第一轴段的一端穿过轴一的第二内孔且与轴一的一端固定连接。该制造方法包括如下步骤:分别加工轴一和轴二至预定尺寸;装配、焊接轴一和轴二形成转子;对装配好的转子进行表面处理后精加工,使得转子表面粗糙度为Ra0.05-0.2、同轴度为0.001-0.03mm;最后动平衡,使动平衡等级达到G0.4~2.5。该方法能够制造高精度和高成品率的高速转子,且实现全自动化生产。
综上所述,本发明提供了一种永磁体的充磁方法及高速转子的制造方法,该充磁方法通过检测永磁体坯料的充磁方向与永磁体坯料几何轴向之间的夹角、并加工使其充磁方向与几何轴向平行,以消除永磁体充磁方向偏差,由此方法得到的永磁体作为电机磁芯应用到高速转子中,该永磁体的充磁方法作为高速转子的制造方法中的部分步骤,制造得出的高速转子具有高精度、高成品率的性能。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种永磁体的充磁方法,其特征在于,包括如下步骤:
    S100,制作永磁体坯料,对所述坯料预留预定加工余量;
    S200,对永磁体坯料充磁;
    S300,检测永磁体坯料的充磁方向和永磁体坯料几何轴向之间的夹角θ;
    S400,根据所述夹角θ以检测到的充磁方向为轴向对所述永磁体坯料进行精加工,得到预定尺寸的永磁体,并使永磁体的充磁方向与永磁体的几何轴向平行。
  2. 根据权利要求1所述的永磁体的充磁方法,其特征在于,所述S300检测永磁体坯料的充磁方向和永磁体坯料几何轴向之间的夹角θ的步骤包括:
    S310,将所述永磁体坯料固定;
    S320,用导磁材料制成磁性指针,将指针固定在所述永磁体坯料的几何中心附近,并使指针可自由旋转,指针停止时的方向即是所述永磁体坯料的磁场方向;
    S330,标定所述磁场方向。
  3. 一种高速转子的制造方法,其特征在于,所述高速转子包括轴一、轴二和电机磁芯;轴一包括不同孔径的第一内孔和第二内孔,第一内孔的孔径小于第二内孔的孔径,第一内孔对应的外圆周设置有第一轴承位;轴二包括不同直径的第一轴段和第二轴段,第一轴段的直径大于第二轴段的直径;所述轴二第一轴段设置有内孔;电机磁芯安装于轴一的第二内孔中,轴二第一轴段的一端穿过轴一第二内孔与该电机磁芯抵接;轴二第一轴段未插入第二内孔部位的外圆周设置有第二轴承位;所述高速转子的转速为150000rpm-160000rpm;
    所述制造方法包括如下步骤:
    S100、分别加工轴一、轴二和电机磁芯至预定尺寸;所述电机磁芯由如权利要求1或2所述的永磁体的充磁方法加工得到;
    S200、装配、焊接:
    S210、将制作得到的电机磁芯过盈热装入轴一的第二内孔;将所述轴二第一轴段插入所述第二内孔与所述电机磁芯抵接;
    S220、使用焊接工艺焊接轴一和轴二的配合面;
    S300、表面处理:
    表面处理时间为1-60秒,完成在线微波表面处理,释放热应力,待转子冷却到室温去应力后得粗成件;
    S400、精加工:精加工至转子表面粗糙度为Ra0.05-0.2、同轴度为0.001-0.03mm;
    S500、动平衡:
    将精加工后的转子置于动平衡设备中,以第一轴承位和/或第二轴承位为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5。
  4. 根据权利要求3所述的高速转子的制造方法,其特征在于,所述步骤S100中:
    加工轴一的步骤包括:
    SA110、将用于加工轴一的棒料去应力后粗加工外圆,第一轴承位留余量,所述余量满足后序组合加工需求;
    SA120、精加工除第一轴承位外的其他外圆至尺寸;在工装辅具下,使用镗床精加工所述轴一两侧的内孔至尺寸;精加工两端装配端面至尺寸;
    SA130、单件动平衡,对所述轴一进行动平衡,动平衡位取第二内孔处,所述动平衡转速低于所述高速转子的一阶临界转速,动平衡等级达到G0.4-2.5;
    加工轴二的步骤包括:
    SB110、将用于加工轴二的棒料去应力后粗加工外圆,第二轴承位留余量,所述余量满足后序组合加工需求;
    SB120、精加工除第二轴承位外的其他外圆至尺寸;加工内孔至尺寸;精加工两端装配端面至尺寸;
    SB130、精加工焊接面至尺寸;
    SB140、单件动平衡,对所述轴二进行动平衡,动平衡位取内孔,所述动平衡转速低于所述高速转子的一阶临界转速,动平衡等级达到G0.4-2.5;
  5. 根据权利要求3或4所述的高速转子的制造方法,其特征在于,
    所述步骤S400精加工的步骤包括:
    S410、装夹:以电机磁芯对应的外圆作为装夹基准面定位夹紧,保证整个转子的装夹基准面与轴一右侧内孔的同轴度保持在0.001-0.03mm;
    S420、高频波精加工:以装夹基准面为准,使用高频波表面处理工艺将歪曲度超过0.1mm和余量超过0.05mm的部分进行精加工,高频波精加工过程中,留余量,所述余量满足后序组合加工需求;去除部位包括第一轴承位、第二轴承位和焊接位;所述高频波的频率为0.1~1MHz;
    S430、硬化处理:对整个转子进行硬化处理;
    S440、精加工:精加工轴二的第二轴段至尺寸;
    S450、整体精加工:使用精磨工艺一次性去除余量至尺寸,使得转子表面粗糙度为Ra0.05-0.2、同轴度为0.001-0.03mm。
  6. 根据权利要求5所述的高速转子的制造方法,其特征在于,所述高速转子还包括推力盘,固定套接在所述轴一第二内孔对应的外圆的一端侧;
    所述步骤S100中还包括加工推力盘至预定尺寸,包括如下步骤:
    SC110、将用于加工推力盘的坯料去应力后粗加工;
    SC120、精加工推力盘的内孔至尺寸,精加工后的内孔表面粗糙度为Ra0.2-Ra0.4,推力盘的盘端面留余量,所述余量满足后序组合加工需求;
    SC130、单件动平衡,对所述推力盘进行动平衡,动平衡位取推力盘外圆周面,所述动平衡转速低于所述高速转子的一阶临界转速,所述动平衡等级达到G0.4-2.5;
  7. 根据权利要求6所述的高速转子的制造方法,其特征在于,
    所述步骤S200中装配、焊接的步骤包括:
    S210、将精加工后的电机磁芯过盈热装入轴一的第二内孔;将轴二的第一轴段插入轴一的第二内孔与所述电机磁芯抵接;将所述推力盘采用过盈热装的方式套接在所述轴一第二内孔对应的外圆的一端侧,所述推力盘的端侧与所述轴一第二内孔对应的外圆的端侧对齐;
    S220、使用焊接工艺,在推力盘和轴一端对齐侧分别焊接推力盘和轴一的配合面,以及轴一和轴二的配合面;
  8. 根据权利要求7所述的高速转子的制造方法,其特征在于,
    所述步骤S420中去除部位包括第一轴承位、第二轴承位、焊接位和推力盘的端面;
    所述步骤S450中还包括使得推力盘与轴一的垂直度为0.001-0.03mm。
  9. 根据权利要求8所述的高速转子的制造方法,其特征在于,还包括压气机、涡轮和锁紧螺母,压气机和涡轮依次固定套接在轴二的第二轴段并通过锁紧螺母紧固;
    所述步骤S500动平衡包括如下步骤:
    S510、将经过步骤S400的转子置于动平衡设备中,以第一轴承位和/或第二轴承位为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
    S520、将单件动平衡后的压气机、涡轮和锁紧螺母依次固定套装在所述轴二上,并使用矩扳手拧紧;所述单件动平衡的压气机、涡轮和锁紧螺母的动平衡等级达到G0.4-2.5;
    S530、使用电机或者气吹带动所述转子旋转,以第一轴承位和/或第二轴承位为基准进行动平衡,动平衡过程中,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5。
  10. 根据权利要求9所述的高速转子的制造方法,其特征在于,所述步骤S530包括:
    S531、使用电机或者气吹带动转子升速至8000-12000rpm并检测动平衡, 去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
    S532、使用电机或者气吹带动转子升速至20000-25000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
    S533、使用电机或者气吹带动转子升速至25000-60000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
    S534、使用电机或者气吹带动转子升速至120000rpm并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5;
    S535、使用电机或者气吹带动转子升速至全速并检测动平衡,去除转子非工作面的量以实现去除不平衡量,使动平衡等级达到G0.4-2.5。
PCT/CN2020/135907 2020-03-29 2020-12-11 一种永磁体的充磁方法及高速转子的制造方法 WO2021196728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010233104.2A CN111524681B (zh) 2020-03-29 2020-03-29 一种永磁体的充磁方法及高速转子的制造方法
CN202010233104.2 2020-03-29

Publications (1)

Publication Number Publication Date
WO2021196728A1 true WO2021196728A1 (zh) 2021-10-07

Family

ID=71902135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135907 WO2021196728A1 (zh) 2020-03-29 2020-12-11 一种永磁体的充磁方法及高速转子的制造方法

Country Status (2)

Country Link
CN (1) CN111524681B (zh)
WO (1) WO2021196728A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972798A (zh) * 2021-11-19 2022-01-25 珠海格力智能装备有限公司 一种转子定位装置及转子充磁设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524681B (zh) * 2020-03-29 2021-07-27 靳普 一种永磁体的充磁方法及高速转子的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204145A (ja) * 2000-01-20 2001-07-27 Fujitsu General Ltd 直流ブラシレスモータのロータ
CN101447273A (zh) * 2008-09-16 2009-06-03 宁波菲仕电机技术有限公司 克服永磁体磁偏角的方法及装置
CN105553145A (zh) * 2016-01-22 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN106208551A (zh) * 2016-07-28 2016-12-07 广东威灵电机制造有限公司 永磁电机的永磁体制造方法
CN108988534A (zh) * 2018-08-20 2018-12-11 中车永济电机有限公司 一种高速永磁电机转子及其加工方法
CN111482767A (zh) * 2020-03-29 2020-08-04 至玥腾风科技集团有限公司 一种高速转子的制造方法
CN111524681A (zh) * 2020-03-29 2020-08-11 至玥腾风科技集团有限公司 一种永磁体的充磁方法及高速转子的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891003A (zh) * 2011-07-20 2013-01-23 天津蹊径动力技术有限公司 同心环对置线圈式辐向永磁体取向、充磁装置
CN103078430A (zh) * 2012-12-31 2013-05-01 南京磁谷科技有限公司 一种转子永磁成环形均布的永磁电机
CN104493158B (zh) * 2014-12-23 2017-07-21 宁波科田磁业有限公司 降低烧结钕铁硼磁偏角的一种制备方法及其装置
CN105680593A (zh) * 2016-04-13 2016-06-15 上海信耀电子有限公司 一种伺服电机的转子结构
EP3385961B1 (de) * 2017-04-05 2021-09-01 Pfeiffer Vacuum Gmbh Monolithischer permanentmagnet
CN107301914A (zh) * 2017-08-22 2017-10-27 杭州象限科技有限公司 一种永磁体的充磁方法
CN207782528U (zh) * 2018-01-25 2018-08-28 博远机电(嘉兴)有限公司 转子组件及电机
CN208028678U (zh) * 2018-04-10 2018-10-30 广东威灵电机制造有限公司 转子铁芯、永磁电机转子和永磁电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204145A (ja) * 2000-01-20 2001-07-27 Fujitsu General Ltd 直流ブラシレスモータのロータ
CN101447273A (zh) * 2008-09-16 2009-06-03 宁波菲仕电机技术有限公司 克服永磁体磁偏角的方法及装置
CN105553145A (zh) * 2016-01-22 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN106208551A (zh) * 2016-07-28 2016-12-07 广东威灵电机制造有限公司 永磁电机的永磁体制造方法
CN108988534A (zh) * 2018-08-20 2018-12-11 中车永济电机有限公司 一种高速永磁电机转子及其加工方法
CN111482767A (zh) * 2020-03-29 2020-08-04 至玥腾风科技集团有限公司 一种高速转子的制造方法
CN111524681A (zh) * 2020-03-29 2020-08-11 至玥腾风科技集团有限公司 一种永磁体的充磁方法及高速转子的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972798A (zh) * 2021-11-19 2022-01-25 珠海格力智能装备有限公司 一种转子定位装置及转子充磁设备
CN113972798B (zh) * 2021-11-19 2023-02-21 珠海格力智能装备有限公司 一种转子定位装置及转子充磁设备

Also Published As

Publication number Publication date
CN111524681A (zh) 2020-08-11
CN111524681B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2021196727A1 (zh) 一种高速转子的制造方法
WO2021196728A1 (zh) 一种永磁体的充磁方法及高速转子的制造方法
CN207087406U (zh) 一种薄壁圆锥形舱段壳体快速自定心定位装置
US8601671B2 (en) Method of manufacturing permanent-magnet synchronous motor
US8539831B2 (en) Balance test indexing tool for balance-testing a rotor
CN103727144B (zh) 一种电动大巴电机的联轴器
CN110119553B (zh) 一种止口连接的航空发动机转子零件选配优化方法
JP2002166702A (ja) バランスが調整されたホイールおよびその製造方法
CN111283385A (zh) 一种超精密模具加工方法及超精密模具
US20130199292A1 (en) Balance Test Indexing Tool for Balance-Testing a Rotor
CN102921962B (zh) 一种航空发动机空心长轴壁厚差修正方法
CN110595320B (zh) 一种用于周向无基准的复材零件机械加工的方法
CN105773088B (zh) 压缩机分段式主轴连接销孔的加工方法
US10821527B2 (en) Method of manufacturing a crankshaft
CN109531157B (zh) 一种离心通风器全尺寸机加方法
CN212304911U (zh) 一种高速转子
CN113953763B (zh) 一种加工水电站返修主轴联轴孔的工艺方法
CN200954548Y (zh) 直结式主轴模组化机构
CN111375992B (zh) 一种大型高效舵桨壳体制造方法
Yang et al. Research on straightness error detection and quality control of multi-crankshaft bores for large medium speed engine block
CN114043182B (zh) 一种提高压气机整体铸造叶轮叶型校型及加工精度的方法
CN113028935B (zh) 一种圆周销孔位置度在线检测补偿方法
CN111106729A (zh) 一种电机定转子对轴装配方法
CN104227352B (zh) 一种高速卷绕头中高速旋转部件“卡盘轴光套”的生产制造工艺
CN104454027A (zh) 动力涡轮导向器的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928145

Country of ref document: EP

Kind code of ref document: A1