WO2021196525A1 - 调节风电场有功功率的方法、控制设备及风电场的控制器 - Google Patents

调节风电场有功功率的方法、控制设备及风电场的控制器 Download PDF

Info

Publication number
WO2021196525A1
WO2021196525A1 PCT/CN2020/114510 CN2020114510W WO2021196525A1 WO 2021196525 A1 WO2021196525 A1 WO 2021196525A1 CN 2020114510 W CN2020114510 W CN 2020114510W WO 2021196525 A1 WO2021196525 A1 WO 2021196525A1
Authority
WO
WIPO (PCT)
Prior art keywords
active power
amount
power
wind farm
wind
Prior art date
Application number
PCT/CN2020/114510
Other languages
English (en)
French (fr)
Inventor
包献文
乔元
于连富
左美灵
刘艳录
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010242215.XA external-priority patent/CN113471986B/zh
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP20914766.9A priority Critical patent/EP3916945A4/en
Priority to US17/429,003 priority patent/US20220307474A1/en
Priority to AU2021206814A priority patent/AU2021206814B2/en
Publication of WO2021196525A1 publication Critical patent/WO2021196525A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure generally relates to the field of wind power technology, and more specifically, to a method for adjusting the active power of a wind farm, a control device, and a controller of the wind farm.
  • the primary frequency modulation control of the wind farm is used to adjust the characteristics of the output active power of the wind farm, so that the wind farm provides fast and accurate active power support after the frequency of the grid system is disturbed, responds to the safe operation of the grid, and improves the penetration of new energy stations
  • the efficiency and ensuring the stable operation of the power system are of great significance.
  • Exemplary embodiments of the present disclosure are to provide a method for regulating active power of a wind farm, a control device, and a controller of a wind farm, which can regulate the active power of a wind farm to effectively meet the regulation demand.
  • a method for adjusting the active power of a wind farm includes: obtaining an increase in active power that needs to be adjusted by the wind farm; Determine the active power adjustable amount of the wind farm; based on the active power increment that needs to be adjusted by the wind farm and the active power adjustable amount of the wind farm, determine the active power adjustment amount of each wind turbine to determine the active power of each wind turbine.
  • the active power adjustable amount of the wind turbine includes at least one of the following items: used to characterize the amount of active power that can be increased through the pitch operation, and the amount of active power that can be increased by the pitch.
  • the amount of active power that can be reduced by the pitch operation can reduce the amount of active power
  • the rotor kinetic energy can increase the amount of active power that can be used to characterize the amount of active power that can be increased by changing the kinetic energy of the rotor
  • the braking resistor that can reduce the amount of active power can reduce the amount of active power.
  • a control device for adjusting the active power of a wind farm.
  • the control device includes: an incremental acquisition unit that acquires an incremental amount of active power that needs to be adjusted by the wind farm; and the adjustable amount is determined
  • the unit determines the active power adjustable amount of the wind farm based on the active power adjustable amount of each wind generator set in the wind farm; the adjustment amount determining unit is based on the active power increment required for the wind farm adjustment and the active power adjustable amount of the wind farm , Determine the active power adjustment of each wind turbine to adjust the active power of each wind turbine;
  • the active power of the wind turbine includes at least one of the following items: The amount of active power that can be increased by the operation of the propeller, the amount of active power that can be increased by the pitch, the amount of active power that can be reduced by the pitch operation, and the amount of active power that can be increased by changing the kinetic energy of the rotor
  • the rotor kinetic energy of the power amount can increase the active power amount, and the braking resistor can
  • a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the method for adjusting the active power of a wind farm as described above is realized.
  • a controller for a wind farm includes a processor; a memory storing a computer program.
  • the computer program is executed by the processor, the above The method for adjusting the active power of a wind farm.
  • the method for adjusting the active power of a wind farm, the control device, and the controller of the wind farm can be adapted to adjust the active power of the wind farm in a variety of scenarios (to increase or decrease the active power of the wind farm). Active power output), and can effectively meet the adjustment needs of fast adjustment speed, small impact on the load of the unit, and flexible adjustment.
  • Fig. 1 shows a flowchart of a method for adjusting active power of a wind farm according to an exemplary embodiment of the present disclosure
  • Fig. 2 shows a flowchart of a method for determining the variable pitch increaseable active power and the rotor kinetic energy increaseable active power of a wind turbine according to an exemplary embodiment of the present disclosure
  • Fig. 3 shows a flowchart of a method for determining the amount of active power that can be reduced by pitch and the amount of active power that can be reduced by a braking resistor according to an exemplary embodiment of the present disclosure
  • FIG. 4 shows a flowchart of a method for obtaining an active power increase required for wind farm adjustment when a wind farm participates in a primary frequency regulation according to an exemplary embodiment of the present disclosure
  • Fig. 5 shows a structural block diagram of a control device for adjusting active power of a wind farm according to an exemplary embodiment of the present disclosure.
  • Fig. 1 shows a flowchart of a method for adjusting active power of a wind farm according to an exemplary embodiment of the present disclosure.
  • step S10 the active power increment that needs to be adjusted by the wind farm is obtained.
  • the active power increment that needs to be adjusted by the wind farm may be a positive increment (ie, the amount of active power that needs to be increased by the wind farm) or a negative increment (ie, the amount of active power that needs to be reduced by the wind farm).
  • the acquired active power increment requiring wind farm adjustment may be the active power increment requiring wind farm adjustment in one of the following situations: wind farm participates in primary frequency modulation, wind farm participates in secondary frequency modulation, wind farm and/or its The connected power grid fails. It should be understood that it can also be an increase in active power that requires wind farm adjustment in other situations where wind farms need to adjust active power.
  • the method for adjusting the active power of a wind farm according to an exemplary embodiment of the present disclosure can be applied to a variety of active power adjustment scenarios, for example, primary frequency modulation, secondary frequency modulation, wind farm and/or the grid to which it is connected fails ( For example, short-circuit, circuit breaker failure, etc.) and other scenarios.
  • the increase in active power required by the wind farm for the current frequency modulation can be determined.
  • an example of the method for obtaining the active power increment required by the wind farm to be adjusted when the wind farm participates in the primary frequency regulation will be described in detail with reference to FIG. 4.
  • step S20 the active power adjustable amount of the wind farm is determined based on the active power adjustable amount of each wind power generating unit of the wind farm.
  • the adjustable amount of active power of the wind turbine includes at least one of the following items: the variable pitch increase used to characterize the amount of active power that can be increased by the pitch operation Active power, variable pitch reduction active power used to characterize the active power which can be reduced by pitch operation, rotor kinetic energy increase active power used to characterize the active power which can be increased by changing the kinetic energy of the rotor, and use To characterize the amount of active power that can be reduced by the braking resistor consumption, the amount of active power that can be reduced by the braking resistor.
  • the braking resistor of the converter is mainly used during the low voltage ride-through period to convert the active power on the turbine side into heat energy, which can quickly consume the active power on the turbine side to help the wind turbine achieve low voltage. Voltage ride through.
  • the braking resistor can reduce the amount of active power, which is not limited in the present disclosure.
  • variable pitch increaseable active power and rotor kinetic energy increaseable active power of the wind turbine can be determined based on at least one of the following parameters of the wind turbine. Quantity: current actual power, minimum power, rated power, minimum power capable of having rotor kinetic energy, current maximum theoretical power, current actual pitch angle, and minimum pitch angle.
  • Quantity current actual power, minimum power, rated power, minimum power capable of having rotor kinetic energy, current maximum theoretical power, current actual pitch angle, and minimum pitch angle.
  • the minimum power of a wind turbine it can be understood that when the wind turbine uses a variable pitch method to reduce power, if the power is lower than the limit, the wind turbine will shut down, for example, the minimum power of the wind turbine
  • the power limit value may be 10% of the rated power value of the wind turbine generator set.
  • the minimum power that a wind turbine can have rotor kinetic energy it can be understood as the minimum power value required to enable the wind turbine to start the rotor kinetic energy function.
  • the minimum power value that a wind turbine can have rotor kinetic energy can be the 20% of the rated power value of the wind turbine.
  • variable pitch reduction active power and braking resistance reduction of the wind turbine generator can be determined based on at least one of the following parameters of the wind turbine generator.
  • Active power the current actual power, the minimum power, and the power capacity that can be reduced by the braking resistor.
  • the power reduction capacity of the braking resistor can be sent up by the converter, and the power reduction capacity of the braking resistor can be determined based on the power reduction per unit time of the braking resistor and the sustainable duration.
  • step S20 may include: determining the variable pitch increase active power and rotor kinetic energy increase active power of each wind turbine; determining the pitch of the wind farm based on the variable pitch increase active power of each wind turbine The amount of active power that can be increased; and the amount of active power that can be increased based on the kinetic energy of the rotor of each wind generator set is used to determine the amount of active power that can be increased by the rotor kinetic energy of the wind farm.
  • the sum of the variable pitch increase active power of each wind power generation unit of a wind farm can be determined as the variable pitch increase active power of the wind farm, and the rotor kinetic energy of each wind power generation unit of the wind farm can be increased.
  • the total amount of active power is determined as the amount of active power that can be increased by the rotor kinetic energy of the wind farm.
  • the sum of the rotor kinetic energy increaseable active power of the wind farm and the variable pitch increaseable active power can be used as the wind farm's increaseable active power.
  • step S20 may include: determining the variable pitch reduction active power and braking resistor reduction active power of each wind turbine; and determining the variable pitch of the wind farm based on the variable pitch reduction active power of each wind turbine.
  • the propeller can reduce the amount of active power; and based on the amount of active power that can be reduced by the braking resistor of each wind turbine, the amount of active power that can be reduced by the braking resistor of the wind farm is determined.
  • the sum of the variable pitch reduction active power of each wind power generation unit of a wind farm can be determined as the variable pitch reduction active power of the wind farm, and the braking resistance of each wind power generation unit of the wind farm can be The total amount of reduced active power is determined as the amount of active power that can be reduced by the braking resistor of the wind farm.
  • step S30 based on the active power increment to be adjusted by the wind farm and the adjustable active power of the wind farm, the active power adjustment amount of each wind turbine is determined to adjust the active power of each wind turbine.
  • the active power adjustment amount (active power change amount) of each wind turbine generator set is also the amount of active power that needs to be adjusted by each wind turbine generator set.
  • the amount of active power that needs to be increased by the pitch operation of each wind turbine generator and/or the amount of active power that needs to be increased by changing the kinetic energy of the rotor may be determined.
  • the pitch operation of the wind turbine generator can be used first to increase the active power, specifically, when When the increase in active power that needs to be adjusted by the wind farm is greater than 0 and not greater than the amount of active power that can be increased by the wind power The amount of active power that needs to be increased by each wind turbine generator through the pitch operation.
  • the amount of active power that needs to be adjusted by the wind farm is greater than 0 and not greater than the amount of active power that can be increased by the pitch of the wind farm
  • the amount of active power that needs to be increased by the pitch operation of each wind turbine can be determined It is: the variable pitch of the wind turbine generator can increase the product of active power and the first pitch ratio coefficient.
  • the first pitch ratio coefficient K pitch1 is: the ratio of the absolute value fabs (DeltPwf_demand) of the active power increment that needs to be adjusted by the wind farm to the variable pitch increase active power DeltPwf_pitchup of the wind farm, that is,
  • the pitch operation and rotor kinetic energy of the wind turbine can be used to increase the active power.
  • the active power increment of field regulation is greater than the amount of active power that can be increased by the pitch of the wind farm, it can be based on the amount of active power that needs to be adjusted by the wind farm, the amount of active power that can be increased by the pitch of the wind farm, and the kinetic energy of the rotor of the wind farm.
  • the variable pitch of the generator set can increase the amount of active power (that is, let the first pitch ratio coefficient be 1), and it is determined that the amount of active power that needs to be increased by changing the kinetic energy of each wind turbine set is: the rotor of the wind turbine set Kinetic energy can be increased by the product of active power and the proportional coefficient of rotor kinetic energy.
  • the rotor kinetic energy ratio coefficient K RKE is: the difference between the absolute value fabs (DeltPwf_demand) of the active power increment that needs to be adjusted by the wind farm and the deltPwf_pitchup of the wind farm's variable pitch increase active power and the rotor of the wind farm Kinetic energy can increase the ratio of active power DeltPwf_RKEup, that is, And when the ratio is greater than 1, let the rotor kinetic energy proportional coefficient be 1.
  • the active power increment required for wind farm adjustment when the active power increment required for wind farm adjustment is less than 0, it can be determined that the active power of each wind turbine generator needs to be reduced through pitch operation and braking resistor consumption together and/or through the change alone.
  • the amount of active power reduced by propeller operation As an example, the amount of active power that needs to be reduced by the wind turbine generator set through the pitch operation and the braking resistor consumption together can be understood as the amount of active power that needs to be reduced by the wind turbine generator set through the pitch operation and the braking resistor consumption at the same time.
  • the pitch operation and braking resistor consumption can be used first to reduce the active power.
  • the increase in active power that needs to be adjusted by the wind farm is less than 0 and its absolute value is not greater than the amount of active power that the braking resistor of the wind farm can reduce, based on the increase in active power that needs to be adjusted by the wind farm and the control of the wind farm
  • the dynamic resistance can reduce the amount of active power, and determine the amount of active power that needs to be reduced by each wind turbine generator through the pitch operation and the braking resistor consumption together.
  • the increase in active power that needs to be adjusted by the wind farm is less than 0 and its absolute value is not greater than the amount of active power that can be reduced by the braking resistor of the wind farm, it is determined that each wind turbine is required to operate and control by pitching.
  • the amount of active power that the dynamic resistance consumes and synergistically reduces is: the product of the amount of active power that can be reduced by the braking resistor of the wind turbine generator and the synergistic proportional coefficient.
  • the synergy proportional coefficient K pitch+res is: the ratio of the absolute value fabs (DeltPwf_demand) of the active power increment that needs to be adjusted by the wind farm to the active power amount DeltPwf_resdown that can be reduced by the braking resistor of the wind farm, that is,
  • the pitch operation and braking resistor consumption can be used first to reduce the active power, and the remaining part that needs to be reduced is reduced by the pitch operation alone.
  • the amount of active power that needs to be adjusted by the wind farm is less than 0 and its absolute value is greater than the braking resistance of the wind farm, the amount of active power can be reduced, and the amount of active power that can be reduced by the pitch of the wind farm is greater than the braking resistance of the wind farm.
  • the amount of active power can be reduced, based on the amount of active power that needs to be adjusted by the wind farm, the amount of active power that can be reduced by the pitch of the wind farm, and the amount of active power that can be reduced by the braking resistor of the wind farm, it is determined that each wind turbine is required to pass the change.
  • the amount of active power can be reduced, and the amount of active power that can be reduced by the pitch of the wind farm is greater than that of the wind farm.
  • the braking resistor of the wind turbine can reduce the amount of active power (also That is, let the synergy ratio coefficient be 1), and determine that the amount of active power that needs to be reduced by each wind turbine generator individually through the pitch operation is: the active power that can be reduced by the pitch of the wind turbine and its braking resistor can reduce the active power The product of the difference between the quantities and the second pitch coefficient.
  • the second pitch ratio coefficient K pitch2 is: the ratio of the first specific difference to the second specific difference, and the first specific difference is the absolute value fabs (DeltPwf_demand) of the active power increment that needs to be adjusted by the wind farm The difference between the active power DeltPwf_resdown and the braking resistor of the wind farm.
  • the second specific difference is the difference between the active power DeltPwf_pitchdown of the wind farm and the braking resistor DeltPwf_resdown of the wind farm. The difference between, that is, And when the ratio is greater than 1, let the second pitch ratio coefficient be 1.
  • the method for adjusting the active power of a wind farm may be performed periodically (for example, according to the control cycle of the station control system) or aperiodically (for example, , Execute after the trigger condition is met).
  • the present disclosure fully considers the advantages and disadvantages of the various ways of adjusting the active power of the wind power generating unit, and proposes a method for adjusting the active power of the wind power plant quickly, flexibly and without affecting the load safety of the generating unit.
  • the advantage is fast response speed
  • the disadvantage is that it affects the load safety of the unit, and the control strategy of the unit is complicated, and the amplitude of active power adjustment is limited; while the pitch control of wind turbine: the advantage is The amplitude of active power adjustment is large.
  • the disadvantage is that the power adjustment speed is slow, and there is a partial impact on the load of the unit.
  • the method for adjusting the active power of a wind farm may further include: for each wind power generator, controlling the active power of the wind power generator to increase or decrease the determined active power of the wind power generator The amount of power adjustment to realize the adjustment of the active power of the wind farm.
  • an active power control command can be sent to each wind power generator so that the wind power generator can adjust the active power according to the active power control command.
  • an active control command for indicating the amount of active power that needs to be increased through the pitch operation and/or the amount of active power increased by changing the kinetic energy of the rotor to control the wind turbine to increase the active power
  • the generator set sends an active control command for indicating the amount of active power that needs to be reduced by the pitch operation and braking resistor consumption together and/or the amount of active power that is reduced by the pitch operation alone to control the wind turbine to reduce the active power.
  • the active power control command used to indicate the required active power value can be sent to the wind generator set. If the active power value needs to be increased by the wind generator set, the required active power value can be its current actual power and the corresponding active power value. The sum of the power adjustments; if the wind turbine is required to reduce the active power, the required active power value can be its current actual power minus the corresponding active power adjustments.
  • the method for adjusting the active power of a wind farm may further include: for each wind power generator, starting from the moment when the wind power generator increases the active power by changing the rotor kinetic energy this time Timing, if the accumulated active power is increased by changing the kinetic energy of the rotor to reach the first preset time period, the wind turbine generator is controlled to stop adjusting the active power this time.
  • the first preset duration can be set according to actual conditions and requirements, for example, it can be set to 10s.
  • the method for adjusting the active power of a wind farm may further include: for each wind turbine, from the moment when the wind turbine consumes the braking resistor to reduce the active power this time Start timing, and if the accumulated active power reduced by the braking resistor consumption reaches the second preset time period, the wind turbine generator is controlled to stop the active power adjustment this time.
  • the second preset duration can be set according to actual conditions and requirements, for example, it can be set to 10s.
  • Fig. 2 shows a flowchart of a method for determining the variable pitch increaseable active power and the rotor kinetic energy increaseable active power of a wind power generator according to an exemplary embodiment of the present disclosure.
  • the pitch of the wind turbine generator can increase the active power
  • the quantity DeltPwt_pitchup_i and the rotor kinetic energy increaseable active power quantity DeltPwt_RKEup_i are both 0;
  • the rotor kinetic energy of the wind turbine can increase the active power
  • the amount DeltPwt_RKEup_i is 0, and the variable pitch increase active power amount DeltPwt_pitchup_i is the difference between the current maximum theoretical power and the current actual power Pwt_max_i-Pwt_real_i;
  • the wind power The rotor kinetic energy of the generator set can increase the active power DeltPwt_RKEup_i is 0, and the pitch increase active power DeltPwt_pitchup_i is the difference between the current maximum theoretical power and the current actual power Pwt_max_i-Pwt_real_i;
  • the wind power generation The rotor kinetic energy of the unit can increase the active power DeltPwt_RKEup_i is the first preset ratio of its rated power (ie, the first preset ratio *Pwt_n_i, for example, the first preset ratio can be set to 10%), the pitch can be increased
  • the amount of active power DeltPwt_pitchup_i is 0;
  • Fig. 3 shows a flowchart of a method for determining the amount of active power that can be reduced by pitching and the amount of active power that can be reduced by a braking resistor according to an exemplary embodiment of the present disclosure.
  • Fig. 4 shows a flow chart of a method for obtaining an active power increase required for wind farm adjustment when a wind farm participates in a primary frequency modulation according to an exemplary embodiment of the present disclosure.
  • step S101 it is determined whether a specific type of fault exists in the wind farm and/or the grid connected to the wind power site.
  • the fault information may include at least one of the following items: overvoltage, undervoltage, overfrequency, underfrequency, low power at the grid connection point of the wind farm, and hardware alarms of the station control system (for example, a problem occurs in the power grid) Or the low output power of the wind farm will issue an alarm).
  • step S102 is executed to refresh the data of each wind turbine generator set and the grid connection point, otherwise it returns.
  • the refreshed data may include at least one of the following items: the current terminal voltage of the wind turbine, the current active power of the wind turbine, the current reactive power of the wind turbine, the controllable flag bit of the wind turbine, the running state of the wind turbine, and the primary time of the wind turbine.
  • Frequency modulation command value fan primary frequency modulation command feedback value, fan 3-second average wind speed, pitch angle 1 instantaneous value, pitch angle 2 instantaneous value, pitch angle 3 instantaneous value, generator instantaneous speed rad/s, torque reference ,
  • the single braking resistor can consume power value, the phase voltage of the grid connection point, the phase current of the grid connection point, the active power of the grid connection point, the reactive power of the grid connection point, the frequency of the grid connection point, and the power factor of the grid connection point.
  • step S103 based on the refreshed data of each wind turbine and grid connection point, it is determined whether the wind farm participates in a frequency modulation.
  • the frequency of the grid connection point is not within the frequency dead zone range, and the active power of the wind farm is not less than 20% of the rated power of the wind farm, it can be determined that the wind farm participates in a frequency modulation. It should be understood that other appropriate methods can also be used to determine whether the wind farm participates in the primary frequency modulation.
  • step S104 is executed to determine the active power increment required by the wind farm for the current frequency modulation.
  • the incremental active power demand value DeltP can be calculated by formula (1)
  • the active power demand value P can be calculated by formula (2):
  • f d indicates the threshold of fast frequency response action
  • f indicates the frequency of the grid connection point
  • P n indicates the rated power of the wind farm
  • ⁇ % indicates the rate of adjustment
  • P 0 indicates the current active power of the wind farm
  • f N indicates the power grid Rated frequency.
  • the parameters in the formula can be set independently and can be adjusted online.
  • the reference parameters are as follows: f d can be set to 50 ⁇ 0.1Hz, and the deviation rate ⁇ % can be set to 2% ⁇ 3%.
  • the calculated active power incremental demand value is greater than the first preset threshold or less than the second preset threshold.
  • the active power that needs to be adjusted by the wind farm for the current frequency modulation is increased.
  • the amount is determined as the first preset threshold.
  • the increase in active power required by the wind farm for the current frequency modulation is determined as the second preset threshold; when it is less than or equal to the first preset threshold and
  • the value is greater than or equal to the second preset threshold
  • the increase in active power that needs to be adjusted by the wind farm for the current frequency modulation is determined as the calculated incremental active power demand value.
  • the first preset threshold may be 10% of the rated power of the wind farm
  • the second preset threshold may be a negative number of the first preset threshold.
  • Fig. 5 shows a structural block diagram of a control device for adjusting active power of a wind farm according to an exemplary embodiment of the present disclosure.
  • the control device for adjusting the active power of a wind farm includes: an increment acquisition unit 10, an adjustable amount determination unit 20, and an adjustment amount determination unit 30.
  • the increment acquisition unit 10 is used to acquire the active power increment that needs to be adjusted by the wind farm.
  • the acquired active power increment requiring wind farm adjustment may be the active power increment requiring wind farm adjustment in one of the following situations: wind farm participates in primary frequency modulation, wind farm participates in secondary frequency modulation, wind farm and/or its The connected power grid fails.
  • the adjustable amount determining unit 20 is used to determine the adjustable amount of active power of the wind farm based on the adjustable amount of active power of each wind power generation unit of the wind farm.
  • the adjustment amount determining unit 30 is configured to determine the active power adjustment amount of each wind turbine generator set based on the active power increment required for wind farm adjustment and the active power adjustable amount of the wind farm, so as to adjust the active power of each wind turbine generator set.
  • the adjustable amount of active power of the wind turbine includes at least one of the following items: the variable pitch increaseable active power used to characterize the amount of active power that can be increased through pitch operation, and the The active power that can be reduced by the variable pitch can reduce the active power, the rotor kinetic energy that can be used to characterize the amount of active power that can be increased by changing the kinetic energy of the rotor, and the active power that can be reduced by the braking resistor consumption The braking resistor of the power quantity can reduce the active power quantity.
  • the adjustable amount determining unit 20 may determine the variable pitch increase active power and the rotor kinetic energy increase active power of each wind turbine; based on each wind power The variable pitch increase active power of the generator set determines the variable pitch increase active power of the wind farm; and based on the rotor kinetic energy of each wind generator set, the wind farm’s rotor kinetic energy can increase active power is determined.
  • the adjustable amount determining unit 20 may determine the amount of active power that can be reduced by the pitch and the amount of active power that can be reduced by the braking resistor of each wind turbine;
  • the active power that can be reduced by the variable pitch of the wind turbine determines the amount of active power that can be reduced by the pitch of the wind farm; and the amount of active power that can be reduced by the braking resistance of each wind turbine is determined by the braking resistor of the wind farm .
  • the adjustment amount determining unit 30 may be based on the amount of active power that needs to be adjusted by the wind farm and the wind farm’s Pitching can increase the amount of active power to determine the amount of active power that needs to be increased by each wind turbine through the pitch operation; when the amount of active power that needs to be adjusted by the wind farm is greater than the amount of active power that can be increased by the pitch of the wind farm, based on the need for wind power
  • the amount of active power that can be increased by field adjustment, the amount of active power that can be increased by the pitch of the wind farm, and the amount of active power that can be increased by the kinetic energy of the rotor of the wind farm determine the amount of active power that needs to be increased by each wind turbine through the pitch operation and by changing the rotor The amount of active power increased by kinetic energy.
  • the adjustment amount determining unit 30 may determine the amount of active power that needs to be increased by each wind turbine generator through the pitch operation when the increase in active power that needs to be adjusted by the wind farm is greater than 0 and not greater than the variable pitch increase active power of the wind farm.
  • the amount of power is: the product of the variable pitch increase active power of the wind turbine generator and the first pitch ratio coefficient; when the increase in active power that needs to be adjusted by the wind farm is greater than the variable pitch increase in the wind farm, it is determined
  • the amount of active power that needs to be increased by the pitch operation of each wind turbine is: the amount of active power that can be increased by the pitch of the wind turbine, and it is determined that the amount of active power that needs to be increased by changing the kinetic energy of each wind turbine is:
  • the rotor kinetic energy of the wind generator set is the product of the active power amount and the rotor kinetic energy proportional coefficient, wherein the first pitch proportional coefficient is: the active power increase that needs to be adjusted by the wind farm and the variable pitch of the wind farm can increase the active power
  • the ratio of the rotor kinetic energy, wherein the rotor kinetic energy ratio coefficient is: the difference between the active power increment that needs to be adjusted by the wind farm and the variable pitch increase active power of the wind farm and the rotor kinetic energy
  • the adjustment amount determining unit 30 may be based on the amount of active power that needs to be adjusted by the wind farm when the amount of active power that needs to be adjusted by the wind farm is less than 0 and its absolute value is not greater than the amount of active power that can be reduced by the braking resistor of the wind farm.
  • the amount of active power can be reduced, and the amount of active power that needs to be reduced by each wind turbine generator set through the pitch operation and the braking resistor consumption together; when the active power increment required by the wind farm is less than 0 and its
  • the amount of active power that can be reduced is based on the amount of active power that needs to be adjusted by the wind farm .
  • the variable pitch of the wind farm can reduce the amount of active power, and the braking resistance of the wind farm can reduce the amount of active power, determine the amount of active power that needs to be reduced by each wind turbine through the pitch operation and the braking resistance consumption together, and the individual The amount of active power reduced by the pitch operation.
  • the adjustment amount determining unit 30 may determine that when the active power increment required for wind farm adjustment is less than 0 and its absolute value is not greater than the amount of active power that can be reduced by the braking resistor of the wind farm, it may be determined that each wind turbine generator set needs to pass the pitch change.
  • the amount of active power reduced by operation and braking resistor consumption together is: the braking resistor of the wind turbine generator can reduce the product of active power and the synergy proportional coefficient; when the active power increment required for wind farm adjustment is less than 0 and its absolute When the value is greater than the braking resistor of the wind farm to reduce the amount of active power, and the variable pitch of the wind farm can reduce the amount of active power greater than the braking resistor of the wind farm to reduce the amount of active power, it is determined that each wind turbine needs to be operated by pitching
  • the amount of active power that can be reduced in conjunction with the braking resistor consumption is: the braking resistor of the wind turbine generator can reduce the amount of active power, and the amount of active power that is determined to require each wind turbine generator to be reduced by pitch operation alone is: the wind
  • the adjustable amount determining unit 20 may determine the variable pitch increase active power and the rotor kinetic energy increase active power of the wind power generating set based on at least one of the following parameters of the wind power generating set for each wind power generating set. Power amount: current actual power, minimum power, rated power, minimum power capable of having rotor kinetic energy, current maximum theoretical power, current actual pitch angle, and minimum pitch angle.
  • the adjustable quantity determination unit 20 may be specific to each wind turbine.
  • the pitch of the wind turbine is The increaseable active power and the rotor kinetic energy are 0; when the current actual power of the wind turbine is less than the minimum power that can have the rotor kinetic energy, and is greater than its minimum power and its current maximum theoretical power
  • the wind turbine generator set's variable pitch increase active power and rotor kinetic energy can increase active power are both 0; when the current actual power of the wind turbine When the theoretical power is greater than the minimum power, the rotor kinetic energy of the wind turbine generator can increase the active power to 0, and the variable pitch can increase the active power is the difference between the current maximum theoretical power and the current actual power;
  • the rotor kinetic energy of the wind turbine When the current actual power of the wind turbine is greater than the minimum power capable of having rotor kinetic energy but less than its current maximum theoretical power, and its current actual pitch angle is greater than its minimum pitch angle, the rotor
  • the amount of increased active power is 0; when the current actual power of the wind turbine is greater than the minimum power capable of having rotor kinetic energy and its rated power, and its current actual pitch angle is less than its minimum pitch angle, the wind turbine
  • the rotor kinetic energy increaseable active power and the variable pitch increase active power are both 0; when the current actual power of the wind turbine is greater than the minimum power that can have the rotor kinetic energy but less than its rated power, and its current actual propeller
  • the pitch angle is less than its minimum pitch angle
  • the rotor kinetic energy of the wind turbine generator can increase the active power of its rated power and its current actual power difference and the minimum value of the first preset ratio of its rated power , Pitching can increase the active power to 0.
  • the adjustable amount determining unit 20 may determine the variable pitch reduction active power and the braking resistance reduction of the wind turbine generator set based on at least one of the following parameters of the wind turbine generator set for each wind turbine generator set. Active power: the current actual power, the minimum power, and the power capacity that can be reduced by the braking resistor.
  • the adjustable amount determining unit 20 may be specific to each wind turbine.
  • the variable pitch of the wind turbine can reduce the active power and the braking resistance.
  • the amount of active power reduction is 0; when the current actual power of the wind turbine is greater than its minimum power, and the difference between its current actual power and its minimum power is greater than the power reduction capacity of its braking resistor, the wind turbine
  • the variable pitch of the generator set can reduce the active power of the difference between its current actual power and its minimum power, and the braking resistor can reduce the active power of its braking resistor can reduce the power capacity; when the current wind turbine When the actual power is greater than its minimum power, and the difference between its current actual power and its minimum power is less than its braking resistance can reduce the power capacity, the variable pitch reduction active power of the wind turbine generator is its current actual power
  • the difference between its minimum power and the amount of active power that the braking resistor can reduce is the difference between its current actual power and its minimum power.
  • control device for adjusting the active power of a wind farm may further include: an adjustment stop control unit (not shown), the adjustment stop control unit being used for each wind turbine generator The time when the wind turbine generator increases the active power by changing the rotor kinetic energy this time starts timing.
  • the wind turbine generator is controlled to stop the active power adjustment this time; and/or, The adjustment stop control unit is used for each wind turbine generator set, starting from the moment when the wind turbine generator reduces the active power through the braking resistor consumption this time, if the cumulative active power reduction through the braking resistor consumption reaches the second preset duration, Then control the wind turbine to stop the active power adjustment this time.
  • each unit in the control device for adjusting the active power of a wind farm may be implemented as a hardware component and/or a software component.
  • a person skilled in the art can implement each unit by using a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC) according to the processing performed by each of the defined units.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • Exemplary embodiments of the present disclosure provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the method for adjusting the active power of a wind farm as described in the above exemplary embodiment is realized.
  • the computer-readable storage medium is any data storage device that can store data read by a computer system. Examples of computer-readable storage media include read-only memory, random access memory, read-only optical disks, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission through the Internet via a wired or wireless transmission path).
  • the controller of a wind farm includes a processor (not shown) and a memory (not shown), wherein the memory stores a computer program, and when the computer program is executed by the processor, The method for adjusting the active power of the wind farm as described in the above exemplary embodiment is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种调节风电场有功功率的方法、控制设备及风电场的控制器。所述方法包括:获取需要风电场调节的有功功率增量(S10);基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量(S20);基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量(S30),以对各个风力发电机组的有功功率进行调节。

Description

调节风电场有功功率的方法、控制设备及风电场的控制器 技术领域
本公开总体说来涉及风电技术领域,更具体地讲,涉及一种调节风电场的有功功率的方法、控制设备及风电场的控制器。
背景技术
随着新能源发电机组渗透率的不断增加,在高渗透率区域电网内,风力发电机组的安全性、稳定性引起了广泛关注。
在电网实际运行中,当电量消耗与电量供给不匹配时,即可引起电网频率出现变化较小、变动周期较短的微小分量,这种频率扰动主要靠风力发电机组本身的调节系统自动调整以完成电网负荷补偿,而修正电网频率的波动的过程即为发电机组的一次调频。
风电场的一次调频控制用于调节风电场输出有功功率的特性,使风电场在电网系统频率扰动后,提供快速、准确的有功功率支撑,应对电网安全运行需求,对提高新能源场站的渗透率及确保电力系统的稳定运行具有重要意义。
因此,如何调节风电场的有功功率以有效地满足调节需求就显得尤为重要。
发明内容
本公开的示例性实施例在于提供一种调节风电场的有功功率的方法、控制设备及风电场的控制器,其能够对风电场的有功功率进行调节以有效地满足调节需求。
根据本公开的示例性实施例,提供一种调节风电场的有功功率的方法,所述方法包括:获取需要风电场调节的有功功率增量;基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量;基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量,以对各个风力发电机组的有功功率进行调节;其中,风 力发电机组的有功功率可调量包括以下项之中的至少一项:用于表征通过变桨操作可增加的有功功率量的变桨可增有功功率量、用于表征通过变桨操作可降低的有功功率量的变桨可降有功功率量、用于表征通过改变转子动能可增加的有功功率量的转子动能可增有功功率量、以及用于表征通过制动电阻消耗可降低的有功功率量的制动电阻可降有功功率量。
根据本公开的另一示例性实施例,提供一种调节风电场的有功功率的控制设备,所述控制设备包括:增量获取单元,获取需要风电场调节的有功功率增量;可调量确定单元,基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量;调节量确定单元,基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量,以对各个风力发电机组的有功功率进行调节;其中,风力发电机组的有功功率可调量包括以下项之中的至少一项:用于表征通过变桨操作可增加的有功功率量的变桨可增有功功率量、用于表征通过变桨操作可降低的有功功率量的变桨可降有功功率量、用于表征通过改变转子动能可增加的有功功率量的转子动能可增有功功率量、以及用于表征通过制动电阻消耗可降低的有功功率量的制动电阻可降有功功率量。
根据本公开的另一示例性实施例,提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时实现如上所述的调节风电场的有功功率的方法。
根据本公开的另一示例性实施例,提供一种风电场的控制器,所述控制器包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如上所述的调节风电场的有功功率的方法。
根据本公开示例性实施例的调节风电场的有功功率的方法、控制设备及风电场的控制器,能够适于多种场景下对风电场的有功功率进行调节(使风电场增加有功出力或降低有功出力),并能够有效地满足调节速度快、对机组的载荷影响小、调节灵活等调节需求。
将在接下来的描述中部分阐述本公开总体构思另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本公开总体构思的实施而得知。
附图说明
通过下面结合示例性地示出实施例的附图进行的描述,本公开示例性实 施例的上述和其他目的和特点将会变得更加清楚,其中:
图1示出根据本公开的示例性实施例的调节风电场的有功功率的方法的流程图;
图2示出根据本公开的示例性实施例的确定风力发电机组的变桨可增有功功率量和转子动能可增有功功率量的方法的流程图;
图3示出根据本公开的示例性实施例的确定风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量的方法的流程图;
图4示出根据本公开的示例性实施例的获取风电场参与一次调频时需要风电场调节的有功功率增量的方法的流程图;
图5示出根据本公开的示例性实施例的调节风电场的有功功率的控制设备的结构框图。
具体实施方式
现将详细参照本公开的实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本公开。
图1示出根据本公开的示例性实施例的调节风电场的有功功率的方法的流程图。
参照图1,在步骤S10,获取需要风电场调节的有功功率增量。
应该理解,需要风电场调节的有功功率增量可以是正增量(即,需要风电场增加的有功功率量)或负增量(即,需要风电场降低的有功功率量)。
作为示例,获取的需要风电场调节的有功功率增量可以是处于以下情况之一时需要风电场调节的有功功率增量:风电场参与一次调频、风电场参与二次调频、风电场和/或其接入的电网发生故障。应该理解,也可以是处于其他需要风电场调节有功功率的情况下需要风电场调节的有功功率增量。换言之,根据本公开的示例性实施例的调节风电场的有功功率的方法可应用于多种有功调节场景,例如,一次调频、二次调频、风电场和/或其接入的电网发生故障(例如,短路、断路器故障等)等场景。
例如,可当确定风电场参与一次调频后,确定本次一次调频需要风电场调节的有功功率增量。下面将会结合图4来具体描述获取风电场参与一次调频时需要风电场调节的有功功率增量的方法的示例。
在步骤S20,基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量。
这里,风力发电机组的有功功率可调量(也即,可调备用有功功率量)包括以下项之中的至少一项:用于表征通过变桨操作可增加的有功功率量的变桨可增有功功率量、用于表征通过变桨操作可降低的有功功率量的变桨可降有功功率量、用于表征通过改变转子动能可增加的有功功率量的转子动能可增有功功率量、以及用于表征通过制动电阻消耗可降低的有功功率量的制动电阻可降有功功率量。
在风力发电机组中,变流器的制动电阻主要用于低电压穿越期间,将机侧的有功功率转换为热能,起到快速消耗机侧的有功功率的作用,以帮助风力发电机组实现低电压穿越。
应该理解,可使用各种适当的方式基于适当的风力发电机组的运行参数,确定风力发电机组的变桨可增有功功率量、变桨可降有功功率量、转子动能可增有功功率量、以及制动电阻可降有功功率量,本公开对此不作限制。
在一个优选的实施例中,针对每个风力发电机组,可基于该风力发电机组的以下参数之中的至少一项确定该风力发电机组的变桨可增有功功率量和转子动能可增有功功率量:当前实际功率、最低限功率、额定功率、能够具备转子动能的最低限功率、当前的最大理论功率、当前实际桨距角、以及最小桨距角。下面将会结合图2来具体描述确定风力发电机组的变桨可增有功功率量和转子动能可增有功功率量的方法的示例。
关于风力发电机组的最低限功率,可理解为当该风力发电机组采用变桨的方式降功率时,如果功率低于该限值,则该风力发电机组将会停机,例如,风力发电机组的最低限功率值可为该风力发电机组的额定功率值的10%。
关于风力发电机组能够具备转子动能的最低限功率,可理解为能够使该风力发电机组启动转子动能功能所需的最小功率值,例如,风力发电机组能够具备转子动能的最低限功率值可为该风力发电机组的额定功率值的20%。
关于风力发电机组当前的最大理论功率,可理解为该风力发电机组在当前风速下,理论上能够达到的最大功率。
在另一个优选的实施例中,针对每个风力发电机组,可基于该风力发电机组的以下参数之中的至少一项确定该风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量:当前实际功率、最低限功率、以及制动电阻可 降功率容量。下面将会结合图3来具体描述确定风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量的方法的示例。
作为示例,制动电阻可降功率容量可由变流器上送,制动电阻可降功率容量可以是基于该制动电阻单位时间可降功率以及可持续的时长确定的。
作为示例,步骤S20可包括:确定每个风力发电机组的变桨可增有功功率量和转子动能可增有功功率量;基于各个风力发电机组的变桨可增有功功率量确定风电场的变桨可增有功功率量;并基于各个风力发电机组的转子动能可增有功功率量确定风电场的转子动能可增有功功率量。
作为示例,可将风电场的各个风力发电机组的变桨可增有功功率量的总和确定为该风电场的变桨可增有功功率量,可将风电场的各个风力发电机组的转子动能可增有功功率量的总和确定为该风电场的转子动能可增有功功率量。此外,可将风电场的转子动能可增有功功率量和变桨可增有功功率量之和作为该风电场的可增有功功率量。
作为示例,步骤S20可包括:确定每个风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量;基于各个风力发电机组的变桨可降有功功率量确定风电场的变桨可降有功功率量;并基于各个风力发电机组的制动电阻可降有功功率量确定风电场的制动电阻可降有功功率量。
作为示例,可将风电场的各个风力发电机组的变桨可降有功功率量的总和确定为该风电场的变桨可降有功功率量,可将风电场的各个风力发电机组的制动电阻可降有功功率量的总和确定为该风电场的制动电阻可降有功功率量。
在步骤S30,基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量,以对各个风力发电机组的有功功率进行调节。
这里,各个风力发电机组的有功功率调节量(有功功率改变量)也即需要各个风力发电机组调节的有功功率量。
在一个实施例中,当需要风电场调节的有功功率增量大于0时,可确定需要各个风力发电机组通过变桨操作增加的有功功率量和/或通过改变转子动能增加的有功功率量。
作为示例,当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,可优先利用风力发电机组的变桨操作来进行有功功 率提升,具体地,当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,可基于需要风电场调节的有功功率增量和风电场的变桨可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量。
进一步地,作为示例,当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,可确定需要每个风力发电机组通过变桨操作增加的有功功率量为:该风力发电机组的变桨可增有功功率量与第一变桨比例系数的乘积。这里,所述第一变桨比例系数K pitch1为:需要风电场调节的有功功率增量的绝对值fabs(DeltPwf_demand)与风电场的变桨可增有功功率量DeltPwf_pitchup的比值,即,
Figure PCTCN2020114510-appb-000001
作为示例,当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,可利用风力发电机组的变桨操作和转子动能来进行有功功率提升,具体地,当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,可基于需要风电场调节的有功功率增量、风电场的变桨可增有功功率量、以及风电场的转子动能可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量和通过改变转子动能增加的有功功率量。
进一步地,作为示例,当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,可确定需要每个风力发电机组通过变桨操作增加的有功功率量为:该风力发电机组的变桨可增有功功率量(也即,令第一变桨比例系数为1),且确定需要每个风力发电机组通过改变转子动能增加的有功功率量为:该风力发电机组的转子动能可增有功功率量与转子动能比例系数的乘积。这里,所述转子动能比例系数K RKE为:需要风电场调节的有功功率增量的绝对值fabs(DeltPwf_demand)与风电场的变桨可增有功功率量DeltPwf_pitchup之间的差值与风电场的转子动能可增有功功率量DeltPwf_RKEup的比值,即,
Figure PCTCN2020114510-appb-000002
且当所述比值大于1时,令所述转子动能比例系数为1。
在另一个实施例中,当需要风电场调节的有功功率增量小于0时,可确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量和/或单独通过变桨操作降低的有功功率量。作为示例,需要风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量可理解为:需要风力发电机组同时通过变桨操作和制动电阻消耗共同降低的有功功率量。
作为示例,当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的变桨可降有功功率量时,可优先利用变桨操作和制动电阻消耗一起协同来降低有功功率,具体地,当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量和风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量。
进一步地,作为示例,当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,确定需要每个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量为:该风力发电机组的制动电阻可降有功功率量与协同比例系数的乘积。这里,所述协同比例系数K pitch+res为:需要风电场调节的有功功率增量的绝对值fabs(DeltPwf_demand)与风电场的制动电阻可降有功功率量DeltPwf_resdown的比值,即,
Figure PCTCN2020114510-appb-000003
作为示例,当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的变桨可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,可优先利用变桨操作和制动电阻消耗一起协同来降低有功功率,剩余需要降低的部分再单独通过变桨操作来降低。具体地,当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可降有功功率量、以及风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量、以及单独通过变桨操作降低的有功功率量。
进一步地,作为示例,当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,确定需要每个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量为:该风力发电机组的制动电阻可降有功功率量(也即,令协同比例系数为1),且确定需要每个风力发电机组单独通过变桨操作降低的有功功率量为:该风力发电机组的变桨可降有功功率量与其制动电阻可降有功功率量之间的差值与第二变桨比例系数的乘积。这里,所述第二变桨比例系数K pitch2为:第一特定差值与第二特定差值的比值,第一特定差值为需要风电场调节的有功功率增量的绝对值fabs(DeltPwf_demand)与风电场的制动电阻可降有功功率量DeltPwf_resdown之间的差值,第二特定差值为风电场的变桨可降有功功率量DeltPwf_pitchdown与风电场的制动电阻可降有功功率量DeltPwf_resdown之间的差值,即,
Figure PCTCN2020114510-appb-000004
且当所述比值大于1时,令所述第二变桨比例系数为1。
应该理解,根据本公开的示例性实施例的调节风电场的有功功率的方法可周期性地执行(例如,按照场站控制系统的控制周期来周期性地执行)或非周期性地执行(例如,满足触发条件后执行)。
本公开充分考虑了风力发电机组进行有功功率调节的多种方式的优缺点,提出了一种能够快速、灵活、且不影响机组的载荷安全的调节风电场的有功功率的方法,例如,考虑到风力发电机组的转子动能控制:优点是响应速度快,缺点是对机组的载荷安全有影响,且机组的控制策略复杂,有功调节的幅值受限;而风力发电机组的变桨控制:优点是有功调节的幅值大,缺点是功率调节速度慢,且对机组的载荷存在部分影响。
作为示例,根据本公开的示例性实施例的调节风电场的有功功率的方法还可包括:针对每个风力发电机组,控制该风力发电机组的有功功率增加或降低确定的该风力发电机组的有功功率调节量,以实现对风电场的有功功率的调节。作为示例,可向每个风力发电机组发送有功控制指令,以使风力发 电机组根据有功控制指令来进行有功功率调节。例如,可向风力发电机组发送用于指示需要其通过变桨操作增加的有功功率量和/或通过改变转子动能增加的有功功率量的有功控制指令来控制风力发电机组增加有功功率;可向风力发电机组发送用于指示需要其通过变桨操作和制动电阻消耗一起协同降低的有功功率量和/或单独通过变桨操作降低的有功功率量的有功控制指令来控制风力发电机组降低有功功率。例如,可向风力发电机组发送用于指示需要其达到的有功功率值的有功控制指令,如果需要风力发电机组增加有功功率,则需要其达到的有功功率值可为其当前实际功率与对应的有功功率调节量之和;如果需要风力发电机组降低有功功率,则需要其达到的有功功率值可为其当前实际功率减去对应的有功功率调节量。
此外,作为示例,根据本公开的示例性实施例的调节风电场的有功功率的方法还可包括:针对每个风力发电机组,从该风力发电机组本次通过改变转子动能增加有功功率的时刻开始计时,如果累计通过改变转子动能增加有功功率达到第一预设时长,则控制该风力发电机组停止本次调节有功功率。第一预设时长可根据实际情况和需求进行设置,例如,可设置为10s。
此外,作为示例,根据本公开的示例性实施例的调节风电场的有功功率的方法还可包括:针对每个风力发电机组,从该风力发电机组本次通过制动电阻消耗降低有功功率的时刻开始计时,如果累计通过制动电阻消耗降低有功功率达到第二预设时长,则控制该风力发电机组停止本次调节有功功率。第二预设时长可根据实际情况和需求进行设置,例如,可设置为10s。
图2示出根据本公开的示例性实施例的确定风力发电机组的变桨可增有功功率量和转子动能可增有功功率量的方法的流程图。
参照图2,针对每个风力发电机组,当该风力发电机组的当前实际功率Pwt_real_i小于其能够具备转子动能的最低限功率Pwt_RKEmin_i以及其最低限功率Pwt_pitchmin_i时,该风力发电机组的变桨可增有功功率量DeltPwt_pitchup_i以及转子动能可增有功功率量DeltPwt_RKEup_i均为0;
当该风力发电机组的当前实际功率Pwt_real_i小于其能够具备转子动能的最低限功率Pwt_RKEmin_i、且大于其最低限功率Pwt_pitchmin_i以及其当前的最大理论功率Pwt_max_i时,该风力发电机组的变桨可增有功功率量DeltPwt_pitchup_i以及转子动能可增有功功率量DeltPwt_RKEup_i均为0;
当该风力发电机组的当前实际功率Pwt_real_i小于其能够具备转子动能 的最低限功率Pwt_RKEmin_i以及其当前的最大理论功率Pwt_max_i、且大于其最低限功率Pwt_pitchmin_i时,该风力发电机组的转子动能可增有功功率量DeltPwt_RKEup_i为0、变桨可增有功功率量DeltPwt_pitchup_i为其当前的最大理论功率与其当前实际功率之间的差值Pwt_max_i-Pwt_real_i;
当该风力发电机组的当前实际功率Pwt_real_i大于其能够具备转子动能的最低限功率Pwt_RKEmin_i但小于其当前的最大理论功率Pwt_max_i、且其当前实际桨距角Pitch_real_i大于其最小桨距角Pitch_min_i时,该风力发电机组的转子动能可增有功功率量DeltPwt_RKEup_i为0、变桨可增有功功率量DeltPwt_pitchup_i为其当前的最大理论功率与其当前实际功率之间的差值Pwt_max_i-Pwt_real_i;
当该风力发电机组的当前实际功率Pwt_real_i大于其能够具备转子动能的最低限功率Pwt_RKEmin_i以及其当前的最大理论功率Pwt_max_i、且其当前实际桨距角Pitch_real_i大于其最小桨距角Pitch_min_i时,该风力发电机组的转子动能可增有功功率量DeltPwt_RKEup_i为第一预设比例的其额定功率(即,第一预设比例*Pwt_n_i,例如,第一预设比例可被设置为10%)、变桨可增有功功率量DeltPwt_pitchup_i为0;
当该风力发电机组的当前实际功率Pwt_real_i大于其能够具备转子动能的最低限功率Pwt_RKEmin_i以及其额定功率Pwt_n_i、且其当前实际桨距角Pitch_real_i小于其最小桨距角Pitch_min_i时,该风力发电机组的转子动能可增有功功率量DeltPwt_RKEup_i和变桨可增有功功率量DeltPwt_pitchup_i均为0;
当该风力发电机组的当前实际功率Pwt_real_i大于其能够具备转子动能的最低限功率Pwt_RKEmin_i但小于其额定功率Pwt_n_i、且其当前实际桨距角Pitch_real_i小于其最小桨距角Pitch_min_i时,该风力发电机组的转子动能可增有功功率量DeltPwt_RKEup_i为其额定功率与其当前实际功率之间的差值(Pwt_n_i-Pwt_real_i)和第一预设比例的其额定功率(即,第一预设比例*Pwt_n_i)之中的最小值、变桨可增有功功率量DeltPwt_pitchup_i为0。
图3示出根据本公开的示例性实施例的确定风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量的方法的流程图。
参照图3,针对每个风力发电机组,当该风力发电机组的当前实际功率Pwt_real_i小于其最低限功率Pwt_pitchmin_i时,该风力发电机组的变桨可降 有功功率量DeltPwt_pitchdown_i和制动电阻可降有功功率量DeltPwt_resdown_i均为0;
当该风力发电机组的当前实际功率Pwt_real_i大于其最低限功率Pwt_pitchmin_i、且其当前实际功率与其最低限功率之间的差值(Pwt_real_i-Pwt_pitchmin_i)大于其制动电阻可降功率容量DeltPwt_resdownsum_i时,该风力发电机组的变桨可降有功功率量DeltPwt_pitchdown_i为其当前实际功率与其最低限功率之间的差值(Pwt_real_i-Pwt_pitchmin_i)、制动电阻可降有功功率量DeltPwt_resdown_i为其制动电阻可降功率容量DeltPwt_resdownsum_i;
当该风力发电机组的当前实际功率Pwt_real_i大于其最低限功率Pwt_pitchmin_i、且其当前实际功率与其最低限功率之间的差值(Pwt_real_i-Pwt_pitchmin_i)小于其制动电阻可降功率容量DeltPwt_resdownsum_i时,该风力发电机组的变桨可降有功功率量DeltPwt_pitchdown_i为其当前实际功率与其最低限功率之间的差值(Pwt_real_i-Pwt_pitchmin_i)、制动电阻可降有功功率量DeltPwt_resdown_i为其当前实际功率与其最低限功率之间的差值(Pwt_real_i-Pwt_pitchmin_i)。
图4示出根据本公开的示例性实施例的获取风电场参与一次调频时需要风电场调节的有功功率增量的方法的流程图。
参照图4,在步骤S101,判断风电场和/或风电场所接入的电网是否存在特定类型的故障。
作为示例,可根据刷新的故障信息确定是否存在特定类型的故障。作为示例,所述故障信息可包括以下项之中的至少一项:风电场的并网点过压、欠压、过频、欠频、低功率、场站控制系统硬件告警(例如,电网出现问题或风电场的输出功率低等会发出告警)。
当在步骤S101判断不存在特定类型的故障时,执行步骤S102,刷新各个风力发电机组及并网点的数据,否则返回。
作为示例,刷新的数据可包括以下项之中的至少一项:风机的当前机端电压、风机的当前有功功率、风机的当前无功功率、风机的可控标志位、风机运行状态、风机一次调频命令值、风机一次调频命令反馈值、风机3秒平均风速、变桨角1瞬时值、变桨角2瞬时值、变桨角3瞬时值、发电机瞬时转速rad/s、转矩给定、单机的制动电阻可消耗功率值、并网点的相电压、并 网点的相电流、并网点的有功功率、并网点的无功功率、并网点的频率、以及并网点的功率因数。
在步骤S103,基于刷新的各个风力发电机组及并网点的数据,判断风电场是否参与一次调频。
作为示例,可当并网点的频率不处于频率死区范围内,且风电场的有功功率不低于20%的风电场的额定功率时,确定风电场参与一次调频。应该理解,也可通过其他适当的方式来判断风电场是否参与一次调频。
当在步骤S103确定参与一次调频时,执行步骤S104,确定本次一次调频需要风电场调节的有功功率增量。
作为示例,可通过公式(1)计算有功功率增量需求值DeltP,通过公式(2)计算有功功率需求值P:
Figure PCTCN2020114510-appb-000005
Figure PCTCN2020114510-appb-000006
其中,f d指示快速频率响应动作的阈值;f指示并网点的频率,P n指示风电场的额定功率;δ%指示调差率;P 0指示风电场当前的有功功率,f N指示电网的额定频率。应该理解,针对过频和欠频情况,公式中的参数可独立设置,且在线可调,例如,参考参数如下:f d可设置为50±0.1Hz,调差率δ%可设置为2%~3%。
接下来,可判断计算的有功功率增量需求值是否大于第一预设阈值或小于第二预设阈值,当大于第一预设阈值时,将本次一次调频需要风电场调节的有功功率增量确定为第一预设阈值,当小于第二预设阈值时,将本次一次调频需要风电场调节的有功功率增量确定为第二预设阈值;当小于或等于第一预设阈值且大于或等于第二预设阈值时,将本次一次调频需要风电场调节的有功功率增量确定为计算的有功功率增量需求值。作为示例,第一预设阈值可为10%的风电场的额定功率,第二预设阈值可为第一预设阈值的负数。
图5示出根据本公开的示例性实施例的调节风电场的有功功率的控制设备的结构框图。
如图5所示,根据本公开的示例性实施例的调节风电场的有功功率的控制设备包括:增量获取单元10、可调量确定单元20、以及调节量确定单元30。
具体说来,增量获取单元10用于获取需要风电场调节的有功功率增量。
作为示例,获取的需要风电场调节的有功功率增量可以是处于以下情况之一时需要风电场调节的有功功率增量:风电场参与一次调频、风电场参与二次调频、风电场和/或其接入的电网发生故障。
可调量确定单元20用于基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量。
调节量确定单元30用于基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量,以对各个风力发电机组的有功功率进行调节。
这里,风力发电机组的有功功率可调量包括以下项之中的至少一项:用于表征通过变桨操作可增加的有功功率量的变桨可增有功功率量、用于表征通过变桨操作可降低的有功功率量的变桨可降有功功率量、用于表征通过改变转子动能可增加的有功功率量的转子动能可增有功功率量、以及用于表征通过制动电阻消耗可降低的有功功率量的制动电阻可降有功功率量。
作为示例,当需要风电场调节的有功功率增量大于0时,可调量确定单元20可确定每个风力发电机组的变桨可增有功功率量和转子动能可增有功功率量;基于各个风力发电机组的变桨可增有功功率量确定风电场的变桨可增有功功率量;并基于各个风力发电机组的转子动能可增有功功率量确定风电场的转子动能可增有功功率量。
作为示例,当需要风电场调节的有功功率增量小于0时,可调量确定单元20可确定每个风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量;基于各个风力发电机组的变桨可降有功功率量确定风电场的变桨可降有功功率量;并基于各个风力发电机组的制动电阻可降有功功率量确定风电场的制动电阻可降有功功率量。
作为示例,调节量确定单元30可当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,基于需要风电场调节的有功功率增量和风电场的变桨可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量;当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可增有功功率量、以及风电场的转子动能可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量和通过改变转子动能增加的有 功功率量。
作为示例,调节量确定单元30可当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,确定需要每个风力发电机组通过变桨操作增加的有功功率量为:该风力发电机组的变桨可增有功功率量与第一变桨比例系数的乘积;当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,确定需要每个风力发电机组通过变桨操作增加的有功功率量为:该风力发电机组的变桨可增有功功率量,且确定需要每个风力发电机组通过改变转子动能增加的有功功率量为:该风力发电机组的转子动能可增有功功率量与转子动能比例系数的乘积,其中,所述第一变桨比例系数为:需要风电场调节的有功功率增量与风电场的变桨可增有功功率量的比值,其中,所述转子动能比例系数为:需要风电场调节的有功功率增量与风电场的变桨可增有功功率量之间的差值与风电场的转子动能可增有功功率量的比值,且当所述比值大于1时,令所述转子动能比例系数为1。
作为示例,调节量确定单元30可当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量和风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量;当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可降有功功率量、以及风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量、以及单独通过变桨操作降低的有功功率量。
作为示例,调节量确定单元30可当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,确定需要每个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量为:该风力发电机组的制动电阻可降有功功率量与协同比例系数的乘积;当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,确定需要每个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量为:该风力发电机组的制动电阻可降有功功率量,且确 定需要每个风力发电机组单独通过变桨操作降低的有功功率量为:该风力发电机组的变桨可降有功功率量与其制动电阻可降有功功率量之间的差值与第二变桨比例系数的乘积,其中,所述协同比例系数为:需要风电场调节的有功功率增量的绝对值与风电场的制动电阻可降有功功率量的比值,其中,所述第二变桨比例系数为:第一特定差值与第二特定差值的比值,第一特定差值为需要风电场调节的有功功率增量的绝对值与风电场的制动电阻可降有功功率量之间的差值,第二特定差值为风电场的变桨可降有功功率量与风电场的制动电阻可降有功功率量之间的差值,且当所述比值大于1时,令所述第二变桨比例系数为1。
作为示例,可调量确定单元20可针对每个风力发电机组,基于该风力发电机组的以下参数之中的至少一项确定该风力发电机组的变桨可增有功功率量和转子动能可增有功功率量:当前实际功率、最低限功率、额定功率、能够具备转子动能的最低限功率、当前的最大理论功率、当前实际桨距角、以及最小桨距角。
作为示例,可调量确定单元20可针对每个风力发电机组,当该风力发电机组的当前实际功率小于其能够具备转子动能的最低限功率以及其最低限功率时,该风力发电机组的变桨可增有功功率量以及转子动能可增有功功率量均为0;当该风力发电机组的当前实际功率小于其能够具备转子动能的最低限功率、且大于其最低限功率以及其当前的最大理论功率时,该风力发电机组的变桨可增有功功率量以及转子动能可增有功功率量均为0;当该风力发电机组的当前实际功率小于其能够具备转子动能的最低限功率以及其当前的最大理论功率、且大于其最低限功率时,该风力发电机组的转子动能可增有功功率量为0、变桨可增有功功率量为其当前的最大理论功率与其当前实际功率之间的差值;当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率但小于其当前的最大理论功率、且其当前实际桨距角大于其最小桨距角时,该风力发电机组的转子动能可增有功功率量为0、变桨可增有功功率量为其当前的最大理论功率与其当前实际功率之间的差值;当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率以及其当前的最大理论功率、且其当前实际桨距角大于其最小桨距角时,该风力发电机组的转子动能可增有功功率量为第一预设比例的其额定功率、变桨可增有功功率量为0;当该风力发电机组的当前实际功率大于其能够具备转子动能 的最低限功率以及其额定功率、且其当前实际桨距角小于其最小桨距角时,该风力发电机组的转子动能可增有功功率量和变桨可增有功功率量均为0;当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率但小于其额定功率、且其当前实际桨距角小于其最小桨距角时,该风力发电机组的转子动能可增有功功率量为其额定功率与其当前实际功率之间的差值和第一预设比例的其额定功率之中的最小值、变桨可增有功功率量为0。
作为示例,可调量确定单元20可针对每个风力发电机组,基于该风力发电机组的以下参数之中的至少一项确定该风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量:当前实际功率、最低限功率、以及制动电阻可降功率容量。
作为示例,可调量确定单元20可针对每个风力发电机组,当该风力发电机组的当前实际功率小于其最低限功率时,该风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量均为0;当该风力发电机组的当前实际功率大于其最低限功率、且其当前实际功率与其最低限功率之间的差值大于其制动电阻可降功率容量时,该风力发电机组的变桨可降有功功率量为其当前实际功率与其最低限功率之间的差值、制动电阻可降有功功率量为其制动电阻可降功率容量;当该风力发电机组的当前实际功率大于其最低限功率、且其当前实际功率与其最低限功率之间的差值小于其制动电阻可降功率容量时,该风力发电机组的变桨可降有功功率量为其当前实际功率与其最低限功率之间的差值、制动电阻可降有功功率量为其当前实际功率与其最低限功率之间的差值。
作为示例,根据本公开的示例性实施例的调节风电场的有功功率的控制设备还可包括:调节停止控制单元(未示出),调节停止控制单元用于针对每个风力发电机组,从该风力发电机组本次通过改变转子动能增加有功功率的时刻开始计时,如果累计通过改变转子动能增加有功功率达到第一预设时长,则控制该风力发电机组停止本次调节有功功率;和/或,调节停止控制单元用于针对每个风力发电机组,从该风力发电机组本次通过制动电阻消耗降低有功功率的时刻开始计时,如果累计通过制动电阻消耗降低有功功率达到第二预设时长,则控制该风力发电机组停止本次调节有功功率。
应该理解,根据本公开示例性实施例的调节风电场的有功功率的控制设备所执行的具体处理已经参照图1至图4进行了详细描述,这里将不再赘述 相关细节。
应该理解,根据本公开示例性实施例的调节风电场的有功功率的控制设备中的各个单元可被实现硬件组件和/或软件组件。本领域技术人员根据限定的各个单元所执行的处理,可以例如使用现场可编程门阵列(FPGA)或专用集成电路(ASIC)来实现各个单元。
本公开的示例性实施例提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时实现如上述示例性实施例所述的调节风电场的有功功率的方法。该计算机可读存储介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读存储介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。
根据本公开的示例性实施例的风电场的控制器包括:处理器(未示出)和存储器(未示出),其中,存储器存储有计算机程序,当所述计算机程序被处理器执行时,实现如上述示例性实施例所述的调节风电场的有功功率的方法。
虽然已表示和描述了本公开的一些示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行修改。

Claims (20)

  1. 一种调节风电场的有功功率的方法,其特征在于,所述方法包括:
    获取需要风电场调节的有功功率增量;
    基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量;
    基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量,以对各个风力发电机组的有功功率进行调节;
    其中,风力发电机组的有功功率可调量包括以下项之中的至少一项:用于表征通过变桨操作可增加的有功功率量的变桨可增有功功率量、用于表征通过变桨操作可降低的有功功率量的变桨可降有功功率量、用于表征通过改变转子动能可增加的有功功率量的转子动能可增有功功率量、以及用于表征通过制动电阻消耗可降低的有功功率量的制动电阻可降有功功率量。
  2. 根据权利要求1所述的方法,其特征在于,当需要风电场调节的有功功率增量大于0时,基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量的步骤包括:
    确定每个风力发电机组的变桨可增有功功率量和转子动能可增有功功率量;
    基于各个风力发电机组的变桨可增有功功率量确定风电场的变桨可增有功功率量;
    基于各个风力发电机组的转子动能可增有功功率量确定风电场的转子动能可增有功功率量。
  3. 根据权利要求1所述的方法,其特征在于,当需要风电场调节的有功功率增量小于0时,基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量的步骤包括:
    确定每个风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量;
    基于各个风力发电机组的变桨可降有功功率量确定风电场的变桨可降有功功率量;
    基于各个风力发电机组的制动电阻可降有功功率量确定风电场的制动电 阻可降有功功率量。
  4. 根据权利要求2所述的方法,其特征在于,基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量的步骤包括:
    当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,基于需要风电场调节的有功功率增量和风电场的变桨可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量;
    当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可增有功功率量、以及风电场的转子动能可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量和通过改变转子动能增加的有功功率量。
  5. 根据权利要求4所述的方法,其特征在于,
    当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,确定需要每个风力发电机组通过变桨操作增加的有功功率量为:该风力发电机组的变桨可增有功功率量与第一变桨比例系数的乘积;
    当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,确定需要每个风力发电机组通过变桨操作增加的有功功率量为:该风力发电机组的变桨可增有功功率量,且确定需要每个风力发电机组通过改变转子动能增加的有功功率量为:该风力发电机组的转子动能可增有功功率量与转子动能比例系数的乘积,
    其中,所述第一变桨比例系数为:需要风电场调节的有功功率增量与风电场的变桨可增有功功率量的比值,
    其中,所述转子动能比例系数为:需要风电场调节的有功功率增量与风电场的变桨可增有功功率量之间的差值与风电场的转子动能可增有功功率量的比值,且当所述比值大于1时,令所述转子动能比例系数为1。
  6. 根据权利要求3所述的方法,其特征在于,基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量的步骤包括:
    当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量和风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动 电阻消耗一起协同降低的有功功率量;
    当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可降有功功率量、以及风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量、以及单独通过变桨操作降低的有功功率量。
  7. 根据权利要求6所述的方法,其特征在于,
    当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,确定需要每个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量为:该风力发电机组的制动电阻可降有功功率量与协同比例系数的乘积;
    当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,确定需要每个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量为:该风力发电机组的制动电阻可降有功功率量,且确定需要每个风力发电机组单独通过变桨操作降低的有功功率量为:该风力发电机组的变桨可降有功功率量与其制动电阻可降有功功率量之间的差值与第二变桨比例系数的乘积,
    其中,所述协同比例系数为:需要风电场调节的有功功率增量的绝对值与风电场的制动电阻可降有功功率量的比值,
    其中,所述第二变桨比例系数为:第一特定差值与第二特定差值的比值,第一特定差值为需要风电场调节的有功功率增量的绝对值与风电场的制动电阻可降有功功率量之间的差值,第二特定差值为风电场的变桨可降有功功率量与风电场的制动电阻可降有功功率量之间的差值,且当所述比值大于1时,令所述第二变桨比例系数为1。
  8. 根据权利要求2所述的方法,其特征在于,确定每个风力发电机组的变桨可增有功功率量和转子动能可增有功功率量的步骤包括:
    针对每个风力发电机组,基于该风力发电机组的以下参数之中的至少一项确定该风力发电机组的变桨可增有功功率量和转子动能可增有功功率量:
    当前实际功率、最低限功率、额定功率、能够具备转子动能的最低限功 率、当前的最大理论功率、当前实际桨距角、以及最小桨距角。
  9. 根据权利要求8所述的方法,其特征在于,确定每个风力发电机组的变桨可增有功功率量和转子动能可增有功功率量的步骤包括:
    针对每个风力发电机组,当该风力发电机组的当前实际功率小于其能够具备转子动能的最低限功率以及其最低限功率时,该风力发电机组的变桨可增有功功率量以及转子动能可增有功功率量均为0;
    当该风力发电机组的当前实际功率小于其能够具备转子动能的最低限功率、且大于其最低限功率以及其当前的最大理论功率时,该风力发电机组的变桨可增有功功率量以及转子动能可增有功功率量均为0;
    当该风力发电机组的当前实际功率小于其能够具备转子动能的最低限功率以及其当前的最大理论功率、且大于其最低限功率时,该风力发电机组的转子动能可增有功功率量为0、变桨可增有功功率量为其当前的最大理论功率与其当前实际功率之间的差值;
    当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率但小于其当前的最大理论功率、且其当前实际桨距角大于其最小桨距角时,该风力发电机组的转子动能可增有功功率量为0、变桨可增有功功率量为其当前的最大理论功率与其当前实际功率之间的差值;
    当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率以及其当前的最大理论功率、且其当前实际桨距角大于其最小桨距角时,该风力发电机组的转子动能可增有功功率量为第一预设比例的其额定功率、变桨可增有功功率量为0;
    当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率以及其额定功率、且其当前实际桨距角小于其最小桨距角时,该风力发电机组的转子动能可增有功功率量和变桨可增有功功率量均为0;
    当该风力发电机组的当前实际功率大于其能够具备转子动能的最低限功率但小于其额定功率、且其当前实际桨距角小于其最小桨距角时,该风力发电机组的转子动能可增有功功率量为其额定功率与其当前实际功率之间的差值和第一预设比例的其额定功率之中的最小值、变桨可增有功功率量为0。
  10. 根据权利要求3所述的方法,其特征在于,确定每个风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量的步骤包括:
    针对每个风力发电机组,基于该风力发电机组的以下参数之中的至少一 项确定该风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量:
    当前实际功率、最低限功率、以及制动电阻可降功率容量。
  11. 根据权利要求10所述的方法,其特征在于,确定每个风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量的步骤包括:
    针对每个风力发电机组,当该风力发电机组的当前实际功率小于其最低限功率时,该风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量均为0;
    当该风力发电机组的当前实际功率大于其最低限功率、且其当前实际功率与其最低限功率之间的差值大于其制动电阻可降功率容量时,该风力发电机组的变桨可降有功功率量为其当前实际功率与其最低限功率之间的差值、制动电阻可降有功功率量为其制动电阻可降功率容量;
    当该风力发电机组的当前实际功率大于其最低限功率、且其当前实际功率与其最低限功率之间的差值小于其制动电阻可降功率容量时,该风力发电机组的变桨可降有功功率量为其当前实际功率与其最低限功率之间的差值、制动电阻可降有功功率量为其当前实际功率与其最低限功率之间的差值。
  12. 根据权利要求4或6所述的方法,其特征在于,所述方法还包括:
    针对每个风力发电机组,从该风力发电机组本次通过改变转子动能增加有功功率的时刻开始计时,如果累计通过改变转子动能增加有功功率达到第一预设时长,则控制该风力发电机组停止本次调节有功功率;和/或,
    针对每个风力发电机组,从该风力发电机组本次通过制动电阻消耗降低有功功率的时刻开始计时,如果累计通过制动电阻消耗降低有功功率达到第二预设时长,则控制该风力发电机组停止本次调节有功功率。
  13. 根据权利要求1所述的方法,其特征在于,获取的需要风电场调节的有功功率增量是处于以下情况之一时需要风电场调节的有功功率增量:
    风电场参与一次调频、风电场参与二次调频、风电场和/或其接入的电网发生故障。
  14. 一种调节风电场的有功功率的控制设备,其特征在于,所述控制设备包括:
    增量获取单元,获取需要风电场调节的有功功率增量;
    可调量确定单元,基于风电场的各个风力发电机组的有功功率可调量确定风电场的有功功率可调量;
    调节量确定单元,基于需要风电场调节的有功功率增量和风电场的有功功率可调量,确定各个风力发电机组的有功功率调节量,以对各个风力发电机组的有功功率进行调节;
    其中,风力发电机组的有功功率可调量包括以下项之中的至少一项:用于表征通过变桨操作可增加的有功功率量的变桨可增有功功率量、用于表征通过变桨操作可降低的有功功率量的变桨可降有功功率量、用于表征通过改变转子动能可增加的有功功率量的转子动能可增有功功率量、以及用于表征通过制动电阻消耗可降低的有功功率量的制动电阻可降有功功率量。
  15. 根据权利要求14所述的控制设备,其特征在于,当需要风电场调节的有功功率增量大于0时,可调量确定单元确定每个风力发电机组的变桨可增有功功率量和转子动能可增有功功率量;基于各个风力发电机组的变桨可增有功功率量确定风电场的变桨可增有功功率量;并基于各个风力发电机组的转子动能可增有功功率量确定风电场的转子动能可增有功功率量。
  16. 根据权利要求15所述的控制设备,其特征在于,当需要风电场调节的有功功率增量小于0时,可调量确定单元确定每个风力发电机组的变桨可降有功功率量和制动电阻可降有功功率量;基于各个风力发电机组的变桨可降有功功率量确定风电场的变桨可降有功功率量;并基于各个风力发电机组的制动电阻可降有功功率量确定风电场的制动电阻可降有功功率量。
  17. 根据权利要求16所述的控制设备,其特征在于,调节量确定单元当需要风电场调节的有功功率增量大于0且不大于风电场的变桨可增有功功率量时,基于需要风电场调节的有功功率增量和风电场的变桨可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量;
    当需要风电场调节的有功功率增量大于风电场的变桨可增有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可增有功功率量、以及风电场的转子动能可增有功功率量,确定需要各个风力发电机组通过变桨操作增加的有功功率量和通过改变转子动能增加的有功功率量;
    调节量确定单元当需要风电场调节的有功功率增量小于0且其绝对值不大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量和风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量;
    当需要风电场调节的有功功率增量小于0且其绝对值大于风电场的制动 电阻可降有功功率量、并且风电场的变桨可降有功功率量大于风电场的制动电阻可降有功功率量时,基于需要风电场调节的有功功率增量、风电场的变桨可降有功功率量、以及风电场的制动电阻可降有功功率量,确定需要各个风力发电机组通过变桨操作和制动电阻消耗一起协同降低的有功功率量、以及单独通过变桨操作降低的有功功率量。
  18. 根据权利要求17所述的控制设备,其特征在于,所述控制设备还包括:
    调节停止控制单元,针对每个风力发电机组,从该风力发电机组本次通过改变转子动能增加有功功率的时刻开始计时,如果累计通过改变转子动能增加有功功率达到第一预设时长,则控制该风力发电机组停止本次调节有功功率;和/或,针对每个风力发电机组,从该风力发电机组本次通过制动电阻消耗降低有功功率的时刻开始计时,如果累计通过制动电阻消耗降低有功功率达到第二预设时长,则控制该风力发电机组停止本次调节有功功率。
  19. 一种存储有计算机程序的计算机可读存储介质,其特征在于,当所述计算机程序被处理器执行时实现如权利要求1至13中的任意一项所述的调节风电场的有功功率的方法。
  20. 一种风电场的控制器,其特征在于,所述控制器包括:
    处理器;
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至13中的任意一项所述的调节风电场的有功功率的方法。
PCT/CN2020/114510 2020-03-31 2020-09-10 调节风电场有功功率的方法、控制设备及风电场的控制器 WO2021196525A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20914766.9A EP3916945A4 (en) 2020-03-31 2020-09-10 METHOD FOR ADJUSTING THE ACTIVE POWER OF A WIND FARM, CONTROL APPARATUS, AND WIND FARM CONTROL DEVICE
US17/429,003 US20220307474A1 (en) 2020-03-31 2020-09-10 Method and control device for adjusting active power of wind farm and controller of wind farm
AU2021206814A AU2021206814B2 (en) 2020-03-31 2020-09-10 Method and control device for adjusting active power of wind farm and controller of wind farm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010242215.XA CN113471986B (zh) 2020-03-31 调节风电场有功功率的方法、控制设备及风电场的控制器
CN202010242215.X 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021196525A1 true WO2021196525A1 (zh) 2021-10-07

Family

ID=77865202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114510 WO2021196525A1 (zh) 2020-03-31 2020-09-10 调节风电场有功功率的方法、控制设备及风电场的控制器

Country Status (4)

Country Link
US (1) US20220307474A1 (zh)
EP (1) EP3916945A4 (zh)
AU (1) AU2021206814B2 (zh)
WO (1) WO2021196525A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709939A (zh) * 2012-05-22 2012-10-03 中国电力科学研究院 一种提高风电场发电效率的风电场有功功率控制方法
CN103606966A (zh) * 2013-11-18 2014-02-26 沈阳华创风能有限公司 风力发电机有功功率、无功功率分配的控制方法
JP2017143706A (ja) * 2016-02-12 2017-08-17 富士電機株式会社 電圧安定化制御装置、電圧安定化制御装置の制御方法及びプログラム
CN107453411A (zh) * 2017-07-07 2017-12-08 成都阜特科技股份有限公司 一种风电场有功功率控制方法及其系统
CN109973300A (zh) * 2017-12-27 2019-07-05 北京金风科创风电设备有限公司 风力发电机组功率控制方法及装置
CN110311401A (zh) * 2018-03-20 2019-10-08 北京金风科创风电设备有限公司 风电场功率调度方法和装置、存储介质
CN110529336A (zh) * 2019-09-06 2019-12-03 国电联合动力技术有限公司 一种风力发电机组有功功率快速调节的方法和系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001714A (en) * 1956-12-19 1961-09-26 John L Mckinley Economic power generation assignment devices
US3173654A (en) * 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
GB1042509A (en) * 1962-07-31 1966-09-14 English Electric Co Ltd Improvements in or relating to hydraulic reaction turbine alternator sets
US3151250A (en) * 1962-12-26 1964-09-29 Gen Electric Spinning reserve peaking gas turbine
EP1467463B1 (en) * 2003-04-09 2016-12-21 General Electric Company Wind farm and method for operating same
US20110285130A1 (en) * 2009-01-30 2011-11-24 Jan Thisted Power System Frequency Inertia for Wind Turbines
EP2384540B1 (en) * 2009-01-30 2014-12-17 Siemens Aktiengesellschaft Power system frequency inertia for power generation system
US9189755B2 (en) * 2009-06-05 2015-11-17 Siemens Aktiengesellschaft Available power estimator
DE102009037239B4 (de) * 2009-08-12 2011-04-14 Repower Systems Ag Windenergieanlage mit einstellbarer Leistungsreserve
US8866334B2 (en) * 2010-03-02 2014-10-21 Icr Turbine Engine Corporation Dispatchable power from a renewable energy facility
US8606418B1 (en) * 2011-03-18 2013-12-10 Rockwell Collins, Inc. Wind prediction for wind farms through the use of weather radar
US9728969B2 (en) * 2011-05-31 2017-08-08 Vestas Wind Systems A/S Systems and methods for generating an inertial response to a change in the voltage of an electricial grid
EP2764240B1 (en) * 2011-07-06 2016-03-16 MITSUBISHI HEAVY INDUSTRIES, Ltd. Energy extraction device, group of energy extraction devices and operating methods
US9835136B2 (en) * 2011-09-26 2017-12-05 Vestas Wind Systems A/S System and method for extending the operating life of a wind turbine gear train based on energy storage
EP2679809A1 (en) * 2012-06-28 2014-01-01 Siemens Aktiengesellschaft Method and arrangement for responding to a grid event, such as fast frequency drop, by combining demand response, inertial response and spinning reserve
JP6081133B2 (ja) * 2012-10-16 2017-02-15 株式会社東芝 ウィンドファームの出力制御装置、方法、及びプログラム
US8963353B1 (en) * 2013-09-19 2015-02-24 General Electric Company System and method to minimize grid spinning reserve losses by pre-emptively sequencing power generation equipment to offset wind generation capacity based on geospatial regional wind conditions
JP6342203B2 (ja) * 2014-04-03 2018-06-13 株式会社東芝 ウィンドファームの出力制御装置、方法、及びプログラム
US10167850B2 (en) * 2014-09-02 2019-01-01 Siemens Industry, Inc. Systems, methods and apparatus for improved energy management systems with security constrained dynamic dispatch for wind power management
US9983241B2 (en) * 2014-09-22 2018-05-29 Siemens Aktiengesellschaft Method and a control unit for validating an electric power plant
WO2016055069A1 (en) * 2014-10-07 2016-04-14 Vestas Wind Systems A/S Reactive power support from wind turbine facilities
WO2016070882A1 (en) * 2014-11-03 2016-05-12 Vestas Wind Systems A/S Method of controlling active power generation of a wind power plant and wind power plant
EP3096004A1 (en) * 2015-05-18 2016-11-23 ABB Technology AG Wind farm inertial response
US20170298904A1 (en) * 2016-04-18 2017-10-19 Siemens Aktiengesellschaft Method for responding to a grid event
CN107565611B (zh) * 2017-08-25 2019-08-30 明阳智慧能源集团股份公司 一种风电场惯量调频的方法
CN108521142B (zh) * 2018-04-11 2020-06-09 国网陕西省电力公司电力科学研究院 一种风电机组一次调频协调控制方法
CN109586319B (zh) * 2018-10-30 2023-11-03 中国电力科学研究院有限公司 一种风电机组参与系统调频方法及系统
CN110112791B (zh) * 2019-04-22 2021-10-01 华北电力科学研究院有限责任公司 限电条件下风电场调频方法和装置
CN110048440B (zh) * 2019-05-29 2020-08-11 国网陕西省电力公司电力科学研究院 一种风力发电机组参与电网一次调频的控制方法及模型
DK3754178T3 (da) * 2019-06-17 2022-08-22 Nordex Energy Se & Co Kg Fremgangsmåde til drift af en vindmøllepark
CN114514688A (zh) * 2019-09-30 2022-05-17 维斯塔斯风力系统集团公司 一种控制发电单元的提升后的电力输出的方法
EP4030577A1 (en) * 2021-01-13 2022-07-20 Vestas Wind Systems A/S A method for controlling a renewable energy farm in compliance with obligations towards a power grid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709939A (zh) * 2012-05-22 2012-10-03 中国电力科学研究院 一种提高风电场发电效率的风电场有功功率控制方法
CN103606966A (zh) * 2013-11-18 2014-02-26 沈阳华创风能有限公司 风力发电机有功功率、无功功率分配的控制方法
JP2017143706A (ja) * 2016-02-12 2017-08-17 富士電機株式会社 電圧安定化制御装置、電圧安定化制御装置の制御方法及びプログラム
CN107453411A (zh) * 2017-07-07 2017-12-08 成都阜特科技股份有限公司 一种风电场有功功率控制方法及其系统
CN109973300A (zh) * 2017-12-27 2019-07-05 北京金风科创风电设备有限公司 风力发电机组功率控制方法及装置
CN110311401A (zh) * 2018-03-20 2019-10-08 北京金风科创风电设备有限公司 风电场功率调度方法和装置、存储介质
CN110529336A (zh) * 2019-09-06 2019-12-03 国电联合动力技术有限公司 一种风力发电机组有功功率快速调节的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916945A4 *

Also Published As

Publication number Publication date
US20220307474A1 (en) 2022-09-29
AU2021206814A1 (en) 2021-10-14
CN113471986A (zh) 2021-10-01
EP3916945A4 (en) 2022-05-18
AU2021206814B2 (en) 2023-06-01
EP3916945A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
CN109861242B (zh) 一种风电参与电网一次调频的功率协调控制方法及系统
EP3068007B1 (en) System and method for improved reactive power speed-of-response for a wind farm
US10794364B2 (en) Method for feeding electrical power into an electric supply network
US8237301B2 (en) Power generation stabilization control systems and methods
US8301311B2 (en) Frequency-responsive wind turbine output control
CN110768307A (zh) 一种风电场一次调频控制方法及系统
CN107453410B (zh) 负荷扰动的双馈风机参与风柴微网调频控制方法
CN108306312B (zh) 一种风电场一次调频控制方法
CN107394817B (zh) 一种风电参与电力系统调频的方法及系统
CA3054327C (en) Wind park inertial response to grid stability
CN109861251A (zh) 一种用于微网暂稳态频率优化的双馈风机综合控制方法
CN112332462B (zh) 考虑源-荷功率随机波动特性的双馈风力发电机组一次频率平滑调节方法
US11078887B2 (en) Method for operating a wind farm
CN105135409A (zh) 基于一次调频动作幅值的超临界机组锅炉主控控制方法
CN105391096B (zh) 一种风机有功功率管理控制方法
CN107196319B (zh) 一种基于功率扰动值响应的风机调频控制方法
WO2021196525A1 (zh) 调节风电场有功功率的方法、控制设备及风电场的控制器
CN114123248B (zh) 以新能源一次调频优先的电网调频运行控制方法及系统
Senapati et al. Lagrange interpolating polynomial–based deloading control scheme for variable speed wind turbines
CN115864444A (zh) 一种风电场联合储能参与的调频方法、系统、设备及介质
CN111092438A (zh) 一种风电机组一次调频方法及装置
Lou et al. Analysis of primary frequency response based on overspeed and pitch control reserve and coordinated control strategy
CN113471986B (zh) 调节风电场有功功率的方法、控制设备及风电场的控制器
CN113852099A (zh) 一种直驱风电机组快速频率响应控制系统及方法
Dingguo et al. Modeling and design of control system for variable speed wind turbine in all operating region

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020914766

Country of ref document: EP

Effective date: 20210728

ENP Entry into the national phase

Ref document number: 2021206814

Country of ref document: AU

Date of ref document: 20200910

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE