WO2021195891A1 - 光学成像系统、取像装置及电子设备 - Google Patents

光学成像系统、取像装置及电子设备 Download PDF

Info

Publication number
WO2021195891A1
WO2021195891A1 PCT/CN2020/082208 CN2020082208W WO2021195891A1 WO 2021195891 A1 WO2021195891 A1 WO 2021195891A1 CN 2020082208 W CN2020082208 W CN 2020082208W WO 2021195891 A1 WO2021195891 A1 WO 2021195891A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
optical
object side
Prior art date
Application number
PCT/CN2020/082208
Other languages
English (en)
French (fr)
Inventor
谢晗
刘彬彬
李明
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to PCT/CN2020/082208 priority Critical patent/WO2021195891A1/zh
Priority to US17/462,746 priority patent/US20210396961A1/en
Publication of WO2021195891A1 publication Critical patent/WO2021195891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • This application relates to optical imaging technology, in particular to a kind of optical imaging system, imaging device and electronic equipment.
  • Time of flight (Time of flight, TOF) imaging technology applied to the camera can well realize the camera’s 3D face recognition function and has good object reduction.
  • TOF Time of flight
  • an embodiment of the present application provides an optical imaging system whose total system length is short, which can well meet the needs of ultra-thin cameras.
  • the embodiments of the present application provide an optical imaging system, which includes in turn from the object side to the image side:
  • optical imaging system satisfies the following conditional formula:
  • TTL is the distance from the object side of the first lens to the imaging surface on the optical axis.
  • the total length of the optical imaging system of the present application is fully compressed, which can well meet the requirements for ultra-thinness.
  • the object side surface of the first lens is a convex surface near the optical axis; the image side surface is a concave surface near the optical axis.
  • the side surface of the object is convex near the optical axis, which is more conducive to the convergence of light, so that the first lens has sufficient positive refractive power, thereby shortening the total length of the optical imaging system, and converging light on the side surface of the complex.
  • the object side surface of the third lens is a concave surface near the optical axis; the image side surface is a convex surface near the optical axis.
  • the image side surface is convex near the optical axis, which can ensure the ability of the third lens to correct aberrations.
  • the object side surface of the fourth lens is a convex surface near the optical axis; the image side surface is a concave surface near the optical axis.
  • the image side surface of the fourth lens is concave at the paraxial position, which helps to correct the curvature of the optical imaging system, suppress the excessive increase of the chief ray incident angle of the off-axis field of view, and at the same time correct the aberration of the off-axis field of view.
  • At least one inflection point is provided on at least one of the object side surface and the image side surface of the fourth lens.
  • the inflection point can be used to correct the aberration of the off-axis field of view, suppress the incident angle of light to the imaging surface, and match the photosensitive element more accurately.
  • optical imaging system satisfies the following conditional formula:
  • FOV is the maximum angle of view of the optical imaging system.
  • tan(FOV/2) When tan(FOV/2) is less than 0.8, the field of view of the optical imaging system is too small to obtain a wide image, and the effective focal length of the optical imaging system may become longer, which is not conducive to lens length compression. When 0.8 ⁇ tan(FOV/2) ⁇ 1.0, the image range of the optical imaging system can be expanded.
  • optical imaging system satisfies the following conditional formula:
  • FNO is the aperture number of the optical imaging system.
  • the optical imaging system has greater luminous flux and higher relative brightness.
  • optical imaging system satisfies the following conditional formula:
  • FNO is the aperture number of the optical imaging system.
  • the optical imaging system has greater luminous flux and higher relative brightness.
  • optical imaging system satisfies the following conditional formula:
  • Vd1 is the Abbe number of the first lens
  • Vd2 is the Abbe number of the second lens
  • Vd3 is the Abbe number of the third lens
  • Vd4 is the Abbe number of the fourth lens.
  • Vd1, Vd2, Vd3, and Vd4 are all greater than 19 and less than 25, it is beneficial for the optical imaging system to obtain a higher modulation transfer function and improve the imaging quality of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • CT2 is the central thickness of the second lens
  • CT3 is the central thickness of the third lens
  • the assembly of the optical imaging system can be made more stable.
  • optical imaging system satisfies the following conditional formula:
  • R5 is the radius of curvature of the object side surface of the second lens on the optical axis
  • R6 is the radius of curvature of the second lens image side surface on the optical axis.
  • the shape of the object side and the image side of the second lens are similar, the molding is more uniform, and the object side and the image side are curved on the same side, which is beneficial to improve the resolution of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • R7 is the radius of curvature of the object side surface of the third lens with respect to the optical axis
  • R8 is the radius of curvature of the image side surface of the third lens with respect to the optical axis.
  • the shape of the object side and the image side of the third lens is similar, the shape is more uniform, and the object side and the image side are curved on the same side, which is beneficial to improve the resolution of the optical imaging system.
  • optical imaging system satisfies the following conditional formula:
  • R10 is the radius of curvature of the image side surface of the fourth lens relative to the optical axis
  • f is the effective focal length of the optical imaging system.
  • the image side of the fourth lens is concave near the optical axis and convex at the circumference, which helps to correct the curvature of the optical imaging system and prevent the chief ray of the off-axis field of view from being excessive. Increase and correct the aberration of the off-axis field of view at the same time.
  • optical imaging system satisfies the following conditional formula:
  • f1 is the effective focal length of the first lens
  • f23 is the combined focal length of the second lens and the third lens.
  • the first lens provides most of the positive refractive power, and the rational configuration of the second lens and the third lens can correct the positive spherical aberration generated by the first lens, and compensate a small part of the positive refractive power for the optical imaging system.
  • Optical imaging The system has high imaging quality.
  • An embodiment of the present application also provides an image capturing device, which includes:
  • the photosensitive element, the photosensitive element is located on the image side of the optical imaging system.
  • the orientation device of the present application has a small thickness and can be used to prepare an ultra-thin camera.
  • the imaging device of the present application has a wide focusing range and imaging quality.
  • An embodiment of the present application also provides an electronic device, which includes:
  • the main body of the equipment The main body of the equipment.
  • the image capturing device is installed on the main body of the device.
  • the thickness of the camera of the electronic device of the present application is small, which is beneficial to reduce the volume of the electronic device.
  • the total system length of the optical imaging system of the present application is less than or equal to 2.644 mm, and the total system length is small, which can well meet the needs of ultra-thin cameras.
  • Figure 1-1 is a schematic structural diagram of an optical imaging system according to the first embodiment of the present application.
  • Figures 1-2 are graphs of spherical aberration, astigmatism, and distortion of the optical imaging system according to the first embodiment of the present application, from left to right.
  • Figure 2-1 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present application.
  • Fig. 2-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the second embodiment of the present application, from left to right.
  • Fig. 3-1 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present application.
  • Fig. 3-2 shows the spherical aberration, astigmatism and distortion curves of the optical imaging system according to the third embodiment of the present application, from left to right.
  • Fig. 4-1 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present application.
  • Fig. 4-2 is a graph showing spherical aberration, astigmatism and distortion of the optical imaging system according to the fourth embodiment of the present application, from left to right.
  • FIG. 5-1 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present application.
  • Fig. 5-2 shows the spherical aberration, astigmatism, and distortion curves of the optical imaging system according to the fifth embodiment of the present application, from left to right.
  • Fig. 6-1 is a schematic structural diagram of an optical imaging system according to a sixth embodiment of the present application.
  • Fig. 6-2 is a graph showing spherical aberration, astigmatism, and distortion of the optical imaging system according to the sixth embodiment of the present application, from left to right.
  • FIG. 7 is a schematic structural diagram of an image capturing device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the optical imaging system 100 of the embodiment of the present application is suitable for infrared waveband imaging and can be applied to
  • the lens of computer, mobile phone, tablet, vehicle, surveillance, security, medical, game console, robot and other camera devices, from the object side to the image side, includes a first lens L1 with a positive refractive power and a second lens with a refractive power.
  • the optical imaging system 100 satisfies the following conditional expressions:
  • TTL is the distance on the optical axis from the object side of the first lens L1 to the imaging surface 50, that is, the total length of the optical imaging system 100.
  • the TTL may be 2.3mm, 2.35mm, 2.4mm, 2.45mm, 2.5mm, 2.55mm, 2.6mm, 2.64mm.
  • TTL is less than or equal to 2.644 mm
  • the total length of the optical imaging system 100 is fully compressed, which can well meet the needs of ultra-thin cameras.
  • focal power in this application represents the ability of an optical system to deflect light.
  • the total length of the optical imaging system 100 of the present application is less than or equal to 2.644 mm, which can well meet the requirements for ultra-thin cameras.
  • the first lens L1 is made of glass or plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis; the circumference can be convex or concave.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference can be a convex surface or a concave surface.
  • the object side S101 is a convex surface near the optical axis, which is more conducive to light convergence, so that the first lens L1 has sufficient positive refractive power, thereby shortening the total length of the optical imaging system 100, and the image side surface S2 converges light on the object side.
  • the second lens L2 is made of glass or plastic material and has an object side surface S3 and an image side surface S4.
  • the second lens L2 may have positive refractive power or negative refractive power.
  • the object side surface S3 near the optical axis may be convex or concave; the circumference may be convex or concave.
  • the image side surface S4 near the optical axis may be convex or concave; the circumference may be convex or concave.
  • the third lens L3 is made of glass or plastic material and has an object side surface S5 and an image side surface S6.
  • the third lens L3 may have positive refractive power or negative refractive power.
  • the object side surface S5 is a concave surface near the optical axis; the circumference can be a convex surface or a concave surface.
  • the image side surface S6 is convex near the optical axis, and the circumference may be convex or concave.
  • the image side surface S6 of the third lens L3 is a convex surface near the optical axis, which can ensure the ability of the third lens to correct aberrations.
  • the fourth lens L4 is made of glass or plastic material and has an object side surface S7 and an image side surface S8.
  • the fourth lens L4 may have positive refractive power or negative refractive power.
  • the object side surface S7 is convex near the optical axis; the circumference can be convex or concave.
  • the image side surface S8 is a concave surface near the optical axis, and the circumference can be a convex surface or a concave surface.
  • At least one inflection point is provided on at least one of the object side surface S7 and the image side surface S8 of the fourth lens L4.
  • “Inflection point” refers to the point of inflection where the radius of curvature changes from positive to negative or from negative to positive.
  • the inflection point can be used to correct the aberration of the off-axis field of view, suppress the incident angle of the light to the imaging surface 50, and match the photosensitive element more accurately (see FIG. 7 and the following embodiments).
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 include a glass lens and a plastic lens.
  • the first lens L1 is a glass lens
  • the second lens L2, the third lens L3, and the fourth lens L4 are all plastic lenses.
  • the second lens L2, the third lens L3, and the fourth lens L4 are plastic lenses, which can It is good to reduce the weight of the optical imaging system 100 and reduce the production cost.
  • the optical imaging system 100 with a hybrid glass lens and a plastic lens has higher light transmittance and more stable chemical performance than an optical imaging system including only a plastic lens, and can improve the imaging quality under different light and dark contrasts.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical lenses.
  • the aspheric lens is beneficial to correct aberrations of the optical imaging system 100 and improve the imaging quality of the optical imaging system 100. It can be easily made into a shape other than a spherical surface, to obtain more control variables, and to obtain the advantages of good imaging with a smaller number of lenses, thereby reducing the number of lenses and meeting miniaturization.
  • "Aspherical lens” refers to a lens with at least one aspherical surface.
  • the aspherical surface satisfies the following relationship:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the vertex of the object side or image side
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the vertex of the aspheric surface (at the optical axis)
  • k is the conic coefficient
  • Ai is the i-th aspheric coefficient of the object side or image side.
  • the optical imaging system 100 further includes a diaphragm 10.
  • the stop 10 may be located between the object side of the first lens L1 and the object side S8 of the fourth lens L4. More specifically, the diaphragm 10 is located between the first lens L1 and the second lens L2, which is beneficial to expand the field of view of the optical imaging system 100.
  • the diaphragm 10 can be located at any position between the object side of the first lens L1 and the object side S8 of the fourth lens L4. The position of the diaphragm 10 is not specifically limited in the present application.
  • the optical imaging system 100 further includes an infrared band pass filter 30.
  • the infrared band pass filter 30 is located between the fourth lens L4 and the imaging surface 50.
  • the infrared band pass filter 30 has a first surface 31 and a second surface 32.
  • the infrared bandpass filter 30 is made of glass, which can increase the transmittance of light in the infrared band, so that the optical imaging system 100 can be better applied to infrared imaging.
  • ghost image in this application is also called ghost image, which refers to the additional image generated near the focal plane of the optical imaging system due to the reflection of the lens surface, the brightness of which is generally darker and is offset from the original image.
  • the optical imaging system 100 satisfies the following conditional formula:
  • FOV is the maximum angle of view of the optical imaging system 100.
  • tan(FOV/2) can be any value between 0.8 and 1.0, for example: 0.81, 0.85, 0.90, 0.95, 0.99, etc.
  • tan(FOV/2) When tan(FOV/2) is less than 0.8, the field of view of the optical imaging system 100 is too small to obtain a wide image, and the effective focal length of the optical imaging system 100 may become longer, which is not conducive to lens length compression. When 0.8 ⁇ tan(FOV/2) ⁇ 1.0, the image range of the optical imaging system 100 can be expanded.
  • the optical imaging system 100 satisfies the following conditional formula:
  • FNO is the aperture number of the optical imaging system 100.
  • FNO can be any value less than or equal to 1.6, such as 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and so on.
  • the optical imaging system 100 When FNO ⁇ 1.6, the optical imaging system 100 has a larger luminous flux and a higher relative brightness.
  • the optical imaging system 100 satisfies the following conditional formula:
  • FNO is the aperture number of the optical imaging system 100.
  • FNO can be any value less than or equal to 1.3, such as 0.91, 0.95, 1.0, 1.1, 1.2, 1.3, and so on.
  • the optical imaging system 100 has a larger luminous flux and a higher relative brightness.
  • the optical imaging system 100 satisfies the following conditional formula:
  • Vd1 is the Abbe number of the first lens L1
  • Vd2 is the Abbe number of the second lens L2
  • Vd3 is the Abbe number of the third lens L3
  • Vd4 is the Abbe number of the fourth lens L4.
  • Vd1, Vd2, Vd3, and Vd4 can be any values between 19 and 25, such as 19.1, 20, 21, 22, 23, 24, 24.9, etc.
  • Vd1, Vd2, Vd3, and Vd4 are all greater than 19 and less than 25, it is beneficial for the optical imaging system 100 to obtain a higher modulation transfer function and improve the imaging quality of the optical imaging system 100.
  • Modulation Transfer Function in this application is also called spatial contrast transfer function and spatial frequency contrast sensitivity function, which reflects the transmission of various frequencies by the optical imaging system 100 The ability of sinusoids to modulate the degree. The higher the modulation transfer function of the optical imaging system 100, the better the imaging quality.
  • the optical imaging system 100 satisfies the following conditional formula:
  • CT2 is the center thickness of the second lens L2, that is, the distance from the object side surface S3 of the second lens L2 to the image side surface S4 on the optical axis;
  • CT3 is the center thickness of the third lens L3, that is, the third lens L3 object side surface S5 to The distance of the image side S6 on the optical axis.
  • CT2/CT3 can be any value between 0.5 and 1.5, such as 0.51, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0, 1.04, 1.2, 1.3, 1.49, etc.
  • the assembly of the optical imaging system 100 can be made more stable.
  • the optical imaging system 100 satisfies the following conditional formula:
  • R5 is the radius of curvature of the object side surface S3 of the second lens L2 on the optical axis
  • R6 is the radius of curvature of the second lens L2 image side surface S4 on the optical axis.
  • R5/R6 can be any value between 0 and 2.2, such as 0.1, 0.6, 0.8, 1.0, 1.5, 2.0, 2.1, 2.19, and so on.
  • the shape of the object side S3 and the image side S4 of the second lens L2 are similar, and the molding is more uniform, and the object side S3 and the image side S4 are curved on the same side, which is beneficial to improve the optical imaging system 100. Resolution.
  • the optical imaging system 100 satisfies the following conditional formula:
  • R7 is the radius of curvature of the object side surface S5 of the third lens L3 on the optical axis
  • R8 is the radius of curvature of the third lens L3 image side surface S6 on the optical axis.
  • R7/R8 can be any value between 0.18 and 1.1, such as 0.3, 0.5, 0.6, 0.8, 0.9, 1.0, 1.09, and so on.
  • the shape of the object side S5 and the image side S6 of the third lens L3 are similar, and the shape is more uniform, and the object side S5 and the image side S6 are curved on the same side, which is beneficial to improve the optical imaging system 100. Resolution.
  • the optical imaging system 100 satisfies the following conditional formula:
  • R10 is the radius of curvature of the image side surface S8 of the fourth lens L4 on the optical axis
  • f is the effective focal length of the optical imaging system 100.
  • 0.4 ⁇ R10/f ⁇ 0.8 can be any value between 0.4 and 0.8, such as 0.41, 0.5, 0.6, 0.7, 0.79, and so on.
  • the image side surface S8 of the fourth lens L4 has a concave surface near the optical axis and a convex surface at the circumference, which helps to correct the curvature of field of the optical imaging system 100 and suppress off-axis (off-optical axis)
  • the chief ray incident angle of the field of view is excessively increased while correcting the aberration of the off-axis field of view.
  • the optical imaging system 100 satisfies the following conditional formula:
  • f1 is the effective focal length of the first lens L1
  • f23 is the combined focal length of the second lens L2 and the third lens L3.
  • f1/f23 can be any value between -1 and 0.5, such as -0.99, -0.8, -0.5, -0.1, 0.1, 0.2, 0.3, 0.49, and so on.
  • the first lens L1 provides most of the positive refractive power, and the rational configuration of the second lens L2 and the third lens L3 can correct the positive spherical aberration generated by the first lens L1 and compensate a small part of the positive light for the optical imaging system 100 With power, the optical imaging system 100 has high imaging quality.
  • optical imaging system 100 of the present application will be described in further detail below in conjunction with specific embodiments.
  • Fig. 1-1 is a schematic structural diagram of the optical imaging system 100 of the first embodiment
  • Fig. 1-2 shows the spherical aberration, Graph of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a first lens L1 with a positive refractive power, a diaphragm 10, a second lens L2 with a positive refractive power, a second lens L2 with a negative optical power, from the object side to the image side.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis, and the circumference is concave.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference is a convex surface.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4.
  • the object side S3 near the optical axis and the circumference are both concave.
  • the image side surface S4 is convex near the optical axis and the circumference.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6.
  • the object side S5 near the optical axis and the circumference are both concave.
  • the image side S6 is convex near the optical axis and at the circumference.
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8.
  • the object side S7 is convex near the optical axis and the circumference.
  • the image side surface S8 has a concave surface near the optical axis and a convex surface at the circumference.
  • the optical imaging system 100 satisfies the conditions of Table 1 and Table 2 below.
  • Table 2 is the aspheric surface data of the first embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has high imaging quality while meeting miniaturization.
  • FIG. 2-1 is a schematic structural diagram of the optical imaging system 100 of the second embodiment
  • FIG. 2-2 shows the spherical aberration, Graph of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a first lens L1 with a positive refractive power, an aperture 10, a second lens L2 with a negative refractive power, and a negative lens from the object side to the image side.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis and at the circumference.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference is a convex surface.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4.
  • the object side surface S3 is convex near the optical axis, and the circumference is concave.
  • the image side surface S4 near the optical axis is concave, and the circumference is convex.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6.
  • the object side S5 near the optical axis and the circumference are both concave.
  • the image side S6 is convex near the optical axis and at the circumference.
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8.
  • the object side surface S7 is convex near the optical axis, and the circumference is concave.
  • the image side surface S8 has a concave surface near the optical axis and a convex surface at the circumference.
  • the optical imaging system 100 satisfies the conditions of Table 3 and Table 4 below.
  • Table 4 shows the aspheric surface data of the second embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has high imaging quality while meeting the requirements of miniaturization.
  • Fig. 3-1 is a schematic structural diagram of the optical imaging system 100 of the third embodiment
  • Fig. 3-2 shows the spherical aberration, Graph of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with a positive refractive power, an aperture 10, a second lens L2 with a positive refractive power, and a positive refractive power from the object side to the image side.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis and at the circumference.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference is a convex surface.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4.
  • the object side S3 near the optical axis and the circumference are both concave.
  • the image side surface S4 is convex near the optical axis and the circumference.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6.
  • the object side S5 near the optical axis and the circumference are both concave.
  • the image side S6 is convex near the optical axis and at the circumference.
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8.
  • the object side surface S7 is convex near the optical axis, and the circumference is concave.
  • the image side surface S8 has a concave surface near the optical axis and a convex surface at the circumference.
  • the optical imaging system 100 satisfies the conditions of Table 5 and Table 6 below.
  • Table 6 is the aspheric surface data of the third embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has high imaging quality while meeting miniaturization.
  • Fig. 4-1 is a schematic structural diagram of the optical imaging system 100 of the fourth embodiment
  • Fig. 4-2 shows the spherical aberration, Graph of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a first lens L1 with a positive refractive power, a diaphragm 10, a second lens L2 with a positive refractive power, a second lens L2 with a negative optical power, from the object side to the image side.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis and at the circumference.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference is a convex surface.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4.
  • the object side S3 near the optical axis and the circumference are both concave.
  • the image side surface S4 is convex near the optical axis and the circumference.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6.
  • the object side S5 near the optical axis and the circumference are both concave.
  • the image side surface S6 is convex near the optical axis, and the circumference is concave.
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8.
  • the object side surface S7 is convex near the optical axis, and the circumference is concave.
  • the image side surface S8 has a concave surface near the optical axis and a convex surface at the circumference.
  • the optical imaging system 100 satisfies the conditions in Table 7 and Table 8 below.
  • Table 8 is the aspheric surface data of the fourth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • FIGS. 4-1 and 4-2 It can be seen from FIGS. 4-1 and 4-2 that the optical imaging system 100 of the present application has high imaging quality while meeting miniaturization.
  • FIG. 5-1 is a schematic structural diagram of the optical imaging system 100 of the fifth embodiment
  • FIG. 5-2 shows the spherical aberration, Graph of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment includes a first lens L1 with a positive refractive power, a diaphragm 10, a second lens L2 with a negative refractive power, and a positive optical lens.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis and at the circumference.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference is a convex surface.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4.
  • the object side S3 near the optical axis and the circumference are both concave.
  • the image side surface S4 is convex near the optical axis and the circumference.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6.
  • the object side S5 near the optical axis and the circumference are both concave.
  • the image side surface S6 is convex near the optical axis, and the circumference is concave.
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8.
  • the object side surface S7 is convex near the optical axis, and the circumference is concave.
  • the image side surface S8 has a concave surface near the optical axis and a convex surface at the circumference.
  • the optical imaging system 100 satisfies the conditions in Table 9 and Table 10 below.
  • Table 10 is the aspheric surface data of the fifth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has a higher resolution under the condition of meeting miniaturization.
  • FIG. 6-1 is a schematic structural diagram of the optical imaging system 100 according to the sixth embodiment
  • FIG. 6-2 is the spherical aberration, Graph of astigmatism and distortion.
  • the optical imaging system 100 of this embodiment sequentially includes a first lens L1 with a positive refractive power, an aperture 10, a second lens L2 with a positive refractive power, and a positive refractive power from the object side to the image side.
  • a third lens L3 having a high degree of power
  • a fourth lens L4 having a negative refractive power
  • an infrared band pass filter 30 and an imaging surface 50.
  • the first lens L1 is made of plastic material and has an object side surface S1 and an image side surface S2.
  • the object side surface S1 is convex near the optical axis and at the circumference.
  • the image side surface S2 is a concave surface near the optical axis, and the circumference is a convex surface.
  • the second lens L2 is made of plastic material and has an object side surface S3 and an image side surface S4.
  • the object side surface S3 is convex near the optical axis, and the circumference is concave.
  • the image side surface S4 near the optical axis is concave, and the circumference is convex.
  • the third lens L3 is made of plastic material and has an object side surface S5 and an image side surface S6.
  • the object side S5 near the optical axis and the circumference are both concave.
  • the image side surface S6 is convex near the optical axis, and the circumference is concave.
  • the fourth lens L4 is made of plastic material and has an object side surface S7 and an image side surface S8.
  • the object side surface S7 is convex near the optical axis, and the circumference is concave.
  • the image side surface S8 has a concave surface near the optical axis and a convex surface at the circumference.
  • the optical imaging system 100 satisfies the conditions of Table 11 and Table 12 below.
  • Table 12 is the aspheric surface data of the sixth embodiment, where k is the conic coefficient of each surface, and A4-A20 are the 4-20th order aspheric surface coefficients of each surface.
  • the optical imaging system 100 of the present application has high imaging quality while meeting miniaturization.
  • the present application also provides an imaging device 200 including the optical imaging system 100 and the photosensitive element 210 of the present application.
  • the photosensitive element 210 is located on the image side of the optical imaging system 100.
  • the photosensitive element 210 of the present application may be a photosensitive coupling device (Charge Coupled Device, CCD) or a Complementary Metal-Oxide Semiconductor Sensor (CMOS sensor).
  • CCD Charge Coupled Device
  • CMOS sensor Complementary Metal-Oxide Semiconductor Sensor
  • the imaging device 200 of the present application has a wide focusing range and imaging quality while ensuring miniaturization.
  • the present application also provides an electronic device 300, which includes a device main body 310 and the image capturing device 200 of the present application.
  • the orientation device 200 is installed on the device main body 310.
  • the electronic equipment 300 of this application includes but is not limited to car cameras, computers, laptops, tablets, mobile phones, cameras, smart bracelets, smart watches, smart glasses, e-book readers, portable multimedia players, mobile medical devices, etc.
  • the thickness of the camera of the electronic device 300 of the present application is small, which is beneficial to reduce the volume of the electronic device 300.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

本申请提供一种光学成像系统、取像装置及电子设备。本申请提供的光学成像系统由物侧到像侧依次包括:具有正光焦度的第一透镜;具有光焦度的第二透镜;具有光焦度的第三透镜;及具有光焦度的第四透镜;其中,所述光学成像系统满足以下条件式:TTL≤2.644mm;其中,TTL为所述第一透镜的物侧面至成像面于光轴上的距离。本申请的光学成像系统的总长小于等于2.644mm,其能够很好的满足摄像头超薄化的需求。

Description

光学成像系统、取像装置及电子设备 技术领域
本申请涉及光学成像技术,特别及一种光涉学成像系统、取像装置及电子设备。
背景技术
随着手机人脸解锁、汽车自动驾驶、人机界面与游戏、工业机器视觉与测量、安防监控等技术的发展,人们要求这些设备应具有三维(Three Dimensional,3D)人脸识别、物体还原、移动支付等功能,而这些功能的实现又对摄像头的技术提出了更高的要求。飞行时间(Time of flight,TOF)成像技术应用于摄像头可以很好的实现摄像头的3D人脸识别功能,具有良好的物体还原性,但是现有的基于TOF成像的摄像头的系统总长太长,还无法满足这些设备对于摄像头超薄化的要求。
申请内容
有鉴于此,本申请实施例提供了一种光学成像系统,其系统总长短,可以很好的满足摄像头对超薄化的需求。
还有必要提供一种使用上述光学成像系统的取像装置。
此外,还有必要提供一种使用上述取像装置的电子设备。
本申请实施例提供一种光学成像系统,其由物侧到像侧依次包括:
具有正光焦度的第一透镜;
具有光焦度的第二透镜;
具有光焦度的第三透镜;及
具有光焦度的第四透镜;
其中,所述光学成像系统满足以下条件式:
TTL≤2.644mm;
其中,TTL为所述第一透镜的物侧面至成像面于光轴上的距离。
本申请的光学成像系统的总长得到了充分的压缩,能够很好的满足超薄化的需求。
其中,所述第一透镜物侧面近光轴处为凸面;像侧面近光轴处为凹面。物侧面近光轴处为凸面,更有利于光线的汇聚,使第一透镜具有足够的正光焦度,进而缩短光学成像系统的总长,像侧面配合物侧面汇聚光线。
其中,所述第三透镜物侧面近光轴处为凹面;像侧面近光轴处为凸面。像侧面近光轴处为凸面,可以确保第三透镜修正像差的能力。
其中,所述第四透镜物侧面近光轴处为凸面;像侧面近光轴处为凹面。第四透镜的像侧面近轴处为凹面,这样有助于修正光学成像系统的场曲,抑制离轴视场的主光线入射角过度增大,同时修正离轴视场的像差。
其中,所述第四透镜的物侧面和像侧面中至少一面设置至少一个反曲点。该反曲点处 可用来修正离轴视场的像差,抑制光线到成像面的入射角度,能更精准地匹配感光元件。
其中,所述光学成像系统满足以下条件式:
0.8<tan(FOV/2)<1.0;
其中,FOV为所述光学成像系统的最大视场角。
当tan(FOV/2)小于0.8时,光学成像系统的视场角过小,不能获取广阔的影像,且会是的光学成像系统的有效焦距变长,不利于镜头长度压缩。当0.8<tan(FOV/2)<1.0时,可以扩大光学成像系统的影像范围。
其中,所述光学成像系统满足以下条件式:
FNO≤1.6;
其中,FNO为所述光学成像系统的光圈数。
当FNO≤1.6时,光学成像系统具有更大的光通量,相对亮度更高。
其中,所述光学成像系统满足以下条件式:
FNO≤1.3;
其中,FNO为所述光学成像系统的光圈数。
当FNO≤1.3时,光学成像系统具有更大的光通量,相对亮度更高。
其中,所述光学成像系统满足以下条件式:
19<Vd1<25;
19<Vd2<25;
19<Vd3<25;
19<Vd4<25;
其中,Vd1为所述第一透镜的阿贝数,Vd2为所述第二透镜的阿贝数,Vd3为所述第三透镜的阿贝数,Vd4为所述第四透镜的阿贝数。
当Vd1、Vd2、Vd3和Vd4均大于19小于25时,有利于光学成像系统获得更高的调制传递函数,提高光学成像系统的成像品质。
其中,所述光学成像系统满足以下条件式:
0.5<CT2/CT3<1.5;
其中,CT2为所述第二透镜的中心厚度,CT3为所述第三透镜的中心厚度。
当0.5<CT2/CT3<1.5时,可以使光学成像系统的组装更稳定。
其中,所述光学成像系统满足以下条件式:
0<R5/R6<2.2;
其中,R5为所述第二透镜物侧面于光轴的曲率半径,R6为所述第二透镜像侧面于光轴的曲率半径。
当0<R5/R6<2.2时,使得第二透镜的物侧面和像侧面形状相近,成型更均匀,且物侧面和像侧面同侧弯曲,有利于提高光学成像系统的分辨率。
其中,所述光学成像系统满足以下条件式:
0.18<R7/R8<1.1;
其中,R7为所述第三透镜物侧面于光轴的曲率半径,R8为所述第三透镜像侧面于光轴的曲率半径。
当0.18<R7/R8<1.1时,使得第三透镜的物侧面和像侧面形状相近,成型更均匀,且物侧面和像侧面同侧弯曲,有利于提高光学成像系统的分辨率。
其中,所述光学成像系统满足以下条件式:
0.4<R10/f<0.8;
其中,R10为所述第四透镜像侧面于光轴的曲率半径,f为所述光学成像系统的有效焦距。
当0.4<R10/f<0.8时,第四透镜像侧面近光轴处为凹面,圆周处为凸面,这样有助于修正光学成像系统的场曲,抑制离轴视场的主光线入射角过度增大,同时修正离轴视场的像差。
其中,所述光学成像系统满足以下条件式:
-1<f1/f23<0.5;
其中,f1为所述第一透镜的有效焦距,f23为所述第二透镜与所述第三透镜的组合焦距。
通过第一透镜提供大部分正光焦度,合理配置第二透镜与第三透镜的光焦度,可以修正第一透镜产生的正球差,并为光学成像系统补偿少部分正光焦度,光学成像系统具有较高的成像品质。
本申请实施例还提供一种取像装置,其包括:
上述的光学成像系统;及
感光元件,所述感光元件位于所述光学成像系统的像侧。
本申请的取向装置厚度小,可以用于制备超薄摄像头。
本申请的取像装置在保证小型化的同时,具有较宽的调焦范围及成像品质。
本申请实施例还提供一种电子设备,其包括:
设备主体;及
上述的取像装置,所述取像装置安装在设备主体上。
本申请的电子设备的摄像头厚度小,有利于减小电子设备的体积。
由此,本申请的光学成像系统的系统总长小于等于2.644mm,系统总长小,能够很好的满足摄像头超薄化的需求。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1-1是本申请第一实施例光学成像系统的结构示意图。
图1-2由左到右依次是本申请第一实施例光学成像系统的球差、像散以及畸变曲线图。
图2-1是本申请第二实施例的光学成像系统的结构示意图。
图2-2由左到右依次是本申请第二实施例光学成像系统的球差、像散以及畸变曲线图。
图3-1是本申请第三实施例的光学成像系统的结构示意图。
图3-2由左到右依次是本申请第三实施例光学成像系统的球差、像散以及畸变曲线图。
图4-1是本申请第四实施例的光学成像系统的结构示意图。
图4-2由左到右依次是本申请第四实施例光学成像系统的球差、像散以及畸变曲线图。
图5-1是本申请第五实施例的光学成像系统的结构示意图。
图5-2由左到右依次是本申请第五实施例光学成像系统的球差、像散以及畸变曲线图。
图6-1是本申请第六实施例的光学成像系统的结构示意图。
图6-2由左到右依次是本申请第六实施例光学成像系统的球差、像散以及畸变曲线图。
图7本申请实施例的取像装置的结构示意图。
图8本申请实施例的电子设备的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
请参阅图1-1、图2-1、图3-1、图4-1、图5-1和图6-1,本申请实施例的光学成像系统100适用于红外波段成像,可应用于电脑、手机、平板电脑、车载、监控、安防、医疗、游戏机、机器人等摄像装置的镜头,其由物侧到像侧依次包括具有正光焦度的第一透镜L1、具有光焦度的第二透镜L2、具有光焦度的第三透镜L3、具有光焦度的第四透镜L4及成像面50。其中,光学成像系统100满足满足以下条件式:
TTL≤2.644mm;
其中,TTL为第一透镜L1的物侧面至成像面50于光轴上的距离,即光学成像系统100的总长。
更具体地,TTL可以为2.3mm、2.35mm、2.4mm、2.45mm、2.5mm、2.55mm、2.6mm、2.64mm。
当TTL≤2.644mm时,光学成像系统100的总长得到了充分的压缩,能够很好的满足摄像头超薄化的需求。
本申请术语“光焦度(focal power)”表征光学系统偏折光线的能力。
本申请的光学成像系统100的总长小于等于2.644mm,其能够很好的满足摄像头超薄化的需求。
可选地,第一透镜L1为玻璃或塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处为凸面;圆周处可以为凸面,也可以为凹面。像侧面S2近光轴处为凹面,圆周处可以为凸面,也可以为凹面。物侧面S101近光轴处为凸面,更有利于光线的汇聚,使第一透镜L1具有足够的正光焦度,进而缩短光学成像系统100的总长,像侧面S2配合物侧面汇聚光线。
可选地,第二透镜L2为玻璃或塑料材质,具有物侧面S3及像侧面S4。第二透镜L2可以具有正光焦度,也可以具有负光焦度。物侧面S3近光轴处可以为凸面,也可以为凹面;圆周处可以为凸面,也可以为凹面。像侧面S4近光轴处可以为凸面,也可以为凹面;圆周处可以为凸面,也可以为凹面。
可选地,第三透镜L3为玻璃或塑料材质,具有物侧面S5及像侧面S6。第三透镜L3可以具有正光焦度,也可以具有负光焦度。物侧面S5近光轴处为凹面;圆周处可以为凸面,也可以为凹面。像侧面S6近光轴处为凸面,圆周处可以为凸面,也可以为凹面。所述第三透镜L3像侧面S6近光轴处为凸面,可以确保第三透镜修正像差的能力。
可选地,第四透镜L4为玻璃或塑料材质,具有物侧面S7及像侧面S8。第四透镜L4可以具有正光焦度,也可以具有负光焦度。物侧面S7近光轴处为凸面;圆周处可以为凸面,也可以为凹面。像侧面S8近光轴处为凹面,圆周处可以为凸面,也可以为凹面。当第四透镜L4像侧面S8近轴处为凹面,圆周处为凸面时,这样有助于修正光学成像系统100的场曲,抑制离轴视场的主光线入射角过度增大,同时修正离轴视场的像差。
在一些实施例中,第四透镜L4的物侧面S7和像侧面S8中至少一面设置至少一个反曲点。“反曲点”指的是曲率半径由正变负或者由负变正的拐点处。该反曲点处可用来修正离轴视场的像差,抑制光线到成像面50的入射角度,能更精准地匹配感光元件(请参见图7和下述实施例)。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4中包括玻璃透镜和塑料透镜。例如,第一透镜L1为玻璃透镜,第二透镜L2、第三透镜L3和第四透镜L4均为塑料透镜。将最靠近物侧的第一透镜L1设为玻璃透镜,能够较好地耐受物侧的环境温度影响,同时,第二透镜L2、第三透镜L3和第四透镜L4为塑料透镜,能很好的降低光学成像系统100的重量并降低生产成本。此外,玻璃透镜和塑料透镜混合的光学成像系统100相对于仅包括塑料透镜的光学成像系统具有更高的透光率和更稳定的化学性能,能够改善在不同明暗对比度下的成像品质。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4均为非球面透镜。非球面透镜有利于校正光学成像系统100的像差,提高光学成像系统100的成像品质。可以容易制作成球面以外的形状,获得更多的控制变数,以较少枚数的透镜获得良好成像的优点,进而减少透镜数量,满足小型化。“非球面透镜”指至少一面为非球面的透镜。
在一些实施例中,当第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和/或像侧面为非球面时,非球面满足以下关系式:
Figure PCTCN2020082208-appb-000001
其中,Z为非球面上相应点到与该物侧面或像侧面的顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面的顶点(于光轴处)的曲率,k为圆锥系数,Ai为该物侧面或像侧面第i阶非球面系数。
可选地,光学成像系统100还包括光阑10。具体地,光阑10可以位于第一透镜L1的物侧和第四透镜L4物侧面S8之间。更具体地,光阑10位于第一透镜L1和第二透镜L2之间,这样有利于扩大光学成像系统100的视场角。光阑10可以位于第一透镜L1的物侧和第四透镜L4物侧面S8之间的任何位置,对于光阑10的位置,本申请不作具体限定。
可选地,光学成像系统100还包括红外带通滤光片30。红外带通滤光片30位于第四透镜L4与成像面50之间。红外带通滤光片30具有第一面31和第二面32。红外带通滤光片30为玻璃材质,其可增加红外波段的光线的透过率,使光学成像系统100能更好地应用于红外成像。
本申请的术语“鬼影”又叫鬼像,是指由于透镜表面反射而在光学成像系统焦面附近产生的附加像,其亮度一般较暗,且与原像错开。
在一些实施例中,光学成像系统100满足以下条件式:
0.8<tan(FOV/2)<1.0;
其中,FOV为所述光学成像系统100的最大视场角。
也就是说,tan(FOV/2)可以为0.8和1.0之间的任意数值,例如:0.81、0.85、0.90、0.95、0.99等。
当tan(FOV/2)小于0.8时,光学成像系统100的视场角过小,不能获取广阔的影像,且会是的光学成像系统100的有效焦距变长,不利于镜头长度压缩。当0.8<tan(FOV/2)<1.0时,可以扩大光学成像系统100的影像范围。
在一些实施例中,光学成像系统100满足以下条件式:
FNO≤1.6;
其中,FNO为光学成像系统100的光圈数。
也就是说,FNO可以为小于等于1.6的任意数值,例如1.0、1.1、1.2、1.3、1.4、1.5、1.6等。
当FNO≤1.6时,光学成像系统100具有更大的光通量,相对亮度更高。
在一些实施例中,光学成像系统100满足以下条件式:
FNO≤1.3;
其中,FNO为光学成像系统100的光圈数。
也就是说,FNO可以为小于等于1.3的任意数值,例如0.91、0.95、1.0、1.1、1.2、1.3等。
当FNO≤1.3时,光学成像系统100具有更大的光通量,相对亮度更高。
在一些实施例中,光学成像系统100满足以下条件式:
19<Vd1<25;
19<Vd2<25;
19<Vd3<25;
19<Vd4<25;
其中,Vd1为第一透镜L1的阿贝数,Vd2为第二透镜L2的阿贝数,Vd3为第三透镜L3的阿贝数,Vd4为第四透镜L4的阿贝数。
也就是说,Vd1、Vd2、Vd3和Vd4分别可以为19和25之间的任意数值,例如19.1、20、21、22、23、24、24.9等。
当Vd1、Vd2、Vd3和Vd4均大于19小于25时,有利于光学成像系统100获得更高的调制传递函数,提高光学成像系统100的成像品质。
本申请术语“调制传递函数(Modulation Transfer Function)”又称空间对比传递函数(spatial contrast transfer function)、空间频率对比敏感度函数(spatial frequencycontrast sensitivity function),其反映了光学成像系统100传递各种频率正弦物调制度的能力。光学成像系统100的调制传递函数越高,成像品质越好。
在一些实施例中,光学成像系统100满足以下条件式:
0.5<CT2/CT3<1.5;
其中,CT2为第二透镜L2的中心厚度,即第二透镜L2物侧面S3到像侧面S4于光轴上的距离;CT3为第三透镜L3的中心厚度,即第三透镜L3物侧面S5到像侧面S6于光轴上的距离。
也就是说,CT2/CT3可以为0.5和1.5之间的任意数值,例如0.51、0.6、0.7、0.8、0.85、0.9、0.95、1.0、1.04、1.2、1.3、1.49等。
当0.5<CT2/CT3<1.5时,可以使光学成像系统100的组装更稳定。
在一些实施例中,光学成像系统100满足以下条件式:
0<R5/R6<2.2;
其中,R5为第二透镜L2物侧面S3于光轴的曲率半径,R6为第二透镜L2像侧面S4于光轴的曲率半径。
也就是说,R5/R6可以为0和2.2之间的任意数值,例如0.1、0.6、0.8、1.0、1.5、2.0、2.1、2.19等。
当0<R5/R6<2.2时,使得第二透镜L2的物侧面S3和像侧面S4形状相近,成型更均匀,且物侧面S3和像侧面S4同侧弯曲,有利于提高光学成像系统100的分辨率。
在一些实施例中,光学成像系统100满足以下条件式:
0.18<R7/R8<1.1;
其中,R7为第三透镜L3物侧面S5于光轴的曲率半径,R8为第三透镜L3像侧面S6于光轴的曲率半径。
也就是说,R7/R8可以为0.18和1.1之间的任意数值,例如0.3、0.5、0.6、0.8、0.9、1.0、1.09等。
当0.18<R7/R8<1.1时,使得第三透镜L3的物侧面S5和像侧面S6形状相近,成型更均匀,且物侧面S5和像侧面S6同侧弯曲,有利于提高光学成像系统100的分辨率。
在一些实施例中,光学成像系统100满足以下条件式:
0.4<R10/f<0.8;
其中,R10为第四透镜L4像侧面S8于光轴的曲率半径,f为光学成像系统100的有效焦距。。
也就是说,0.4<R10/f<0.8可以为0.4和0.8之间的任意数值,例如0.41、0.5、0.6、0.7、0.79等。
当0.4<R10/f<0.8时,第四透镜L4像侧面S8近光轴处为凹面,圆周处为凸面,这样有助于修正光学成像系统100的场曲,抑制离轴(离光轴)视场的主光线入射角过度增大,同时修正离轴视场的像差。
在一些实施例中,光学成像系统100满足以下条件式:
-1<f1/f23<0.5;
其中,f1为第一透镜L1的有效焦距,f23为第二透镜L2与第三透镜L3的组合焦距。。
也就是说,f1/f23可以为-1和0.5之间的任意数值,例如-0.99、-0.8、-0.5、-0.1、0.1、0.2、0.3、0.49等。
通过第一透镜L1提供大部分正光焦度,合理配置第二透镜L2与第三透镜L3的光焦度,可以修正第一透镜L1产生的正球差,并为光学成像系统100补偿少部分正光焦度,光学成像系统100具有较高的成像品质。
以下结合具体实施例对本申请的光学成像系统100做进一步详细描述。
第一实施例
请参见图1-1及图1-2,其中图1-1为第一实施例的光学成像系统100的结构示意图,图1-2由左到右依次是本申请第一实施例球差、像散以及畸变曲线图。由图1-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、光阑10、具有正光焦度的第二透镜L2、具有负光焦度的第三透镜L3、具有正光焦度的第四透镜L4、红外带通滤光片30及成像面50。
第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处为凸面,圆周处为凹面。像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3近光轴处和圆周处均为凹面。像侧面S4近光轴处和圆周处均为凸面。
第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5近光轴处和圆周处均为凹面。像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7近光轴处和圆周处均为凸面。像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,TTL=2.63mm;FOV=86.68°,tan(FOV/2)=0.944;FNO=1.2;CT2=0.314,CT3=0.215;CT2/CT3=1.460;R5=-1.808,R6=-0.849,R5/R6=2.130;R7=-0.677,R8=-3.857,R7/R8=0.176;R10=0.813,f=1.691,R10/f=0.481;f1=2.61,f23=-3.21,f1/f23=-0.813。
在本实施例中,光学成像系统100满足以下表1及表2的条件。
Figure PCTCN2020082208-appb-000002
Figure PCTCN2020082208-appb-000003
表2为第一实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图1-1与图1-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的 成像品质。
第二实施例
请参见图2-1及图2-2,其中图2-1为第二实施例的光学成像系统100的结构示意图,图2-2由左到右依次是本申请第二实施例球差、像散以及畸变曲线图。由图2-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、光阑10、具有负光焦度的第二透镜L2、具有负光焦度的第三透镜L3、具有正光焦度的第四透镜L4、红外带通滤光片30及成像面50。
第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处和圆周处均为凸面。像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3近光轴处为凸面,圆周处为凹面。像侧面S4近光轴处为凹面,圆周处为凸面。
第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5近光轴处和圆周处均为凹面。像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7近光轴处为凸面,圆周处为凹面。像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,TTL=2.63mm;FOV=82.7°,tan(FOV/2)=0.880;FNO=1.40;CT2=0.2,CT3=0.315;CT2/CT3=0.635;R5=7.766,R6=6.85,R5/R6=1.134;R7=-0.998,R8=-1.78,R7/R8=0.561;R10=0.748,f=1.81,R10/f=0.413;f1=2.46,f23=-4.22,f1/f23=-0.583。
在本实施例中,光学成像系统100满足以下表3和表4的条件。
Figure PCTCN2020082208-appb-000004
Figure PCTCN2020082208-appb-000005
Figure PCTCN2020082208-appb-000006
表4为第二实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图2-1与图2-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的成像品质。
第三实施例
请参见图3-1及图3-2,其中图3-1为第三实施例的光学成像系统100的结构示意图,图3-2由左到右依次是本申请第三实施例球差、像散以及畸变曲线图。由图3-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、光阑10、具有正光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、红外带通滤光片30及成像面50。
第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处和圆周处均为凸面。像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3近光轴处和圆周处均为凹面。像侧面S4近光轴处和圆周处均为凸面。
第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5近光轴处和圆周处均为凹面。像侧面S6近光轴处和圆周处均为凸面。
第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7近光轴处为凸面,圆周处为凹面。像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,TTL=2.644mm;FOV=85°,tan(FOV/2)=0.916;FNO=1.60;CT2=0.2, CT3=0.339;CT2/CT3=0.590;R5=-9.032,R6=-7.493,R5/R6=1.205;R7=-0.954,R8=-1.067,R7/R8=0.894;R10=0.747,f=1.797,R10/f=0.416;f1=2.49,f23=42.755,f1/f23=0.058。
在本实施例中,光学成像系统100满足以下表5及表6的条件。
Figure PCTCN2020082208-appb-000007
Figure PCTCN2020082208-appb-000008
表6为第三实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图3-1与图3-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的成像品质。
第四实施例
请参见图4-1及图4-2,其中图4-1为第四实施例的光学成像系统100的结构示意图,图4-2由左到右依次是本申请第四实施例球差、像散以及畸变曲线图。由图4-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、光阑10、具有正光焦度的第二透镜L2、具有负光焦度的第三透镜L3、具有正光焦度的第四透镜L4、红外带通滤光片30及成像面50。
第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处和圆周处均为凸面。像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3近光轴处和圆周处均为凹面。像侧面S4近光轴处和圆周处均为凸面。
第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5近光轴处和圆周处均为凹面。像侧面S6近光轴处为凸面,圆周处为凹面。
第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7近光轴处为凸面,圆周处为凹面。像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,TTL=2.63mm;FOV=87.1°,tan(FOV/2)=0.951;FNO=1.08;CT2=0.228,CT3=0.245;CT2/CT3=0.931;R5=-1.826,R6=-0.942,R5/R6=1.938;R7=-0.878,R8=-4.688,R7/R8=0.187;R10=1.241,f=1.689,R10/f=0.735;f1=2.64,f23=-4.41,f1/f23=-0.599。
在本实施例中,光学成像系统100满足以下表7及表8的条件。
Figure PCTCN2020082208-appb-000009
Figure PCTCN2020082208-appb-000010
Figure PCTCN2020082208-appb-000011
表8为第四实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图4-1与图4-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的成像品质。
第五实施例
请参见图5-1及图5-2,其中图5-1为第五实施例的光学成像系统100的结构示意图,图5-2由左到右依次是本申请第五实施例球差、像散以及畸变曲线图。由图5-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、光阑10、具有负光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有正光焦度的第四透镜L4、红外带通滤光片30及成像面50。
第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处和圆周处均为凸面。像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3近光轴处和圆周处均为凹面。像侧面S4近光轴处和圆周处均为凸面。
第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5近光轴处和圆周处均为凹面。像侧面S6近光轴处为凸面,圆周处为凹面。
第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7近光轴处为凸面,圆周处为凹面。像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,TTL=2.63mm;FOV=86.36°,tan(FOV/2)=0.938;FNO=1.16;CT2=0.209,CT3=0.294;CT2/CT3=0.711;R5=-3.523,R6=-3.707,R5/R6=0.950;R7=-1.162,R8=-1.226,R7/R8=0.948;R10=0.796,f=1.7,R10/f=0.468;f1=2.62,f23=55.9,f1/f23=0.047。
在本实施例中,光学成像系统100满足以下表9及表10的条件。
Figure PCTCN2020082208-appb-000012
Figure PCTCN2020082208-appb-000013
Figure PCTCN2020082208-appb-000014
表10为第五实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图5-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的分辨率。
第六实施例
请参见图6-1及图6-2,其中图6-1为第六实施例的光学成像系统100的结构示意图,图6-2由左到右依次是本申请第五实施例球差、像散以及畸变曲线图。由图6-1可知,本实施例的光学成像系统100由物侧到像侧依次包括具有正光焦度的第一透镜L1、光阑10、具有正光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4、红外带通滤光片30及成像面50。
第一透镜L1为塑料材质,具有物侧面S1及像侧面S2。物侧面S1近光轴处和圆周处均为凸面。像侧面S2近光轴处为凹面,圆周处为凸面。
第二透镜L2为塑料材质,具有物侧面S3及像侧面S4。物侧面S3近光轴处为凸面,圆周处为凹面。像侧面S4近光轴处为凹面,圆周处为凸面。
第三透镜L3为塑料材质,具有物侧面S5及像侧面S6。物侧面S5近光轴处和圆周处均为凹面。像侧面S6近光轴处为凸面,圆周处为凹面。
第四透镜L4为塑料材质,具有物侧面S7及像侧面S8。物侧面S7近光轴处为凸面,圆周处为凹面。像侧面S8近光轴处为凹面,圆周处为凸面。
在本实施例中,TTL=2.60mm;FOV=78°,tan(FOV/2)=0.81;FNO=1.40;CT2=0.21,CT3=0.307;CT2/CT3=0.684;R5=11.062,R6=116.012,R5/R6=0.095;R7=-0.95,R8=-0.887,R7/R8=1.071;R10=0.785,f=1.831,R10/f=0.429;f1=2.5,f23=5.727,f1/f23=0.437。
在本实施例中,光学成像系统100满足以下表11及表12的条件。
Figure PCTCN2020082208-appb-000015
Figure PCTCN2020082208-appb-000016
Figure PCTCN2020082208-appb-000017
表12为第六实施例的非球面数据,其中,k为各面的圆锥系数,A4-A20为各表面第4-20阶非球面系数。
由图6-1与图6-2可知,本申请光学成像系统100的在满足小型化情况下,具有较高的成像品质。
请参见图7,本申请还提供取像装置200包括本申请的光学成像系统100及感光元件210。感光元件210位于光学成像系统100的像侧。
本申请的感光元件210可以为感光耦合元件(Charge Coupled Device,CCD)或互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS sensor)。
本申请的取像装置200在保证小型化的同时,具有较宽的调焦范围及成像品质。
该取像装置200的其他特征描述请参考上述描述,在此不再赘述。
请参见图8,本申请还提供一种电子设备300,其包括设备主体310及本申请的取像装置200。所述取向装置200安装在所述设备主体310上。
本申请的电子设备300包括但不限于车载摄像头、电脑、笔记本电脑、平板电脑、手机、相机、智能手环、智能手表、智能眼镜、电子书籍阅读器、便携多媒体播放器、移动医疗装置等。
本申请的电子设备300的摄像头厚度小,有利于减小电子设备300的体积。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种光学成像系统,其特征在于,其由物侧到像侧依次包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;及
    具有光焦度的第四透镜;
    其中,所述光学成像系统满足以下条件式:
    TTL≤2.644mm;
    其中,TTL为所述第一透镜的物侧面至成像面于光轴上的距离。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜物侧面近光轴处为凸面;像侧面近光轴处为凹面。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜物侧面近光轴处为凹面;像侧面近光轴处为凸面。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜物侧面近光轴处为凸面;像侧面近光轴处为凹面。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜的物侧面和像侧面中至少一面设置至少一个反曲点。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.8<tan(FOV/2)<1.0;
    其中,FOV为所述光学成像系统的最大视场角。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    FNO≤1.6;
    其中,FNO为所述光学成像系统的光圈数。
  8. 根据权利要求7所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    FNO≤1.3;
    其中,FNO为所述光学成像系统的光圈数。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    19<Vd1<25;
    19<Vd2<25;
    19<Vd3<25;
    19<Vd4<25;
    其中,Vd1为所述第一透镜的阿贝数,Vd2为所述第二透镜的阿贝数,Vd3为所述第 三透镜的阿贝数,Vd4为所述第四透镜的阿贝数。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.5<CT2/CT3<1.5;
    其中,CT2为所述第二透镜的中心厚度,CT3为所述第三透镜的中心厚度。
  11. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0<R5/R6<2.2;
    其中,R5为所述第二透镜物侧面于光轴的曲率半径,R6为所述第二透镜像侧面于光轴的曲率半径。
  12. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.18<R7/R8<1.1;
    其中,R7为所述第三透镜物侧面于光轴的曲率半径,R8为所述第三透镜像侧面于光轴的曲率半径。
  13. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.4<R10/f<0.8;
    其中,R10为所述第四透镜像侧面于光轴的曲率半径,f为所述光学成像系统的有效焦距。
  14. 根据权利要求1-13任一项所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    -1<f1/f23<0.5;
    其中,f1为所述第一透镜的有效焦距,f23为所述第二透镜与所述第三透镜的组合焦距。
  15. 一种取像装置,其特征在于,包括:
    权利要求1-14任一项所述的光学成像系统;及
    感光元件,所述感光元件位于所述光学成像系统的像侧。
  16. 一种电子设备,其特征在于,包括:
    设备主体;及
    权利要求15所述的取像装置,所述取像装置安装在设备主体上。
PCT/CN2020/082208 2020-03-30 2020-03-30 光学成像系统、取像装置及电子设备 WO2021195891A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/082208 WO2021195891A1 (zh) 2020-03-30 2020-03-30 光学成像系统、取像装置及电子设备
US17/462,746 US20210396961A1 (en) 2020-03-30 2021-08-31 Optical imaging system, image capturing apparatus, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082208 WO2021195891A1 (zh) 2020-03-30 2020-03-30 光学成像系统、取像装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/462,746 Continuation US20210396961A1 (en) 2020-03-30 2021-08-31 Optical imaging system, image capturing apparatus, and electronic device

Publications (1)

Publication Number Publication Date
WO2021195891A1 true WO2021195891A1 (zh) 2021-10-07

Family

ID=77926888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082208 WO2021195891A1 (zh) 2020-03-30 2020-03-30 光学成像系统、取像装置及电子设备

Country Status (2)

Country Link
US (1) US20210396961A1 (zh)
WO (1) WO2021195891A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11877041B2 (en) * 2020-07-23 2024-01-16 Qualcomm Incorporated Sensor with multiple focal zones
CN114815146B (zh) * 2022-03-10 2024-03-01 支付宝(杭州)信息技术有限公司 光学系统、取像模组、电子设备及载具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195213A (ja) * 1983-04-19 1984-11-06 Asahi Optical Co Ltd コンパクトな写真レンズ
CN205809393U (zh) * 2016-06-08 2016-12-14 广东旭业光电科技股份有限公司 一种超薄广角高像素摄影镜头组件
CN110398817A (zh) * 2019-06-29 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110412734A (zh) * 2019-06-29 2019-11-05 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110488462A (zh) * 2019-08-16 2019-11-22 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110515181A (zh) * 2019-08-16 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195213A (ja) * 1983-04-19 1984-11-06 Asahi Optical Co Ltd コンパクトな写真レンズ
CN205809393U (zh) * 2016-06-08 2016-12-14 广东旭业光电科技股份有限公司 一种超薄广角高像素摄影镜头组件
CN110398817A (zh) * 2019-06-29 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110412734A (zh) * 2019-06-29 2019-11-05 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110488462A (zh) * 2019-08-16 2019-11-22 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110515181A (zh) * 2019-08-16 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
US20210396961A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
TWI434096B (zh) 光學攝像透鏡組
TWI421533B (zh) 光學攝影鏡頭
TWI440881B (zh) 光學取像鏡片系統
TWI612326B (zh) 微型取像系統、取像裝置及電子裝置
TWI439754B (zh) 結像系統鏡頭組
TW201741717A (zh) 影像擷取鏡頭、取像裝置及電子裝置
TWI472793B (zh) 攝影光學系統鏡組
TW201344235A (zh) 影像擷取系統鏡片組
TW201333519A (zh) 光學影像拾取系統
TWI429945B (zh) 拾像鏡組
TW201616169A (zh) 成像透鏡系統、取像裝置以及電子裝置
WO2021196030A1 (zh) 光学系统、镜头模组和电子设备
WO2021195891A1 (zh) 光学成像系统、取像装置及电子设备
WO2023071480A1 (zh) 光学透镜系统、取像装置及电子设备
CN112835174A (zh) 光学成像系统、取像装置及电子设备
TWI807478B (zh) 光學成像系統、取像裝置及電子設備
CN113985569B (zh) 光学系统、镜头模组和电子设备
TWI793570B (zh) 光學成像系統、取像模組及電子裝置
CN212989754U (zh) 光学镜头、摄像模组及电子设备
TWI442128B (zh) 薄型化攝影透鏡組
CN211554455U (zh) 光学成像系统、取像装置及电子设备
CN114740604A (zh) 光学系统、摄像模组和电子设备
CN114859508A (zh) 光学系统、摄像模组和电子设备
CN111239987A (zh) 光学成像系统、取像装置及电子设备
CN113433652A (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928834

Country of ref document: EP

Kind code of ref document: A1