WO2021196237A1 - 侧行反馈信息处理方法、终端设备和网络设备 - Google Patents

侧行反馈信息处理方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021196237A1
WO2021196237A1 PCT/CN2020/083375 CN2020083375W WO2021196237A1 WO 2021196237 A1 WO2021196237 A1 WO 2021196237A1 CN 2020083375 W CN2020083375 W CN 2020083375W WO 2021196237 A1 WO2021196237 A1 WO 2021196237A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
transmission channel
pssch
time slot
time
Prior art date
Application number
PCT/CN2020/083375
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202310111123.1A priority Critical patent/CN116170117A/zh
Priority to EP20929569.0A priority patent/EP4132153A4/en
Priority to PCT/CN2020/083375 priority patent/WO2021196237A1/zh
Priority to CN202080099275.9A priority patent/CN115362729A/zh
Publication of WO2021196237A1 publication Critical patent/WO2021196237A1/zh
Priority to US17/936,125 priority patent/US20230085264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • This application relates to the field of communications, and more specifically, to a method for processing side feedback information, a terminal device, and a network device.
  • D2D communication is a transmission technology based on Sidelink (SL). Unlike the traditional cellular system in which communication data is received or sent through a base station, the D2D system has higher spectrum efficiency and lower transmission delay.
  • the Vehicle to Everything (V2X) system adopts terminal-to-terminal direct communication.
  • NR New Radio
  • NR-V2X after the sender sends sideline data to the receiver, it can receive the sideline feedback information carried by the sideline feedback channel, and then report the sideline feedback information to the network.
  • the side-line feedback information can indicate whether the side-line data is received correctly. How to reduce the transmission resources required for reporting side-line feedback information is a problem that needs to be solved.
  • the embodiments of the present application provide a method for processing side-line feedback information, terminal equipment, and network equipment, which can reduce the transmission resources required for reporting side-line feedback information.
  • the embodiment of the present application provides a method for processing side feedback information, including:
  • the terminal device obtains the time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry the sideline reported by the terminal device to the network device Feedback;
  • the terminal device obtains the side-line feedback information carried by the uplink transmission channel according to the time slot of the uplink transmission channel and the time interval set.
  • the embodiment of the present application provides a method for processing side feedback information, including:
  • the network device sends a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry the sideline feedback reported by the terminal device to the network device information;
  • the network device sends scheduling information, and the scheduling information is used to determine the time slot of the uplink transmission channel.
  • An embodiment of the present application provides a terminal device, including:
  • the acquiring unit is used to acquire a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry the terminal device to report to the network device Side-line feedback information;
  • the obtaining unit is further configured to obtain the side line feedback information carried by the uplink transmission channel according to the time slot of the uplink transmission channel and the time interval set.
  • An embodiment of the present application provides a network device, including:
  • the sending unit is used to send a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry information reported by the terminal device to the network device Sideline feedback information;
  • the sending unit is also used to send scheduling information, and the scheduling information is used to determine the time slot of the uplink transmission channel.
  • An embodiment of the present application provides a terminal device, including a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the aforementioned method for processing side feedback information.
  • An embodiment of the present application provides a network device, which includes a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the aforementioned method for processing side feedback information.
  • An embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the aforementioned method for processing side feedback information.
  • the embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the aforementioned method for processing side feedback information.
  • the embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the aforementioned method for processing side feedback information.
  • An embodiment of the present application provides a computer program that enables a computer to execute the above-mentioned method for processing side feedback information.
  • An embodiment of the application provides a communication system, including:
  • the terminal device is used to execute the aforementioned method for processing side feedback information executed by the terminal device.
  • the network device is used to execute the aforementioned method for processing side feedback information performed by the network device.
  • the side row feedback information carried by the uplink transmission channel can be obtained, and the side row feedback information carried by the uplink transmission channel can be obtained through an uplink transmission
  • the channel reports these side-line feedback information, thereby reducing the transmission resources required for reporting the side-line feedback information.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • 2A and 2B are schematic diagrams of the transmission mode of the Internet of Vehicles.
  • Figure 3 is a schematic diagram of unicast transmission.
  • Figure 4 is a schematic diagram of multicast transmission.
  • Figure 5 is a schematic diagram of broadcast transmission.
  • Fig. 6A is a schematic diagram of transmission between the sending end and the receiving end.
  • Fig. 6B is a schematic diagram of transmission between the network and the terminal.
  • Fig. 7 is a schematic diagram of the relationship between side rows and uplink transmission resources.
  • Fig. 8 is a schematic diagram of reporting PSSCH through PUCCH.
  • FIG. 9 is a schematic flowchart of a method for processing side feedback information according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for processing side feedback information according to another embodiment of the present application.
  • FIG. 11 is an example diagram of reporting side row feedback information corresponding to multiple PSSCHs through one PUCCH.
  • FIG. 12 is another example diagram of reporting side row feedback information corresponding to multiple PSSCHs through one PUCCH.
  • Fig. 13 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a network device according to another embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, universal mobile telecommunication system (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), next-generation communications (5th-Generation) , 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in the NR network Or network equipment in the PLMN network that will evolve in the future.
  • AP access point
  • BTS base station
  • gNB network device
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device 110 and two terminal devices 120.
  • the wireless communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers.
  • the terminal device 120 is not limited in this embodiment of the application.
  • the wireless communication system 100 may also include other network entities such as mobility management entities (Mobility Management Entity, MME), access and mobility management functions (Access and Mobility Management Function, AMF), etc. This is not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the Internet of Vehicles has two transmission modes: the first mode and the second mode.
  • the first mode the transmission resources of the terminal are allocated by the network, such as the base station gNB, through the downlink, as shown in FIG. 2A.
  • the terminal transmits data on the side link SL according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal, or allocate resources for semi-static transmission to the terminal. It is also called Mode 3 in LTE-V2X.
  • the second mode The vehicle-mounted terminal selects a resource in the resource pool for data transmission. It is also called Mode 4 in LTE-V2X. As shown in Figure 2B, the terminal can select transmission resources by itself in the network. In addition, if the terminal is outside the network, it can also select transmission resources by itself.
  • LTE-V2X broadcast transmission mode is supported.
  • NR-V2X unicast and multicast transmission methods are introduced.
  • the receiving end terminal receiveiving end for short
  • the receiving end has only one terminal.
  • unicast transmission is performed between UE1 and UE2.
  • the receiving end is all terminals in a communication group, or all terminals within a certain transmission distance.
  • UE1, UE2, UE3, and UE4 form a communication group, in which UE1 sends data, and other terminal devices in the group are all receivers.
  • the receiving end is any terminal, as shown in Figure 5, where UE1 is the sending end terminal (transmitting end for short), and the other terminals around it are all receiving ends.
  • mode 1 and mode 2 resource allocation methods are supported.
  • the terminal autonomously selects transmission resources in the resource pool for side-line transmission, that is, the second mode described above.
  • the network allocates side-line transmission resources to the terminal, that is, the first mode described above.
  • the network can allocate side-line transmission resources to the terminal through dynamic scheduling (Dynamic Scheduling); or the network can allocate side-line configuration authorization (SL CG) transmission resources to the terminal.
  • CG resource allocation methods there are mainly two configuration authorization methods: type-1 configured grant (type 1 configuration authorization) and type-2 configured grant (type 2 configuration authorization).
  • the network configures sideline transmission resources for the terminal through Radio Resource Control (RRC) signaling.
  • RRC signaling configuration includes time domain resources, frequency domain resources, and demodulation reference signals (Demodulation Reference). Symbol, DMRS), modulation and coding scheme (Modulation and Coding Scheme, MCS), including all transmission resources and transmission parameters.
  • DMRS demodulation reference signals
  • MCS Modulation and Coding Scheme
  • the second type of configuration authorization adopts a two-step resource configuration method, namely, RRC and Downlink Control Information (DCI).
  • RRC signaling is used to configure transmission resources and transmission parameters including the period of time-frequency resources, redundancy version, number of retransmissions, and the number of hybrid automatic repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) processes.
  • the DCI then activates the transmission of the second type of configuration authorization. And also configure other transmission resources and transmission parameters including time domain resources, frequency domain resources, etc.
  • the UE When the UE receives the RRC signaling, it cannot immediately use the resources and parameters configured by the higher-layer parameters for side-line transmission, but must wait for the corresponding DCI to be activated and configure other resources and transmission parameters before performing side-line transmission.
  • the network can deactivate the configuration transmission through the DCI. After the terminal receives the deactivated DCI, the transmission resource can no longer be used for side transmission.
  • the network allocates a transmission resource authorized by the configuration for the terminal, when the terminal has side-line data to transmit, it can directly use the transmission resource for transmission without sending an SR/BSR to the network to request transmission resources, thereby reducing delay.
  • a side-line feedback channel is introduced.
  • the sender sends sideline data to the receiver (for example, including the Physical Sidelink Control Channel (PSCCH) and the Physical Sidelink Shared Channel, PSSCH)); the receiving end sends HARQ feedback information to the sending end.
  • the sending end judges whether retransmission is required according to the feedback information of the receiving end.
  • the HARQ feedback information is carried in a side-line feedback channel, such as a physical side-link feedback channel (PSFCH).
  • PSFCH physical side-link feedback channel
  • the side feedback can be activated or deactivated through pre-configuration information or network configuration information. If the side-line feedback is activated, the receiving end receives the side-line data sent by the sending end, and feeds back HARQ Acknowledgement (ACK) or Negative Acknowledgement (NACK) to the sending end according to the detection result.
  • the sending end decides to send retransmission data or new data according to the feedback information of the receiving end. If the side-line feedback is deactivated, the receiving end does not need to send feedback information, and the sending end usually sends data by blind retransmission. For example, the sender repeatedly sends K times for each side row data, instead of deciding whether to send retransmitted data according to the feedback information of the receiver.
  • the methods for the terminal to report side-line feedback information to the network include:
  • the network allocates side-line transmission resources to the terminal. If the sender uses this resource to transmit side-line data that supports side-line feedback, the receiver sends side-line feedback information to the sender. The sender reports the sideline feedback information to the network. The network decides whether to allocate retransmission resources according to the side-line feedback information reported by the sender.
  • the network may allocate a physical uplink control channel (PUCCH) resource to the terminal, and the PUCCH transmission resource is used to carry side feedback information reported by the sender to the network.
  • PUCCH physical uplink control channel
  • UE1 is a transmitting end (Transmisson, TX) UE
  • UE2 is a receiving end (Reception, RX) UE.
  • the gNB allocates side-line transmission resources for UE1 and PUCCH transmission resources.
  • UE1 sends side-line data PSCCH/PSSCH to UE2 on the side-line transmission resources allocated by the gNB.
  • UE2 sends side-line feedback information (such as sending HARQ-ACK on PSFCH) to UE1 according to the detection result of the side-line data, and the side-line feedback information is used to indicate whether the side-line data is received correctly.
  • UE1 reports the side-line feedback information to the network through PUCCH.
  • the network decides whether to allocate retransmission resources for UE1 according to the side feedback information reported by UE1.
  • each side row configuration authorization period includes 4 side row transmission resources, 4 side row feedback transmission resources, and 1 PUCCH resource.
  • the PUCCH resource is after the last side row feedback resource.
  • TX UE only reports side-line feedback information to the network once in a period authorized by side-line configuration, for example, only 1-bit HARQ-ACK information is reported to indicate whether the side-line data transmitted in this period is correctly received by the receiving end .
  • the same PUCCH resources may be allocated for the reporting of side-line feedback information of multiple side-line transmissions.
  • the network allocates the first side row resource for the terminal to transmit PSSCH1 and the corresponding PUCCH through DCI; and allocates the second side row resource for the terminal to transmit PSSCH2, which corresponds to the uplink of PSSCH2.
  • the transmission resource is also the PUCCH.
  • the side-line feedback information of the four PSSCHs are all reported through the same PUCCH, so the terminal can report the side-line feedback information corresponding to multiple PSSCHs through one PUCCH.
  • FIG. 9 is a schematic flowchart of a method 200 for processing side feedback information according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the terminal device obtains a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry information reported by the terminal device to the network device. Sideline feedback information.
  • the terminal device obtains the side-line feedback information carried by the uplink transmission channel according to the time slot of the uplink transmission channel and the time interval set.
  • the time interval set includes at least one time interval.
  • the time interval set may include one or more elements, and each element may represent a time interval.
  • the elements in the time interval set may be the number of time slots.
  • the element if the element is 3, it may indicate that the time interval between the side feedback channel and the uplink transmission channel is 3 time slots.
  • the elements in the time interval set can be 3, or ⁇ 3, 5 ⁇ , or ⁇ 2, 6, 10 ⁇ , etc.
  • the elements in the time interval set can also represent the length of time, such as the number of milliseconds, and can also represent the number of time domain symbols or the number of other time units.
  • the terminal equipment can determine the time interval between the side row feedback channel and the uplink transmission channel according to the elements in the time interval set, and determine the side row feedback channel according to the time slot of the uplink transmission channel and each time interval in the time interval set The time slot in which it is located. Further, the time slot of the side row data channel corresponding to the time slot is determined according to the time slot in which the side row feedback channel is located, and each side row data channel corresponds to one or more side row feedback information, so that the uplink transmission channel can be obtained The side-line feedback information that the bearer needs to report to the network device.
  • each side-line feedback channel includes one or more side-line feedback information
  • multiple side-line feedback information can be transmitted on one uplink transmission channel, which reduces The required uplink transmission channel resources.
  • the uplink transmission channel is PUCCH or PUSCH.
  • the side-line feedback channel is PSFCH.
  • the elements in the time interval set may be used to determine the time interval between PSFCH and PUCCH or PUSCH.
  • the terminal device acquiring the side-line feedback information carried by the uplink transmission channel according to the time slot of the uplink transmission channel and the time interval set includes:
  • the terminal equipment determines the side slot where the side row feedback channel is located according to the time slot of the uplink transmission channel and the time interval in the time interval set;
  • the terminal device obtains the side-line feedback information carried by the uplink transmission channel according to the side-line time slot where the side-line feedback channel is located.
  • one side-line transmission can correspond to one side-line feedback information.
  • the side-line feedback information corresponding to multiple side-line transmissions can be fed back in the same time slot, which is the time slot where the side-line feedback channel is located.
  • multiple side-line feedback channels can be transmitted.
  • the line feedback channel can carry one or more side line feedback information.
  • the side slot in which the side feedback channel is located in the side link can be determined. For example, if only one element is included in the time interval set, a side slot in which the PSFCH is located can be obtained according to this element. If the time interval set includes M elements, the M elements can be used to obtain the side slots where the M PSFCHs are located.
  • the corresponding side row transmission can be obtained from the side row time slot where the side row feedback channel is located, and each side row transmission corresponds to one or more side row feedback information. Then, the acquired side-line feedback information can be carried through the uplink transmission channel, and the uplink transmission channel can be reported to the network. For example, one or more side row data transmission time slots corresponding to the side row time slot can be obtained from the side row time slot where the PSFCH is located, and further, the side row feedback corresponding to the one or more side row data transmissions can be obtained information. Then, the obtained side-line feedback information can be reported to the network through the PUCCH or PUSCH bearer.
  • the number of time slots represented by the elements in the time interval set is based on the size of uplink (UL) subcarriers and/or side link (SL) subcarriers Sure.
  • the terminal device determines the side slot where the side row feedback channel is located according to the time slot of the uplink transmission channel and the time interval in the time interval set, including:
  • the terminal device For each time interval in the time interval set, the terminal device subtracts the time interval from the index of the time slot of the uplink transmission channel to determine the side time slot where the side feedback channel is located.
  • the indexes of the UL and SL time slots correspond one-to-one.
  • the index of the time slot of the uplink transmission channel is subtracted from each time interval in the time interval set to obtain the index of the uplink time slot.
  • the uplink time slot can be determined.
  • the index of the time slot corresponds to the index of the side row time slot, and the side row time slot indicated by the side row time slot index may be the side row time slot where the side row feedback channel is located.
  • n1 and n2 represent the number of time slots.
  • the index of the time slot of the uplink transmission channel is n, then it can be calculated: the index of an uplink time slot is n-n1, the uplink time slot corresponds to a side slot k1; the index of the other uplink time slot is n-n2 , The uplink time slot corresponds to a side row time slot k2.
  • n1 and n2 can be positive integers greater than or equal to 1, and n can be positive integers greater than n1 and n2.
  • n2-n1 can be an integer multiple of the period N of the side line feedback channel of the side link, that is, the difference between the elements in the time interval set is an integer multiple of the period N of the side line feedback channel .
  • the terminal device determines the side slot where the side row feedback channel is located according to the time slot of the uplink transmission channel and the time interval in the time interval set, including:
  • the terminal device For each time interval in the time interval set, the terminal device subtracts the time interval from the index of the time slot of the uplink transmission channel to obtain the index of the uplink time slot;
  • the side row time slot where the side row feedback channel is located is determined.
  • the indexes of the UL and SL time slots are not in a one-to-one correspondence, for example, multiple side time slots correspond to one uplink time slot.
  • the index of the time slot of the uplink transmission channel is subtracted from each time interval in the time interval set to obtain the index of the uplink time slot.
  • the indexes of the corresponding multiple side row time slots can be obtained.
  • the side row time slot where the side row feedback channel is located can be determined.
  • the time interval set includes ⁇ n1, n2 ⁇ , and n1 and n2 represent the number of time slots.
  • the index of the time slot of the uplink transmission channel is n, then it can be calculated: the index of an uplink time slot is n-n1, and the index of an uplink time slot is n-n2.
  • n1 and n2 can be positive integers greater than or equal to 1, and n can be positive integers greater than n1 and n2. If n2 is greater than n1, n2-n1 may be an integer multiple of the period N of the side line feedback channel of the side line link.
  • the uplink time slot represented by n-n1 corresponds to m1 side row time slots.
  • the m1 side row time slots may include one or more side row time slots where the side row feedback channel is located.
  • the uplink time slot represented by n-n2 corresponds to m2 side row time slots. From these m2 side-line time slots, the side-line time slot where the side-line feedback channel is located can be determined.
  • the m2 side row time slots may include one or more side row time slots where the side row feedback channel is located.
  • the method further includes: the terminal device reports the side-line feedback information through the uplink transmission channel in the time slot of the uplink transmission channel.
  • the terminal device may send the uplink transmission channel to the network device in the time slot of the uplink transmission channel, and the uplink transmission channel carries the side-line feedback information obtained according to the foregoing manner.
  • the terminal device PUSCH or PDCCH to the network device, and the PUSCH or PDCCH includes multiple side row feedback information.
  • the method further includes: the terminal device determines the hybrid automatic repeat request HARQ information of the side line feedback information carried by the uplink transmission channel according to the number of elements in the time interval set The total number of domains.
  • the number of elements in the time interval set is M
  • M time slots of the side row feedback channel are determined according to the M elements.
  • the total number of HARQ information fields of the sideline feedback information carried by the uplink transmission channel is M.
  • one HARQ information field corresponds to 1 bit.
  • the total number of HARQ information fields of the side-line feedback information carried on the uplink transmission channel is M, which may indicate that the side-line feedback information carried on the uplink transmission channel is M bits.
  • the method further includes: the terminal device determines the side-line feedback information carried by the uplink transmission channel according to the period of the side-line feedback channel and the number of elements in the time interval set
  • the total number of HARQ information fields For example, the number of elements in the time interval set is M, and M time slots of the side row feedback channel are determined according to the M elements.
  • the period of the side-line feedback channel is N, that is, every N time slots includes a time slot of the side-line feedback channel.
  • the total number of HARQ information fields of side-line feedback information carried by the uplink transmission channel is M*N.
  • the method further includes: the terminal device according to the period of the side row feedback channel, the number of elements in the time interval set, the size of the side row subcarrier interval, and the size of the uplink subcarrier interval , Determine the total number of HARQ information fields of the side-line feedback information carried by the uplink transmission channel.
  • the number of elements in the time interval set is M
  • M time slots of the side row feedback channel are determined according to the M elements.
  • the period of the side-line feedback channel is N, that is, every N time slots includes a time slot of the side-line feedback channel.
  • the side row sub-carrier spacing is K times the uplink sub-carrier spacing, that is, one uplink time slot corresponds to K side row time slots, and the total number of HARQ information fields of the side row feedback information carried by the uplink transmission channel is M*K/N.
  • the terminal device determines the HARQ information field of the side-line feedback information carried by the uplink transmission channel according to the period of the side-line feedback channel and the number of elements in the time interval set. Total, including:
  • the terminal device determines the number of PSSCH time slots associated with a PSFCH time slot according to the period of the PSFCH;
  • the terminal device determines the total number of HARQ information fields of the PSFCH carried by the uplink transmission channel according to the number of elements in the time interval set and the number of PSSCH time slots associated with a PSFCH time slot.
  • the period of the PSFCH is N, and the number of PSSCH slots associated with a PSFCH slot is also N. If each PSSCH time slot corresponds to one side row feedback information, the number of side row feedback information corresponding to the N PSSCH time slots is equal to N. And each side row feedback information corresponds to a HARQ information field carried in the uplink transmission channel.
  • each PSSCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • one side row feedback information corresponding to one PSSCH time slot is HARQ-ACK, and the HARQ-ACK may occupy one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots, and one side row feedback information corresponding to each PSSCH time slot can be selected from the side row feedback information corresponding to these PSSCH time slots. Occupies a HARQ information domain in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the priority of the N PSSCH time slots
  • the side-line feedback information corresponding to the highest PSSCH For example, N PSSCH time slots have different priorities, and the side row feedback information corresponding to the PSSCH with the highest priority is selected to occupy one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots, and the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the last transmission in the N PSSCH time slots
  • the side-line feedback information corresponding to the PSSCH For example, the transmission sequence of N PSSCH time slots is different, and the side row feedback information corresponding to the last PSSCH transmitted is selected to occupy one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel is sent in the N PSSCH time slots
  • All the side-line feedback information corresponding to the PSSCH carries out the bit and the side-line feedback information corresponding to the operation.
  • N PSSCH time slots correspond to N side-line feedback information
  • the N side-line feedback information is bit-ANDed to obtain one side-line feedback information.
  • a HARQ information field is used to carry the bit and the side-line feedback information after operation. If the N pieces of side-line feedback information are all ACKs, the side-line feedback information after the bit and operation is ACK.
  • the side-line feedback information after the bit and operation is NACK. If the transmitting end sends the PSSCH, but does not receive the side-line feedback information corresponding to the PSSCH, the side-line feedback information corresponding to the PSSCH is set as NACK during the bit and operation.
  • the method further includes: if the PSSCH is not transmitted in one of the N PSSCH time slots, during the bit and operation, there is no side row corresponding to the time slot in which the PSSCH is transmitted.
  • the feedback information is ACK.
  • N is equal to 4
  • three of the four PSSCH time slots have corresponding side row feedback information ACK, ACK, ACK, and no PSSCH is sent in one time slot.
  • the side-line feedback information obtained by the bit and operation is ACK.
  • N is equal to 6, there are three corresponding side row feedback information of ACK, NACK, and NACK in the 6 PSSCH time slots. If no PSSCH is sent in the three time slots, then the side corresponding to the three time slots that do not send PSSCH will be selected.
  • the line feedback information is set to ACK.
  • the side-line feedback information obtained by the bit and operation is NACK.
  • N is equal to 4
  • the side feedback information corresponding to these three time slots is ACK, NACK, NACK, and the other time slot does not send PSSCH, then this The side-line feedback information corresponding to the three time slots is bit-ANDed, and the obtained side-line feedback information is NACK.
  • the HARQ information field corresponding to the multiple PSSCH time slots in the uplink transmission channel It is the same HARQ state.
  • 3 PSSCH time slots transmit the same side row data
  • the side row feedback information corresponding to the 3 PSSCH time slots are NACK, ACK, and ACK.
  • the HARQ status of the corresponding HARQ information field in the uplink transmission channel of the three PSSCH time slots can be set to ACK.
  • the side-line feedback information carried by the uplink transmission channel is a hybrid automatic repeat request confirmation HARQ-ACK codebook carried by the PUCCH or the PUSCH.
  • the time slot of the uplink transmission channel is determined based on the time interval and the time slot of the side row feedback channel. For example, the sum of the time slot of the side row feedback channel and the time interval in the time interval set is equal to the time slot of the uplink transmission channel. Therefore, the network allocates the time slot of the uplink transmission channel according to the time interval in the time interval and the time slot where the side feedback channel is located.
  • the method further includes: the terminal device receives radio resource control RRC signaling or system information SIB, and the RRC signaling or SIB includes the time interval set.
  • the method further includes: pre-configuring the time interval set in the terminal device.
  • the side row feedback information carried by the uplink transmission channel can be obtained, and the side row feedback information carried by the uplink transmission channel can be obtained through an uplink transmission
  • the channel reports these side-line feedback information, thereby reducing the transmission resources required for reporting the side-line feedback information.
  • FIG. 10 is a schematic flowchart of a method 300 for processing side feedback information according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the network device sends a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry information reported by the terminal device to the network device.
  • Sideline feedback information ;
  • the network device sends scheduling information, where the scheduling information is used to determine the time slot of the uplink transmission channel.
  • the method further includes: the network device sends radio resource control RRC signaling or system information SIB, and the RRC signaling or system information SIB includes the time interval set.
  • the method further includes: the network device receives the uplink transmission channel in a time slot of the uplink transmission channel, and the uplink transmission channel includes the side-line feedback information.
  • the time interval set includes at least one time interval.
  • the method further includes: the network device determines the HARQ information field of the side line feedback information carried by the uplink transmission channel according to the number of elements in the time interval set total.
  • the method further includes: the network device determines the value of the side-line feedback information carried by the uplink transmission channel according to the period of the side-line feedback channel and the number of elements in the time interval set. The total number of HARQ information fields.
  • the network device determines the HARQ information field of the side-line feedback information carried by the uplink transmission channel according to the period of the side-line feedback channel and the number of elements in the time interval set. Total, including:
  • the network device determines the number of PSSCH time slots associated with one PSFCH time slot according to the period of the PSFCH;
  • the network device determines the total number of HARQ information fields of the PSFCH carried by the uplink transmission channel according to the number of elements in the time interval set and the number of PSSCH time slots associated with a PSFCH time slot.
  • each PSSCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the highest priority among the N PSSCH time slots.
  • the side-line feedback information corresponding to the PSSCH is associated with N PSSCH time slots
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the last transmitted in the N PSSCH time slots.
  • each PSFCH time slot is associated with N PSSCH time slots, and the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel is sent in the N PSSCH time slots All the side-line feedback information corresponding to the PSSCH carries out the bit and the side-line feedback information corresponding to the operation.
  • the method further includes: if the PSSCH is not transmitted in one of the N PSSCH time slots, during the bit and operation, there is no side row corresponding to the time slot in which the PSSCH is transmitted.
  • the feedback information is ACK.
  • the one HARQ information field corresponds to 1 bit.
  • the HARQ information field corresponding to the multiple PSSCH time slots in the uplink transmission channel It is the same HARQ state.
  • the number of time slots represented by the elements in the time interval set is determined based on the size of the uplink UL subcarrier and/or the side link SL subcarrier.
  • the uplink transmission channel is PUCCH or PUSCH.
  • the side-line feedback information carried by the uplink transmission channel is a hybrid automatic repeat request confirmation HARQ-ACK codebook carried by the PUCCH or the PUSCH.
  • the time slot of the uplink transmission channel is determined based on the time interval and the time slot of the side row feedback channel.
  • the embodiments of the present application can provide a semi-static HARQ-ACK codebook design.
  • network configuration information configuration or pre-configuration multiple side row feedback information can be configured to be reported to the network through one PUCCH (or PUSCH).
  • the correspondence between the side-line transmission resources and the transmission resources of the PUCCH (or PUSCH) can be configured in a semi-static manner.
  • Embodiment 1 The side-line feedback information corresponding to multiple side-line transmissions is multiplexed on one PUCCH. This embodiment includes the following features.
  • Feature 1 Network configuration or pre-configuration of a set of time intervals.
  • the elements in this set may represent the slot offset between the time slot where the PSFCH is located and the time slot where the PUCCH is located.
  • the time slot offset is represented by K1
  • the time slot offset is determined according to the uplink subcarrier, or the time slot offset represents the number of uplink time slots.
  • Feature 2 The number of HARQ information fields included in the PUCCH can be determined according to the number of elements in the set.
  • the time domain period of PSFCH is N time slots.
  • Each N time slots includes 1 PSFCH time slot, and the side row feedback information corresponding to each PSSCH in the N time slots is transmitted in this 1 PSFCH time slot.
  • the side row feedback information corresponding to the N time slots can be reported to the network in the PUCCH in the following manner:
  • Each PSSCH time slot corresponds to a HARQ information field of PUCCH
  • Each PSFCH time slot corresponds to one HARQ information field of PUCCH.
  • Each PSFCH time slot is associated with multiple PSSCH time slots, for example, one PSFCH time slot is associated with N PSSCH time slots.
  • the terminal selects the side row feedback information corresponding to the PSSCH with the highest priority to report according to the priority of the PSSCH sent in the N time slots.
  • the terminal selects the side row feedback information corresponding to the last PSSCH sent according to the sequence of the PSSCHs sent in the N time slots to report.
  • the terminal binds and reports sideline feedback information corresponding to the PSSCH sent in the N timeslots, where the binding operation may include sideline feedback information corresponding to the PSSCH sent in the N timeslots Perform bit and operation. If one side row feedback information is one HARQ-ACK information, then N HARQ-ACK information can be bit-ANDed.
  • the PSFCHs corresponding to time slots 2, 3, 4, and 5 are all transmitted in time slot 7.
  • time slots 2, 3, 4, and 5 correspond to the same side row feedback time slot
  • this time slot can transmit multiple PSFCHs, for example, 4 PSFCHs, each PSFCH includes 1 bit, and corresponds to time slots 2, 3 respectively
  • the side-line feedback information of the PSSCH corresponding to, 4, and 5, and the side-line feedback information corresponding to the four side-line PSSCHs may all be reported through the PUCCH. Therefore, 4 HARQ-ACK information fields can be set in the PUCCH, which are respectively used to report the side row feedback information of these 4 time slots.
  • the number of PSSCH slots corresponding to one PSFCH slot is determined.
  • Each PSSCH slot corresponds to a HARQ-ACK information field in the PUCCH.
  • N 4, then 8 (N times the number of elements in the time interval set) HARQ-ACK information fields are included in the PUCCH.
  • the total number of bits of the side feedback information carried by the PUCCH is determined according to the number of bits of the side feedback information corresponding to each PSSCH.
  • one PSSCH corresponds to 1-bit side-line feedback information
  • the PUCCH in the above example includes 8-bit side-line feedback information.
  • the number of HARQ-ACK information fields in the PUCCH is related to the size of UL subcarriers and SL subcarriers.
  • the subcarrier spacing of UL and SL in Figure 11 are the same.
  • the subcarrier spacing of UL and SL in Figure 12 are different.
  • UL SCS 15kHz
  • the HARQ-ACK codebook information in the PUCCH is determined as follows:
  • the set includes elements ⁇ 1,2 ⁇ , and the number of time slots represented by this element is determined based on UL time slots.
  • UL time slot 2 is obtained (that is, time slot 3 minus time slot interval 1).
  • the SL time slots (side row time slots 8, 9, 10, 11) corresponding to the UL time slot 2 include two PSFCH time slots (side row time slot 9 and side row time slot 11).
  • the PSFCH of the side slot 9 corresponds to the side-line feedback of the PSSCH of the side slot 6 and 7
  • the PSFCH of the side slot 11 corresponds to the side-line feedback of the PSSCH of the side slot 8 and 9.
  • the PUCCH includes 4 HARQ-ACK information fields, the first 2 bits correspond to the side row feedback information corresponding to the side row time slots 6 and 7, and the last 2 bits correspond to the side row feedback information corresponding to the side row time slots 8, 9.
  • UL time slot 1 (that is, time slot 3 minus time slot interval 2) is obtained.
  • the SL time slots (side row time slots 4, 5, 6, 7) corresponding to UL time slot 1 include two PSFCH time slots (side row time slot 5 and side row time slot 7).
  • the PSFCH in side slot 5 corresponds to the side row feedback of PSSCH in side row slots 2 and 3
  • the PSFCH in side row slot 7 corresponds to the side row feedback of PSSCH in side row slots 4 and 5.
  • the PUCCH includes a total of 8 HARQ-ACK information fields, respectively corresponding to the side row feedback information corresponding to the side row time slot 2 to the side row time slot 9.
  • Feature 4 For multiple PSSCHs scheduled by the network to transmit the same side row data, in the PUCCH, the HARQ-ACK information fields corresponding to the multiple PSSCH transmissions are set to the same HARQ state.
  • the network schedules transmission resources on side time slots 2 and 3 for TX UE through DCI, and indicates that the time slot interval between PSFCH and PUCCH is 2.
  • the TX UE determines that its corresponding PSFCH is time slot 7 according to time slots 2 and 3, so it can determine that the time slot in which the PUCCH is located is time slot 9.
  • the TX UE transmits the first transmission and retransmission of side row data in time slots 2 and 3.
  • the RX UE sends the side row feedback information ACK (or NACK) to the TX UE.
  • the two HARQ-ACK information fields corresponding to side time slots 2 and 3 in the PUCCH of the TX UE are both set to ACK (or NACK).
  • the terminal determines the time slot in which the PUCCH is located according to the last PSFCH resource corresponding to the multiple PSSCH resources scheduled by the network.
  • the network schedules the sideline transmission resources of time slot 2 and time slot 8 in SL, and indicates that the time slot interval of PSFCH and PUCCH is 2, and the time slot of PSFCH corresponding to PSSCH of time slot 2 is a time slot. 7.
  • the time slot of the PSFCH corresponding to the PSSCH of time slot 8 is time slot 11.
  • the terminal determines the time slot where the PUCCH transmission resource is located according to the PSFCH of the time slot 11, that is, the PUCCH transmission resource is located in the time slot 13 (time slot 11 of the last PSFCH + time slot interval 2).
  • the side row transmission resource will be indicated in the DCI, and the time slot interval between the PSFCH and the PUCCH will be indicated.
  • the time slot of the PUCCH is determined according to the time interval, and then the HARQ-ACK codebook carried by the PUCCH is determined according to the values of all K1 in the time interval set configured by the network.
  • side row transmission resources are configured according to RRC signaling (or DCI), and the time interval between PSFCH and PUCCH is indicated in RRC signaling (or DCI).
  • the terminal determines the time slot of the last PSFCH corresponding to the side row transmission resource in each side row configuration authorization period, and determines the time slot of the PUCCH according to the time interval, and then according to all K1's in the timing parameter set configured by the network.
  • the value is used to determine the HARQ-ACK codebook carried by the PUCCH.
  • the side-line feedback information corresponding to multiple side-line time slots can be reported to the network through one PUCCH, which reduces the resource overhead of the PUCCH.
  • FIG. 13 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include:
  • the acquiring unit 410 is configured to acquire a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry the terminal device to the network device Side-line feedback information reported;
  • the obtaining unit 410 is further configured to obtain the side-line feedback information carried by the uplink transmission channel according to the time slot of the uplink transmission channel and the time interval set.
  • the obtaining unit 410 is specifically configured to obtain the side-line feedback information carried by the uplink transmission channel according to the side-line time slot in which the side-line feedback channel is located.
  • the acquiring unit 410 is specifically configured to, for each time interval in the time interval set, subtract the time interval from the index of the time slot of the uplink transmission channel to determine the side row The side slot where the feedback channel is located.
  • the acquiring unit 410 is specifically configured to subtract the index of the time slot of the uplink transmission channel from the time interval of the time interval of the uplink transmission channel for each time interval in the time interval set to obtain the uplink time slot. According to the index of the uplink time slot, determine the side row time slot where the side row feedback channel is located.
  • the terminal device further includes:
  • the reporting unit 420 is configured to report the side line feedback information through the uplink transmission channel in the time slot of the uplink transmission channel.
  • the time interval set includes at least one time interval.
  • the terminal device further includes: a first determining unit 430, configured to determine, according to the number of elements in the time interval set, the mix of side-line feedback information carried by the uplink transmission channel The total number of HARQ information fields of automatic retransmission request.
  • a first determining unit 430 configured to determine, according to the number of elements in the time interval set, the mix of side-line feedback information carried by the uplink transmission channel The total number of HARQ information fields of automatic retransmission request.
  • the terminal device further includes: a second determining unit 440, configured to determine the number of elements in the set of the period and time interval of the side row feedback channel to determine the amount of data carried by the uplink transmission channel The total number of HARQ information fields of side-line feedback information.
  • a second determining unit 440 configured to determine the number of elements in the set of the period and time interval of the side row feedback channel to determine the amount of data carried by the uplink transmission channel The total number of HARQ information fields of side-line feedback information.
  • the second determining unit 440 is specifically configured to determine the number of PSSCH slots associated with a PSFCH slot according to the period of the PSFCH; according to the sum of the number of elements in the time interval set
  • the number of PSSCH time slots associated with a PSFCH time slot determines the total number of HARQ information fields of the PSFCH carried by the uplink transmission channel.
  • each PSSCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the highest priority among the N PSSCH time slots.
  • the side-line feedback information corresponding to the PSSCH is associated with N PSSCH time slots
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the last transmitted in the N PSSCH time slots.
  • each PSFCH time slot is associated with N PSSCH time slots, and the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel is sent in the N PSSCH time slots All the side-line feedback information corresponding to the PSSCH carries out the bit and the side-line feedback information corresponding to the operation.
  • the first determining unit 430 is further configured to, if no PSSCH is sent in one of the N PSSCH time slots, when performing bit AND operations, there is no time slot for sending the PSSCH
  • the corresponding side-line feedback information is ACK.
  • the one HARQ information field corresponds to 1 bit.
  • the HARQ information field corresponding to the multiple PSSCH time slots in the uplink transmission channel It is the same HARQ state.
  • the number of time slots represented by the elements in the time interval set is determined based on the size of the uplink UL subcarrier and/or the side link SL subcarrier.
  • the uplink transmission channel is PUCCH or PUSCH.
  • the side-line feedback information carried by the uplink transmission channel is a hybrid automatic repeat request confirmation HARQ-ACK codebook carried by the PUCCH or the PUSCH.
  • the time slot of the uplink transmission channel is determined based on the time interval and the time slot of the side row feedback channel.
  • the terminal device further includes: a receiving unit 450, configured to receive radio resource control RRC signaling or system information SIB, where the RRC signaling or SIB includes the time interval set.
  • a receiving unit 450 configured to receive radio resource control RRC signaling or system information SIB, where the RRC signaling or SIB includes the time interval set.
  • the terminal device further includes: a pre-configuration unit 460, configured to pre-configure the time interval set in the terminal device.
  • the terminal device 400 of the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiment.
  • the corresponding processes, functions, implementation manners, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 400 please refer to the corresponding description in the foregoing method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal device 400 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module. (Submodule, unit or component, etc.) Realization.
  • FIG. 15 is a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 may include:
  • the sending unit 510 is configured to send a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry the terminal device to report to the network device Side-line feedback information;
  • the sending unit 510 is also used to send scheduling information, and the scheduling information is used to determine the time slot of the uplink transmission channel.
  • the sending unit 510 is further configured to send radio resource control RRC signaling or system information SIB, and the RRC signaling or system information SIB includes the time interval set.
  • the network device further includes: a receiving unit 520, configured to receive the uplink transmission channel in a time slot of the uplink transmission channel, and the uplink transmission channel includes the Sideline feedback information.
  • the time interval set includes at least one time interval.
  • the network device further includes: a first determining unit 530, configured to determine, according to the number of elements in the time interval set, the mix of side-line feedback information carried by the uplink transmission channel The total number of HARQ information fields of automatic retransmission request.
  • a first determining unit 530 configured to determine, according to the number of elements in the time interval set, the mix of side-line feedback information carried by the uplink transmission channel The total number of HARQ information fields of automatic retransmission request.
  • the network device further includes: a second determining unit 540, configured to determine the number of elements in the set of the period and time interval of the side row feedback channel to determine the amount of data carried by the uplink transmission channel The total number of HARQ information fields of side-line feedback information.
  • a second determining unit 540 configured to determine the number of elements in the set of the period and time interval of the side row feedback channel to determine the amount of data carried by the uplink transmission channel The total number of HARQ information fields of side-line feedback information.
  • the second determining unit 540 is specifically configured to determine the number of PSSCH slots associated with a PSFCH slot according to the period of the PSFCH; according to the number of elements in the time interval set
  • the number of PSSCH time slots associated with a PSFCH time slot determines the total number of HARQ information fields of the PSFCH carried by the uplink transmission channel.
  • each PSSCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot corresponds to one HARQ information field in the uplink transmission channel.
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the highest priority among the N PSSCH time slots.
  • the side-line feedback information corresponding to the PSSCH is associated with N PSSCH time slots
  • each PSFCH time slot is associated with N PSSCH time slots
  • the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel carries the last transmitted in the N PSSCH time slots.
  • each PSFCH time slot is associated with N PSSCH time slots, and the HARQ information field corresponding to the PSFCH time slot in the uplink transmission channel is sent in the N PSSCH time slots All the side-line feedback information corresponding to the PSSCH carries out the bit and the side-line feedback information corresponding to the operation.
  • the first determining unit 530 is further configured to, if no PSSCH is transmitted in one of the N PSSCH time slots, when performing bit AND operations, there is no time slot for transmitting the PSSCH
  • the corresponding side-line feedback information is ACK.
  • the one HARQ information field corresponds to 1 bit.
  • the HARQ information field corresponding to the multiple PSSCH time slots in the uplink transmission channel It is the same HARQ state.
  • the number of time slots represented by the elements in the time interval set is determined based on the size of the uplink UL subcarrier and/or the side link SL subcarrier.
  • the uplink transmission channel is PUCCH or PUSCH.
  • the side-line feedback information carried by the uplink transmission channel is a hybrid automatic repeat request confirmation HARQ-ACK codebook carried by the PUCCH or the PUSCH.
  • the time slot of the uplink transmission channel is determined based on the time interval and the time slot of the side row feedback channel.
  • the network device 500 of the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiment.
  • the corresponding processes, functions, implementation modes, and beneficial effects of each module (sub-module, unit or component, etc.) in the network device 500 please refer to the corresponding description in the foregoing method embodiment, and will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the network device 500 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module. (Submodule, unit or component, etc.) Realization.
  • FIG. 17 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 17 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the communication device 600 may be a terminal device of an embodiment of the present application, and the communication device 600 may implement corresponding procedures implemented by the terminal device in each method of the embodiments of the present application. For brevity, details are not described herein again.
  • FIG. 18 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 shown in FIG. 18 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the aforementioned processors can be general-purpose processors, digital signal processors (digital signal processors, DSP), ready-made programmable gate arrays (field programmable gate arrays, FPGAs), application specific integrated circuits (ASICs), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • ASIC application specific integrated circuits
  • the aforementioned general-purpose processor may be a microprocessor or any conventional processor.
  • the above-mentioned memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 19 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 19, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 is used to obtain a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry the terminal device to report to the network device Feedback from the sideline.
  • the terminal device 810 is further configured to obtain the side-line feedback information carried by the uplink transmission channel according to the time slot of the uplink transmission channel and the time interval set.
  • the network device 820 is used to send a time interval set, and the elements in the time interval set are used to determine the time interval between the sideline feedback channel and the uplink transmission channel; wherein, the uplink transmission channel is used to carry information reported by the terminal device to the network device Sideline feedback information.
  • the network device 820 is also used to send scheduling information, and the scheduling information is used to determine the time slot of the uplink transmission channel.
  • the terminal device 810 may be used to implement the corresponding function implemented by the terminal device in the foregoing method
  • the network device 820 may be used to implement the corresponding function implemented by the network device in the foregoing method.
  • I will not repeat them here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction may be transmitted from a website, computer, server, or data center through a cable (Such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种侧行反馈信息处理方法、终端设备和网络设备。其中,侧行反馈信息处理方法包括:终端设备获取时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息;该终端设备根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息。本申请实施例中,通过时间间隔集合中的侧行反馈信道与上行传输信道之间的时间间隔以及上行传输信道的时隙,可以获取上行传输信道承载的侧行反馈信息,并通过一个上行传输信道上报这些侧行反馈信息,从而降低上报侧行反馈信息所需的传输资源。

Description

侧行反馈信息处理方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种侧行反馈信息处理方法、终端设备和网络设备。
背景技术
设备到设备(Device to Device,D2D)通信是一种基于侧行链路(Sidelink,SL)的传输技术。与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,D2D系统具有更高的频谱效率以及更低的传输时延。车联网(Vehicle to Everything,V2X)系统采用终端到终端直接通信的方式。在新无线(New Radio,NR)-V2X中,发送端向接收端发送侧行数据后,可以接收侧行反馈信道承载的侧行反馈信息,再将该侧行反馈信息上报给网络。该侧行反馈信息可以指示该侧行数据是否被正确接收。如何降低上报侧行反馈信息所需的传输资源,是需要解决的问题。
发明内容
本申请实施例提供一种侧行反馈信息处理方法、终端设备和网络设备,可以降低上报侧行反馈信息所需的传输资源。
本申请实施例提供一种侧行反馈信息处理方法,包括:
终端设备获取时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息;
该终端设备根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息。
本申请实施例提供一种侧行反馈信息处理方法,包括:
网络设备发送时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载终端设备向网络设备上报的侧行反馈信息;
该网络设备发送调度信息,该调度信息用于确定该上行传输信道的时隙。
本申请实施例提供一种终端设备,包括:
获取单元,用于获取时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息;
该获取单元还用于根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息。
本申请实施例提供一种网络设备,包括:
发送单元,用于发送时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载终端设备向网络设备上报的侧行反馈信息;
该发送单元还用于发送调度信息,该调度信息用于确定该上行传输信道的时隙。
本申请实施例提供一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的侧行反馈信息处理方法。
本申请实施例提供一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的侧行反馈信息处理方法。
本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的侧行反馈信息处理方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的侧行反馈信息处理方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的侧行反馈信息处理方法。
本申请实施例提供一种计算机程序,该计算机程序使得计算机执行上述的侧行反馈信息处理方法。
本申请实施例提供一种通信系统,包括:
终端设备,用于执行上述的终端设备所执行的侧行反馈信息处理方法。
网络设备,用于执行上述的网络设备所执行的侧行反馈信息处理方法。
本申请实施例中,通过时间间隔集合中的侧行反馈信道与上行传输信道之间的时间间隔以及上行传输信道的时隙,可以获取上行传输信道承载的侧行反馈信息,并通过一个上行传输信道上报这些侧行反馈信息,从而降低上报侧行反馈信息所需的传输资源。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2A和图2B是车联网传输模式的示意图。
图3是单播传输的示意图。
图4是组播传输的示意图。
图5是广播传输的示意图。
图6A是发送端与接收端之间传输的示意图。
图6B是网络与终端之间传输的示意图。
图7是侧行与上行传输资源关系的示意图。
图8是通过PUCCH上报PSSCH的示意图。
图9是根据本申请一实施例侧行反馈信息处理方法的示意性流程图。
图10是根据本申请另一实施例侧行反馈信息处理方法的示意性流程图。
图11是通过一个PUCCH上报多个PSSCH对应的侧行反馈信息的一个示例图。
图12是通过一个PUCCH上报多个PSSCH对应的侧行反馈信息的另一个示例图。
图13是根据本申请一实施例的终端设备的示意性框图。
图14是根据本申请另一实施例的终端设备的示意性框图。
图15是根据本申请一实施例的网络设备的示意性框图。
图16是根据本申请另一实施例的网络设备的示意性框图。
图17是根据本申请实施例的通信设备示意性框图。
图18是根据本申请实施例的芯片的示意性框图。
图19是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备110和两个终端设备120,可选地,该无线通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在第三代移动通信标准化组织(3rd Generation Partnership Project,3GPP)协议中,车联网具有两种传输模式:第一模式和第二模式。
第一模式:终端的传输资源是由网络例如基站gNB通过下行链路分配的,如图2A所示。终端根据基站分配的资源在侧行链路SL上进行数据的发送。基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。在LTE-V2X中又称为模式3。
第二模式:车载终端在资源池中选取一个资源进行数据的传输。在LTE-V2X中又称为模式4。如图2B所示,终端在网络内可以自己选取传输资源。此外,终端在网络外,也可以自己选取传输资源。
在NR-V2X中,需要支持自动驾驶,对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式。在NR-V2X中,引入了单播和组播的传输方式。对于单播传 输,其接收端终端(简称接收端)只有一个终端,如图3所示,UE1、UE2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。如图4所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端。对于广播传输方式,其接收端是任意一个终端,如图5所示,其中UE1是发送端终端(简称发送端),其周围的其他终端都是接收端。
下面介绍侧行配置授权(Configured Grant,CG)。
在NR-V2X中,支持模式1和模式2的资源分配方式。在模式2中,终端在资源池自主选取传输资源进行侧行传输,即上述第二模式。在模式1中,网络为终端分配侧行传输资源,即上述第一模式。具体的,网络可以通过动态调度(Dynamic Scheduling)的方式为终端分配侧行传输资源;或者网络可以为终端分配侧行配置授权(SL CG)传输资源。对于CG的资源分配方式,主要包括两种配置授权方式:type-1configured grant(第一类配置授权)和type-2configured grant(第二类配置授权)。
第一类配置授权:网络通过无线资源控制(Radio Resource Control,RRC)信令为终端配置侧行传输资源,该RRC信令配置包括时域资源、频域资源、解调用参考信号(Demodulation Reference Symbol,DMRS)、调制编码方案(Modulation and Coding Scheme,MCS)等在内的全部传输资源和传输参数。当UE接收到该高层参数后,可使用所配置的传输参数在配置的时频资源上进行侧行传输。
第二类配置授权:采用两步的资源配置方式,即RRC和下行控制信息(Downlink Control Information,DCI)的方式。首先,由RRC信令配置包括时频资源的周期、冗余版本、重传次数、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程数等在内的传输资源和传输参数。然后由DCI激活第二类配置授权的传输。并同时配置包括时域资源、频域资源等在内的其他传输资源和传输参数。UE在接收到RRC信令时,不能立即使用该高层参数配置的资源和参数进行侧行传输,而必须等接收到相应的DCI激活并配置其他资源和传输参数后,才能进行侧行传输。此外,网络可以通过DCI去激活该配置传输,当终端接收到去激活的DCI后,不能再使用该传输资源进行侧行传输。
如果网络为终端分配了配置授权的传输资源,当终端有侧行数据要传输时,可以直接使用该传输资源进行传输,而不需要向网络发送SR/BSR请求传输资源,从而降低时延。
在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。例如,如图6A所示,对于单播传输,发送端向接收端发送侧行数据(例如包括物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH));接收端向发送端发送HARQ反馈信息。发送端根据接收端的反馈信息判断是否需要进行重传。其中,HARQ反馈信息承载在侧行反馈信道例如物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)中。
可以通过预配置信息或者网络配置信息激活或者去激活侧行反馈。如果侧行反馈被激活,则接收端接收发送端发送的侧行数据,并且根据检测结果向发送端反馈HARQ肯定确认(Acknowledgement,ACK)或者否定确认(Negative Acknowledgement,NACK)。发送端根据接收端的反馈信息决定发送重传数据或者新数据。如果侧行反馈被去激活,接收端不需要发送反馈信息,发送端通常采用盲重传的方式发送数据。例如,发送端对每个侧行数据重复发送K次,而不是根据接收端反馈信息决定是否需要发送重传数据。
终端向网络上报侧行反馈信息的方式包括:
在模式1中,网络为终端分配侧行传输资源,如果发送端使用该资源传输支持侧行反馈的侧行数据,接收端向发送端发送侧行反馈信息。发送端将该侧行反馈信息上报给网络。网络根据该发送端上报的侧行反馈信息决定是否需要分配重传资源。
具体的,网络可以为终端分配物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源,该PUCCH传输资源用于承载发送端向网络上报的侧行反馈信息。
如图6B所示,例如:UE1是发送端(Transmisson,TX)UE,UE2是接收端(Reception,RX)UE。gNB为UE1分配侧行传输资源,并且分配了PUCCH的传输资源。UE1在gNB分配的侧行传输资源上向UE2发送侧行数据PSCCH/PSSCH。UE2根据侧行数据的检测结果向UE1发送侧行反馈信息 (如在PSFCH上发送HARQ-ACK),该侧行反馈信息用于指示该侧行数据是否被正确接收。UE1将该侧行反馈信息通过PUCCH上报给网络。网络根据UE1上报的侧行反馈信息决定是否为UE1分配重传资源。
而对于侧行配置授权,在一个配置的资源周期内,只有一个PUCCH资源,用于终端向网络上报侧行反馈信息。如图7所示,例如:每个侧行配置授权的周期包括4个侧行传输资源,以及4个侧行反馈传输资源,1个PUCCH资源。该PUCCH资源在最后一个侧行反馈资源之后。TX UE在一个侧行配置授权的周期内只向网络上报一次侧行反馈信息,例如,只上报1比特的HARQ-ACK信息,用于指示该周期内传输的侧行数据是否被接收端正确接收。
为了降低PUCCH资源的开销,网络在为终端分配侧行传输资源时,可以为多次侧行传输的侧行反馈信息的上报分配相同的PUCCH资源。如图8所示,例如:网络通过DCI为终端分配第一个侧行资源用于传输PSSCH1,以及对应的PUCCH;并且为终端分配第二个侧行资源用于传输PSSCH2,该PSSCH2对应的上行传输资源也是该PUCCH。以此类推,四个PSSCH的侧行反馈信息都通过相同的PUCCH上报,因此终端可以通过一个PUCCH上报多个PSSCH对应的侧行反馈信息。
图9是根据本申请一实施例侧行反馈信息处理方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、终端设备获取时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息。
S220、该终端设备根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息。
可选地,在本申请实施例中,该时间间隔集合中包括至少一个时间间隔。
可选地,在本申请实施例中,该时间间隔集合中可以包括一个或多个元素,每个元素可以表示一个时间间隔。
可选地,在本申请实施例中,时间间隔集合中的元素可以为时隙数。示例性地,如果元素为3,可以表示侧行反馈信道与上行传输信道之间的时间间隔为3个时隙。时间间隔集合中的元素可以为一个或多个。例如,时间间隔集合中的元素可以为3,也可以{3,5},或者为{2,6,10}等。此外,时间间隔集合中的元素也可以表示时间长度例如毫秒数,还可以表示时域符号数或者其他时间单元的数量。
终端设备根据时间间隔集合中的元素可以确定侧行反馈信道与上行传输信道之间的时间间隔,并且根据该上行传输信道的时隙与该时间间隔集合中的各时间间隔,确定侧行反馈信道所在的时隙。进一步地,根据侧行反馈信道所在的时隙确定该时隙对应的侧行数据信道所在的时隙,每个侧行数据信道对应一个或多个侧行反馈信息,从而可以获取该上行传输信道承载的需要向网络设备上报的侧行反馈信息。由于一个侧行反馈信道所在的时隙可以包括多个侧行反馈信道,每个侧行反馈信道包括一个或多个侧行反馈信息,可以在一个上行传输信道传输多个侧行反馈信息,降低所需的上行传输信道资源。
可选地,在本申请实施例中,该上行传输信道为PUCCH或PUSCH。
可选地,在本申请实施例中,侧行反馈信道为PSFCH。
可选地,在本申请实施例中,时间间隔集合中的元素可以用于确定PSFCH与PUCCH或PUSCH之间的时间间隔。
可选地,在本申请实施例中,该终端设备根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息,包括:
该终端设备根据该上行传输信道的时隙和该时间间隔集合中的时间间隔,确定该侧行反馈信道所在的侧行时隙;
该终端设备根据该侧行反馈信道所在的侧行时隙,获取该上行传输信道承载的该侧行反馈信息。
在侧行链路中,一个侧行传输可以对应一个侧行反馈信息。多个侧行传输对应的侧行反馈信息可以在相同的时隙进行反馈,该时隙即为侧行反馈信道所在的时隙,在该时隙中可以传输多个侧行反馈信道,一个侧行反馈信道可以承载一个或多个侧行反馈信息。根据上行链路中,上行传输信道的时隙以及时间 间隔集合中的元素,可以确定侧行反馈信道在侧行链路中所在的侧行时隙。例如,如果时间间隔集合中只包括一个元素,根据该元素可以得到一个PSFCH所在的侧行时隙。如果时间间隔集合中包括M个元素,根据该M个元素可以得到M个PSFCH所在的侧行时隙。
从侧行反馈信道所在的侧行时隙可以获取其对应的侧行传输,每个侧行传输对应一个或多个侧行反馈信息。然后,可以通过上行传输信道承载所获取的这些侧行反馈信息,将该上行传输信道上报给网络。例如,从PSFCH所在的侧行时隙可以获取该侧行时隙对应的一个或多个侧行数据传输的时隙,进一步的,可以获取该一个或多个侧行数据传输对应的侧行反馈信息。然后,可以通过PUCCH或PUSCH承载所获取的这些侧行反馈信息,将该PUCCH或PUSCH上报给网络。
可选地,在本申请实施例中,该时间间隔集合中的元素所表示的时隙个数基于上行链路(Uplink,UL)子载波和/或侧行链路(SL)子载波的大小确定。
可选地,在本申请实施例中,该终端设备根据该上行传输信道的时隙和该时间间隔集合中的时间间隔,确定该侧行反馈信道所在的侧行时隙,包括:
对于该时间间隔集合中的每个时间间隔,该终端设备将该上行传输信道的时隙的索引减去该时间间隔,确定该侧行反馈信道所在的侧行时隙。
如果UL子载波和SL子载波的大小相同,UL和SL的时隙的索引一一对应。上行传输信道的时隙的索引减去时间间隔集合中的每个时间间隔可以得到上行时隙的索引,根据上行时隙的索引和侧行时隙的索引之间的对应关系,可以确定该上行时隙的索引对应的侧行时隙的索引,该侧行时隙的索引所表示的侧行时隙可以为该侧行反馈信道所在的侧行时隙。
例如,如果时间间隔集合中包括{n1、n2},n1和n2表示时隙数。上行传输信道的时隙的索引为n,则可以计算得到:一个上行时隙的索引为n-n1,该上行时隙对应一个侧行时隙k1;另一个上行时隙的索引为n-n2,该上行时隙对应一个侧行时隙k2。其中,n1、n2可以为大于或等于1的正整数,n可以为大于n1和n2的正整数。如果n2大于n1,n2-n1可以为侧行链路的侧行反馈信道的周期N的整数倍,即该时间间隔集合中的元素之间的差值是侧行反馈信道的周期N的整数倍。
可选地,在本申请实施例中,该终端设备根据该上行传输信道的时隙和该时间间隔集合中的时间间隔,确定该侧行反馈信道所在的侧行时隙,包括:
对于该时间间隔集合中的每个时间间隔,该终端设备将该上行传输信道的时隙的索引减去该时间间隔,得到上行时隙的索引;
根据该上行时隙的索引,确定该侧行反馈信道所在的侧行时隙。
如果UL子载波和SL子载波的大小不同,UL和SL的时隙的索引不是一一对应的,例如,多个侧行时隙对应一个上行时隙。上行传输信道的时隙的索引减去时间间隔集合中的每个时间间隔可以得到上行时隙的索引。根据该上行时隙的索引可以得到其对应的多个侧行时隙的索引。在这些侧行时隙的索引所表示的侧行时隙中,可以确定出侧行反馈信道所在的侧行时隙。
例如,时间间隔集合中包括{n1、n2},n1和n2表示时隙数。上行传输信道的时隙的索引为n,则可以计算得到:一个上行时隙的索引为n-n1,一个上行时隙的索引为n-n2。其中,n1、n2可以为大于或等于1的正整数,n可以为大于n1和n2的正整数。如果n2大于n1,n2-n1可以为侧行链路的侧行反馈信道的周期N的整数倍。n-n1所表示的上行时隙对应m1个侧行时隙。从这m1个侧行时隙中可以确定出侧行反馈信道所在的侧行时隙。这m1个侧行时隙中可能包括一个或多个侧行反馈信道所在的侧行时隙。类似地,n-n2所表示的上行时隙对应m2个侧行时隙。从这m2个侧行时隙中可以确定出侧行反馈信道所在的侧行时隙。这m2个侧行时隙中可能包括一个或多个侧行反馈信道所在的侧行时隙。
可选地,在本申请实施例中,该方法还包括:该终端设备在该上行传输信道的时隙通过该上行传输信道上报该侧行反馈信息。具体地,终端设备在该上行传输信道的时隙可以向网络设备发送该上行传输信道,该上行传输信道中承载根据上述方式获取的侧行反馈信息。例如,终端设备向网络设备PUSCH或PDCCH,该PUSCH或PDCCH中包括多个侧行反馈信息。
可选地,在本申请实施例中,该方法还包括:该终端设备根据该时间间隔集合中的元素个数,确定 该上行传输信道承载的该侧行反馈信息的混合自动重传请求HARQ信息域的总数。例如,时间间隔集合中的元素个数为M,根据M个元素确定出M个侧行反馈信道的时隙。假设每个侧行反馈信道的时隙包括一个侧行反馈信息,该上行传输信道承载的侧行反馈信息的HARQ信息域的总数为M。
可选地,在本申请实施例中,一个HARQ信息域对应1比特。上行传输信道承载的侧行反馈信息的HARQ信息域的总数为M,可以表示在上行传输信道承载的侧行反馈信息为M个比特。
可选地,在本申请实施例中,该方法还包括:该终端设备根据该侧行反馈信道的周期和该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的HARQ信息域的总数。例如,时间间隔集合中的元素个数为M,根据M个元素确定出M个侧行反馈信道的时隙。假设侧行反馈信道的周期为N,即每N个时隙包括一个侧行反馈信道的时隙。该上行传输信道承载的侧行反馈信息的HARQ信息域的总数为M*N。
可选地,在本申请实施例中,该方法还包括:该终端设备根据该侧行反馈信道的周期、该时间间隔集合中的元素个数、侧行子载波间隔大小和上行子载波间隔大小,确定该上行传输信道承载的该侧行反馈信息的HARQ信息域的总数。例如,时间间隔集合中的元素个数为M,根据M个元素确定出M个侧行反馈信道的时隙。假设侧行反馈信道的周期为N,即每N个时隙包括一个侧行反馈信道的时隙。侧行子载波间隔时上行子载波间隔的K倍,即一个上行时隙对应K个侧行时隙,该上行传输信道承载的侧行反馈信息的HARQ信息域的总数为M*K/N。
可选地,在本申请实施例中,该终端设备根据该侧行反馈信道的周期和该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的HARQ信息域的总数,包括:
该终端设备根据PSFCH的周期确定一个PSFCH时隙相关联的PSSCH时隙的个数;
该终端设备根据该时间间隔集合中的元素个数和一个PSFCH时隙相关联的PSSCH时隙的个数,确定该上行传输信道承载的PSFCH的HARQ信息域的总数。
例如,PSFCH的周期为N,一个PSFCH时隙相关联的PSSCH时隙的个数也是N。如果每个PSSCH时隙对应一个侧行反馈信息,则这N个PSSCH时隙对应的侧行反馈信息的个数等于N。并且每个侧行反馈信息对应上行传输信道中承载的一个HARQ信息域。
可选地,在本申请实施例中,每个PSSCH时隙对应该上行传输信道中的一个HARQ信息域。例如,一个PSSCH时隙对应的一个侧行反馈信息为HARQ-ACK,该HARQ-ACK可以占据该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙对应该上行传输信道中的一个HARQ信息域。例如,每个PSFCH时隙与N个PSSCH时隙相关联,每个PSSCH时隙对应的一个侧行反馈信息,可以从这些PSSCH时隙对应的侧行反馈信息中选择出一个侧行反馈信息,占据该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中该PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。例如,N个PSSCH时隙的优先级不同,选择优先级最高的PSSCH对应的侧行反馈信息,占据该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中该PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。例如,N个PSSCH时隙的发送顺序不同,选择最后发送的PSSCH对应的侧行反馈信息,占据该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中该PSFCH时隙对应的HARQ信息域为该N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。例如,N个PSSCH时隙对应N个侧行反馈信息,将这N个侧行反馈信息进行比特与操作得到一个侧行反馈信息。在上行传输信道中通过一个HARQ信息域承载比特与操作后的侧行反馈信息。如果N个侧行反馈信息都是ACK,比特与操作后的侧行反馈信息为ACK。 如果N个侧行反馈信息中有一个是NACK,比特与操作后的侧行反馈信息为NACK。如果发送端发送PSSCH,但是没有接收到该PSSCH对应的侧行反馈信息,在进行比特与操作时将该PSSCH对应的侧行反馈信息设为NACK。
可选地,在本申请实施例中,该方法还包括:如果在该N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。例如:N等于4,4个PSSCH时隙中有三个的对应的侧行反馈信息分别为ACK、ACK、ACK,一个时隙没有发送PSSCH。将这个没有发送PSSCH的时隙对应的侧行反馈信息设置为ACK。比特与操作得到的侧行反馈信息为ACK。
再如,N等于6,6个PSSCH时隙中有三个对应的侧行反馈信息为ACK、NACK、NACK,三个时隙没有发送PSSCH,则将这三个没有发送PSSCH的时隙对应的侧行反馈信息设置为ACK。比特与操作得到的侧行反馈信息为NACK。
再如,N等于4,4个PSSCH时隙中有三个时隙发送了PSSCH,这三个时隙对应的侧行反馈信息为ACK、NACK、NACK,另一个时隙没有发送PSSCH,则将这三个时隙对应的侧行反馈信息进行比特与操作,得到的侧行反馈信息为NACK。
可选地,在本申请实施例中,在该上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,该多个PSSCH时隙在该上行传输信道中对应的HARQ信息域为相同的HARQ状态。
例如,3个PSSCH时隙传输相同的侧行数据,3个PSSCH时隙分别对应的侧行反馈信息为NACK、ACK、ACK。可以将这3个PSSCH时隙在该上行传输信道中对应的HARQ信息域的HARQ状态均设置为ACK。
可选地,在本申请实施例中,该上行传输信道承载的该侧行反馈信息为该PUCCH或该PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
可选地,在本申请实施例中,该上行传输信道的时隙是基于该时间间隔和该侧行反馈信道的时隙确定的。例如,侧行反馈信道的时隙与时间间隔集合中的时间间隔的相加,等于上行传输信道的时隙。因此,网络根据时间间隔中的时间间隔以及侧行反馈信道所在的时隙分配上行传输信道的时隙。可选地,在本申请实施例中,该方法还包括:该终端设备接收无线资源控制RRC信令或系统信息SIB,该RRC信令或SIB中包括该时间间隔集合。
可选地,在本申请实施例中,该方法还包括:在该终端设备中预配置该时间间隔集合。
本申请实施例中,通过时间间隔集合中的侧行反馈信道与上行传输信道之间的时间间隔以及上行传输信道的时隙,可以获取上行传输信道承载的侧行反馈信息,并通过一个上行传输信道上报这些侧行反馈信息,从而降低上报侧行反馈信息所需的传输资源。
图10是根据本申请一实施例侧行反馈信息处理方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、网络设备发送时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息;
S320、该网络设备发送调度信息,该调度信息用于确定该上行传输信道的时隙。
可选地,在本申请实施例中,该方法还包括:网络设备发送无线资源控制RRC信令或系统信息SIB,该RRC信令或系统信息SIB中包括该时间间隔集合。
可选地,在本申请实施例中,该方法还包括:网络设备在该上行传输信道的时隙接收该上行传输信道,该上行传输信道中包括该侧行反馈信息。
可选地,在本申请实施例中,该时间间隔集合中包括至少一个时间间隔。
可选地,在本申请实施例中,该方法还包括:网络设备根据该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的混合自动重传请求HARQ信息域的总数。
可选地,在本申请实施例中,该方法还包括:网络设备根据该侧行反馈信道的周期和该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的HARQ信息域的总数。
可选地,在本申请实施例中,该网络设备根据该侧行反馈信道的周期和该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的HARQ信息域的总数,包括:
该网络设备根据PSFCH的周期确定与一个PSFCH时隙相关联的PSSCH时隙的个数;
该网络设备根据该时间间隔集合中的元素个数和与一个PSFCH时隙相关联的PSSCH时隙的个数,确定该上行传输信道承载的PSFCH的HARQ信息域的总数。
可选地,在本申请实施例中,每个PSSCH时隙对应该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙对应该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中该PSFCH时隙对应的HARQ信息域为该N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
可选地,在本申请实施例中,该方法还包括:如果在该N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
可选地,在本申请实施例中,该一个HARQ信息域对应1比特。
可选地,在本申请实施例中,在该上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,该多个PSSCH时隙在该上行传输信道中对应的HARQ信息域为相同的HARQ状态。
可选地,在本申请实施例中,该时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
可选地,在本申请实施例中,该上行传输信道为PUCCH或PUSCH。
可选地,在本申请实施例中,该上行传输信道承载的该侧行反馈信息为该PUCCH或该PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
可选地,在本申请实施例中,该上行传输信道的时隙是基于该时间间隔和该侧行反馈信道的时隙确定的。
本实施例的网络设备执行方法300的具体示例可以参见上述方法200的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
本申请实施例可以提供一种半静态HARQ-ACK码本设计,通过网络配置信息配置或者预配置的方式,可以配置多个侧行反馈信息通过一个PUCCH(或PUSCH)上报给网络。侧行传输资源和PUCCH(或PUSCH)的传输资源之间的对应关系可以通过半静态的方式配置。
实施例1:多个侧行传输对应的侧行反馈信息在一个PUCCH上复用。该实施例包括以下特征。
特征1:网络配置或者预配置一个时间间隔集合。该集合中的元素可以表示PSFCH所在的时隙和PUCCH所在的时隙之间的时隙偏移量。例如,该时隙偏移量用K1表示,该时隙偏移量根据上行的子载波确定,或者该时隙偏移量表示上行时隙的个数。
特征2:PUCCH中包括的HARQ信息域的个数,可以根据该集合中元素的个数确定。
例如,该集合中包括4个元素值,即4个候选的K1值,则PUCCH中包括的HARQ信息域的个数M是根据元素数4确定的。例如,HARQ信息域的个数M=4;或者M=4*N,其中,N表示PSFCH时域资源的周期参数。
特征3:PSFCH的时域周期是N个时隙。每N个时隙中包括1个PSFCH时隙,N个时隙中的每个PSSCH对应的侧行反馈信息都在这1个PSFCH时隙中传输。该N个时隙对应的侧行反馈信息可以通过下面的方式在PUCCH中上报至网络:
方式1:每个PSSCH时隙分别对应PUCCH的一个HARQ信息域;
方式2:每个PSFCH时隙分别对应PUCCH的一个HARQ信息域。每个PSFCH时隙关联多个PSSCH 时隙,例如,一个PSFCH时隙关联N个PSSCH时隙。可选地,终端根据该N个时隙中发送的PSSCH的优先级,选取优先级最高的PSSCH对应的侧行反馈信息上报。或者,可选地,终端根据该N个时隙中发送的PSSCH的先后顺序,选取最后发送的PSSCH对应的侧行反馈信息上报。或者,可选地,终端将该N个时隙中发送的PSSCH对应的侧行反馈信息绑定上报,其中,绑定操作可以包括将该N个时隙中发送的PSSCH对应的侧行反馈信息进行比特与操作。如果一个侧行反馈信息为一个HARQ-ACK信息,则可以将N个HARQ-ACK信息进行比特与操作。
例如,如图11所示,PSFCH的周期N=4个时隙,即每4个时隙包括一个PSFCH时隙,并且每4个时隙的PSSCH传输对应的PSFCH在相同的时隙传输。如图11中的虚线箭头所示,时隙2、3、4、5对应的PSFCH都是在时隙7传输。PSFCH和PUCCH的时隙间隔的集合为{2,6}。如果网络调度时隙4的侧行传输,并且指示PSFCH和PUCCH之间的时间间隔K1=2。由于在侧行时隙4传输PSSCH,该PSSCH对应的PSFCH在时隙7,并且PSFCH和PUCCH的时隙间隔K1=2,即PUCCH所在的时隙为时隙9(时隙7加上时隙间隔2)。上述集合中的元素6表示时隙间隔K1=6,根据该时隙间隔可以确定侧行时隙3(时隙9减去时隙间隔6)的PSFCH中的侧行反馈信息也是通过该PUCCH上报给网络。
由于网络可以分别调度终端在时隙2、3、4、5上发送侧行数据,因此,在这几个侧行时隙都有可能有对应的侧行反馈信息需要上报。如果时隙2、3、4、5对应相同的侧行反馈时隙,该时隙可以传输多个PSFCH,例如传输4个PSFCH,每个PSFCH分别包括1比特,并且分别对应时隙2、3、4、5对应的PSSCH的侧行反馈信息,这4个侧行PSSCH对应的侧行反馈信息可以都通过PUCCH上报。所以,在PUCCH中可以设置4个HARQ-ACK信息域,分别用于上报这4个时隙的侧行反馈信息。对于每个侧行时隙,在PUCCH中可以有一个HARQ-ACK信息域与之对应,用于承载该侧行时隙的PSSCH对应的侧行反馈信息。
通过以下方式可以确定一个PUCCH中承载的HARQ-ACK信息域的个数:
PUCCH所在的时隙为时隙n,根据集合中元素的取值确定该时隙n对应的PSFCH所在的时隙;如上例中,PUCCH所在的时隙为n=9,根据集合{2,6},确定PSFCH所在的时隙包括侧行时隙3(时隙9减去时隙间隔6)和时隙7(时隙9减去时隙间隔2);
根据PSFCH的周期N,确定一个PSFCH时隙对应的PSSCH的时隙个数。每个PSSCH时隙对应PUCCH中的一个HARQ-ACK信息域。如上例中,N=4,则在PUCCH中包括8个(N乘以时间间隔集合中的元素个数)HARQ-ACK信息域。
进一步的,根据每个PSSCH对应的侧行反馈信息的比特数,确定PUCCH承载的侧行反馈信息的总比特数大小。例如,一个PSSCH对应1比特侧行反馈信息,则上例中PUCCH包括8比特侧行反馈信息。
进一步的,PUCCH中HARQ-ACK信息域的个数和UL子载波和SL子载波的大小有关。图11中UL和SL的子载波间隔相同。图12中UL和SL的子载波间隔不同。例如UL SCS=15kHz,SL SCS=60kHz,即一个UL时隙对应4个SL时隙的长度。PSFCH的周期N=2,PSFCH和PUCCH的时间间隔集合为{1,2}。
如果网络调度侧行传输,并且该侧行传输对应的侧行反馈信息通过UL时隙3的PUCCH上报,则该PUCCH中的HARQ-ACK码本信息如下确定:
集合中包括元素{1,2},该元素表示的时隙个数是基于UL的时隙确定的。根据集合中的元素1,得到UL时隙2(即时隙3减去时隙间隔1)。由于该UL时隙2对应的SL时隙(侧行时隙8、9、10、11)中包括两个PSFCH时隙(侧行时隙9和侧行时隙11)。其中侧行时隙9的PSFCH对应侧行时隙6、7的PSSCH的侧行反馈,侧行时隙11的PSFCH对应侧行时隙8、9的PSSCH的侧行反馈。因此在PUCCH中包括4个HARQ-ACK信息域,前2比特对应侧行时隙6、7对应的侧行反馈信息,后2比特对应侧行时隙8、9对应的侧行反馈信息。类似的,根据集合中的元素2,得到UL时隙1(即时隙3减时隙间隔2)。UL时隙1对应的SL时隙(侧行时隙4、5、6、7)中包括两个PSFCH时隙(侧行时隙5和侧行时隙7)。其中侧行时隙5的PSFCH对应侧行时隙2、3的PSSCH的侧行反馈,侧行时隙7的PSFCH对应侧行时隙4、5的PSSCH的侧行反馈。在PUCCH中有另外4个HARQ-ACK信息域,前2比特对 应侧行时隙2、3对应的侧行反馈信息,后2比特对应侧行时隙4、5对应的侧行反馈信息。因此,该PUCCH中总共包括8个HARQ-ACK信息域,分别对应侧行时隙2至侧行时隙9对应的侧行反馈信息。
特征4:对于网络调度的多个PSSCH传输相同的侧行数据,则在PUCCH中,该多个PSSCH传输对应的HARQ-ACK信息域设置为相同的HARQ状态。
例如,参见图11,网络通过DCI为TX UE调度侧行时隙2、3上的传输资源,并指示PSFCH和PUCCH的时隙间隔是2。TX UE根据时隙2、3确定其对应的PSFCH为时隙7,因此可以确定PUCCH所在的时隙为时隙9。TX UE在时隙2、3上传输侧行数据的首次传输和重传。RX UE向TX UE发送侧行反馈信息ACK(或NACK)。TX UE在PUCCH中对应于侧行时隙2、3的两个HARQ-ACK信息域都设置为ACK(或NACK)。
另外,在上述各个实施例中,终端根据网络调度的多个PSSCH资源对应的最后一个PSFCH资源确定PUCCH所在的时隙。
例如,参见图11,网络调度SL中的时隙2和时隙8的侧行传输资源,并且指示PSFCH和PUCCH的时隙间隔是2,时隙2的PSSCH对应的PSFCH的时隙为时隙7,时隙8的PSSCH对应的PSFCH的时隙为时隙11。终端根据时隙11的PSFCH确定PUCCH的传输资源所在的时隙,即PUCCH传输资源位于时隙13(最后一个PSFCH的时隙11+时隙间隔2)。
进一步的,对于动态调度的资源分配方式,在DCI中会指示侧行传输资源,并且指示PSFCH和PUCCH之间的时隙间隔。根据侧行传输资源确定其对应的最后一个PSFCH所在的时隙。并且根据该时间间隔确定PUCCH的时隙,再根据网络配置的时间间隔集合中的所有K1的取值,确定该PUCCH承载的HARQ-ACK码本。对于type-1(或type-2)侧行配置授权,根据RRC信令(或DCI)配置侧行传输资源,并且在RRC信令(或DCI)中指示PSFCH和PUCCH之间的时间间隔。终端根据每个侧行配置授权周期中侧行传输资源确定其对应的最后一个PSFCH所在的时隙,并且根据该时间间隔确定PUCCH的时隙,再根据网络配置的定时参数集合中的所有K1的取值,确定该PUCCH承载的HARQ-ACK码本。
通过半静态的HARQ-ACK码本确定方法,使得多个侧行时隙对应的侧行反馈信息可以通过一个PUCCH上报给网络,降低PUCCH的资源开销。
图13是根据本申请一实施例的终端设备400的示意性框图。该终端设备400可以包括:
获取单元410,用于获取时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息;
该获取单元410还用于根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息。
可选地,在本申请实施例中,该获取单元410具体用于根据该侧行反馈信道所在的侧行时隙,获取该上行传输信道承载的该侧行反馈信息。
可选地,在本申请实施例中,该获取单元410具体用于对于该时间间隔集合中的每个时间间隔,将该上行传输信道的时隙的索引减去该时间间隔,确定该侧行反馈信道所在的侧行时隙。
可选地,在本申请实施例中,该获取单元410具体用于对于该时间间隔集合中的每个时间间隔,将该上行传输信道的时隙的索引减去该时间间隔,得到上行时隙的索引;根据该上行时隙的索引,确定该侧行反馈信道所在的侧行时隙。
如图14所示,可选地,在本申请实施例中,该终端设备还包括:
上报单元420,用于在该上行传输信道的时隙通过该上行传输信道上报该侧行反馈信息。
可选地,在本申请实施例中,该时间间隔集合中包括至少一个时间间隔。
可选地,在本申请实施例中,该终端设备还包括:第一确定单元430,用于根据该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的混合自动重传请求HARQ信息域的总数。
可选地,在本申请实施例中,该终端设备还包括:第二确定单元440,用于根据该侧行反馈信道的周期和时间间隔集合中的元素个数,确定该上行传输信道承载的侧行反馈信息的HARQ信息域的总数。
可选地,在本申请实施例中,该第二确定单元440具体用于根据PSFCH的周期确定一个PSFCH时隙相关联的PSSCH时隙的个数;根据该时间间隔集合中的元素个数和一个PSFCH时隙相关联的PSSCH时隙的个数,确定该上行传输信道承载的PSFCH的HARQ信息域的总数。
可选地,在本申请实施例中,每个PSSCH时隙对应该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙对应该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中该PSFCH时隙对应的HARQ信息域为该N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
可选地,在本申请实施例中,该第一确定单元430还用于如果在该N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
可选地,在本申请实施例中,该一个HARQ信息域对应1比特。
可选地,在本申请实施例中,在该上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,该多个PSSCH时隙在该上行传输信道中对应的HARQ信息域为相同的HARQ状态。
可选地,在本申请实施例中,该时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
可选地,在本申请实施例中,该上行传输信道为PUCCH或PUSCH。
可选地,在本申请实施例中,该上行传输信道承载的该侧行反馈信息为该PUCCH或该PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
可选地,在本申请实施例中,该上行传输信道的时隙是基于该时间间隔和该侧行反馈信道的时隙确定的。
可选地,在本申请实施例中,该终端设备还包括:接收单元450,用于接收无线资源控制RRC信令或系统信息SIB,该RRC信令或SIB中包括该时间间隔集合。
可选地,在本申请实施例中,该终端设备还包括:预配置单元460,用于在该终端设备中预配置该时间间隔集合。
本申请实施例的终端设备400能够实现前述的方法实施例中的终端设备的对应功能。该终端设备400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图15是根据本申请一实施例的网络设备500的示意性框图。该网络设备500可以包括:
发送单元510,用于发送时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载终端设备向网络设备上报的侧行反馈信息;
该发送单元510还用于发送调度信息,该调度信息用于确定该上行传输信道的时隙。
可选地,在本申请实施例中,该发送单元510还用于发送无线资源控制RRC信令或系统信息SIB,该RRC信令或系统信息SIB中包括该时间间隔集合。
如图16所示,可选地,在本申请实施例中,该网络设备还包括:接收单元520,用于在该上行传输信道的时隙接收该上行传输信道,该上行传输信道中包括该侧行反馈信息。
可选地,在本申请实施例中,该时间间隔集合中包括至少一个时间间隔。
可选地,在本申请实施例中,该网络设备还包括:第一确定单元530,用于根据该时间间隔集合中的元素个数,确定该上行传输信道承载的该侧行反馈信息的混合自动重传请求HARQ信息域的总数。
可选地,在本申请实施例中,该网络设备还包括:第二确定单元540,用于根据该侧行反馈信道的周期和时间间隔集合中的元素个数,确定该上行传输信道承载的侧行反馈信息的HARQ信息域的总数。
可选地,在本申请实施例中,该第二确定单元540具体用于根据PSFCH的周期确定与一个PSFCH时隙相关联的PSSCH时隙的个数;根据该时间间隔集合中的元素个数和与一个PSFCH时隙相关联的PSSCH时隙的个数,确定该上行传输信道承载的PSFCH的HARQ信息域的总数。
可选地,在本申请实施例中,每个PSSCH时隙对应该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙对应该上行传输信道中的一个HARQ信息域。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中PSFCH时隙对应的HARQ信息域承载该N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
可选地,在本申请实施例中,每个PSFCH时隙与N个PSSCH时隙相关联,在该上行传输信道中该PSFCH时隙对应的HARQ信息域为该N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
可选地,在本申请实施例中,该第一确定单元530还用于如果在该N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
可选地,在本申请实施例中,该一个HARQ信息域对应1比特。
可选地,在本申请实施例中,在该上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,该多个PSSCH时隙在该上行传输信道中对应的HARQ信息域为相同的HARQ状态。
可选地,在本申请实施例中,该时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
可选地,在本申请实施例中,该上行传输信道为PUCCH或PUSCH。
可选地,在本申请实施例中,该上行传输信道承载的该侧行反馈信息为该PUCCH或该PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
可选地,在本申请实施例中,该上行传输信道的时隙是基于该时间间隔和该侧行反馈信道的时隙确定的。
本申请实施例的网络设备500能够实现前述的方法实施例中的网络设备的对应功能。该网络设备500中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的网络设备500中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图17是根据本申请实施例的通信设备600示意性结构图。图17所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图17所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是根据本申请实施例的芯片700的示意性结构图。图18所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图19是根据本申请实施例的通信系统800的示意性框图。如图19所示,该通信系统800包括终端设备810和网络设备820。
终端设备810用于获取时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载该终端设备向网络设备上报的侧行反馈信息。
该终端设备810还用于根据该上行传输信道的时隙和该时间间隔集合,获取该上行传输信道承载的该侧行反馈信息。
网络设备820用于发送时间间隔集合,该时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,该上行传输信道用于承载终端设备向网络设备上报的侧行反馈信息。
该网络设备820还用于发送调度信息,该调度信息用于确定该上行传输信道的时隙。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。 该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (95)

  1. 一种侧行反馈信息处理方法,包括:
    终端设备获取时间间隔集合,所述时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,所述上行传输信道用于承载所述终端设备向网络设备上报的侧行反馈信息;
    所述终端设备根据所述上行传输信道的时隙和所述时间间隔集合,获取所述上行传输信道承载的所述侧行反馈信息。
  2. 根据权利要求1所述的方法,其中,所述终端设备根据所述上行传输信道的时隙和所述时间间隔集合,获取所述上行传输信道承载的所述侧行反馈信息,包括:
    所述终端设备根据所述上行传输信道的时隙和所述时间间隔集合中的时间间隔,确定所述侧行反馈信道所在的侧行时隙;
    所述终端设备根据所述侧行反馈信道所在的侧行时隙,获取所述上行传输信道承载的所述侧行反馈信息。
  3. 根据权利要求2所述的方法,其中,所述终端设备根据所述上行传输信道的时隙和所述时间间隔集合中的时间间隔,确定所述侧行反馈信道所在的侧行时隙,包括:
    对于所述时间间隔集合中的每个时间间隔,所述终端设备将所述上行传输信道的时隙的索引减去所述时间间隔,确定所述侧行反馈信道所在的侧行时隙。
  4. 根据权利要求2所述的方法,其中,所述终端设备根据所述上行传输信道的时隙和所述时间间隔集合中的时间间隔,确定所述侧行反馈信道所在的侧行时隙,包括:
    对于所述时间间隔集合中的每个时间间隔,所述终端设备将所述上行传输信道的时隙的索引减去所述时间间隔,得到上行时隙的索引;
    根据所述上行时隙的索引,确定所述侧行反馈信道所在的侧行时隙。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述方法还包括:
    所述终端设备在所述上行传输信道的时隙通过所述上行传输信道上报所述侧行反馈信息。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述时间间隔集合中包括至少一个时间间隔。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的混合自动重传请求HARQ信息域的总数。
  8. 根据权利要求1至6中任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述侧行反馈信道的周期和所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的HARQ信息域的总数。
  9. 根据权利要求8所述的方法,其中,所述终端设备根据所述侧行反馈信道的周期和所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的HARQ信息域的总数,包括:
    所述终端设备根据物理侧行反馈信道PSFCH的周期确定一个PSFCH时隙相关联的物理侧行共享信道PSSCH时隙的个数;
    所述终端设备根据所述时间间隔集合中的元素个数和一个PSFCH时隙相关联的PSSCH时隙的个数,确定所述上行传输信道承载的PSFCH的HARQ信息域的总数。
  10. 根据权利要求9所述的方法,其中,每个PSSCH时隙对应所述上行传输信道中的一个HARQ信息域。
  11. 根据权利要求7所述的方法,其中,每个PSFCH时隙对应所述上行传输信道中的一个HARQ信息域。
  12. 根据权利要求11所述的方法,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
  13. 根据权利要求11所述的方法,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
  14. 根据权利要求11所述的方法,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域为所述N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    如果在所述N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
  16. 根据权利要求7至15中任一项所述的方法,其中,一个HARQ信息域对应1比特。
  17. 根据权利要求1至16中任一项所述的方法,其中,在所述上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,所述多个PSSCH时隙在所述上行传输信道中对应的HARQ信息域为相同的HARQ状态。
  18. 根据权利要求1至17中任一项所述的方法,其中,所述时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
  19. 根据权利要求1至18中任一项所述的方法,其中,所述上行传输信道为物理上行控制信道PUCCH或物理上行共享信道PUSCH。
  20. 根据权利要求19所述的方法,其中,所述上行传输信道承载的所述侧行反馈信息为所述PUCCH或所述PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
  21. 根据权利要求1至20中任一项所述的方法,其中,所述上行传输信道的时隙是基于所述时间间隔和所述侧行反馈信道的时隙确定的。
  22. 根据权利要求1至21中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收无线资源控制RRC信令或系统信息SIB,所述RRC信令或SIB中包括所述时间间隔集合。
  23. 根据权利要求1至22中任一项所述的方法,其中,所述方法还包括:
    在所述终端设备中预配置所述时间间隔集合。
  24. 一种侧行反馈信息处理方法,包括:
    网络设备发送时间间隔集合,所述时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,所述上行传输信道用于承载终端设备向网络设备上报的侧行反馈信息;
    所述网络设备发送调度信息,所述调度信息用于确定所述上行传输信道的时隙。
  25. 根据权利要求24所述的方法,其中,所述方法还包括:
    所述网络设备发送无线资源控制RRC信令或系统信息SIB,所述RRC信令或系统信息SIB中包括所述时间间隔集合。
  26. 根据权利要求24或25所述的方法,其中,所述方法还包括:
    所述网络设备在所述上行传输信道的时隙接收所述上行传输信道,所述上行传输信道中包括所述侧行反馈信息。
  27. 根据权利要求24至26中任一项所述的方法,其中,所述时间间隔集合中包括至少一个时间间隔。
  28. 根据权利要求24至27中任一项所述的方法,其中,所述方法还包括:
    所述网络设备根据所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的混合自动重传请求HARQ信息域的总数。
  29. 根据权利要求24至27中任一项所述的方法,其中,所述方法还包括:
    所述网络设备根据所述侧行反馈信道的周期和所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的HARQ信息域的总数。
  30. 根据权利要求29所述的方法,其中,所述网络设备根据所述侧行反馈信道的周期和所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的HARQ信息域的总数,包括:
    所述网络设备根据物理侧行反馈信道PSFCH的周期确定与一个PSFCH时隙相关联的物理侧行共享信道PSSCH时隙的个数;
    所述网络设备根据所述时间间隔集合中的元素个数和与一个PSFCH时隙相关联的PSSCH时隙的个数,确定所述上行传输信道承载的PSFCH的HARQ信息域的总数。
  31. 根据权利要求30所述的方法,其中,每个PSSCH时隙对应所述上行传输信道中的一个HARQ信息域。
  32. 根据权利要求28所述的方法,其中,每个PSFCH时隙对应所述上行传输信道中的一个HARQ信息域。
  33. 根据权利要求32所述的方法,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
  34. 根据权利要求32所述的方法,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
  35. 根据权利要求32所述的方法,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域为所述N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
  36. 根据权利要求35所述的方法,其中,所述方法还包括:
    如果在所述N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
  37. 根据权利要求28至36中任一项所述的方法,其中,一个HARQ信息域对应1比特。
  38. 根据权利要求24至37中任一项所述的方法,其中,在所述上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,所述多个PSSCH时隙在所述上行传输信道中对应的HARQ信息域为相同的HARQ状态。
  39. 根据权利要求24至38中任一项所述的方法,其中,所述时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
  40. 根据权利要求24至39中任一项所述的方法,其中,所述上行传输信道为物理上行控制信道PUCCH或物理上行共享信道PUSCH。
  41. 根据权利要求40所述的方法,其中,所述上行传输信道承载的所述侧行反馈信息为所述PUCCH或所述PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
  42. 根据权利要求24至41中任一项所述的方法,其中,所述上行传输信道的时隙是基于所述时间间隔和所述侧行反馈信道的时隙确定的。
  43. 一种终端设备,包括:
    获取单元,用于获取时间间隔集合,所述时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,所述上行传输信道用于承载所述终端设备向网络设备上报的侧行反馈信息;
    所述获取单元还用于根据所述上行传输信道的时隙和所述时间间隔集合,获取所述上行传输信道承载的所述侧行反馈信息。
  44. 根据权利要求43所述的终端设备,其中,所述获取单元具体用于根据所述侧行反馈信道所在的侧行时隙,获取所述上行传输信道承载的所述侧行反馈信息。
  45. 根据权利要求44所述的终端设备,其中,所述获取单元具体用于对于所述时间间隔集合中的每个时间间隔,将所述上行传输信道的时隙的索引减去所述时间间隔,确定所述侧行反馈信道所在的侧行时隙。
  46. 根据权利要求44所述的终端设备,其中,所述获取单元具体用于对于所述时间间隔集合中的每个时间间隔,将所述上行传输信道的时隙的索引减去所述时间间隔,得到上行时隙的索引;根据所述上行时隙的索引,确定所述侧行反馈信道所在的侧行时隙。
  47. 根据权利要求43至46中任一项所述的终端设备,其中,所述终端设备还包括:
    上报单元,用于在所述上行传输信道的时隙通过所述上行传输信道上报所述侧行反馈信息。
  48. 根据权利要求43至47中任一项所述的终端设备,其中,所述时间间隔集合中包括至少一个时间间隔。
  49. 根据权利要求43至48中任一项所述的终端设备,其中,所述终端设备还包括:
    第一确定单元,用于根据所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的混合自动重传请求HARQ信息域的总数。
  50. 根据权利要求43至48中任一项所述的终端设备,其中,所述终端设备还包括:
    第二确定单元,用于根据所述侧行反馈信道的周期和所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的HARQ信息域的总数。
  51. 根据权利要求50所述的终端设备,其中,所述第二确定单元具体用于根据物理侧行反馈信道PSFCH的周期确定一个PSFCH时隙相关联的物理侧行共享信道PSSCH时隙的个数;根据所述时间间隔集合中的元素个数和一个PSFCH时隙相关联的PSSCH时隙的个数,确定所述上行传输信道承载的PSFCH的HARQ信息域的总数。
  52. 根据权利要求51所述的终端设备,其中,每个PSSCH时隙对应所述上行传输信道中的一个HARQ信息域。
  53. 根据权利要求49所述的终端设备,其中,每个PSFCH时隙对应所述上行传输信道中的一个HARQ信息域。
  54. 根据权利要求53所述的终端设备,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
  55. 根据权利要求53所述的终端设备,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
  56. 根据权利要求53所述的终端设备,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域为所述N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
  57. 根据权利要求56所述的终端设备,其中,所述第一确定单元还用于如果在所述N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
  58. 根据权利要求49至57中任一项所述的终端设备,其中,一个HARQ信息域对应1比特。
  59. 根据权利要求43至58中任一项所述的终端设备,其中,在所述上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,所述多个PSSCH时隙在所述上行传输信道中对应的HARQ信息域为相同的HARQ状态。
  60. 根据权利要求43至59中任一项所述的终端设备,其中,所述时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
  61. 根据权利要求43至60中任一项所述的终端设备,其中,所述上行传输信道为物理上行控制信道PUCCH或物理上行共享信道PUSCH。
  62. 根据权利要求61所述的终端设备,其中,所述上行传输信道承载的所述侧行反馈信息为所述PUCCH或所述PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
  63. 根据权利要求43至62中任一项所述的终端设备,其中,所述上行传输信道的时隙是基于所述 时间间隔和所述侧行反馈信道的时隙确定的。
  64. 根据权利要求43至63中任一项所述的终端设备,其中,所述终端设备还包括:
    接收单元,用于接收无线资源控制RRC信令或系统信息SIB,所述RRC信令或SIB中包括所述时间间隔集合。
  65. 根据权利要求43至64中任一项所述的终端设备,其中,所述终端设备还包括:
    预配置单元,用于在所述终端设备中预配置所述时间间隔集合。
  66. 一种网络设备,包括:
    发送单元,用于发送时间间隔集合,所述时间间隔集合中的元素用于确定侧行反馈信道与上行传输信道之间的时间间隔;其中,所述上行传输信道用于承载终端设备向网络设备上报的侧行反馈信息;
    所述发送单元还用于发送调度信息,所述调度信息用于确定所述上行传输信道的时隙。
  67. 根据权利要求66所述的网络设备,其中,所述发送单元还用于发送无线资源控制RRC信令或系统信息SIB,所述RRC信令或系统信息SIB中包括所述时间间隔集合。
  68. 根据权利要求66或67所述的网络设备,其中,所述网络设备还包括:
    接收单元,用于在所述上行传输信道的时隙接收所述上行传输信道,所述上行传输信道中包括所述侧行反馈信息。
  69. 根据权利要求66至68中任一项所述的网络设备,其中,所述时间间隔集合中包括至少一个时间间隔。
  70. 根据权利要求66至69中任一项所述的网络设备,其中,所述网络设备还包括:
    第一确定单元,用于根据所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的混合自动重传请求HARQ信息域的总数。
  71. 根据权利要求66至69中任一项所述的网络设备,其中,所述网络设备还包括:
    第二确定单元,用于根据所述侧行反馈信道的周期和所述时间间隔集合中的元素个数,确定所述上行传输信道承载的所述侧行反馈信息的HARQ信息域的总数。
  72. 根据权利要求71所述的网络设备,其中,所述第二确定单元具体用于根据物理侧行反馈信道PSFCH的周期确定与一个PSFCH时隙相关联的物理侧行共享信道PSSCH时隙的个数;根据所述时间间隔集合中的元素个数和与一个PSFCH时隙相关联的PSSCH时隙的个数,确定所述上行传输信道承载的PSFCH的HARQ信息域的总数。
  73. 根据权利要求72所述的网络设备,其中,每个PSSCH时隙对应所述上行传输信道中的一个HARQ信息域。
  74. 根据权利要求70所述的网络设备,其中,每个PSFCH时隙对应所述上行传输信道中的一个HARQ信息域。
  75. 根据权利要求74所述的网络设备,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中优先级最高的PSSCH对应的侧行反馈信息。
  76. 根据权利要求74所述的网络设备,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域承载所述N个PSSCH时隙中最后发送的PSSCH对应的侧行反馈信息。
  77. 根据权利要求74所述的网络设备,其中,每个PSFCH时隙与N个PSSCH时隙相关联,在所述上行传输信道中该PSFCH时隙对应的HARQ信息域为所述N个PSSCH时隙中发送的所有PSSCH对应的侧行反馈信息进行比特与操作对应的侧行反馈信息。
  78. 根据权利要求77所述的网络设备,其中,所述第一确定单元还用于如果在所述N个PSSCH时隙中的一个时隙没有发送PSSCH,在进行比特与操作时,没有发送PSSCH的时隙对应的侧行反馈信息为ACK。
  79. 根据权利要求70至78中任一项所述的网络设备,其中,一个HARQ信息域对应1比特。
  80. 根据权利要求66至79中任一项所述的网络设备,其中,在所述上行传输信道关联的多个PSSCH时隙中传输相同侧行数据的情况下,所述多个PSSCH时隙在所述上行传输信道中对应的HARQ信息域为相同的HARQ状态。
  81. 根据权利要求66至80中任一项所述的网络设备,其中,所述时间间隔集合中的元素所表示的时隙个数基于上行链路UL子载波和/或侧行链路SL子载波的大小确定。
  82. 根据权利要求66至81中任一项所述的网络设备,其中,所述上行传输信道为物理上行控制信道PUCCH或物理上行共享信道PUSCH。
  83. 根据权利要求82所述的网络设备,其中,所述上行传输信道承载的所述侧行反馈信息为所述PUCCH或所述PUSCH承载的混合自动重传请求确认HARQ-ACK码本。
  84. 根据权利要求66至83中任一项所述的网络设备,其中,所述上行传输信道的时隙是基于所述时间间隔和所述侧行反馈信道的时隙确定的。
  85. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  86. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求24至42中任一项所述的方法。
  87. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法。
  88. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求24至42中任一项所述的方法。
  89. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  90. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求24至42中任一项所述的方法。
  91. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  92. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求24至42中任一项所述的方法。
  93. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  94. 一种计算机程序,所述计算机程序使得计算机执行如权利要求24至42中任一项所述的方法。
  95. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至23中任一项所述的方法;
    网络设备,用于执行如权利要求24至42中任一项所述的方法。
PCT/CN2020/083375 2020-04-03 2020-04-03 侧行反馈信息处理方法、终端设备和网络设备 WO2021196237A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202310111123.1A CN116170117A (zh) 2020-04-03 2020-04-03 侧行反馈信息处理方法、终端设备和网络设备
EP20929569.0A EP4132153A4 (en) 2020-04-03 2020-04-03 METHOD OF PROCESSING SIDELINK FEEDBACK INFORMATION, TERMINAL DEVICE AND NETWORK DEVICE
PCT/CN2020/083375 WO2021196237A1 (zh) 2020-04-03 2020-04-03 侧行反馈信息处理方法、终端设备和网络设备
CN202080099275.9A CN115362729A (zh) 2020-04-03 2020-04-03 侧行反馈信息处理方法、终端设备和网络设备
US17/936,125 US20230085264A1 (en) 2020-04-03 2022-09-28 Sidelink feedback information processing method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083375 WO2021196237A1 (zh) 2020-04-03 2020-04-03 侧行反馈信息处理方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/936,125 Continuation US20230085264A1 (en) 2020-04-03 2022-09-28 Sidelink feedback information processing method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021196237A1 true WO2021196237A1 (zh) 2021-10-07

Family

ID=77927931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083375 WO2021196237A1 (zh) 2020-04-03 2020-04-03 侧行反馈信息处理方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230085264A1 (zh)
EP (1) EP4132153A4 (zh)
CN (2) CN115362729A (zh)
WO (1) WO2021196237A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061115A1 (zh) * 2022-09-20 2024-03-28 华为技术有限公司 侧行链路通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170325216A1 (en) * 2016-05-09 2017-11-09 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN108886447A (zh) * 2016-03-29 2018-11-23 夏普株式会社 用于pusch传输的用户设备、基站和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886447A (zh) * 2016-03-29 2018-11-23 夏普株式会社 用于pusch传输的用户设备、基站和方法
US20170325216A1 (en) * 2016-05-09 2017-11-09 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Feature lead summary#2 on Resource allocation for NR sidelink Mode 1", 3GPP DRAFT; R1-2000779, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 22 February 2020 (2020-02-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853694 *
VIVO: "Remaining issues on mode 1 resource allocation mechanism", 3GPP DRAFT; R1-2000316, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852805 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061115A1 (zh) * 2022-09-20 2024-03-28 华为技术有限公司 侧行链路通信方法及装置

Also Published As

Publication number Publication date
EP4132153A4 (en) 2023-04-26
CN115362729A (zh) 2022-11-18
CN116170117A (zh) 2023-05-26
US20230085264A1 (en) 2023-03-16
EP4132153A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP7093856B2 (ja) フィードバック情報の伝送方法及び装置
WO2021007685A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
EP3553986B1 (en) Transmission method, network equipment, and terminal equipment
WO2020042123A1 (zh) 发送上行信号的方法和设备
WO2020248258A1 (zh) 无线通信方法、收端设备和发端设备
WO2021217674A1 (zh) 侧行反馈方法和终端设备
CN113490278B (zh) 下行信号传输的方法和设备
US20210167901A1 (en) Method for transmitting harq information, network device and terminal device
WO2020248101A1 (zh) 上报csi的方法和终端设备
US20230069646A1 (en) Method for determining transmission resources and terminal device
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2021212372A1 (zh) 资源分配方法和终端
US20230085264A1 (en) Sidelink feedback information processing method, terminal device, and network device
WO2021159413A1 (zh) 下行传输方法和终端设备
JP7400964B2 (ja) 電力割り当て方法及び装置
WO2022077473A1 (zh) 无线通信方法、终端设备和网络设备
WO2021212371A1 (zh) 侧行资源分配方法和终端设备
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
JP2023520705A (ja) データ送信方法、装置及び通信システム
WO2021196147A1 (zh) 信息传输的方法、终端设备和网络设备
WO2022151427A1 (zh) 一种传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020929569

Country of ref document: EP

Effective date: 20221027