WO2021196364A1 - 一种无镍lpg船用钢板及其制造方法 - Google Patents

一种无镍lpg船用钢板及其制造方法 Download PDF

Info

Publication number
WO2021196364A1
WO2021196364A1 PCT/CN2020/091126 CN2020091126W WO2021196364A1 WO 2021196364 A1 WO2021196364 A1 WO 2021196364A1 CN 2020091126 W CN2020091126 W CN 2020091126W WO 2021196364 A1 WO2021196364 A1 WO 2021196364A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
nickel
manufacturing
rolling
marine steel
Prior art date
Application number
PCT/CN2020/091126
Other languages
English (en)
French (fr)
Inventor
陈颜堂
李东晖
段东明
尹雨群
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020227034097A priority Critical patent/KR20230010185A/ko
Priority to US17/914,350 priority patent/US20230103684A1/en
Publication of WO2021196364A1 publication Critical patent/WO2021196364A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of high-strength structural steel, and specifically relates to a nickel-free LPG marine steel plate and a manufacturing method thereof.
  • LPG liquefied petroleum gas
  • Traditional storage tank steel for low-temperature energy is usually constructed of 9Ni series steel. Since the alloy element Ni is a scarce resource, the production cost is high.
  • the existing low-temperature steels that do not contain Ni also have different defects.
  • the invention with the application number CN89104759.X discloses an "iron-manganese-aluminum-carbon austenitic non-magnetic steel and low-temperature steel".
  • the steel involved in the technology has an Al content as high as 2.3% to 3.2%, which is easy to oxidize to produce Al 2 O 3 molten steel with high viscosity and poor fluidity, which increases the difficulty of production. It is difficult to guarantee the quality of the cast slab and the surface quality of the steel plate, and the yield rate is low.
  • the invention with application number 201710865933.0 discloses "high manganese steel sheet for ultra-low temperature environment and its production method".
  • the disadvantage of this technology is that 0.2% to 1.2% of Cu is added to the steel, but no alloying element that inhibits Cu thermal cracking is added. Ni, thus forming Cu thermal cracks in the mass production process, reducing the yield rate and increasing production costs.
  • the invention with the application number 201710971086.6 discloses "a low yield ratio, high toughness, high manganese steel plate and its production method".
  • the steel involved in this technology is added with 3.0% to 4.0% Cr, and Cr is a carbide easily forming element If the addition amount is high, multiple types of carbides are easily formed during the production process, and they are located at the grain boundary, which deteriorates the performance of intermediate products and finished products, especially sharply reducing low-temperature toughness.
  • the present invention provides a nickel-free LPG marine steel plate, which has good low-temperature mechanical properties and can replace 5Ni and 9Ni steels for low-cost construction of LPG storage tanks and related Structure.
  • Another object of the present invention is to provide a method for manufacturing the above-mentioned nickel-free LPG marine steel plate, which is suitable for large-scale industrial production.
  • the nickel-free LPG marine steel plate of the present invention is composed of the following mass percentages of chemical components: C: 0.18 ⁇ 0.24%, Si: 0.10 ⁇ 0.19%, Mn: 16.1 ⁇ 18.9%, P: ⁇ 0.012% , Mo: 0.15 to 0.35%, RE: 0.10 to 0.25%, the balance Fe and unavoidable impurities.
  • the metallographic structure of the steel sheet is a single-phase austenite structure.
  • C (carbon) Adding an appropriate amount of alloying element C solid-dissolved in Fe can increase the strength of steel, so that the yield strength of the present invention is ⁇ 410MPa, the C content is less than 0.18%, the strengthening effect is insufficient, and the yield strength is difficult to reach the expected, C content Above 0.24%, more carbides are easily formed on the grain boundary, which deteriorates the performance of the steel, especially the low temperature toughness, which leads to an increase in the brittle transition temperature and embrittlement, so the C content is set to 0.18 ⁇ 0.24 wt.%.
  • Mn (manganese) The alloying element Mn in steel expands the austenite region, and even stabilizes the austenite structure to -150°C without phase transformation, because there are more austenites with a face-centered cubic structure than a body-centered cubic structure Ferrite has good fracture toughness. If the content of Mn added in the steel is less than 16.1%, it is not enough to form a single-phase austenite structure, and phase transformation will occur, resulting in volume changes. It is not suitable for manufacturing ultra-low temperature steel structural parts. ; If the Mn content is higher than 18.9%, it is easy to produce more carbides (Fe, Mn) 3 C, oxide MnO, etc. in the grain boundaries, reducing the low-temperature toughness of the steel, so the Mn content is set to 16.1 ⁇ 18.9wt. %, and is preferably 17.1 to 18.9 wt.%.
  • P P is a harmful element in high-strength structural steel, and it is easy to form Fe+Fe 3 P, Fe+Fe 3 C+Fe 3 P eutectic products, which sharply reduce the toughness of steel, and limit P to P ⁇ 0.012wt .%, the harmful effect of P will be significantly reduced.
  • Si Si (Silicon): In this application, Si is mainly added for the purpose of deoxidation, and the content should not be too high. If it is higher than 0.19%, it will obviously promote the segregation of P and C, and the amount of grain boundary carbides will increase, Fe+Fe 3 P, Fe+Fe 3 C The amount of +Fe 3 P eutectic increases, and the crack tendency increases. However, a certain content of Si can increase the yield strength of steel, so the content of Si in the steel is set in the range of 0.10 to 0.19 wt.%.
  • Mo mobdenum
  • Adding an appropriate amount of Mo can improve the growth of austenite dendrites, inhibit carbide precipitation and the formation of pearlite, reduce network carbides, and obtain good mechanical properties. If the Mo content is less than 0.15%, the effect of suppressing the network carbide is not significant; Mo is an expensive alloying element, and the content of more than 0.35% increases the production cost. Therefore, the alloying element Mo content in the application of the present invention is set to 0.15 to 0.35 wt.%, and preferably 0.25 to 0.35 wt.%.
  • Rare earth element (RE) Adding an appropriate amount of rare earth element RE in the present invention can significantly improve the fluidity of steel, refine the as-cast structure and grains, reduce the number of grain boundary carbides, and promote the formation of intragranular carbides. Improve the performance of the production process, but excessive addition of RE causes the low temperature toughness to decrease, so the RE is set in the range of 0.10 to 0.25 wt.%.
  • the technical solution adopted by the manufacturing method provided by the present invention includes electric furnace smelting, VD furnace refining, die casting, rolling, post-rolling cooling and tempering;
  • the rolling process is to roll the 160mm ⁇ 1000mm ⁇ 2200mm die-cast slab after soaking out of the furnace, the opening temperature is ⁇ 1100°C, and the final rolling temperature is ⁇ 980°C;
  • the steel plate In the cooling process after rolling, the steel plate is quickly cooled to room temperature by watering;
  • the steel plate is tempered at 280-320°C for a holding time of 80-120min.
  • an alloy including CaO, scrap steel, MnFe, SiFe, and MoFe is charged and melted, FeO is added to remove P, and the alloy element content is adjusted to a target value.
  • the vacuum removal includes O, N, and H gas elements.
  • the rare earth wire is fed during pouring, and the rare earth element content reaches the target value.
  • the chemical composition of the steel plate does not contain Ni element, and the composition design is simple, and the production cost is significantly reduced.
  • the rolling temperature ensures that the finished product can be rolled in the high temperature range with good plasticity, and quickly cooled to room temperature to obtain a single-phase austenite structure, and then tempered at 280-320°C to eliminate residual stress.
  • the finally obtained steel plate has a yield strength ⁇ 410MPa, -150°CKV 2 ⁇ 66J, has excellent comprehensive mechanical properties, and also has excellent processing performance and welding performance, and the quality and comprehensive mechanical properties of the welded joint are good. It can effectively guarantee the safety of the constructed steel structures in the ultra-low temperature environment.
  • the manufacturing method is directly molded into a fixed-length slab after being smelted in an electric furnace, and rolling is continuously completed at one time without intermediate temperature waiting.
  • the production efficiency is high, the yield rate is high, and the economic benefit is good, and it is suitable for large-scale industrial production.
  • Example 1 Example 2, Example 3, Example 4, and Example 5.
  • Example 2 Comparative Example 2 and Comparative Example 3 that is, 8 batches of steel plates were smelted and rolled.
  • the mass percentage content of the chemical components of Comparative Example 1 is not within the scope of the present invention, and the process parameters of the preparation process are within the scope of the present invention, and the mass percentage content of the chemical components of Comparative Example 2 is within the scope of the present invention.
  • the process parameters of the preparation process are not within the scope of the present invention, and the mass percentage content of the chemical components of Comparative Example 3 and the process parameters of the preparation process are not within the scope of the present invention.
  • the chemical element composition weight percentages of the five examples and three comparative examples are shown in Table 1, where the balance is Fe and unavoidable impurities.
  • Table 2 The performance of steel plate in the embodiment of the present invention and the comparative example production process control
  • the yield strength of the steel plate prepared in Example 5 of the present invention is 442MPa
  • the impact energy of -150°C reaches 188J
  • the comprehensive mechanical properties are excellent.
  • the manufacture of ultra-low temperature structural parts can effectively avoid brittleness and safe operation, which is the best embodiment.

Abstract

一种无镍LPG船用钢板及其制造方法,属于高强度结构钢技术领域,该钢板由如下质量百分比的化学成分组成C:0.18~0.24%、Si:0.10~0.19%、Mn:16.1~18.9%、P:≤0.012%、Mo:0.15~0.35%、RE:0.10~0.25%,余量的Fe和不可避免的杂质。其屈服强度≥410MPa,-150℃冲击吸收功≥66J,具有较好的低温力学性能,能够替代5Ni、9Ni系钢,用于低成本的建造LPG储罐及相关结构件。

Description

一种无镍LPG船用钢板及其制造方法 技术领域
本发明属于高强度结构钢技术领域,具体涉及一种无镍LPG船用钢板及其制造方法。
背景技术
随着海洋能源开采技术日渐成熟,液化石油气(LPG)的使用量越来越大,使用范围越来越广,储存、运输这些液态能源需要低温力学性能尤其是低温韧性优良的钢材建造储罐,保障储罐不会在低温使用环境下发生脆裂,安全运行。传统的低温能源用储罐钢通常采用9Ni系钢材建造,由于合金元素Ni属稀缺资源,因而生产成本高。
而现有的不含Ni的低温钢也存在着不同的缺陷,例如:申请号为CN89104759.X的发明公开了一种“铁-锰-铝-碳奥氏体无磁钢与低温钢”,该技术所涉及钢种中Al含量高达2.3~3.2%,易氧化生成Al 2O 3钢水粘度大,流动性差,增加了生产难度,铸坯质量和钢板表面质量均难于保证,成材率低。
申请号为201710865933.0的发明公开了“超低温环境用高锰钢板及其生产方法”,该技术的不足之处在于钢中添加了0.2~1.2%的Cu,而没有添加抑制Cu致热裂的合金元素Ni,因而在批量生产过程中形成Cu致热裂纹,降低了成材率,增加了生产成本。
申请号为201710971086.6的发明公开了“一种低屈强比高韧性高锰钢板及其生产方法”,该技术所涉及的钢中添加了3.0~4.0%的Cr,而Cr属碳化物易形成元素,若加入量高则生产过程中易形成多类型碳化物,且处于晶界部位,恶化中间产品及成品性能,尤其急剧降低低温韧性。
因此,发明一种低成本且低温力学性能尤其是低温韧性优良的LPG船用钢板,很有必要。
发明内容
发明目的:为了克服现有技术的缺陷,本发明提供一种无镍LPG船用钢板,该钢板具有较好的低温力学性能,能够替代5Ni、9Ni系钢用于低成本的建造LPG储罐及相关结构件。
本发明的另一目的是提供一种上述无镍LPG船用钢板的制造方法,该方法适用于规模化工业生产。
技术方案:本发明所述的一种无镍LPG船用钢板,由如下质量百分比的化学成分组成C:0.18~0.24%、Si:0.10~0.19%、Mn:16.1~18.9%、P:≤0.012%、Mo:0.15~0.35%、RE:0.10~0.25%,余量的Fe和不可避免的杂质。
该钢板的金相组织为单相奥氏体组织。
具体的,该钢板主要控制的合金元素原理说明如下:
C(碳):添加适量的合金元素C固溶于Fe中可提高钢的强度,使本发明的屈服强度≥410MPa,C含量低于0.18%,强化效果不足,屈服强度难于达到预期,C含量高于0.24%,则易在晶界上生成较多的碳化物,恶化钢的性能,尤其是低温韧性,导致脆性转变温度升高,发生脆裂,故将C的含量设定为0.18~0.24wt.%。
Mn(锰):钢中合金元素Mn扩大奥氏体区域,甚至可使奥氏体组织稳定到-150℃而不发生相变,因具有面心立方结构的奥氏体多于体心立方结构的铁素体而具有良好的断裂韧性,钢中添加Mn含量若低于16.1%,则不足于形成单相奥氏体组织,会发生相变,导致体积变化,不宜用于制造超低温钢结构件;若Mn含量高于18.9%,易在晶界生产较多碳化物(Fe、Mn) 3C、氧化物MnO等,降低钢的低温韧性,故将Mn的含量设定为16.1~18.9wt.%,并在17.1~18.9wt.%进行优选。
P(磷):高强度结构钢中P属有害元素,易形成Fe+Fe 3P、Fe+Fe 3C+Fe 3P共晶产物,急剧降低钢的韧性,将P限定在P≤0.012wt.%,P的有害效果会显著降低。
Si(硅):本申请中Si主要以脱氧的目的加入,含量不宜过高,高于0.19%则明显促使P、C偏析,晶界碳化物量增多,Fe+Fe 3P、Fe+Fe 3C+Fe 3P共晶量增加,裂纹倾向增加。但一定含量的Si可提高钢的屈服强度,故将钢中的Si含量设定在0.10~0.19wt.%范围。
Mo(钼):添加适量的Mo可改善奥氏体树枝晶生长,抑制碳化物析出和珠光体的形成,减少网状碳化物,获得良好的力学性能。Mo含量若低于0.15%则抑制网状碳化物的效果不显著;Mo属昂贵合金元素,含量高于0.35%则增加了生产成本。故将本发明申请的合金元素Mo含量范围设定为0.15~0.35wt.%,并 在0.25~0.35wt.%进行优选。
稀土元素(RE):本发明中添加适量的稀土元素RE,一方面可显著改善钢的流动性,细化铸态组织和晶粒,降低晶界碳化物数量,促使晶内碳化物的形成,改善生产工艺性能,但过多的添加RE导致低温韧性降低,故将RE设定在0.10~0.25wt.%范围。
对应于上述无镍LPG船用钢板,本发明提供的制造方法所采用的技术方案,工序包括电炉冶炼、VD炉精炼、模铸、轧制、轧后冷却以及回火;
其中,轧制工序是将160mm×1000mm×2200mm模铸板坯均热出炉后立即轧制,开轧温度≥1100℃,终轧温度≥980℃;
轧后冷却工序中,通过浇水将钢板迅速冷却至室温;
回火工序中,将钢板在280-320℃回火,保温时间80-120min。
具体的,在电炉冶炼工序中,装入包括CaO、废钢、MnFe、SiFe、MoFe合金通电熔化,加FeO脱P,并将合金元素含量调整至目标值。
在VD炉精炼工序中,真空脱除包括O、N、H气体元素。
在模铸工序中,浇筑时喂入稀土丝,并使稀土元素含量达到目标值。
有益效果:与现有技术相比,该钢板的化学成分不含有Ni元素,且成分设计简单,生产成本显著降低。制造时,轧制温度确保能够在高温塑性良好温度范围完成成品轧制,并快冷至室温,获得单相奥氏体组织,然后采用280~320℃回火以消除残余应力。最终得到的钢板屈服强度≥410MPa、-150℃KV 2≥66J,具有优异的综合力学性能,并且也兼具优良的加工性能和焊接性能,焊接接头的质量和综合力学性能都较好。能够有效保障建造的超低温环境钢结构件的使用安全性。此外,其制造方法在上电炉冶炼后直接模铸成定尺板坯,一次连续完成轧制,无需中间待温,生产效率高,成材率高,经济效益良好,适于规模的工业化生产。
具体实施方式
下面,结合实施例对本发明作进一步的详细说明。
按照本发明化学元素成分、质量百分比及生产方法要求,设置了五个实施例,分别为实施例1、实施例2、实施例3、实施例4、实施例5。为验证各化学组分和质量百分比含量以及轧制过程中的铸坯加热温度、精轧终轧温度、精轧后的回火温度对性能参数的影响,制备了三个对比例,即对比例1、对比例2和对比例 3,即冶炼并轧制了8批钢板。
其中,对比例1的化学组分质量百分比含量不在本发明的范围内,而制备过程的工艺参数在本发明的范围内,对比例2的化学组分质量百分比含量在本发明的范围内,而制备过程的工艺参数不在本发明的范围内,对比例3的化学组分质量百分比含量及制备过程的工艺参数均不在本发明的范围内。五个实施例及三个对比例的化学元素成分重量百分比见表1,其中余量为Fe和不可避免的杂质。
表1本发明实施例及对比例的化学成分对比(wt.%)
Figure PCTCN2020091126-appb-000001
生产过程控制参数与钢板质量情况见表2。
表2本发明实施例及对比例生产过程控制对钢板性能情况表
Figure PCTCN2020091126-appb-000002
从表1和表2可看出,本发明实施例1-5的化学成分及质量百分比、及生产工艺过程控制的轧制温度所生产的钢板屈服强度均高于410MPa,而对比例1、对比例2和对比例3的钢成分范围或/和生产工艺不在本发明范围内所生产的对 比钢板屈服强度低于316MPa。
其中,本发明实施例5所制备的钢板的屈服强度为442MPa,-150℃冲击功达到188J,综合力学性能优良,制造超低温结构件可有效避免脆裂,安全运行,为最佳实施例。

Claims (8)

  1. 一种无镍LPG船用钢板,其特征在于,由如下质量百分比的化学成分组成C:0.18~0.24%、Si:0.10~0.19%、Mn:16.1~18.9%、P:≤0.012%、Mo:0.15~0.35%、RE:0.10~0.25%,余量的Fe和不可避免的杂质。
  2. 根据权利要求1所述的无镍LPG船用钢板,其特征在于,金相组织为单相奥氏体组织。
  3. 根据权利要求1所述的无镍LPG船用钢板,其特征在于,化学成分的质量百分比组成中Mn为17.1~18.9%。
  4. 根据权利要求1所述的无镍LPG船用钢板,其特征在于,化学成分的质量百分比组成中Mo为0.25~0.35%。
  5. 一种根据权利要求1-4任一项所述的无镍LPG船用钢板的制造方法,其特征在于,工序包括电炉冶炼、VD炉精炼、模铸、轧制、轧后冷却以及回火;
    其中,轧制工序是将160mm×1000mm×2200mm模铸板坯均热出炉后立即轧制,开轧温度≥1100℃,终轧温度≥980℃;
    轧后冷却工序中,通过浇水将钢板迅速冷却至室温;
    回火工序中,将钢板在280-320℃回火,保温时间80-120min。
  6. 根据权利要求5所述的制造方法,其特征在于,在电炉冶炼工序中,装入包括CaO、废钢、MnFe、SiFe、MoFe合金通电熔化,加FeO脱P,并将合金元素含量调整至目标值。
  7. 根据权利要求5所述的制造方法,其特征在于,在VD炉精炼工序中,真空脱除包括O、N、H气体元素。
  8. 根据权利要求5所述的制造方法,其特征在于,在模铸工序中,浇筑时喂入稀土丝,并使稀土元素含量达到目标值。
PCT/CN2020/091126 2020-03-30 2020-05-20 一种无镍lpg船用钢板及其制造方法 WO2021196364A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227034097A KR20230010185A (ko) 2020-03-30 2020-05-20 무니켈 lpg 선박용 강판 및 이의 제조방법
US17/914,350 US20230103684A1 (en) 2020-03-30 2020-05-20 Nickel-free lpg marine steel plate and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010240012.7 2020-03-30
CN202010240012.7A CN111363970B (zh) 2020-03-30 2020-03-30 一种无镍lpg船用钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021196364A1 true WO2021196364A1 (zh) 2021-10-07

Family

ID=71204952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091126 WO2021196364A1 (zh) 2020-03-30 2020-05-20 一种无镍lpg船用钢板及其制造方法

Country Status (4)

Country Link
US (1) US20230103684A1 (zh)
KR (1) KR20230010185A (zh)
CN (1) CN111363970B (zh)
WO (1) WO2021196364A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623259A (en) * 1979-08-03 1981-03-05 Sumitomo Metal Ind Ltd Nickel-free high manganese cast steel for low temperature use
CN104220617A (zh) * 2011-12-27 2014-12-17 Posco公司 具有优异的机械加工性并且在焊接热影响区域具有低温韧性的奥氏体钢,及其制造方法
CN105026597A (zh) * 2013-03-15 2015-11-04 埃克森美孚研究工程公司 耐磨增强的钢及其制备方法
JP2016196703A (ja) * 2015-04-02 2016-11-24 新日鐵住金株式会社 極低温用高Mn鋼材
JP2017008371A (ja) * 2015-06-23 2017-01-12 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手
CN109694987A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN110724872A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109800B (zh) * 2014-07-03 2016-06-29 武汉钢铁(集团)公司 高强度含钒高锰无磁钢及其生产方法
CN104561770B (zh) * 2014-12-23 2016-06-29 福建工程学院 钼合金化的高强度高塑性高碳twip钢及其制备方法
CN107190201B (zh) * 2017-07-17 2019-03-26 武汉钢铁有限公司 液化石油气运输船用钢及制造方法
CN107760997A (zh) * 2017-09-25 2018-03-06 武汉钢铁有限公司 双重诱导塑性高强钢及其制造方法
CN107747062A (zh) * 2017-10-13 2018-03-02 舞阳钢铁有限责任公司 一种不含镍的超低温船用储罐用钢板及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623259A (en) * 1979-08-03 1981-03-05 Sumitomo Metal Ind Ltd Nickel-free high manganese cast steel for low temperature use
CN104220617A (zh) * 2011-12-27 2014-12-17 Posco公司 具有优异的机械加工性并且在焊接热影响区域具有低温韧性的奥氏体钢,及其制造方法
CN105026597A (zh) * 2013-03-15 2015-11-04 埃克森美孚研究工程公司 耐磨增强的钢及其制备方法
JP2016196703A (ja) * 2015-04-02 2016-11-24 新日鐵住金株式会社 極低温用高Mn鋼材
JP2017008371A (ja) * 2015-06-23 2017-01-12 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手
CN109694987A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 一种超低温压力容器用高镍钢及其制造方法
CN110724872A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法

Also Published As

Publication number Publication date
CN111363970B (zh) 2022-03-22
KR20230010185A (ko) 2023-01-18
US20230103684A1 (en) 2023-04-06
CN111363970A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN109136653B (zh) 用于核电设备的镍基合金及其热轧板的制造方法
CN111500917A (zh) 一种高强韧性中熵高温合金及其制备方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN110230009B (zh) 一种具有良好切削性能的热作模具钢及其制备方法
CN103526111A (zh) 屈服强度900MPa级热轧板带钢及其制备方法
CN106756536A (zh) 一种耐氢腐蚀正火型移动罐车用低合金钢及其制备方法
GB2592527A (en) Austenite low temperature steel and preparation method therefor
CN112222572A (zh) 气体保护焊焊丝钢及其生产方法
KR20230037040A (ko) 우량한 코어부 인성을 구비한 고강도 용기용 후판(厚板) 및 제조방법
CN103160746A (zh) 一种高强度厚壁输水管用钢及其制造方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN113106350A (zh) 一种热轧含钛高强钢及其温度参数联动控扎方法
CN110106445B (zh) 一种用于海洋平台铸造节点高强度高低温韧性用钢及其制备方法
CN115386805A (zh) 一种低屈强比高韧性桥梁耐候钢及其制造方法
CN113737090B (zh) 一种高强韧合金结构钢及其制备方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN111534746B (zh) 宽幅450MPa级热轧集装箱用耐候钢及其制造方法
CN116200682B (zh) 一种高强度高韧性低温海工钢板及其制造方法
CN114657441A (zh) 一种低密度高强高韧热轧钢板的制造方法
WO2021196364A1 (zh) 一种无镍lpg船用钢板及其制造方法
CN104862572A (zh) 一种高强度高延伸率的高合金钢及其制造方法
CN115786806B (zh) 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN113122774B (zh) 一种含钛低锰高强钢及其基于温度和保温时间的控扎方法
CN112159933B (zh) 一种超高强度耐蚀钢筋及其制造方法
CN114892073B (zh) 一种适用于冷旋压加工的钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928848

Country of ref document: EP

Kind code of ref document: A1