WO2021196266A1 - 一种基于金属塑料复合材制备的液冷散热板及其制备工艺 - Google Patents

一种基于金属塑料复合材制备的液冷散热板及其制备工艺 Download PDF

Info

Publication number
WO2021196266A1
WO2021196266A1 PCT/CN2020/084390 CN2020084390W WO2021196266A1 WO 2021196266 A1 WO2021196266 A1 WO 2021196266A1 CN 2020084390 W CN2020084390 W CN 2020084390W WO 2021196266 A1 WO2021196266 A1 WO 2021196266A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
composite material
plastic composite
plastic
liquid
Prior art date
Application number
PCT/CN2020/084390
Other languages
English (en)
French (fr)
Inventor
赵金宝
王国伟
樊鹏飞
Original Assignee
苏州方林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州方林科技股份有限公司 filed Critical 苏州方林科技股份有限公司
Publication of WO2021196266A1 publication Critical patent/WO2021196266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0222Mechanical pre-treatments, e.g. reshaping without removal of material, e.g. cleaning by air blowing or using brushes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of new energy sources for lithium batteries, in particular to the field of production and manufacture of liquid-cooled radiating plates for lithium batteries.
  • the liquid-cooled heat sink mainly realizes the heat dissipation of the battery pack through the flow of cooling liquid in the flow channel of the liquid-cooled plate.
  • a reasonable flow channel design for the liquid cooling plate can effectively improve the heat dissipation function of the radiator and prolong the service life of the battery pack.
  • the main process of the liquid-cooled heat sink currently used in the field of power batteries is to complete the production of the liquid-cooled heat sink by connecting the metal after metal processing.
  • the main welding methods are fusion welding, pressure welding and brazing.
  • Fusion welding is a method of heating the workpiece interface to a molten state during the welding process and completing the welding without pressure; during fusion welding, the heat source rapidly heats and melts the interface of the workpiece to be welded to form a molten pool, so the fusion welded joint must be able to support Welding pool, and thin metal materials may melt through due to low strength and cause liquid leakage, so they are not suitable for fusion welding.
  • Pressure welding is to make two workpieces realize interatomic bonding in a solid state under pressure, also known as solid-state welding; during pressure welding, the welding joint is under a lot of pressure, and the insufficient strength of thin metal materials is prone to deformation and even local structure. Risk of leakage due to destruction.
  • Brazing is to use a metal material with a lower melting point than the workpiece as the solder, heat the workpiece and the solder to a temperature higher than the melting point of the solder and lower than the melting point of the workpiece, and use the liquid solder to wet the workpiece, fill the interface gap and realize it with the workpiece
  • the mutual diffusion of atoms is a method of welding; brazing requires the use of solder to melt the workpiece and then wetting the workpiece, so there is insufficient wetting, which leads to local leakage and the risk of leakage; at the same time, the heating temperature of brazing is lower than The melting point of the workpiece, so corrosive flux will be added to improve the welding effect.
  • the residual flux in brazing cannot be completely removed. The residual flux will reduce the strength of the welded joint and cause corrosive defects at the welded joint. There is a high risk of leakage during use.
  • the welding method is a relatively mature connection method in the industry.
  • reliable welding joints have strict requirements on the structure of the base metal and joint parts.
  • some of the thickness is relatively thin, the structure is more complex, and there are special Liquid-cooled heat sinks with functional requirements are difficult to achieve directly through metal welding, and only part of the heat dissipation performance can be sacrificed to meet process requirements.
  • Commonly used welding methods have difficulty in recombination between thin materials, easy to deform, or leakage due to missing welding or destruction of thin materials.
  • the technical problem to be solved by the present invention is to provide a simple, easy-to-use, especially suitable for thin liquid-cooled heat sink and its manufacturing process, so as to solve the problem that the flow channel structure of the liquid-cooled heat sink in the prior art is limited by the existing technology.
  • the result is the problem of unsatisfactory heat dissipation effect and the problem of performance degradation and corrosion resistance of the connection joint.
  • a liquid-cooled heat dissipation plate prepared based on a metal-plastic composite material characterized in that the liquid-cooled heat dissipation plate is composed of at least two independent plate members, and a liquid flow channel is formed; at least one of the plate members is made of A metal-plastic composite material composed of a metal plate and a plastic; the metal-plastic composite material is provided with a metal layer and a plastic layer with the function of bonding metal.
  • the metal-plastic composite material is a composite of aluminum plate, steel plate or stainless steel plate and polyolefin, modified polyolefin, or polyvinyl chloride.
  • the plastic in the metal-plastic composite material is a polymer film containing one or more than one polymer film that has the function of thermally recombining to produce bonding metal.
  • the plastic layer is a modified polyolefin layer or a polyvinyl chloride layer.
  • a preparation process of a liquid-cooled heat sink prepared based on a metal-plastic composite material is characterized in that the preparation process at least includes a molding process of a metal-plastic composite material and a thermal composite process based on the metal-plastic composite material.
  • the metal and plastic are compounded to form a metal-plastic composite material
  • a product is formed by thermally compounding one of the sheet members and the other sheet member.
  • the surface treatment product is compounded with the plastic film to obtain the metal-plastic composite material, which is one of the plate members;
  • the metal-plastic composite material and another plate member are thermally composited to form a product.
  • the liquid flow channel is processed according to the shape of the liquid flow channel on one side of the plastic layer of the metal-plastic composite material; or, plastic is compounded on the outside of the liquid flow channel on the surface of the metal sheet to form one of the sheet members;
  • the plate member in the above steps is thermally composited with another plate member to form a product.
  • the process of the present invention can realize the production of a liquid-cooled heat sink with a relatively complex structure and special functional requirements, and the implementation process is simple, practical, and highly reliable.
  • the process of the present invention has a lower operating temperature and will not reduce the performance of the base material; it avoids the metal welding process in the traditional manufacturing process and greatly simplifies The liquid-cooled heat sink is difficult to manufacture, and the production efficiency is improved.
  • the materials used in the process of the present invention do not contain materials that are corrosive to the base material, so there will be no corrosive flux residues as in traditional brazing.
  • the process of the present invention improves the design concept of the existing liquid-cooled radiator plate structure, and makes the design of the liquid-cooled radiator plate structure more flexible.
  • the optimal liquid-cooled radiator plate runner structure can be designed according to specific requirements to realize the liquid-cooled radiator plate. The heat dissipation effect is optimized.
  • FIG. 1 is the first flow chart of the first embodiment of the manufacturing process of the liquid-cooled heat sink of the present invention.
  • Fig. 2 is the second flow chart of the first embodiment of the manufacturing process of the liquid-cooled heat sink of the present invention.
  • FIG. 3 is the first flow chart of the second embodiment of the manufacturing process of the liquid-cooled heat sink of the present invention.
  • Fig. 4 is the second flowchart of the second embodiment of the preparation process of the liquid-cooled heat sink of the present invention.
  • Fig. 5 is a flow chart of the third embodiment of the preparation process of the liquid-cooled heat sink of the present invention.
  • the preparation process of a liquid-cooled heat sink disclosed in this embodiment is shown in Figs. 1 and 2.
  • the preparation process includes surface treatment such as degreasing, alkaline or pickling of the metal, and then further using traditional chemical and electrical methods. After chemical passivation treatment, it is compounded with plastic represented by modified polypropylene to form a metal-plastic composite material.
  • the metal-plastic composite material is then cold-pressed to form one of the plate members 10 of the designed liquid flow channel 30, and then One of the formed sheet members 10 and the other sheet member 20 are thermally composited (hot pressed) and bonded to form an integral liquid-cooled heat sink.
  • the other sheet member 20 and the sheet member 10 formed of the metal-plastic composite material may be the same or different.
  • the preparation process is simple, and since the mutual adhesion of the plastic surfaces of the metal-plastic composite material or the adhesion with the metal is used, the adhesion strength can be ensured as long as the temperature is appropriately controlled.
  • This embodiment discloses a preparation process of a liquid-cooled heat sink, as shown in Figs. 3 and 4.
  • the preparation process is to press a metal sheet into a shape according to a designed liquid flow channel 30, and perform surface treatment on the molded product after the forming. It is processed and then compounded with the plastic film to obtain one of the plate members 10 of the metal-plastic composite material.
  • the plate member 10 and the other plate member 20 are thermally composited and bonded into an integrated liquid-cooled heat sink plate.
  • the two plate members can be the same or different.
  • the manufacturing process of a liquid-cooled heat sink disclosed in this embodiment is shown in FIG. 5.
  • the manufacturing process is to process the liquid flow channel 30 according to the shape of the liquid flow channel on one side of the plastic layer of the metal-plastic composite material; or, in the metal
  • the liquid flow channel 30 on the surface of the plate is compounded with plastic to form one of the plate members 10; then it is thermally compounded with another plate member 20 to form a product liquid-cooled heat sink.
  • the two plate members 10 and 20 can be the same or different.
  • a liquid-cooled heat dissipation plate prepared based on a metal-plastic composite material is composed of at least two independent plate members 10 and 20, and a liquid flow channel 30 is formed.
  • At least one of the plate members 10 is a metal-plastic composite material composited by a metal plate and plastic, wherein the metal layer 11 is preferably made of aluminum plate, steel plate or stainless steel plate, and the plastic layer 12 is preferably made of polyolefin, modified polyolefin, Or polyvinyl chloride and other plastic plates or films made of polymer materials with good thermal composite properties.
  • the process of the present invention can realize the production of a liquid-cooled heat dissipation plate with a relatively complex structure and special functional requirements, and the implementation process is simple, practical, and highly reliable.
  • the process of the present invention has a lower operating temperature and will not cause performance degradation of the base material; it avoids the metal welding process in the traditional manufacturing process and greatly simplifies liquid cooling
  • the manufacturing of the heat sink is difficult, and the production efficiency is improved; the materials used in the process of the present invention do not contain materials that are corrosive to the base material, so there will be no corrosive flux residues as existing in traditional brazing; and improved
  • the existing liquid-cooled heat sink structure design concept makes the liquid-cooled heat sink structure design flexibility high, and the optimal liquid-cooled heat sink flow channel structure can be designed according to specific needs to achieve the optimization of the heat dissipation effect of the liquid-cooled heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种基于金属塑料复合材制备的液冷散热板及其制备工艺,该液冷散热板由两块独立的板材构件(10,20)构成,并形成有液体流动通道(30);所述板材构件中的至少一块是由金属与塑料复合而成的金属塑料复合材,液冷散热板制备具体包括:将金属与塑料进行复合形成金属塑料复合材或选用市贩的所定尺寸的金属塑料复合材,通过压制形成具有所定形状、所定通道的部件;然后通过热复合形成产品。本发明工艺简单、实用、可靠,免却了传统制造工艺中金属焊接工艺,大大简化了液冷散热板的制造难度,并提高了生产效率。

Description

一种基于金属塑料复合材制备的液冷散热板及其制备工艺 技术领域
本发明涉及锂电池新能源领域,具体涉及锂电池的液冷散热板生产制作领域。
背景技术
在能源制约、环境污染等大背景下,我国政府把发展新能源汽车作为解决能源及环境问题、实现可持续发展的重大举措,各汽车生产企业也将新能源汽车作为抢占未来汽车产业制高点的重要战略方向。随着新能源电动汽车的发展,电池技术的突破已经成为限制电动汽车大规模上市的重要原因之一,电池的容量和安全性尚待突破,而续航里程越高要求的电池容量也越高,其工作时的发热功率也越大,为电池的安全使用带来隐患,因此如何快速带走电池热量显得尤为重要。目前,电池冷却主要有风冷和液冷两种形式,而液冷的冷却效果更佳。液冷散热板作为电池组热管理系统的重要组成部分,主要通过液冷板流道内的冷却液体流动实现电池组散热。对液冷板进行合理的流道设计可以有效提高散热器的散热功能,延长电池组的使用寿命。
目前应用在动力电池领域的液冷散热板主要工艺是,金属加工之后通过焊接方式进行连接来完成液冷散热板的制作。通常主要的焊接方式有熔焊、压焊和钎焊三类。熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法;熔焊时热源将待焊工件接口处迅速加热熔化形成熔池,因此熔焊的焊接接头处要能够支撑熔池,而薄的金属材料可能由于强度较低而出现熔穿 导致漏液,所以不太适合熔焊。压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接;压焊时焊接接头处受压力较大,薄的金属材料强度不足容易出现变形、甚至导致局部结构破坏而出现泄漏风险。钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法;钎焊焊接需要使用钎料熔化后润湿工件,因此存在润湿不充分而导致局部出现漏焊而导致泄露风险;同时钎焊由于加热温度低于工件熔点,因此会加入具有腐蚀性的钎剂来提高焊接效果,钎焊中的残余钎剂不能被完全去除,残留的钎剂会降低焊接接头强度和造成焊接接头部位处出现腐蚀性缺陷,长期使用过程中存在较高的泄露风险。
综上,焊接方式是工业中比较成熟的连接方式,然而可靠的焊接接头对母材和接头部位的结构要求较为严格,并且由于焊接工艺本身的特点,一些厚度较薄、结构较为复杂、有特殊功能要求的液冷散热板,难以直接通过金属焊接来实现,只能牺牲部分散热性能来满足工艺要求。常用的焊接方法,对于薄型材料间的复合困难、容易变形或因漏焊、薄型材料破坏而发生漏液。
发明内容
本发明所要解决的技术问题是:提供一种简单、易行,尤其适于薄型液冷散热板及其制作工艺,用以解决现有技术中液冷散热板流道结构受现有工艺限制而导致的散热效果不理想的问题和连接接头部位的性能降低及易腐蚀性问题。
为了达到上述技术效果,本发明采用的技术方案是:
一种基于金属塑料复合材制备的液冷散热板,其特征在于,该液冷散热板至少由两块独立的板材构件构成,并形成有液体流动通道;所述板材构件中的至少一块是由金属板与塑料复合而成的金属塑料复合材;该金属塑料复合材设有金属层及具有粘结金属功能的塑料层。
进一步地,所述金属塑料复合材为铝板、钢板或不锈钢板与聚烯烃、改性聚烯烃、或聚氯乙烯等复合而成。
进一步地,所述金属塑料复合材中的塑料为含有一种或一种以上的、具有热复合产生粘结金属功能的高分子薄膜。
进一步地,所述塑料层为改性聚烯烃层或聚氯乙烯层。
一种基于金属塑料复合材制备的液冷散热板的制备工艺,其特征在于,该制备工艺至少包括金属塑料复合材的成型工艺和基于该金属塑料复合材的热复合工艺。
进一步地,包括以下工艺步骤:
11).将金属与塑料进行复合形成金属塑料复合材;
12).将金属塑料复合材压制成所定形状的板材构件之一;
13).将所述板材构件之一与另一板材构件通过热复合形成品。
进一步地,包括以下工艺步骤:
21).将金属板材压制成所定形状的成型品;
22).对成型品进行表面处理,得到表面处理品;
23).将表面处理品与塑料薄膜进行复合,得到板材构件之一的金属塑料复合材;
24)将金属塑料复合材与另一板材构件通过热复合形成品。
进一步地,包括以下工艺步骤:
31).在金属塑料复合材塑料层的一面按液体流动通道形状加工出液体流动通道;或者,在金属板材表面的液体流动通道外侧复合上塑料,形成板材构件之一;
32).将上述步骤中的板材构件与另一板材构件热复合形成品。
与现有技术相比,本发明的有益效果是:
1.本发明工艺能够实现结构较为复杂、有特殊功能要求的液冷散热板的制作,实施过程简单、实用,且可靠性较高。
2.相对于传统焊接工艺(温度超过或接近母材熔点),本发明工艺操作温度较低,不会对母材造成性能上的降低;免却了传统制造工艺中金属焊接工艺,大大简化了液冷散热板的制造难度,并提高了生产效率。
3.本发明工艺所用的材料中不含有对母材有腐蚀性的材料,因此不会产生如传统钎焊中存在的腐蚀性钎剂残留。
4.本发明工艺改善了现有液冷散热板结构设计理念,使得液冷散热板结构设计灵活性高,可根据具体需求,设计最优的液冷散热板流道结构,实现液冷散热板的散热效果最优化。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,下面结合附图和实施例对本发明做进一步详细说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
附图说明
图1为本发明液冷散热板的制备工艺实施例一的流程图一。
图2为本发明液冷散热板的制备工艺实施例一的流程图二。
图3为本发明液冷散热板的制备工艺实施例二的流程图一。
图4为本发明液冷散热板的制备工艺实施例二的流程图二。
图5为本发明液冷散热板的制备工艺实施例三的流程图。
图中各标号及其对应的部件名称为:
10.板材构件,          11.塑料层,          12.金属层,
20.板材构件,          30.液体流动通道
具体实施方式
实施例一:
本实施例公开的一种液冷散热板的制备工艺,如图1和图2所示,该制备工艺为将金属去油、碱性或酸洗等表面处理,再进一步用传统的化学、电化学方法钝化处理后,与改性聚丙烯为代表的塑料复合,形成金属塑料复合材,该金属塑料复合材再经冷压成型,形成设计的液体流动通道30的板材构件10之一,再将成型后的板材构件10之一与另一板材构件20热复合(热压)粘结成一体的成品液冷散热板。其中,另一板材构件20与金属塑料复合材成型的板材构件10可相同,也可不同。该制备工艺简便,由于利用了金属塑料复合材的塑料面的相互粘结性或与金属的粘结性,只要适当控制温度即可保证粘结强度。
实施例二:
本实施例公开的一种液冷散热板的制备工艺,如图3和图4所示,该制备工艺为将金属板材根据设计的液体流动通道30压制成型,在对成型后的成型品进行表面处理,然后与塑料薄膜进行复合,得到金属塑料复合材的板材构件10之一,在将该板材构件10与另一板材构件20进行热复合粘结成一体的成品液冷散热板。其中,两板材构件可相同,也可不同。
实施例三:
本实施例公开的一种液冷散热板的制备工艺,如图5所示,该制备工艺为在金属塑料复合材塑料层的一面按液体流动通道形状加工出液体流动通道30;或者,在金属板材表面的液体流动通道30外侧复合上塑料,形成板材构件10之一;再将其与另一板材构件20热复合形成品液冷散热板,其中,两板材构件10、20可相同,也可不同。
实施例四:
一种基于金属塑料复合材制备的液冷散热板,如图1-5所示,该液冷散热板至少由两块独立的板材构件10、20构成,并形成有液体流动通道30。板材构件10中的至少一块是由金属板与塑料复合而成的金属塑料复合材,其中,金属层11作为优选采用铝板、钢板或不锈钢板,塑料层12优选采用聚烯烃、改性聚烯烃、或聚氯乙烯等热复合性能好的高分子材料的塑料板或薄膜。
综上,本发明工艺能够实现结构较为复杂、有特殊功能要求的液冷散热板的制作,实施过程简单、实用,且可靠性较高。相对于传统焊接工艺(温度超 过或接近母材熔点),本发明工艺操作温度较低,不会对母材造成性能上的降低;免却了传统制造工艺中金属焊接工艺,大大简化了液冷散热板的制造难度,并提高了生产效率;本发明工艺所用的材料中不含有对母材有腐蚀性的材料,因此不会产生如传统钎焊中存在的腐蚀性钎剂残留;且改善了现有液冷散热板结构设计理念,使得液冷散热板结构设计灵活性高,可根据具体需求,设计最优的液冷散热板流道结构,实现液冷散热板的散热效果最优化。
本发明不局限于上述具体的实施方式,对于本领域的普通技术人员来说从上述构思出发,不经过创造性的劳动,所作出的种种变换,均落在本发明的保护范围之内。

Claims (8)

  1. 一种基于金属塑料复合材制备的液冷散热板,其特征在于,该液冷散热板至少由两块独立的板材构件构成,并形成有液体流动通道;所述板材构件中的至少一块是由金属板与塑料复合而成的金属塑料复合材;该金属塑料复合材设有金属层及具有粘结金属功能的塑料层。
  2. 根据权利要求1所述的一种基于金属塑料复合材制备的液冷散热板,其特征在于,所述金属塑料复合材为铝板、钢板或不锈钢板与聚烯烃、改性聚烯烃、或聚氯乙烯复合而成。
  3. 根据权利要求1所述的一种基于金属塑料复合材制备的液冷散热板,其特征在于,所述金属塑料复合材中的塑料为含有一种或一种以上的、具有热复合产生粘结金属功能的高分子薄膜。
  4. 根据权利要求3所述的一种基于金属塑料复合材制备的液冷散热板,其特征在于,所述塑料层为改性聚烯烃层或聚氯乙烯层。
  5. 根据权利要求1所述的一种基于金属塑料复合材制备的液冷散热板的制备工艺,其特征在于,该制备工艺至少包括金属塑料复合材的成型工艺和基于该金属塑料复合材的热复合工艺。
  6. 根据权利要求5所述的一种基于金属塑料复合材制备的液冷散热板的制备工艺,其特征在于,包括以下工艺步骤:
    11).将金属与塑料进行复合形成金属塑料复合材;
    12).将金属塑料复合材压制成所定形状的板材构件之一;
    13).将所述板材构件之一与另一板材构件通过热复合形成品。
  7. 根据权利要求5所述的一种基于金属塑料复合材制备的液冷散热板的制备工艺,其特征在于,包括以下工艺步骤:
    21).将金属板材压制成所定形状的成型品;
    22).对成型品进行表面处理,得到表面处理品;
    23).将表面处理品与塑料薄膜进行复合,得到板材构件之一的金属塑料复合材;
    24)将金属塑料复合材与另一板材构件通过热复合形成品。
  8. 根据权利要求5所述的一种基于金属塑料复合材制备的液冷散热板的制备工艺,其特征在于,包括以下工艺步骤:
    31).在金属塑料复合材塑料层的一面按液体流动通道形状加工出液体流动通道;或者,在金属板材表面的液体流动通道外侧复合上塑料,形成板材构件之一;
    32).将上述步骤中的板材构件与另一板材构件热复合形成品。
PCT/CN2020/084390 2020-03-31 2020-04-13 一种基于金属塑料复合材制备的液冷散热板及其制备工艺 WO2021196266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010240929.7 2020-03-31
CN202010240929.7A CN111370810A (zh) 2020-03-31 2020-03-31 一种基于金属塑料复合材制备的液冷散热板及其制备工艺

Publications (1)

Publication Number Publication Date
WO2021196266A1 true WO2021196266A1 (zh) 2021-10-07

Family

ID=71209381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084390 WO2021196266A1 (zh) 2020-03-31 2020-04-13 一种基于金属塑料复合材制备的液冷散热板及其制备工艺

Country Status (2)

Country Link
CN (1) CN111370810A (zh)
WO (1) WO2021196266A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328892A1 (en) * 2009-06-25 2010-12-30 Sun Microsystems, Inc. Molded heat sink and method of making same
CN202678476U (zh) * 2012-05-17 2013-01-16 奇鋐科技股份有限公司 应用于电池组的水冷板单元
CN107331915A (zh) * 2017-05-31 2017-11-07 天津市捷威动力工业有限公司 一种液冷系统及其液冷包
CN208706813U (zh) * 2018-08-07 2019-04-05 深圳市派客新能源有限公司 一种冷却装置及电池包温控组件
WO2019121985A1 (de) * 2017-12-22 2019-06-27 Reinz-Dichtungs-Gmbh Plattenartiger fluidbehälter und verfahren zur herstellung eines plattenartigen fluidbehälters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201788458U (zh) * 2010-09-14 2011-04-06 位速科技股份有限公司 散热基板
CN103673739B (zh) * 2013-06-09 2016-04-27 北京化工大学 一种金属与导热塑料复合微换热器结构
DE102013109616A1 (de) * 2013-09-03 2015-03-05 Thyssenkrupp Steel Europe Ag Halbzeug und Verfahren zur Herstellung eines dreidimensional geformten Hybridbauteils im Metall/Kunststoffverbund sowie Verwendung eines solchen Halbzeuges
JP6615459B2 (ja) * 2014-04-22 2019-12-04 株式会社日昌製作所 金属インサート部品を用いる樹脂成型品の製造方法及び高周波誘導加熱のモニタリング方法と加熱温度把握方法
CN105636411B (zh) * 2015-12-30 2018-02-16 中国电子科技集团公司第二十六研究所 液冷用金属流道制作方法及液冷金属流道冷板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328892A1 (en) * 2009-06-25 2010-12-30 Sun Microsystems, Inc. Molded heat sink and method of making same
CN202678476U (zh) * 2012-05-17 2013-01-16 奇鋐科技股份有限公司 应用于电池组的水冷板单元
CN107331915A (zh) * 2017-05-31 2017-11-07 天津市捷威动力工业有限公司 一种液冷系统及其液冷包
WO2019121985A1 (de) * 2017-12-22 2019-06-27 Reinz-Dichtungs-Gmbh Plattenartiger fluidbehälter und verfahren zur herstellung eines plattenartigen fluidbehälters
CN208706813U (zh) * 2018-08-07 2019-04-05 深圳市派客新能源有限公司 一种冷却装置及电池包温控组件

Also Published As

Publication number Publication date
CN111370810A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
Lee et al. Joining technologies for automotive lithium-ion battery manufacturing: A review
JP5224658B2 (ja) シールフィルム付きリード線部材の製造方法
US11367881B2 (en) Method for manufacturing fuel cell and fuel cell
WO2021196267A1 (zh) 一种液冷散热板制作工艺
CN114654069A (zh) 基于脉冲电流加热的钼铜合金热沉超声辅助扩散连接制造方法及扩散焊接装置
CN112171210A (zh) 电池液冷板快速样件结构及其制造方法
CN109773321A (zh) 一种差强差厚多层板点焊方法
CN110722260A (zh) 一种界面喷涂铝粉助剂的铝合金扩散连接方法
WO2021196266A1 (zh) 一种基于金属塑料复合材制备的液冷散热板及其制备工艺
CN102959702B (zh) 电子部件用冷却装置及其制造方法
WO2022267268A1 (zh) 微通道热沉及其制造方法
CN111843165B (zh) 一种金刚石微流道的扩散连接方法
CN115338608B (zh) 一种冷板的成型方法
EP4280270A1 (en) Power semiconductor module and manufacturing method therefor
CN110756979A (zh) 液冷散热冷板的夹紧工装及方法
JP4269550B2 (ja) 燃料電池用セパレータの製造方法
CN111056744B (zh) 一种烧结制备低温玻璃焊料片的方法及其应用
CN216391523U (zh) 散热基板
CN114759315B (zh) 一种电池极耳的制作方法
CN217253493U (zh) 一种真空钎焊分级焊接工装
KR101409422B1 (ko) 고분자 연료전지용 분리판의 제조방법 및 그 방법으로 제조된 고분자 연료전지용 분리판
CN111193004B (zh) 一种复合镍极耳及其应用
JP2514043B2 (ja) ハニカム構造体の製造方法
CN117001093A (zh) 连接多层铝合金微通道复杂结构的绿色液相辅助钎焊方法
CN108575073B (zh) 可连续接合的液冷换热片及接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928936

Country of ref document: EP

Kind code of ref document: A1