WO2021196442A1 - 液晶显示面板及其制造方法 - Google Patents

液晶显示面板及其制造方法 Download PDF

Info

Publication number
WO2021196442A1
WO2021196442A1 PCT/CN2020/101328 CN2020101328W WO2021196442A1 WO 2021196442 A1 WO2021196442 A1 WO 2021196442A1 CN 2020101328 W CN2020101328 W CN 2020101328W WO 2021196442 A1 WO2021196442 A1 WO 2021196442A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
pixel electrode
display panel
crystal display
Prior art date
Application number
PCT/CN2020/101328
Other languages
English (en)
French (fr)
Inventor
严允晟
曲凯莉
刘子琪
梁楚尉
柳林涛
李婷
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/970,956 priority Critical patent/US11275279B2/en
Publication of WO2021196442A1 publication Critical patent/WO2021196442A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes

Definitions

  • This application relates to the field of display technology, and in particular to a liquid crystal display panel and a manufacturing method thereof.
  • FIG. 1 is a top view of a conventional liquid crystal display panel
  • FIG. 2 is a schematic cross-sectional view taken along the line A-A of the liquid crystal display panel shown in FIG.
  • the liquid crystal display panel includes a pixel electrode P, a light-shielding electrode DBS, a common electrode CFcom, and a liquid crystal LC.
  • the pixel electrode P and the light-shielding electrode DBS are all located on the array substrate (not shown) of the liquid crystal display panel, and the common electrode CFcom is located on the color of the liquid crystal display panel.
  • the pixel electrode P and the light-shielding electrode DBS are arranged opposite to the common electrode CFcom, and the liquid crystal LC is located between the pixel electrode P and the common electrode CFcom.
  • the pixel electrode P includes a vertical electrode and a horizontal electrode.
  • the vertical electrode and the horizontal electrode are perpendicular to each other and divide the pixel electrode P into four domains.
  • Each domain includes branch electrodes L extending from the vertical electrode or the horizontal electrode.
  • the width of the branch electrodes L in the domain is the same, and the width of the gap S between two adjacent branch electrodes L is the same.
  • the voltage of the light-shielding electrode DBS and the voltage of the common electrode CFcom remain the same.
  • the liquid crystal LC quickly collapses.
  • the liquid crystal LC is weakened by the electric field formed between the light-shielding electrode DBS and the pixel electrode P; resulting in the liquid crystal LC inside the pixel electrode P only in the common electrode CFcom and CFcom.
  • the electric field between the pixel electrodes P tilts slowly along the pretilt angle, so the response sequence of the liquid crystal LC is that the liquid crystal LC in the peripheral area of the pixel electrode P moves quickly, and then sequentially tilts from the outside of the pixel electrode P to the inside of the pixel electrode P.
  • the pretilt angle of the liquid crystal display panel is too small, the liquid crystal LC inside the pixel electrode P has a high degree of tilting disorder, and the response is slower.
  • the purpose of this application is to provide a liquid crystal display panel and a manufacturing method thereof.
  • the liquid crystal display panel can improve the response time of the liquid crystal in the middle area of the pixel electrode, and avoid the liquid crystal in the middle area of the pixel electrode in the traditional technology from being affected by the liquid crystal display panel during the driving process of the liquid crystal display panel.
  • the problem that the electric field formed by the light shielding electrode and the pixel electrode is small and the response speed is relatively slow.
  • the present application provides a liquid crystal display panel, the liquid crystal display panel including pixel electrodes and liquid crystals,
  • the pixel electrode has a middle area and a peripheral area located at the periphery of the middle area.
  • the liquid crystal disposed corresponding to the middle area has a first pretilt angle
  • the liquid crystal disposed corresponding to the peripheral area has a second pretilt angle.
  • the pretilt angle is greater than the second pretilt angle.
  • a plurality of first branch electrodes are arranged in the middle area of the pixel electrode, and a plurality of second branch electrodes are arranged in the peripheral area of the pixel electrode, and the width of the first branch electrode is larger than that of the first branch electrode.
  • the width of the second branch electrode is larger than that of the first branch electrode.
  • the ratio of the sum of the areas of the plurality of first branch electrodes to the sum of the areas of the plurality of second branch electrodes is greater than 0 and less than 1.
  • the pixel electrode includes a vertical electrode and a horizontal electrode perpendicular to the vertical electrode, and each of the first branch electrodes extends from the horizontal electrode or/and the vertical electrode.
  • the plurality of first branch electrodes includes a first group of first branch electrodes and a second group of first branch electrodes, and the first branch electrodes in the first group of first branch electrodes are formed by The center of the pixel electrode extends outward, and the first branch electrode in the second group of first branch electrodes extends from the first branch electrode in the first group of first branch electrodes.
  • the first group of first branch electrodes includes four first branch electrodes extending outward from the center of the pixel electrode, and any two phases of the first group of first branch electrodes
  • the angle between the adjacent first branch electrodes is equal to 90 degrees.
  • the middle area and the peripheral area of the pixel electrode are divided into a plurality of domains, and each of the first branch electrodes located in the same domain extends at least one second branch electrode from the The second branch electrode extending from the first branch electrode is parallel to the corresponding first branch electrode.
  • the liquid crystal display panel further includes a light-shielding electrode, the light-shielding electrode and the pixel electrode are located on the same plane and are located on opposite sides of the pixel electrode, and the light-shielding electrode has a light-shielding electrode close to the pixel electrode. And opposite to the recessed edge recessed in the pixel electrode.
  • the pixel electrode has an outer convex edge close to the light shielding electrode and matching with the recessed edge.
  • the liquid crystal display panel further includes a data line, the data line is located on one side of the light shielding electrode, the data line is arranged corresponding to the light shielding electrode, and the data line is connected to the liquid crystal
  • the orthographic projection on the display panel is located within the orthographic projection of the shading electrode on the liquid crystal display panel.
  • the recessed edge includes a first oblique straight line segment, a second oblique straight line segment, and a first arc segment connecting the first oblique straight line segment and the second oblique straight line segment.
  • the first oblique straight line segment and the second oblique straight line segment respectively correspond to two ends of the pixel electrode, and the first circular arc segment corresponds to a middle area of the pixel electrode.
  • the angle between the first inclined straight line segment and the second inclined straight line segment and the horizontal line is greater than or equal to 45 degrees and less than 90 degrees.
  • the liquid crystal display panel includes a pixel electrode and liquid crystal.
  • the pixel electrode has a middle area and a peripheral area located at the periphery of the middle area.
  • the manufacturing method includes the following steps:
  • the electric field force applied to the liquid crystal in the middle area is greater than the electric field force applied to the liquid crystal in the peripheral area, so that the pretilt angle generated by the liquid crystal in the middle area is greater than the pretilt angle generated by the liquid crystal in the peripheral area;
  • the pretilt angle generated by the liquid crystal in the middle area and the pretilt angle generated by the liquid crystal in the peripheral area are fixed.
  • a plurality of first branch electrodes are provided in the middle area of the pixel electrode, a plurality of second branch electrodes are provided in the peripheral area of the pixel electrode, and the width of the first branch electrode is Greater than the width of the second branch electrode.
  • the ratio of the sum of the areas of the plurality of first branch electrodes to the sum of the areas of the plurality of second branch electrodes is greater than 0 and less than 1.
  • the pixel electrode includes a vertical electrode and a horizontal electrode perpendicular to the vertical electrode, and each of the first branch electrodes is extended by the horizontal electrode or/and the vertical electrode. out.
  • the plurality of first branch electrodes includes a first group of first branch electrodes, and the first group of first branch electrodes includes four branches extending outward from the center of the pixel electrode. There are two first branch electrodes, and the included angle between any two adjacent first branch electrodes in the first group of first branch electrodes is equal to 90 degrees.
  • the liquid crystal display panel further includes a light-shielding electrode, the light-shielding electrode and the pixel electrode are located on the same plane and on opposite sides of the pixel electrode, and the light-shielding electrode An indented edge of the pixel electrode that is indented opposite to the pixel electrode.
  • the pixel electrode has an outer convex edge close to the light shielding electrode and matching with the recessed edge.
  • the recessed edge includes a first inclined straight line section, a second inclined straight line section, and a first arc section connecting the first inclined straight line section and the second inclined straight line section
  • the first oblique straight line segment and the second oblique straight line segment respectively correspond to two ends of the pixel electrode, and the first arc segment corresponds to a middle area of the pixel electrode.
  • the present application provides a liquid crystal display panel and a manufacturing method thereof.
  • the liquid crystal display panel includes a pixel electrode and a liquid crystal.
  • the pixel electrode has a middle area and a peripheral area located at the periphery of the middle area.
  • the liquid crystal disposed corresponding to the middle area of the pixel electrode has a first pretilt angle.
  • the liquid crystal disposed corresponding to the peripheral area of the pixel electrode has a second pretilt angle, and the first pretilt angle is greater than the second pretilt angle.
  • the liquid crystal in the middle area of the pixel electrode By making the pretilt angle of the liquid crystal in the middle area of the pixel electrode larger than the pretilt angle of the liquid crystal in the peripheral area, the liquid crystal in the middle area of the pixel electrode can be stabilized faster when the liquid crystal display panel is driven, and the response time of the liquid crystal in the middle area of the pixel electrode is improved. This avoids the problem that the liquid crystal in the middle area of the pixel electrode in the conventional technology has a relatively slow response speed due to the small electric field formed by the light shielded electrode and the pixel electrode during the driving process of the liquid crystal display panel.
  • Figure 1 is a top view of a traditional liquid crystal display panel
  • FIG. 2 is a schematic cross-sectional view taken along the A-A tangent line of the liquid crystal display panel shown in FIG. 1;
  • FIG. 3 is a top view of a liquid crystal display panel according to the first embodiment of the application.
  • FIG. 5 is an optical performance diagram of the pixel electrode shown in FIG. 1 and the pixel electrode shown in FIG. 3 displaying medium and low gray scales under different voltages, where AE is the pixel electrode shown in FIG. 1 displaying medium and low gray scales under different voltages Optical performance diagram, ae is the optical performance diagram of the pixel electrode shown in FIG. 3 showing medium and low gray scales under different voltages;
  • FIG. 6 is a top view of a liquid crystal display panel according to a second embodiment of the application.
  • FIG. 7 is a top view of a liquid crystal display panel according to a third embodiment of the application.
  • FIG. 8 is a schematic flowchart of a method for manufacturing a liquid crystal display panel of the present application.
  • the present application provides a liquid crystal display panel.
  • the liquid crystal display panel includes a light-shielding electrode, a pixel electrode, a common electrode, and liquid crystal.
  • the electrodes are arranged oppositely, the light-shielding electrode is located on opposite sides of the pixel electrode, and the liquid crystal is located between the pixel electrode and the common electrode,
  • the pixel electrode has a middle area and a peripheral area located at the periphery of the middle area, the liquid crystal disposed corresponding to the middle area of the pixel electrode has a first pretilt angle, and the liquid crystal disposed corresponding to the peripheral area of the pixel electrode has a first pretilt angle.
  • the liquid crystal has a second pretilt angle, and the first pretilt angle is greater than the second pretilt angle.
  • the liquid crystal display panel of the present application makes the pretilt angle of the liquid crystal arranged corresponding to the middle area of the pixel electrode larger than the pretilt angle of the liquid crystal arranged corresponding to the peripheral area of the pixel electrode, which is beneficial to the liquid crystal display panel working under the driving of the working voltage.
  • the liquid crystal arranged in the middle area of the pixel electrode can shorten the time for the liquid crystal to reach the target pretilt angle, which is beneficial to the earlier stabilization of the liquid crystal arranged in the middle area of the pixel electrode, thereby improving the response time of the liquid crystal arranged in the middle area of the pixel electrode.
  • the middle area of the pixel electrode is provided with a plurality of first branch electrodes
  • the peripheral area of the pixel electrode is provided with a plurality of second branch electrodes
  • the width of the first branch electrode is larger than that of the second branch electrode. The width of the branch electrode.
  • the width of the first branch electrode in the middle area of the pixel electrode is larger than that of the second branch electrode in the peripheral area of the pixel electrode, so that the liquid crystal in the middle area of the pixel electrode can be exposed to
  • the electric field force is greater than the electric field force of the liquid crystal in the peripheral area of the pixel electrode, and the liquid crystal in the middle area of the pixel electrode forms a larger pretilt angle;
  • the middle of the pixel electrode when the liquid crystal display panel is under the working voltage, the middle of the pixel electrode
  • the liquid crystal with the first pretilt angle in the region is affected by the electric field formed between the first branch electrode and the common electrode, and the force is greater than that of the pixel electrode.
  • the liquid crystal with the second pretilt angle is affected by the electric field formed between the second branch electrode and the common electrode.
  • the power is more conducive to stabilizing the liquid crystal in the middle area of the pixel electrode earlier, further improving the response time, and avoiding the formation of the light-shielded electrode and the pixel electrode during the driving process of the liquid crystal display panel due to the liquid crystal in the middle area of the pixel electrode in the traditional technology.
  • the electric field force is small and the response speed is relatively slow.
  • the ratio of the sum of the areas of the plurality of first branch electrodes to the sum of the areas of the plurality of second branch electrodes is greater than 0 and less than 1, so as to prevent the width of the branch electrodes and the gap width from being affected when the liquid crystal display panel is displayed. It is very sensitive to changes in the manufacturing process, causing uneven brightness (Mura). It is specifically embodied in that the slope of the voltage V-transmittance T curve is controlled to avoid the steep slope of the voltage V-transmittance T curve.
  • the ratio of the sum of the areas of the first branch electrodes to the sum of the areas of the second branch electrodes is greater than or equal to 1/3 and less than or equal to 1/2, which is more conducive to avoiding
  • the liquid crystal display panel is sensitive to changes in the width of the branch electrodes and the width of the gap due to the manufacturing process, so as to avoid uneven brightness of the liquid crystal display panel.
  • the ratio of the sum of the areas of the plurality of first branch electrodes to the sum of the areas of the plurality of second branch electrodes is 1/3, 4/9, or 1/2.
  • the pixel electrode includes a vertical electrode and a horizontal electrode perpendicular to the vertical electrode, and each of the first branch electrodes extends from the horizontal electrode or/and the vertical electrode. Some of the first branch electrodes are strip-shaped, and some of the first branch electrodes are irregular patterns such as triangles. There is a first gap between two adjacent first branch electrodes.
  • the plurality of first branch electrodes includes a first group of first branch electrodes and a second group of first branch electrodes, and the first branch electrodes in the first group of first branch electrodes are The center of the pixel electrode extends outward, and the first branch electrode in the second group of first branch electrodes extends from the first branch electrode in the first group of first branch electrodes.
  • the first group of first branch electrodes includes four first branch electrodes extending outward from the center of the pixel electrode, and any two of the first group of first branch electrodes are adjacent to each other.
  • the included angle between the first branch electrodes is equal to 90 degrees, so that the four first branch electrodes in the first group of first branch electrodes are distributed in a wind type, compared with the cross-shaped electrode in the middle of the traditional pixel electrode, it can make During display, the cross-shaped dark stripes in the middle area of the pixel electrode become thinner, which improves the optical performance of the pixel electrode and is more conducive to earlier stabilization of the liquid crystal in the middle area.
  • the middle area and the peripheral area of the pixel electrode are divided into multiple domains, and each of the first branch electrodes located in the same domain extends at least one second branch electrode from the first branch electrode.
  • the second branch electrode extending from a branch electrode is parallel to the corresponding first branch electrode.
  • the pixel electrode is divided into a plurality of domains, a part of the second branch electrode is arranged in the middle area, and a part of the second branch electrode is arranged in the peripheral area.
  • the second branch electrodes are parallel, and there is a second gap between two adjacent second branch electrodes. The width of the second gap is equal to the width of the first gap.
  • the light-shielding electrode and the pixel electrode are located on the same plane, and the light-shielding electrode has a recessed edge close to the pixel electrode and recessed relative to the pixel electrode.
  • the inner side of the light-shielding electrode has an indented edge, which increases the perimeter of the inner side of the light-shielding electrode, and increases the range of action of the electric field formed by the light-shielding electrode and the pixel electrode on the liquid crystal. Under the combined action of the electric field, a larger range (larger than the traditional peripheral area) of the liquid crystal tilting speed becomes faster, thereby further improving the response time of the liquid crystal.
  • the pixel electrode has an outer convex edge close to the light shielding electrode and matching with the recessed edge.
  • the edge close to the light-shielding electrode is a straight edge.
  • the convex edge matched with the recessed edge can increase the area of the pixel electrode to ensure the aperture ratio, and on the other hand, the convex edge of the pixel electrode is designed to match
  • the recessed edges of the light-shielding electrode further increase the range of action of the electric field formed by the light-shielding electrode and the pixel electrode on the liquid crystal, and the tilting speed of the liquid crystal in a larger range becomes faster, thereby further improving the response time of the liquid crystal.
  • the liquid crystal display panel further includes a data line, the data line is located at a side of the light shielding electrode away from the common electrode, the data line is arranged corresponding to the light shielding electrode, and the data line
  • the orthographic projection on the liquid crystal display panel is located within the orthographic projection of the light shielding electrode on the liquid crystal display panel to achieve a light shielding effect.
  • the liquid crystal display panel includes an array substrate, a color filter substrate, and liquid crystal.
  • the array substrate and the color filter substrate are arranged opposite to each other.
  • the array substrate includes a pixel electrode 10 and a light-shielding electrode 20.
  • the light-shielding electrode 20 and the pixel electrode 10 are arranged in the same layer, and the light-shielding electrode 20 is located on opposite sides of the pixel electrode 10.
  • the color filter substrate includes a common electrode (not shown), and the entire surface of the common electrode is formed on the color filter substrate.
  • the common electrode and the light-shielding electrode 20 may be electrically connected by conductive glue.
  • the light-shielding electrode 20 can also input signals independently, using a separate signal source.
  • the pixel electrode 10 has a middle region 10a and a peripheral region 10b located at the periphery of the middle region 10a.
  • the middle area 10a is quadrilateral, and can also be a circle, an ellipse, or an irregular figure.
  • the middle area 10 a of the pixel electrode 10 is provided with a plurality of first branch electrodes 101 and a plurality of second branch electrodes 102, and the peripheral area 10 b of the pixel electrode 10 is provided with a plurality of second branch electrodes 102.
  • the pixel electrode 10 includes a vertical electrode 103 and a horizontal electrode 104 perpendicular to the vertical electrode 103.
  • the vertical electrode 103 and the horizontal electrode 104 equally divide the pixel electrode 10 into four domains.
  • Each domain corresponds to the plurality of first branch electrodes 101 in the middle area 10a of the pixel electrode 10, and the first gap 101a is arranged between two adjacent first branch electrodes 101.
  • Each domain corresponds to the outer area 10b of the pixel electrode 10.
  • the plurality of second branch electrodes 102 are arranged in parallel, and there is a second gap 102 a between two adjacent second branch electrodes 102.
  • Each first branch electrode 101 is extended from the horizontal electrode 104 or/and the vertical electrode 103.
  • At least one second branch electrode 102 extends from each first branch electrode 101 in the same domain, and the second branch electrode 102 extending from the first branch electrode 101 is parallel to the corresponding first branch electrode 101. Specifically, most of the first branch electrodes 101 extend out of two second branch electrodes 102.
  • the second branch electrodes 102 are all strip-shaped.
  • the widths D2 of the plurality of second branch electrodes 102 are the same.
  • the width D2 of each second branch electrode 102 is 1.5 micrometers to 3 micrometers.
  • the width of each second gap 102a is equal.
  • the sum of the width of each second branch electrode 102 and the width of one second gap 102a is 4.5 ⁇ m to 7 ⁇ m.
  • the width D1 of the first branch electrode 101 is greater than the width D2 of the second branch electrode 102, so that the electric field force formed between the first branch electrode 101 and the common electrode is greater than the electric field force formed between the second branch electrode 102 and the common electrode.
  • the width D1 of most of the first branch electrodes 101 is equal to the sum of twice the width D2 of the second branch electrodes 102 and the width of the second gap 102a between two adjacent second branch electrodes 102.
  • the width of the first gap 101a is equal to the width of the second gap 102a.
  • the width of the first branch electrode 101 may also be less than or equal to the sum of the width of a second branch electrode 102 and the width of a second gap 102a.
  • the width of the first gap 101a may also be smaller than the width of the second gap 102a, so that the width D1 of the first branch electrode 101 is further increased.
  • the light shielding electrode 20 has a recessed edge 201 that is close to the pixel electrode 10 and recessed relative to the pixel electrode 10.
  • the recessed edge 201 is a recessed arc segment, which is beneficial to increase the inner length of the light-shielding electrode 20, thereby increasing the range of the electric field formed between the light-shielding electrode 20 and the pixel electrode 10.
  • the recessed edge 201 includes a first inclined straight line section 2011, a second inclined straight line section 2012, and a first circular arc section 2013 connecting the first inclined straight line section 2011 and the second inclined straight line section 2012.
  • the first inclined straight line segment 2011 and the second inclined straight line segment 2012 respectively correspond to two ends of the pixel electrode 10, and the first circular arc segment 2013 corresponds to the middle area 10 a of the pixel electrode 10.
  • the angle between the first inclined straight line segment 2011 and the second inclined straight line segment 2012 and the horizontal line is greater than or equal to 45 degrees and less than 90 degrees, such as 60 degrees, 75 degrees, and 80 degrees, which is more conducive to improving the light shielding electrode 20 and the pixel electrode.
  • the range of the electric field formed between 10 and the aperture ratio is guaranteed.
  • the light-shielding electrode 20 also includes a straight edge opposite to the recessed edge 201, so that the width of the two ends of the light-shielding electrode 20 is greater than the width in the middle, and the width of the light-shielding electrode 20 is greater than the width of the data line (not shown) to shield the data line from light. effect.
  • the data line is located on the side of the light-shielding electrode 20 away from the common electrode, the data line is arranged corresponding to the light-shielding electrode 20, and the orthographic projection of the data line on the liquid crystal display panel is within the orthographic projection of the light-shielding electrode on the liquid crystal display panel.
  • the pixel electrode 10 has an outer convex edge 105 close to the light shielding electrode 20 and matched with the recessed edge 201.
  • the convex edge 105 includes a third inclined straight line section 1051, a fourth inclined straight line section 1052, and a second circular arc section 1053.
  • the second circular arc section 1053 is connected between the third inclined straight line section 1051 and the fourth inclined straight line section 1052.
  • the angle between the third inclined straight line segment 1051 and the fourth inclined straight line segment 1052 and the horizontal line is greater than or equal to 45 degrees and less than 90 degrees, such as 60 degrees, 75 degrees, and 80 degrees.
  • the angle between the third inclined straight line section 1051 and the horizontal line is equal to the angle between the first inclined straight line section 2011 and the horizontal line
  • the angle between the fourth inclined straight line section 1052 and the horizontal line is equal to the second inclined straight line section 2012 and the horizontal line
  • the included angle between the third inclined straight line segment 1051 and the horizontal line is equal to the included angle between the fourth inclined straight line segment 1052 and the horizontal line segment.
  • the distance between the pixel electrode 10 and the light-shielding electrode 20 is 3.5 micrometers to 4.5 micrometers, for example, 4 micrometers, so as to maximize the aperture ratio and the accuracy of the exposure process can achieve this distance.
  • the pixel electrode 10 and the light-shielding electrode 20 are made of transparent metal oxide, such as indium tin oxide.
  • FIG. 4 it is the simulation result of the voltage V-transmittance T curve of the pixel electrode shown in FIG. 1 and the pixel electrode shown in FIG.
  • curve 1 is the simulation result of the voltage V-transmittance T of the pixel electrode shown in FIG. 1
  • curve 2 is the simulation result of the voltage V-transmittance T of the pixel electrode shown in FIG. 3. It can be seen from FIG. 4 that, compared with the voltage V-transmittance T curve of the pixel electrode shown in FIG. 1, the voltage V-transmittance T curve of the pixel electrode shown in FIG. 3 is gentler (smaller).
  • the voltage V-transmittance T curve of the pixel electrode shown in FIG. 3 is gentler, and the width L/between the branch electrodes can be reduced.
  • the width of S due to the influence of fluctuations in the process on the uniformity of the transmittance across the entire surface, improving the phenomenon of uneven brightness (mura).
  • FIG. 5 it is an optical performance diagram of the pixel electrode shown in FIG. 1 and the pixel electrode shown in FIG. 3 showing medium and low gray scales under different voltages.
  • the different areas of the pixel electrode shown in Figure 3 (the middle area and the four corners) have differences in brightness; among them, the center area of the pixel is brighter, and the side reflects that the pretilt angle of the pixel center is too large; the pretilt angle of the pixel center A bigger one can help the liquid crystal to stabilize as soon as possible, thereby improving response time.
  • the pixel electrode shown in Figure 1 and the pixel electrode shown in Figure 3 the pixel electrode is brighter in the peripheral area close to the light shielding electrode, especially the four corners of the pixel electrode are brighter, indicating that the liquid crystal tilts more and confirms that the liquid crystal response sequence is
  • the peripheral liquid crystal acts fast, and then sequentially dumps from the outside to the inside.
  • the pixel electrode shown in Figure 3 has a larger boundary ratio of the light-shielding electrode, so the pixel electrode shown in Figure 3 has a larger peripheral bright range.
  • the liquid crystal in this area Respond faster.
  • FIG. 6 it is a top view of a liquid crystal display panel according to a second embodiment of the application.
  • the liquid crystal display panel shown in FIG. 6 is basically similar to the liquid crystal display panel shown in FIG. 3, except that the first branch electrodes in the middle area 10a of the pixel electrode 10 are distributed in a wind type.
  • the plurality of first branch electrodes 101 includes a first group of first branch electrodes, a second group of first branch electrodes, and a third group of first branch electrodes.
  • the first branch electrodes 101 in the first group of first branch electrodes are formed by pixels.
  • the center O of the electrode extends out and is distributed in a wind type.
  • the first branch electrode 101 of the first branch electrode of the second group extends from the first branch electrode 101 of the first branch electrode of the first group.
  • the first branch electrode 101 in the branch electrodes extends from the first branch electrode 101 in the second group of first branch electrodes. It can be understood that the number of groups of the first branch electrodes is not limited to three groups.
  • the first group of first branch electrodes includes four first branch electrodes 101, and the four first branch electrodes 101 extend from the center O of the pixel electrode 10 as a base point.
  • the rotation angle is a predetermined angle, for example, 90 degrees.
  • the first branch electrode 101 in the second group of first branch electrodes extends from the first branch electrode 101 in the first group of first branch electrodes and is between the first branch electrode 101 in the first group of first branch electrodes It has a first predetermined angle, such as 90 degrees, that is, the first branch electrode 101 in the second group of first branch electrodes is perpendicular to the first branch electrode 101 in the first group of first branch electrodes.
  • the first branch electrode 101 in the third group of first branch electrodes extends from the first branch electrode 101 in the second group of first branch electrodes and is between the first branch electrode 101 in the second group of first branch electrodes It has a second predetermined angle, for example, 90 degrees.
  • the first branch electrodes 101 in the second group of first branch electrodes and the first branch electrodes 101 in the third group of first branch electrodes may also be distributed in a wind type.
  • the pixel electrode 10 further includes a vertical electrode located in the peripheral area 10 b, and the vertical electrode is extended from the first branch electrode 101.
  • the vertical electrodes in the peripheral area 10b are the same as the vertical electrodes in the peripheral area 10b in the pixel electrode 10 shown in FIG. 3, and will not be described in detail here.
  • the pixel electrode of this embodiment is more conducive to forming a proper pretilt angle of the liquid crystal in the middle area, and is more conducive to alignment stability.
  • FIG. 7 it is a top view of a liquid crystal display panel according to a third embodiment of the application.
  • the liquid crystal display panel shown in the third embodiment is basically similar to the liquid crystal display panel of the first embodiment. The difference is that the inner edge of the light shielding electrode 20 close to the pixel electrode 10 is a straight edge, and the edge of the pixel electrode 10 close to the light shielding electrode 20 is also Straight edge.
  • the width D1 of the first branch electrode in the middle region 10a of the pixel electrode 10 is greater than the width D2 of the second branch electrode 102, so that the electric field force formed between the first branch electrode 101 and the common electrode is greater than that of the second branch electrode.
  • the electric field force formed between 102 and the common electrode is greater than that of the second branch electrode.
  • the electric field force of the liquid crystal in the middle area of the pixel electrode is greater than the electric field force of the liquid crystal in the peripheral area of the pixel electrode, and the pretilt angle ratio formed by the liquid crystal in the middle area of the pixel electrode
  • the pretilt angle formed by the liquid crystal in the peripheral area is larger, which is beneficial for stabilizing the liquid crystal in the middle area of the pixel electrode during the driving process of the liquid crystal display panel.
  • the liquid crystal with the first pretilt angle in the middle area of the pixel electrode is more forceful by the electric field formed between the first branch electrode and the common electrode than in the peripheral area of the pixel electrode.
  • the liquid crystal with two pretilt angles is subjected to the force of the electric field formed between the second branch electrode and the common electrode, which is more conducive to stabilizing the liquid crystal in the middle area of the pixel electrode earlier.
  • the pixel electrode of this embodiment also has the advantages of a large aperture ratio and avoiding a steep slope of the voltage V-transmittance T curve.
  • FIG. 8 is a schematic flow diagram of a method for manufacturing a liquid crystal display panel of the present application.
  • the liquid crystal display panel includes an array substrate, a color filter substrate, and liquid crystal.
  • the array substrate and the color filter substrate are arranged opposite to each other.
  • the array substrate includes a pixel electrode, and the color filter substrate includes a common electrode.
  • the pixel electrode and the common electrode are arranged opposite to each other.
  • the liquid crystal is located between the pixel electrode and the common electrode.
  • the middle area is provided with a plurality of first branch electrodes, and the peripheral area of the pixel electrode is provided with a plurality of second branch electrodes.
  • the width of the first branch electrodes is greater than the width of the second branch electrodes.
  • the manufacturing method includes the following steps:
  • the first voltage is applied to the pixel electrode and the second voltage is applied to the common electrode
  • the electric field formed by the first voltage applied to the first branch electrode and the second voltage applied to the common electrode by the liquid crystal disposed in the middle area of the pixel electrode The first pre-tilt angle is formed under the corresponding pixel electrode, and the liquid crystal arranged in the peripheral area corresponding to the pixel electrode forms a second pre-tilt angle under the action of the electric field formed by the first voltage applied by the second branch electrode and the second voltage applied by the common electrode. Greater than the second pretilt angle.
  • the force of the electric field between the first branch electrode and the common electrode is greater than the force between the second branch electrode and the common electrode, so that the liquid crystal disposed in the middle area of the corresponding pixel electrode is formed under the action of the electric field.
  • the first pretilt angle of is greater than the second pretilt angle formed by the liquid crystal disposed in the peripheral area of the corresponding pixel electrode under the action of the electric field.
  • S102 Fix the pretilt angle generated by the liquid crystal in the middle area and the pretilt angle generated by the liquid crystal in the peripheral area.
  • ultraviolet light is incident from the side of the color filter substrate, so that the liquid crystal disposed corresponding to the middle area of the pixel electrode is formed on the alignment layer of the array substrate and has a first pretilt angle, so that the liquid crystal disposed corresponding to the peripheral area of the pixel electrode is formed on the alignment layer.
  • the alignment layer of the array substrate has a second pretilt angle, and the specific alignment process adopts a common process, which will not be described in detail here.
  • the ratio of the sum of the areas of the plurality of first branch electrodes to the sum of the areas of the plurality of second branch electrodes is greater than 0 and less than 1.
  • the liquid crystal display panel further includes a light-shielding electrode, the light-shielding electrode and the pixel electrode are located on the same plane, and the light-shielding electrode has a recessed edge close to the pixel electrode and recessed relative to the pixel electrode.
  • the pixel electrode has an outer convex edge close to the light-shielding electrode and matching with the recessed edge.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请提供一种液晶显示面板及其制造方法,液晶显示面板包括像素电极以及液晶,像素电极具有中间区域以及位于中间区域外围的外围区域,对应像素电极的中间区域设置的液晶具有第一预倾角,对应像素电极的外围区域设置的液晶具有第二预倾角,第一预倾角大于第二预倾斜角。

Description

液晶显示面板及其制造方法 技术领域
本申请涉及显示技术领域,尤其涉及一种液晶显示面板及其制造方法。
背景技术
请参阅图1及图2,图1为传统液晶显示面板的俯视图,图2为沿图1所示液晶显示面板的A-A切线的截面示意图。液晶显示面板包括像素电极P、遮光电极DBS、公共电极CFcom以及液晶LC,像素电极P以及遮光电极DBS均位于液晶显示面板的阵列基板(未示出)上,公共电极CFcom位于液晶显示面板的彩膜基板(未示出)上,像素电极P以及遮光电极DBS均与公共电极CFcom相对设置,液晶LC位于像素电极P和公共电极CFcom之间。其中,像素电极P包括垂直电极以及水平电极,垂直电极与水平电极相互垂直且将像素电极P等分为四畴,每个畴中包括由垂直电极或水平电极延伸出的分支电极L,四个畴中分支电极L的宽度相同,相邻两个分支电极L之间的间隙S的宽度相同。
液晶显示面板正常驱动过程中,一般而言,遮光电极DBS的电压与公共电极CFcom的电压保持相同。在像素区,在遮光电极DBS与像素电极P之间形成的电场以及公共电极CFcom与像素电极P之间形成的电场的共同作用下,液晶LC快速倾倒。随着像素电极P外侧向像素电极P内侧距离DBS电极的距离增大,液晶LC受到遮光电极DBS与像素电极P之间形成的电场力减弱;导致像素电极P 内部液晶LC只在公共电极CFcom和像素电极P之间的电场作用下沿预倾角方向缓慢倾倒,所以液晶LC响应顺序是像素电极P周边区域的液晶LC动作快,然后由像素电极P的外侧向像素电极P的内顺序倾倒,当液晶显示面板的预倾角偏小时,像素电极P内部液晶LC倾倒混乱度偏高,响应较慢。
因此,有必要提出一种技术方案以解决像素电极P与遮光电极DBS之间形成的电场力对像素电极P周边区域以及内部区域的液晶的作用力不同导致像素电极P内部的液晶响应较慢的问题。
技术问题
本申请的目的在于提供一种液晶显示面板及其制造方法,液晶显示面板能改善像素电极中间区域的液晶的响应时间,避免传统技术中像素电极中间区域的液晶在液晶显示面板驱动过程中由于受遮光电极以及像素电极形成的电场作用力小而响应速度相对慢的问题。
技术解决方案
为实现上述目的,本申请提供一种液晶显示面板,所述液晶显示面板包括像素电极以及液晶,
所述像素电极具有中间区域以及位于所述中间区域外围的外围区域,对应所述中间区域设置的液晶具有第一预倾角,对应所述外围区域设置的液晶具有第二预倾角,所述第一预倾角大于所述第二预倾斜角。
在上述液晶显示面板中,所述像素电极的中间区域设置有多个第一分支电极,所述像素电极的外围区域设置有多个第二分支电极,所述第一分支电极的宽度大于所述第二分支电极的宽度。
在上述液晶显示面板中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于0且小于1。
在上述液晶显示面板中,所述像素电极包括垂直电极以及与所述垂直电极相垂直的水平电极,每个所述第一分支电极由所述水平电极或/和所述垂直电极延伸出。
在上述液晶显示面板中,多个所述第一分支电极包括第一组第一分支电极以及第二组第一分支电极,所述第一组第一分支电极中的所述第一分支电极由所述像素电极的中心向外延伸,所述第二组第一分支电极中的所述第一分支电极由所述第一组第一分支电极中的所述第一分支电极上延伸出。
在上述液晶显示面板中,所述第一组第一分支电极包括由所述像素电极的中心向外延伸出的四个第一分支电极,所述第一组第一分支电极中任意两个相邻的所述第一分支电极之间的夹角等于90度。
在上述液晶显示面板中,所述像素电极的中间区域和外围区域分为多个畴,位于同一畴中的每个所述第一分支电极至少延伸出一个所述第二分支电极,从所述第一分支电极延伸出的所述第二分支电极与对应的所述第一分支电极平行。
在上述液晶显示面板中,所述液晶显示面板还包括遮光电极,所述遮光电极与所述像素电极位于同一平面且位于所述像素电极的相对两侧,所述遮光电极具有靠近所述像素电极且相对所述像素电极内陷的内陷边缘。
在上述液晶显示面板中,所述像素电极具有靠近所述遮光电极且与所述内陷边缘相配合的外凸边缘。
在上述液晶显示面板中,所述液晶显示面板还包括数据线,所述数据线位于所述遮光电极的一侧,所述数据线对应所述遮光电极设置,且所述数据线在所述液晶显示面板上的正投影位于所述遮光电极在所述液晶显示面板的正投影内。
在上述液晶显示面板中,所述内陷边缘包括第一倾斜直线段、第二倾斜直线段以及连接所述第一倾斜直线段和所述第二倾斜直线段的第一圆弧段,所述第一倾斜直线段、所述第二倾斜直线段分别对应所述像素电极的两端,且所述第一圆弧段对应像素电极的中间区域。
在上述液晶显示面板中,所述第一倾斜直线段以及所述第二倾斜直线段与水平线之间的夹角大于或等于45度且小于90度。
一种液晶显示面板的制造方法,所述液晶显示面板包括像素电极以及液晶,所述像素电极具有中间区域以及位于所述中间区域外围的外围区域,所述制造方法包括如下步骤:
向所述中间区域的液晶施加的电场作用力大于向所述外围区域的液晶施加的电场作用力,使得所述中间区域的液晶产生的预倾角大于所述外围区域的液晶产生的预倾角;
固定所述中间区域的液晶产生的预倾角以及所述外围区域的液晶产生的预倾角。
在上述液晶显示面板的制造方法中,所述像素电极的中间区域设置有多个第一分支电极,所述像素电极的外围区域设置有多个第二分支电极,所述第一分支电极的宽度大于所述第二分支电极的宽度。
在上述液晶显示面板的制造方法中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于0且小于1。
在上述液晶显示面板的制造方法中,所述像素电极包括垂直电极以及与所述垂直电极相垂直的水平电极,每个所述第一分支电极由所述水平电极或/和所述垂直电极延伸出。
在上述液晶显示面板的制造方法中,多个所述第一分支电极包括第一组第一分支电极,所述第一组第一分支电极包括由所述像素电极的中心向外延伸出的四个第一分支电极,所述第一组第一分支电极中任意两个相邻的所述第一分支电极之间的夹角等于90度。
在上述液晶显示面板的制造方法中,所述液晶显示面板还包括遮光电极,所述遮光电极与所述像素电极位于同一平面且位于所述像素电极的相对两侧,所述遮光电极具有靠近所述像素电极且相对所述像素电极内陷的内陷边缘。
在上述液晶显示面板的制造方法中,所述像素电极具有靠近所述遮光电极且与所述内陷边缘相配合的外凸边缘。
在上述液晶显示面板的制造方法中,所述内陷边缘包括第一倾斜直线段、第二倾斜直线段以及连接所述第一倾斜直线段和所述第二倾斜直线段的第一圆弧段,所述第一倾斜直线段、所述第二倾斜直线段分别对应所述像素电极的两端,且所述第一圆弧段对应像素电极的中间区域。
有益效果
本申请提供一种液晶显示面板及其制造方法,液晶显示面板包括像素电极以及液晶,像素电极具有中间区域以及位于中间区域外围的外围区域,对应像素电极的中间区域设置的液晶具有第一预倾角,对应像素电极的外围区域设置的液晶具有第二预倾角,第一预倾角大于第二预倾斜角。通过使像素电极中间区域的液晶的预倾角大于外围区域的液晶的预倾角,使像素电极中间区域的液晶在液晶显示面板驱动时能更快的稳定化,改善像素电极中间区域的液晶的响应时间,避免传统技术中像素电极中间区域的液晶在液晶显示面板驱动过程中由于受遮光电极以及像素电极形成的电场作用力小而响应速度相对慢的问题。
附图说明
图1为传统液晶显示面板的俯视图;
图2为沿图1所示液晶显示面板的A-A切线的截面示意图;
图3为本申请第一实施例液晶显示面板的俯视图;
图4为图1所示像素电极与图3所示像素电极的电压V-穿透率T曲线模拟结果;
图5为图1所示像素电极以及图3所示像素电极在不同电压下显示中低灰阶的光学表现图,其中,A-E是图1所示像素电极在不同电压下显示中低灰阶的光学表现图,a-e是图3所示像素电极在不同电压下显示中低灰阶的光学表现图;
图6为本申请第二实施例液晶显示面板的俯视图;
图7为本申请第三实施例液晶显示面板的俯视图;
图8为本申请液晶显示面板的制造方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种液晶显示面板,所述液晶显示面板包括遮光电极、像素电极、公共电极以及液晶,所述遮光电极以及所述像素电极均位于所述公共电极的同一侧且均与所述公共电极相对设置,所述遮光电极位于所述像素电极相对的两侧,所述液晶位于所述像素电极和所述公共电极之间,
所述像素电极具有中间区域以及位于所述中间区域外围的外围区域,对应所述像素电极的中间区域设置的所述液晶具有第一预倾角,对应所述像素电极的所述外围区域设置的所述液晶具有第二预倾角,所述第一预倾角大于所述第二预倾斜角。
本申请液晶显示面板通过使对应像素电极的中间区域设置的液晶的预倾角大于对应像素电极的所述外围区域设置的液晶的预倾角,有利于液晶显示面板在工作电压的驱动下工作时,对应像素电极的中间区域设置的液晶可以使液晶达到目标预倾角的时间缩短,有利于对应像素电极的中间区域设置的液晶更早稳定化,从而改善对应像素电极的中间区域设置的液晶的响应时间。
在一些实施中,所述像素电极的中间区域设置有多个第一分支电极,所述像素电极的外围区域设置有多个第二分支电极,所述第一分支电极的宽度大于所述第二分支电极的宽度。一方面,在液晶显示面板的液晶配向制程时,像素电极的中间区域的第一分支电极的宽度大于像素电极的外围区域的第二分支电极,可以使配向时像素电极的中间区域的液晶所受电场作用力大于像素电极的外围区域的液晶所受电场作用力,像素电极的中间区域的液晶形成的预倾角更大;另一方面,液晶显示面板在工作电压的作用下时,像素电极的中间区域具有第一预倾角的液晶受第一分支电极和公共电极之间形成的电场作用力大于像素电极的外围区域具有第二预倾角的液晶受第二分支电极和公共电极之间形成的电场作用力,更有利于使像素电极的中间区域的液晶更早稳定化,进一步地改善响应时间,避免传统技术中像素电极中间区域的液晶在液晶显示面板驱动过程中由于受遮光电极以及像素电极形成的电场作用力小而响应速度相对慢的问题。
在一些实施例中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于0且小于1,避免液晶显示面板显示时对分支电极宽度以及间隙宽度的因制程发生变化很敏感,出现明暗不均的现象(Mura)。具体体现为,控制电压V-穿透率T曲线的斜率,避免电压V-穿透率T曲线的斜率很陡。
在一些实施例中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于或等于1/3且小于或等于1/2,更有利于避免避免液晶显示面板显示时对分支电极宽度以及间隙宽度的因制程发生变化很敏感,避免液晶显示面板出现明暗不均的现象。具体地,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值为1/3、4/9或1/2。
在一些实施例中,所述像素电极包括垂直电极以及与所述垂直电极相垂直的水平电极,每个所述第一分支电极由所述水平电极或/和所述垂直电极延伸出。部分第一分支电极均呈条形,部分第一分支电极呈三角形等不规则图形。相邻两个第一分支电极之间具有第一间隙。
在一些实施例中,多个所述第一分支电极包括第一组第一分支电极以及第二组第一分支电极,所述第一组第一分支电极中的所述第一分支电极由所述像素电极的中心向外延伸,所述第二组第一分支电极中的所述第一分支电极由所述第一组第一分支电极中的所述第一分支电极上延伸出。
在一些实施例中,所述第一组第一分支电极包括由所述像素电极的中心向外延伸出的四个第一分支电极,所述第一组第一分支电极中任意两个相邻的所述第一分支电极之间的夹角等于90度,使得第一组第一分支电极中的四个第一分支电极呈风车型分布,相对于传统像素电极中间为十字型电极,可以使显示时像素电极中间区域的十字型暗纹变细,改善像素电极的光学表现,且更有利于中间区域的液晶更早稳定化。
在一些实施例中,所述像素电极的中间区域和外围区域分为多个畴,位于同一畴中的每个所述第一分支电极至少延伸出一个所述第二分支电极,从所述第一分支电极延伸出的所述第二分支电极与对应的所述第一分支电极平行。
在一些实施例中,所述像素电极分为多个畴,部分第二分支电极设置于所述中间区域,部分所述第二分支电极设置于所述外围区域,位于同一个畴中的所述第二分支电极平行,相邻两个第二分支电极之间具有第二间隙。第二间隙的宽度等于第一间隙的宽度。
在一些实施例中,所述遮光电极与所述像素电极位于同一平面,所述遮光电极具有靠近所述像素电极且相对所述像素电极内陷的内陷边缘。相对于传统遮光电极内侧为直线,遮光电极的内侧具有内陷边缘,增加遮光电极内侧的边界周长,增加遮光电极与像素电极形成的电场对液晶的作用范围,在遮光电极与像素电极形成的电场的共同作用下,更大范围(比传统的周边区域更大)的液晶倾倒速度变快,从而进一步地改善液晶的响应时间。
在一些实施例中,所述像素电极具有靠近所述遮光电极且与所述内陷边缘相配合的外凸边缘。相对于传统像素电极靠近遮光电极的边缘为直线边缘,与所述内陷边缘相配合的外凸边缘一方面可以增加像素电极的面积从而保证开口率,另一方面像素电极的外凸边缘设计配合遮光电极的内陷边缘,进一步地增加遮光电极与像素电极形成的电场对液晶的作用范围,更大范围的液晶倾倒速度变快,从而进一步地改善液晶的响应时间。
在一些实施例中,所述液晶显示面板还包括数据线,所述数据线位于所述遮光电极远离所述公共电极的一侧,所述数据线对应所述遮光电极设置,且所述数据线在所述液晶显示面板上的正投影位于所述遮光电极在所述液晶显示面板的正投影内,以起到遮光作用。
以下结合具体实施例对上述液晶显示面板进行描述。
第一实施例
如图3所示,其为本申请第一实施例液晶显示面板的俯视图。液晶显示面板包括阵列基板、彩膜基板以及液晶。阵列基板与彩膜基板相对设置。阵列基板包括像素电极10以及遮光电极20,遮光电极20和像素电极10同层设置,且遮光电极20位于像素电极10的相对两侧。彩膜基板包括公共电极(未示出),公共电极整面形成于彩膜基板上。公共电极和遮光电极20可以通过导电胶电性连接。遮光电极20也可以独立地输入信号,使用单独的信号源。
像素电极10具有中间区域10a以及位于中间区域10a外围的外围区域10b。中间区域10a为四边形,也可以为圆形、椭圆形或者不规则图形。像素电极10的中间区域10a设置有多个第一分支电极101以及多个第二分支电极102,像素电极10的外围区域10b设置有多个第二分支电极102。像素电极10包括垂直电极103以及与垂直电极103相垂直的水平电极104。垂直电极103和水平电极104将像素电极10等分为四个畴。
每个畴对应像素电极10的中间区域10a的多个第一分支电极101平行设置,相邻两个第一分支电极101之间具有第一间隙101a,每个畴对应像素电极10外围区域10b的多个第二分支电极102平行设置,相邻两个第二分支电极102之间具有第二间隙102a。每个第一分支电极101由水平电极104或/和垂直电极103延伸出。位于同一畴中的每个第一分支电极101至少延伸出一个第二分支电极102,从第一分支电极101延伸出的第二分支电极102与对应的第一分支电极101平行。具体地,大部分第一分支电极101延伸出两个第二分支电极102。
第二分支电极102均为条状。多个第二分支电极102的宽度D2的宽度相同。每个第二分支电极102的宽度D2为1.5微米-3微米。每个第二间隙102a的宽度均相等。每个第二分支电极102的宽度与一个第二间隙102a的宽度之和为4.5微米至7微米。
大部分第一分支电极101均为条状,少部分第一分支电极101为三角形。第一分支电极101的宽度D1大于第二分支电极102的宽度D2,使得第一分支电极101与公共电极之间形成的电场力大于第二分支电极102与公共电极之间形成的电场力。大部分第一分支电极101的宽度D1等于第二分支电极102的宽度D2的两倍与相邻两个第二分支电极102之间的第二间隙102a的宽度之和。第一间隙101a的宽度等于第二间隙102a的宽度。可以理解的是,第一分支电极101的宽度也可以小于或等于一个第二分支电极102的宽度与一个第二间隙102a的宽度之和。第一间隙101a的宽度也可以小于第二间隙102a的宽度,以使第一分支电极101的宽度D1的宽度进一步的增大。
遮光电极20与公共电极之间保持无电压差状态,从而使得遮光电极20和公共电极之间的液晶不转动而该区域呈现黑态,以替代黑色矩阵进行遮光。遮光电极20具有靠近像素电极10且相对像素电极10内陷的内陷边缘201。内陷边缘201为内陷弧段,有利于增加遮光电极20的内侧长度,从而增加遮光电极20与像素电极10之间形成的电场的作用范围。为了适应曝光制程,内陷边缘201包括第一倾斜直线段2011、第二倾斜直线段2012以及连接第一倾斜直线段2011和第二倾斜直线段2012的第一圆弧段2013。第一倾斜直线段2011、第二倾斜直线段2012分别对应像素电极10的两端,且第一圆弧段2013对应像素电极10的中间区域10a。第一倾斜直线段2011以及第二倾斜直线段2012与水平线之间的夹角大于或等于45度且小于90度,例如60度、75度以及80度,更有利于提高遮光电极20与像素电极10之间形成的电场的作用范围,且保证开口率。
遮光电极20还包括与内陷边缘201相对的直线边缘,使得遮光电极20两端的宽度大于中间的宽度,遮光电极20的宽度大于数据线(未示出)的宽度,以对数据线起到遮光作用。具体地,数据线位于遮光电极20远离公共电极的一侧,数据线对应遮光电极20设置,且数据线在液晶显示面板上的正投影位于遮光电极在液晶显示面板的正投影内。
为了增加液晶面板的开口率,像素电极10具有靠近遮光电极20且与内陷边缘201相配合的外凸边缘105。外凸边缘105包括第三倾斜直线段1051、第四倾斜直线段1052以及第二圆弧段1053,第二圆弧段1053连接于第三倾斜直线段1051和第四倾斜直线段1052之间。第三倾斜直线段1051、第四倾斜直线段1052与水平线之间的夹角大于或等于45度且小于90度,例如60度、75度以及80度。第三倾斜直线段1051与水平线之间的夹角等于第一倾斜直线段2011与水平线之间的夹角,第四倾斜直线段1052与水平线之间的夹角等于第二倾斜直线段2012与水平线之间的夹角,第三倾斜直线段1051与水平线之间的夹角等于第四倾斜直线段1052与水平线段之间的夹角。
像素电极10与遮光电极20之间的间距为3.5微米至4.5微米,例如4微米,以使得开口率最大,且曝光制程的精度能实现该间距。像素电极10与遮光电极20的制备材料均为透明金属氧化物,例如氧化铟锡等。
如图4所示,其为图1所示像素电极与图3所示像素电极的电压V-穿透率T曲线模拟结果。测试过程中,曲线1为图1所示像素电极的电压V-穿透率T的模拟结果,曲线2为图3所示像素电极的电压V-穿透率T的模拟结果。由图4可知,同图1所示像素电极的电压V-穿透率T曲线相比,图3所示像素电极的电压V-穿透率T曲线较缓和(较小),当像素电极的分支电极的宽度L/分支电极之间的宽度S因制程产生波动时,图3所示像素电极的电压V-穿透率T曲线较缓和,可以减小分支电极的宽度L/分支电极之间的宽度S因制程产生波动时对穿透率整面均匀性的影响,改善明暗不均的现象(mura)。
如图5所示,其为图1所示像素电极以及图3所示像素电极在不同电压下显示中低灰阶的光学表现图。在中低灰阶下,图3所示像素电极不同区域(中间区域和四个角),亮度出现差异;其中,像素中心区域较亮,侧面反映出像素中心预倾角偏大;像素中心预倾角大一点可以帮助液晶尽早稳定化,从而改善响应时间。图1所示像素电极与图3所示像素电极,像素电极靠近遮光电极的周边区域较亮,特别是像素电极的四个转角处较亮,说明液晶倾倒程度更大,证实了液晶响应顺序是周边液晶动作快,然后由外向内顺序倾倒的理论;同时,图3所示像素电极因遮光电极的边界比例较大,所以图3所示像素电极的周边偏亮范围更大,该区域的液晶响应更快。
第二实施例
如图6所示,其为本申请第二实施例液晶显示面板的俯视图。图6所示液晶显示面板与图3所示液晶显示面板基本相似,不同之处在于,像素电极10中间区域10a的第一分支电极呈风车型分布。多个所述第一分支电极101包括第一组第一分支电极、第二组第一分支电极以及第三组第一分支电极,第一组第一分支电极中的第一分支电极101由像素电极的中心O延伸出且呈风车型分布,第二组第一分支电极中的第一分支电极101由第一组第一分支电极中的第一分支电极101上延伸出,第三组第一分支电极中的第一分支电极101由第二组第一分支电极中的第一分支电极101上延伸出。可以理解的是,第一分支电极的组数不限于三组。
具体地,第一组第一分支电极包括四个第一分支电极101,四个第一分支电极101以像素电极10的中心O为基点延伸出,相邻两个第一分支电极101之间的旋转角度为预定角度,例如90度。第二组第一分支电极中的第一分支电极101由第一组第一分支电极中的第一分支电极101上延伸出且与第一组第一分支电极中的第一分支电极101之间具有第一预定夹角,例如90度,即第二组第一分支电极中的第一分支电极101垂直于第一组第一分支电极中的第一分支电极101。第三组第一分支电极中的第一分支电极101由第二组第一分支电极中的第一分支电极101上延伸出且与第二组第一分支电极中的第一分支电极101之间具有第二预定夹角,例如90度。第二组第一分支电极中的第一分支电极101和第三组第一分支电极中的第一分支电极101也可以呈风车型分布。
像素电极10还包括位于外围区域10b的垂直电极,垂直电极由第一分支电极101延伸出。外围区域10b的垂直电极与图3所示像素电极10中外围区域10b的垂直电极相同,此处不作详述。
相对于图3所示像素电极设计,本实施例像素电极更有利于使中间区域的液晶形成合适的预倾角,更有利于配向稳定性。
第三实施例
如图7所示,其为本申请第三实施例液晶显示面板的俯视图。第三实施例所示液晶显示面板与第一实施例液晶显示面板基本相似,不同之处在于,遮光电极20靠近像素电极10的内侧边缘为直线边缘,像素电极10靠近遮光电极20的边缘也为直线边缘。
在本实施例中,像素电极10中间区域10a的第一分支电极的宽度D1大于第二分支电极102的宽度D2,使得第一分支电极101与公共电极之间形成的电场力大于第二分支电极102与公共电极之间形成的电场力。一方面在液晶显示面板的液晶配向过程中,像素电极的中间区域的液晶所受电场作用力大于像素电极的外围区域的液晶所受电场作用力,像素电极的中间区域的液晶形成的预倾角比外围区域的液晶形成的预倾角更大,有利于在液晶显示面板驱动过程使像素电极的中间区域的液晶更早稳定化。另一方面,液晶显示面板在工作电压的作用下时,像素电极的中间区域具有第一预倾角的液晶受第一分支电极和公共电极之间形成的电场作用力大于像素电极的外围区域具有第二预倾角的液晶受第二分支电极和公共电极之间形成的电场作用力,更有利于使像素电极的中间区域的液晶更早稳定化。此外,相对于图1所示像素电极,本实施例像素电极还具有开口率大以及避免电压V-穿透率T曲线的斜率很陡的优点。
请参阅图8,其为本申请液晶显示面板的制造方法的流程示意图。液晶显示面板包括阵列基板、彩膜基板以及液晶。阵列基板与彩膜基板相对设置。阵列基板包括像素电极,彩膜基板包括公共电极,像素电极和所述公共电极相对设置,液晶位于像素电极和公共电极之间,像素电极具有中间区域以及位于中间区域外围的外围区域,像素电极的中间区域设置有多个第一分支电极,像素电极的外围区域设置有多个第二分支电极,第一分支电极的宽度大于第二分支电极的宽度,制造方法包括如下步骤:
S101:向中间区域的液晶施加的电场作用力大于向外围区域的液晶施加的电场作用力,使得中间区域的液晶产生的预倾角大于外围区域的液晶产生的预倾角。
具体地,向像素电极施加第一电压且向公共电极施加第二电压,对应像素电极的中间区域设置的液晶在第一分支电极施加的第一电压和公共电极施加的第二电压形成的电场作用下形成第一预倾角,且对应像素电极的外围区域设置的液晶在第二分支电极施加的第一电压和公共电极施加的第二电压形成的电场作用下形成第二预倾角,第一预倾角大于第二预倾角。
由于第一分支电极宽度大,第一分支电极和公共电极之间的电场作用力大于第二分支电极和公共电极之间的作用力,使得对应像素电极的中间区域设置的液晶在电场作用下形成的第一预倾角大于对应像素电极的外围区域设置的液晶在电场作用下形成的第二预倾角。
S102:固定中间区域的液晶产生的预倾角以及外围区域的液晶产生的预倾角。
具体地,通过紫外光从彩膜基板侧入射,使对应像素电极的中间区域设置的液晶形成于阵列基板的配向层上且具有第一预倾角,使对应像素电极的外围区域设置的液晶形成于阵列基板的配向层上且具有第二预倾角,具体的配向工艺采用常用工艺,此处不作详述。
在本实施例中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于0且小于1。
在本实施例中,液晶显示面板还包括遮光电极,遮光电极与像素电极位于同一平面,遮光电极具有靠近像素电极且相对像素电极内陷的内陷边缘。
在本实施例中,像素电极具有靠近遮光电极且与内陷边缘相配合的外凸边缘。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种液晶显示面板,其中,所述液晶显示面板包括像素电极以及液晶,
    所述像素电极具有中间区域以及位于所述中间区域外围的外围区域,对应所述中间区域设置的液晶具有第一预倾角,对应所述外围区域设置的液晶具有第二预倾角,所述第一预倾角大于所述第二预倾斜角。
  2. 根据权利要求1所述的液晶显示面板,其中,所述像素电极的中间区域设置有多个第一分支电极,所述像素电极的外围区域设置有多个第二分支电极,所述第一分支电极的宽度大于所述第二分支电极的宽度。
  3. 根据权利要求2所述的液晶显示面板,其中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于0且小于1。
  4. 根据权利要求2所述的液晶显示面板,其中,所述像素电极包括垂直电极以及与所述垂直电极相垂直的水平电极,每个所述第一分支电极由所述水平电极或/和所述垂直电极延伸出。
  5. 根据权利要求2所述的液晶显示面板,其中,多个所述第一分支电极包括第一组第一分支电极以及第二组第一分支电极,所述第一组第一分支电极中的所述第一分支电极由所述像素电极的中心向外延伸,所述第二组第一分支电极中的所述第一分支电极由所述第一组第一分支电极中的所述第一分支电极上延伸出。
  6. 根据权利要求5所述的液晶显示面板,其中,所述第一组第一分支电极包括由所述像素电极的中心向外延伸出的四个第一分支电极,所述第一组第一分支电极中任意两个相邻的所述第一分支电极之间的夹角等于90度。
  7. 根据权利要求2所述的液晶显示面板,其中,所述像素电极的中间区域和外围区域分为多个畴,位于同一畴中的每个所述第一分支电极至少延伸出一个所述第二分支电极,从所述第一分支电极延伸出的所述第二分支电极与对应的所述第一分支电极平行。
  8. 根据权利要求1所述的液晶显示面板,其中,所述液晶显示面板还包括遮光电极,所述遮光电极与所述像素电极位于同一平面且位于所述像素电极的相对两侧,所述遮光电极具有靠近所述像素电极且相对所述像素电极内陷的内陷边缘。
  9. 根据权利要求8所述的液晶显示面板,其中,所述像素电极具有靠近所述遮光电极且与所述内陷边缘相配合的外凸边缘。
  10. 根据权利要求8所述的液晶显示面板,其中,所述液晶显示面板还包括数据线,所述数据线位于所述遮光电极一侧,所述数据线对应所述遮光电极设置,且所述数据线在所述液晶显示面板上的正投影位于所述遮光电极在所述液晶显示面板的正投影内。
  11. 根据权利要求8所述的液晶显示面板,其中,所述内陷边缘包括第一倾斜直线段、第二倾斜直线段以及连接所述第一倾斜直线段和所述第二倾斜直线段的第一圆弧段,所述第一倾斜直线段、所述第二倾斜直线段分别对应所述像素电极的两端,且所述第一圆弧段对应像素电极的中间区域。
  12. 根据权利要求11所述的液晶显示面板,其中,所述第一倾斜直线段以及所述第二倾斜直线段与水平线之间的夹角大于或等于45度且小于90度。
  13. 一种液晶显示面板的制造方法,其中,所述液晶显示面板包括像素电极以及液晶,所述像素电极具有中间区域以及位于所述中间区域外围的外围区域,所述制造方法包括如下步骤:
    向所述中间区域的液晶施加的电场作用力大于向所述外围区域的液晶施加的电场作用力,使得所述中间区域的液晶产生的预倾角大于所述外围区域的液晶产生的预倾角;
    固定所述中间区域的液晶产生的预倾角以及所述外围区域的液晶产生的预倾角。
  14. 根据权利要求13所述液晶显示面板的制造方法,其中,所述像素电极的中间区域设置有多个第一分支电极,所述像素电极的外围区域设置有多个第二分支电极,所述第一分支电极的宽度大于所述第二分支电极的宽度。
  15. 根据权利要求14所述液晶显示面板的制造方法,其中,多个第一分支电极的面积之和与多个所述第二分支电极的面积之和的比值大于0且小于1。
  16. 根据权利要求14所述液晶显示面板的制造方法,其中,所述像素电极包括垂直电极以及与所述垂直电极相垂直的水平电极,每个所述第一分支电极由所述水平电极或/和所述垂直电极延伸出。
  17. 根据权利要求14所述液晶显示面板的制造方法,其中,多个所述第一分支电极包括第一组第一分支电极,所述第一组第一分支电极包括由所述像素电极的中心向外延伸出的四个第一分支电极,所述第一组第一分支电极中任意两个相邻的所述第一分支电极之间的夹角等于90度。
  18. 根据权利要求13所述液晶显示面板的制造方法,其中,所述液晶显示面板还包括遮光电极,所述遮光电极与所述像素电极位于同一平面且位于所述像素电极的相对两侧,所述遮光电极具有靠近所述像素电极且相对所述像素电极内陷的内陷边缘。
  19. 根据权利要求18所述液晶显示面板的制造方法,其中,所述像素电极具有靠近所述遮光电极且与所述内陷边缘相配合的外凸边缘。
  20. 根据权利要求18所述液晶显示面板的制造方法,其中,所述内陷边缘包括第一倾斜直线段、第二倾斜直线段以及连接所述第一倾斜直线段和所述第二倾斜直线段的第一圆弧段,所述第一倾斜直线段、所述第二倾斜直线段分别对应所述像素电极的两端,且所述第一圆弧段对应像素电极的中间区域。
PCT/CN2020/101328 2020-03-31 2020-07-10 液晶显示面板及其制造方法 WO2021196442A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/970,956 US11275279B2 (en) 2020-03-31 2020-07-10 Liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010245623.0 2020-03-31
CN202010245623.0A CN111290176B (zh) 2020-03-31 2020-03-31 液晶显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021196442A1 true WO2021196442A1 (zh) 2021-10-07

Family

ID=71027306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101328 WO2021196442A1 (zh) 2020-03-31 2020-07-10 液晶显示面板及其制造方法

Country Status (2)

Country Link
CN (1) CN111290176B (zh)
WO (1) WO2021196442A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290176B (zh) * 2020-03-31 2022-07-12 Tcl华星光电技术有限公司 液晶显示面板及其制造方法
CN112612162B (zh) * 2021-01-05 2022-02-22 Tcl华星光电技术有限公司 像素电极及其驱动方法、液晶显示面板
CN113671757B (zh) * 2021-08-31 2024-02-02 深圳市华星光电半导体显示技术有限公司 液晶显示面板及其制作方法
CN114373432B (zh) * 2021-12-30 2023-10-24 长沙惠科光电有限公司 侧入式液晶显示面板及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010063290A (ko) * 1999-12-22 2001-07-09 박종섭 다중 도메인을 갖는 수직 배향 모드의 액정 표시 장치 및그 제조방법
CN103226271A (zh) * 2012-01-26 2013-07-31 三星显示有限公司 液晶显示器
CN104808402A (zh) * 2015-04-27 2015-07-29 深圳市华星光电技术有限公司 液晶面板及显示装置
US20160377929A1 (en) * 2015-06-26 2016-12-29 Samsung Display Co. Ltd. Array substrate and display device including the same
CN107490912A (zh) * 2017-09-06 2017-12-19 深圳市华星光电技术有限公司 一种阵列基板、显示面板及显示装置
CN109031822A (zh) * 2018-07-25 2018-12-18 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板
CN111290176A (zh) * 2020-03-31 2020-06-16 Tcl华星光电技术有限公司 液晶显示面板及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315801A (ja) * 2002-04-26 2003-11-06 Toshiba Corp 液晶表示装置
KR101475299B1 (ko) * 2008-08-20 2014-12-23 삼성디스플레이 주식회사 액정 표시 장치 및 그의 제조 방법
BRPI0920697A2 (pt) * 2008-10-14 2019-09-24 Sharp Kk dispositivo de exibição de cristal líquido
JP5348473B2 (ja) * 2009-01-20 2013-11-20 ソニー株式会社 液晶表示装置および電子機器
CN102193256B (zh) * 2011-06-03 2013-11-27 深圳市华星光电技术有限公司 像素电极和液晶显示阵列基板
CN105182632B (zh) * 2015-08-03 2018-03-06 深圳市华星光电技术有限公司 像素电极及液晶显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010063290A (ko) * 1999-12-22 2001-07-09 박종섭 다중 도메인을 갖는 수직 배향 모드의 액정 표시 장치 및그 제조방법
CN103226271A (zh) * 2012-01-26 2013-07-31 三星显示有限公司 液晶显示器
CN104808402A (zh) * 2015-04-27 2015-07-29 深圳市华星光电技术有限公司 液晶面板及显示装置
US20160377929A1 (en) * 2015-06-26 2016-12-29 Samsung Display Co. Ltd. Array substrate and display device including the same
CN107490912A (zh) * 2017-09-06 2017-12-19 深圳市华星光电技术有限公司 一种阵列基板、显示面板及显示装置
CN109031822A (zh) * 2018-07-25 2018-12-18 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板
CN111290176A (zh) * 2020-03-31 2020-06-16 Tcl华星光电技术有限公司 液晶显示面板及其制造方法

Also Published As

Publication number Publication date
CN111290176B (zh) 2022-07-12
CN111290176A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021196442A1 (zh) 液晶显示面板及其制造方法
US9507208B2 (en) Liquid crystal display and method of manufacturing liquid crystal display
CN103353693B (zh) 液晶显示装置及其制造方法
KR102260872B1 (ko) 액정 표시 장치
KR102249284B1 (ko) 액정 표시 장치
JP5393992B2 (ja) 液晶表示装置用カラーフィルタ基板及びその製造方法
KR20020040544A (ko) 공통 전극 기판 및 그것을 구비한 액정 표시 장치
WO2021031559A1 (zh) 液晶显示面板及其制备方法
JP2004198920A (ja) 液晶表示装置および電子機器
US9684199B2 (en) Liquid crystal display substrate and device
JP2007025661A (ja) マルチドメイン垂直配向型液晶表示装置
CN101276116B (zh) 液晶显示装置
TW201400950A (zh) 液晶顯示裝置
JP3912320B2 (ja) 液晶表示装置及び電子機器
US10444568B2 (en) Pixel structure of liquid crystal display panel and display device using same
JP2008216690A (ja) 液晶表示装置
US20110043438A1 (en) Liquid crystal display device
CN108181768B (zh) Coa型阵列基板
US11275279B2 (en) Liquid crystal display panel and manufacturing method thereof
US20160195776A1 (en) Liquid crystal display device
JP2008292626A (ja) 液晶表示装置用カラーフィルタの製造方法、及び液晶表示装置用カラーフィルタ
JP4245473B2 (ja) 液晶表示装置
KR102133871B1 (ko) 액정 패널 및 액정 장치
JP6086403B2 (ja) 横電界方式の液晶表示装置及びその製造方法
JP2004206080A (ja) 液晶表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929240

Country of ref document: EP

Kind code of ref document: A1