CN112222572A - 气体保护焊焊丝钢及其生产方法 - Google Patents

气体保护焊焊丝钢及其生产方法 Download PDF

Info

Publication number
CN112222572A
CN112222572A CN202011063922.9A CN202011063922A CN112222572A CN 112222572 A CN112222572 A CN 112222572A CN 202011063922 A CN202011063922 A CN 202011063922A CN 112222572 A CN112222572 A CN 112222572A
Authority
CN
China
Prior art keywords
wire
temperature
wire rod
welding wire
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011063922.9A
Other languages
English (en)
Other versions
CN112222572B (zh
Inventor
王纳
张亚运
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shagang Group Co Ltd
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Zhangjiagang Rongsheng Special Steel Co Ltd
Original Assignee
Jiangsu Shagang Group Co Ltd
Jiangsu Shagang Iron and Steel Research Institute Co Ltd
Zhangjiagang Rongsheng Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shagang Group Co Ltd, Jiangsu Shagang Iron and Steel Research Institute Co Ltd, Zhangjiagang Rongsheng Special Steel Co Ltd filed Critical Jiangsu Shagang Group Co Ltd
Priority to CN202011063922.9A priority Critical patent/CN112222572B/zh
Publication of CN112222572A publication Critical patent/CN112222572A/zh
Application granted granted Critical
Publication of CN112222572B publication Critical patent/CN112222572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明揭示了一种气体保护焊焊丝钢及其生产方法。所述气体保护焊焊丝钢的化学成分以质量百分比计包括:C:0.04~0.15%,Si:0.25~0.95%,Mn:0.80~2.50%,Ni:1.40~4.00%,Cr:0.30~3.50%,Mo:0.20~1.50%,P≤0.015%,S≤0.015%,余量为Fe及不可避免的杂质。所述生产方法包括步骤:1)按照所述化学成分进行钢水冶炼,并铸成钢坯;2)将钢坯依序经过高压水除鳞、高速线材轧机控温轧制、吐丝机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷;其中,精轧机入口温度为890~930℃,吐丝温度为840~880℃,斯太尔摩冷却线的辊道速度为0.60~1.00m/s,保温罩全部打开,开启第1~6台风机,其中第1~2台风机的风量为70000~80000m3/h,第3~6台风机的风量为30000~50000m3/h。由此,焊丝钢盘条仅需在拉拔前进行一次退火处理即可连续拉拔制成直径0.8~1.6mm的低抗拉强度气保焊丝。

Description

气体保护焊焊丝钢及其生产方法
技术领域
本发明属于焊接材料技术领域,涉及一种气体保护焊焊丝钢及其生产方法。
背景技术
工程机械行业作为我国基础工程发展的重中之重,为进一步实现装备与构 件的轻量化,抗拉强度大于800MPa的超高强钢板已逐渐成为主流,由此带动与 之配套的高强高韧焊接材料的需求强劲。由于采用的钢板厚度一般小于20mm, 故所需的气体保护焊焊丝以实芯焊丝为主。
为了保证焊接接头与母材具有同等的高强高韧性,气体保护焊焊丝中需添 加较高含量的Mn、Cr、Mo和Ni等合金元素及其它微合金元素,由此导致相应 的气体保护焊焊丝用钢盘条的抗拉强度大于1000MPa,即盘条的强度较高而相 应的塑性较差,冷拉拔时加工硬化过大,加大了后续焊丝的生产难度。
专利CN105983798A公开了一种高强焊丝制造工艺,该发明通过实验证明: 1)1000MPa级焊丝原材料不退火直接拉拔会导致半成品产生中心开裂,无法正 常生产;2)退火后拉拔的拉拔总道次偏多,且成品焊丝抗拉强度偏高,不利于 下游客户使用;3)拉拔中间进行退火的工艺最优,一方面拉拔总道次更少,另 一方面成品焊丝抗拉强度更低。
然而,即使专利CN105983798A采用最优的拉拔中间进行退火的生产方案, 也存在如下问题:即无法应用于从原始盘条直接拉拔至成品焊丝的连续拉拔生 产线。而焊丝企业为满足生产效率不断提升的需求,生产设备也逐步更新换代 至连续拉拔生产线,故拉拔中间进行退火的工艺将受到制约。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种气体保护焊焊丝钢 及其生产方法,使得焊丝钢盘条仅需在拉拔前进行一次退火处理即可连续拉拔 制成直径0.8~1.6mm的低抗拉强度气体保护焊焊丝,不需增加拉拔道次,生产 工艺简单,利于焊丝企业实现高产高效。
为实现上述发明目的,本发明一实施方式提供了一种气体保护焊焊丝钢, 其化学成分以质量百分比计包括:C:0.04~0.15%,Si:0.25~0.95%,Mn:0.80~2.50%, Ni:1.40~4.00%,Cr:0.30~3.50%,Mo:0.20~1.50%,P≤0.015%,S≤0.015%,余 量为Fe及不可避免的杂质。
优选地,Mn、Cr、Mo和Ni的质量百分比满足Ni≥0.9+0.24(Mn+Cr+Mo)。
为实现上述发明目的,本发明一实施方式提供了一种气体保护焊焊丝钢, 其化学成分以质量百分比计包括:C:0.05~0.13%,Si:0.30~0.92%,Mn:0.85~2.30%, Ni:1.47~3.80%,Cr:0.40~3.20%,Mo:0.24~1.25%,P≤0.015%,S≤0.015%,余 量为Fe及不可避免的杂质。
优选地,Mn、Cr、Mo和Ni的质量百分比满足Ni≥0.9+0.24(Mn+Cr+Mo)。
为实现上述发明目的,本发明一实施方式提供了一种气体保护焊焊丝钢, 其化学成分以质量百分比计包括:C:0.04~0.15%,Si:0.25~0.95%,Mn:0.80~2.50%, Ni:1.40~4.00%,Cr:0.30~3.50%,Mo:0.20~1.50%,P≤0.015%,S≤0.015%,以 及Nb:0.01~0.09%、V:0.01~0.09%、Ti:0.02~0.18%、B:0.0005~0.0070%四者中的 一种及以上,余量为Fe及不可避免的杂质。
优选地,Mn、Cr、Mo和Ni的质量百分比满足Ni≥0.9+0.24(Mn+Cr+Mo)。
为实现上述发明目的,本发明一实施方式提供了一种气体保护焊焊丝钢, 其化学成分以质量百分比计包括:C:0.05~0.13%,Si:0.30~0.92%,Mn:0.85~2.30%, Ni:1.47~3.80%,Cr:0.40~3.20%,Mo:0.24~1.25%,P≤0.015%,S≤0.015%,以 及Nb:0.01~0.09%、V:0.01~0.09%、Ti:0.02~0.18%、B:0.0005~0.0070%四者中的 一种及以上,余量为Fe及不可避免的杂质。
优选地,Mn、Cr、Mo和Ni的质量百分比满足Ni≥0.9+0.24(Mn+Cr+Mo)。
为实现上述发明目的,本发明一实施方式提供了一种气体保护焊焊丝钢的 生产方法,其包括步骤:
1)按照前述任一实施方式所述的化学成分进行钢水冶炼,并将钢水铸成钢 坯;
2)将步骤1)中所得钢坯依序经过高压水除鳞、高速线材轧机控温轧制、 吐丝机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷;其中,精 轧机入口温度为890~930℃,吐丝温度为840~880℃,斯太尔摩冷却线的辊道速 度为0.60~1.00m/s,保温罩全部打开,开启第1~6台风机,其中第1~2台风机的 风量为70000~80000m3/h,第3~6台风机的风量为30000~50000m3/h。
优选地,所述生产方法还包括步骤:
3)将步骤2)中所得盘条进行一次高温退火,退火温度为660~700℃,保 温时间为5~8h。
优选地,在步骤3)中,盘条在退火炉中的升温速率和降温速率均≤50℃/h。
优选地,步骤3)中,盘条进行一次高温退火后的抗拉强度≤720MPa。
优选地,所述生产方法还包括步骤:
4)将步骤3)中高温退火后的盘条进行10~16道次的不退火拉拔处理,制 得0.8~1.6mm的气体保护焊焊丝成品。
为实现上述发明目的,本发明一实施方式提供了一种气体保护焊焊丝钢的 生产方法,其包括步骤:
1)按照前述任一实施方式所述的化学成分进行钢水冶炼,并将钢水铸成钢 坯;
2)将步骤1)中所得钢坯依序经过高压水除鳞、高速线材轧机控温轧制、 吐丝机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷;其中,精 轧机入口温度为890~930℃,吐丝温度为840~880℃,盘条在斯太尔摩冷却线上 先以冷速≥15℃/s控温冷却至650℃以下,而后再以冷速5~10℃/s控温冷却至 400℃以下。
与现有技术相比,本发明的有益效果为:
(1)通过对C、Si、Mn、Ni、Cr、Mo的质量百分比进行合理设计,并结 合对P、S的管控,使得气体保护焊焊丝钢在提升焊缝金属低温韧性的同时,保 证了焊缝金属的超高强度及焊接工艺性;
(2)通过精准控制风机开启数量和风机风量,得到易于退火的贝氏体和马 氏体组织,该类组织中岛状硬相组织的尺寸更小,在基体中分布更均匀,进而 在退火时无需提高退火温度也无需长时间保温,只需要一次退火处理,即可得 到铁素体和细小的球状碳化物颗粒,从而大幅降低盘条的强度,具体可使得盘 条进行一次高温退火后的抗拉强度≤720MPa,可连续拉拔制成0.8~1.6mm的气 体保护焊焊丝成品,省去拉丝厂多次退火工艺,工艺简单且利于焊丝企业实现 高产高效。
具体实施方式
<第一实施方式>
本发明第一实施方式提供了一种气体保护焊焊丝钢,其化学成分以质量百 分比计包括:C:0.04~0.15%,Si:0.25~0.95%,Mn:0.80~2.50%,Ni:1.40~4.00%, Cr:0.30~3.50%,Mo:0.20~1.50%,P≤0.015%,S≤0.015%,余量为Fe及不可避 免的杂质。
其中,对化学成分中各个元素的具体说明如下:C含量的增加可以有效提升 焊缝金属强度,但含量过高时使焊接冷裂纹敏感性增加,可焊性变差;Si为焊 接过程中的主要脱氧元素;Mn、Cr和Mo作为焊缝金属的主要强化元素,含量 的增加可以有效提升焊缝强度、进而满足超高强钢板焊接要求,但含量过高时 使焊缝低温韧性恶化;Ni含量的增加可有效提升焊缝金属低温韧性,但含量过 高时使冶炼难度增加;P、S作为焊丝中的杂质元素,含量过高对焊缝的低温韧 性不利。
而与现有技术相比,本实施方式通过对C、Si、Mn、Ni、Cr、Mo的质量百 分比进行合理设计,并结合对P、S的管控,使得气体保护焊焊丝钢在提升焊缝 金属低温韧性的同时,保证了焊缝金属的超高强度及焊接工艺性,并且使得基 于该化学成分的气体保护焊焊丝钢盘条仅需在拉拔前进行一次退火处理即可连 续拉拔制成直径0.8~1.6mm的低抗拉强度气体保护焊焊丝,不需增加拉拔道次, 生产工艺简单,利于焊丝企业实现高产高效。
优选地,其中,Mn、Cr、Mo和Ni满足Ni≥0.9+0.24(Mn+Cr+Mo)。这样, 通过进一步对Mn、Cr、Mo和Ni的含量的精确控制,还可以实现对焊缝强度和 焊缝金属低温韧性以相互匹配状态同步提升,以进一步保证焊接接头与母材同 等的高强高韧性。
<第二实施方式>
本发明第二实施方式提供了一种气体保护焊焊丝钢,其化学成分以质量百 分比计包括:C:0.05~0.13%,Si:0.30~0.92%,Mn:0.85~2.30%,Ni:1.47~3.80%, Cr:0.40~3.20%,Mo:0.24~1.25%,P≤0.015%,S≤0.015%,余量为Fe及不可避 免的杂质。这样,相较于前述的第一实施方式,该实施方式通过对C、Si、Mn、 Ni、Cr、Mo的质量百分比的进一步优化,可以进一步提升焊缝金属低温韧性、 保证焊缝金属的超高强度及焊接工艺性。
优选地,其中,Mn、Cr、Mo和Ni满足Ni≥0.9+0.24(Mn+Cr+Mo)。这样, 通过进一步对Mn、Cr、Mo和Ni的含量的精确控制,还可以实现对焊缝强度和 焊缝金属低温韧性以相互匹配状态同步提升,以进一步保证焊接接头与母材同 等的高强高韧性。
<第三实施方式>
本发明第三实施方式提供了一种气体保护焊焊丝钢,其化学成分以质量百 分比计包括:C:0.04~0.15%,Si:0.25~0.95%,Mn:0.80~2.50%,Ni:1.40~4.00%, Cr:0.30~3.50%,Mo:0.20~1.50%,P≤0.015%,S≤0.015%,以及Nb:0.01~0.09%、 V:0.01~0.09%、Ti:0.02~0.18%、B:0.0005~0.0070%四者中的一种及以上,余量为 Fe及不可避免的杂质。
也即,第三实施方式相对于第一实施方式的区别仅在于:增加了Nb、V、 Ti、B的一种或以上,并限定了该四种元素的含量。其中,对化学成分中Nb、V、Ti、B元素的具体说明如下:Nb、V、Ti作为钢中的重要微合金元素,可细 化焊缝组织,使焊缝强度和焊缝金属低温韧性同步提升;B可抑制焊缝金属晶界 铁素体的形成,改善低温韧性。
这样,该实施方式除了具有前述第一实施方式的有益效果外,通过进一步 添加Nb、V、Ti、B四种元素的任意一种、两种、三种或者全部,从而进一步 地至少可以提升焊缝金属低温韧性,若添加Nb、V、Ti任一种或以上时还可以 进一步地使焊缝强度和焊缝金属低温韧性同步提升。
优选地,其中,Mn、Cr、Mo和Ni满足Ni≥0.9+0.24(Mn+Cr+Mo)。这样, 通过进一步对Mn、Cr、Mo和Ni的含量的精确控制,还可以实现对焊缝强度和 焊缝金属低温韧性以相互匹配状态同步提升,以进一步保证焊接接头与母材同 等的高强高韧性。
<第四实施方式>
本发明第三实施方式提供了一种气体保护焊焊丝钢,其化学成分以质量百 分比计包括:C:0.05~0.13%,Si:0.30~0.92%,Mn:0.85~2.30%,Ni:1.47~3.80%, Cr:0.40~3.20%,Mo:0.24~1.25%,P≤0.015%,S≤0.015%,以及Nb:0.01~0.09%、 V:0.01~0.09%、Ti:0.02~0.18%、B:0.0005~0.0070%四者中的一种及以上,余量为 Fe及不可避免的杂质。
也即,第四实施方式相对于第二实施方式的区别仅在于:增加了Nb、V、 Ti、B的一种或以上,并限定了该四种元素的含量。其中,对化学成分中Nb、 V、Ti、B元素的具体说明如下:Nb、V、Ti作为钢中的重要微合金元素,可细 化焊缝组织,使焊缝强度和焊缝金属低温韧性同步提升;B可抑制焊缝金属晶界 铁素体的形成,改善低温韧性。
这样,该实施方式除了具有前述第二实施方式的有益效果外,通过进一步 添加Nb、V、Ti、B四种元素的任意一种、两种、三种或者全部,从而进一步 地至少可以提升焊缝金属低温韧性,若添加Nb、V、Ti任一种或以上时还可以 进一步地使焊缝强度和焊缝金属低温韧性同步提升。
优选地,其中,Mn、Cr、Mo和Ni满足Ni≥0.9+0.24(Mn+Cr+Mo)。这样, 通过进一步对Mn、Cr、Mo和Ni的含量的精确控制,还可以实现对焊缝强度和 焊缝金属低温韧性以相互匹配状态同步提升,以进一步保证焊接接头与母材同 等的高强高韧性。
<第五实施方式>
进一步地,本发明第五实施方式还提供了一种气体保护焊焊丝钢的生产方 法,所述生产方法包括以下步骤:
1)钢水冶炼:按照前述第一实施方式至第四实施方式中所采用的任一种化 学成分,进行钢水冶炼,并将钢水铸成钢坯,可以理解的,所制得的钢坯的化 学成分相应的满足前述第一实施方式至第四实施方式中所采用的任一种;例如, 按照第一实施方式的化学成分进行钢水冶炼并铸坯,所得钢水、所得钢坯的化 学成分相应的满足第一实施方式的化学成分;
2)钢坯轧制:将步骤1)中所得钢坯依序经过高压水除鳞、高速线材轧机 控温轧制、吐丝机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷; 其中,精轧机入口温度为890~930℃,吐丝温度为840~880℃,斯太尔摩冷却线 的辊道速度为0.60~1.00m/s,保温罩全部打开,开启第1~6台风机,其中第1~2 台风机的风量为70000~80000m3/h,第3~6台风机的风量为30000~50000m3/h, 如此,相应的,也即使得盘条在斯太尔摩冷却线上先以冷速≥15℃/s控温冷却至 650℃以下,而后再以冷速5~10℃/s控温冷却至400℃以下。
如此,与现有技术相比,本实施方式通过对化学成分的优化设计,结合通 过提升轧制温度,以增大奥氏体晶粒尺寸,降低相变温度,利于贝氏体生成; 并且通过控制合理的吐丝温度,利于盘条在斯太尔摩冷却线上的温度控制;通 过精准控制风机开启数量和风机风量,实现斯太尔摩冷却线上的冷速的控制, 使盘条吐丝后先以冷速≥15℃/s快速经过铁素体温度转变区间(即800~650℃), 抑制了铁素体组织的生成,且实现了贝氏体相变温度区间(即400~550℃)的冷 速为5~10℃/s,最终得到了以易退火的贝氏体和马氏体为主的组织,相较于现 有技术的冷速≤1℃/s得到的铁素体和贝氏体组织而言,本实施方式的贝氏体和 马氏体为主的组织中,岛状硬相组织的尺寸更小,在基体中分布更均匀,进而 保证盘条仅需在拉拔前进行一次退火处理即可连续拉拔制成气体保护焊焊丝成 品,工艺简单且利于焊丝企业实现高产高效。
进一步地,所述生产方法还包括步骤:
3)盘条退火:将步骤2)中所得盘条进行一次高温退火,退火温度为 660~700℃,保温时间为5~8h。也即,前述步骤2中所得的盘条,在退火时无需 提高退火温度也无需长时间保温,只需要一次退火处理,即可得到铁素体和细 小的球状碳化物颗粒,从而大幅降低盘条的强度,具体可使得盘条进行一次高 温退火后的抗拉强度≤720MPa,进而利于实现无退火连续拉拔制备得到焊丝。
优选地,盘条在退火炉中的升温速率和降温速率均≤50℃/h,由此,可确保 盘条在退火过程中加热和冷却的均匀性,确保退火炉中不同位置盘条均达到设 定温度,达到完全退火,以便于控制盘条在退火后的强度。
进一步地,所述生产方法还包括步骤:
4)盘条拉拔:将步骤3)中高温退火后的盘条进行10~16道次的不退火拉 拔处理,制得0.8~1.6mm的气体保护焊焊丝成品。由此,因拉拔过程中不需要 进行中间退火,生产工艺简单,且成本低、效率高。
在实际生产中,根据各个生产企业所售卖的产品不同,所述生产方法中步 骤1~4可以在不同的场地(如不同的企业)予以实施,例如在A企业实施步骤 1和2,在B企业实施步骤3和4;或者,还可以在一个场地的一条连续生产线 上从冶钢开始直至制备出焊丝。当然,这仅为一种实际生产的示例,不用于限 定本发明的保护范围,实际还可以以其它模式予以实施生产。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明, 它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实 施方式或变更均应包含在本发明的保护范围之内。
<实施例及对比例>
以下通过具体序号1~13的13个实施例并结合序号14~19的6个对比例, 进一步对本发明的具体实施方式予以介绍。当然,这13个实施例仅为本实施方 式所含众多变化实施例中的一部分,而非全部。
具体地,13个实施例和6个对比例中的生产方法和所得气体保护焊焊丝具 体如下:
(1)钢水冶炼
采用转炉或电炉按照相应的化学成分设计方案进行钢水冶炼,并将钢水连 铸成方坯;其中,13个实施例和6个对比例中的钢水最终的化学成分以质量百 分比计分别如表1所示,该化学成分也就是后续所制得盘条、所制得焊丝成品 的化学成分。
[表1]
Figure BDA0002713182380000091
(2)钢坯轧制
将步骤1)中所得钢坯依序经过高压水除鳞、高速线材轧机控温轧制、吐丝 机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷。
13个实施例和6个对比例中,精轧机入口温度、吐丝温度、斯太尔摩冷却 线的辊道速度、保温罩开启情况分别按照表2所示予以控制。
[表2]
Figure BDA0002713182380000101
13个实施例和6个对比例中,第1~6台风机开闭及风量情况按照表3所示 予以控制,其它风机全部关闭。
[表3]
Figure BDA0002713182380000102
Figure BDA0002713182380000111
表3备注:“—”表示风机关闭,风量为0。
(3)盘条退火
将步骤2)中所得盘条进行一次高温退火处理,以便于后续连续拉拔。
13个实施例和6个对比例中,退火温度、保温时间、升温速率和降温速率 分别按照表4所示予以控制。
[表4]
Figure BDA0002713182380000112
(4)盘条拉拔
将步骤3)中高温退火后的盘条进行10~16道次的不退火拉拔处理,制得 0.8~1.6mm的气体保护焊焊丝成品。
其中,气体保护焊焊丝成品的化学成分参前面表1,步骤2中热轧盘条的抗 拉强度、步骤3中退火后盘条的抗拉强度、步骤4中气体保护焊焊丝成品的抗 拉强度以及气体保护焊焊丝成品的熔敷金属的力学性能见表5。
[表5]
Figure BDA0002713182380000113
Figure BDA0002713182380000121
表5备注:“——”表示盘条在未拉拔成焊丝前产生严重断丝,生产无法进 行,也即无法拉拔得到焊丝成品。
由上述实施例1~13和对比例14~19可以看出,实施例1~13采用本实施方 式所述的生产方法生产的焊丝,盘条经一次退火后抗拉强度≤720MPa,可连续 拉拔制成直径0.8~1.6mm的成品焊丝。而对比例14~19中部分元素的含量及关 键生产工艺参数不在本实施方式的范围内,盘条经一次退火后抗拉强度≥ 774MPa,在焊丝拉拔过程中还需要进行一次或多次中间退火,否则在拉拔过程 中会产生严重断丝。
由此,本发明的有益效果在于:
(1)通过对C、Si、Mn、Ni、Cr、Mo的质量百分比进行合理设计,并结 合对P、S的管控,使得气体保护焊焊丝钢在提升焊缝金属低温韧性的同时,保 证了焊缝金属的超高强度及焊接工艺性;
(2)通过精准控制风机开启数量和风机风量,得到易于退火的贝氏体和马 氏体组织,该类组织中岛状硬相组织的尺寸更小,在基体中分布更均匀,进而 在退火时无需提高退火温度也无需长时间保温,只需要一次退火处理,即可得 到铁素体和细小的球状碳化物颗粒,从而大幅降低盘条的强度,具体可使得盘 条进行一次高温退火后的抗拉强度≤720MPa,可连续拉拔制成0.8~1.6mm的气 体保护焊焊丝成品,省去拉丝厂多次退火工艺,工艺简单且利于焊丝企业实现 高产高效。

Claims (10)

1.一种气体保护焊焊丝钢,其特征在于,化学成分以质量百分比计包括:C:0.04~0.15%,Si:0.25~0.95%,Mn:0.80~2.50%,Ni:1.40~4.00%,Cr:0.30~3.50%,Mo:0.20~1.50%,P≤0.015%,S≤0.015%,余量为Fe及不可避免的杂质。
2.根据权利要求1所述的气体保护焊焊丝钢,其特征在于,化学成分以质量百分比计包括:C:0.05~0.13%,Si:0.30~0.92%,Mn:0.85~2.30%,Ni:1.47~3.80%,Cr:0.40~3.20%,Mo:0.24~1.25%,P≤0.015%,S≤0.015%,余量为Fe及不可避免的杂质。
3.根据权利要求1或2所述的气体保护焊焊丝钢,其特征在于,其中Mn、Cr、Mo和Ni的质量百分比满足Ni≥0.9+0.24(Mn+Cr+Mo)。
4.根据权利要求1或2所述的气体保护焊焊丝钢,其特征在于,化学成分以质量百分比计还包括:Nb:0.01~0.09%、V:0.01~0.09%、Ti:0.02~0.18%、B:0.0005~0.0070%四者中的一种及以上。
5.一种气体保护焊焊丝钢的生产方法,其特征在于,包括步骤:
1)按照权利要求1所述的化学成分进行钢水冶炼,并将钢水铸成钢坯;
2)将步骤1)中所得钢坯依序经过高压水除鳞、高速线材轧机控温轧制、吐丝机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷;其中,精轧机入口温度为890~930℃,吐丝温度为840~880℃,斯太尔摩冷却线的辊道速度为0.60~1.00m/s,保温罩全部打开,开启第1~6台风机,其中第1~2台风机的风量为70000~80000m3/h,第3~6台风机的风量为30000~50000m3/h。
6.根据权利要求5所述的气体保护焊焊丝钢的生产方法,其特征在于,还包括步骤:
3)将步骤2)中所得盘条进行一次高温退火,退火温度为660~700℃,保温时间为5~8h。
7.根据权利要求6所述的气体保护焊焊丝钢的生产方法,其特征在于,在步骤3)中,盘条在退火炉中的升温速率和降温速率均≤50℃/h。
8.根据权利要求6所述的气体保护焊焊丝钢的生产方法,其特征在于,步骤3)中,盘条进行一次高温退火后的抗拉强度≤720MPa。
9.根据权利要求6所述的气体保护焊焊丝钢的生产方法,其特征在于,还包括步骤:
4)将步骤3)中高温退火后的盘条进行10~16道次的不退火拉拔处理,制得0.8~1.6mm的气体保护焊焊丝成品。
10.一种气体保护焊焊丝钢的生产方法,其特征在于,包括步骤:
1)按照权利要求1所述的化学成分进行钢水冶炼,并将钢水铸成钢坯;
2)将步骤1)中所得钢坯依序经过高压水除鳞、高速线材轧机控温轧制、吐丝机吐丝后形成热轧盘条,该盘条经斯太尔摩线控温冷却后集卷;其中,精轧机入口温度为890~930℃,吐丝温度为840~880℃,盘条在斯太尔摩冷却线上先以冷速≥15℃/s控温冷却至650℃以下,而后再以冷速5~10℃/s控温冷却至400℃以下。
CN202011063922.9A 2020-09-30 2020-09-30 气体保护焊焊丝钢及其生产方法 Active CN112222572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011063922.9A CN112222572B (zh) 2020-09-30 2020-09-30 气体保护焊焊丝钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011063922.9A CN112222572B (zh) 2020-09-30 2020-09-30 气体保护焊焊丝钢及其生产方法

Publications (2)

Publication Number Publication Date
CN112222572A true CN112222572A (zh) 2021-01-15
CN112222572B CN112222572B (zh) 2022-01-18

Family

ID=74120543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011063922.9A Active CN112222572B (zh) 2020-09-30 2020-09-30 气体保护焊焊丝钢及其生产方法

Country Status (1)

Country Link
CN (1) CN112222572B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112872737A (zh) * 2021-01-21 2021-06-01 江苏省沙钢钢铁研究院有限公司 一种卷取侧导板及其制备方法
CN113305276A (zh) * 2021-05-31 2021-08-27 江苏永钢集团有限公司 一种降低特种焊丝钢异常组织比例的方法
CN113862552A (zh) * 2021-09-10 2021-12-31 首钢长治钢铁有限公司 一种焊接用钢盘条及其制备方法
CN114227065A (zh) * 2022-01-06 2022-03-25 张家港荣盛特钢有限公司 气体保护焊焊丝、气体保护焊焊丝钢盘条及其生产方法
CN114406031A (zh) * 2022-01-20 2022-04-29 中天钢铁集团有限公司 一种用于高速拉拔焊丝钢的轧制工艺
CN116586822A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种中压掺氢燃气输送管道用实心焊丝及其制备方法
CN116586819A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种低压输氢管道焊接用焊丝钢水和焊丝及其制备方法
CN116586823A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种中压输氢管道焊接用焊丝钢水和焊丝及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114517A (ja) * 1983-11-24 1985-06-21 Kawasaki Steel Corp 軟化焼鈍処理の省略可能な鋼線材の製造方法
CN111041372A (zh) * 2019-12-30 2020-04-21 广东韶钢松山股份有限公司 一种具有深冷拉拔性能的弹簧钢盘条、弹簧钢丝、弹簧及制造方法
CN111101066A (zh) * 2020-01-20 2020-05-05 包头钢铁(集团)有限责任公司 一种贝氏体高强度焊丝用钢盘条及其生产方法
CN111172460A (zh) * 2020-01-20 2020-05-19 包头钢铁(集团)有限责任公司 一种600MPa级屈服强度焊丝用钢盘条及其生产方法
CN111363975A (zh) * 2020-04-08 2020-07-03 中天钢铁集团有限公司 一种热轧态可直接进行拉拔加工的中碳CrMo钢盘条的控轧控冷方法
CN111440985A (zh) * 2020-04-22 2020-07-24 邢台钢铁有限责任公司 一种高强度焊钉用钢盘条及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114517A (ja) * 1983-11-24 1985-06-21 Kawasaki Steel Corp 軟化焼鈍処理の省略可能な鋼線材の製造方法
CN111041372A (zh) * 2019-12-30 2020-04-21 广东韶钢松山股份有限公司 一种具有深冷拉拔性能的弹簧钢盘条、弹簧钢丝、弹簧及制造方法
CN111101066A (zh) * 2020-01-20 2020-05-05 包头钢铁(集团)有限责任公司 一种贝氏体高强度焊丝用钢盘条及其生产方法
CN111172460A (zh) * 2020-01-20 2020-05-19 包头钢铁(集团)有限责任公司 一种600MPa级屈服强度焊丝用钢盘条及其生产方法
CN111363975A (zh) * 2020-04-08 2020-07-03 中天钢铁集团有限公司 一种热轧态可直接进行拉拔加工的中碳CrMo钢盘条的控轧控冷方法
CN111440985A (zh) * 2020-04-22 2020-07-24 邢台钢铁有限责任公司 一种高强度焊钉用钢盘条及其制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112872737A (zh) * 2021-01-21 2021-06-01 江苏省沙钢钢铁研究院有限公司 一种卷取侧导板及其制备方法
CN113305276A (zh) * 2021-05-31 2021-08-27 江苏永钢集团有限公司 一种降低特种焊丝钢异常组织比例的方法
CN113305276B (zh) * 2021-05-31 2022-05-24 江苏永钢集团有限公司 一种降低特种焊丝钢异常组织比例的方法
CN113862552A (zh) * 2021-09-10 2021-12-31 首钢长治钢铁有限公司 一种焊接用钢盘条及其制备方法
CN113862552B (zh) * 2021-09-10 2022-07-22 首钢长治钢铁有限公司 一种焊接用钢盘条及其制备方法
WO2023130546A1 (zh) * 2022-01-06 2023-07-13 张家港荣盛特钢有限公司 气体保护焊焊丝、气体保护焊焊丝钢盘条及其生产方法
CN114227065A (zh) * 2022-01-06 2022-03-25 张家港荣盛特钢有限公司 气体保护焊焊丝、气体保护焊焊丝钢盘条及其生产方法
CN114227065B (zh) * 2022-01-06 2023-02-28 张家港荣盛特钢有限公司 气体保护焊焊丝、气体保护焊焊丝钢盘条及其生产方法
CN114406031A (zh) * 2022-01-20 2022-04-29 中天钢铁集团有限公司 一种用于高速拉拔焊丝钢的轧制工艺
CN114406031B (zh) * 2022-01-20 2024-05-28 中天钢铁集团有限公司 一种用于高速拉拔焊丝钢的轧制工艺
CN116586822A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种中压掺氢燃气输送管道用实心焊丝及其制备方法
CN116586819A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种低压输氢管道焊接用焊丝钢水和焊丝及其制备方法
CN116586823A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种中压输氢管道焊接用焊丝钢水和焊丝及其制备方法
CN116586822B (zh) * 2023-07-17 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 一种中压掺氢燃气输送管道用实心焊丝及其制备方法
CN116586819B (zh) * 2023-07-17 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 一种低压输氢管道焊接用焊丝钢水和焊丝及其制备方法
CN116586823B (zh) * 2023-07-17 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 一种中压输氢管道焊接用焊丝钢水和焊丝及其制备方法

Also Published As

Publication number Publication date
CN112222572B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN112222572B (zh) 气体保护焊焊丝钢及其生产方法
CN105839003B (zh) 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN105624550B (zh) 核岛设备用大厚度SA738GrB钢板及生产方法
CN111020298B (zh) 一种gh3039高温合金棒材及棒材的制备方法
CN101649420B (zh) 一种高强度高韧性低屈强比钢、钢板及其制造方法
CN108531806B (zh) 一种高强韧性热轧无缝钢管及其制备方法
JP2018505303A (ja) 降伏強度900〜1000MPa級調質高強度鋼及びその製造方法
CN108330390A (zh) 一种耐延迟断裂的合金冷镦钢盘条及其生产方法
CN113025917A (zh) 一种具有低强度高塑性免退火冷镦钢用盘条及其制造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
CN110760757A (zh) 一种热轧钢筋的低成本强化工艺
CN103526111A (zh) 屈服强度900MPa级热轧板带钢及其制备方法
CN110735085A (zh) 一种薄规格Q345qE、Q370qE钢板的制造方法
CN109722601A (zh) 一种低碳当量的特厚钢板q420e的生产方法
CN102400053A (zh) 屈服强度460MPa级建筑结构用钢板及其制造方法
CN104846293A (zh) 高强韧性钢板及其制备方法
CN102965568A (zh) 相变韧化低合金钢板及其制备方法
CN109182669B (zh) 高硬度高韧性易焊接预硬化塑料模具钢及其制备方法
CN104846277A (zh) 屈服强度≥460MPa且抗层状撕裂性能建筑用钢及其制造方法
CN103160746A (zh) 一种高强度厚壁输水管用钢及其制造方法
CN102409233A (zh) 一种低温工程机械用钢及其生产方法
CN110592491B (zh) 一种高耐磨性马氏体/奥氏体双相耐磨钢板及制造方法
CN111378901A (zh) 一种1420MPa级PC钢棒专用母材盘条及其制备方法
CN103540850B (zh) 屈服强度≥550MPa的超厚工程机械用钢及生产方法
CN104451446B (zh) 一种厚规格高强韧性贝氏体工程用钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant