WO2021195959A1 - 一种重建步态运动功能的单端电极电子系统 - Google Patents

一种重建步态运动功能的单端电极电子系统 Download PDF

Info

Publication number
WO2021195959A1
WO2021195959A1 PCT/CN2020/082422 CN2020082422W WO2021195959A1 WO 2021195959 A1 WO2021195959 A1 WO 2021195959A1 CN 2020082422 W CN2020082422 W CN 2020082422W WO 2021195959 A1 WO2021195959 A1 WO 2021195959A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
electrode
gait
reconstructing
electronic system
Prior art date
Application number
PCT/CN2020/082422
Other languages
English (en)
French (fr)
Other versions
WO2021195959A9 (zh
Inventor
沈晓燕
李智玲
马磊
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Priority to CN202080000755.5A priority Critical patent/CN111655328A/zh
Priority to AU2020203039A priority patent/AU2020203039B2/en
Priority to PCT/CN2020/082422 priority patent/WO2021195959A1/zh
Publication of WO2021195959A1 publication Critical patent/WO2021195959A1/zh
Publication of WO2021195959A9 publication Critical patent/WO2021195959A9/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36132Control systems using patient feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment

Definitions

  • the invention relates to an intelligent control electronic system in the field of rehabilitation engineering and a control method thereof, in particular to a spinal cord electrical excitation device for reconstructing the gait movement function of the lower limbs.
  • Functional electrical stimulation is to stimulate muscles or nerves with a certain sequence of pulse currents to restore the lost or damaged limb motor function and realize the rehabilitation of paralyzed patients.
  • the purpose of the present invention is to provide a single-ended electrode electronic system for reconstructing the gait movement function, so as to solve the above-mentioned problems in the background art.
  • a single-ended electrode electronic system for reconstructing gait movement function which is characterized by comprising:
  • Communication system used to collect command information, generate control commands based on the command information and send them to the pulse signal generation system;
  • Pulse signal generation system receives the control instruction sent by the instruction acquisition system, generates a pulse signal according to the control instruction and sends it to the biostimulation electrode.
  • the pulse signal includes alternating positive voltage pulse signal trains and negative voltage pulse signal trains.
  • the pulse width of the pulse signal is 200us
  • the interval of the pulse signal is 30ms
  • the number of pulse signals is 25-35
  • the time interval between the beginnings is one-half of the gait cycle
  • a pair of biostimulation electrodes fixed by an electrode fixing device, the biostimulation electrodes are fixed on the surface of the spinal cord to induce gait movement at key points, and electrical excitation is applied to the key points to achieve gait reconstruction.
  • the surface of the spinal cord induces gait.
  • the key point of state movement is located on the dorsal surface of the spinal cord L2 segment. Applying electrical excitation pulses to it can produce one of the left and right lower limbs stepping forward and the other stepping back. Changing the polarity of the electrical excitation pulse can make The movements of the left and right lower limbs are exchanged for the reversal points.
  • the single-ended electrode electronic system for reconstructing the gait movement function of the present invention can be applied to animal experiments or rehabilitation training.
  • the electronic system of the present invention generates a pulse signal, and uses the biomedical engineering method of functional electrical stimulation to activate the intrinsic interneuron network in the spinal nerve that produces the rhythmic movement of the lower limbs to generate the key points of coordinated action, in a way that is closer to the physiological condition.
  • the single pair of electrodes can effectively reconstruct the gait movement function of the lower limbs.
  • the present invention stimulates the neuron network in the spinal cord that controls the gait movement through the single-ended electrode, regenerates the corresponding biological nerve signal, and realizes the gait movement function of the damaged spinal cord nerve using the microelectronic method.
  • the device of the present invention realizes the recovery of neurological function assisted by the microelectronic system, that is, realizes the reconstruction of gait motor function after spinal cord injury.
  • Fig. 1 is a block diagram of a single-ended electrode electronic system for reconstructing the gait movement function of the present invention.
  • Figure 2 is a schematic diagram of a rat experiment performed by the system of the present invention.
  • Fig. 1 is a block diagram of a single-ended electrode electronic system for reconstructing gait movement function according to an embodiment of the present invention.
  • the system includes: a command acquisition system, a pulse signal generation system, a biostimulation electrode and a corresponding reference electrode.
  • the command collection system is used to collect command information, generate control commands according to the command information, and send them to the pulse signal generation system.
  • the command acquisition system includes: brain wave signal acquisition module, voice recognition module, upper computer signal receiving module and button module.
  • the brain wave signal acquisition module is used to collect brain wave signals and convert them into control instructions.
  • the voice recognition module is used to recognize voice signals and convert them into control instructions.
  • the upper computer signal receiving module is used to receive the control signal sent by the upper computer and convert it into control instructions.
  • the button module is used to output control commands through button operation.
  • the control instructions include: "start", "cadence" and "stop".
  • the pulse signal generation system When the control command is "start”, the pulse signal generation system sends a pulse signal to the biostimulation electrode, and sets the time interval between the starting moments of adjacent pulse signal trains according to the “step frequency”; when the control command is “stop” “, the pulse signal generation system stops sending pulse signals to the biostimulation electrode.
  • the "step frequency” is classified into multiple speed levels, and each speed level corresponds to a specified time interval.
  • the pulse signal includes alternating positive voltage pulse signal trains and negative voltage pulse signal trains.
  • the pulse width of the pulse signal is 200us
  • the interval of the pulse signal is 30ms
  • the number of pulse signals is 25-35
  • the interval is one-half of the gait cycle.
  • the gait cycle can be set according to the "step frequency" in the control command; a fixed gait cycle, such as 1s, can also be used.
  • the current amplitude range of the positive pulse signal is 220 to 500 ⁇ A
  • the current amplitude range of the negative pulse signal is -500 to -220 ⁇ A.
  • the biostimulation electrode is fixed on the surface of the spinal cord by the electrode fixing device to induce the key point of gait movement.
  • the reference electrode is placed at the muscle or spinal cord within 2cm of the corresponding key point.
  • the biostimulation electrode is used to apply electrical excitation to the key point to achieve Gait reconstruction.
  • the key point of gait motion induced on the surface of the spinal cord is the dorsal surface of the spinal cord L2 segment (in the T12 segment of the spine). Applying electrical excitation pulses to it can produce one of the left and right lower limbs stepping forward and the other stepping backward. Change the polarity of the electrical excitation pulse to make the left and right lower extremities exchange the reversal position.
  • X is the transverse diameter of the spinal lumbar enlargement, Y is the head-to-tail direction of the spine, L1 is the width of the transverse diameter of the spinal lumbar enlargement; L2 is the spine The length of the T12 segment.
  • the origin of the coordinates is the intersection of the posterior median sulcus of the spinal cord and the cranial cross section of the T12 segment of the spine.
  • the single-ended electrode electronic system for reconstructing the gait movement function of this embodiment is suitable for application in animal experiments or rehabilitation training.
  • the electronic system of this embodiment was used to test SD rats.
  • the transverse direction is the X axis
  • the head and tail direction of the spinal cord is the Y axis
  • the stimulation site can be recorded as (X, Y)
  • the coordinates (X, Y) of the key points are processed as follows: the transverse diameter direction X is normalized by one-half of the maximum transverse diameter of the spinal cord lumbar enlargement, and the head and tail direction Y is normalized by the corresponding spine segment length One treatment.
  • the biostimulation electrode of the electronic system of this embodiment is placed on the surface of the key site and fixed, the reference electrode is placed at the muscle within 2cm of the corresponding key site, and then the brain wave signal acquisition module and voice recognition of the command acquisition system are respectively used.
  • the module, the upper computer signal receiving module and the button module are used to issue control instructions, realize the gait reconstruction of the rat, and verify the feasibility of the electronic system of the present invention.
  • a positive pulse signal is used to excite the key point B.
  • the two legs of the rat are shown in Figure 2(b). The left leg moves forward and the right leg moves backward.
  • Figure 2(c) is a stick diagram of the left leg joint dynamic change
  • Figure 2(d) is a stick diagram of the right leg joint dynamic change.
  • Figure 2(e) the key point B is excited by the reverse pulse signal
  • Figure 2(f) the left leg is pushed back, and the right leg is stepped forward.
  • Figure 2(g) is a stick diagram of the dynamic changes of the left leg joint
  • Figure 2(h) is the dynamic change of the right leg joint. Stick figure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种重建步态运动功能的单端电极电子系统,包括指令采集系统、脉冲信号产生系统和生物刺激电极。指令采集系统根据该指令信息生成控制指令并发送给脉冲信号产生系统。脉冲信号产生系统根据控制指令产生脉冲信号发送给生物刺激电极。生物刺激电极对脊髓内诱发步态运动的关键位点进行电脉冲激励。脉冲信号由交替的正电压脉冲信号串和负电压脉冲信号串构成。本系统以更接近生理状况的方式、以单对电极方式能有效地进行下肢步态运动功能的重建。本系统可应用于动物实验或康复训练。

Description

一种重建步态运动功能的单端电极电子系统 技术领域
本发明涉及康复工程领域的智能控制电子系统及其控制方法,特别涉及重建下肢步态运动功能的脊髓电激励装置。
背景技术
脊髓损伤导致损伤节段以下肢体运动功能障碍,不仅会给患者本人带来身心伤害,还会对家庭及整个社会造成巨大的经济负担。因此,重建瘫痪肢体运动功能一直是神经科学研究中的一项重要课题。
成人中枢系统损伤后,上神经元轴突很难生长到原本连接的下神经元形成新的功能性突触连接,这给脊髓损伤后的运动功能重建带来了挑战。神经生物学的研究者一直通过神经营养因子联合诸如基因诱导、干细胞移植、脊髓支架等技术治疗脊髓损伤,但用这些方法恢复行走过程中复杂的腿肌激活模式和协调性,迄今尚未获得成功。
随着电子技术的不断发展,应用功能电刺激技术作为脊髓损伤患者潜在的功能重建方式已受到广泛关注。功能电刺激是以一定序列的脉冲电流刺激肌肉或神经,从而恢复丧失或受损的肢体运动功能,实现瘫痪病人的康复。
苏黎世联邦理工学院的Courtine研究员分别于2016年和2018年在Nature上发表的研究论文证明,采用脊髓神经功能电激励技术恢复下肢运动功能是可行的。其缺点是,由于刺激靶点是运动神经元,所以文中提到需要多达147种刺激方式。而神经假体,使用时只能施加有限对电极。为了减少损伤和使用过程中的出错几率,当然希望电极数量越少越好。
发明内容
本发明的目的在于提供一种重建步态运动功能的单端电极电子系统,以解 决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:重建步态运动功能的单端电极电子系统,其特征在于包括:
—指令采集系统:用于采集指令信息,根据该指令信息生成控制指令并发送给脉冲信号产生系统;
—脉冲信号产生系统:接收指令采集系统发送的控制指令,根据该控制指令产生脉冲信号发送给生物刺激电极,所述脉冲信号包含交替的正电压脉冲信号串和负电压脉冲信号串,所述正电压脉冲信号串和负电压脉冲信号串中,脉冲信号的脉宽为200us,脉冲信号的间隔为30ms,脉冲信号的数量为25-35个,正电压脉冲信号串起始和负电压脉冲信号串起始之间的时间间隔为步态周期的二分之一;
—一对生物刺激电极:通过电极固定装置进行固定,生物刺激电极固定于脊髓表面诱发步态运动的关键位点,对该关键位点施加电激励以实现步态重建,所述脊髓表面诱发步态运动的关键位点是指位于脊髓L2节段背侧表面,对其施加电激励脉冲即能产生左右下肢中一个向前迈另一个往后蹬的动作、改变电激励脉冲的极性可使左右下肢动作方式交换反转的位点。
本发明重建步态运动功能的单端电极电子系统,可应用于动物实验或康复训练。
本发明电子系统产生一种脉冲信号,利用功能电刺激的生物医学工程方法,激活脊髓神经中产生下肢节律运动的固有中间神经元网络产生协调动作关键位点,以更接近生理状况的方式、以单对电极方式能有效地进行下肢步态运动功能的重建。
本发明通过单端电极刺激脊髓中控制步态运动的神经元网络,再生出相应 的生物神经信号,实现了釆用微电子方法恢复受损脊髓神经的步态运动功能。而本发明所述装置实现微电子系统辅助神经功能恢复,即实现脊髓损伤后步态运动功能重建。
附图说明
图1为本发明重建步态运动功能的单端电极电子系统的框图。
图2为本发明系统进行大鼠实验的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1为本发明实施例重建步态运动功能的单端电极电子系统的框图,本系统包括:指令采集系统、脉冲信号产生系统、一个生物刺激电极和对应的一个参考电极。
其中,指令采集系统,用于采集指令信息,根据该指令信息生成控制指令并发送给脉冲信号产生系统。指令采集系统包括:脑电波信号采集模块、语音识别模块、上位机信号接收模块和按键模块。脑电波信号采集模块用于采集脑电波信号,将其转换成控制指令。语音识别模块用于识别语音信号,将其转换成控制指令。上位机信号接收模块用于接收上位机发送的控制信号,将其转化为控制指令。按键模块用于通过按键操作,输出控制指令。本实施例中,控制指令包含:“开始”,“步频”和“停止”。当控制指令为“开始”时,脉冲信号产生系统向生物刺激电极发送脉冲信号,并根据“步频”设定相邻脉冲信号串的起始时刻之间的时间间隔;当控制指令为“停止”时,脉冲信号产生系统停止向生物刺激电极发送脉冲信号。通过训练,可以实现从脑电波信号和语音中提取与指令相关的信息。对于“步频”进行分级处理,分为多个速度等级,每 个速度等级对应一个所述的时间间隔。
接收指令采集系统发送的控制指令,根据该控制指令产生脉冲信号发送给生物刺激电极,所述脉冲信号包含交替的正电压脉冲信号串和负电压脉冲信号串,所述正电压脉冲信号串和负电压脉冲信号串中,脉冲信号的脉宽为200us,脉冲信号的间隔为30ms,脉冲信号的数量为25-35个,正电压脉冲信号串起始和负电压脉冲信号串起始之间的时间间隔为步态周期的二分之一。步态周期可根据控制指令中的“步频”来设定;也可以采用固定步态周期,比如1s。本实施例中,正脉冲信号的电流幅值范围为220~500μA,负脉冲信号的电流幅值范围为-500~-220μA。
生物刺激电极通过电极固定装置固定于脊髓表面诱发步态运动的关键位点,参考电极置于距离对应关键位点2cm以内的肌肉或脊髓处利用生物刺激电极对该关键位点施加电激励以实现步态重建。脊髓表面诱发步态运动的关键位点是指位于脊髓L2节段(脊椎T12节段内)的背侧表面,对其施加电激励脉冲即能产生左右下肢中一个向前迈另一个往后蹬的动作、改变电激励脉冲的极性可使左右下肢动作方式交换反转的位点。关键位点左右各一个,右侧关键位点的坐标范围为X=(0.377±0.196)*L1/2;Y=(0.780±0.143)*L2,左侧关键位点坐标范围为X=(-0.385±0.182)*L1/2;Y=(-0.779±0.147)*L2;X为脊髓腰膨大横径方向,Y为脊柱的头尾方向,L1是脊髓腰膨大横径的宽度;L2是脊椎T12节段的长度,坐标原点为脊髓后正中沟与脊椎T12节段头侧横截面的交点。
本实施例的重建步态运动功能的单端电极电子系统适合应用于动物实验或康复训练。
为了验证本发明的可用性,使用本实施例的电子系统对SD大鼠进行试验。
如图2所示,首先寻找可触发大鼠步态运动的发关键位点B,步骤如下:
(1)以脊椎的后正中沟及脊椎每个节段头侧为坐标原点,横径方向为X轴,脊髓头尾方向为Y轴,即刺激位点可以记作(X,Y),对关键位点的坐标(X,Y)做如下处理:横径方向X以脊髓腰膨大横径最大值的二分之一进行归一化处理,头尾方向Y以对应的脊椎节段长度进行归一化处理。
(2)在SD大鼠的脊髓上通过硬膜外电激励脉冲刺激,寻找存在左右腿交替运动现象的脊髓表面位点。
(3)将改变电激励脉冲的极性,观察大鼠左右腿交替动作出现反转的位点并记录该点的具体位置(X,Y)。
将本实施例电子系统的生物刺激电极置于关键位点表面并进行固定,参考电极置于距离对应关键位点2cm以内的肌肉处,然后分别通过指令采集系统的脑电波信号采集模块、语音识别模块、上位机信号接收模块和按键模块来进行控制指令的发出,实现了大鼠的步态重建,验证了本发明电子系统的可行性。
如图2(a)所示,使用正向脉冲信号对关键位点B进行激励,大鼠两腿如图2(b)所示,左腿向前迈,右腿往后蹬。图2(c)为左腿关节动态变化棍棒图,图2(d)为右腿关节动态变化棍棒图,如图2(e)所示,使用反向脉冲信号对关键位点B进行激励,大鼠两腿如图2(f)所示,左腿往后蹬,右腿向前迈,图2(g)为左腿关节动态变化棍棒图,图2(h)为右腿关节动态变化棍棒图。当正负激励信号间隔的触发,即可实现大鼠的步态运动。
本发明不局限于上述实施例所述的具体技术方案,凡采用等同替换形成的技术方案均为本发明要求的保护范围。

Claims (7)

  1. 一种重建步态运动功能的单端电极电子系统,其特征在于包括:
    —指令采集系统:用于采集指令信息,根据该指令信息生成控制指令并发送给脉冲信号产生系统;
    —脉冲信号产生系统:接收指令采集系统发送的控制指令,根据该控制指令产生脉冲信号发送给生物刺激电极,所述脉冲信号包含交替的正电压脉冲信号串和负电压脉冲信号串,所述正电压脉冲信号串和负电压脉冲信号串中,脉冲信号的脉宽为200us,脉冲信号的间隔为30ms,脉冲信号的数量为25-35个,正电压脉冲信号串起始和负电压脉冲信号串起始之间的时间间隔为步态周期的二分之一;
    —一对生物刺激电极:通过电极固定装置进行固定,生物刺激电极固定于脊髓表面诱发步态运动的关键位点,对该关键位点施加电激励以实现步态重建,所述脊髓表面诱发步态运动的关键位点是指位于脊髓L2节段背侧表面,对其施加电激励脉冲即能产生左右下肢中一个向前迈另一个往后蹬的动作、改变电激励脉冲的极性可使左右下肢动作方式交换反转的位点。
  2. 根据权利要求1所述的一种重建步态运动功能的单端电极电子系统,其特征在于:所述生物刺激电极为钨丝单端电极或者表面电极,参考电极置于距离所述关键位点2cm以内的肌肉或脊髓处。
  3. 根据权利要求1所述的一种重建步态运动功能的单端电极电子系统,其特征在于,所述指令采集系统包括:
    —脑电波信号采集模块,用于采集脑电波信号,将其识别结果转换成所述的控制指令;
    —语音识别模块,用于识别语音信号,将其识别结果转换成所述的控制指令;
    —上位机信号接收模块,用于接收上位机发送的控制信号,将其转化为所述的控制指令;
    —按键模块,用于通过按键操作,输出所述的控制指令。
  4. 根据权利要求3所述的一种重建步态运动功能的单端电极电子系统,其特征在于:控制指令包含:“开始”,“步频”和“停止”,当控制指令为“开始”时,脉冲信号产生系统向生物刺激电极发送脉冲信号,并根据“步频”设定相邻脉冲信号串的起始时刻之间的时间间隔;当控制指令为“停止”时,脉冲信号产生系统停止向生物刺激电极发送脉冲信号。
  5. 根据权利要求1所述的一种重建步态运动功能的单端电极电子系统,其特征在于:关键位点左右各一个,右侧关键位点的坐标范围为X=(0.377±0.196)*L1/2;Y=(0.780±0.143)*L2,左侧关键位点坐标范围为X=(-0.385±0.182)*L1/2;Y=(-0.779±0.147)*L2;X为脊髓腰膨大横径方向,Y为脊柱的头尾方向,L1是脊髓腰膨大横径的宽度;L2是脊椎T12节段的长度,坐标原点为脊髓后正中沟与脊椎T12节段头侧横截面的交点。
  6. 根据权利要求1所述的一种重建步态运动功能的单端电极电子系统,其特征在于:正脉冲信号的电流幅值范围为220~500μA,负脉冲信号的电流幅值范围为-500~-220μA。
  7. 权利要求1所述重建步态运动功能的单端电极电子系统,其特征在于:应用于动物实验或康复训练。
PCT/CN2020/082422 2020-03-31 2020-03-31 一种重建步态运动功能的单端电极电子系统 WO2021195959A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000755.5A CN111655328A (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的单端电极电子系统
AU2020203039A AU2020203039B2 (en) 2020-03-31 Single-ended electrode electronic system for reconstructing gait motor function
PCT/CN2020/082422 WO2021195959A1 (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的单端电极电子系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082422 WO2021195959A1 (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的单端电极电子系统

Publications (2)

Publication Number Publication Date
WO2021195959A1 true WO2021195959A1 (zh) 2021-10-07
WO2021195959A9 WO2021195959A9 (zh) 2021-12-09

Family

ID=71407456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082422 WO2021195959A1 (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的单端电极电子系统

Country Status (2)

Country Link
CN (1) CN111655328A (zh)
WO (1) WO2021195959A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805271C2 (ru) * 2021-11-10 2023-10-13 Евгений Александрович Горемыкин Система для восстановления квадрипедальных животных после спинальных травм

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457012B (zh) * 2021-07-02 2024-02-06 南通大学 一种单端口电极刺激大鼠cpg位点的双后肢步态调控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120239109A1 (en) * 2011-03-15 2012-09-20 Boston Scientific Neuromodulation Corporation Neurostimulation system for defining a generalized ideal multipole configuration
CN103052424A (zh) * 2010-06-04 2013-04-17 大学健康网络 功能性电刺激装置和系统及其用途
US20130253299A1 (en) * 2012-03-20 2013-09-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord
CN104306066A (zh) * 2014-10-22 2015-01-28 南通大学 基于脊髓神经功能电激励的大鼠腿部运动重建实验方法
CN105792886A (zh) * 2013-10-31 2016-07-20 洛桑联邦理工学院 递送自适应硬膜外和/或硬膜下脊髓电刺激以促进和恢复在神经功能损伤后的行动的系统
CN108926766A (zh) * 2018-08-06 2018-12-04 南通大学 一种微刺激器及微刺激器系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471268B2 (en) * 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
CN110694169A (zh) * 2019-09-16 2020-01-17 浙江大学 基于运动意图诱发中枢神经系统微电刺激的运动功能障碍神经桥接系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052424A (zh) * 2010-06-04 2013-04-17 大学健康网络 功能性电刺激装置和系统及其用途
US20120239109A1 (en) * 2011-03-15 2012-09-20 Boston Scientific Neuromodulation Corporation Neurostimulation system for defining a generalized ideal multipole configuration
US20130253299A1 (en) * 2012-03-20 2013-09-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord
CN105792886A (zh) * 2013-10-31 2016-07-20 洛桑联邦理工学院 递送自适应硬膜外和/或硬膜下脊髓电刺激以促进和恢复在神经功能损伤后的行动的系统
CN104306066A (zh) * 2014-10-22 2015-01-28 南通大学 基于脊髓神经功能电激励的大鼠腿部运动重建实验方法
CN108926766A (zh) * 2018-08-06 2018-12-04 南通大学 一种微刺激器及微刺激器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN JIAHUAN, SHEN XIAOYAN;MA LEI;TAO CHUNLING;LI ZHILING;LÜ XIAOYING;WANG ZHIGONG: "Study on the Regulation of Spinal Cord Micro-Stimulation Signal Amplitude on Hind Limb Motion in Rats", JOURNAL OF NANTONG UNIVERSITY (NATURAL SCIENCE EDITION), vol. 18, no. 2, 30 June 2019 (2019-06-30), pages 19 - 48, XP055854838, ISSN: 1673-2340, DOI: 10.3969/j.issn.1673-2340.2019.02.003 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805271C2 (ru) * 2021-11-10 2023-10-13 Евгений Александрович Горемыкин Система для восстановления квадрипедальных животных после спинальных травм

Also Published As

Publication number Publication date
AU2020203039A1 (en) 2020-07-09
CN111655328A (zh) 2020-09-11
WO2021195959A9 (zh) 2021-12-09

Similar Documents

Publication Publication Date Title
CN102886102B (zh) 镜像运动神经调制系统
Milosevic et al. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation
JP6393283B2 (ja) 神経運動機能不全の処置のための方法及びシステム
CN100525854C (zh) 智能型瘫痪病人辅助康复系统
CN105148404B (zh) 基于健侧肢体肌电信号触发的电刺激训练系统及训练方法
CN102824691A (zh) 基于肌电信号通信机理的瘫痪肢体功能重建方法及其装置
Moreno-Aranda et al. Electrical parameters for over-the-skin muscle stimulation
CN101711908B (zh) 针对下肢的层级式功能性电刺激康复系统
Hu et al. EEG-based classification of upper-limb ADL using SNN for active robotic rehabilitation
WO2021195959A1 (zh) 一种重建步态运动功能的单端电极电子系统
CN108926407A (zh) 一种实验性下肢节律运动大鼠模型的建立方法及其应用
CN108543216A (zh) 一种基于主从控制的手部功能重建装置及其实现方法
CN111659005A (zh) 一种基于肌电信号的足下垂康复装置
Chen et al. A real-time EMG-controlled functional electrical stimulation system for mirror therapy
Basumatary et al. A Microcontroller based charge balanced trapezoidal stimulus generator for FES system
CN102697496B (zh) 一种功能性电刺激表面肌电信号的滤波方法
JP2013103121A (ja) 磁気刺激リハビリテーション装置
WO2021195958A1 (zh) 一种重建步态运动功能的双电极电子系统
Kim et al. Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model
Tao et al. Comparative study of intraspinal microstimulation and epidural spinal cord stimulation
He et al. Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured
LU101751B1 (en) Double-electrode electronic system for reconstructing gait motor function
Nag et al. Neural prosthesis for motor function restoration in upper limb extremity
Liu et al. Performance of various EMG features in identifying arm movements for control of multifunctional prostheses
Zhou et al. Electromyographic Bridge—A multi-movement volitional control method for functional electrical stimulation: Prototype system design and experimental validation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020203039

Country of ref document: AU

Date of ref document: 20200331

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929311

Country of ref document: EP

Kind code of ref document: A1