WO2021196564A1 - 一种宽功率电解水制氢系统及方法 - Google Patents
一种宽功率电解水制氢系统及方法 Download PDFInfo
- Publication number
- WO2021196564A1 WO2021196564A1 PCT/CN2020/121243 CN2020121243W WO2021196564A1 WO 2021196564 A1 WO2021196564 A1 WO 2021196564A1 CN 2020121243 W CN2020121243 W CN 2020121243W WO 2021196564 A1 WO2021196564 A1 WO 2021196564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- gas
- oxygen
- electrolysis
- separator
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/265—Drying gases or vapours by refrigeration (condensation)
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/65—Means for supplying current; Electrode connections; Electric inter-cell connections
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- the invention relates to the technical field of hydrogen production by electrolysis of water, in particular to a wide-power hydrogen production system by electrolysis of water.
- Hydrogen energy is a green and high-efficiency secondary energy source, which has broad application prospects in the fields of transportation, electricity, fuel and so on.
- hydrogen is mainly derived from hydrogen production from fossil fuels such as coal production and natural gas reforming.
- fossil fuels such as coal production and natural gas reforming.
- the production of hydrogen from fossil fuels has serious pollution and is limited by resource endowments.
- renewable energy such as wind power and photovoltaics
- the use of renewable energy to electrolyze water to produce hydrogen provides a green, low-carbon, low-cost, and sustainable production method for hydrogen energy.
- the purpose of the present invention is to provide a wide-power electrolysis hydrogen production system and method, which are used to solve the stable electrolysis hydrogen production operation under the power of a fluctuating power supply.
- a wide-power electrolysis water hydrogen production system including a rectifier transformer, an electrolytic cell, a gas-liquid separator, a gas cooler and a gas drip trap;
- the fluctuating power supply is connected to the electrolytic cell through a rectifier transformer to supply power to the electrolytic cell;
- the gas-liquid separator includes a hydrogen separator and an oxygen separator
- the gas cooler includes a hydrogen cooler and an oxygen cooler
- the gas trap includes a hydrogen trap and an oxygen trap
- the electrolytic cell The catholyte outlet is in communication with the hydrogen separator of the gas-liquid separator, and the anolyte outlet of the electrolytic cell is in communication with the oxygen separator of the gas-liquid separator.
- the air outlet is in communication with the air inlet of the hydrogen cooler, the air outlet of the oxygen separator is in communication with the air inlet of the oxygen cooler, and the air outlet of the hydrogen cooler is in communication with the hydrogen trap.
- the air inlets of the oxygen cooler are in communication with each other, and the air outlet of the oxygen cooler and the air inlet of the oxygen drip trap are in communication with each other.
- the fluctuating power source includes wind power or photovoltaic.
- the electrolyte residual solution outlet of the gas-liquid separator is connected to the infusion port of the electrolytic tank through the electrolyte heat exchanger, and is used for the recycling of the electrolyte.
- a water replenishing device is provided on the pure water replenishing port of the gas-liquid separator.
- a circulating cooling system which performs heat exchange with the gas cooler and the electrolyte heat exchanger respectively.
- the circulating cooling system is a liquid circulating cooling system or a gas circulating cooling system.
- an electrolytic cell controller is provided on the electrolytic cell for controlling the operating current, pressure, temperature, gas purity, electrolyte flow rate, and liquid level of the electrolytic cell.
- the electrolytic cell is an alkaline water electrolytic cell or a solid polymer electrolytic cell.
- the number of the electrolytic tanks is one or more, and a parallel mode is adopted when there are multiple electrolytic tanks.
- a method for producing hydrogen by electrolysis of water with wide power including:
- Wind power or photovoltaic power is converted into direct current that can be used for water electrolysis through a rectifier transformer.
- the electrolyzer adopts alkaline electrolyzed water electrolyzer.
- the total hydrogen production scale is X Nm 3 /h. It adopts the mode of two electrolyzers in parallel.
- the hydrogen production scale of the cell is X1Nm 3 /H and X2Nm 3 /H, where X1 ⁇ X2; the electrolytic cell controller determines the output of the electrolytic cell according to the output of wind power or photovoltaic: when the required hydrogen production is greater than X1Nm 3 /h
- the electrolytic cell controller determines the output of the electrolytic cell according to the output of wind power or photovoltaic: when the required hydrogen production is greater than X1Nm 3 /h
- the latter hydrogen enters the hydrogen trap of the gas trap to remove water vapor, and the hydrogen at the outlet of the hydrogen trap is collected, purified or utilized; the electrolyte from the anodes of the two electrolysis cells is collected into the oxygen separator of the gas-liquid separator. After the oxygen escapes from the oxygen separator, it enters the oxygen cooler of the gas cooler for cooling. The cooled oxygen enters the oxygen trap of the gas trap to remove water vapor, and the oxygen at the outlet of the oxygen trap is collected, purified or utilized ; The remaining electrolyte after the gas escapes from the gas-liquid separator circulates through the electrolyte heat exchanger for cooling, and circulates back to the electrolytic tank.
- a method for producing hydrogen by electrolysis of water with wide power including:
- Wind power or photovoltaic power is converted into direct current that can be used for electrolysis of water through a rectifier transformer.
- the electrolyzer adopts alkaline electrolyzed water electrolyzer.
- the total hydrogen production scale is 1000Nm 3 /h. It adopts the mode of two electrolyzers in parallel, each electrolyzer
- the hydrogen production scale is 500Nm 3 /h, and the minimum hydrogen production capacity of each electrolyzer is 200Nm 3 /h.
- the electrolyzer controller determines the output of the electrolyzer according to the output of wind power or photovoltaic: when the required hydrogen production reaches 1000Nm At 3 /h, both electrolysis cells are running at full power.
- the electrolyte from the cathodes of the two electrolysis cells is fed into the hydrogen separator of the gas-liquid separator. After the hydrogen escapes from the hydrogen separator, it enters the hydrogen cooling of the gas cooler. The cooled hydrogen enters the hydrogen drip trap of the gas drip trap to remove water vapor, and the hydrogen at the outlet of the hydrogen trap is collected, purified or utilized; the electrolyte from the anodes of the two electrolytic cells is collected into the gas-liquid separator
- the oxygen separator after the oxygen escapes from the oxygen separator, enters the oxygen cooler of the gas cooler for cooling. The cooled oxygen enters the oxygen trap of the gas trap to remove water vapor, and the oxygen at the outlet of the oxygen trap is carried out. Collection, purification or utilization; the remaining electrolyte after the gas escapes from the gas-liquid separator is circulated through the electrolyte heat exchanger for cooling, and is circulated back to the electrolytic tank.
- a method for producing hydrogen by electrolysis of water with wide power including:
- Wind power or photovoltaic power is converted into direct current that can be used for water electrolysis through a rectifier transformer.
- the electrolyzer adopts alkaline electrolyzed water electrolyzer.
- the total hydrogen production scale is X Nm 3 /h. It adopts the mode of two electrolyzers in parallel.
- the hydrogen production scale of the cell is X1Nm 3 /H and X2Nm 3 /H, where X1 ⁇ X2; the electrolytic cell controller determines the output of the electrolytic cell according to the output of wind power and photovoltaic: when the required hydrogen production reaches X3Nm 3 /h When, X1 ⁇ X2 ⁇ X3; one electrolytic cell stops running, the other electrolytic cell hydrogen production output X3Nm 3 /h, the stopped electrolytic cell, the electrolyte no longer circulates, at the same time, the electrolytic current is adjusted to zero, the running electrolytic cell In the gas-liquid separator, the electrolyte flowing out of the cathode flows into the hydrogen separator of the gas-liquid separator.
- the hydrogen After the hydrogen escapes from the hydrogen separator, it enters the hydrogen cooler of the gas cooler for cooling.
- the cooled hydrogen enters the hydrogen trap of the gas droplet trap.
- the dropper removes water vapor, and the hydrogen at the outlet of the hydrogen droplet trap is collected, purified or utilized; in the operating electrolyzer, the electrolyte flowing out of the anode flows into the oxygen separator of the gas-liquid separator, and the oxygen escapes in the oxygen separator Enter the oxygen cooler of the gas cooler for cooling, the cooled oxygen enters the oxygen droplet of the gas droplet to remove water vapor, the oxygen at the outlet of the oxygen droplet is collected, purified or used, and the gas in the gas-liquid separator escapes Afterwards, the remaining electrolyte is circulated through the electrolyte heat exchanger for cooling, and circulated back to the electrolytic tank.
- a method for producing hydrogen by electrolysis of water with wide power including:
- Wind power or photovoltaic power is converted into direct current that can be used for electrolysis of water through a rectifier transformer.
- the electrolyzer adopts alkaline electrolyzed water electrolyzer.
- the total hydrogen production scale is 1000Nm 3 /h. It adopts the mode of two electrolyzers in parallel, each electrolyzer
- the hydrogen production scale is 500Nm 3 /h
- the minimum hydrogen production capacity of each electrolytic cell is 200Nm 3 /h.
- the electrolyzer controller determines the output of the electrolytic cell according to the output of wind power and photovoltaic: when the required hydrogen production reaches 200Nm At 3 /h, one electrolysis cell stops running, and the other electrolysis cell produces 200Nm 3 /h of hydrogen production.
- the stopped electrolysis cell will no longer circulate the electrolyte.
- the electrolysis current is adjusted to zero.
- the cathode The outflowing electrolyte flows into the hydrogen separator of the gas-liquid separator. After the hydrogen escapes from the hydrogen separator, it enters the hydrogen cooler of the gas cooler for cooling. The cooled hydrogen enters the hydrogen droplet of the gas dropper for removal. Water vapor and hydrogen at the exit of the hydrogen drip trap are collected, purified or utilized; in the operating electrolyzer, the electrolyte flowing out of the anode enters the oxygen separator of the gas-liquid separator, and the oxygen enters the gas cooling after escaping from the oxygen separator The oxygen cooler of the gas-liquid separator is used for cooling.
- the cooled oxygen enters the oxygen-dropper of the gas-dropper to remove water vapor.
- the oxygen at the outlet of the oxygen-dropper is collected, purified or utilized.
- the remaining gas in the gas-liquid separator The electrolyte circulates through the electrolyte heat exchanger for cooling, and circulates back to the electrolytic tank.
- the present invention uses a rectifier transformer to adjust the fluctuating power supply to a stable DC power supply, and then supplies power to the electrolyzer, so that the electrolyzer can effectively use renewable energy to electrolyze water to produce hydrogen, which reduces the production cost while increasing Work efficiency, can continuously electrolyze water to produce hydrogen, and the gas-liquid separator, gas cooler, and gas drip trap included in the present invention can separately cool and dry the hydrogen and oxygen generated by the electrolyzed water, and finally obtain High purity hydrogen and oxygen.
- the residual electrolyte outlet of the gas-liquid separator is connected to the infusion port of the electrolyzer through the electrolyte heat exchanger, and the electrolyte heat exchanger can The electrolyte is subjected to heat exchange due to the high temperature generated by the electrolysis reaction, and then the electrolyte can be adjusted for secondary utilization.
- a water replenishment device is installed on the pure water replenishment port of the gas-liquid separator, and the water replenishment device is used to replenish pure water in the gas-liquid separator to ensure the normal operation of the equipment.
- the present invention connects the gas cooler and the electrolyte heat exchanger to the circulating cooling system for heating. exchange.
- the cooling medium of the circulating cooling system is liquid or gas.
- an electrolytic cell controller is installed on the electrolytic cell.
- the electrolyzer is an alkaline water electrolyzer or a solid polymer electrolyzer.
- the present invention broadens the power operation range of the electrolyzed water hydrogen production system through the parallel connection of multiple electrolyzers and the independent control of single electrolyzers, and can use variable power sources such as renewable energy to electrolyze hydrogen, and through multiple electrolyzers
- the method of sharing the gas-liquid separator, gas cooler, and gas drip trap reduces the complexity and cost of the hydrogen production system.
- Figure 1 is a schematic diagram of the present invention.
- 1-rectifier transformer 2-electrolyte tank, 3-gas-liquid separator, 4-gas cooler, 5-gas drip trap, 6-electrolyte heat exchanger, 7-circulation cooling system, 8-water supplement device , 9-Electrolyzer controller.
- a wide-power hydrogen production system by electrolysis of water includes a rectifier transformer 1, an electrolytic cell 2.
- the rectifier transformer 1 converts alternating current into direct current and then passes it into the electrolytic cell 2, and also includes a gas-liquid separator 3, gas Cooler 4, gas trap 5, rectifier transformer 1 is connected to a fluctuating power supply, fluctuating power supply includes wind power or photovoltaic, gas-liquid separator 3 includes a hydrogen separator and an oxygen separator, gas cooler 4 includes a hydrogen cooler and The oxygen cooler, the gas drip trap 5 includes a hydrogen drip trap and an oxygen drip trap, the catholyte outlet of the electrolytic cell 2 is connected with the hydrogen separator of the gas-liquid separator 3, and the anolyte of the electrolytic cell 2
- the liquid outlet is connected with the oxygen separator of the gas-liquid separator 3, the gas outlet of the hydrogen separator is connected with the gas inlet of the hydrogen cooler, and the gas outlet of the oxygen separator is connected with the gas inlet of the oxygen cooler.
- the outlet of the hydrogen cooler is connected with the inlet of the hydrogen trap, and the outlet of the oxygen cooler is connected with the inlet of the oxygen trap.
- the outlet of the hydrogen trap discharges dry hydrogen
- the oxygen trap The air outlet of the dropper discharges dry oxygen
- the electrolyte residual liquid outlet of the gas-liquid separator 3 is connected to the infusion port of the electrolytic tank 2 through the electrolyte heat exchanger 6 for the recycling of the electrolyte.
- the gas-liquid separator 3 A water replenishment device 8 is provided on the pure water replenishment port of the present invention.
- the present invention also includes a circulating cooling system 7.
- the circulating cooling system 7 exchanges heat with the gas cooler 4 and the electrolyte heat exchanger 6 respectively.
- the cooling medium of the circulating cooling system 7 adopts liquid or
- the electrolysis cell 2 is equipped with an electrolysis cell controller 9 for controlling the operating current, pressure, temperature, gas purity, electrolyte flow, and liquid level of the electrolysis cell 2.
- the electrolysis cell 2 is an alkaline water electrolysis cell or a solid polymer
- the number of electrolytic cells 2 is one or more, and the parallel mode is adopted when there are multiple electrolytic cells.
- Electrolyzer 2 is one of alkaline water electrolyzers or solid polymer electrolyzers; the number of electrolyzers 2 is one or more, and when multiple electrolyzers are used in parallel mode, each electrolyzer can operate independently; 2 When the parallel mode is adopted, a set of gas-liquid separator 3, gas cooler 4, gas drip trap 5, electrolyte heat exchanger 6, circulating cooling system 7, water replenishment device 8, and electrolyzer controller 9 are shared.
- wind power or photovoltaic power is converted into direct current that can be used for water electrolysis through the rectifier transformer 1.
- the electrolysis cell 2 adopts an alkaline electrolysis water electrolysis cell, the total hydrogen production scale is 1000Nm 3 /h, and two electrolysis cells are used. In parallel mode, the hydrogen production scale of each electrolysis cell is 500Nm 3 /h, and the minimum hydrogen production capacity of each electrolysis cell is 200Nm 3 /h.
- the electrolysis cell controller 9 determines the output of the electrolysis cell according to the output of wind power or photovoltaic power.
- the oxygen After the oxygen escapes from the oxygen separator, it enters the oxygen cooler of the gas cooler 4 for cooling, and the cooled oxygen enters the gas trap.
- the oxygen drip trap of the dripper 5 removes water vapor, and the oxygen at the outlet of the oxygen drip trap can be collected, purified or utilized.
- the electrolyte remaining after the gas escapes from the gas-liquid separator 3 circulates through the electrolyte heat exchanger 6 for cooling, and circulates back to the electrolytic cell 2.
- the circulating cooling system 7 uses water as a cooling medium, and the cooling medium is passed into the electrolyte heat exchanger 6 and the gas cooler 3 to cool the electrolyte and gas respectively. Water is consumed in the electrolysis process, and the water supplement device 8 supplements the gas-liquid separator 3 with pure water.
- wind power or photovoltaic power is converted into direct current that can be used for water electrolysis through a rectifier transformer 1.
- the electrolysis cell 2 uses an alkaline electrolysis water electrolysis cell.
- the total hydrogen production scale is 1000Nm 3 /h, and two electrolysis cells are used. In parallel mode, the hydrogen production scale of each electrolysis cell is 500Nm 3 /h, and the minimum hydrogen production capacity of each electrolysis cell is 200Nm 3 /h.
- the electrolysis cell controller 9 determines the output of the electrolysis cell according to the output of wind power and photovoltaic power.
- the electrolyte flowing out of the anode flows into the oxygen separator of the gas-liquid separator 3.
- the oxygen cooler of the gas cooler 4 for cooling, and the cooled oxygen enters
- the oxygen trap of the gas trap 5 removes water vapor, and the oxygen at the outlet of the oxygen trap can be collected, purified or utilized.
- the electrolyte remaining after the gas escapes from the gas-liquid separator 3 circulates through the electrolyte heat exchanger 6 The temperature is lowered and circulated back to the electrolytic cell 2.
- the circulating cooling system 7 uses water as the cooling medium, and the cooling medium is passed into the electrolyte heat exchanger 6 and the gas cooler 3 to cool the electrolyte and gas respectively. Water is consumed in the electrolysis process, and the water supplement device 8 supplements the gas-liquid separator 3 with pure water.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
一种宽功率电解水制氢系统及方法,包括整流变压器(1)、电解槽(2),所述整流变压器(1)将将交流电转化为直流电后通入电解槽(2),还包括气液分离器(3)、气体冷却器(4)、气体捕滴器(5),所述整流变压器(1)与波动性电源连接,所述气液分离器(3)包括氢气分离器和氧气分离器,所述气体冷却器(4)包括氢气冷却器和氧气冷却器,所述气体捕滴器(5)包括氢气捕滴器和氧气捕滴器,所述电解槽(2)的阴极电解液出液口与所述气液分离器(3)的氢气分离器相互连通,所述电解槽(2)的阳极电解液出液口与气液分离器(3)的氧气分离器相互连通。上述系统及方法能够有效解决目前的电解水制氢系统功率可调范围有限,宽功率波动期间系统压力调节等响应能力不足的问题。
Description
本发明涉及电解水制氢技术领域,具体涉及一种宽功率电解水制氢系统。
氢能是一种绿色、高效的二次能源,在交通、电力、燃料等领域具有广阔的应用前景。目前,氢气主要来源于煤制氢、天然气重整制氢等化石燃料制氢,然而化石燃料制氢存在污染严重、受限于资源禀赋等问题。随着风电、光伏等可再生能源的大规模发展,利用可再生能源电解水制氢为氢能提供了绿色、低碳、低成本、可持续的生产方式。
然而由于风电、光伏等电源的波动性,对电解水制氢系统的耐功率波动范围和系统控制提出了更高的要求。现有电解水制氢系统功率可调范围有限,宽功率波动期间系统压力调节等响应能力不足,并且低功率条件下气体纯度下降。
发明内容
为了解决上述问题,本发明的目的在于提供一种宽功率电解水制氢系统及方法,用于解决波动性电源供电下的稳定电解制氢工作。
本发明为实现上述目的,所采用的技术方案为:
一种宽功率电解水制氢系统,包括整流变压器、电解槽、气液分离器、气体冷却器和气体捕滴器;
波动性电源通过整流变压器连接电解槽,用于向电解槽供电;
所述气液分离器包括氢气分离器和氧气分离器,所述气体冷却器包括氢气冷却器和氧气冷却器,所述气体捕滴器包括氢气捕滴器和氧气捕滴器,所述电解槽的阴极电解液出液口与所述气液分离器的氢气分离器相互连通,所述电解槽的阳极电解液出液口与气液分离器的氧气分 离器相互连通,所述氢气分离器的出气口与所述氢气冷却器的进气口相互连通,所述氧气分离器的出气口与所述氧气冷却器的进气口相互连通,所述氢气冷却器的出气口与所述氢气捕滴器的进气口相互联通,所述氧气冷却器的出气口与所述氧气捕滴器的进气口相互联通。
进一步的,所述波动性电源包括风电或光伏。
进一步的,所述气液分离器的电解液残液出口通过电解液换热器与所述电解槽的输液口连通,用于电解液的循环利用。
进一步的,所述气液分离器的纯水补液口上设置补水装置。
进一步的,还包括循环冷却系统,所述循环冷却系统分别与所述气体冷却器和电解液换热器进行热交换。
进一步的,所述循环冷却系统为液体循环冷却系统或气体循环冷却系统。
进一步的,所述电解槽上设置有电解槽控制器,用于控制所述电解槽的运行电流、压力、温度、气体纯度、电解液流量、液位。
进一步的,所述电解槽为碱性水电解槽或固体聚合物电解槽。
进一步的,所述电解槽的数量为一个或多个,多个电解槽时采用并联模式。
一种宽功率电解水制氢方法,包括:
风电或光伏作为电源经过整流变压器转换为可用于电解水的直流电,电解槽采用碱性电解水电解槽,总制氢规模为X Nm
3/h,采用两个电解槽并联的模式,两个电解槽的制氢规模分别为X1Nm
3/H和X2Nm
3/H,其中X1≥X2;电解槽控制器根据风电或光伏的出力情况确定电解槽的出力情况:当需要产氢量大于X1Nm
3/h时,两个电解槽均运行,两个电解槽阴极流出的电解液汇入气液分离器的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器的氢气捕滴器去除水汽,氢气捕滴器出口的氢气进行收集、纯化或利用;两个电解槽阳极流出的电解液汇入气液分离器的氧气分离器,氧气在氧气 分离器中逸出后进入气体冷却器的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器的氧气捕滴器去除水汽,氧气捕滴器出口的氧气进行收集、纯化或利用;气液分离器中气体逸出后剩余的电解液循环经过电解液换热器进行降温,并循环回到电解槽。
一种宽功率电解水制氢方法,包括:
风电或光伏作为电源经过整流变压器转换为可用于电解水的直流电,电解槽采用碱性电解水电解槽,总制氢规模为1000Nm
3/h,采用两个电解槽并联的模式,每个电解槽的制氢规模为500Nm
3/h,每个电解槽的最低制氢能力为200Nm
3/h,电解槽控制器根据风电或光伏的出力情况确定电解槽的出力情况:当需要产氢量达到1000Nm
3/h时,两个电解槽均满功率运行,两个电解槽阴极流出的电解液汇入气液分离器的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器的氢气捕滴器去除水汽,氢气捕滴器出口的氢气进行收集、纯化或利用;两个电解槽阳极流出的电解液汇入气液分离器的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器的氧气捕滴器去除水汽,氧气捕滴器出口的氧气进行收集、纯化或利用;气液分离器中气体逸出后剩余的电解液循环经过电解液换热器进行降温,并循环回到电解槽。
一种宽功率电解水制氢方法,包括:
风电或光伏作为电源经过整流变压器转换为可用于电解水的直流电,电解槽采用碱性电解水电解槽,总制氢规模为X Nm
3/h,采用两个电解槽并联的模式,两个电解槽的制氢规模分别为X1Nm
3/H和X2Nm
3/H,其中X1≥X2;电解槽控制器根据风电、光伏的出力情况确定电解槽的出力情况:当需要产氢量达到X3Nm
3/h时,X1≥X2≥X3;一个电解槽停止运行,另一个电解槽制氢出力X3Nm
3/h,停止运行的电解槽,电解液不再循环,同时,电解电流调为零,运行的电解槽中,阴极流出的电解液汇入气液分离器的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器的氢气捕滴器去除水汽, 氢气捕滴器出口的氢气进行收集、纯化或利用;运行的电解槽中,阳极流出的电解液汇入气液分离器的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器的氧气捕滴器去除水汽,氧气捕滴器出口的氧气进行收集、纯化或利用,气液分离器中气体逸出后剩余的电解液循环经过电解液换热器进行降温,并循环回到电解槽。
一种宽功率电解水制氢方法,包括:
风电或光伏作为电源经过整流变压器转换为可用于电解水的直流电,电解槽采用碱性电解水电解槽,总制氢规模为1000Nm
3/h,采用两个电解槽并联的模式,每个电解槽的制氢规模为500Nm
3/h,每个电解槽的最低制氢能力为200Nm
3/h,电解槽控制器根据风电、光伏的出力情况确定电解槽的出力情况:当需要产氢量达到200Nm
3/h时,一个电解槽停止运行,另一个电解槽制氢出力200Nm
3/h,停止运行的电解槽,电解液不再循环,同时,电解电流调为零,运行的电解槽中,阴极流出的电解液汇入气液分离器的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器的氢气捕滴器去除水汽,氢气捕滴器出口的氢气进行收集、纯化或利用;运行的电解槽中,阳极流出的电解液汇入气液分离器的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器的氧气捕滴器去除水汽,氧气捕滴器出口的氧气进行收集、纯化或利用,气液分离器中气体逸出后剩余的电解液循环经过电解液换热器进行降温,并循环回到电解槽。
本发明的有益效果是:
(1)本发明通过整流变压器将波动性电源调节为稳定的直流电源后,向电解槽供电,使得电解槽能够有效地利用可再生能源进行电解水制氢,降低了生产成本的同时,提高了工作效率,能够不间断的持续进行电解水制氢,而本发明包含的气液分离器、气体冷却器、气体捕滴 器,能够对电解水产生的氢气和氧气分别进行冷却、干燥,最终得到高纯度的氢气和氧气。
(2)为了能够实现电解液的循环使用,进一步降低生产成本,气液分离器的电解液残液出口通过电解液换热器与所电解槽的输液口连通,而电解液换热器又能够将电解液由于电解反应产生的高温,进行热交换,继而使得电解液能够达到二次利用的调节。
(3)由于电解过程中会消耗水,因此,气液分离器的纯水补液口上设置补水装置,利用补水装置向气液分离器中补充纯水,继而保证设备的正常运行。
(4)为了使电解液换热器和气体冷却器能够快速降温,避免由于温度过高,影响设备运转,因此,本发明分别在气体冷却器和电解液换热器上连接循环冷却系统进行热交换。
(5)为了提高工作效率,降低设备维护难度,提高设备的可操作性,循环冷却系统的冷却介质采用液体或气体。
(6)为了实时控制并掌握电解槽的运行电流、压力、温度、气体纯度、电解液流量、液位情况,电解槽上设置有电解槽控制器。
(7)为了提高设备的工作效率,降低设备维护难度和运行成本,提高设备的可操作性,电解槽为碱性水电解槽或固体聚合物电解槽。
(8)本发明通过多电解槽并联、单电解槽独立控制的方式,拓宽了电解水制氢系统的功率运行区间,能够利用可再生能源等波动性电源进行电解制氢,并且通过多电解槽共用气液分离器、气体冷却器、气体捕滴器的方式,降低了制氢系统的复杂度和成本。
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的原理图。
其中,1-整流变压器、2-电解槽、3-气液分离器、4-气体冷却器、5-气体捕滴器、6- 电解液换热器、7-循环冷却系统、8-补水装置、9-电解槽控制器。
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
如图1所示,一种宽功率电解水制氢系统,包括整流变压器1、电解槽2,整流变压器1将将交流电转化为直流电后通入电解槽2,还包括气液分离器3、气体冷却器4、气体捕滴器5,整流变压器1与波动性电源连接,波动性电源包括风电或光伏,气液分离器3包括氢气分离器和氧气分离器,气体冷却器4包括氢气冷却器和氧气冷却器,气体捕滴器5包括氢气捕滴器和氧气捕滴器,电解槽2的阴极电解液出液口与气液分离器3的氢气分离器相互连通,电解槽2的阳极电解液出液口与气液分离器3的氧气分离器相互连通,氢气分离器的出气口与氢气冷却器的进气口相互连通,氧气分离器的出气口与氧气冷却器的进气口相互连通,氢气冷却器的出气口与氢气捕滴器的进气口相互联通,氧气冷却器的出气口与氧气捕滴器的进气口相互联通,氢气捕滴器的出气口排出干燥的氢气,氧气捕滴器的出气口排出干燥的氧气,气液分离器3的电解液残液出口通过电解液换热器6与电解槽2的输液口连通,用于电解液的循环利用,气液分离器3的纯水补液口上设置补水装置8,本发明还包括循环冷却系统7,循环冷却系统7分别与气体冷却器4和电解液换热器6进行热交换,循环冷却系统7的冷却介质采用液体或气体,电解槽2上设置有电解槽控制器9,用于控制电解槽2的运行电流、压力、温度、气体纯度、电解液流量、液位,电解槽2为碱性水电解槽或固体聚合物电解槽,电解槽2的数量为一个或多个,多个电解槽时采用并联模式。
电解槽2为碱性水电解槽或固体聚合物电解槽中的一种;电解槽2的数量为一个或多个,多个电解槽时采用并联模式,每个电解槽可以独立运行;电解槽2采用并联模式时,共用一套气液分离器3、气体冷却器4、气体捕滴器5、电解液换热器6、循环冷却系统7、补水装置8、电解槽控制器9。
实施例1
本发明在运行时,风电或光伏作为电源经过整流变压器1转换为可用于电解水的直流电,电解槽2采用碱性电解水电解槽,总制氢规模为1000Nm
3/h,采用两个电解槽并联的模式,每个电解槽的制氢规模为500Nm
3/h,每个电解槽的最低制氢能力为200Nm
3/h,电解槽控制器9根据风电或光伏的出力情况确定电解槽的出力情况:当需要产氢量达到1000Nm
3/h时,两个电解槽2均满功率运行,两个电解槽2阴极流出的电解液汇入气液分离器3的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器4的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器5的氢气捕滴器去除水汽,氢气捕滴器出口的氢气可进行收集、纯化或利用。两个电解槽2阳极流出的电解液汇入气液分离器3的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器4的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器5的氧气捕滴器去除水汽,氧气捕滴器出口的氧气可进行收集、纯化或利用。气液分离器3中气体逸出后剩余的电解液循环经过电解液换热器6进行降温,并循环回到电解槽2。循环冷却系统7采用水作为冷却介质,冷却介质通入电解液换热器6和气体冷却器3,分别对电解液和气体进行降温。电解过程中会消耗水,补水装置8向气液分离器3中补充纯水。
实施例2
如图1所示,风电或光伏作为电源经过整流变压器1转换为可用于电解水的直流电,电解槽2采用碱性电解水电解槽,总制氢规模为1000Nm
3/h,采用两个电解槽并联的模式,每个电解槽的制氢规模为500Nm
3/h,每个电解槽的最低制氢能力为200Nm
3/h,电解槽控制器9根据风 电、光伏的出力情况确定电解槽的出力情况:当需要产氢量达到200Nm
3/h时,一个电解槽2停止运行,另一个电解槽2制氢出力200Nm
3/h,停止运行的电解槽2,电解液不再循环,同时,电解电流调为零,运行的电解槽2中,阴极流出的电解液汇入气液分离器3的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器4的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器5的氢气捕滴器去除水汽,氢气捕滴器出口的氢气可进行收集、纯化或利用。运行的电解槽2中,阳极流出的电解液汇入气液分离器3的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器4的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器5的氧气捕滴器去除水汽,氧气捕滴器出口的氧气可进行收集、纯化或利用,气液分离器3中气体逸出后剩余的电解液循环经过电解液换热器6进行降温,并循环回到电解槽2,循环冷却系统7采用水作为冷却介质,冷却介质通入电解液换热器6和气体冷却器3,分别对电解液和气体进行降温。电解过程中会消耗水,补水装置8向气液分离器3中补充纯水。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。
Claims (10)
- 一种宽功率电解水制氢系统,其特征在于:包括整流变压器(1)、电解槽(2)、气液分离器(3)、气体冷却器(4)和气体捕滴器(5);波动性电源通过整流变压器(1)连接电解槽(2),用于向电解槽(2)供电;所述气液分离器(3)包括氢气分离器和氧气分离器,所述气体冷却器(4)包括氢气冷却器和氧气冷却器,所述气体捕滴器(5)包括氢气捕滴器和氧气捕滴器,所述电解槽(2)的阴极电解液出液口与所述气液分离器(3)的氢气分离器相互连通,所述电解槽(2)的阳极电解液出液口与气液分离器(3)的氧气分离器相互连通,所述氢气分离器的出气口与所述氢气冷却器的进气口相互连通,所述氧气分离器的出气口与所述氧气冷却器的进气口相互连通,所述氢气冷却器的出气口与所述氢气捕滴器的进气口相互联通,所述氧气冷却器的出气口与所述氧气捕滴器的进气口相互联通。
- 根据权利要求1所述的一种宽功率电解水制氢系统,其特征在于:所述波动性电源包括风电或光伏。
- 根据权利要求1所述的一种宽功率电解水制氢系统,其特征在于:所述气液分离器(3)的电解液残液出口通过电解液换热器(6)与所述电解槽(2)的输液口连通,用于电解液的循环利用。
- 根据权利要求1或3所述的一种宽功率电解水制氢系统,其特征在于:所述气液分离器(3)的纯水补液口上设置补水装置(8)。
- 根据权利要求3所述的一种宽功率电解水制氢系统,其特征在于:还包括循环冷却系统(7),所述循环冷却系统(7)分别与所述气体冷却器(4)和电解液换热器(6)进行热交换。
- 根据权利要求5所述的一种宽功率电解水制氢系统,其特征在于:所述循环冷却系统(7)为液体循环冷却系统或气体循环冷却系统。
- 根据权利要求1所述的一种宽功率电解水制氢系统,其特征在于:所述电解槽(2)上设置有电解槽控制器(9),用于控制所述电解槽(2)的运行电流、压力、温度、气体纯度、电解液流量、液位。
- 根据权利要求1或2或3或5或6或7所述的一种宽功率电解水制氢系统,其特征在于:所述电解槽(2)的数量为一个或多个,多个电解槽时采用并联模式。
- 一种宽功率电解水制氢方法,其特征在于,基于权利要求1所述的一种宽功率电解水制氢系统,包括:风电或光伏作为电源经过整流变压器(1)转换为可用于电解水的直流电,电解槽(2)采用碱性电解水电解槽,总制氢规模为X Nm 3/h,采用两个电解槽并联的模式,两个电解槽的制氢规模分别为X1 Nm 3/H和X2 Nm 3/H,其中X1≥X2;电解槽控制器(9)根据风电或光伏的出力情况确定电解槽的出力情况:当需要产氢量大于X1 Nm 3/h时,两个电解槽(2)均运行,两个电解槽(2)阴极流出的电解液汇入气液分离器(3)的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器(4)的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器(5)的氢气捕滴器去除水汽,氢气捕滴器出口的氢气进行收集、纯化或利用;两个电解槽(2)阳极流出的电解液汇入气液分离器(3)的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器(4)的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器(5)的氧气捕滴器去除水汽,氧气捕滴器出口的氧气进行收集、纯化或利用;气液分离器(3)中气体逸出后剩余的电解液循环经过电解液换热器(6)进行降温,并循环回到电解槽(2)。
- 一种宽功率电解水制氢方法,其特征在于,基于权利要求1所述的一种宽功率电解水制氢系统,包括:风电或光伏作为电源经过整流变压器(1)转换为可用于电解水的直流电,电解槽(2)采用碱性电解水电解槽,总制氢规模为X Nm 3/h,采用两个电解槽并联的模式,两个电解槽的 制氢规模分别为X1 Nm 3/H和X2 Nm 3/H,其中X1≥X2;电解槽控制器(9)根据风电、光伏的出力情况确定电解槽的出力情况:当需要产氢量达到X3 Nm 3/h时,X1≥X2≥X3;一个电解槽(2)停止运行,另一个电解槽(2)制氢出力X3 Nm 3/h,停止运行的电解槽(2),电解液不再循环,同时,电解电流调为零,运行的电解槽(2)中,阴极流出的电解液汇入气液分离器(3)的氢气分离器,氢气在氢气分离器中逸出后进入气体冷却器(4)的氢气冷却器进行冷却,冷却后的氢气进入气体捕滴器(5)的氢气捕滴器去除水汽,氢气捕滴器出口的氢气进行收集、纯化或利用;运行的电解槽(2)中,阳极流出的电解液汇入气液分离器(3)的氧气分离器,氧气在氧气分离器中逸出后进入气体冷却器(4)的氧气冷却器进行冷却,冷却后的氧气进入气体捕滴器(5)的氧气捕滴器去除水汽,氧气捕滴器出口的氧气进行收集、纯化或利用,气液分离器(3)中气体逸出后剩余的电解液循环经过电解液换热器(6)进行降温,并循环回到电解槽(2)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010259671.5 | 2020-04-03 | ||
CN202010259671.5A CN111364052A (zh) | 2020-04-03 | 2020-04-03 | 一种宽功率电解水制氢系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021196564A1 true WO2021196564A1 (zh) | 2021-10-07 |
Family
ID=71203034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/121243 WO2021196564A1 (zh) | 2020-04-03 | 2020-10-15 | 一种宽功率电解水制氢系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111364052A (zh) |
WO (1) | WO2021196564A1 (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114293199A (zh) * | 2022-01-11 | 2022-04-08 | 阳光氢能科技有限公司 | 制氢方法和制氢系统 |
CN114318360A (zh) * | 2021-11-19 | 2022-04-12 | 中国华能集团清洁能源技术研究院有限公司 | 一种热管理的循环换热系统 |
CN114318389A (zh) * | 2021-12-22 | 2022-04-12 | 无锡隆基氢能科技有限公司 | 制氢设备和制氢设备的电解槽温度控制方法 |
CN114574903A (zh) * | 2022-02-18 | 2022-06-03 | 广东蓝新氢能源科技有限公司 | 一种同步制氢制氧分离系统 |
CN114606509A (zh) * | 2021-10-18 | 2022-06-10 | 中国科学院广州能源研究所 | 一种用于制氢电解槽阵列的热管理系统及方法 |
CN114774953A (zh) * | 2022-04-18 | 2022-07-22 | 四川华能氢能科技有限公司 | 一种制氢速率可编程控制的制氢反应设备 |
CN114959740A (zh) * | 2022-06-16 | 2022-08-30 | 清华四川能源互联网研究院 | 规模化碱性电解水制氢的停机电解槽保温系统 |
CN115094481A (zh) * | 2022-06-23 | 2022-09-23 | 河北工业大学 | 适应宽功率波动的模块化碱性电解水制氢调度切换方法 |
CN115110119A (zh) * | 2022-06-20 | 2022-09-27 | 阳光氢能科技有限公司 | 制氢系统的温度控制方法及装置、制氢系统 |
CN115142072A (zh) * | 2022-07-28 | 2022-10-04 | 国网浙江省电力有限公司嘉善县供电公司 | 一种电解水制氢系统 |
CN115233256A (zh) * | 2022-07-19 | 2022-10-25 | 华北电力大学 | 一种电解水制氢电解槽温控系统 |
CN115572986A (zh) * | 2022-09-21 | 2023-01-06 | 宁夏宝丰能源集团股份有限公司 | 一种电解水制氢系统及方法 |
CN115652347A (zh) * | 2022-11-09 | 2023-01-31 | 北京化工大学 | 一种自热平衡电解水制氢系统及制氢方法 |
CN115679341A (zh) * | 2022-09-27 | 2023-02-03 | 崇礼新天风能有限公司 | 一种大规模宽功率波动水电解制氢装置及制氢方法 |
CN116024609A (zh) * | 2022-12-26 | 2023-04-28 | 北京科技大学 | 电解槽启动系统、方法、装置及存储介质 |
CN116288522A (zh) * | 2022-12-06 | 2023-06-23 | 深圳海氢科技有限公司 | 一种节能环保的电解制氢系统及电解制氢方法 |
CN117051433A (zh) * | 2023-09-11 | 2023-11-14 | 上海磐动电气科技有限公司 | 一种多堆pem电解水制氢系统及控制方法 |
FR3137109A1 (fr) * | 2022-06-27 | 2023-12-29 | Technip Energies France | Installation et procédé de production d’hydrogène par électrolyse de l’eau |
WO2024013139A1 (fr) * | 2022-07-13 | 2024-01-18 | Technip Energies France | Installation et procédé de production d'hydrogène par électrolyse de l'eau avec séparations gaz-liquide dans les lignes d'acheminement des flux |
CN117466365A (zh) * | 2023-03-09 | 2024-01-30 | 中国科学院大连化学物理研究所 | 一种电解水制氢耦合海水淡化系统及方法 |
WO2025016320A1 (zh) * | 2023-07-14 | 2025-01-23 | 无锡隆基氢能科技有限公司 | 氢气的制备系统和方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111364052A (zh) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | 一种宽功率电解水制氢系统及方法 |
CN111756059A (zh) * | 2020-07-30 | 2020-10-09 | 中国华能集团清洁能源技术研究院有限公司 | 一种实时平抑风电波动的电-氢-电转换系统和方法 |
CN112575344A (zh) * | 2020-12-16 | 2021-03-30 | 长江勘测规划设计研究有限责任公司 | 一种全浸式无氧环境电解水制氢系统 |
CN112941551A (zh) * | 2021-01-27 | 2021-06-11 | 阳光电源股份有限公司 | 电解槽系统及其纯水处理系统和金属回收方法 |
WO2022172241A1 (en) * | 2021-02-15 | 2022-08-18 | Hydorghen S.R.L. | System for recycling condensates and plant for generating hydrogen comprising the recycling system |
CN113215593B (zh) * | 2021-03-16 | 2022-09-23 | 宝武清洁能源有限公司 | 一种混合式电解水的绿氢制备系统 |
CN113373458B (zh) * | 2021-06-17 | 2022-04-12 | 全球能源互联网研究院有限公司 | 一种波动功率输入下的质子交换膜电解水制氢系统及方法 |
CN113549953A (zh) * | 2021-08-16 | 2021-10-26 | 阳光电源股份有限公司 | 一种制氢系统的液位平衡控制方法及制氢系统 |
CN113699538B (zh) * | 2021-08-31 | 2024-11-15 | 中国华能集团清洁能源技术研究院有限公司 | 一种带储热的电解制氢系统及其运行方法 |
CN113737203B (zh) * | 2021-09-27 | 2024-08-02 | 长江勘测规划设计研究有限责任公司 | 蒸发冷却介质自循环全浸式的水电解制氢系统及使用方法 |
CN114134514A (zh) * | 2021-11-01 | 2022-03-04 | 无锡隆基氢能科技有限公司 | 电解水制氢系统 |
CN113969409B (zh) * | 2021-12-01 | 2023-06-09 | 清华大学 | 氢气和氧气制备系统 |
CN114277394A (zh) * | 2022-01-21 | 2022-04-05 | 湖南博忆源机电设备有限公司 | 一种功率分配型电解制氢系统 |
CN114381759B (zh) * | 2022-02-11 | 2023-09-29 | 中国华能集团清洁能源技术研究院有限公司 | 一种光伏制氢系统的控制系统及控制方法 |
CN114368805A (zh) * | 2022-02-16 | 2022-04-19 | 中领水净科技(深圳)有限公司 | 一种用于制备碱性电解离子水的电解装置 |
CN114807959B (zh) * | 2022-03-15 | 2023-10-27 | 中国船舶重工集团公司第七一八研究所 | 一种适用于宽功率波动的高效率制氢系统 |
CN114706321A (zh) * | 2022-03-24 | 2022-07-05 | 阳光电源股份有限公司 | 氢能系统的仿真系统、测试方法、设备及可读存储介质 |
CN114592207B (zh) * | 2022-04-06 | 2023-05-30 | 中国船舶重工集团公司第七一八研究所 | 一种适应快速宽功率波动的电解制氢系统及控制方法 |
CN115261882A (zh) * | 2022-04-07 | 2022-11-01 | 阳光氢能科技有限公司 | 电解槽并联系统及其运行工艺 |
CN115354361A (zh) * | 2022-06-22 | 2022-11-18 | 广东卡沃罗氢科技有限公司 | 用于pem制氢纯化的冷却系统 |
CN115058739B (zh) * | 2022-07-06 | 2023-11-24 | 清华四川能源互联网研究院 | 一种宽范围运行的碱性电解水制氢系统及其控制方法 |
CN115466968A (zh) * | 2022-09-02 | 2022-12-13 | 四川大学 | 一种无需纯水的电解制氢系统 |
CN115928097A (zh) * | 2022-10-25 | 2023-04-07 | 双良节能系统股份有限公司 | 一种用于电解水制氢的热能耦合及节水系统 |
CN115852389A (zh) * | 2022-11-23 | 2023-03-28 | 南通安思卓新能源有限公司 | 一种高适应性的直连式光伏发电水电解制氢系统 |
CN116288448A (zh) * | 2022-12-22 | 2023-06-23 | 中国船舶重工集团公司第七一八研究所 | 一种风光发电直接制氢系统 |
CN119024088A (zh) * | 2024-10-29 | 2024-11-26 | 苏州莒纳新材料科技有限公司 | 一种实验室用于评价制氢电解槽用电极的测试系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2305409Y (zh) * | 1997-03-13 | 1999-01-27 | 苏州市吴县水电解制氢设备公司 | 氢气或氧气综合塔 |
CN101216017A (zh) * | 2007-12-27 | 2008-07-09 | 山东赛克赛斯氢能源有限公司 | 一种利用自然能发电生产氢气的方法及系统 |
CN202440551U (zh) * | 2012-01-16 | 2012-09-19 | 华锐风电科技(集团)股份有限公司 | 风力发电电解海水系统 |
CN106119883A (zh) * | 2016-06-22 | 2016-11-16 | 同济大学 | 一种耦合制氢系统及其控制方法 |
CN207010249U (zh) * | 2017-07-14 | 2018-02-13 | 北京理工大学 | 一种风电制氢储能的氢燃料复合电池 |
CN110670087A (zh) * | 2019-11-07 | 2020-01-10 | 北京中电丰业技术开发有限公司 | 一种可控快速升温电解水制氢系统 |
CN111364052A (zh) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | 一种宽功率电解水制氢系统及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208748209U (zh) * | 2018-08-16 | 2019-04-16 | 河北科技大学 | 一种风能宽功率下电解水制氢装置 |
CN109004665B (zh) * | 2018-08-31 | 2022-04-01 | 河北科技大学 | 风电、光电储能及离/并网制氢系统 |
CN110106512A (zh) * | 2019-04-17 | 2019-08-09 | 河北工业大学 | 电解水制氢装置 |
CN110518865B (zh) * | 2019-08-09 | 2021-07-20 | 华南理工大学 | 一种风电-光电耦合的工业规模稳定供氢系统 |
CN211872097U (zh) * | 2020-04-03 | 2020-11-06 | 中国华能集团清洁能源技术研究院有限公司 | 一种宽功率电解水制氢系统 |
-
2020
- 2020-04-03 CN CN202010259671.5A patent/CN111364052A/zh active Pending
- 2020-10-15 WO PCT/CN2020/121243 patent/WO2021196564A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2305409Y (zh) * | 1997-03-13 | 1999-01-27 | 苏州市吴县水电解制氢设备公司 | 氢气或氧气综合塔 |
CN101216017A (zh) * | 2007-12-27 | 2008-07-09 | 山东赛克赛斯氢能源有限公司 | 一种利用自然能发电生产氢气的方法及系统 |
CN202440551U (zh) * | 2012-01-16 | 2012-09-19 | 华锐风电科技(集团)股份有限公司 | 风力发电电解海水系统 |
CN106119883A (zh) * | 2016-06-22 | 2016-11-16 | 同济大学 | 一种耦合制氢系统及其控制方法 |
CN207010249U (zh) * | 2017-07-14 | 2018-02-13 | 北京理工大学 | 一种风电制氢储能的氢燃料复合电池 |
CN110670087A (zh) * | 2019-11-07 | 2020-01-10 | 北京中电丰业技术开发有限公司 | 一种可控快速升温电解水制氢系统 |
CN111364052A (zh) * | 2020-04-03 | 2020-07-03 | 中国华能集团清洁能源技术研究院有限公司 | 一种宽功率电解水制氢系统及方法 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114606509A (zh) * | 2021-10-18 | 2022-06-10 | 中国科学院广州能源研究所 | 一种用于制氢电解槽阵列的热管理系统及方法 |
CN114606509B (zh) * | 2021-10-18 | 2023-10-10 | 中国科学院广州能源研究所 | 一种用于制氢电解槽阵列的热管理系统及方法 |
CN114318360A (zh) * | 2021-11-19 | 2022-04-12 | 中国华能集团清洁能源技术研究院有限公司 | 一种热管理的循环换热系统 |
CN114318389B (zh) * | 2021-12-22 | 2023-11-07 | 无锡隆基氢能科技有限公司 | 制氢设备和制氢设备的电解槽温度控制方法 |
CN114318389A (zh) * | 2021-12-22 | 2022-04-12 | 无锡隆基氢能科技有限公司 | 制氢设备和制氢设备的电解槽温度控制方法 |
CN114293199A (zh) * | 2022-01-11 | 2022-04-08 | 阳光氢能科技有限公司 | 制氢方法和制氢系统 |
CN114574903A (zh) * | 2022-02-18 | 2022-06-03 | 广东蓝新氢能源科技有限公司 | 一种同步制氢制氧分离系统 |
CN114574903B (zh) * | 2022-02-18 | 2024-01-12 | 广东蓝新氢能源科技有限公司 | 一种同步制氢制氧分离系统 |
CN114774953A (zh) * | 2022-04-18 | 2022-07-22 | 四川华能氢能科技有限公司 | 一种制氢速率可编程控制的制氢反应设备 |
CN114774953B (zh) * | 2022-04-18 | 2023-08-22 | 四川华能氢能科技有限公司 | 一种制氢速率可编程控制的制氢反应设备 |
CN114959740A (zh) * | 2022-06-16 | 2022-08-30 | 清华四川能源互联网研究院 | 规模化碱性电解水制氢的停机电解槽保温系统 |
CN114959740B (zh) * | 2022-06-16 | 2023-06-23 | 清华四川能源互联网研究院 | 规模化碱性电解水制氢的停机电解槽保温系统 |
CN115110119A (zh) * | 2022-06-20 | 2022-09-27 | 阳光氢能科技有限公司 | 制氢系统的温度控制方法及装置、制氢系统 |
CN115110119B (zh) * | 2022-06-20 | 2024-03-29 | 阳光氢能科技有限公司 | 制氢系统的温度控制方法及装置、制氢系统 |
CN115094481A (zh) * | 2022-06-23 | 2022-09-23 | 河北工业大学 | 适应宽功率波动的模块化碱性电解水制氢调度切换方法 |
CN115094481B (zh) * | 2022-06-23 | 2023-06-09 | 河北工业大学 | 适应宽功率波动的模块化碱性电解水制氢调度切换方法 |
WO2024002931A1 (fr) * | 2022-06-27 | 2024-01-04 | Technip Energies France | Installation et procédé de production d'hydrogène par électrolyse de l'eau |
FR3137109A1 (fr) * | 2022-06-27 | 2023-12-29 | Technip Energies France | Installation et procédé de production d’hydrogène par électrolyse de l’eau |
WO2024013139A1 (fr) * | 2022-07-13 | 2024-01-18 | Technip Energies France | Installation et procédé de production d'hydrogène par électrolyse de l'eau avec séparations gaz-liquide dans les lignes d'acheminement des flux |
FR3137925A1 (fr) * | 2022-07-13 | 2024-01-19 | Technip Energies France | Installation et procédé de production d’hydrogène par électrolyse de l’eau avec séparations gaz-liquide dans les lignes d’acheminement des flux |
CN115233256A (zh) * | 2022-07-19 | 2022-10-25 | 华北电力大学 | 一种电解水制氢电解槽温控系统 |
CN115142072A (zh) * | 2022-07-28 | 2022-10-04 | 国网浙江省电力有限公司嘉善县供电公司 | 一种电解水制氢系统 |
CN115142072B (zh) * | 2022-07-28 | 2023-06-27 | 国网浙江省电力有限公司嘉善县供电公司 | 一种电解水制氢系统 |
CN115572986A (zh) * | 2022-09-21 | 2023-01-06 | 宁夏宝丰能源集团股份有限公司 | 一种电解水制氢系统及方法 |
CN115679341A (zh) * | 2022-09-27 | 2023-02-03 | 崇礼新天风能有限公司 | 一种大规模宽功率波动水电解制氢装置及制氢方法 |
CN115652347A (zh) * | 2022-11-09 | 2023-01-31 | 北京化工大学 | 一种自热平衡电解水制氢系统及制氢方法 |
CN116288522A (zh) * | 2022-12-06 | 2023-06-23 | 深圳海氢科技有限公司 | 一种节能环保的电解制氢系统及电解制氢方法 |
CN116024609A (zh) * | 2022-12-26 | 2023-04-28 | 北京科技大学 | 电解槽启动系统、方法、装置及存储介质 |
CN117466365A (zh) * | 2023-03-09 | 2024-01-30 | 中国科学院大连化学物理研究所 | 一种电解水制氢耦合海水淡化系统及方法 |
CN117466365B (zh) * | 2023-03-09 | 2024-06-07 | 中国科学院大连化学物理研究所 | 一种电解水制氢耦合海水淡化系统及方法 |
WO2025016320A1 (zh) * | 2023-07-14 | 2025-01-23 | 无锡隆基氢能科技有限公司 | 氢气的制备系统和方法 |
CN117051433A (zh) * | 2023-09-11 | 2023-11-14 | 上海磐动电气科技有限公司 | 一种多堆pem电解水制氢系统及控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111364052A (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021196564A1 (zh) | 一种宽功率电解水制氢系统及方法 | |
CN211872097U (zh) | 一种宽功率电解水制氢系统 | |
CN111826669B (zh) | 具有宽功率波动适应性的大型电解水制氢系统及控制方法 | |
CN114592207B (zh) | 一种适应快速宽功率波动的电解制氢系统及控制方法 | |
CN105862066B (zh) | 一种高压质子膜水电解装置及方法 | |
CN113881951B (zh) | 一种碱液分段循环电解系统及其工作方法 | |
CN114807959B (zh) | 一种适用于宽功率波动的高效率制氢系统 | |
CN115939469B (zh) | 一种热电联产的一体式可再生燃料电池系统 | |
CN116377464B (zh) | 循环水冷式安全防爆电解槽组 | |
CN116121792A (zh) | 一种光伏发电直接制氢方法 | |
CN113667997A (zh) | 一种高压质子交换膜电解水系统 | |
CN115595599A (zh) | 一种水电解装置及方法 | |
CN211530761U (zh) | 一种弃风电解水制氢耦合燃煤发电系统 | |
CN216107238U (zh) | 一种碱液分段循环电解系统 | |
EP4280325A1 (en) | Proton-conducting soec and oxygen ion-conducting sofc joint apparatus | |
CN213680909U (zh) | 电解水氢热联供装置 | |
CN218232600U (zh) | 电解制氢的处理分离系统及电解制氢系统 | |
CN216786269U (zh) | 一种电解水制氢系统 | |
CN117230463A (zh) | 一种冷启动碱性电解制氢装置及制氢方法 | |
CN216473504U (zh) | 一种高压质子交换膜电解水系统 | |
CN215209640U (zh) | 基于光伏电池的质子交换膜电解制氢装置 | |
CN117117975B (zh) | 一种基于低温余热利用的氢水电联产系统及方法 | |
CN113373468A (zh) | 一种基于光伏电池的质子交换膜电解制氢装置 | |
CN223016993U (zh) | 一种规模化电解水制绿氢工厂 | |
CN118281267B (zh) | 一种制氢和燃料电池发电耦合系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20928610 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20928610 Country of ref document: EP Kind code of ref document: A1 |