WO2021195792A1 - Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma - Google Patents

Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma Download PDF

Info

Publication number
WO2021195792A1
WO2021195792A1 PCT/CL2020/050031 CL2020050031W WO2021195792A1 WO 2021195792 A1 WO2021195792 A1 WO 2021195792A1 CL 2020050031 W CL2020050031 W CL 2020050031W WO 2021195792 A1 WO2021195792 A1 WO 2021195792A1
Authority
WO
WIPO (PCT)
Prior art keywords
strains
agricultural
formulation
bacteria
biostimulant
Prior art date
Application number
PCT/CL2020/050031
Other languages
English (en)
French (fr)
Inventor
Erica Castro Inostroza
Ernesto Antonio Moya Elizondo
Rodrigo BÓRQUEZ YÁÑEZ
María José PARRA MORAGA
Jaime COFRÉ RUBILAR
Juan Pablo MELLADO
Maria José AGUAYO
Alexandra ROZAS
Yessenia Stefany VEGA ORREGO
Original Assignee
Universidad San Sebastian
Universidad De Concepcion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad San Sebastian, Universidad De Concepcion filed Critical Universidad San Sebastian
Priority to PCT/CL2020/050031 priority Critical patent/WO2021195792A1/es
Publication of WO2021195792A1 publication Critical patent/WO2021195792A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • PROBIOTIC COMPOSITION WITH BIOCONTROLLER AND BiosTIMULANT EFFECT FOR AGRICULTURAL APPLICATION INCLUDING TWO STRAINS OF BACTERIA WEISSELLA CONFUSA; OBTAINING METHOD; FORMULATION CONTAINING IT AND USE OF IT
  • the invention aims at a probiotic composition to prepare formulations for agricultural use as a biocontroller, which allows to protect crops from attack by certain pathogens, while acting as a biostimulant of plant development.
  • the agricultural sector is one of the pillars of economic development in many countries, however, despite the good performance that this sector can achieve, uncontrolled variables related to fruit and vegetable crops can significantly affect their yield and productivity. particularly due to the proliferation of pests.
  • biostimulant products arises that complement the nutrition of the crops, and that comprise substances or microorganisms that allow to improve the absorption and assimilation of nutrients and the tolerance to biotic or abiotic stress, among other agronomic characteristics.
  • Biostimulants can be used directly on crops, or they can be applied to soil or irrigation water.
  • fungicides that contain compounds such as chlorothalonil, mancozeb, zoxamide, dazomet, copper sulfate pentahydrate, Bordeaux mixture, captan, mandipropramide, copper hydroxide, cupric hydroxide, oxide cuprous, ethaboxam, famoxadone, cymoxanil, metalaxyl, amisulbrom, propamocarb hydrochloride, fluopicolide, propineb, sodium phosphonates, potassium phosphonates, ammonium phosphonates, valifenalate, methoctradine, oxathiapiproline, and famoxadone; commercial products may also comprise microorganisms such as Bacillus subtilis strain QST 713, Trichhoderma har
  • a biocontroller agent for fungi, nematodes and phytopathogenic insects is described, specifically, a method to produce a bacterial consortium and a culture medium to obtain a biofungicide, which contains a consortium of the new strains isolated from Bacillus subtilis, which have been named as: Bk-Bs-01, Bk-Bs-02 and Bk-Bs-03.
  • the product acts as an antagonist against phytopathogenic fungi, among which the genera are indicated: Phytophthora, Rhizoctonia, Fusarium, Alternaria, Sclerotium, Sclerotinia and Botrytis.
  • the invention also includes the liquid culture medium to obtain the biofungicide, which is made up of potato starch, dextrose, yeast extract and mineral salts.
  • the biofungicide which is made up of potato starch, dextrose, yeast extract and mineral salts.
  • lactic acid bacteria are not used, nor are there any antecedents of a biostimulant action or of improvements in any productive parameter in conjunction with the biofungicidal activity of the product described.
  • the strain AB-4 of Lactobacillus plantarum which shows an effective inhibitory capacity for the pathogens Fusariun oxysporum and Phytophthora drechsleri.
  • the strain has good thermal stability, after being subjected to up to 100 ° C, and the fermented supernatant obtained has acceptable storage properties, maintaining its bacteriostatic activity after being stored at room temperature for 20 days.
  • a lactic acid type bacterium is mentioned, it is a single strain that does not prove to be effective against Phytophthora infestaos nor does it show that it has a biostimulant effect on crops.
  • the invention described in CN 201810980816 refers to a fermentation liquor or liquid based on Lactobacillus pentosus (CGMCC No. 1919), which can be used to prepare a soil-borne pathogens biocontroller product, specifically its application in the inhibition of Phytophthora capsici, reaching an effectiveness of 87%.
  • CGMCC No. 1919 Lactobacillus pentosus
  • a lactic acid type bacterium is mentioned, without addressing that it has activity against Phytophthora infestaos nor does it teach a biostimulant effect on the cultures.
  • Lactobacillus plantarum strain IMAU10014 also analyzed in in vitro tests, where it was obtained as a result that the metabolites produced by said strain, such as 3-phenylactic acid, benzeneacetic acid, and ester 2 -propenyl generate anti-oomycete activity against Phytophthora drechsleri Tucker (Wang H. et al., 2012).
  • Figure 3 Plaque inhibition assay in ACM medium, where inhibition is observed in the mycelial growth of the pseudo-fungus Phytophthora infestans by the lactic acid bacteria USS31 F, USS7F, USS8F and USS9F (corresponding to labels 31, 7, 8 and 9, respectively).
  • Figure 4 Percentage of germination in corn seeds treated with the different formulations (USS9F, USS31 F and a mixture of both) and control.
  • Figure 5 Percentage of germination in chili seeds treated with the different formulations (USS9F, USS31 F and a mixture of both) and control.
  • Figure 6 Average height in potato plants treated with the different formulations (USS9F, USS31 F, USS7F) and control (OF).
  • Figure 7 Percentage of foliar infection in plants inoculated with P. infestans and treated with formulations based on lactic strains (USS9F, USS31 F, USS7F) and control group treated with water (OF).
  • Figure 8 Foliar infection in plants inoculated with P. infestans and subsequently treated with formulations based on lactic strains (USS31 F, USS9F) and control group treated with water (Control (-)).
  • Figure 9 Percentage of blooming observed in three evaluation dates for the evaluation experiment of infestation by P. infestans and yield under controlled conditions in potato cv. Pukara-INIA during the 2019-2020 season.
  • Figure 10 Yield per 10 m 2 observed for the P. infestans infection evaluation experiment and yield under controlled conditions in potato cv. Pukara-INIA during the 2019-2020 season.
  • Figure 11 Microbiological count of total lactic acid bacteria in leaves for the experiment to evaluate infection by P. infestans and yield under controlled conditions in potato cv. Pukara-INIA during the 2019-2020 season.
  • Figure 12 Percentage of blight observed in two evaluation dates for an experiment in potato cv. Patagonia-INIA during the evaluation of infection by P. infestans and performance under conditions during the 2019-2020 season.
  • Figure 13 Percentage of late blight control of potatoes observed in two evaluation dates for an experiment in potato cv. Patagonia-INIA during the evaluation of infection by P. infestans and performance under conditions during the 2019-2020 season.
  • Figure 14 Yield per 9 m 2 observed for an experiment in potato cv. Patagonia-INIA for an experiment on potato cv. Patagonia-INIA during the evaluation trial of infestation by P. infestans and performance under conditions during the 2019-2020 season.
  • Figure 16 Comparison of productivity in terms of quantity between treatments per farm evaluated.
  • Figure 17. Height of chili pepper plants treated with the different formulations (USS9F, USS31 F and a mixture of both) and control.
  • Figure 18 Height of the corn plants treated with the different formulations (USS9F, USS31 F and a mixture of both) and control.
  • Figure 19 Average size of corn ears grown in the field and treated with the different formulations (USS9F, USS31 F and a mixture of both) and control.
  • Figure 20 Average size of the ears of corn grown in pots and treated with the different formulations (USS9F, USS31 F and a mixture of both) and control.
  • the invention is a scientific-technological solution at the forefront of modern agriculture that uses lactic acid bacteria (LAB), isolated from the microenvironments of healthy potato plants, without a history of P. infestans or late blight, to produce a natural and harmless composition for the environment, which favors plant development, increasing crop production.
  • LAB lactic acid bacteria
  • the present invention refers to the use of a product derived from lactic acid microorganisms corresponding to two strains of Weisella confusa, previously corresponding to the name Lactobacillus confusus: strains USS9F whose deposit number is DSM33454 and the strain USS31 F whose deposit number is DSM33455 , in the prevention and control of the parasitic fungus Phytophthora infestans and other fungi associated with potato cultivation.
  • the method for obtaining the dehydrated bacterial biomass of the USS9F and USS31 F strains is described, as well as the method for obtaining the powder for resuspension and its use as a biotechnological product.
  • the bacterial strains used in the formulation were deposited with DSMZ-Deutsche Sammlung von Mikro-organismen und Zellkulturen GmbFI, in Germany, under deposit number DSM33454 (strain USS9F) and DSM33455 (strain USS31 F), for patenting purposes.
  • the bacterial strains USS9F and USS31 F are cultivated in non-commercial culture medium, they are dehydrated through a lyophilization process, which gives the final formulation a high concentration of microorganisms, stable over time.
  • the formulation was found to be safe for humans and the environment.
  • the present invention then provides an innovative composition and represents an alternative method of prevention and control of infestations by the fungus P. infestans in potato crops that also has biostimulant action for crops.
  • the characterization carried out allowed the selection of a total of 25 microorganisms with the highest biotechnological potential.
  • the experimental results showed that four of them showed inhibition on the mycelial growth of P. infestans, after 15 days of co-culture, and corresponded to the strains USS7F, USS8F and USS9F, isolated from potato peel and the surface of an earthworm.
  • the strain labeled USS31 F which was obtained from potato flowers cv. Cardinal, showed inhibition on mycelial growth.
  • Strains can be preserved cold, after which they can be activated, for example, by incubating at 30 ° C in static culture for 24 h followed by transfer and culture for 12 h. Then the medium is centrifuged and the pellet is rescued, re-suspending it in physiological serum prior to the culture stage.
  • a sterile culture medium based on hydrolyzed whey was used, using casein peptone as a nitrogen source, reaching a viability of the order of 1 E09 [CFU / ml]. the nitrogen source in the fish peptone formulation. Viability of the order of 1 E09 [CFU / ml] under the same conditions of temperature and culture time was obtained at a temperature of 28-30 C for 15-17 hours and, as seen in the figures and parameters obtained by the Gompertz model ( Figure 1).
  • Protective, cryoprotective or coformulant solids play a fundamental role in the stability of the formulation, this because they are easy to cross the cell membrane and accumulate intracellularly, facilitating the flow of water through the cell membrane and protecting the cells from the action of cold. molecular and supramolecular structures through different forms of action.
  • coformulants serve to compensate for the osmotic pressure difference that is generated when the cell surface begins to freeze, preventing excessive water loss that could lead to dehydration and destruction of cells.
  • the lyophilization time was between 48 and 72 hours, obtaining a viability of the order of 1 E10 [CFU / ml]
  • strains are preferably preserved vacuum packed in non-permeable bags, to protect them from moisture, oxygen and light.
  • microencapsulation by lyophilization of the strains according to the present invention comprises the steps of:
  • compositions according to the invention can be used in agriculture as biostimulant and / or biocontroller in various formulations to be applied preventively in large areas of agricultural cultivation by any method available in the art, either by smearing or treating the tuber or seeds and / or spraying manually or motorized, soaked in plant material, or direct incorporation into soils or planting mixtures in greenhouses, pots, fields, etc.
  • Being a stable product it allows its preparation in situ. It is also recommended its supplementary application after climatic events conducive to the invasion of the pseudo-fungus or in the face of a stress condition, since it is a natural product, there is no restriction in its dosage.
  • the formulation allows an increase in the yield of the treated crops, a phenomenon that could be attributed to the modulation of the microbiota that is part of the rhizosphere and the philosopher. Which translates into promoting seed germination, plant growth and fruit size in agricultural crops.
  • composition of the invention can be used in a wide range of agricultural crops, especially vegetables, such as: potatoes, tomato, paprika, eggplant, corn, chili, broad bean, pea, among others.
  • a medium based on cheese serum derivatives was used, which corresponds to a specific medium for the culture of Lactobacillus sp strains, made from serum permeate ( as a carbon source in addition to other nutrients such as organic nitrogen, minerals and micronutrients), to which is added a lactase enzyme, casein peptone, yeast extract, potassium dihydrogen phosphate, sodium acetate and Tween-80 (described in the Chilean patent application No. 1940-2005 and granted with registration No. 51,722).
  • Example 2 Antibiosis lactic acid strains with P. infestans
  • the untreated seeds take an average of 2 days longer to germinate than those treated with those formulated with the strains of the present invention.
  • the trend shows that the formulation based on the USS9F strain improves the emergence time and it is also possible that all the seeds germinate (Figure 4).
  • Example 4 Challenge test with P. infestans under controlled conditions.
  • the phytopathogenic fungus affected the control plants in a greater way compared to the plants treated with the formulations, observing that the greatest protection was achieved with the application of the USS9F strain ( Figures 7 and 8).
  • Example 5 Evaluation test of infestation by P. infestans and performance under controlled conditions
  • the experiment had seven treatments, including those formulated from USS9F and USS31 F strains, a Pseudomonas protens strain Ca6 and applications of the fungicide Carbendazima (8% w / w) and Mancozeb (64% w / w) [Anagran Plus DP, ANASAC Chile SA], in doses of 2 kg ton -1 of seed tuber, in addition to propamocarb (Infinito®, Bayer SA) for the control of P. infestans in commercial doses of 1.6 L ha -1 , being applied to foliage three times in both experiments. These treatments were distributed in a randomized complete block design with four repetitions. These experiments were established on September 24, 2019 with potato cv.
  • Pukara-INIA The sowing was carried out by planting the tubers manually with a planting frame at 0.75 and 1 m between the row and 0.24 m above the row, and with a depth of 0.30 m, considering a total of 25 potatoes per row. and four rows per plot.
  • the application of the bacterial treatments to the seed tubers was done by applying the planting furrow with a knapsack pump applying in a straight line through the furrow on the seed tubers and soil using a low pressure anti-drift nozzle.
  • the seed treatment was carried out by placing the seed tubers in a plastic bag that was shaken until all the tubers were covered by the treatments.
  • the applications to the foliage of the treatments were carried out on November 21, December 13 and 16, 2019.
  • the percentage of the affected area with blight symptoms was visually evaluated on two occasions, and with these evaluations they were integrated to determine the area of the disease progress curve (AUDPC) for each repetition and treatment.
  • the harvest of the experiment was on March 10, 2020. The harvest was carried out in the two central rows of each experimental plot and the yield was determined in an area of 9 and 10 m 2 .
  • a drying herbicide paraquat dichloride was applied (Paraquat 276 SL [AGROSPEC SA,] in doses of 2.5 L ha 1 ), to promote the curing of the tubers and reduce the amount of foliage to facilitate harvesting.
  • the percentage data obtained were transformed by the Bliss transformation (Square root of the value plus 0.05) and the AUDPC and performance data were subjected to an analysis of variance (Andeva) and a test of separation of means of least significant differences ( Fischer LSD), with 90 or 95% confidence depending on the coefficient of variation observed in the Andeva.
  • the USS9F strain reduced the infection by 35.1%, and was different from the control treated with water and the control treated with fungicides, which was not different from the control, and which differed from this control by only 5 , 5% less infection:
  • the other bacteria reached levels of reduction of the blight with respect to the control in this third evaluation of 7.4% for 31 USS, 25.9% for the mixture of strains 9 and 31, 16, 6% for Ca6 and 20.3% when using all bacterial strains together.
  • EXAMPLE 6 Evaluation test of infestation by P. infestans and performance under field conditions
  • the trial was established on October 16, 2019, with potato Patagonia-INIA.
  • the sowing was carried out by planting in plots of 18 m 2 (6 mx 3 m), placing the tubers manually with a planting frame at 0.75 and 1 m between row and 0.24 m on row, and with a depth of 0.30 m, considering a total of 25 potatoes per row and four rows per plot.
  • the application of the bacterial treatments to the seed tubers was done by applying the planting furrow with a knapsack pump applying in a straight line through the furrow on the seed tubers and soil using a low pressure anti-drift nozzle.
  • the seed treatment was carried out by placing the seed tubers in a plastic bag that was shaken until all the tubers were covered by the treatments.
  • the applications to the foliage of the treatments were made on December 05 and 17, 2019 and January 28, 2020.
  • the applications were made with a STIHL SR 450 motor sprayer, with ULV (Ultra low volume) nozzles and a 400 L wetting. ha -1 .
  • the percentage data obtained were transformed by the Bliss transformation (Square root of the value plus 0.05) and the AUDPC and performance data were subjected to an analysis of variance (andeva) and a mean separation test of least significant differences ( Fischer LSD), with 90 or 95% confidence depending on the coefficient of variation observed in the andeva.
  • the sprouts obtained according to Example 3 were sown in 2 L pots for chili peppers and 10 L for corn with peat / vermiculite substrate and watered as required. In each treatment 5 replicates were used. The applications of the treatments were made by spraying every 15 days.
  • the average height of the chili plants at 10 days of germination is higher in the plants with treatment than the control, while the USS9F treatment is that at 30 days it doubles the height of the control plants (Figure 17).
  • Example 8 For this evaluation the ears of the treatment of Example 8 were measured as a proxi of production of the treated plants.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La invención provee una composición probiótica que comprende dos microorganismos ácido lácticos de Weisella confusa en alta concentración para uso en agricultura e industrias relacionadas. En una realización preferente de la invención se provee una formulación deshidratada que puede ser aplicada durante el proceso de siembra, embadurnando o tratando tubérculos y semillas o puede ser suspendido en agua y asperjado durante el desarrollo de la planta. La composición de la invención permite proteger los cultivos de papas de la colonización e infestación del hongo P. infestans (control del tizón tardío de la papa) y además estimula el desarrollo vegetal, incrementando los indicadores de rendimiento, y fortalece las características del suelo, mejorando su composición de microbios benéficos.

Description

COMPOSICIÓN PROBIÓTICA CON EFECTO BIOCONTROLADOR Y BIOESTIMULANTE PARA APLICACIÓN AGRÍCOLA QUE COMPRENDE DOS CEPAS DE BACTERIAS WEISSELLA CONFUSA; MÉTODO DE OBTENCIÓN; FORMULACIÓN QUE LA CONTIENE Y USO DE LA MISMA
MEMORIA DESCRIPTIVA
CAMPO TÉCNICO
La invención apunta a una composición probiótica para elaborar formulaciones de uso agrícola como biocontrolador, que permite proteger los cultivos del ataque de ciertos patógenos, a la vez que actúa como un bioestimulante del desarrollo vegetal.
ANTECEDENTES DE LA INVENCIÓN
El rubro agrícola es uno de los pilares del desarrollo económico en muchos países, no obstante, a pesar del buen rendimiento que puede lograr este sector, variables no contraladas relacionadas a los cultivos de frutas y hortalizas pueden afectar significativamente el rendimiento y productividad de éstos, particularmente por la proliferación de plagas.
Las enfermedades son un verdadero problema para la producción agrícola, afectando los cultivos, generando deterioros en la producción y enormes pérdidas económicas. Por otra parte, la cancelación del registro de algunos pesticidas, la desaprobación pública de estos productos sintéticos, la resistencia que generan ciertos patógenos a los agroquímicos y la expansión de la agricultura orgánica, han llevado a buscar formas alternativas de controlar las plagas. A partir de ello surge el interés por implementar una producción agrícola limpia y sustentable, promoviendo el empleo de métodos biológicos para la protección de los cultivos, como una alternativa al uso de agroquímicos, protegiendo el ambiente y las personas.
En paralelo, además de prevenir la infestación por patógenos, la agricultura permanentemente busca incrementar el rendimiento de la producción. En este ámbito, surge el uso de productos bioestimulantes que complementan la nutrición de los cultivos, y que comprenden sustancias o microorganismo que permiten mejorar la absorción y asimilación de nutrientes y la tolerancia al estrés biótico o abiótico, entre otras características agronómicas. Los bioestimulantes se pueden usar directamente en los cultivos, o pueden ser aplicados en el suelo o agua de riego.
Así, la agricultura orgánica se ve incentivada por la demanda de productos orgánicos de parte de los consumidores, por el interés de reducir la contaminación de los suelos y las aguas subterráneas y por el interés de los agricultores que buscan tecnologías sostenibles para proteger su salud y la de sus familias. i En el ámbito mundial, uno de los cultivos más importante es la papa ( Solanum tuberosum). Este recurso es afectado por diversas enfermedades, incluyendo el tizón tardío asociado a Phytophthora infestans De Bary, plaga que puede llegar a ser devastadora y difícil de controlar, con elevadas pérdidas de las plantaciones. Por esto, una gran diversidad de productos químicos, se emplean en el manejo productivo de este tubérculo. Por esto, tendencias más amigables se han incorporado en los últimos años, tales como el empleo de compost húmedo con el propósito de aumentar la resistencia a la infección de P. Infestans por medio del incremento de bacterias antagónicas en la superficie del tubérculo, así como el uso de control biológico a través de enzimas microbianas que degradan la pared celular de este hongo patógeno, o directamente la aplicación de bacterias biocontroladoras.
Dentro de los agentes químicos utilizados para el control de los hongos patógenos, la mayoría de ellos es de uso preventivo. En el caso de Phytophthora infestans (y de otros organismos fitopatógenos) se utilizan fungicidas comerciales que contienen compuestos tales como clorotalonilo, mancozeb, zoxamida, dazomet, sulfato de cobre pentahidratado, caldo bordelés, captan, mandipropramida, hidróxido de cobre, hidróxido cúprico, óxido cuproso, etaboxam, famoxadona, cimoxanilo, metalaxilo, amisulbrom, clorhidrato de propamocarb, fluopicolida, propineb, forfonatos de sodio, fosfonatos de potasio, fosfonatos de amonio, valifenalato, ametoctradina, oxatiapiprolina, y famoxadona; los productos comerciales también pueden comprender microorganismos tales como Bacillus subtilis cepa QST 713, Tríchoderma harzianum cepa Queule, Tríchoderma virens cepa Sherwood, y Tríchoderma parceramosum cepa Trailes.
En el estado del arte existen diversos desarrollos en la línea de biocontroladores y/o bioestimulantes, tales como los que se presentan a continuación.
En el documento de patente MX 20160017087 se describe a un agente biocontrolador de hongos, nematodos e insectos fitopatógenos, específicamente, a un método para producir un consorcio bacteriano y un medio de cultivo para obtener un biofungicida, el cual contiene un consorcio de las nuevas cepas aisladas de Bacillus subtilis, las cuales se han denominado como: Bk-Bs-01 , Bk-Bs-02 y Bk-Bs-03. El producto actúa como antogonista contra hongos fitopatógenos entre los que se señalan los géneros: Phytophthora, Rhizoctonia, Fusarium, Alternaría, Sclerotium, Sclerotinia y Botrytis. La invención también incluye el medio de cultivo líquido para obtener el biofungicida, el cual se constituye de almidón de patata, dextrosa, extracto de levadura y sales minerales. En este documento no se utilizan bacterias ácido lácticas ni se entregan antecedentes de una acción bioestimulante o de mejoras en algún parámetro productivo en conjunto con la actividad biofungicida del producto descrito.
Por otra parte, en el documento CN 201510232193 se describe la cepa AB-4 de Lactobacillus plantarum, la cual muestra una capacidad inhibitoria efectiva para los patógenos Fusariun oxysporum y Phytophthora drechsleri. Dentro de las pruebas realizas se menciona que la cepa presenta una buena estabilidad térmica, tras ser sometido hasta 100°C, y el sobrenadante fermentado obtenido tiene propiedades de almacenamiento aceptables manteniendo su actividad bacteriostática después de almacenarse a temperatura ambiente durante 20 días. Así, si bien se menciona una bacteria del tipo ácido láctica, se trata de una única cepa que no demuestra ser efectiva contra Phytophthora infestaos ni tampoco muestra que tenga un efecto bioestimulante sobre los cultivos.
La invención descrita en CN 201810980816 se refiere a un licor o líquido de fermentación a base de Lactobacillus pentosus (CGMCC No. 1919), el cual puede ser usado para preparar un producto biocontrolador de patógenos transmitidos por el suelo, en específico su aplicación en la inhibición de Phytophthora capsici, alcanzando una efectividad de un 87%. Al igual que el ejemplo anterior, en este documento se menciona una bacteria del tipo ácido láctica, sin abordar que tenga actividad contra Phytophthora infestaos ni tampoco enseña un efecto bioestimulante sobre los cultivos.
En cuanto a la invención divulgada en CN 109666462, allí se describe la capacidad de prevención y tratamiento de la bacteria Bacillus veiezensis (cepa SNB55) para enfermedades producidas por virus y hongos en plantas, entre ellas Phytophthora capsici. Además, de lo mencionado, favorece el crecimiento de las mismas. En este sentido, la utilización de este microorganismo no genera toxicidad ni patogenicidad en las plantas, siendo un desarrollo respetuoso con el medio ambiente y no comprometiendo la salud de las personas. Este desarrollo proveería una acción conjunta de biocontrolador y bioestimulante, pero en otro tipo de patógeno, por lo tanto se trata de un problema técnico diferente al abordado en la presente invención.
Finalmente, en el documento US 201815893058 se presentan de semillas tratadas con un consorcio formado por el antagonista fúngico Trichoderma víreos y por el antagonista bacteriano Bacillus amyloliquefaciens, los que en conjunto al ser aplicados actúan biocontroladores, bioplaguicidas o biofungicidas. Junto con el efecto mencionado, además se aumenta el rendimiento de las plantas. Los hongos fitopatógenos en los cuales actúa son los del género Fusarium, Phythium, Phytophthora y Penicillium, en los cultivos de tomate, pimientos, soya, girasol, trigo, maíz y también en césped. Tal como en el documento anterior, se proveería una acción conjunta de biocontrolador y bioestimulante, pero en otro tipo de patógenos y además no se muestra que tengan actividad sobre tubérculos, por lo también se trata de un problema técnico diferente al de la presente invención.
En relación al uso de bacterias lácticas en aplicaciones agrícolas, a partir de la literatura científica se conoce, por ejemplo, el uso de un liofilizado de sobrenadante de la cepa Lactobacillus amyiovorus JG2, que ha sido probado in vitro, para la inhibición crecimiento micelial de Phytophthora infestans, utilizando sobrenadantes al 12,5% en cultivos líquidos (Guo J. et al., 2014).
Además de ello, también es posible mencionar el uso de Lactobacillus plantarum cepa IMAU10014, también analizado en pruebas in vitro, en donde se obtuvo como resultado que los metabolitos producidos por dicha cepa, tales como ácido 3-feniláctico, ácido bencenoacético, y éster 2-propenílico generan actividad anti-oomiceto contra Phytophthora drechsleri Tucker (Wang H. et al., 2012).
En el artículo de Axel et al. (2012) se aborda una revisión del control ecológico de bacterias ácido lácticas (BAL) en tizón tardío, en donde se indica que obtener productos que logren un efectivo control de Phytophthora infestans ha sido un problema de difícil resolución, en donde los biopesticidas logran inhibir el patógeno in vitro, pero no logran un buen desempeño en campo. Incluso se menciona que la composición de tales biocontroladores no es consistentes entre distintos batch elaborados. Por lo tanto, el proveer de biocontroladores efectivos contra el tizón tardío se aborda como un problema aún no resuelto de forma satisfactoria en la industria.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Cinética de crecimiento de las cepas USS9F y USS31 F en medio con peptona de pescado y parámetros de Gompertz obtenidos.
Figura 2. Pérdida logarítmica de la viabilidad durante el almacenamiento a 4°C de la cepa USS9F y USS31 F.
Figura 3. Ensayo de inhibición en placa en medio ACM, donde se observa inhibición en el crecimiento micelial de pseudo-hongo Phytophthora ¡nfestans por las bacterias ácido lácticas USS31 F, USS7F, USS8F y USS9F (correspondientes a los rótulos 31 , 7, 8 y 9, respectivamente).
Figura 4. Porcentaje de germinación en semillas de maíz tratadas con las distintas formulaciones (USS9F, USS31 F y mezcla de ambas) y control.
Figura 5. Porcentaje de germinación en semillas de ají tratadas con las distintas formulaciones (USS9F, USS31 F y mezcla de ambas) y control.
Figura 6. Altura promedio en plantas de papas tratadas con las distintas formulaciones (USS9F, USS31 F, USS7F) y control (OF).
Figura 7. Porcentaje de infección foliar en plantas inoculadas con P. ¡nfestans y tratadas con formulaciones basadas en cepas lácticas (USS9F, USS31 F, USS7F) y grupo control tratado con agua (OF).
Figura 8. Infección foliar en plantas inoculadas con P. ¡nfestans y tratadas posteriormente con formulaciones basadas en cepas lácticas (USS31 F, USS9F) y grupo control tratado con agua (Control (-)).
Figura 9. Porcentaje de atizonamiento observado en tres fechas de evaluación para el experimento de evaluación de infestación por P. ¡nfestans y rendimiento en condiciones controladas en papa cv. Pukara-INIA durante la temporada 2019-2020.
Figura 10. Rendimiento por 10 m2 observado para el experimento de evaluación de infección por P. ¡nfestans y rendimiento en condiciones controladas en papa cv. Pukara-INIA durante la temporada 2019-2020.
Figura 11. Recuento microbiológico de bacterias ácido lácticas totales en hojas para el experimento de evaluación de infección por P. ¡nfestans y rendimiento en condiciones controladas en papa cv. Pukara-INIA durante la temporada 2019-2020.
Figura 12. Porcentaje de atizonamiento observado en dos fechas de evaluación para un experimento en papa cv. Patagonia-INIA durante ensayo de evaluación de infección por P. ¡nfestans y rendimiento en condiciones durante la temporada 2019-2020. Figura 13. Porcentaje de control de tizón tardío de la papa observado en dos fechas de evaluación para un experimento en papa cv. Patagonia-INIA durante ensayo de evaluación de infección por P. ¡nfestans y rendimiento en condiciones durante la temporada 2019-2020.
Figura 14. Rendimiento por 9 m2 observado para un experimento en papa cv. Patagonia-INIA para un experimento en papa cv. Patagonia-INIA durante ensayo de evaluación de infestación por P. ¡nfestans y rendimiento en condiciones durante la temporada 2019-2020.
Figura 15. Comparación de productividad en términos de peso entre tratamientos por predio evaluado.
Figura 16. Comparación de productividad en términos de cantidad entre tratamientos por predio evaluado. Figura 17. Altura de las plantas de ají tratadas con las distintas formulaciones (USS9F, USS31 F y mezcla de ambas) y control.
Figura 18. Altura de las plantas de maíz tratadas con las distintas formulaciones (USS9F, USS31 F y mezcla de ambas) y control.
Figura 19. Promedio del tamaño de las mazorcas de maíz cultivadas en campo y tratadas con las distintas formulaciones (USS9F, USS31 F y mezcla de ambas) y control.
Figura 20. Promedio del tamaño de las mazorcas de maíz cultivadas en macetas y tratadas con las distintas formulaciones (USS9F, USS31 F y mezcla de ambas) y control.
DESCRIPCIÓN DE LA INVENCIÓN
La invención es una solución científico-tecnológica a la vanguardia de la agricultura moderna que emplea bacterias ácido lácticas (BAL), aisladas a partir de los microambientes de plantas de papas sanas, sin antecedentes de P. ¡nfestans o tizón tardío, para elaborar una composición natural e inocua para el medioambiente, que favorece el desarrollo vegetal, incrementando la producción de los cultivos.
La presente invención se refiere al uso de un producto derivado de microorganismos ácido lácticos correspondiente a dos cepas de Weisella confusa, previamente correspondiente a la denominación Lactobacillus confusus: cepas USS9F cuyo número de depósito es DSM33454 y la cepa USS31 F cuyo número de depósito es DSM33455, en la prevención y control del hongo parásito Phytophthora ¡nfestans y otros hongos asociados al cultivo de papa.
Se describe el método de obtención de la biomasa bacteriana deshidratada de las cepas USS9F y USS31 F, además del método para obtener el polvo para resuspensión y su empleo como producto biotecnológico.
Las cepas bacterianas utilizada en la formulación fueron depositada en DSMZ-Deutsche Sammlung von Mikro-organismen und Zellkulturen GmbFI, en Alemania, bajo el número de depósito DSM33454 (cepa USS9F) y DSM33455 (cepa USS31 F), con fines de patentamiento.
Las cepas bacterianas USS9F y USS31 F, ambas con reconocidas propiedades probióticas, son cultivadas en medio de cultivo no comercial, son deshidratadas mediante un proceso de liofilización, lo cual le confiere a la formulación final una alta concentración de microorganismos, estable durante el tiempo. Se comprobó que la formualción es inocua para el humano y el medio ambiente. La presente invención provee entonces una composición innovadora y representa un método alternativo de prevención y control de infestaciones por el hongo P. ¡nfestans en cultivos de papas que además tiene acción bioestimulante para los cultivos.
DESCRIPCION DETALLADA DE LA INVENCIÓN
Durante el desarrollo de la presente invención se muestrearon 13 predios, obteniendo un total de 130 cepas aisladas. Se efectuó una caracterización de estos aislados, donde metabólicamente, la mayor parte de los microorganismos aislados corresponden al grupo homofermentativo facultativo, grupo que se destaca por su alta producción de ácido láctico, lo cual es una característica promisoria en antibiosis, lo que representó un potencial concreto de estas cepas en las pruebas de inhibición del crecimiento del fitopatógeno P. ¡nfestans. Como una medida de seguridad en la aplicación de nuestras cepas bacterianas a cultivos y probable consumo humano, se efectuó una prueba cualitativa de actividad hemolítica, encontrando principalmente cepas con ausencia de la propiedad de hemolizar hematíes, y algunos microorganismos con capacidad hemolítica leve o fuerte, siendo estos microorganismos plenamente identificados y descartados.
Las pruebas realizadas contemplaron:
• Evaluación de la inhibición de P. infestans en pruebas en invernadero.
• Comparación del efecto de las cepas respecto de productos químicos y biológicos.
• Pruebas de campo para evaluar rendimiento (en términos de unidades y kilogramos) en cultivos de papas y en otros tipos de siembras.
• Pruebas de actividad hemolítica y de inocuidad in vitro (en células nucleares de sangre periférica humana) e in vivo (en modelos murinos).
• Caracterización de las cepas en función de: producción de H2O2, adherencia de las cepas lácticas (hidrofobicidad de la superficie bacteriana), susceptibilidad antibiótica, identificación de cepas mediante PCR.
La caracterización efectuada, permitió seleccionar un total de 25 microorganismos con el mayor potencial biotecnológico. Tras las pruebas de interacción de las cepas aisladas y P. infestans, los resultados experimentales mostraron que cuatro de ellas presentaron inhibición sobre el crecimiento micelial de P. infestans, después de 15 días de co-cultivo, y correspondieron a las cepas USS7F, USS8F y USS9F, aisladas desde cáscara de papa y la superficie de una lombriz. Adicionalmente, la cepa rotulada USS31 F, que fue obtenida desde flores de papa cv. Cardinal, presentó inhibición sobre el crecimiento micelial.
Finalmente se seleccionaron dos de esas cepas, correspondientes a las cepas denominadas USS9F y USS31 F, que si bien podrían ser utilizadas individualmente, presentan efectos sinérgicos para su acción combinada como biocontrolador y bioestimulante para cultivos agrícolas.
Método de Preparación de la Composición
Cultivo bacteriano
Las cepas se pueden preservar en frío, tras lo cual se pueden activar, por ejemplo, incubando a 30°C en cultivo estático durante 24 h seguido de traspaso y cultivo por 12 h. Luego se centrifuga el medio y se rescata el pellet, re-suspendiéndolo en suero fisiológico previo a la etapa de cultivo. Para el cultivo de las cepas bacterianas USS9F y USS31 F, se empleó un medio de cultivo estéril a base de lactosuero hidrolizado, utilizando peptona de caseína como fuente de nitrógeno, alcanzando una viabilidad del orden de 1 E09 [UFC/ml] Posteriormente se reemplazó la fuente de nitrógeno en la formulación por peptona de pescado. Se obtuvo una viabilidad del orden de 1 E09 [UFC/ml] bajo las mismas condiciones de temperatura y tiempo de cultivo, a una temperatura de 28-30eC durante 15-17 horas, según se observa en las figuras y parámetros obtenidos por el modelo de Gompertz (Figura 1 ).
Deshidratado
A fin de lograr la estabilización de las cepas, se realiza la deshidratación de los mismos mediante liofilización, alcanzando un estado de latencia al volverse más lento su metabolismo. Para el proceso de secado por liofilización, con las cepas USS9F y USS31 F una vez finalizado el cultivo en el medio modificado con peptona de pescado, se utilizaron tres sólidos protectores: leche descremada, lactosuero y peptona de pescado con distintos costos asociados.
Los sólidos protectores, crioprotectores o coformulantes tienen un rol fundamental en la estabilidad de la formulación, esto porque tienen facilidad para atravesar la membrana celular y acumularse intracelularmente, facilitando el flujo de agua a través de la membrana celular y protegiendo de la acción del frío las estructuras moleculares y supramoleculares a través de diferentes formas de acción. Además, los coformulantes sirven para compensar la diferencia de presión osmótica que se genera cuando empieza a congelarse la superficie de la célula, evitando una pérdida excesiva de agua que podría provocar la deshidratación y destrucción de las células.
Se realizaron pruebas con estos sólidos protectores en distinta concentración, obteniendo que la menor disminución de la viabilidad, en ciclos logarítmicos inmediatamente después de la liofilización, se obtiene para una concentración de sólidos al 15% p/v.
El tiempo de liofilización fue de entre 48 y 72 horas, obteniendo una viabilidad del orden de 1 E10 [UFC/ml]
FORMULACIÓN
Tabla 1. Coformulantes utilizados para secado por liofilización, para biomasa obtenida desde 1 L de medio de cultivo.
Figure imgf000010_0001
Peptona de pescado 15 22, 5g
Se comprobó que no existen diferencias significativas entre los medios protectores inmediatamente después del secado por liofilización, obteniendo valores de viabilidad del orden de 1 E10 [UFC/ml] Las cepas USS9F y USS31 F cultivadas en medio modificado con peptona de pescado y liofilizadas con distintos crioprotectores fueron almacenadas a 4°C.
Las cepas se conservan preferentemente envasadas al vacío en bolsas no permeables, para protegerlas de la humedad, oxígeno y luz.
Tabla 2: Viabilidad durante el almacenamiento a 4°C de las cepas USS9F y USS31 F
Figure imgf000011_0001
Para todos los casos se observa la disminución de viabilidad en más de un ciclo logarítmico para el tiempo de almacenamiento considerado de 170 días (Figura 2).
Por lo tanto, la microencapsulacion por liofilización de las cepas de acuerdo a la presente invención comprende las etapas de:
• concentrar de las bacterias cultivadas, por ejemplo, mediante centrifugación;
• resuspender el pellet en agua destilada;
• adicionar el agente crioprotector, en una concentración de sólidos al 15% p/v;
• congelar la mezcla de pellet resuspendido y crioprotector; y
• liofilizar durante 48 a 72 horas.
Usos
Las composiciones de acuerdo a la invención se pueden utilizar en agricultura como bioestimulante y/o biocontrolador en diversas formulaciones para ser aplicada de forma preventiva en zonas extensas de cultivo agrícola por cualquier método disponible en la técnica, ya sea mediante el embadurnado o tratamiento del tubérculo o semillas y/o aspersión de forma manual o motorizada, empapado de material vegetal, o incorporación directa en suelos o mezclas de siembra en invernadero, macetas, campo, etc. Al ser un producto estable, permite su preparación in situ. Es recomendable además su aplicación suplementaria después de eventos climáticos propicios para la invasión del pseudo-hongo o frente a una condición de estrés, dado que es un producto natural, no existiendo restricción en su dosificación.
Adicionalmente, la formulación permite un incremento en el rendimiento de los cultivos tratados, fenómeno que se podría atribuir a la modulación de la microbiota que forma parte de la rizósfera y filósfera. Lo que se traduce en promover la germinación de las semillas, el crecimiento de las plantas y el tamaño de los frutos en cultivos agrícolas.
La composición de la invención se puede usar en una amplia gama de cultivos agrícolas, especialmente hortalizas, tales como: papas, tomate, pimentón, berenjena, maíz, ají, haba, arveja, entre otros.
EJEMPLOS
A continuación, se presentan algunos ejemplos a modo de ilustración, sin por esto restringir el alcance de la invención.
Ejemplo 1 : Preparación y estabilización de cepas
1 ) Las cepas USS9F y USS31 F fueron activadas desde el cepario en que son mantenidas: a) Se traspasaron 100 pL de cada cepa, almacenada a -20°C, a tubos con 4 mL de medio MRS (agar de Man, Rogosa y Sharpe) estéril, incubando a 30°C por 24 horas, en cultivo estático. b) Cumplido el tiempo se realizó un nuevo traspaso de 100 pL del tubo anterior a un nuevo tubo con 4 mL de medio MRS estéril, incubando a 30°C por 12 horas, en cultivo estático.
2) Preparación del medio de cultivo para generación de biomasa: a) Se empleó un medio a base de derivados de suero de queso, que corresponde a un medio específico para el cultivo de cepas de Lactobacillus sp, elaborado a partir de permeado de suero (como fuente carbonada además otros nutrientes como lo son nitrógeno orgánico, minerales y micronutrientes), a la que se adiciona una enzima lactasa, peptona de caseína, extracto de levadura, dihidrógeno fosfato de potasio, acetato de sodio y Tween-80 (descrito en la solicitud de patente chilena N°1940-2005 y concedida con registro N°51.722). b) Inicialmente el suero de queso es hidrolizado, agregando 2 mL/L de enzima MAXILACT L-2000 y llevando a estufa por 90 min a 42°C con agitación constante. c) A continuación, se agregan y disuelven los demás componentes propios del medio. d) El medio es esterilizado en equipo autoclave a 121 5°C por 15 minutos.
3) Preparación del inoculo madre para generación de biomasa de las cepas seleccionadas: a) Los tubos con la cepa activada, obtenidos en el punto 1 , se centrifugan a 5000 rpm por 10 minutos. b) Se elimina el sobrenadante y el pellet obtenido es resuspendido en 300 pL de suero fisiológico. c) De esta suspensión se toman aproximadamente 75 pL y se traspasan a un tubo con 4 mL de suero fisiológico estéril. d) A continuación se mide la densidad óptica a 625 nm, ajustando según corresponda, hasta obtener una absorbancia (A) entre 0,5 - 0,6.
4) Generación de biomasa de las cepas seleccionadas: a) El medio esterilizado, descrito en punto 2, es inoculado con 350 pL de inoculo (A: 0,5- 0,6) por cada 200 mL de medio de cultivo. b) Ya inoculado, el medio es incubado a 30°C con agitación contante por 15 horas.
Tras 15 horas de cultivo según (b), las cepas USS9F y USS31 F alcanzan una viabilidad del orden de 1 E09 [UFC/ml]
Obtención del preparado en polvo por microencapsulación mediante liofilización i) Trascurrido el tiempo de crecimiento, punto 4 anterior, se realiza una concentración de las bacterias, por ejemplo, mediante la centrifugación del medio. ii) El pellet obtenido en (i), es resuspendido en agua destilada estéril, llevando el contenido separado de 1 L de cultivo a 150 mL. iii) Se agrega 15% p/v de crioprotector, por ejemplo, de leche descremada. iv) El medio concentrado con crioprotector es distribuido en balones de vidrio con cuello esmerilado y congelado. v) Ya congelado, se procede a la liofilización, donde se separa el agua mediante la sublimación del hielo a presión reducida, siendo el tiempo de secado entre 48 y 72 horas. vi) El rendimiento en liofilización para ambas cepas es del 100%, obteniendo una viabilidad del orden de 1 E10 [UFC/ml]
Ejemplo 2: Antibiosis cepas ácido lácticas con P. infestans
Los enfrentamientos múltiples se hicieron en diferentes medios para ver la compatibilidad de crecimiento de ambos microorganismos en diferentes medios (APD, LAPTg, MRS, ACM). Dado que P. infestans, sólo tuvo un buen crecimiento sobre medio ACM, los cultivos múltiples se hicieron en dicho medio ya que las cepas bacterianas pudieron desarrollarse en él sin inconvenientes. Todos los experimentos de enfrentamiento se realizaron a 20°C, en triplicado y el experimento fue replicado.
Los resultados experimentales mostraron un claro efecto antagónico de cuatro cepas ácido lácticas sobre el crecimiento micelial de P. infestans, después de 15 días de co-cultivo. Estas correspondieron a las cepas rotuladas con 7, 8 y 9, correspondientes a las cepas USS7F, USS8F y USS9F, mientras la cepa rotulada 31 (cepa USS31 F), presentó inhibición sobre el crecimiento del micelio del pseudo-hongo (Figura 3).
Ejemplo 3: Rol bioestimulante de la formulación
Se investigó el rol estimulante del crecimiento de los tratamientos USS9F, USS31 F y mezcla de ellos, respecto al control; se realizaron ensayos de germinación y posterior establecimiento y crecimiento de plantas de ají y maíz. Para la realización de este experimentos se utilizaron placas Petri estériles con papel absorbente empapado de los formulados con las cepas de la presente invención. En cada placa se dispusieron 3 semillas para maíz y 4 semillas para ají, cada una en cuadriplicado. Diariamente fueron monitoreadas y mantenidas con suficiente formulado para lograr la inhibición de las semillas y así lograr la salida de la dormancia. Una vez registrada la emergencia radicular se midió diariamente su crecimiento.
Respecto al ensayo de germinación del maíz, las semillas no tratadas (control) tardan en promedio 2 días más en germinar que las tratadas con los formulados con las cepas de la presente invención. La tendencia muestra que el formulado basado en la cepa USS9F mejora el tiempo de emergencia y también se logra que todas las semillas germinen (Figura 4).
Respecto a la germinación de semillas de ají, se pudo observar que la dormancia es más sostenida que en el maíz, el día 5 de la observación inician las primeras emergencias radiculares (Figura 5). Las semillas tratadas con los formulados con cepas de la presente invención germinan más rápido y en mayor cantidad que las semillas control (agua), al igual que en maíz, se observó que el formulado USS9F tiene mejores características de bioestimulante del crecimiento (Figuras 4 y 5).
Ejemplo 4: Ensayo de desafío con P. infestans en condiciones controladas.
El ensayo fue iniciado el 15 de julio de 2019, para ello se utilizaron papa semilla certificada por el INIA tipo Pukara, las que se sembraron en macetas de 10 L con sustrato Turba/Perlita con conductividad eléctrica de 1 ,2 y pH 6,2. Las condiciones de temperatura y humedad fueron controladas y registradas entre 10-20°C y 70% HFL Se utilizaron 4 tratamientos que incluyen formulados desarrollados a partir de las cepas USS9F, USS7F y USS31 F aisladas y desarrolladas en este proyecto, más el control (agua) con 2 modos de aplicación: directamente a semilla previo a la siembra y por aspersión al follaje. Se emplearon 5 macetas por cada grupo experimental. Una vez que la planta emergió, se realizaron aplicaciones por aspersión desde el 10 de septiembre utilizando 1 g de formulado por litro de agua con periodicidad de 20 días.
El 8 de octubre se realizó la primera inoculación de P. infestans a una concentración de 105- 106/mL esporangios, los cuales fueron calibrados con cámara Neubauer, donde la suspensión se aplicó en la tercera hoja desde el ápice de la planta. Luego de la inoculación, las plantas fueron aisladas en bolsa plástica para permitir un aumento en la humedad que permitiera la infección. Esta inoculación se repitió el 15 de octubre. Al finalizar el experimento se registraron las alturas de las plantas. Para corroborar la presencia del agente etiológico en las plantas infestadas, se recolectaron muestras de hojas, tallo y tubérculos con daño ocasionado supuestamente por Phythophthora en bolsas plásticas. Estas muestras se mantuvieron refrigeradas (4°C) hasta su procesamiento, el cual consistió en extraer segmentos segmentos de las zonas de avance de daño en hojas y tallos, sin desinfectar, los cuales fueron dispuestos en placas Petri plásticas de 90 mm. Los segmentos fueron cubiertos con una rodaja de papa sana (Solanum tuberosum) posteriormente se tapó la placa rotulando la muestra y se procedió a incubar a 20°C por 5 días o hasta que se observó crecimiento indicativo de P. infestans.
Los resultados de este experimento de desafío mostraron un efecto positivo de la aplicación de las cepas lácticas, se observó diferencias significativas en cuanto a la altura promedio de plantas tratadas con las formulaciones basadas en las cepas USS9F, USS31 F y USS7F en relación a las plantas tratadas con agua (tratamiento control) (Figura 6).
Respecto a la tasa de infestación de tizón, el hongo fitopatógeno afectó de mayor manera a las plantas control respecto de las plantas tratadas con los formulados, observándose que la mayor protección se logró con la aplicación de la cepa USS9F (Figuras 7 y 8).
Ejemplo 5: Ensayo de evaluación de infestación por P. infestans y rendimiento en condiciones controladas
El experimento contó con siete tratamientos, incluyendo los formulados desarrollados a partir de las cepas USS9F y USS31 F, una Pseudomonas protegens cepa Ca6 y aplicaciones del fungicida Carbendazima (8% p/p) y Mancozeb (64% p/p) [Anagran Plus DP, ANASAC Chile S.A.], en dosis de 2 kg ton-1 de tubérculo semilla, además de propamocarb (Infinito®, Bayer S.A.) para el control de P. infestans en dosis comercial de 1 ,6 L ha-1, siendo aplicados al follaje en tres ocasiones en ambos experimentos. Estos tratamientos fueron distribuidos en un diseño de bloques completos al azar con cuatro repeticiones. Estos experimentos fueron establecidos el 24 de septiembre de 2019 con papa cv. Pukara-INIA. La siembra se realizó plantando los tubérculos de forma manual con un marco de plantación a 0,75 y 1 m entre hilera y 0,24 m sobre hilera, y con una profundidad de 0,30 m, considerando un total de 25 papas por hilera y cuatro hileras por parcela. La aplicación de los tratamientos bacterianos a los tubérculos semillas se hicieron aplicando el surco de plantación con una bomba de espalda aplicándose en línea recta por el surco sobre los tubérculos semilla y suelo utilizando una boquilla anti deriva de baja presión. En el caso del fungicida el tratamiento de semilla se realizó colocando los tubérculos semillas en un saco plástico que se sacudió hasta observar el cubrimiento de todos los tubérculos por los tratamientos. Las aplicaciones al follaje de los tratamientos se realizaron el 21 de noviembre, 13 y 16 de diciembre de 2019. Se evaluó de forma visual el porcentaje del área afectada con síntomas de atizonamiento en dos ocasiones, y con estas evaluaciones se integraron para determinar el área de la curva de progreso de la enfermedad (AUDPC) para cada repetición y tratamiento. La cosecha del experimento fue el 10 de marzo de 2020. La cosecha se realizó en las dos hileras centrales de cada parcela experimental y se determinó el rendimiento en una superficie de 9 y 10 m2. Previo a la cosecha, el día 07 de febrero, se realizó la aplicación de un herbicida desecante dicloruro de paraquat (Paraquat 276 SL[AGROSPEC S.A,] en dosis de 2,5 L ha 1), para favorecer el curado de los tubérculos y reducir la cantidad de follaje para facilitar la cosecha. Los datos porcentuales obtenidos fueron transformados mediante la transformación de Bliss (Raíz cuadrada del valor más 0,05) y los datos de AUDPC y rendimiento fueron sometidos a un análisis de varianza (Andeva) y una prueba de separación de medias de diferencias mínimas significativas (LSD de Fischer), con un 90 o 95% de confianza dependiendo del coeficiente de variación observado en el Andeva.
Los resultados mostraron que no hubo mayores diferencias entre los tratamientos en las dos primeras evaluaciones realizadas el 16 y 31 de diciembre (P>0,10). Estas dos evaluaciones se hicieron una el mismo día en que las plantas fueron inoculadas con P. infestans, la primera, y 15 días después de dicha inoculación, la segunda, alcanzado el experimento niveles de infección o atizonamiento del follaje promedio de 6,5% al inicio y 24,9% en la segunda evaluación. Sin embargo, en la tercera evaluación realizada el 14 de enero de 2020, permitió observar diferencias significativas entre los tratamientos (P = 0,04: C.V.: 8,97; Figura 9). En esta evaluación la cepa USS9F redujo la infección en un 35,1%, y fue diferente del control tratado con agua y del control tratado con fungicidas, el cual no fue diferente del testigo, y que se diferenció de este control en sólo un 5,5% menos de infección: Las otras bacterias alcanzaron niveles de reducción del atizonamiento con respeto al testigo en esta tercera evaluación del 7,4% para 31 USS, 25,9% para la mezcla de las cepas 9 y 31 , un 16,6% para Ca6 y un 20,3% al usar todas las cepas bacterianas en conjunto. En cuanto a la evaluación de rendimiento, no se observaron diferencias entre tratamientos al considerar los gramos cosechados en 10 m2 de parcela (P= 0,339; C.V.: 26.3; Figura 10), alcanzando el experimento en esta superficie un rendimiento promedio de 16,8 kg. No obstante lo anterior, la cepa USS31 F logró en promedio un 21 ,7% más de rendimiento que el control, lo cual implicaría en una hectárea 3,6 ton ha-1 adicionales, lo cual puede ser valorizado en un ingreso adicional de 720 mil pesos por ha para un productor al utilizarlo. Del mismo modo, todos los tratamientos que tuvieron la bacteria USS31 F sobrepasaron el rendimiento del control y al mezclarla con otras bacterias lograron 1 ,13 y 2,9 ton ha-1 .
En este experimento se efectuaron recuentos microbiológicos en hojas (Figura 11 ). Se puede observar que existe presencia de bacterias ácido lácticas tanto en el grupo control como en las plantas tratadas con las cepas USS9F y USS31 F, los mayores recuentos se observaron al aplicar la cepa USS9F, donde se observó recuentos algo mayores Log 2.5 UFC/g. En muestras de papas de este ensayo, se observó una predominancia de bacterias ácido lácticas en plantas tratadas con la formulación en base a la cepa USS31 F, alcanzando casi los 2 ciclos logarítmicos por gramo de muestra, mientras el grupo control mostró recuentos menores.
EJEMPLO 6: Ensayo de evaluación de infestación por P. infestans y rendimiento en condiciones de campo
El ensayo fue establecido el 16 de octubre de 2019, con papa Patagonia-INIA. La siembra se realizó plantando en parcelas de 18 m2 (6 m x 3 m), colocando los tubérculos de forma manual con un marco de plantación a 0,75 y 1 m entre hilera y 0,24 m sobre hilera, y con una profundidad de 0,30 m, considerando un total de 25 papas por hilera y cuatro hileras por parcela. La aplicación de los tratamientos bacterianos a los tubérculos semillas se hicieron aplicando el surco de plantación con una bomba de espalda aplicándose en línea recta por el surco sobre los tubérculos semilla y suelo utilizando una boquilla anti deriva de baja presión. En el caso del fungicida el tratamiento de semilla se realizó colocando los tubérculos semillas en un saco plástico que se sacudió hasta observar el cubrimiento de todos los tubérculos por los tratamientos. Las aplicaciones al follaje de los tratamientos se realizaron el 05 y 17 de diciembre de 2019 y el 28 de enero de 2020. Las aplicaciones se hicieron con una motopulverizadora STIHL SR 450, con boquillas ULV (Ultra bajo volumen) y un mojamiento de 400 L ha-1.
En ambos experimentos se evaluó de forma visual el porcentaje del área afectada con síntomas de atizonamiento en dos ocasiones, y con estas evaluaciones se integraron para determinar el área de la curva de progreso de la enfermedad (AUDPC) para cada repetición y tratamiento. La cosecha del experimento se realizó de forma manual el 04 de marzo de 2020. La cosecha se realizó en las dos hileras centrales de cada parcela experimental y se determinó el rendimiento en una superficie de 9 y 10 m2. Previo a la cosecha, el día 20 de febrero de 2020, se realizó la aplicación de un herbicida desecante dicloruro de paraquat (Paraquat 276 SL[AGROSPEC S.A,] en dosis de 2,5 L ha-1), para favorecer el curado de los tubérculos y reducir la cantidad de follaje para facilitar la cosecha. Los datos porcentuales obtenidos fueron transformados mediante la transformación de Bliss (Raíz cuadrada del valor más 0,05) y los datos de AUDPC y rendimiento fueron sometidos a un análisis de varianza (andeva) y una prueba de separación de medias de diferencias mínimas significativas (LSD de Fischer), con un 90 o 95% de confianza dependiendo del coeficiente de variación observado en el andeva.
Los resultados del experimento en lo referente al atizonamiento mostraron que en la primera evaluación hubo diferencias significativas entre tratamientos (P <0,05), observándose que la mezcla de las cepas USS9F y USS31 F fueron significativamente diferentes del control en el daño causado por tizones y similares a los obtenidos por el tratado con el fungicida propamocarb (Figura 12), alcanzando esta mezcla una reducción del atizonamiento con respecto al control sólo tratado con agua del 62,2 % (Figura 13). La cepa USS31 F, logró una reducción promedio de la infección por tizón del 42,3% con respecto al control a pesar de no mostrar diferencias significativas con este tratamiento ni con el tratamiento tratado con fungicida.
En lo referido a la evaluación de rendimiento, en cuanto al peso obtenido en los 9 m2, se observó que no hubo diferencias significativas entre tratamientos, teniendo un rendimiento promedio el experimento de 23,7 kg por parcela (P = 0,232; C.V.: 12,7). No obstante lo anterior, el control presentó el menor rendimiento promedio por parcela, mientras los tratados con bacterias y fungicida presentaron una tendencia a tener un mayor rendimiento. Interesante es notar que el tratamientos que presentó el menor nivel de infección por tizón tardío, asociado la mezcla de las cepas USS9F y USS31 F, alcanzaron el mayor rendimiento promedio, siendo un 34,1% mayor al control (Figura 14).
EJEMPLO 7: Mejoramiento de rendimiento en cosechas
Al comparar los predios en base de peso total de papas producidas con los tratamientos aplicados, se puede observar claramente la menor producción de biomasa de tubérculos de las plantas control, evidenciando el posible rol de estimulante de crecimiento de los tratamientos con los formulados con las cepas de la presente invención (Figura 15). Por otra parte, la misma tendencia se muestra en el número de papas producido por tratamiento, donde cada predio muestra un aumento de la producción de tubérculos en plantas tratadas con los formulados (Figura 16). EJEMPLO 8: Efecto bioestimulante en el crecimiento de las plantas
Para la realización de estas evaluaciones, los germinados obtenidos de acuerdo al Ejemplo 3 fueron sembrados en macetas de 2 L para ajíes y 10 L para maíz con sustrato turba/vermiculita y regados según requerimiento. En cada tratamiento se utilizaron 5 réplicas. Las aplicaciones de los tratamientos se realizaron por aspersión cada 15 días.
La altura promedio de las plantas de ají a los 10 días de germinados es mayor en las plantas con tratamiento que el control, mientras el tratamiento USS9F es que a los 30 días dobla la altura que las plantas control (Figura 17).
En el caso de las plantas de maíz se puede observar que en los primeros días de establecimiento de las plántulas las tratadas son mas altas que el control. Esta característica se marca aún más en los 25 días desde la germinación ya que las plantas con el tratamiento USS9F dobla en promedio la altura de las plantas control. Si bien estas diferencias tienden a desaparecer desde los 80 días, el aplicar formulados con las cepas de la presente invención generaría una ventaja en la sobrevivencia en el campo (Figura 18).
Respecto al experimento en campo, este se realizó en base a bloques con 10 plantas por tratamiento/hilera con 4 réplicas. Los tratamientos se aplicaron cada 20 días. Si bien las diferencias no son significativas en crecimiento en altura hay una pequeña tendencia en a que los tratamientos USS9F y USS31 sean mas altas que las no tratadas. Esto es consistente con la tendencia de los resultados en las plantas evaluadas en el laboratorio.
EJEMPLO 9: Efecto bioestimulante en el tamaño de las mazorcas
Para esta evaluación se midieron las mazorcas del tratamiento del Ejemplo 8 como un proxi de producción de las plantas tratadas.
En la Figura 19 se observa que los tratamientos USS9F y USS31 F presentan diferencias en la longitud de la mazorca de las plantas en el predio donde también se observaron plantas con 2 mazorcas por planta solo en aquellas tratadas con USS31 F.
El mismo patrón se repite en el experimento de maceta (Figura 20) donde el tratamiento USS31 F destaca por generar en promedio mazorcas 6cm mas grandes que las de plantas control. El numero de mazorcas generadas es consistente con lo evaluado en campo, donde solo el tratamiento USS31 F presenta plantas con 2 mazorcas.

Claims

REIVINDICACIONES
1. Una composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola, CARACTERIZADA porque comprende dos cepas de bacterias Weisella confusa correspondientes a la cepa Weisella confusa depósito DSM33454 y la cepa Weisella confusa depósito DSM33455.
2. Una composición de acuerdo a la reivindicación 1, CARACTERIZADA porque comprende al menos 1E10 [UFC/ml] de cada una de las cepas de Weisella confusa.
3. Una composición de acuerdo a la reivindicación 1 ó 2, CARACTERIZADA porque las cepas de Weisella confusa son cultivadas en medio de cultivo estéril a base de lactosuero hidrolizado, que contiene peptona de caseína o por peptona de pescado como fuente de nitrógeno.
4. Una formulación para uso agrícola, CARACTERIZADA porque comprende la composición de acuerdo a la reivindicación 1 donde las bacterias han sido liofilizadas.
5. Una formulación para uso agrícola de acuerdo a la reivindicación 4, CARACTERIZADA porque además comprende crioprotectores o coformulantes.
6. Una formulación para uso agrícola de acuerdo a la reivindicación 5, CARACTERIZADA porque la concentración de crioprotectores adicionados es de 15% p/v.
7. Una formulación para uso agrícola de acuerdo a la reivindicación 5 o 6, CARACTERIZADA porque los crioprotectores se seleccionan de entre leche descremada, lactosuero y peptona de pescado.
8. Método para elaborar una formulación para uso agrícola de acuerdo a cualquiera de las reivindicaciones 4 a 7, CARACTERIZADA porque comprende las etapas de: a) concentrar de las bacterias cultivadas, recolectando el pellet de bacterias; b) resuspender el pellet en agua destilada; c) adicionar el agente crioprotector, en una concentración de sólidos al 15% p/v; d) congelar la mezcla de pellet resuspendido y crioprotector; y e) liofilizar durante 48 a 72 horas.
9. Uso de la composición de acuerdo a la reivindicación 1, CARACTERIZADO porque sirve para elaborar formulaciones probióticas bioestimulantes y biocontroladoras para el manejo de fitopatógenos en cultivos agrícolas.
10. Uso de acuerdo a la reivindicación 9, CARACTERIZADO porque la formulación sirve para el tratamiento de P. infestans o tizón tardío u otros hongos asociados a cultivos agrícolas.
11. Uso de acuerdo a la reivindicación 9, CARACTERIZADO porque la formulación sirve como bioestimulante para promover la germinación de las semillas, el crecimiento de las plantas y el tamaño de los frutos en cultivos agrícolas.
12. Uso de acuerdo a las reivindicaciones 9 a 11, CARACTERIZADO porque el cultivo agrícola corresponde a papas, tomate, pimentón, berenjena, maíz, ají, haba, o arveja.
13. Uso de la composición de acuerdo a la reivindicación 1, CARACTERIZADO porque sirve para elaborar formulaciones para aplicación directa en semillas.
14. Uso de la composición de acuerdo a la reivindicación 1, CARACTERIZADA porque sirve para elaborar formulaciones para aspersión directa sobre cultivo y/o suelos.
PCT/CL2020/050031 2020-03-30 2020-03-30 Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma WO2021195792A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050031 WO2021195792A1 (es) 2020-03-30 2020-03-30 Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050031 WO2021195792A1 (es) 2020-03-30 2020-03-30 Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma

Publications (1)

Publication Number Publication Date
WO2021195792A1 true WO2021195792A1 (es) 2021-10-07

Family

ID=77926916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050031 WO2021195792A1 (es) 2020-03-30 2020-03-30 Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma

Country Status (1)

Country Link
WO (1) WO2021195792A1 (es)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862936A (zh) * 2019-11-05 2020-03-06 青岛农业大学 一株有抑菌作用的融合魏斯氏菌mp4菌株及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862936A (zh) * 2019-11-05 2020-03-06 青岛农业大学 一株有抑菌作用的融合魏斯氏菌mp4菌株及其应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
EUNJONG BAEK; HYOJIN KIM; HYEJUNG CHOI; SUN YOON; JEONGHO KIM: "Antifungal activity ofandin rice cakes", THE JOURNAL OF MICROBIOLOGY, THE MICROBIOLOGICAL SOCIETY OF KOREA, HEIDELBERG, vol. 50, no. 5, 4 November 2012 (2012-11-04), Heidelberg , pages 842 - 848, XP035133299, ISSN: 1976-3794, DOI: 10.1007/s12275-012-2153-y *
GAJBHIYE, M. H.; BALU P. KAPADNIS: "Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants", BIOCONTROL SCIENCE AND TECHNOLOGY., vol. 26, no. 11, 30 November 2015 (2015-11-30), GB , pages 1451 - 1470, XP009537016, ISSN: 0958-3157, DOI: 10.1080/09583157.2016.1213793 *
LAMONT, J. R. ET AL.: "From yogurt to yield: Potential applications of lactic acid bacteria in plant production", SOIL BIOLOGY AND BIOCHEMISTRY, vol. 111, 2017, pages 1 - 9, XP085011357, DOI: 10.1016/j.soilbio.2017.03.015 *
SERNA COCK LILIANA, ANDRES FELIPE CAMARGO GUARNIZO, CARLOS ANDRES RENGIFO GUERRERO: "Actividad antimicrobiana de Weissella confusa y sus metabolitos frente a Escherichia coli y Klebsiella pneumoniae", ACTA AGRONOMICA (PALMIRA), UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTA, 1 December 2013 (2013-12-01), Bogota, pages 63 - 69, XP055935551, [retrieved on 20220627] *
SERNA-COCK LILIANA, CAMARGO-GUARNIZO, ANDRÉS FELIPE; RENGIFO-GUERRERO, CARLOS ANDRÉS: "Actividad antimicrobiana y cinetica de fermentación de Weissella confusa contra Xanthomonas albilineans", ACTA AGRONOMICA, 1 January 2013 (2013-01-01), pages 97 - 104, XP055935545, Retrieved from the Internet <URL:https://www.redalyc.org/pdf/1699/169929772003.pdf> [retrieved on 20220627] *
SERNA-COCK LILIANA, LÓPEZ-LÓPEZ KARINA, GÓMEZ-LÓPEZ EYDER D., VALENCIA-HERNÁNDEZ LEIDY J. : "Efecto del metodo de siembra in vitro sobre la actividad fungistatica de Weissella confusa", ACTA AGRONÓMICA, 1 January 2012 (2012-01-01), XP055935548, [retrieved on 20220627] *
SUSANA RIBES, ANA FUENTES, PAU TALENS, JOSE MANUEL BARAT: "Prevention of fungal spoilage in food products using natural compounds: a review", CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, vol. 58, no. 12, 30 November 2017 (2017-11-30), USA , pages 2002 - 2016, XP009537015, ISSN: 1040-8398, DOI: 10.1080/10408398.2017.1295017 *

Similar Documents

Publication Publication Date Title
WO2023138678A1 (zh) 一种贝莱斯芽孢杆菌及其应用
García et al. Effect of inoculation of Bacillus licheniformis on tomato and pepper
KR102243202B1 (ko) 생물학적 방제제로 이용하기 위한 clonostachys rosea 분리 균주
BR112021010332A2 (pt) Composições à base de levedura para melhorar as propriedades da rizosfera e fitossanidade
EP2255660B1 (en) Biocontrol agent against soil-borne diseases
JP2015528296A (ja) 植物の非生物的ストレス抵抗性を高める方法
CN105557757B (zh) 一种甲基营养型芽孢杆菌可湿性粉剂的制备方法
JP2010540622A (ja) 表面の微生物棲息密度向上させる組成物及びその用途
WO2020262612A1 (ja) 植物病害防除剤及び植物病害防除法
RU2302114C1 (ru) Препарат &#34;экстрагран&#34; для стимуляции роста и защиты растений от болезней
CN112889843B (zh) 一种防治柑橘红蜘蛛的死亡谷芽胞杆菌可湿性粉剂及应用
WO2020140163A1 (es) Una formulación para la protección contra la bacteriosis del kiwi, causada por la bacteria pseudomonas syringae pv. actinidiae (psa)
JP5374260B2 (ja) 農業用資材
WO2021119867A1 (es) Una cepa de pseudomonas protegens rgm 2331 y su uso en la elaboración de un bioestimulante con propiedades antifúngicas para la promoción del crecimiento en plantas
US8507252B2 (en) Plant disease controlling composition, plant disease controlling method, and novel microorganism
CN116918832A (zh) 一种复合生防菌剂、制备方法、应用与应用方法
RU2558291C2 (ru) Полифункциональное средство для растениеводства
US20240099309A1 (en) Use of Microorganisms to Improve Plant Immune Response
JP5023276B2 (ja) 土壌病害防除剤および土壌病害防除方法
RU2736340C9 (ru) Средство для стимуляции роста сельскохозяйственных культур
WO2021195792A1 (es) Composición probiótica con efecto biocontrolador y bioestimulante para aplicación agrícola que comprende dos cepas de bacterias weissella confusa; método de obtención; formulación que la contiene y uso de la misma
KR20230005934A (ko) 작물 수확량 향상을 위한 미생물 조합
CN115786172B (zh) 一株贝莱斯芽孢杆菌及其组合物和应用
RU2800426C9 (ru) Штамм bacillus amyloliquefaciens p20 в качестве средства для борьбы с ризоктониозом картофеля
RU2800426C1 (ru) Штамм bacillus amyloliquefaciens в качестве средства для борьбы с ризоктониозом картофеля

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928752

Country of ref document: EP

Kind code of ref document: A1