WO2021196333A1 - 一种电磁波场数据处理方法、装置以及介质 - Google Patents

一种电磁波场数据处理方法、装置以及介质 Download PDF

Info

Publication number
WO2021196333A1
WO2021196333A1 PCT/CN2020/087947 CN2020087947W WO2021196333A1 WO 2021196333 A1 WO2021196333 A1 WO 2021196333A1 CN 2020087947 W CN2020087947 W CN 2020087947W WO 2021196333 A1 WO2021196333 A1 WO 2021196333A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
field data
wave field
actual
lossless
Prior art date
Application number
PCT/CN2020/087947
Other languages
English (en)
French (fr)
Inventor
付长民
底青云
王妙月
张美根
王啸天
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to US17/420,702 priority Critical patent/US11693105B2/en
Publication of WO2021196333A1 publication Critical patent/WO2021196333A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction

Definitions

  • This application relates to the field of geophysical prospecting, and in particular to an electromagnetic wave field data processing method, device and medium.
  • Ground Penetrating Radar is a geophysical method that uses antennas to transmit and receive high-frequency electromagnetic waves to detect the characteristics and distribution of materials inside the medium. It is an effective method for detecting underground targets developed in recent decades. It has the advantages of fast detection speed, continuous detection process, high resolution, convenient and flexible operation, and low detection cost. It is mainly used for archaeology, mineral exploration, Hazardous geological surveys, geotechnical engineering surveys, engineering quality inspections, building structure inspections, and military target detection and many other fields.
  • the ground penetrating radar wave propagates in a conductive medium, so its wave field will be attenuated.
  • a medium with a high conductivity has a greater attenuation than a medium with a low conductivity.
  • the ground penetrating radar wave scattered by an underground pipe buried in moist soil is much weaker than the ground penetrating radar wave scattered by the same pipe buried in dry soil.
  • processing electromagnetic wave field data often ignores the attenuation of the wave field, which leads to inaccurate results of the electromagnetic wave field data detected by the ground penetrating radar.
  • the embodiments of the present application provide an electromagnetic wave field data processing method, device, and medium, which are used to improve the accuracy of the electromagnetic wave field data detected by the ground penetrating radar in the prior art.
  • An embodiment of the present application provides an electromagnetic wave field data processing method, the method includes:
  • the first eigenvalue sequence corresponding to the actual electromagnetic wave field data that meets the preset conditions and the data are determined respectively.
  • the determining the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data according to the actual electromagnetic wave field data specifically includes:
  • the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data is determined according to the velocity model.
  • the first characteristic value sequence corresponding to the actual electromagnetic wave field data of the preset condition is the sequence of the maximum amplitude of the multiple periods of the characteristic waveform corresponding to the actual electromagnetic wave field data, or is the actual electromagnetic wave field
  • the second characteristic value sequence corresponding to the lossless electromagnetic wave field data of the preset condition is the sequence of the characteristic waveform corresponding to the lossless electromagnetic wave field data
  • determining the attenuation coefficient of the actual electromagnetic wave field data according to the first preset manner specifically includes:
  • ⁇ (x,t) is the actual electromagnetic wave field data
  • G(x,t) is the lossless electromagnetic wave field data
  • is the attenuation coefficient
  • t is the time
  • x is the distance from the field source to the receiving point
  • b is the constant.
  • the method further includes:
  • the second preset method is a least square method.
  • the method further includes:
  • the attenuation coefficient of the test electromagnetic wave field data is compared with the theoretical value of the attenuation coefficient of the test electromagnetic wave field data to determine whether the attenuation coefficient of the test electromagnetic wave field data obtained by the first preset method is correct.
  • the waveform information type of the electromagnetic wave includes reflected wave or direct wave.
  • An embodiment of the present application also provides an electromagnetic wave field data processing device, the device including:
  • the first determining unit is configured to determine the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data according to the actual electromagnetic wave field data;
  • the first compensation unit is configured to perform first amplitude compensation on the actual electromagnetic wave field data and the lossless electromagnetic wave field data, wherein the first amplitude compensation is to compensate for the geometric attenuation of the actual electromagnetic wave field data and the lossless electromagnetic wave field data. Describe the amplitude error caused by lossless electromagnetic wave field data;
  • An extraction unit for extracting waveform information of electromagnetic waves in the actual electromagnetic wave field data and waveform information of electromagnetic waves in the lossless electromagnetic wave field data;
  • the second determining unit is configured to determine the corresponding to the actual electromagnetic wave field data that meets the preset conditions in the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data.
  • the second compensation unit is configured to determine the attenuation coefficient of the actual electromagnetic wave field data according to the first preset manner, and perform second amplitude compensation on the actual electromagnetic wave field data according to the attenuation coefficient, wherein the second The amplitude compensation is to compensate the amplitude error caused by the attenuation coefficient to the actual electromagnetic wave field data.
  • the embodiments of the present application also provide a computer-readable medium on which computer-readable instructions are stored, and the computer-readable instructions can be executed by a processor to implement the following methods:
  • the first eigenvalue sequence corresponding to the actual electromagnetic wave field data that meets the preset conditions and the data are determined respectively.
  • the embodiment of the application extracts the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data, and determines that it conforms to the preset After the eigenvalue sequence of the condition and the time sequence corresponding to the eigenvalue sequence, the attenuation coefficient of the actual wave field is determined according to the first preset method, and the second amplitude compensation is performed on the actual electromagnetic wave field data to eliminate the effect of the attenuation coefficient on the actual electromagnetic wave field data. Attenuation, thereby improving the accuracy of the electromagnetic wave field data detected by the ground penetrating radar.
  • FIG. 1 is a schematic flowchart of an electromagnetic wave field data processing method provided in Embodiment 1 of this specification;
  • FIG. 2 is a schematic flowchart of an electromagnetic wave field data processing method provided in Embodiment 2 of this specification;
  • Figure 3 is a result diagram of the forward model provided in the second embodiment of this specification.
  • FIG. 4 is a schematic structural diagram of an electromagnetic wave field data processing device provided in Embodiment 3 of this specification.
  • Fig. 1 is a schematic flowchart of an electromagnetic wave field data processing method provided in Embodiment 1 of this specification.
  • the embodiment of this specification may be executed by an electromagnetic wave field data processing system, which specifically includes:
  • Step S101 The electromagnetic wave field data processing system determines the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data according to the actual electromagnetic wave field data.
  • Step S102 The electromagnetic wave field data processing system performs first amplitude compensation on the actual electromagnetic wave field data and the lossless electromagnetic wave field data, wherein the first amplitude compensation is to compensate for the geometric attenuation of the actual electromagnetic wave field data and the lossless electromagnetic wave field data.
  • the amplitude error caused by the lossless electromagnetic wave field data is to compensate for the geometric attenuation of the actual electromagnetic wave field data and the lossless electromagnetic wave field data.
  • Step S103 The electromagnetic wave field data processing system extracts the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data.
  • Step S104 the electromagnetic wave field data processing system determines the corresponding actual electromagnetic wave field data corresponding to the preset conditions in the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data.
  • the first characteristic value sequence of and the second characteristic value sequence corresponding to the lossless electromagnetic wave field data, and the time sequence corresponding to the first characteristic value sequence and the second characteristic value sequence is determined.
  • Step S105 The electromagnetic wave field data processing system determines the attenuation coefficient of the actual electromagnetic wave field data according to the first preset method, and performs second amplitude compensation on the actual electromagnetic wave field data according to the attenuation coefficient, wherein the first The second amplitude compensation is to compensate the amplitude error caused by the attenuation coefficient to the actual electromagnetic wave field data.
  • the embodiment of the application extracts the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data, and determines the eigenvalue sequence that meets the preset conditions and the time sequence corresponding to the eigenvalue sequence, according to the first
  • a preset method determines the attenuation coefficient of the actual wave field, performs second amplitude compensation on the actual electromagnetic wave field data, eliminates the attenuation of the actual electromagnetic wave field data by the attenuation coefficient, and improves the accuracy of the electromagnetic wave field data detected by the ground penetrating radar.
  • FIG. 2 is a schematic flowchart of an electromagnetic wave field data processing method provided in Embodiment 2 of this specification.
  • the embodiment of this specification can be executed by an electromagnetic wave field data processing system, where the electromagnetic wave field data processing system uses To process the electromagnetic wave field data obtained by the ground penetrating radar, including:
  • Step S201 The electromagnetic wave field data processing system determines the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data according to the actual electromagnetic wave field data.
  • the actual electromagnetic wave field data is the electromagnetic wave field data actually detected by the ground penetrating radar
  • the lossless electromagnetic wave field data is the electromagnetic wave field data detected by the ground penetrating radar under ideal conditions, that is, when the attenuation coefficient is zero.
  • the electromagnetic wave field data is the ground penetrating radar data (GPR data)
  • the electromagnetic wave field data is the amplitude intensity information.
  • the transmitting antenna of the ground penetrating radar transmits high-frequency electromagnetic waves to the underground, and the electromagnetic waves reflected back to the ground are received through the receiving antenna. When the electromagnetic waves propagate in the underground medium, they will be reflected when they encounter an interface with electrical differences. The underground is inferred based on the received amplitude intensity information.
  • the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data is determined, which specifically includes:
  • the velocity analysis is based on the CMP (Common Center Point Gathering), using different velocity values to do velocity scanning to obtain the velocity spectrum.
  • CMP Common Center Point Gathering
  • the actual electromagnetic wave field data is the current measured electromagnetic wave field data
  • the lossless electromagnetic wave field data is through the formula Calculated electromagnetic wave field data.
  • the lossless electromagnetic wave field data has geometric attenuation, but there is no attenuation caused by the attenuation coefficient, which can also be understood as the attenuation coefficient is 0.
  • the lossless electromagnetic wave field data here is only through the formula
  • the calculated value, V in the formula is only an approximate value, so the obtained G(x,t) is not accurate, and the attenuation coefficient needs to be determined with the help of lossless electromagnetic wave field data, and then accurate actual electromagnetic wave field data can be obtained.
  • G(x,t) is the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data
  • t is the time
  • V is the velocity of the electromagnetic wave in the medium
  • x is the distance from the field source to the receiving point.
  • Step S202 The electromagnetic wave field data processing system performs first amplitude compensation on the actual electromagnetic wave field data and the lossless electromagnetic wave field data, where the first amplitude compensation is to compensate for the geometric attenuation of the actual electromagnetic wave field data and the lossless electromagnetic wave field data.
  • the amplitude error caused by the lossless electromagnetic wave field data is to compensate for the geometric attenuation of the actual electromagnetic wave field data and the lossless electromagnetic wave field data.
  • Geometric attenuation can be understood as the attenuation caused by geometric diffusion.
  • x the distance from the field source to the receiving point
  • the lossless wave field is only different from the actual wave field in attenuation coefficient, and other parameters are the same. Therefore, in the actual electromagnetic wave
  • the embodiment of the present application uses the superimposed velocity equivalent method to perform amplitude compensation for the wave field velocity.
  • the field source is an emission source that generates electromagnetic waves.
  • Step S203 The electromagnetic wave field data processing system extracts the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data.
  • the waveform information of the electromagnetic wave in the actual electromagnetic wave field data is the electric field intensity information of the actual electromagnetic wave field
  • the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data is the electric field intensity of the lossless electromagnetic wave field.
  • the waveform diagram of the electromagnetic wave in the actual wave field and the waveform diagram of the electromagnetic wave in the lossless wave field are the waveform diagrams processed in step S202.
  • Step S204 The electromagnetic wave field data processing system respectively determines the actual electromagnetic wave field data corresponding to the preset conditions in the characteristic waveform information corresponding to the actual electromagnetic wave field data and the characteristic waveform information corresponding to the lossless electromagnetic wave field data.
  • the first characteristic value sequence of and the second characteristic value sequence corresponding to the lossless electromagnetic wave field data, and the time series corresponding to the first characteristic value sequence and the second characteristic value sequence are respectively determined.
  • the first characteristic value sequence corresponding to the actual electromagnetic wave field data of the preset condition is a sequence of maximum amplitudes in multiple periods of the characteristic waveform corresponding to the actual electromagnetic wave field data. Or it is a sequence of the maximum absolute value of the amplitude in multiple cycles of the characteristic waveform corresponding to the actual electromagnetic wave field data; the second characteristic value sequence corresponding to the lossless electromagnetic wave field data of the preset condition is the lossless electromagnetic wave.
  • the sequence of the maximum amplitudes in the multiple periods of the characteristic waveform corresponding to the field data, or the sequence of the maximum absolute values of the amplitudes in the multiple periods of the characteristic waveform corresponding to the lossless electromagnetic wave field data, and the time sequence is the time corresponding to the characteristic sequence Value. Since the actual electromagnetic wave field data and the lossless electromagnetic wave field data differ only in electrical conductivity, which results in a difference in electric field strength, the time series of the two are also the same.
  • Step S205 The electromagnetic wave field data processing system determines the attenuation coefficient of the actual electromagnetic wave field data according to the first preset manner, and performs second amplitude compensation on the actual electromagnetic wave field data according to the attenuation coefficient, wherein the first The second amplitude compensation is to compensate the error caused by the attenuation coefficient to the actual electromagnetic wave field data so as to eliminate the attenuation of the actual electromagnetic wave field data by the attenuation coefficient.
  • ⁇ (x,t) e - ⁇ t G(x,t)
  • ⁇ (x,t) the actual electromagnetic wave field data
  • G(x,t) the lossless electromagnetic wave field data
  • the attenuation coefficient
  • t the time
  • x the distance from the field source to the receiving point
  • b the constant
  • the electromagnetic wave field data processing system inputs the first eigenvalue sequence, the second eigenvalue sequence, and the time sequence into the formula
  • the attenuation coefficient ⁇ of the actual electromagnetic wave field data is determined, the first characteristic sequence is input to ⁇ (x, t), and the second characteristic value sequence is input to G(x, t).
  • the method further includes:
  • the second preset method to Fit the data with time t to fit Fit a continuous linear function, and determine the attenuation coefficient of the actual electromagnetic wave field data according to the slope of the linear function.
  • the attenuation coefficient of the actual electromagnetic wave field data can be the inverse of the slope of the linear function.
  • G(x,t) satisfies the pure wave equation V is the velocity of electromagnetic waves in the medium.
  • G G(x,t)
  • ⁇ (x,t)
  • t i is the arrival time of a certain signal waveform
  • ⁇ i (such as a reflected wave) is the actual wave field at the i-th point
  • ⁇ t is the time difference between the arrival time and the amplitude peak (amplitude maximum) time.
  • the method further includes:
  • the second preset method can be the least square method, through which the function related to the time series With time t, the optimal function is determined by minimizing the sum of squares of the error, thereby fitting a continuous linear function.
  • the embodiment of this application uses the least square method to easily obtain unknown time series data, and minimizes the sum of squares of the errors between the obtained data and the actual data, thereby realizing the Fitted into a continuous linear function.
  • the waveform information type of the electromagnetic wave extracted in step S203 includes a direct wave or a reflected wave.
  • the embodiment of the present application extracts the reflected wave or the direct wave through methods such as phase recognition and time-distance curve calculation, and then solves the attenuation coefficient. Further, before determining the attenuation coefficient of the actual electromagnetic wave field data according to the first preset manner, the method further includes:
  • the attenuation coefficient of the test electromagnetic wave field data is compared with the theoretical value of the attenuation coefficient of the test electromagnetic wave field data to verify whether the attenuation coefficient of the test electromagnetic wave field data obtained by the first preset method is correct.
  • test wave field is proposed to verify the solution of the attenuation coefficient of the present invention.
  • the finite difference time domain method may be used to perform forward calculation of the test wave field.
  • the length of the model can be 6m
  • the height can be 2m
  • the space step can be 0.02m
  • the time step can be 0.047s.
  • the excitation source that is, the field source
  • the excitation source function is the Lake wavelet, the center frequency of which can be 150MHz.
  • a small metal ball with a radius of 0.15m can be located at (2m, 1m).
  • a metal ball with a radius of 0.15 m is used to estimate the average attenuation coefficient on the reflection path of the metal ball through the reflected wave at the metal ball.
  • the electrical conductivity near the metal ball is set to 0.001 S/m, and the dielectric constant is 10.
  • the conductivity parameters of the metal ball attachment were set to 0.002S/m and 0.003S/m to perform multiple experimental calculations to compare the relationship between the calculated value of the attenuation coefficient and the theoretical value.
  • the fitting data can be constructed below.
  • ⁇ (x,t) e - ⁇ t G(x,t)
  • the two eigenvalue sequences are compared
  • the data sequence ln(R) and time series t can form a linear function.
  • the least squares fitting method can be used to fit the data sequence ln(R) and the time series t, and the fitting result is a straight line, and the absolute value of the slope of the straight line is the attenuation coefficient.
  • the least square method (also known as the least square method) is a mathematical optimization technique that seeks the best function match of the data by minimizing the square sum of the error.
  • the horizontal axis is the sampling time t
  • the vertical axis is the logarithm ln(R) of the ratio of the eigenvalue sequence.
  • the actual electromagnetic wave field data is not only related to the velocity V, but also related to ⁇ .
  • the effect of ⁇ is usually ignored.
  • conductivity
  • the influence of the attenuation coefficient cannot be ignored.
  • first determine ⁇ Using the method of calculating ⁇ proposed in the embodiment of this application can be used to compensate for the intensity attenuation of the electric field data. After that, the corrected data is used for regular speed analysis. After ⁇ compensation and correction, the speed analysis result will be more reliable, and the GPR offset result will be more reliable.
  • the embodiment of the application extracts the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data, and determines the eigenvalue sequence that meets the preset conditions and the time sequence corresponding to the eigenvalue sequence, according to the first
  • a preset method determines the attenuation coefficient of the actual wave field, performs second amplitude compensation on the actual electromagnetic wave field data, eliminates the attenuation of the actual electromagnetic wave field data by the attenuation coefficient, and improves the accuracy of the electromagnetic wave field data detected by the ground penetrating radar.
  • FIG. 4 is a schematic structural diagram of an electromagnetic wave field data processing device provided in the third embodiment of this specification, including: a first determining unit 1, a first compensation unit 2, an extracting unit 3, and a second determining unit Unit 4 and second compensation unit 5.
  • the first determining unit 1 is configured to determine the lossless electromagnetic wave field data corresponding to the actual electromagnetic wave field data according to the actual electromagnetic wave field data;
  • the first compensation unit 2 is configured to perform first amplitude compensation on the actual electromagnetic wave field data and the lossless electromagnetic wave field data, wherein the first amplitude compensation is to compensate for the geometric attenuation of the actual electromagnetic wave field data and the lossless electromagnetic wave field data. Describe the amplitude error caused by lossless electromagnetic wave field data;
  • the extracting unit 3 is configured to extract the waveform information of electromagnetic waves in the actual electromagnetic wave field data and the waveform information of electromagnetic waves in the lossless electromagnetic wave field data;
  • the second determining unit 4 is configured to determine the corresponding data corresponding to the actual electromagnetic wave field data that meets the preset conditions in the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data.
  • the second compensation unit 5 is configured to determine the attenuation coefficient of the actual electromagnetic wave field data according to the first preset manner, and perform second amplitude compensation on the actual electromagnetic wave field data according to the attenuation coefficient, wherein the second The amplitude compensation is to compensate the amplitude error caused by the attenuation coefficient to the actual electromagnetic wave field data.
  • the embodiments of the present application also provide a computer-readable medium on which computer-readable instructions are stored, and the computer-readable instructions can be executed by a processor to implement the following methods:
  • the first eigenvalue sequence corresponding to the actual electromagnetic wave field data that meets the preset conditions and the data are determined respectively.
  • the embodiment of the application extracts the waveform information of the electromagnetic wave in the actual electromagnetic wave field data and the waveform information of the electromagnetic wave in the lossless electromagnetic wave field data, and determines the eigenvalue sequence that meets the preset conditions and the time sequence corresponding to the eigenvalue sequence, according to the first
  • a preset method determines the attenuation coefficient of the actual wave field, performs second amplitude compensation on the actual electromagnetic wave field data, eliminates the attenuation of the actual electromagnetic wave field data by the attenuation coefficient, and improves the accuracy of the electromagnetic wave field data detected by the ground penetrating radar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种电磁波场数据处理方法、装置以及介质,包括:根据实际电磁波场数据确定出实际电磁波场数据对应的无耗损电磁波场数据(S101);对实际电磁波场数据与无耗损电磁波场数据进行第一振幅补偿(S102);提取实际电磁波场数据中电磁波的波形信息与无耗损电磁波场数据中电磁波的波形信息(S103);在实际电磁波场数据中电磁波的波形信息与无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的实际电磁波场数据对应的第一特征值序列与无耗损电磁波场数据对应的第二特征值序列,并确定出第一特征值序列与第二特征值序列对应的时间序列(S104);根据第一预设方式确定出实际电磁波场数据的衰减系数,并根据衰减系数对实际电磁波场数据进行第二振幅补偿(S105)。

Description

一种电磁波场数据处理方法、装置以及介质 技术领域
本申请涉及地球物理勘探领域,尤其涉及一种电磁波场数据处理方法、装置以及介质。
背景技术
探地雷达(Ground Penetrating Radar,GPR)是利用天线发射和接收高频电磁波来探测介质内部物质特性和分布规律的一种地球物理方法。它是近几十年发展起来的一种探测地下目标的有效手段,具有探测速度快、探测过程连续、分辨率高、操作方便灵活、探测费用低等优点,主要被用于考古、矿产勘查、灾害地质调查、岩土工程勘察、工程质量检测、建筑结构检测以及军事目标探测等众多领域。
探地雷达波是在导电介质中传播的,因此其波场会受到衰减。导电率高的介质比导电率低的介质衰减更大。例如,埋在潮湿的土壤中的地下管道散射的探地雷达波比埋在干燥的土壤中的同样管道散射的探地雷达波弱得多。
现有技术中,处理电磁波场数据往往忽略波场受到的衰减,从而导致探地雷达探测电磁波场数据的结果不准确。
发明内容
有鉴于此,本申请实施例提供了一种电磁波场数据处理方法、装置以及介质,用于提高现有技术中探地雷达探测电磁波场数据的准确性。
本申请实施例采用下述技术方案:
本申请实施例提供一种电磁波场数据处理方法,所述方法包括:
根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损 电磁波场数据;
对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息;
在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
进一步的,所述根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据,具体包括:
对获取的所述实际电磁波场数据进行数据处理,其中,所述数据处理包括滤波、反褶积、零点时间校正中的一种或多种;
对处理后的所述实际电磁波场数据进行速度分析,得出速度模型;
根据所述速度模型确定出所述实际电磁波场数据对应的无耗损电磁波场数据。
进一步的,所述预设条件的所述实际电磁波场数据对应的第一特征值序列为所述实际电磁波场数据对应的特征波形的多个周期中振幅最大值序列,或者为所述实际电磁波场数据对应的特征波形的多个周期中振幅绝对值最大值序列;所述预设条件的所述无损耗电磁波场数据对应的第二特征 值序列为所述无损耗电磁波场数据对应的特征波形的多个周期中振幅最大值序列,或者为所述无损耗电磁波场数据对应的特征波形的多个周期中振幅幅绝对值最大值序列。
进一步的,根据第一预设方式确定出所述实际电磁波场数据的衰减系数,具体包括:
将所述第一特征值序列、所述第二特征值序列以及时间序列输入至公式
Figure PCTCN2020087947-appb-000001
确定出所述实际电磁波场数据的衰减系数;
其中,χ(x,t)为实际电磁波场数据,G(x,t)为所述无耗损电磁波场数据,β为衰减系数,t为时间,x为场源至接收点的距离,b为常量。
进一步的,所述将所述实际电磁波场数据的特征值序列、所述无耗损电磁波场数据的特征值序列以及时间序列输入至公式
Figure PCTCN2020087947-appb-000002
后,所述方法还包括:
应用第二预设方式对
Figure PCTCN2020087947-appb-000003
与时间t进行数据拟合,以将
Figure PCTCN2020087947-appb-000004
拟合成连续的线性函数,并根据线性函数的斜率确定出所述实际电磁波场数据的衰减系数。
进一步的,所述第二预设方式为最小二乘法。
进一步的,所述根据第一预设方式确定出所述实际电磁波场数据的衰减系数之前,所述方法还包括:
通过正演模型模拟出测试波场,并根据所述第一预设方式确定出测试电磁波场数据的衰减系数;
将所述测试电磁波场数据的衰减系数与测试电磁波场数据衰减系数的理论值进行对比,以确定出所述第一预设方式得出的所述测试电磁波场数据的衰减系数是否正确。
进一步的,所述电磁波的波形信息类型包括反射波或直达波。
本申请实施例还提供一种电磁波场数据处理装置,所述装置包括:
第一确定单元,用于根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据;
第一补偿单元,用于对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
提取单元,用于提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息;
第二确定单元,用于在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
第二补偿单元,用于根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
本申请实施例还提供一种计算机可读介质,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现下述方法:
根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据;
对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁 波场数据中电磁波的波形信息;
在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:本申请实施例通过提取实际电磁波场数据中电磁波的波形信息与无耗损电磁波场数据中电磁波的波形信息,并确定出符合预设条件的特征值序列与特征值序列对应的时间序列后,根据第一预设方法确定出实际波场的衰减系数,对实际电磁波场数据进行第二振幅补偿,消除衰减系数对实际电磁波场数据的衰减,进而提高探地雷达探测电磁波场数据结果的准确性。
附图说明
图1为本说明书实施例一提供的一种电磁波场数据处理方法的流程示意图;
图2为本说明书实施例二提供的一种电磁波场数据处理方法的流程示意图;
图3为本说明书实施例二提供的正演模型结果图;
图4为本说明书实施例三提供的一种电磁波场数据处理装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具 体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为本说明书实施例一提供的一种电磁波场数据处理方法的流程示意图,本说明书实施例可以由电磁波场数据处理系统执行,具体包括:
步骤S101,电磁波场数据处理系统根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据。
步骤S102,电磁波场数据处理系统对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差。
步骤S103,电磁波场数据处理系统提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息。
步骤S104,电磁波场数据处理系统在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列。
步骤S105,电磁波场数据处理系统根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
本申请实施例通过提取实际电磁波场数据中电磁波的波形信息与无耗损电磁波场数据中电磁波的波形信息,并确定出符合预设条件的特征值 序列与特征值序列对应的时间序列后,根据第一预设方法确定出实际波场的衰减系数,对实际电磁波场数据进行第二振幅补偿,消除衰减系数对实际电磁波场数据的衰减,进而提高探地雷达探测电磁波场数据结果的准确性。
与实施例一相对应的,图2为本说明书实施例二提供的一种电磁波场数据处理方法的流程示意图,本说明书实施例可以由电磁波场数据处理系统执行,其中,电磁波场数据处理系统用于处理由探地雷达所获取的电磁波场数据,具体包括:
步骤S201,电磁波场数据处理系统根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据。
在本说明书实施例的步骤S201中,该实际电磁波场数据是探地雷达实际探测的电磁波场数据,无耗损电磁波场数据是探地雷达在理想情况下即衰减系数为零时探测的电磁波场数据。电磁波场数据即为探地雷达数据(GPR数据),电磁波场数据为振幅强度信息。探地雷达的发射天线向地下发射高频电磁波,通过接收天线接收反射回地面的电磁波,电磁波在地下介质中传播时遇到存在电性差异的界面时发生反射,根据接收到振幅强度信息推断地下介质的空间位置、结构、形态和埋藏深度。
根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据,具体包括:
对获取的所述实际电磁波场数据进行数据处理,其中,所述数据处理包括滤波、反褶积、零点时间校正中的一种或多种;
对处理后的所述实际电磁波场数据进行速度分析,得出速度模型,其中,速度分析就是在CMP(共中心点道集)的基础上,利用不同的速度值做速度扫描后得到速度谱,通过速度谱得到速度模型,速度模型就是电磁波在介质中速度的分布情况;
将所述速度模型输入至公式
Figure PCTCN2020087947-appb-000005
确定出所述实际电磁波场数据对应的无耗损电磁波场数据,其中,G(x,t)为所述实际电磁波场数据对应的无耗损电磁波场数据,t为时间序列,V为电磁波在介质中的速度,x为场源(即波场激发源)至接收点(即波场接收端)的距离。
需要说明的是,实际电磁波场数据为当前测量的电磁波场数据,无损耗电磁波场数据为通过公式
Figure PCTCN2020087947-appb-000006
计算出的电磁波场数据。无耗损电磁波场数据存在几何衰减,但不存在由衰减系数带来的衰减,也可以理解为衰减系数为0。此处的无耗损电磁波场数据仅仅是通过公式
Figure PCTCN2020087947-appb-000007
计算出的值,公式中的V只是近似值,所以得出的G(x,t)并不准确,还需要借助无耗损电磁波场数据确定出衰减系数,进而得出准确的实际电磁波场数据,其中,G(x,t)为所述实际电磁波场数据对应的无耗损电磁波场数据,t为时间,V为电磁波在介质中的速度,x为场源至接收点的距离。
步骤S202,电磁波场数据处理系统对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差。
几何衰减可以理解为由几何扩散导致的衰减,比如,在G(x,t)中,x(场源至接收点的距离)即为几何扩散导致的衰减。因为不管是实际波场还是无耗损波场,场源与接收点之间皆会存在距离,并且,无耗损波场只是在衰减系数上与实际波场不同,其他参数相同,所以,在实际电磁波场数据与无耗损电磁波场数据中,皆存在几何衰减。本申请实施例使用叠加速度等效方法为波场速度进行振幅补偿。其中,场源为产生电磁波的发射 源。
步骤S203,电磁波场数据处理系统提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息。
在本说明书实施例的步骤S203中,实际电磁波场数据中电磁波的波形信息是实际电磁波场的电场强度信息;无耗损电磁波场数据中电磁波的波形信息为无损耗电磁波场的电场强度。其中,实际波场中电磁波的波形图与无损耗波场中电磁波的波形图是经过步骤S202处理后的波形图。
步骤S204,电磁波场数据处理系统在所述实际电磁波场数据对应的特征波形信息与所述无耗损电磁波场数据对应的特征波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并分别确定出所述第一特征值序列与所述第二特征值序列对应的时间序列。
在本说明书实施例的步骤S204中,所述预设条件的所述实际电磁波场数据对应的第一特征值序列为所述实际电磁波场数据对应的特征波形的多个周期中振幅最大值序列,或者为所述实际电磁波场数据对应的特征波形的多个周期中振幅绝对值最大值序列;所述预设条件的所述无损耗电磁波场数据对应的第二特征值序列为所述无损耗电磁波场数据对应的特征波形的多个周期中振幅最大值序列,或者为所述无损耗电磁波场数据对应的特征波形的多个周期中振幅幅绝对值最大值序列,时间序列为特征序列对应的时间取值。由于实际电磁波场数据与无耗损电磁波场数据只有电导率不同,进而导致电场强度上存在差别,两者的时间序列也是相同的。
步骤S205,电磁波场数据处理系统根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的误差以消除所述衰减系数对所述实际电磁波场数据的衰减。
根据第一预设方式确定出所述实际电磁波场数据的衰减系数,具体包括:
根据公式χ(x,t)=e -βtG(x,t),得出公式
Figure PCTCN2020087947-appb-000008
其中,χ(x,t)为实际电磁波场数据,G(x,t)为所述无耗损电磁波场数据,β为衰减系数,t为时间,x为场源至接收点的距离,b为常量;
电磁波场数据处理系统将第一特征值序列、第二特征值序列以及时间序列输入至公式
Figure PCTCN2020087947-appb-000009
确定出所述实际电磁波场数据的衰减系数β,第一特征序列输入至χ(x,t),第二特征值序列输入至G(x,t)。
将所述实际电磁波场数据的特征值序列、所述无耗损电磁波场数据的特征值序列以及时间序列输入至公式
Figure PCTCN2020087947-appb-000010
后,所述方法还包括:
应用第二预设方式对
Figure PCTCN2020087947-appb-000011
与时间t进行数据拟合,以将
Figure PCTCN2020087947-appb-000012
拟合成连续的线性函数,并根据线性函数的斜率确定出所述实际电磁波场数据的衰减系数。其中,实际电磁波场数据的衰减系数可以为线性函数斜率的相反数。
其中,G(x,t)满足纯波动方程
Figure PCTCN2020087947-appb-000013
V为电磁波在介质中的速度。
首先证明方程χ(x,t)=e -βtG(x,t)的正确性,其中e -βt为衰减项,衰减系数
Figure PCTCN2020087947-appb-000014
σ为电导率,ε为介电常数。
公式推导证明如下:
下面证明方程χ(x,t)=e -βtG(x,t)为带衰减项的电磁波波动方程的解, 带衰减项的电磁波波动方程为:
Figure PCTCN2020087947-appb-000015
其中,K R=με,
Figure PCTCN2020087947-appb-000016
ω为频率,μ为磁导率,ε为介电常数,σ为电导率。
根据我们设定的公式χ(x,t)=e -βtG(x,t),将其带入方程
Figure PCTCN2020087947-appb-000017
Figure PCTCN2020087947-appb-000018
中可得:
Figure PCTCN2020087947-appb-000019
进一步得到:
Figure PCTCN2020087947-appb-000020
Figure PCTCN2020087947-appb-000021
带入上式可知:
Figure PCTCN2020087947-appb-000022
Figure PCTCN2020087947-appb-000023
Figure PCTCN2020087947-appb-000024
得出
Figure PCTCN2020087947-appb-000025
Figure PCTCN2020087947-appb-000026
可得
Figure PCTCN2020087947-appb-000027
进一步,可得
Figure PCTCN2020087947-appb-000028
Figure PCTCN2020087947-appb-000029
由此可知:方程χ(x,t)=e -βtG(x,t)为有衰减的电磁波场数据,符合该公式。
需要说明的是,上述的G为G(x,t),χ为χ(x,t)。
由上述表述可知,电磁波场数据可以分解成两个部分:指数衰减项(衰减系数项)和场源相关项(几何衰减项)。由方程χ(x,t)=e -βtG(x,t)可得,在i点处的电磁波场数据可以写为:
Figure PCTCN2020087947-appb-000030
其中,t i是某个信号波形的到达时间,χ i(如为反射波)为第i点处实际波场,Δt是到达时间和振幅峰值(振幅最大值)时间之间的时间差。因为电磁波场数据衰减同样包含了几何扩散导致的衰减,首先必须对χ i和G进行第一振幅补偿来消除几何扩散衰减的影响。
在经过上述几何扩散衰减校正后,x=0处即场源处的χ i(x,Δt)和G(x,Δt)振幅强度应该等于χ i(0,Δt)和G(0,Δt)。因此,方程可重写为:
Figure PCTCN2020087947-appb-000031
如果令t i+Δt=m,χ i(0,t i+Δt)=y(m),则lny(m)=lnG(0,m)-β(m)=-βm+b。
依据上述算法,执行将所述实际电磁波场数据的特征值序列、所述无耗损电磁波场数据的特征值序列以及时间序列输入至公式
Figure PCTCN2020087947-appb-000032
的步骤后,所述方法还包括:
应用第二预设方式,对
Figure PCTCN2020087947-appb-000033
与时间序列t进行数据拟合,以将
Figure PCTCN2020087947-appb-000034
拟合成连续的线性函数,根据线性函数的斜率确定出所述实际电磁波场数据的衰减系数。
第二预设方式可以为最小二乘法,通过最小二乘法将与时间序列相关的函数
Figure PCTCN2020087947-appb-000035
与时间t,通过最小化误差的平方和确定出最佳函数,从而拟合成连续的线性函数。本申请实施例利用最小二乘法简便地求得未知时间序列数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,进而实现了将
Figure PCTCN2020087947-appb-000036
拟合成了连续的线性函数。
需要说明的是,步骤S203中提取的电磁波的波形信息类型包括直达波或者反射波。本申请实施例通过相位识别、时距曲线计算等方法提取出反射波或直达波,进而求解出衰减系数。进一步的,根据第一预设方式确定出所述实际电磁波场数据的衰减系数之前,所述方法还包括:
通过正演模型模拟出测试波场,并根据所述第一预设方式确定出测试电磁波场数据的衰减系数;
将所述测试电磁波场数据的衰减系数与测试电磁波场数据衰减系数的理论值进行对比,以验证出所述第一预设方式得出的所述测试电磁波场数据的衰减系数是否正确。
需要说明的是,测试波场为验证本发明求解衰减系数方案而提出的,测试波场的电导率可以人为设定,进而验证出公式χ(x,t)=e -βtG(x,t)是否正确,其中
Figure PCTCN2020087947-appb-000037
本说明书实施例可以使用时域有限差分方法(FDTD,Finite Difference Time Domain)对测试波场进行正演计算。该模型长度可以为6m,高度可 以为2m,空间步长可以为0.02m,时间步长为0.047s,激发源即场源可以位于(0.4m,1.4m)处。激发源函数为雷克子波,其中心频率可以为150MHz。半径为0.15m的金属小球可以位于(2m,1m)处。
本申请实施例中,半径为0.15m的金属小球用于通过该金属小球处的反射波来估算其反射路径上的平均衰减系数。
此外,本申请实施例将金属小球附近的电导率设置为0.001S/m,介电常数为10。并且,又将金属小球附件的电导率参数分别设置为0.002S/m和0.003S/m以进行多次实验计算,以对比衰减系数的计算值和理论值的关系。
提取出电导率σ=0.001对应的目标反射波后,我们使用反射波的部分或全部数据进行计算。由于正演结果信噪比很高,我们可以使用反射波形中的振幅最大值作为每道波形的特征值,所有接收道的特征值序列记做χ σ=0.001,同时提取出该极值对应的接收时间序列t。
根据麦克斯韦方程方程,构造出无衰减情况的正演记录,提取出金属小球的反射波形,然后提取反射波形中的振幅峰值作为每道波形的特征值χ σ=0,同时提取出对应该峰值序列的时间序列t。
由于不同的正演模型只有电导率不同,得到的正演结果只有波场强度上的差别,反射波的位置是相同的,两次提取的最大值对应的时间序列也是相同的。
提取出两种情况下的特征值以及对应的时间序列后,下面就可以构造拟合数据。根据方程χ(x,t)=e -βtG(x,t),将两种特征值序列做比值
Figure PCTCN2020087947-appb-000038
然后取对数ln(R),得到的就是用于进行拟合的数据ln(R),根据方程lny(m)=lnG(0,m)-β(m)=-βm+b,数据序列ln(R)和时间序列t可以构成线性函数。其中,G(x,t)即为σ=0。
可以使用最小二乘拟合方法来对数据序列ln(R)和时间序列t进行数据拟合,拟合结果为一条直线,该直线的斜率的绝对值即为衰减系数。
最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。根据上述步骤计算σ=0.002与σ=0.003下的衰减系数。
参见图3的正演模型结果图,计算了不同衰减系数下的结果,即将小球周围介质的电导率分别设置为0.001S/m,0.002S/m,0.003S/m,使用上述方法计算得到的拟合结果如下:
图3中横轴为采样时间t,纵轴为特征值序列的比值的对数ln(R)。σ=0.001时,使用最小二乘方法拟合出来的直线斜率为-0.00005456,理论值为-0.00005。σ=0.002时,使用最小二乘方法拟合出来的直线斜率为-0.0001093,理论值为-0.00010。σ=0.003时,使用最小二乘方法拟合出来的直线斜率为-0.0001643,理论值为-0.00015,具体参见表1。
Figure PCTCN2020087947-appb-000039
表1 衰减系数计算结果对比
从表1中可以看到,计算的衰减系数非常接近理论计算值,说明该方案得到的结果比较准确,本说明书实施例提出的计算衰减系数的方法计算量小,速度快,通过本说明书实施例的方案可以快速方便地计算出电磁波在地下介质传播时的衰减系数。
一般情况下,现实电磁波场数据不仅仅和速度V有关,同样和β也有关系。但是在常规的处理中,通常会忽略β的影响。但是,在σ(电导率)足够大的情况下,衰减系数的影响是不可以被忽略的。这种情况下,首先 确定β。使用本申请实施例提出的计算β的方法可以用来补偿电场数据的强度衰减。之后使用校正后的数据来进行常规的速度分析,经过β的补偿校正后,其速度分析结果会更可靠,进而GPR偏移结果也更可靠。
本申请实施例通过提取实际电磁波场数据中电磁波的波形信息与无耗损电磁波场数据中电磁波的波形信息,并确定出符合预设条件的特征值序列与特征值序列对应的时间序列后,根据第一预设方法确定出实际波场的衰减系数,对实际电磁波场数据进行第二振幅补偿,消除衰减系数对实际电磁波场数据的衰减,进而提高探地雷达探测电磁波场数据结果的准确性。
与实施例二相对应的,图4为本说明书实施例三提供的一种电磁波场数据处理装置的结构示意图,包括:第一确定单元1、第一补偿单元2、提取单元3、第二确定单元4以及第二补偿单元5。
第一确定单元1用于根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据;
第一补偿单元2用于对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
提取单元3用于提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息;
第二确定单元4用于在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
第二补偿单元5用于根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅 补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
本申请实施例还提供一种计算机可读介质,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现下述方法:
根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据;
对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息;
在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
本申请实施例通过提取实际电磁波场数据中电磁波的波形信息与无耗损电磁波场数据中电磁波的波形信息,并确定出符合预设条件的特征值序列与特征值序列对应的时间序列后,根据第一预设方法确定出实际波场的衰减系数,对实际电磁波场数据进行第二振幅补偿,消除衰减系数对实际电磁波场数据的衰减,进而提高探地雷达探测电磁波场数据结果的准确性。

Claims (10)

  1. 一种电磁波场数据处理方法,其特征在于,所述方法包括:
    根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据;
    对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
    提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息;
    在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
    根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
  2. 根据权利要求1所述的电磁波场数据处理方法,其特征在于,所述根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据,具体包括:
    对获取的所述实际电磁波场数据进行数据处理,其中,所述数据处理包括滤波、反褶积、零点时间校正中的一种或多种;
    对处理后的所述实际电磁波场数据进行速度分析,得出速度模型;
    根据所述速度模型确定出所述实际电磁波场数据对应的无耗损电磁波场数据。
  3. 根据权利要求1所述的电磁波场数据处理方法,其特征在于,所述预设条件的所述实际电磁波场数据对应的第一特征值序列为所述实际电磁波场数据对应的特征波形的多个周期中振幅最大值序列,或者为所述实际电磁波场数据对应的特征波形的多个周期中振幅绝对值最大值序列;所述预设条件的所述无损耗电磁波场数据对应的第二特征值序列为所述无损耗电磁波场数据对应的特征波形的多个周期中振幅最大值序列,或者为所述无损耗电磁波场数据对应的特征波形的多个周期中振幅幅绝对值最大值序列。
  4. 根据权利要求1所述的电磁波场数据处理方法,其特征在于,根据第一预设方式确定出所述实际电磁波场数据的衰减系数,具体包括:
    将所述第一特征值序列、所述第二特征值序列以及时间序列输入至公式
    Figure PCTCN2020087947-appb-100001
    确定出所述实际电磁波场数据的衰减系数;
    其中,χ(x,t)为实际电磁波场数据,G(x,t)为所述无耗损电磁波场数据,β为衰减系数,t为时间,x为场源至接收点的距离,b为常量。
  5. 根据权利要求4所述的电磁波场数据处理方法,其特征在于,所述将所述实际电磁波场数据的特征值序列、所述无耗损电磁波场数据的特征值序列以及时间序列输入至公式
    Figure PCTCN2020087947-appb-100002
    后,所述方法还包括:
    应用第二预设方式对
    Figure PCTCN2020087947-appb-100003
    与时间t进行数据拟合,以将
    Figure PCTCN2020087947-appb-100004
    拟合成连续的线性函数,并根据线性函数的斜率确定出所述实际电磁波场数据的衰减系数。
  6. 根据权利要求5所述的电磁波场数据处理方法,其特征在于,所述第二预设方式为最小二乘法。
  7. 根据权利要求1所述的电磁波场数据处理方法,其特征在于,所 述根据第一预设方式确定出所述实际电磁波场数据的衰减系数之前,所述方法还包括:
    通过正演模型模拟出测试波场,并根据所述第一预设方式确定出测试电磁波场数据的衰减系数;
    将所述测试电磁波场数据的衰减系数与测试电磁波场数据衰减系数的理论值进行对比,以确定出所述第一预设方式得出的所述测试电磁波场数据的衰减系数是否正确。
  8. 根据权利要求1所述的电磁波场数据处理方法,其特征在于,所述电磁波的波形信息类型包括反射波或直达波。
  9. 一种电磁波场数据处理装置,其特征在于,所述装置包括:
    第一确定单元,用于根据实际电磁波场数据确定出所述实际电磁波场数据对应的无耗损电磁波场数据;
    第一补偿单元,用于对所述实际电磁波场数据与所述无耗损电磁波场数据进行第一振幅补偿,其中,所述第一振幅补偿为补偿由几何衰减对所述实际电磁波场数据与所述无耗损电磁波场数据所带来的振幅误差;
    提取单元,用于提取所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息;
    第二确定单元,用于在所述实际电磁波场数据中电磁波的波形信息与所述无耗损电磁波场数据中电磁波的波形信息中,分别确定出符合预设条件的所述实际电磁波场数据对应的第一特征值序列与所述无耗损电磁波场数据对应的第二特征值序列,并确定出所述第一特征值序列与所述第二特征值序列对应的时间序列;
    第二补偿单元,用于根据第一预设方式确定出所述实际电磁波场数据的衰减系数,并根据所述衰减系数对所述实际电磁波场数据进行第二振幅补偿,其中,所述第二振幅补偿为补偿由衰减系数对所述实际电磁波场数据所带来的振幅误差。
  10. 一种计算机可读介质,其特征在于,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现权利要求1至8中任一项所述的方法。
PCT/CN2020/087947 2020-03-30 2020-04-30 一种电磁波场数据处理方法、装置以及介质 WO2021196333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/420,702 US11693105B2 (en) 2020-03-30 2020-04-30 Electromagnetic wave field data processing method and apparatus, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010237891.8A CN111399071B (zh) 2020-03-30 2020-03-30 一种电磁波场数据处理方法、装置以及介质
CN202010237891.8 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021196333A1 true WO2021196333A1 (zh) 2021-10-07

Family

ID=71431309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087947 WO2021196333A1 (zh) 2020-03-30 2020-04-30 一种电磁波场数据处理方法、装置以及介质

Country Status (3)

Country Link
US (1) US11693105B2 (zh)
CN (3) CN111399071B (zh)
WO (1) WO2021196333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798875B (zh) * 2020-12-30 2023-08-08 清远市天之衡传感科技有限公司 毫米波与太赫兹波电场测量方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528762B2 (en) * 2005-03-31 2009-05-05 Southwest Research Institute Signal processing methods for ground penetrating radar from elevated platforms
CN107167800A (zh) * 2017-05-05 2017-09-15 曲阜师范大学 一种基于中频探地雷达的滨海盐渍土剖面构型测定方法
CN107576674A (zh) * 2017-08-30 2018-01-12 曲阜师范大学 一种基于探地雷达测量土壤压实程度的方法
CN109190510A (zh) * 2018-08-13 2019-01-11 中国矿业大学(北京) 基于探地雷达的地下空洞量化识别方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357253A (en) * 1993-04-02 1994-10-18 Earth Sounding International System and method for earth probing with deep subsurface penetration using low frequency electromagnetic signals
US5357063A (en) * 1993-07-12 1994-10-18 Battelle Memorial Institute Method and apparatus for acoustic energy identification of objects buried in soil
MY122012A (en) * 1996-03-14 2006-03-31 Shell Int Research Determining a fluid fraction in an earth formation
US6429802B1 (en) * 1998-12-08 2002-08-06 Geophysical Survey Systems Determining the condition of a concrete structure using electromagnetic signals
JP5309414B2 (ja) * 2001-01-12 2013-10-09 富士通株式会社 放射電波測定システム及び放射電波測定方法並びに放射電波測定制御プログラムが記録された記録媒体
US6633252B2 (en) * 2001-03-28 2003-10-14 Larry G. Stolarczyk Radar plow drillstring steering
US6778127B2 (en) * 2001-03-28 2004-08-17 Larry G. Stolarczyk Drillstring radar
CN1332220C (zh) * 2004-06-17 2007-08-15 上海交通大学 基于信息融合的超宽带探地雷达自动目标识别方法
US7098663B1 (en) * 2005-03-18 2006-08-29 Timothy James Hollis Systems, methods and apparatus of an actively shielded superconducting magnet drift compensation coil
CN101501531A (zh) * 2006-04-19 2009-08-05 贝克休斯公司 用于次表地层的定量岩性和矿物性评估的方法
CN101334483B (zh) * 2008-06-13 2011-01-26 徐基祥 一种在地震数据处理中衰减瑞雷波散射噪声的方法
CN101738642A (zh) * 2008-11-10 2010-06-16 同济大学 探地雷达数据处理方法
US8786485B2 (en) * 2011-08-30 2014-07-22 Masachusetts Institute Of Technology Mobile coherent change detection ground penetrating radar
CN102431578B (zh) * 2011-11-17 2014-11-12 广东工业大学 一种基于射频信号衰减的铁道水灾检测及预警装置的处理方法
US20140043183A1 (en) * 2012-08-09 2014-02-13 Larry G. Stolarczyk Acoustic heterodyne radar
US9291710B2 (en) * 2012-10-31 2016-03-22 Board Of Regents, The University Of Texas System Method and apparatus for detecting subsurface targets using data inversion and a temporal transmission line model
CN103605157B (zh) * 2013-10-14 2016-03-09 中国石油天然气股份有限公司 衰减近地表散射波的方法
US9413448B2 (en) * 2014-08-08 2016-08-09 Nxgen Partners Ip, Llc Systems and methods for focusing beams with mode division multiplexing
CN104698503A (zh) * 2015-04-02 2015-06-10 芜湖航飞科技股份有限公司 一种雷达数据处理方法
CN105005036A (zh) * 2015-07-16 2015-10-28 中国电子科技集团公司第四十一研究所 一种用于近程mimo成像的传播损耗补偿方法
CN104965231A (zh) * 2015-07-30 2015-10-07 中国科学院电子学研究所 一种混凝土含水率的检测装置及方法
CN106442635A (zh) * 2016-09-22 2017-02-22 北京林业大学 一种基于雷达波的树木内部结构层位识别的方法
CN106646632B (zh) * 2017-01-15 2019-02-05 中国科学院地质与地球物理研究所 一种探测油气储层的可控源电磁方法
CN106814403B (zh) * 2017-01-17 2019-01-04 中国科学院上海微系统与信息技术研究所 一种补偿瞬变电磁信号负值的方法
CN107121705B (zh) * 2017-04-28 2018-10-12 中南大学 一种基于自动反相校正和峰度值比较的探地雷达回波信号去噪算法
CN107450054B (zh) * 2017-07-14 2019-09-10 浙江省交通规划设计研究院 一种自适应探地雷达数据去噪方法
CN109031432A (zh) * 2018-04-09 2018-12-18 中国科学院地质与地球物理研究所 一种极低频与大地电磁联合测量方法
CN111665556B (zh) * 2019-03-07 2023-05-02 中普宝信(北京)科技有限公司 地层声波传播速度模型构建方法
CN110376584B (zh) * 2019-06-28 2021-09-14 浙江大学 基于探地雷达图像特征信号识别的供水管道漏损检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528762B2 (en) * 2005-03-31 2009-05-05 Southwest Research Institute Signal processing methods for ground penetrating radar from elevated platforms
CN107167800A (zh) * 2017-05-05 2017-09-15 曲阜师范大学 一种基于中频探地雷达的滨海盐渍土剖面构型测定方法
CN107576674A (zh) * 2017-08-30 2018-01-12 曲阜师范大学 一种基于探地雷达测量土壤压实程度的方法
CN109190510A (zh) * 2018-08-13 2019-01-11 中国矿业大学(北京) 基于探地雷达的地下空洞量化识别方法

Also Published As

Publication number Publication date
CN112285790B (zh) 2021-06-18
US11693105B2 (en) 2023-07-04
CN111399071A (zh) 2020-07-10
CN112285790A (zh) 2021-01-29
US20230021093A1 (en) 2023-01-19
CN112285791A (zh) 2021-01-29
CN112285791B (zh) 2022-01-25
CN111399071B (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN104020495B (zh) 一种基于探地雷达的地下管线参数自识别方法
Feng et al. Pre-stack migration applied to GPR for landmine detection
EA011273B1 (ru) Система и способ использования характеристик годографов для получения, обработки и отображения данных электромагнитных исследований с использованием управляемых источников во временной области
KR101588215B1 (ko) 지하 물성 탐사시스템 및 이를 이용한 지하 물성 분석방법
Jazayeri et al. Reinforced concrete mapping using full-waveform inversion of GPR data
WO2009139837A2 (en) Long-range lightning detection and characterization system and method
EA032186B1 (ru) Сейсмическая адаптивная фокусировка
CN104360401A (zh) 一种瞬变电磁b场确定地下目标体地质信息方法
CN112814668B (zh) 一种时间域电磁测井的地层倾角估算方法
WO2021196333A1 (zh) 一种电磁波场数据处理方法、装置以及介质
CN102736116B (zh) 一种基于介质频散差异的电磁波探测方法及装置
CN107300694B (zh) 一种基于电磁波透射系数的未知墙体参数估计方法
CN107894219B (zh) 一种地耦合雷达测厚误差的矫正方法
CN108646229A (zh) 地下柱状反射体倾角检测方法
CN115598704A (zh) 一种基于最小二乘逆时偏移生成保幅角道集的方法、设备及可读存储介质
CN114509818A (zh) 近源区频率域电磁探测方法和装置、电子设备、存储介质
Kaufmann et al. Simultaneous multi-channel GPR measurements for soil characterization
Mertens et al. Determination of the stability of a pulse GPR system and quantification of the drift effect on soil material characterization by full-wave inversion
JP3511026B2 (ja) 電磁波探査機の比誘電率校正方法および電磁波探査機
CN117607858A (zh) 植物根系相对介电常数探测方法及装置
Grinev et al. Multi-channel ultra-wideband short-pulse ground penetrating radar
Xie et al. A fast 3D imaging method for subsurface metal targets using time-domain electromagnetic device
Lin et al. Estimation on underground electromagnetic wave velocity based on characteristics of shallow-buried small target echo
Chen et al. Measurement of dielectric constant based on time-domain ground-penetrating radar curve imaging algorithm
CN116593500A (zh) 一种土壤含水量探测系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929421

Country of ref document: EP

Kind code of ref document: A1