WO2021196526A1 - 阻尼装置及风力发电机组 - Google Patents

阻尼装置及风力发电机组 Download PDF

Info

Publication number
WO2021196526A1
WO2021196526A1 PCT/CN2020/114582 CN2020114582W WO2021196526A1 WO 2021196526 A1 WO2021196526 A1 WO 2021196526A1 CN 2020114582 W CN2020114582 W CN 2020114582W WO 2021196526 A1 WO2021196526 A1 WO 2021196526A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural support
guide rail
damping
damping device
guide
Prior art date
Application number
PCT/CN2020/114582
Other languages
English (en)
French (fr)
Inventor
刘岩
拜亮
李双虎
褚建坤
任雯斯
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to BR112022019680A priority Critical patent/BR112022019680A2/pt
Priority to CA3172746A priority patent/CA3172746A1/en
Priority to AU2020440032A priority patent/AU2020440032A1/en
Priority to EP20928294.6A priority patent/EP4119792A4/en
Priority to US17/907,130 priority patent/US11946453B2/en
Publication of WO2021196526A1 publication Critical patent/WO2021196526A1/zh
Priority to ZA2022/11306A priority patent/ZA202211306B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/06Translation-to-rotary conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of wind power generation, and more particularly, to a damping device capable of reducing installation space and improving the reliability of a wind power generator set and a wind power generating set including the damping device.
  • a tuned mass damper is currently used to control the vibration of the tower.
  • the tuned mass damper provides a force (damping force) opposite to the vibration direction of the tower through a mass block with the same vibration frequency as the tower to counteract the structural response caused by external excitation.
  • the dampers that provide damping force usually include viscous dampers, liquid dampers, and eddy current dampers.
  • the present disclosure provides a damping device and a wind power generator set, which can reduce the required space in the effective space of the tower and avoid the risk of interference.
  • a damping device includes: a damping component; a structural support that connects the damping component to a mass provided on an object to be damped, wherein the structural support includes a gear , The gear is rotatably arranged on the structural support; the guide rail has a predetermined curvature, the first end of the guide rail is rotatably connected to the object to be damped, and the second end of the guide rail is supported on the structural support Wherein, the side part of the guide rail is formed with a tooth part that meshes with the gear of the structural support.
  • a wind turbine generator set includes: a tower as an object to be damped; the above-mentioned damping device; One end is rotatably connected to the inner wall of the tower.
  • the damping device can include the ability to provide damping force for the entire wind turbine generator, while ensuring that high conversion efficiency can be obtained in all directions; it can reduce maintenance work items and improve overall reliability; and it can reduce the number of components of the damping device , Simplify the structure, and reduce production costs.
  • Fig. 1 is a schematic diagram of a damping device according to an exemplary embodiment of the present disclosure applied to a wind power generating set;
  • FIG. 2 is a schematic diagram showing a partial cross-sectional view of the damping device taken along the line A-A in FIG. 1 according to an exemplary embodiment of the present disclosure
  • FIG. 3 is an enlarged schematic diagram showing the gear shaft of the structural support shown in FIG. 2;
  • FIG. 4 is a schematic diagram showing a guide rail of a damping device according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing a guide wheel in a guide structure of a damping device according to an exemplary embodiment of the present disclosure
  • FIG. 6 is an enlarged schematic diagram showing the damping component shown in FIG. 2;
  • FIG. 7 and 8 are diagrams schematically showing the movement state of the damping device when the swing direction of the mass is parallel to the line connecting the fixed points of the first ends of the two guide rails;
  • 9 and 10 are diagrams schematically showing the movement state of the damping device when the swing direction of the mass is perpendicular to the line connecting the fixed points of the first ends of the two guide rails.
  • a damping device capable of avoiding the risk of interference in an effective space while ensuring a reliable space for maintenance work.
  • the damping device can be applied to a single pendulum tuned mass damper, so as to provide a damping force for the object 7 to be damped, so as to achieve a damping effect.
  • the damping device is applied to a wind turbine generator set. This is merely an example.
  • the damping device according to the exemplary embodiment of the present disclosure may also be applied to other devices or Damping objects to provide damping force.
  • the damping device includes: a damping component 1; a structural support 2, which connects the damping component 1 to a mass 8 provided on an object 7 to be damped, Among them, the structural support 2 includes a gear rotatably arranged thereon; the guide rail 3, the guide rail 3 has a predetermined curvature, the first end of the guide rail 3 is rotatably connected to the object 7 to be damped, and the second end of the guide rail 3 The ends are supported on the structural support 2.
  • the side part of the guide rail 3 is formed with a tooth part that meshes with a gear.
  • the structural support 2 and the guide rail 3 may constitute a damping conversion mechanism for converting the swing of the mass 8 into rotation to input the damping member 1.
  • the first end of the guide rail 3 in its length direction is used to rotatably connect to the object 7 to be damped.
  • the first end of the guide rail 3 can be fixedly connected to the object 7 to be damped by using an articulated bearing. It can ensure the swing of the guide rail 3 in the horizontal direction, and can also ensure the swing of the guide rail 3 in the vertical direction caused by the swing of the mass 8; and the joint bearing can also bear a larger load.
  • the embodiments of the present disclosure are not limited to this, and other connecting members may be used to replace the joint bearing to realize the rotatable connection between the first end of the guide rail 3 and the object 7 to be damped.
  • the guide rail 3 may be formed using a rack with a predetermined curvature, but is not limited thereto.
  • the guide rail 3 may be formed using other components having a predetermined curvature and having teeth on the sides to be able to mesh with gears in the structural support 2.
  • the gear included in the structural support 2 may be formed in the form of a gear shaft 9.
  • the embodiment of the present disclosure is not limited to this, and the gear may also be formed in other forms, as long as it can interact with the guide rail.
  • the teeth of 3 can be meshed.
  • other toothed components such as turbines may be used to realize the gears in the structural support 2.
  • the gear shaft 9 is rotatably installed in the structural support 2 through a bearing.
  • the gear shaft 9 can be installed in the structural support 2 through the first bearing 10 and the second bearing 11 at both ends, and the gear shaft 9 itself can rotate around its rotation axis.
  • the gear shaft 9 can be connected to the damping component 1 through a coupling 13 at the shaft end.
  • the gear of the gear shaft 9 rotates around the shaft by meshing with the teeth of the guide rail 3 with a predetermined curvature, and the rotation is input to the shaft through the coupling 13 at the end of the shaft.
  • the damping component 1 provides a damping force to reduce the swing amplitude, thereby achieving vibration reduction.
  • the structural support 2 may also include a connecting plate 12 with a connecting flange (described in detail below), and the connecting plate 12 may have a hollow accommodating space, and the coupling 13 may be accommodated in the accommodating space of the connecting plate 12.
  • the coupling 13 can be protected, and the installation and disassembly of the damping component 1 can be facilitated.
  • the structural support 2 and the guide rail 3 can also be formed with guiding structures that match each other.
  • the guide structure may include a guide groove 4 and a guide wheel 5, and the guide groove 4 is formed on the first surface and the second surface of the guide rail 3 opposite to each other in the thickness direction.
  • the guide wheel 5 is rotatably arranged at a position of the structural support 2 facing the guide groove of the guide rail 3 and is accommodated in the guide groove 4.
  • the guide groove 4 may be recessed from the first surface or the second surface of the guide rail 3 in the thickness direction, and the guide groove 4 extends along the length direction of the guide rail 3 to provide a sufficient stroke.
  • the rotation axis of the guide wheel 5 is parallel to the side wall of the guide groove 4, so that the guide wheel 5 can move along the guide groove 4 as the mass 8 swings against the side wall of the guide groove 4, so that the structural support 2 Move along the trajectory determined by the guide 3.
  • the structural support 2 is moved along a track determined by the guide rail 3 to transmit the swing movement of the mass 8 to the rotational movement of the gear meshed with the teeth of the guide rail 3 and thus to the damping member 1.
  • the guide wheel 5 may include not only the rotatable itself, but also the idler 6 rotatably arranged at the end, and the idler 6 contacts Guide the groove bottom surface of the groove 4, and the rotation axis of the idler 6 is parallel to the groove bottom surface.
  • the guiding structure can not only play a guiding role, but also play a role of supporting the guide rail 3 in a follow-up manner.
  • the guide structure can maintain the working backlash of the gears of the guide rail 3 and the structural support 2 regardless of the stationary or moving state, thereby reducing gear wear, prolonging gear life, and improving motion transmission accuracy.
  • the guide wheel 5 can also be installed on the structural support 2 with an eccentric mounting sleeve. In this way, even if the guide wheel 5 is worn for a long time, the eccentric mounting sleeve can be used for centering work. .
  • the damping component 1 may use the principle of eddy current to consume the excitation of the vibration of the object 7 to be damped, thereby providing a damping force.
  • the damping component 1 may include a rotor 14 and a stator 15, and the gear shaft 9 may be connected to the rotor 14 of the damping component 1 through a coupling 13.
  • the rotor 14 in the damping component 1, the rotor 14 is located inside the stator 15, and the rotor 14 is connected to the shaft end of the gear shaft 9 through the coupling 13, so that the rotor 14 can follow the gear shaft 9 Rotate and rotate.
  • the two ends of the connecting plate 12 may be provided with connecting flanges, so that one end of the connecting plate 12 can be detachably connected to the structural support 2 through a connecting flange and a connecting piece such as a bolt.
  • the other end of 12 can be detachably connected to the stator 15 of the damping component 1 through a connecting flange and a connecting piece such as a bolt.
  • a wind power generator set including a tower as an object 7 to be damped and the damping device as described above, wherein the first end of the structural support 2 is connected to the device On the mass 8 in the tower, the first end of the guide rail 3 is rotatably connected to the inner wall of the tower.
  • the structural support 2 can be connected to the lower surface of the mass 8 by a connecting member such as a bolt, and the first end of the guide rail 3 can be connected to the tower by a connecting member such as an articulated bearing.
  • a connecting member such as a bolt
  • the wind turbine generator set may include two above-mentioned damping devices. Considering that there are ladders 16, elevators 17, and other devices in the tower, and the mass 8 of the single pendulum tuned mass damper is perpendicular to the tower through the pendulum rod 18, the space available for installing the damping device is limited. In this case, the two guide rails 3 of the two damping devices can be arranged to be staggered by a predetermined distance in the height direction of the tower.
  • the structural support 2 can be set to be adjustable in height, so that it is convenient to adjust the positions of the two guide rails 3 in the height direction to be staggered with each other.
  • the structural support 2 can be made in sections, or can have a telescopic structure, so that the positions of the two guide rails 3 can be flexibly adjusted according to the size of the installation space, and the operability can be improved.
  • the two guide rails 3 of the two damping devices can be arranged to be opposite to each other.
  • the two guide rails 3 facing away from each other means that the bending directions of the two guide rails 3 are opposite.
  • the signs of the curvature radii of the two guide rails 3 are opposite.
  • the two guide rails 3 of the two damping devices are in a roughly "eight" shape in a specific state (for example, in an initial static state or a specific motion state) (refer to FIG. 7, Figure 8 and Figure 10) or the approximate "X" shape in which two guide rails 3 are partially overlapped (refer to Figure 9).
  • the absolute values of the radii of curvature of the two guide rails 3 can be the same or different, and the radii of curvature of the two guide rails 3 can be set reasonably according to the installation space used by the damping device. According to an exemplary embodiment of the present disclosure, the absolute values of the radii of curvature of the two guide rails 3 may be set to be the same as each other.
  • FIGS. 7 to 10 show the movement state of the damping device when the swing direction of the mass 8 is parallel to the line connecting the fixed points of the first ends of the two guide rails 3.
  • the arrows in Figures 7 and 8 indicate the masses, respectively 8 swing directions D1 and D2.
  • Figures 9 and 10 show the movement state of the damping device when the swing direction of the mass 8 is perpendicular to the line connecting the fixed points of the first ends of the two guide rails 3.
  • the arrows in Figures 9 and 10 indicate the masses, respectively 8 swing directions D3 and D4.
  • the mass 8 is shown with a two-dot chain line.
  • the damping device using the guide rail 3 with a predetermined curvature has the following advantages: in the case of the same engagement length, the radius of gyration of the guide rail 3 with a predetermined curvature is smaller, and the required The installation space is also smaller; the two guide rails 3 are arranged staggered in the height direction, which further reduces the space requirement; the swing direction of the mass 8 is perpendicular to the fixed point connection of the first ends of the two guide rails 3 At this time, the guide rail 3 with curvature can well convert the swing into the rotation of the gear in the structural support 2 so as to transmit it to the damping component 1.
  • only two damping devices can provide damping force for the entire wind turbine, and at the same time, it can ensure high conversion efficiency in all directions.
  • the damping device can provide damping force for the entire wind turbine generator, while ensuring that high conversion efficiency can be obtained in all directions; the required installation space is small, interference is avoided in the effective space, and the maintenance work is reliable Space; can reduce gear wear, extend gear life, and improve motion transmission accuracy; can reduce maintenance work items and improve overall reliability; can reduce the number of components of the damping device, simplify the structure, and reduce production costs.
  • the damping device and the wind turbine generator set according to the exemplary embodiment of the present disclosure can provide a damping force for the entire wind turbine generator set, achieve vibration reduction, reduce installation space, and ensure reliable space for maintenance work.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种阻尼装置及包括该阻尼装置的风力发电机组,阻尼装置包括:阻尼部件(1);结构支架(2),结构支架(2)将阻尼部件(1)连接至设于待减振对象(7)上的质量块(8),其中,结构支架(2)包括齿轮,齿轮可旋转地设置在结构支架(2)上;导轨(3),导轨(3)具有预定曲率,导轨(3)的第一端用于可转动地连接至待减振对象(7),并且导轨(3)的第二端支承在结构支架(2)上,其中,导轨(3)的侧部形成有与齿轮啮合的齿部,当质量块(8)摆动时,通过导轨(3)与齿轮之间的啮合传动将质量块(8)的摆动转化为转动输入至阻尼部件(1)。

Description

阻尼装置及风力发电机组
本申请要求申请号为202010240404.3,申请日为2020年3月31日,名称为“阻尼装置及风力发电机组”的中国专利申请的优先权,其中,上述申请公开的内容通过引用结合在本申请中。
技术领域
本公开涉及风力发电技术领域,更具体地,涉及一种能够减小安装空间、提高风力发电机组可靠性的阻尼装置及包括该阻尼装置的风力发电机组。
背景技术
随着风力发电机组的塔架的高度越来越高,塔架作为主要的支撑结构,对一阶振动的控制要求也来越急迫。为了控制塔架(尤其是柔性塔架)的振动,目前使用了调谐质量阻尼器来实现来控制塔架的振动。一般地,调谐质量阻尼器是在塔架受到外界动态力作用时,通过与塔架的振动频率相同的质量块提供与塔架振动方向相反的力(阻尼力)来抵消外界激励引起的结构响应。提供阻尼力的阻尼器通常有粘滞阻尼器、液体阻尼器及电涡流阻尼器等。
现有的单摆式调谐质量阻尼器为了保证转换效率,通常设置有众多的机构、部件以在不同方向上吸收不同摆动方向的运动势能。
因此,亟需一种能够在塔架的有效空间内减小所需空间、避免干涉风险的阻尼装置。
发明内容
为了解决上述技术问题,本公开提供一种阻尼装置及风力发电机组,该阻尼装置能够在塔架的有效空间内减小所需空间、避免干涉风险。
根据本公开的一方面,提供一种阻尼装置,该阻尼装置包括:阻尼部件;结构支架,该结构支架将阻尼部件连接至设于待减振对象上的质量块,其中,该结构支架包括齿轮,齿轮可旋转地设置在结构支架上;导轨,该导轨具有预定曲率,该导轨的第一端用于可转动地连接至待减振对象,并且该导轨的 第二端支承在该结构支架上,其中,该导轨的侧部形成有与结构支架的齿轮啮合的齿部,其中,当质量块摆动时,通过导轨与齿轮之间的啮合传动将质量块的摆动转化为转动输入至阻尼部件。
根据本公开的另一方面,提供一种风力发电机组,风力发电机组包括:作为待减振对象的塔架;上述阻尼装置,结构支架连接至设于塔架中的质量块上,导轨的第一端可转动地连接至塔架的内壁。
根据本公开的阻尼装置能够包括能够为整个风力发电机组提供阻尼力,同时保证全方向下均可获得较高的转换效率;能够减少维护工作项目、提高整体可靠性;能够减少阻尼装置的部件数量,简化结构,并且降低生产成本。
附图说明
下面结合附图对本公开的示例性实施例进行详细描述,本公开的以上和其它特点及优点将变得更加清楚,附图中:
图1是根据本公开的示例性实施例的阻尼装置应用于风力发电机组的示意图;
图2是示出根据本公开的示例性实施例的沿图1中的线A-A截取的阻尼装置的局部剖视的示意图;
图3是示出图2中示出的结构支架的齿轮轴的放大示意图;
图4是示出根据本公开的示例性实施例的阻尼装置的导轨的示意图;
图5是示出根据本公开的示例性实施例的阻尼装置的导向结构中的导向轮的示意图;
图6是示出图2中示出的阻尼部件的放大示意图;
图7和图8是示意性地示出了当质量块的摆动方向与两个导轨的第一端的固定点连线相平行时阻尼装置的运动状态的示图;
图9和图10是示意性地示出了当质量块的摆动方向与两个导轨的第一端的固定点连线相垂直时阻尼装置的运动状态的示图。
附图标号说明:
1:阻尼部件;      2:结构支架;
3:导轨;          4:导向凹槽;
5:导向轮;        6:托辊;
7:待减振对象;    8:质量块;
9:齿轮轴;        10:第一轴承;
11:第二轴承;     12:连接盘;
13:联轴器;       14:转子;
15:定子;         16:爬梯;
17:电梯;         18:摆杆。
具体实施方式
现在将参照附图更全面的描述本公开的实施例,在附图中示出了本公开的示例性实施例。
根据本公开的示例性实施例,提供一种能够在有效空间内避免干涉风险,同时保证维护工作的可靠空间的阻尼装置。作为示例,该阻尼装置能够应用于单摆调谐质量阻尼器中,从而为待减振对象7提供阻尼力,以实现减振效果。例如,在下面的示例性实施例中,将描述该阻尼装置应用于风力发电机组中的示例,这仅仅是作为示例,根据本公开的示例性实施例的阻尼装置也可应用于其他装置或待减振对象,以提供阻尼力。
下面将参照附图详细描述根据本公开的示例性实施例的阻尼装置。在附图中,为了清楚地示出阻尼装置的结构,仅通过圆环的形式示意性地示出诸如塔架的待减振对象7的一部分。
参照图1至图3,根据本公开的示例性实施例的阻尼装置包括:阻尼部件1;结构支架2,结构支架2将阻尼部件1连接至设于待减振对象7上的质量块8,其中,结构支架2包括可旋转地设置在其上的齿轮;导轨3,导轨3具有预定曲率,导轨3的第一端用于可转动地连接至待减振对象7,并且导轨3的第二端支承在结构支架2上。其中,导轨3的侧部形成有与齿轮啮合的齿部,当质量块8摆动时,通过导轨3与齿轮之间的啮合传动将质量块8的摆动转化为转动输入至阻尼部件1,阻尼部件1提供阻尼力,以实现减振。在这里,结构支架2和导轨3可构成用于将质量块8的摆动转换为转动以输入阻尼部件1的阻尼转换机构。
导轨3在其长度方向上的第一端用于可转动地连接至待减振对象7,例如,可采用关节轴承将导轨3的第一端固定连接至待减振对象7上,关节轴承既可以保证导轨3在水平方向的摆动,也可以保证质量块8摆动时造成的导轨3在垂直方向上的摆动;而且关节轴承也可以承受较大的负荷。然而, 本公开的实施例不限于此,也可以采用其他连接件来替换关节轴承,以实现导轨3的第一端至待减振对象7的可转动连接。根据本公开的实施例,导轨3可以采用具有预定曲率的齿条来形成,但不限于此。导轨3可采用具有预定曲率并且在侧部具有齿部以能够与结构支架2中的齿轮啮合的其他组件形成。
参照图3,作为示例,包括在结构支架2中的齿轮可通过齿轮轴9的形式而形成,然而,本公开的实施例不限于此,也可通过其他的形式形成齿轮,只要其能够与导轨3的齿部啮合即可。例如,可采用诸如涡轮的其他带齿部件来实现结构支架2中的齿轮。齿轮轴9通过轴承可旋转地安装在结构支架2中。齿轮轴9可通过两端的第一轴承10和第二轴承11安装在结构支架2内并且齿轮轴9自身能够绕其转动轴线转动。齿轮轴9可通过轴端的联轴器13连接到阻尼部件1。当质量块8随待减振对象7振动而摆动时,齿轮轴9的齿轮通过与具有预定曲率的导轨3的齿部啮合而进行绕轴转动,并通过轴端的联轴器13将转动输入给相连的阻尼部件1,由阻尼部件1提供阻尼力减少摆幅,从而实现减振。
结构支架2还可包括具有连接法兰的连接盘12(下面将详细描述),而且连接盘12可具有中空的容纳空间,可将联轴器13容纳在连接盘12的容纳空间中,如此不仅可以保护联轴器13,而且还可便于阻尼部件1的安装和拆卸。
为了实现支承及导向功能,结构支架2和导轨3上还可形成有彼此匹配的导向结构。参照图4至图5,根据本公开的示例性实施例的导向结构可包括导向凹槽4和导向轮5,导向凹槽4形成在导轨3在厚度方向上彼此相对的第一表面和第二表面中,导向轮5可转动地设置在结构支架2的面对导轨3的导向凹槽的位置处,并容纳在导向凹槽4中。
导向凹槽4可从导轨3的第一表面或第二表面沿厚度方向凹入,并且导向凹槽4沿着导轨3的长度方向延伸,以提供足够的行程。导向轮5的转动轴线平行于导向凹槽4的侧壁,使得导向轮5能够贴着导向凹槽4的侧壁随着质量块8的摆动而沿着导向凹槽4运动,从而使结构支架2沿着通过导轨3确定的轨迹而运动。通过上述导向结构使得结构支架2沿着通过导轨3确定的轨迹而运动,以将质量块8的摆动运动传递给与导轨3的齿部啮合的齿轮的转动运动从而传递给阻尼部件1。
根据本公开的示例性实施例,为了更好地支承导轨3的重量,导向轮5除了包括能够转动的自身之外,还可包括可转动地设置在端部的托辊6,托辊6接触导向凹槽4的槽底面,并且托辊6的转动轴线平行于槽底面。如此,导向结构不仅可以起导向作用,而且还可以起到随动地支承导轨3的作用。另外,不管是在静止及运动状态下,通过导向结构还能保持导轨3与结构支架2的齿轮的工作齿隙,从而能够减小齿轮磨损、延长齿轮寿命,并且能够提高运动传递精度。
为了延长导向轮5的寿命,还可采用偏心安装套将导向轮5安装在结构支架2上,如此,即使在导向轮5运行较长时间产生磨损后,还可通过偏心安装套进行调心工作。
根据本公开的示例性实施例,阻尼部件1可以采用电涡流原理来消耗待减振对象7振动的激励,从而提供阻尼力。参照图6,阻尼部件1可包括转子14和定子15,齿轮轴9可通过联轴器13连接至阻尼部件1的转子14。根据本公开的示例性实施例,在阻尼部件1中,转子14位于定子15的内部,并且转子14通过联轴器13连接到齿轮轴9的轴端,使得转子14能够随着齿轮轴9的旋转而旋转。参照图3和图6,连接盘12的两端可设有连接法兰,使得连接盘12的一端能够通过连接法兰及诸如螺栓等的连接件而可拆卸地连接到结构支架2,连接盘12的另一端能够通过连接法兰及诸如螺栓等的连接件而可拆卸地连接到阻尼部件1的定子15。当结构支架2中的齿轮将质量块8的摆动运动转化为转动运动,通过联轴器13传递给阻尼部件1的转子14时,转子14上的磁钢将在阻尼部件1的定子15上的导体铜板上产生抑制质量块8相对运动的电涡流阻尼,通过电涡流阻尼,将振动能量通过导体的电阻热效应消耗掉,以实现减振效果。
根据本公开的示例性实施例,提供一种风力发电机组,该风力发电机组包括作为待减振对象7的塔架以及如上所述的阻尼装置,其中,结构支架2的第一端连接至设于塔架中的质量块8上,导轨3的第一端可转动地连接至塔架的内壁上。具体地,参照图1和图2,结构支架2可通过诸如螺栓等的连接件连接在质量块8的下表面上,导轨3的第一端可通过诸如关节轴承的连接件连接至塔架的内壁上。
为了能够提供足够的阻尼力,风力发电机组可包括两个上述阻尼装置。考虑到塔架内存在爬梯16、电梯17等装置,且单摆调谐质量阻尼器的质量 块8通过摆杆18垂设于塔架内,可供安装阻尼装置的空间有限,在这种情况下,为了在有效空间内避免干涉,同时保证维护工作的可靠空间,可将两个阻尼装置的两个导轨3布置为在塔架的高度方向上彼此错开预定距离。在此,可将结构支架2设置为高度是可调节的,从而便于调节两个导轨3在高度方向上的位置彼此错开。根据示例,结构支架2可分段制成,或者可具有可伸缩结构,如此便可根据安装空间的大小,来灵活地调节两个导轨3的位置,提高可操作性。
此外,为了保证全方向下均可获得较高的转换效率,两个阻尼装置的两个导轨3可设置为彼此背对地布置。在这里,两个导轨3彼此背对是指两个导轨3的弯曲方向相反,参照下面的图7至图10,两个导轨3的曲率半径的符号相反。例如,从阻尼装置的上方观察,两个阻尼装置的两个导轨3在特定状态下(例如,在初始的静止状态下或特定运动状态下)呈大致的“八”字型(参照图7、图8和图10)或者两个导轨3部分叠置的近似“X”型(参照图9)。
在这里,两个导轨3的曲率半径的绝对值可相同或不同,可根据供阻尼装置使用的安装空间而合理地设置两个导轨3的曲率半径。根据本公开的示例性实施例,可将两个导轨3的曲率半径的绝对值设置为彼此相同。
下面将参照图7至图10来描述根据本公开的示例性实施例的应用于风力发电机组中的阻尼装置的优点。图7和图8示出了当质量块8的摆动方向与两个导轨3的第一端的固定点连线相平行时阻尼装置的运动状态,图7和图8中的箭头分别表示质量块8的摆动方向D1和D2。图9和图10示出了当质量块8的摆动方向与两个导轨3的第一端的固定点连线相垂直时阻尼装置的运动状态,图9和图10中的箭头分别表示质量块8的摆动方向D3和D4。在图7至图10中,为了清楚地示出阻尼装置的运动状态,以双点划线来示出质量块8。通过图7至图10中示出的运动状态可知,采用具有预定曲率的导轨3的阻尼装置具有以下优点:在同等啮合长度的情况下,具有预定曲率的导轨3的回转半径更小,所需的安装空间也更小;两个导轨3在高度方向上彼此错开地布置,进一步减小了空间需求;在质量块8的摆动方向与两个导轨3的第一端的固定点连线相垂直时,具有曲率的导轨3可以很好地将摆动转化为结构支架2中的齿轮的转动,从而传递给阻尼部件1。另外,仅采用两个阻尼装置便可以为整个风力发电机组提供阻尼力,同时还能够保证全方向 下均可获得较高的转换效率。
根据本公开的阻尼装置能够为整个风力发电机组提供阻尼力,同时保证全方向下均可获得较高的转换效率;所需的安装空间小、在有效空间内避免干涉,同时保证维护工作的可靠空间;能够减小齿轮磨损、延长齿轮寿命,并且能够提高运动传递精度;能够减少维护工作项目、提高整体可靠性;能够减少阻尼装置的部件数量,简化结构,并且降低生产成本。
虽然已经参照本公开的示例性实施例具体示出和描述了本公开,但是本领域普通技术人员应该理解,在不脱离由权利要求限定的本公开的精神和范围的情况下,可以对其进行形式和细节的各种改变。
工业实用性
根据本公开示例性实施例的阻尼装置及风力发电机组,能够包括能够为整个风力发电机组提供阻尼力,能够实现减振、减小安装空间,同时保证维护工作的可靠空间。

Claims (20)

  1. 一种阻尼装置,其特征在于,所述阻尼装置包括:
    阻尼部件(1);
    结构支架(2),所述结构支架(2)将所述阻尼部件(1)连接至设于待减振对象(7)上的质量块(8),其中,所述结构支架(2)包括齿轮,所述齿轮可旋转地设置在所述结构支架(2)上;
    导轨(3),所述导轨(3)具有预定曲率,所述导轨(3)的第一端用于可转动地连接至所述待减振对象(7),并且所述导轨(3)的第二端支承在所述结构支架(2)上,其中,所述导轨(3)的侧部形成有与所述齿轮啮合的齿部,
    其中,当所述质量块(8)摆动时,通过所述导轨(3)与所述齿轮之间的啮合传动将所述质量块(8)的摆动转化为转动输入至所述阻尼部件(1)。
  2. 如权利要求1所述的阻尼装置,其特征在于,所述结构支架(2)和所述导轨(3)上形成有彼此匹配的导向结构。
  3. 如权利要求2所述的阻尼装置,其特征在于,所述导向结构包括:
    导向凹槽(4),所述导向凹槽(4)形成在所述导轨(3)在厚度方向上彼此相对的第一表面和第二表面中;
    导向轮(5),所述导向轮(5)可旋转地设置在所述结构支架(2)的面对所述导轨(3)的所述导向凹槽(4)的位置处,并容纳在所述导向凹槽(4)中。
  4. 如权利要求3所述的阻尼装置,其特征在于,所述导向凹槽(4)从所述导轨(3)的所述第一表面或所述第二表面沿所述厚度方向凹入,并且所述导向凹槽(4)沿着所述导轨(3)的长度方向延伸;所述导向轮(5)的转动轴线平行于所述导向凹槽(4)的侧壁。
  5. 如权利要求3所述的阻尼装置,其特征在于,所述导向轮(5)包括可旋转地设置在其端部的托辊(6),所述托辊(6)接触所述导向凹槽(4)的槽底面,并且所述托辊(6)的转动轴线平行于所述槽底面。
  6. 如权利要求3所述的阻尼装置,其特征在于,所述导向轮(5)采用偏心安装套安装至所述结构支架(2)上。
  7. 如权利要求1所述的阻尼装置,其特征在于,所述齿轮实现为通过轴 承可旋转地安装在所述结构支架(2)中的齿轮轴(9),所述阻尼部件(1)包括转子(14)和定子(15),并且所述转子(14)通过联轴器(13)连接至所述齿轮轴(9)。
  8. 如权利要求7所述的阻尼装置,其特征在于,所述转子(14)位于所述定子(15)的内部,并且所述转子(14)通过所述联轴器(13)连接到所述齿轮轴(9)的轴端。
  9. 如权利要求7或8所述的阻尼装置,其特征在于,所述结构支架(2)还包括连接盘(12),所述连接盘(12)具有中空的容纳空间,并且所述联轴器(13)容纳在所述连接盘(12)的所述容纳空间中。
  10. 如权利要求9所述的阻尼装置,其特征在于,所述连接盘(12)的两端设有连接法兰且分别安装到所述结构支架(2)和所述定子(15)。
  11. 如权利要求1所述的阻尼装置,其特征在于,所述导轨(3)为具有预定曲率半径的齿条。
  12. 一种风力发电机组,其特征在于,所述风力发电机组包括:
    作为所述待减振对象(7)的塔架;
    如权利要求1-11中任一项所述的阻尼装置,所述结构支架(2)连接至设于所述塔架中的所述质量块(8)上,所述导轨(3)的第一端可转动地连接至所述塔架的内壁。
  13. 如权利要求12所述的风力发电机组,其特征在于,所述风力发电机组包括两个所述阻尼装置。
  14. 如权利要求13所述的风力发电机组,其特征在于,两个所述阻尼装置的两个所述导轨(3)在所述塔架的高度方向上彼此错开预定距离。
  15. 如权利要求14所述的风力发电机组,其特征在于,所述结构支架(2)的高度是可调节的。
  16. 如权利要求15所述的风力发电机组,其特征在于,所述结构支架(2)分段制成,或者,所述结构支架(2)具有可伸缩结构。
  17. 如权利要求14所述的风力发电机组,其特征在于,两个所述阻尼装置的两个所述导轨(3)彼此背对地布置。
  18. 如权利要求17所述的风力发电机组,其特征在于,两个所述阻尼装置的两个所述导轨(3)的曲率半径的符号相反。
  19. 如权利要求17或18所述的风力发电机组,其特征在于,两个所述 阻尼装置的两个所述导轨(3)的曲率半径的绝对值相同。
  20. 如权利要求17或18所述的风力发电机组,其特征在于,两个所述阻尼装置的两个所述导轨(3)的曲率半径的绝对值不同。
PCT/CN2020/114582 2020-03-31 2020-09-10 阻尼装置及风力发电机组 WO2021196526A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112022019680A BR112022019680A2 (pt) 2020-03-31 2020-09-10 Dispositivo de amortecimento e sistema gerador de turbina eólica
CA3172746A CA3172746A1 (en) 2020-03-31 2020-09-10 Damping device and wind turbine generator system
AU2020440032A AU2020440032A1 (en) 2020-03-31 2020-09-10 Damping device and wind turbine generator system
EP20928294.6A EP4119792A4 (en) 2020-03-31 2020-09-10 DAMPING DEVICE AND WIND GENERATOR SYSTEM
US17/907,130 US11946453B2 (en) 2020-03-31 2020-09-10 Damping device and wind turbine generator system
ZA2022/11306A ZA202211306B (en) 2020-03-31 2022-10-14 Damping device and wind turbine generator system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010240404.3 2020-03-31
CN202010240404.3A CN113464384A (zh) 2020-03-31 2020-03-31 阻尼装置及风力发电机组

Publications (1)

Publication Number Publication Date
WO2021196526A1 true WO2021196526A1 (zh) 2021-10-07

Family

ID=77865313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114582 WO2021196526A1 (zh) 2020-03-31 2020-09-10 阻尼装置及风力发电机组

Country Status (9)

Country Link
US (1) US11946453B2 (zh)
EP (1) EP4119792A4 (zh)
CN (1) CN113464384A (zh)
AU (1) AU2020440032A1 (zh)
BR (1) BR112022019680A2 (zh)
CA (1) CA3172746A1 (zh)
CL (1) CL2022002669A1 (zh)
WO (1) WO2021196526A1 (zh)
ZA (1) ZA202211306B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946453B2 (en) * 2020-03-31 2024-04-02 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Damping device and wind turbine generator system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117230910B (zh) * 2023-11-16 2024-03-08 德州润泓五金机电设备有限公司 一种高层建筑物智能减震装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696072A1 (de) * 2012-08-10 2014-02-12 Wölfel Beratende Ingenieure GmbH & Co. KG Schwingungstilgeranordnung für Windkraftanlagen mit Massenpendel und Wirbelstromdämpfer
CN207049253U (zh) * 2017-06-02 2018-02-27 锋电能源技术有限公司 一种风力发电机组高塔阻尼装置
CN108350969A (zh) * 2015-08-28 2018-07-31 Fm能源有限责任两合公司 带有旋转的质量的振动缓冲器
CN108603554A (zh) * 2016-01-15 2018-09-28 Fm能源有限责任两合公司 带有用于风力设施的电磁制动器的振动减振器
CN209687662U (zh) * 2019-03-08 2019-11-26 中国科学院工程热物理研究所 一种风力机塔筒减震器结构
CN110552996A (zh) * 2019-09-11 2019-12-10 上海电气风电集团股份有限公司 导轨型质量阻尼器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851848A (en) * 1952-10-29 1958-09-16 Alfred W Vibber Twisting spindle balloon control
DE4003776C2 (de) * 1990-02-08 2000-06-21 Lear Corp Fahrzeugsitz
JP3856116B2 (ja) * 2001-12-20 2006-12-13 富士ゼロックス株式会社 シート供給装置及びこれを用いた画像形成装置
US7717212B2 (en) * 2006-08-25 2010-05-18 Split Pivot, Inc. Vehicle suspension systems for seperated acceleration responses
EP2337730A4 (en) * 2008-09-16 2013-09-18 Evil Bikes Llc ENHANCED BICYCLE SUSPENSION SYSTEMS
WO2012027900A1 (en) * 2010-09-02 2012-03-08 Mz Motor Co. Ltd. Rear wheel suspension for a vehicle, in particular a bicycle
US20140116282A1 (en) * 2012-10-25 2014-05-01 Sean Horihan Horihan Suspended Transport System
EP3269997B1 (en) * 2016-07-14 2020-01-01 Siemens Gamesa Renewable Energy A/S Oscillation absorber for a structure
EP3415786B1 (en) * 2017-06-13 2021-10-20 GE Renewable Technologies Wind B.V. Tuned mass dampers for damping an oscillating movement of a structure
CN111164326B (zh) * 2017-08-08 2022-02-22 Fm能源有限责任两合公司 旋转阻尼器和装备有旋转阻尼器的振动减振器
WO2019154557A1 (de) * 2018-02-08 2019-08-15 Esm Energie- Und Schwingungstechnik Mitsch Gmbh Rotations-schwingungstilger mit riemenantrieb
WO2019201471A1 (de) 2018-04-18 2019-10-24 Fm Energie Gmbh & Co.Kg Dämpfende kardanaufhängung für pendeltilger
CN112313409B (zh) * 2018-06-29 2023-08-18 维斯塔斯风力系统有限公司 塔结构的阻尼器单元
CN109356426B (zh) * 2018-11-21 2024-03-22 中交第二航务工程局有限公司 调谐质量阻尼器
DE102019109650A1 (de) * 2019-04-11 2020-10-15 Hettich-Oni Gmbh & Co. Kg Öffnungsvorrichtung für ein Kühlgerät
CN113464384A (zh) * 2020-03-31 2021-10-01 北京金风科创风电设备有限公司 阻尼装置及风力发电机组
CN113738602B (zh) * 2020-05-28 2022-08-23 北京金风科创风电设备有限公司 阻尼集成装置、阻尼器以及风力发电机组
EP3974649A1 (en) * 2020-09-25 2022-03-30 Siemens Gamesa Renewable Energy A/S Use of a tuned mass damper in a nacelle for a wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696072A1 (de) * 2012-08-10 2014-02-12 Wölfel Beratende Ingenieure GmbH & Co. KG Schwingungstilgeranordnung für Windkraftanlagen mit Massenpendel und Wirbelstromdämpfer
CN108350969A (zh) * 2015-08-28 2018-07-31 Fm能源有限责任两合公司 带有旋转的质量的振动缓冲器
CN108603554A (zh) * 2016-01-15 2018-09-28 Fm能源有限责任两合公司 带有用于风力设施的电磁制动器的振动减振器
CN207049253U (zh) * 2017-06-02 2018-02-27 锋电能源技术有限公司 一种风力发电机组高塔阻尼装置
CN209687662U (zh) * 2019-03-08 2019-11-26 中国科学院工程热物理研究所 一种风力机塔筒减震器结构
CN110552996A (zh) * 2019-09-11 2019-12-10 上海电气风电集团股份有限公司 导轨型质量阻尼器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119792A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946453B2 (en) * 2020-03-31 2024-04-02 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Damping device and wind turbine generator system

Also Published As

Publication number Publication date
EP4119792A1 (en) 2023-01-18
ZA202211306B (en) 2024-02-28
EP4119792A4 (en) 2023-11-08
US20230125305A1 (en) 2023-04-27
CL2022002669A1 (es) 2023-05-19
BR112022019680A2 (pt) 2022-11-22
CA3172746A1 (en) 2021-10-07
US11946453B2 (en) 2024-04-02
CN113464384A (zh) 2021-10-01
AU2020440032A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021196526A1 (zh) 阻尼装置及风力发电机组
JP4831847B1 (ja) 制振装置、風力発電装置及び制振方法
JP5022487B2 (ja) 風車用タワー及び風力発電装置
JP4865862B2 (ja) 風力発電装置のピッチ駆動装置および風力発電装置
JP2013501172A (ja) 風力タービンにおける振動を減衰させるためのシステムおよび方法
EP2458199A1 (en) Wind turbine with compensated motor torque
CN109424695B (zh) 用于阻尼结构中的振荡的布置及方法
JPWO2005095794A1 (ja) 片持式垂直軸風車
JP2012107584A (ja) 風車およびその制振方法
US20190284800A1 (en) Tuned dynamic damper and method for reducing the amplitude of oscillations
CN112431320A (zh) 用于风机塔筒减振的电涡流调谐质量阻尼器及其安装方法
KR20120021629A (ko) 풍력발전기의 타워 진동 억제구조
JP7419282B2 (ja) 制振発電装置、制振発電システムおよび風力発電システム
CN104854373A (zh) 力转换器装置及方法
KR101368799B1 (ko) 풍력발전기
CN111236461A (zh) 磁涡流阻尼装置、调频质量磁涡流阻尼器和抑制振动的方法
JP6345093B2 (ja) 風力発電設備
CN113606279B (zh) 一种具有交变阻尼的减振装置
JP5705618B2 (ja) 振動発電装置
CN105804475B (zh) 一种用于高压输电线路的铁塔
JP2006201177A (ja) 自動つめ巻き機構
CN111827514A (zh) 一种电涡流阻尼墙及建筑
RU169203U1 (ru) Ветродвигатель с вертикальным валом вращения
JP4514046B2 (ja) 揺動体に対するコリオリ力を利用した吸振器
EP2901042B1 (en) Power gearing system for a wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3172746

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019680

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020440032

Country of ref document: AU

Date of ref document: 20200910

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020928294

Country of ref document: EP

Effective date: 20221011

ENP Entry into the national phase

Ref document number: 112022019680

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220929