WO2021195958A1 - 一种重建步态运动功能的双电极电子系统 - Google Patents

一种重建步态运动功能的双电极电子系统 Download PDF

Info

Publication number
WO2021195958A1
WO2021195958A1 PCT/CN2020/082421 CN2020082421W WO2021195958A1 WO 2021195958 A1 WO2021195958 A1 WO 2021195958A1 CN 2020082421 W CN2020082421 W CN 2020082421W WO 2021195958 A1 WO2021195958 A1 WO 2021195958A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
electrode
reconstructing
spinal cord
gait
Prior art date
Application number
PCT/CN2020/082421
Other languages
English (en)
French (fr)
Inventor
沈晓燕
李智玲
马磊
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Priority to CN202080000760.6A priority Critical patent/CN111683714A/zh
Priority to PCT/CN2020/082421 priority patent/WO2021195958A1/zh
Publication of WO2021195958A1 publication Critical patent/WO2021195958A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36132Control systems using patient feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment

Definitions

  • the invention relates to an intelligent control electronic system in the field of rehabilitation engineering and a control method thereof, in particular to a spinal cord electrical excitation device for reconstructing the gait movement function of the lower limbs.
  • Functional electrical stimulation is to stimulate muscles or nerves with a certain sequence of pulse currents to restore the lost or damaged limb motor function and realize the rehabilitation of paralyzed patients.
  • the purpose of the present invention is to provide a two-electrode electronic system for reconstructing the gait movement function, so as to solve the above-mentioned problems in the background art.
  • a two-electrode electronic system for reconstructing gait movement function which is characterized by comprising:
  • Communication system used to collect command information, generate control commands based on the command information and send them to the pulse signal generation system;
  • Pulse signal generation system receives the control instructions sent by the instruction acquisition system, generates pulse signals according to the control instructions and alternately sends them to two pairs of biostimulation electrodes.
  • the pulse signals are either a positive voltage pulse signal train or a negative voltage pulse signal train.
  • the pulse width of the pulse signal is 200us
  • the interval of the pulse signal is 30ms
  • the number of pulse signals is 25-35, between the start moments of the adjacent pulse signal trains
  • the time interval is one-half of the gait cycle;
  • Trostimulation electrodes fixed by an electrode fixing device.
  • the biostimulation electrodes are fixed on the surface of the spinal cord to induce gait movement at the key point A and key point B, and apply electricity to the key point A and key point B. Excitation to achieve gait reconstruction.
  • the key points A and B of the spinal cord surface to induce gait motion are located on the dorsal surface of the spinal cord L2 segment. Applying electrical excitation pulses to it can produce one of the left and right lower limbs moving forward. A backward kicking action and changing the polarity of the electrical excitation pulse can switch the movement patterns of the left and right lower limbs to two positions that are basically symmetrical with respect to the posterior median sulcus.
  • the two-electrode electronic system for reconstructing the gait movement function of the present invention can be applied to animal experiments or rehabilitation training.
  • the electronic system of the present invention generates pulse signals to alternately excite key point A and key point B, and uses the biomedical engineering method of functional electrical stimulation to activate the intrinsic interneuron network in the spinal nerve that produces rhythmic movements of the lower limbs to produce coordinated actions.
  • the key point is to effectively reconstruct the gait movement function of the lower limbs in a way closer to the physiological condition.
  • the present invention activates the neuron network that controls gait movement in the spinal cord through two biological stimulation electrodes, regenerates corresponding biological nerve signals, and realizes the recovery of the gait movement function of the damaged spinal cord nerves using a microelectronic method.
  • the device of the present invention realizes the microelectronic system to assist the recovery of nerve function, that is, realizes the reconstruction of nerve function after spinal cord injury.
  • Fig. 1 is a block diagram of the two-electrode electronic system for reconstructing the gait movement function of the present invention.
  • Figure 2 is a schematic diagram of a rat experiment performed by the system of the present invention.
  • Fig. 1 is a block diagram of a two-electrode electronic system for reconstructing gait movement function according to an embodiment of the present invention.
  • the system includes: a command acquisition system, a pulse signal generation system, two biostimulation electrodes and a reference electrode.
  • the command collection system is used to collect command information, generate control commands according to the command information, and send them to the pulse signal generation system.
  • the command acquisition system includes: brain wave signal acquisition module, voice recognition module, upper computer signal receiving module and button module.
  • the brain wave signal acquisition module is used to collect brain wave signals and convert them into control instructions.
  • the voice recognition module is used to recognize voice signals and convert them into control instructions.
  • the upper computer signal receiving module is used to receive the control signal sent by the upper computer and convert it into control instructions.
  • the button module is used to output control commands through button operation.
  • the control instructions include: "start", "cadence" and "stop".
  • the pulse signal generation system When the control command is "start”, the pulse signal generation system sends a pulse signal to the biostimulation electrode, and sets the time interval between the starting moments of adjacent pulse signal trains according to the “step frequency”; when the control command is “stop” “, the pulse signal generation system stops sending pulse signals to the biostimulation electrode.
  • the "step frequency” is classified into multiple speed levels, and each speed level corresponds to a specified time interval.
  • the pulse signals are either a positive voltage pulse signal train or a negative voltage pulse signal train, taking into account the higher stimulation threshold of the negative voltage signal Low, this embodiment recommends using negative voltage pulse signal trains to stimulate key points.
  • the pulse width of the pulse signal is 200us
  • the pulse signal interval is 30ms
  • the number of pulse signals is 25-35
  • the time interval between the starting moments of adjacent negative voltage pulse signal trains is step One-half of the state period.
  • the gait cycle can be set according to the "step frequency" in the control command; a fixed gait cycle, such as 4s, can also be used.
  • the current amplitude of the pulse signal ranges from -500 to -220 ⁇ A.
  • Two biostimulation electrodes are respectively fixed on the surface of the spinal cord to induce gait movement at the key point A and key point B through the electrode fixing device, and the reference electrode is placed at the muscle or spinal cord within 2 cm from the key point. Alternately apply electrical stimulation to key point A and key point B to achieve gait reconstruction.
  • the key point A and key point B of the spinal cord surface to induce gait movement refer to the dorsal surface of the spinal cord L2 segment (in the spine T12 segment).
  • Applying electrical excitation pulses to it can produce one of the left and right lower limbs forward Taking another step backwards and changing the polarity of the electrical excitation pulse can exchange the reversed two positions that are basically symmetrical to the posterior median sulcus.
  • the two-electrode electronic system for reconstructing the gait movement function of this embodiment is suitable for use in animal experiments or rehabilitation training.
  • the electronic system of this embodiment was used to test SD rats.
  • the transverse direction is the X axis
  • the head and tail direction of the spinal cord is the Y axis
  • the stimulation site can be recorded as (X, Y)
  • the coordinates (X, Y) of the key points are processed as follows: the transverse diameter direction X is normalized by one-half of the maximum transverse diameter of the spinal cord lumbar enlargement, and the head and tail direction Y is normalized by the corresponding spine segment length One treatment.
  • the two biostimulation electrodes of the electronic system of this embodiment are respectively set on the surface of these two key points and fixed, and then the brain wave signal acquisition module, voice recognition module, upper computer signal receiving module and buttons of the command acquisition system are respectively used.
  • the module is used to issue the control instruction, realize the gait reconstruction of the rat, and verify the feasibility of the electronic system of the present invention.
  • a negative pulse signal is used to excite the key point A.
  • the two legs of the rat are shown in Figure 2(b), with the left leg stepping forward and the right leg pushing back.
  • Figure 2(c) is a stick diagram of the left leg joint dynamic change
  • Figure 2(d) is a stick diagram of the right leg joint dynamic change
  • the negative pulse signal excites the key position B
  • the rat's legs are shown in Figure 2(f), with the left leg pushing backward and the right leg forward.
  • Figure 2(g) is a stick diagram of the left leg joints dynamically changing
  • Figure 2(h) is a stick diagram of the right leg joints dynamically changing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种重建步态运动功能的双电极电子系统,包括指令采集系统、脉冲信号产生系统和两个生物刺激电极及一个参考电极。指令采集系统根据该指令信息生成控制指令并发送给脉冲信号产生系统。脉冲信号产生系统根据控制指令产生脉冲信号发送给生物刺激电极。生物刺激电极对脊髓内诱发步态运动的两个关键位点进行交替地电脉冲激励,激活脊髓神经中产生下肢节律运动的固有中间神经元网络产生协调动作的关键位点。本系统以更接近生理状况的方式有效地进行下肢步态运动功能的重建,并且可应用于动物实验或康复训练。

Description

一种重建步态运动功能的双电极电子系统 技术领域
本发明涉及康复工程领域的智能控制电子系统及其控制方法,特别涉及重建下肢步态运动功能的脊髓电激励装置。
背景技术
脊髓损伤导致损伤节段以下肢体运动功能障碍,不仅会给患者本人带来身心伤害,还会对家庭及整个社会造成巨大的经济负担。因此,重建瘫痪肢体运动功能一直是神经科学研究中的一项重要课题。
成人中枢系统损伤后,上神经元轴突很难生长到原本连接的下神经元形成新的功能性突触连接,这给脊髓损伤后的运动功能重建带来了挑战。神经生物学的研究者一直通过神经营养因子联合诸如基因诱导、干细胞移植、脊髓支架等技术治疗脊髓损伤,但用这些方法恢复行走过程中复杂的腿肌激活模式和协调性,迄今尚未获得成功。
随着电子技术的不断发展,应用功能电刺激技术作为脊髓损伤患者潜在的功能重建方式已受到广泛关注。功能电刺激是以一定序列的脉冲电流刺激肌肉或神经,从而恢复丧失或受损的肢体运动功能,实现瘫痪病人的康复。
苏黎世联邦理工学院的Courtine研究员分别于2016年和2018年在Nature上发表的研究论文证明,采用脊髓神经功能电激励技术恢复下肢运动功能是可行的。其缺点是,由于刺激靶点是运动神经元,所以文中提到需要多达147种刺激方式。而神经假体使用时只能施加有限对电极。为了减少损伤和使用过程中的出错几率,当然希望电极数量越少越好。
发明内容
本发明的目的在于提供一种重建步态运动功能的双电极电子系统,以解决 上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:重建步态运动功能的双电极电子系统,其特征在于包括:
—指令采集系统:用于采集指令信息,根据该指令信息生成控制指令并发送给脉冲信号产生系统;
—脉冲信号产生系统:接收指令采集系统发送的控制指令,根据该控制指令产生脉冲信号交替地发送给两对生物刺激电极,所述脉冲信号为正电压脉冲信号串或负电压脉冲信号串,所述正电压脉冲信号串或负电压脉冲信号串中,脉冲信号的脉宽为200us,脉冲信号的间隔为30ms,脉冲信号的数量为25-35个,相邻脉冲信号串的起始时刻之间的时间间隔为步态周期的二分之一;
—两个生物刺激电极:通过电极固定装置进行固定,生物刺激电极分别固定于脊髓表面诱发步态运动的关键位点A和关键位点B,对该关键位点A和关键位点B施加电激励以实现步态重建,所述脊髓表面诱发步态运动的关键位点A和B是指位于脊髓L2节段背侧表面,对其施加电激励脉冲即能产生左右下肢中一个向前迈另一个往后蹬的动作、改变电激励脉冲的极性可使左右下肢动作方式交换反转的两个相对于后正中沟基本对称的位点。
本发明重建步态运动功能的双电极电子系统,可应用于动物实验或康复训练。
本发明电子系统产生脉冲信号交替地对关键位点A和关键位点B进行激励,利用功能电刺激的生物医学工程方法,激活脊髓神经中产生下肢节律运动的固有中间神经元网络产生协调动作的关键位点,以更接近生理状况的方式有效地进行下肢步态运动功能的重建。
本发明通过两个生物刺激电极激活脊髓中控制步态运动的神经元网络,再 生出相应的生物神经信号,实现了釆用微电子方法恢复受损脊髓神经的步态运动功能。而本发明所述装置实现微电子系统辅助神经功能恢复,即实现脊髓损伤后神经功能重建。
附图说明
图1为本发明重建步态运动功能的双电极电子系统的框图。
图2为本发明系统进行大鼠实验的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1为本发明实施例重建步态运动功能的双电极电子系统的框图,本系统包括:指令采集系统、脉冲信号产生系统和两个生物刺激电极及一个参考电极。
其中,指令采集系统,用于采集指令信息,根据该指令信息生成控制指令并发送给脉冲信号产生系统。指令采集系统包括:脑电波信号采集模块、语音识别模块、上位机信号接收模块和按键模块。脑电波信号采集模块用于采集脑电波信号,将其转换成控制指令。语音识别模块用于识别语音信号,将其转换成控制指令。上位机信号接收模块用于接收上位机发送的控制信号,将其转化为控制指令。按键模块用于通过按键操作,输出控制指令。本实施例中,控制指令包含:“开始”,“步频”和“停止”。当控制指令为“开始”时,脉冲信号产生系统向生物刺激电极发送脉冲信号,并根据“步频”设定相邻脉冲信号串的起始时刻之间的时间间隔;当控制指令为“停止”时,脉冲信号产生系统停止向生物刺激电极发送脉冲信号。通过训练,可以实现从脑电波信号和语音中提取与指令相关的信息。对于“步频”进行分级处理,分为多个速度等级,每个速度等级对应一个所述的时间间隔。
接收指令采集系统发送的控制指令,根据该控制指令产生脉冲信号发送给两对生物刺激电极,所述脉冲信号为正电压脉冲信号串或负电压脉冲信号串,考虑到负电压信号的刺激阈值较低,本实施例建议使用负电压脉冲信号串对关键位点进行刺激。负电压脉冲信号串中,脉冲信号的脉宽为200us,脉冲信号的间隔为30ms,脉冲信号的数量为25-35个,相邻负电压脉冲信号串的起始时刻之间的时间间隔为步态周期的二分之一。步态周期可根据控制指令中的“步频”来设定;也可以采用固定步态周期,比如4s。本实施例中,脉冲信号的电流幅值范围为-500~-220μA。
两个生物刺激电极通过电极固定装置分别固定于脊髓表面诱发步态运动的关键位点A和关键位点B,参考电极置于距离关键位点2cm以内的肌肉或脊髓处。交替地对关键位点A和关键位点B施加电激励以实现步态重建。脊髓表面诱发步态运动的关键位点A和关键位点B是指位于脊髓L2节段(脊椎T12节段内)的背侧表面,对其施加电激励脉冲即能产生左右下肢中一个向前迈另一个往后蹬的动作、改变电激励脉冲的极性可使左右下肢动作方式交换反转的两个相对于后正中沟基本对称的位点。关键位点A的坐标范围为X=(-0.385±0.182)*L1/2;Y=(-0.779±0.147)*L2;关键位点B的坐标范围为X=(+0.377±0.196)*L1/2;Y=(0.780±0.143)*L2,X为脊髓腰膨大横径方向,Y为脊柱的头尾方向,L1是脊髓腰膨大横径的宽度;L2是脊椎T12节段的长度,坐标原点为脊髓后正中沟与脊椎T12节段头侧横截面的交点。
本实施例的重建步态运动功能的双电极电子系统适合应用于动物实验或康复训练。
为了验证本发明的可用性,使用本实施例的电子系统对SD大鼠进行试验。
如图2所示,首先寻找可触发大鼠步态运动的发关键位点A和发关键位点B,步骤如下:
(1)以脊椎的后正中沟及脊椎每个节段头侧为坐标原点,横径方向为X轴,脊髓头尾方向为Y轴,即刺激位点可以记作(X,Y),对关键位点的坐标(X,Y)做如下处理:横径方向X以脊髓腰膨大横径最大值的二分之一进行归一化处理,头尾方向Y以对应的脊椎节段长度进行归一化处理。
(2)在SD大鼠的脊髓上通过硬膜外电激励脉冲刺激,寻找存在左右腿交替运动现象的脊髓表面位点。
(3)将改变电激励脉冲的极性,观察大鼠左右腿交替动作出现反转的位点并记录该点的具体位置(X,Y)。寻找到两个满足上述条件且相对于后正中沟基本对称的位点。
将本实施例电子系统的两个生物刺激电极分别设置于这两个关键位点表面并进行固定,然后分别通过指令采集系统的脑电波信号采集模块、语音识别模块、上位机信号接收模块和按键模块来进行控制指令的发出,实现了大鼠的步态重建,验证了本发明电子系统的可行性。
如图2(a)所示,使用负向脉冲信号对关键位点A进行激励,大鼠两腿如图2(b)所示,左腿向前迈,右腿往后蹬。图2(c)为左腿关节动态变化棍棒图,图2(d)为右腿关节动态变化棍棒图,如图2(e)所示,负向脉冲信号对关键位点B进行激励,大鼠两腿如图2(f)所示,左腿往后蹬,右腿向前迈。图2(g)为左腿关节动态变化棍棒图,图2(h)为右腿关节动态变化棍棒图。当负向脉冲信号交替对关键位点A和关键位点B刺激,即可实现大鼠的步态运动重建。
本发明不局限于上述实施例所述的具体技术方案,凡采用等同替换形成的技术方案均为本发明要求的保护范围。

Claims (8)

  1. 一种重建步态运动功能的双电极电子系统,其特征在于包括:
    —指令采集系统:用于采集指令信息,根据该指令信息生成控制指令并发送给脉冲信号产生系统;
    —脉冲信号产生系统:接收指令采集系统发送的控制指令,根据该控制指令产生脉冲信号交替地发送给两对生物刺激电极,所述脉冲信号为正电压脉冲信号串或负电压脉冲信号串,所述正电压脉冲信号串或负电压脉冲信号串中,脉冲信号的脉宽为200us,脉冲信号的间隔为30ms,脉冲信号的数量为25-35个,相邻脉冲信号串的起始时刻之间的时间间隔为步态周期的二分之一;
    —两个生物刺激电极:通过电极固定装置进行固定,生物刺激电极分别固定于脊髓表面诱发步态运动的关键位点A和关键位点B,对该关键位点A和关键位点B施加电激励以实现步态重建,所述脊髓表面诱发步态运动的关键位点A和B是指位于脊髓L2节段背侧表面,对其施加电激励脉冲即能产生左右下肢中一个向前迈另一个往后蹬的动作、改变电激励脉冲的极性可使左右下肢动作方式交换反转的两个相对于后正中沟基本对称的位点。
  2. 根据权利要求1所述的一种重建步态运动功能的双电极电子系统,其特征在于:所述生物刺激电极为钨丝单电极或者表面电极,一参考电极置于距离两关键位点2cm以内的肌肉或脊髓处。
  3. 根据权利要求1所述的一种重建步态运动功能的双电极电子系统,其特征在于,所述指令采集系统包括:
    —脑电波信号采集模块,用于采集脑电波信号,将其识别结果转换成所述的控制指令;
    —语音识别模块,用于识别语音信号,将其识别结果转换成所述的控制指令;
    —上位机信号接收模块,用于接收上位机发送的控制信号,将其转化为所述的控制指令;
    —按键模块,用于通过按键操作,输出所述的控制指令。
  4. 根据权利要求3所述的一种重建步态运动功能的双电极电子系统,其特征在于:控制指令包含:“开始”,“步频”和“停止”,当控制指令为“开始”时,脉冲信号产生系统向生物刺激电极发送脉冲信号,并根据“步频”设定相邻脉冲信号串的起始时刻之间的时间间隔;当控制指令为“停止”时,脉冲信号产生系统停止向生物刺激电极发送脉冲信号。
  5. 根据权利要求4所述的一种重建步态运动功能的双电极电子系统,其特征在于:所述控制指令还包含“步频”,并根据“步频”设定相邻脉冲信号串的起始时刻之间的时间间隔。
  6. 根据权利要求1所述的一种重建步态运动功能的双电极电子系统,其特征在于:关键位点A的坐标范围为X=(-0.385±0.182)*L1/2;Y=(-0.779±0.147)*L2;关键位点B的坐标范围为X=(+0.377±0.196)*L1/2;Y=(0.780±0.143)*L2,X为脊髓腰膨大横径方向,Y为脊柱的头尾方向,L1是脊髓腰膨大横径的最大宽度;L2是脊椎T12节段的长度,坐标原点为脊髓后正中沟与脊椎T12节段头侧横截面的交点。
  7. 根据权利要求1所述的一种重建步态运动功能的双电极电子系统,其特征在于:优选负电压脉冲信号串间隔地对关键位点A和关键位点B进行电激励,负脉冲信号的电流幅值范围为-500~-220μA。
  8. 权利要求1所述重建步态运动功能的双电极电子系统,其特征在于:应用于动物实验或康复训练。
PCT/CN2020/082421 2020-03-31 2020-03-31 一种重建步态运动功能的双电极电子系统 WO2021195958A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080000760.6A CN111683714A (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的双电极电子系统
PCT/CN2020/082421 WO2021195958A1 (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的双电极电子系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082421 WO2021195958A1 (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的双电极电子系统

Publications (1)

Publication Number Publication Date
WO2021195958A1 true WO2021195958A1 (zh) 2021-10-07

Family

ID=72438800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082421 WO2021195958A1 (zh) 2020-03-31 2020-03-31 一种重建步态运动功能的双电极电子系统

Country Status (2)

Country Link
CN (1) CN111683714A (zh)
WO (1) WO2021195958A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012125863A2 (en) * 2011-03-15 2012-09-20 Boston Scientific Neuromodulation Corporation Neurostimulation system for defining a generalized ideal multipole configuration
CN103052424A (zh) * 2010-06-04 2013-04-17 大学健康网络 功能性电刺激装置和系统及其用途
US20130253299A1 (en) * 2012-03-20 2013-09-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord
CN104306066A (zh) * 2014-10-22 2015-01-28 南通大学 基于脊髓神经功能电激励的大鼠腿部运动重建实验方法
CN105792886A (zh) * 2013-10-31 2016-07-20 洛桑联邦理工学院 递送自适应硬膜外和/或硬膜下脊髓电刺激以促进和恢复在神经功能损伤后的行动的系统
CN108926766A (zh) * 2018-08-06 2018-12-04 南通大学 一种微刺激器及微刺激器系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471268B2 (en) * 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
CN110694169A (zh) * 2019-09-16 2020-01-17 浙江大学 基于运动意图诱发中枢神经系统微电刺激的运动功能障碍神经桥接系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052424A (zh) * 2010-06-04 2013-04-17 大学健康网络 功能性电刺激装置和系统及其用途
WO2012125863A2 (en) * 2011-03-15 2012-09-20 Boston Scientific Neuromodulation Corporation Neurostimulation system for defining a generalized ideal multipole configuration
US20130253299A1 (en) * 2012-03-20 2013-09-26 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord
CN105792886A (zh) * 2013-10-31 2016-07-20 洛桑联邦理工学院 递送自适应硬膜外和/或硬膜下脊髓电刺激以促进和恢复在神经功能损伤后的行动的系统
CN104306066A (zh) * 2014-10-22 2015-01-28 南通大学 基于脊髓神经功能电激励的大鼠腿部运动重建实验方法
CN108926766A (zh) * 2018-08-06 2018-12-04 南通大学 一种微刺激器及微刺激器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B J HOLINSKI; K A MAZUREK; D G EVERAERT; A TOOSSI; A M LUCAS-OSMA; P TROYK; R ETIENNE-CUMMINGS; R B STEIN; V K MUSHAHWAR: "Intraspinal microstimulation produces over-ground walking in anesthetized cats", JOURNAL OF NEURAL ENGINEERING, vol. 13, no. 5, 13 September 2016 (2016-09-13), GB, pages 1 - 17, XP020309167, ISSN: 1741-2552, DOI: 10.1088/1741-2560/13/5/056016 *

Also Published As

Publication number Publication date
CN111683714A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
Milosevic et al. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation
JP6393283B2 (ja) 神経運動機能不全の処置のための方法及びシステム
CN102886102A (zh) 镜像运动神经调制系统
CN100525854C (zh) 智能型瘫痪病人辅助康复系统
CN105148404B (zh) 基于健侧肢体肌电信号触发的电刺激训练系统及训练方法
Moreno-Aranda et al. Electrical parameters for over-the-skin muscle stimulation
CN102824691A (zh) 基于肌电信号通信机理的瘫痪肢体功能重建方法及其装置
CN108543216A (zh) 一种基于主从控制的手部功能重建装置及其实现方法
CN211024807U (zh) 多触发方式的智能电刺激手部训练器
CN108392737A (zh) 肌电调制的下肢康复多通道功能性电刺激输出控制方法
CN108926407A (zh) 一种实验性下肢节律运动大鼠模型的建立方法及其应用
WO2021195959A1 (zh) 一种重建步态运动功能的单端电极电子系统
CN103768713A (zh) 基于穴位功能电刺激的瘫痪肢体运动控制方法
Chen et al. A real-time EMG-controlled functional electrical stimulation system for mirror therapy
WO2021195958A1 (zh) 一种重建步态运动功能的双电极电子系统
CN102697496B (zh) 一种功能性电刺激表面肌电信号的滤波方法
JP2013103121A (ja) 磁気刺激リハビリテーション装置
Kim et al. Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model
Tao et al. Comparative study of intraspinal microstimulation and epidural spinal cord stimulation
He et al. Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured
LU101751B1 (en) Double-electrode electronic system for reconstructing gait motor function
Zhou et al. Electromyographic Bridge—A multi-movement volitional control method for functional electrical stimulation: Prototype system design and experimental validation
Saxena et al. Functional Electrical Stimulation as a Significant Bioelectronic Intervention in the Domain of Fitness: A Review
Nag et al. Neural prosthesis for motor function restoration in upper limb extremity
CN110074947A (zh) 一种实现偏瘫下肢步态动作控制的肌电桥接方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929618

Country of ref document: EP

Kind code of ref document: A1