WO2021194316A1 - 광스캐너 패키지 및 제조 방법 - Google Patents

광스캐너 패키지 및 제조 방법 Download PDF

Info

Publication number
WO2021194316A1
WO2021194316A1 PCT/KR2021/003801 KR2021003801W WO2021194316A1 WO 2021194316 A1 WO2021194316 A1 WO 2021194316A1 KR 2021003801 W KR2021003801 W KR 2021003801W WO 2021194316 A1 WO2021194316 A1 WO 2021194316A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
optical scanner
transmission window
metal
barrier
Prior art date
Application number
PCT/KR2021/003801
Other languages
English (en)
French (fr)
Inventor
이종현
문승환
최진홍
조경우
Original Assignee
주식회사 위멤스
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위멤스, 광주과학기술원 filed Critical 주식회사 위멤스
Priority to US17/914,757 priority Critical patent/US20230127991A1/en
Priority to JP2022558515A priority patent/JP2023519917A/ja
Priority claimed from KR1020210039815A external-priority patent/KR102615202B1/ko
Publication of WO2021194316A1 publication Critical patent/WO2021194316A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0067Packages or encapsulation for controlling the passage of optical signals through the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00198Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0154Torsion bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0163Spring holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/033Trenches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/058Rotation out of a plane parallel to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/11Structural features, others than packages, for protecting a device against environmental influences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0118Processes for the planarization of structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0133Wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding

Definitions

  • the present invention relates to an optical scanner package and a method for manufacturing the same, and more particularly, to an optical scanner package including a transmission window capable of minimizing interference between sub-reflected light reflected from a transmission window and main reflected light reflected from a mirror, and a method for manufacturing the same is about
  • the driving angle of the mirror In order to enlarge the driving angle of the mirror, it can be driven at a resonance frequency. Since this region is a damping-controlled region, the driving angle increases as the degree of vacuum increases. In order to maintain the vacuum, a window cover for hermetic sealing is required, and at this time, the transmittance of the laser passage region must be high to reduce noise interference and energy loss due to reflection.
  • the MEMS mirror scanner is used for high-speed scanning of a laser, which is essential for image measurement, in LiDAR, a core sensor for autonomous driving (see FIG. 2 ).
  • anti-reflection coating may be applied to increase the transmittance of the transmission window 50 , but perfect anti-reflection coating is impossible. Therefore, most of the incident light 70 is reflected from the surface of the transmission window together with the main reflection (reference numeral 71 at the initial position of the mirror, and reference numerals 71a and 71b when scanned) reflected by the mirror 25 (sub-reflection) reflection) (refer to reference numeral 72) occurs. Since the thickness of the transmission window is less than 1 mm, the trajectory change due to this is omitted.
  • the sub-reflection ratio is usually only a few percent, since the position is fixed, the intensity is much higher than that of the fast-moving main reflection in most cases.
  • This sub-reflected light acts as a noise signal as it is reflected from other objects that are not in the measurement position, so it reduces the quality of the image or damages the cornea when a person is in the image area. safety) There is a problem.
  • a method of tilting the scanner element by ? has been proposed.
  • the scanner element must be tilted sufficiently so that the sub-reflected light 72 is sufficiently angularly separated from the upper boundary (reference numeral 71a) of the main reflected light 71 . Since the laser becomes unstable when the sub-reflected light 72 returns to the laser, it must also be angularly separated from the incident light 70 .
  • a substrate having a pillar structure is additionally required.
  • the transmission window is inclined only in one axis as shown in FIGS. 5 to 7 , there is a restriction that the transmission window must be incident only in the inclined direction.
  • the inclination of the transmission window be formed in both the x and y axis directions.
  • Patent Document 1 United States Patent Publication No. US2006/0176539 (published date: August 10, 2006)
  • the present invention has been devised to solve the problem of sub-reflection of the prior art, and it is possible to reduce interference due to sub-reflection, and the incident angle ( ⁇ ) and maximum emission angle ( ⁇ ) are small, so that the anti-reflection coating design is easy and light loss is reduced.
  • An object of the present invention is to provide a MEMS mirror scanner having a reduced transmission window structure and a method for manufacturing the same.
  • an optical scanner package comprising: a MEMS scanner device including a mirror, a spring, a actuator, and a fixture; a lower substrate positioned above or below the MEMS scanner device and supporting the MEMS scanner device in a form bonded to the MEMS scanner device; and a transmission window having a shell shape corresponding to a part of a semi-spherical or ellipsoid, and having a joint surface continuously connected to the bottom, wherein the transmission window is biaxially It may have a structure with curvature.
  • the optical scanner package according to the present invention includes a lens or an optical element capable of changing a cross-sectional shape of a laser beam in a portion of a transmission window through which incident light and output light pass.
  • the lens may be formed integrally with the transmission window.
  • the transmission window may be a low hemispherical shape or a part of an ellipsoid in which the ratio of the lower diameter (D) to the height (h) of the transmission window is in the range of 0.3 to 0.4.
  • the lower substrate may be made of a glass material, and an inner space may exist on the lower substrate.
  • the via metal may be filled in the upper and lower directions of the lower substrate.
  • an opaque blocking film may be formed in an area excluding the incident light and the outgoing light area in the transmission window.
  • the optical scanner package according to the present invention includes an inner space with an inclined plane angle of 54.7 degrees present on an upper portion of a lower substrate made of crystalline silicon; a silicon electrode formed in a trench structure outside the scanner for electrode separation; an unbroken silicon barrier on the outside of the trench structure; and an insulating film formed over the barrier. It may further include a; two types of metal electrodes formed on the silicon electrode and the insulating layer, and there may be a transmission window sealed on the metal electrode of the silicon barrier.
  • the lower portion of the transmission window may be bonded with a glass sealing material.
  • the optical scanner package according to the present invention may include a separate silicon substrate or circuit board for sealing the lower substrate through which the inner space is penetrated downward.
  • the optical scanner package according to the present invention the insulating film filling the trench structure and formed on the barrier; and a metal circuit pattern formed on the insulating layer, and a transmission window sealed on the metal pattern.
  • the optical scanner package according to the present invention is wider toward the lower portion of the lower substrate, or an inner space having the same cross-sectional shape; a metal reflective film formed under the mirror; and a circuit board sealed with solder in a state where the upper and lower positions of the scanner element and the lower substrate are changed as a base layer.
  • the optical scanner package according to the present invention may include a silicon substrate having an internal space attached to the electrode of the scanner element with solder and the barrier with a glass sealing material.
  • the optical scanner package according to the present invention may include a silicon substrate having an internal space attached to the electrode and the barrier of the scanner element with a glass sealant.
  • optical scanner package according to the present invention may include a chip carrier replacing the base layer.
  • the lower portion of the transmission window may have a square or rectangular shape.
  • a metal substrate having a large circular hole in the center may be additionally used.
  • the blocking film formed on the transmission window is an anti-reflection coating layer having an optical reflectivity of 3% or less in a partial range of a wavelength of 300 to 600 nm on at least a partial region of an inner surface and an outer surface of the transmission window.
  • the transmission window may be made of a glass material having a thickness of 0.2 to 0.8 mm, and the lower bonding surface portion of the transmission window may be 0.4 to 1.6 mm thick.
  • the optical scanner package according to the present invention has a structure in which the transmission window, the MEMS scanner element, and the base layer are sealed through bonding, and the sealed internal pressure is 10 -1 to 10 -4 atm. it may be achieved
  • the manufacturing method of the optical scanner package comprises the steps of: (a1) forming a cavity on a glass wafer using wet etching; forming a via-hole in the glass wafer using DRIE or sand blast for electrical connection with the scanner device (a2); forming a metal pattern (seed layer) on a separate Si wafer by aligning the via-hole position (a3); anodic bonding the glass wafer and the Si wafer (a4); filling the via-holes with a conductive material (a5); lowering the height by CMP processing the top of the Si wafer (a6); forming a metal pattern on the mirror surface, the electrical wiring and the pad (a7); forming a device structure and an electrode on the top of the Si wafer by a DRIE process (a8); and bonding a hemispherical or ellipsoidal transmission window on the external structure (a9).
  • the method may further include bonding to a printed circuit board (PCB) using a surface mounting technology.
  • PCB printed circuit board
  • the manufacturing method of the optical scanner package according to the present invention comprises the steps of: (b1) forming an inner space on a Si wafer using wet etching or DRIE; lowering the height of the top of the Si wafer by CMP after performing fusion bonding with a separate Si wafer on which a buried oxide (BOX) is formed (b2); forming an insulating film in an outermost barrier region of the scanner element (b3); depositing a metal (metal) at corresponding locations on the mirror surface, wiring and barrier (b4); making a Si electrode for driving and sensing a scanner on the inside of the top of the Si wafer through a DRIE process, and at the same time making a separate barrier separated by an inner electrode and a trench on the outer edge of the chip (b5); performing wiring between the inner electrode and the outer barrier (b6); and performing sealing by adhering a hemispherical or ellipsoidal transmission window in a vacuum atmosphere on the external structure (b7).
  • a glass wafer having a cavity may be anodic bonding instead of the Si wafer.
  • the barrier in the step (b5) of making the separate barrier, is directly connected to the internal electrode without a trench to prevent electrical floating.
  • a plurality of holes or dimples are formed on the metal to strengthen the adhesion of the transmission window. (dimple) may be formed.
  • the manufacturing method of the optical scanner package according to the present invention comprises the steps of (c1) forming an inner space on a Si wafer using wet etching or DRIE; lowering the height of the top of the Si wafer by CMP after performing fusion bonding with a separate Si wafer on which a buried oxide (BOX) is formed (c2); forming a trench between the inner electrode and the barrier on the top of the Si wafer by a DRIE process (c3); filling the trench with an insulator and depositing it over the barrier (c4); depositing a metal for electrical connection between the internal electrode and the barrier and for forming a mirror reflective surface (c5); forming a scanner element pattern by DRIE after passivation of the metal (c6); and performing sealing by adhering a hemispherical or ellipsoidal transmission window in a vacuum atmosphere on the external structure (c7).
  • a dielectric thin film may be prepared first to form a reflective surface.
  • a getter material for adsorbing residual gas may be added to the inner space to maintain a high vacuum in the forming of the inner space (c1).
  • a planarization process may be further performed after the step (c4) of filling and depositing the insulator.
  • the manufacturing method of the optical scanner package comprises the steps of preparing a Si wafer (d1); lowering the height of the top of the Si wafer by CMP after performing fusion bonding with a separate Si wafer on which a buried oxide (BOX) is formed (d2); depositing a metal (metal) at a corresponding position of the wiring (d3); forming a Si electrode for scanner driving and sensing on the inside of the top of the Si wafer by DRIE process, and at the same time forming a separate barrier separated by the inner electrode and a trench on the outer edge of the chip (d4); (100) forming a through-hole in the Si lower substrate using crystalline wet etching (d5); coating the inside of the mirror with a metal to be used as a reflective surface of the scanner (d6); forming an insulating film pattern on a separate Si wafer (d7); forming a metal line on the separate Si wafer and then forming a cavity in a passivated state (
  • the inner electrode may be adhered by conductive welding and the external barrier may be adhered with an insulator.
  • the step (d4) of forming the barrier on the outer edge of the chip may be performed after the step (d5) of forming the through-hole (d5). have.
  • the manufacturing method of the optical scanner package according to the present invention prepares a Si wafer, performs fusion bonding with a separate Si wafer on which a buried oxide (BOX) is formed, and then performs CMP on the upper end of the Si wafer.
  • a buried oxide BOX
  • the separate circuit board may be one of a PCB, a ceramic circuit board, and an ASIC circuit board.
  • the inner electrode and the outer barrier may be bonded by conductive welding.
  • the incident angle ( ⁇ ) and the maximum emission angle ( ⁇ ) are small, it is easy to design an anti-reflection coating and reduce light loss.
  • the hemispherical (or low hemispherical) transmission window exhibits compressive stress against external pressure when the inside is vacuum, and the stress is not concentrated, so it can be manufactured as thin as 0.4 to 0.8 mm in thickness.
  • the transmission window originally needs a step difference to make a rotational space for the mirror, the purpose can be achieved by using a protrusion structure of the same height, so no additional process is required.
  • FIG. 1 is a view showing the structure of a conventional MEMS scanner consisting of a mirror, a spring, a actuator, a fixture, and a lower substrate;
  • FIG. 2 is a diagram showing an example of a MEMS scanner used in LiDAR, which is a core sensor for autonomous driving;
  • 3 is a view showing a case in which a part of incident light is reflected from the surface of the transmission window and enters the scan range;
  • FIG. 4 is a view showing a case in which the scanning mirror is tilted in the direction of the angle of incidence
  • 5 is a view showing a case where the transmission window is tilted in the direction of the angle of incidence
  • FIG. 6 is a diagram showing that when the incident plane and the driving plane are perpendicular to each other, the sub-reflected light is independent of the scan angle of the main reflected light;
  • FIG. 7 is a view showing the structure of a conventional optical scanner package in which the transmission window is tilted to solve the sub-reflection problem
  • FIG. 8 is a view showing a structure of an optical scanner package comprising a glass lower substrate having an internal space and a hemispherical transmission window according to an embodiment of the present invention
  • FIG. 9 is a diagram showing that the sub-reflected light is independent of the scan angle of the main reflected light when the incident plane and the driving plane are perpendicular to each other in the scanner of the present invention.
  • FIG. 10 is a view showing a structure of an optical scanner package to which a transmission window to which a lens or an optical element is combined is applied according to another embodiment of the present invention
  • FIG. 11 is a view showing a manufacturing process of the optical scanner package of FIG. 8;
  • FIG. 12 is a view showing a structure of an optical scanner package in which a trench is formed for separating an electrode from a silicon lower substrate having an inclined surface indentation space;
  • FIG. 13 is a view showing a manufacturing process of the optical scanner package of FIG. 12;
  • FIG. 14 is a view showing a structure of an optical scanner package in which a silicon lower substrate having an internal space of a vertical cross-section, a base layer for sealing, and a trench for electrode separation are formed;
  • 15 is a view showing a structure of an optical scanner package in which a silicon lower substrate having a perforated inner space is sealed to a circuit board;
  • FIG. 16 is a view showing a manufacturing process of the optical scanner package of FIG. 14;
  • 17 is a view showing a structure of an optical scanner package in which an insulating material is filled in a trench;
  • FIG. 18 is a diagram showing the structure of an optical scanner package in which a planarization process is performed after depositing an insulating film for effective sealing;
  • FIG. 19 is a view showing a manufacturing process of the optical scanner package of FIG. 17;
  • 20 is a view showing the structure of an optical scanner package sealed using a separate base layer after manufacturing an inclined inner space in a state in which the scanner element is turned over for smooth electrical connection;
  • FIG. 21 is a view showing the structure of the optical scanner package sealed with solder using the PCB substrate including the internal space as a base layer in FIG. 20;
  • FIG. 22 is a view showing the structure of an optical scanner package in which an internal space of a vertical section is fabricated on a lower substrate in FIG. 20;
  • FIG. 23 is a view showing a structure of an optical scanner package in which an internal space of a vertical section is fabricated on a lower substrate in FIG. 21;
  • FIG. 24 is a view showing a manufacturing process of the optical scanner package of FIG. 21;
  • 25 is a view showing the optical scanner package structure using a CMOS Si substrate including a driving and sensing circuit instead of a separate Si wafer in FIG. 21;
  • 26 is a view showing the structure of the optical scanner package having electrical wiring electrically connected to the solder pad on the bottom surface through the through hole of the lower Si circuit board in FIG. 25;
  • 27 is a diagram showing a package structure of an optical scanner using a chip carrier
  • FIG. 28 is a diagram illustrating a three-dimensional shape of an optical scanner package according to an embodiment of the present invention.
  • FIG. 29 is a diagram illustrating a shape of the optical scanner package of FIG. 28 cut along a center line;
  • FIG. 8 shows a structure of an optical scanner package including a glass lower substrate 113 having an internal space and a hemispherical transmission window 51 according to an embodiment of the present invention.
  • the optical scanner package structure of FIG. 8 includes a scanner element 100 , a lower substrate 113 having an inner space 311 , and a hemispherical transmission window 51 . Since the transmission window 51 has a shallow semi-spherical shape, the inclinations of the transmission window are different from each other at the entrance and exit positions, so that interference due to sub-reflection can be reduced.
  • the angle of incidence ⁇ has an acute angle rather than a right angle.
  • the incident angle ⁇ and the maximum emission angle ⁇ are small, it is possible to easily design an anti-reflective coating and reduce light loss. Even if the scan angle ⁇ of the laser is large, the maximum emission angle ⁇ is small, so that the characteristic change of the emitted laser light is small. Also, since there is curvature on both sides of the two axes, the restriction on the incident direction becomes small even in the two-axis drive.
  • the transmission window need not be exactly part of a sphere, but may be part of an ellipsoid, such as a rugby ball.
  • FIG. 9 is a diagram showing that when an incident plane and a driving plane are perpendicular to each other in the scanner of the present invention, the sub-reflected light is independent of the scan angle of the main reflected light.
  • the transmission window shape is a structure having a curvature in two axes, and the lower part may have a rectangular shape similar to the chip shape as shown in FIG. 27 .
  • a blocking film 221 of an opaque coating may be formed at a light wavelength used to be opaque except for an incident light and an outgoing light area.
  • FIG. 10 shows a structure of an optical scanner package to which a transmission window coupled with a lens is applied according to another embodiment of the present invention.
  • the outgoing light 71 becomes collimated again when the lens 222, for example, a convex lens, is positioned at the positions of the incident light and the outgoing light.
  • the lens 222 for example, a convex lens
  • the transmission window has a hemispherical shape
  • the incident angle and the emission angle are always perpendicular to each other, so that the cross-sectional shape of the laser beam does not change significantly, but there is a problem in that the height of the transmission window is somewhat increased.
  • a low hemispherical shape or a part of an ellipsoid having a ratio of the lower diameter (D) to the height (h) of the transmission window in the range of 0.3 to 0.4 may be used.
  • a spherical lens or an aspherical optical element for compensating for the shape of the laser beam may be included in a portion of the transmission window through which the incident light and the emitted light pass so that the change in the cross-sectional shape of the laser beam is minimized.
  • the driving angle of the mirror is greatly affected by air squeeze damping, and as the size of the mirror decreases, the air resistance also decreases, so that the driving angle may be increased or the driving frequency may be increased.
  • a part of the actuator eg, comb electrode
  • the lens can be manufactured to be integrated with the transmission window, and as a result, an optical system such as LiDAR can be made small by using the integrated lens and integrated sensor.
  • the transmissive window with the integral lens may be manufactured by injection molding, and may be combined with an aspherical lens and a concave lens if necessary.
  • FIG. 11 shows a manufacturing process of the optical scanner package of FIG. 8 .
  • a method of manufacturing an optical scanner package, ie, a MEMS mirror scanner, according to an embodiment of the present invention will be described with reference to FIG. 11 .
  • the process of manufacturing the pattern of the photoresist used as the etch mask is a necessary process, it is omitted from the manufacturing process of the optical scanner package.
  • a cavity 311 is formed on a glass wafer by wet etching.
  • a via-hole is made in the glass wafer using DRIE or sand blast.
  • a seed layer 211 which is a metal pattern, is formed on a separate Si wafer by aligning the via-hole positions.
  • a5 Fill the via-hole with a conductive material.
  • a conductive material may be filled in the via-holes using electroplating.
  • a metal it is referred to as a via metal 212 .
  • the device structure and electrode are made on top Si by DRIE process. In this case, since there is an internal space, there is no need for a release process.
  • the hemispherical transmission window 52 is bonded on the external structure using vacuum epoxy, frit glass, or anodic bonding.
  • step a9) above it can be adhered to a printed circuit board (PCB) using a surface mounting technology.
  • PCB printed circuit board
  • step a5) may be performed after a9).
  • the scanner element is protected, so that chip dicing is facilitated.
  • step a9 When the bonding process of step a9) is performed in a vacuum, vacuum packaging of the scanner is possible.
  • Si used in the present invention is crystalline silicon, which has better reproducibility of properties than conventional poly-Si, and has a yield-stress three times higher than that of conventional poly-Si. time) is lengthened.
  • the glass transmission window is independently made and diced, it can be used for chip-level packaging.
  • FIG. 12 shows a structure of an optical scanner package in which a trench 140 is formed for electrode separation from a silicon lower substrate 113 having an inclined surface interior space 311, and FIG. 12 shows an electrical interconnection for vacuum packaging. An embodiment wiring is shown.
  • the scanner device 100 as shown in FIG. 12 is made of a single SOI, the process is very simple, and a trench 140 is formed for electrode separation.
  • trench leakage and wiring problems are solved by the following manufacturing method.
  • a manufacturing method will be described with reference to FIGS. 12 and 13 as follows.
  • the inner space 311 is formed on the Si wafer by wet etching or DRIE.
  • the height of the top Si is adjusted to approximately 30-90 um by CMP.
  • An insulating film is formed in the region of the barrier 142 that is the outermost of the device.
  • a Si electrode for scanner driving and sensing is made on the inside of the top Si by DRIE process, and at the same time, a separate barrier 142 separated by the inner electrode 145 and the trench 140 is formed on the outer edge of the chip. make on
  • a wiring is performed between the inner electrode 145 and the outer barrier 142 .
  • step b1) above instead of the Si wafer, a glass wafer having a cavity may be subjected to anodic bonding.
  • the barrier 142 in step b5) may be directly connected to the internal electrode 145 without a trench to prevent floating.
  • step b7) a plurality of holes or dimples may be formed on the metal in order to strengthen the adhesion of the transmission window.
  • FIG. 14 shows a structure of an optical scanner package in which a silicon lower substrate 113 having an internal space 311 having a vertical cross section, a base layer 40 for sealing, and a trench 140 for electrode separation are formed.
  • FIG. 16 shows a manufacturing process of the optical scanner package of FIG. 14 .
  • a through-hole is first formed in the scanner device 100 and the lower substrate 113 using the SOI wafer 114 .
  • a separate base layer 40 may be bonded.
  • the through-hole may be temporarily coated with a polymer to stably manufacture the scanner element.
  • a polymer coating may be applied to the scanner element to protect the scanner element before manufacturing the through-hole of the lower substrate.
  • a circuit board 321 such as a PCB, a ceramic circuit board (CCB), or an ASIC circuit board may be used instead of the Si or glass substrate at the bottom.
  • 17 and 18 show an example in which an electrical wiring is formed using trench filling as an embodiment of an electrical interconnection for vacuum packaging. 17 and 18 illustrate a state in which the insulator 141 is filled in the trench 140 .
  • FIG. 19 shows a manufacturing process of the optical scanner package of FIG. 17, and the manufacturing process is as follows.
  • An inner space is formed on the Si wafer by wet etching or DRIE.
  • a trench is made between the inner electrode and the barrier in the top Si by the DRIE process.
  • An insulator 141 is filled in the trench 140 and deposited over the barrier.
  • a scanner element pattern is formed by DRIE.
  • Sealing is performed by bonding the transmission window in a vacuum atmosphere using vacuum epoxy or frit glass on the external structure.
  • a getter (reference numeral 312 in FIG. 14 ) material for adsorbing residual gas may be added to the internal space to maintain a high vacuum.
  • a dielectric thin film may be first manufactured to form a reflective surface.
  • step c4) When attaching the transmission window as shown in FIG. 18, since the bottom surface is generally smooth, the lower attachment surface corresponding thereto should also be smooth without a step. Therefore, a planarization process may be performed after step c4).
  • a planarization process may be performed after step c4).
  • FIGS. 17 and 18 are manufactured using insulator trench filling, unnecessary wiring work can be minimized, which is advantageous for mass production.
  • FIG. 20-23 show embodiments of flip-chip bonding on a PCB substrate.
  • the electrical wiring process using flip-chip bonding of the optical scanner package of FIG. 20 is as follows.
  • the height of the top Si is adjusted to approximately 30-90 um by CMP.
  • a Si electrode for scanner driving and sensing is made on the inside of the top Si by DRIE process, and at the same time, a separate barrier separated by an internal electrode and a trench is made on the outer edge of the chip.
  • a through-hole is made in the Si lower substrate 113 by using crystalline wet etching.
  • An insulating film pattern is made on a separate Si wafer (refer to reference numeral 40).
  • the separate Si wafer is attached by flip-chip bonding.
  • the inner electrode is bonded by conductive welding and the outer barrier is bonded with an insulator.
  • the above process d4) may be performed after d5).
  • vacuum packaging is possible at chip-level or wafer-level.
  • FIG. 21 shows the structure of the optical scanner package in FIG. 20 sealed with solder using the PCB substrate including the internal space as a base layer
  • FIG. 24 shows the manufacturing process of the optical scanner package of FIG. 21 .
  • a circuit board 321 such as a PCB having a cavity or a CCB (ceramic circuit board) or an ASIC circuit board may be used instead of a separate Si wafer in step d7).
  • the top Si structure of the electric wiring is made to be elongated in the radial direction. This is to minimize the risk of separation due to temperature change when bonding to a substrate with a difference in thermal expansion.
  • the size of the transmission window can be reduced by performing vertical processing of the lower substrate 113 using DRIE instead of the crystalline etching of d5) in FIG. 21 . 20 to 23 , additional wiring may be performed to prevent electrical floating of the lower substrate.
  • FIG. 25 shows a structure of an optical scanner package using a CMOS Si circuit board 322 including a driving and sensing circuit instead of a separate Si wafer in FIG. 21 .
  • electrical connection and sealing may be performed using solders 352a and 352b such as metal bumps or solder balls having a height of 50 to 300 ⁇ m.
  • the inner solder 352a is for an electrode for electrical connection, and the outer solder 352b is for sealing.
  • This structure does not require a separate wiring, and direct bonding is possible.
  • 26 shows a structure of an optical scanner package having electrical wiring electrically connected to the solder pad 354 on the bottom surface through the through hole 353 of the Si circuit board 321 in FIG. 25 . Through this, a chip-scale package can be implemented.
  • FIG. 27 shows a package structure using a chip carrier.
  • a hemispherical transmission window is used, but vacuum packaging can be performed by directly adhering it on a chip carrier.
  • the inner shape of the chip carrier may be circular or oval depending on the shape of the transmission window. If the inside shape of the chip carrier is square, a metal substrate with a large circular hole in the center can be used to match the spherical transmission window.
  • the optical scanner manufactured in this way can be used under normal atmospheric pressure conditions other than vacuum, unless it is hermetic sealing.
  • FIG. 28 shows a three-dimensional shape of an optical scanner package according to an embodiment of the present invention
  • FIG. 29 shows a shape cut along a center line.
  • a three-dimensional optical scanner package includes a scanner element including a fixed body 121, a spring 122, a mirror 125, a fixed electrode 131, and a driving electrode 132, and a transmission window ( 51) is shown.
  • 71, 71a, 71b, 171 main reflected light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

본 발명은 스캐너소자, 내재공간이 있는 하부 기판 및 반구형(semi-spherical)의 투과창으로 구성된 광스캐너 패키지에 관한 것이다. 반구형 투과창의 입사와 출사 위치에서 투과창의 기울기 서로 다르므로 부반사 (sub-reflection)에 의한 간섭을 줄일 수 있다. 입사각(α) 및 최대 출사각(β)이 작으므로 무반사코팅 설계가 용이하고 광손실을 줄일 수 있다. 레이저의 광학적 스캔각(γ, optical scanning angle: OSA)이 크더라도 최대 출사각(β)이 작아서 출사 레이저광의 특성 변화가 작다는 장점이 있다. 또한 2축 양쪽으로 모두 곡률이 있기 때문에 2축 구동에서도 입사 방향에 대한 제한이 작다. 투과창은 정확하게 구형(sphere)의 일부일 필요는 없으며, 럭비공과 같은 타원체(ellipsoid)의 일부일 수 있다. 투과창은 2축으로 곡률이 있는 구조이며, 하부는 사각형 형상일 수 있다.

Description

광스캐너 패키지 및 제조 방법
본 발명은 광스캐너 패키지 및 그 제조 방법에 관한 것으로, 더 자세하게는 투과창에서 반사된 부반사광과 미러에서 반사된 주반사광의 간섭을 최소화할 수 있는 투과창을 포함하는 광스캐너 패키지 및 그 제조 방법에 관한 것이다.
라이다(LiDAR; Light Detection And Ranging)와 피코-프로젝터(pico-projector)와 같은 소형 이미지 센서 또는 디스플레이에서 이미지 영역에 빛을 조사(illumination)하는 것이 필요하다. 이때 해당 영역을 레이저 광원으로 스캔(scan)하면 이미지의 해상도 및 콘트라스트(contrast)가 우수하다. 스캔을 위하여 소형, 고속, 저전력의 특성을 가진 MEMS(Micro Electro Mechanical System) 스캐너가 각광받고 있으며, 이러한 MEMS 스캐너는 미러(25), 스프링(22), 구동기(30), 고정체(21)로 구성되어 있으며, 하부에 기저층(40)이 추가될 수 있다(도 1 참조). 레이저 스캔각(미러 구동각의 2배)은 이미지 크기와 직접적인 관련이 있으며, 전압이 동일한 조건에서 미러의 구동각을 크게 하려면 공기 댐핑(air damping)을 줄여야 한다. 미러의 구동각을 확대하기 위하여 공진주파수로 구동할 수 있는데, 이 영역은 댐핑-제어 영역(damping-controlled region)이므로 진공도를 높일수록 구동각이 커진다. 진공을 유지하려면, 밀봉(hermetic sealing)을 위한 투과창(window cover)이 필요하며, 이 때 레이저 통과 영역의 투과도가 높아야 반사로 인한 노이즈(noise) 간섭 및 에너지 손실이 작아진다.
MEMS 미러 스캐너는 자율주행의 핵심 센서인 라이다(LiDAR)에 있어서, 이미지(image) 측정에 필수적인 레이저의 고속 스캔에 사용된다(도 2 참조).
도 3을 참조하면, 투과창(50)의 투과도를 높이기 위하여 무반사코팅(ARC: anti-reflection coating)을 시행할 수 있지만, 완벽한 무반사코팅은 불가능하다. 따라서, 입사광(70)의 대부분이 미러(25)에서 반사하는 주반사(미러 초기위치에서는 도면부호 71, 스캔될 때는 도면부호 71a, 71b 참조)와 함께 투과창 표면에서 반사하는 부반사(sub-reflection)(도면부호 72 참조)가 발생한다. 투과창 두께는 1 mm 이내이므로, 이로 인한 궤적변화는 생략하였다.
투과창이 수평이고 입사광과 스캔방향(θ y)이 한 평면 (도 3에서 x-z 평면) 안에 있는 경우에, 부반사광(72)이 미러(25)에서 반사된 주반사광(71, 71a, 71b)과 겹치면서 레이저 스캔영역을 간섭하게 된다. 부반사 비율은 보통 수%에 불과하지만 위치가 고정되어 있으므로, 빠른 속도로 움직이는 주반사보다 강도(intensity)가 많이 높은 경우가 대부분이다. 이 부반사광은 측정 위치에 있지 않은 다른 물체에서 반사되면서 노이즈(noise) 신호로 작용하기 때문에 영상의 품질(quality)을 떨어뜨리거나, 사람이 이미지 영역 안에 있는 경우 각막 등에 손상을 일으키는 눈 안전(eye safety) 문제가 있다.
이 문제를 해결하기 위하여 도 4에 보인 바와 같이, 투과창(50)을 수평으로 유지하는 대신, 스캐너 소자를 φ 만큼 기울이는 방법이 제안되었다. 여기서 부반사광(72)은 주반사광(71)의 위쪽 경계(도면부호 71a)로부터 각도상으로 충분히 떨어지도록 스캐너 소자를 충분히 기울여야 한다. 부반사광(72)이 레이저로 돌아올 경우 레이저가 불안정해지므로, 입사광(70)과도 각도상으로 떨어져야 한다. 이와 같이 스캐너 소자를 기울이기 위해서는 돌출구조(pillar)가 구비된 기판이 추가적으로 필요하다.
스캐너 소자를 기울이지 않는 대신, 도 5와 같이 평판형 투과창(50)을 φ 만큼 기울이는 경우에도 부반사광(72)이 스캔영역으로부터 멀어지는 효과를 얻을 수 있다. 그러나 스캔각(γ)이 커질 경우 최대 출사각(β)이 커지면서 무반사코팅 설계가 어려워지고 이로 인한 광손실이 발생할 수 있다. 도 6과 같이 입사평면 (x-z 평면)과 구동평면(θ x)이 서로 수직인 경우, 부반사광(72)은 주반사광(71)의 스캔각(γ)과 관계가 없기 때문에 부반사광(72)과의 이격은 수월해진다.
위와 같은 방식으로 부반사광 문제를 해결하기 위한 기술로서 도 7과 같은 스캐너 패키징 구조가 선행기술문헌 미국공개특허공보 US2006/0176539호에 제시되어 있다.
그러나 도 5 내지 도 7에 도시된 것과 같이 한쪽 축으로만 투과창이 기울어진 경우, 투과창이 기울어진 방향으로만 입사되어야 한다는 제약이 있다. 이 문제를 해결하려면 투과창의 기울기가 x, y 양축 방향으로 모두 형성되는 것이 바람직하다.
<선행기술문헌>
(특허문헌 1) 미국공개특허공보 US2006/0176539 (공개일: 2006.08.10.)
본 발명은 상술한 종래기술의 부반사 문제를 해결하기 위하여 안출된 것으로서, 부반사에 의한 간섭을 줄일 수 있으며 입사각(α) 및 최대 출사각(β)이 작아 무반사코팅 설계가 용이하고 광손실을 줄일 수 투과창 구조를 가지는 MEMS 미러 스캐너 및 그 제조 방법을 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위한 본 발명에 의한 광스캐너 패키지는, 미러, 스프링, 구동기, 고정체를 포함하는 MEMS 스캐너소자; 상기 MEMS 스캐너소자의 상부 또는 하부에 위치하며 상기 MEMS 스캐너소자와 접합된 형태로 상기 MEMS 스캐너소자를 지지하는 하부 기판; 및 외형이 반구형(semi-spherical) 또는 타원체(ellipsoid)의 일부에 해당하는 껍데기(shell) 형상을 가지며, 하부에 연속적으로 이어져 있는 접합면을 가지는 투과창을 포함하고, 상기 투과창은 2축으로 곡률이 있는 구조를 가질 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 입사광과 출사광이 통과하는 투과창의 일부 영역에 레이저 빔의 단면 형상을 변화시킬 수 있는 렌즈 또는 광학요소를 포함한다. 상기 렌즈는 상기 투과창과 일체형으로 형성될 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서 상기 투과창은 상기 투과창의 하부직경(D)과 높이(h)의 비율이 0.3~0.4 범위에 있는 낮은 반구형이거나 타원체의 일부일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서 상기 하부 기판은 유리 재질로 이루어져 있고, 상기 하부 기판 상부에는 내재공간이 존재할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서 상기 하부 기판의 위아래 방향으로 비아 메탈이 채워질 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서 상기 투과창에서 입사광 및 출사광 영역을 제외한 영역에 불투명한 차단막이 형성될 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 결정성 실리콘 재질의 하부 기판 상부에 존재하는 경사면 각도가 54.7도인 내재공간; 전극 분리를 위하여 스캐너 외부에 트렌치 구조로 형성된 실리콘 전극; 트렌치 구조의 바깥쪽에 끊어짐이 없는 실리콘 장벽(barrier); 및 상기 장벽 위에 형성된 절연막; 상기 실리콘 전극 및 절연막 위에 형성된 두 종류의 금속 전극;을 더 포함하고, 상기 실리콘 장벽의 금속 전극 위에 밀봉된 투과창이 있을 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서 상기 투과창의 하부는 유리 밀봉재로 접합될 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 내재공간이 하부로 관통된 하부 기판을 밀봉하기 위한 별도의 실리콘 기판 또는 회로기판을 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 트렌치 구조를 채우고 장벽 위에 형성된 절연막; 및 상기 절연막 위에 형성된 금속 회로 패턴;을 더 포함하고, 상기 금속 패턴 위에 밀봉된 투과창이 포함될 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 상기 하부 기판의 하부쪽으로 갈수록 넓어지거나 또는 동일한 단면 형상을 가진 내재공간; 미러의 하부에 형성된 금속 반사막; 및 스캐너소자와 하부 기판의 상하 위치가 바뀐 상태에서 솔더로 밀봉된 회로기판을 기저층으로 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 상기 스캐너소자의 전극은 솔더로, 장벽은 유리 밀봉재로 붙여진 내재공간이 있는 실리콘 기판을 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 상기 스캐너소자의 전극과 장벽위에 유리 밀봉재로 붙여진 내재공간이 있는 실리콘 기판을 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 상기 기저층을 대신하는 칩 캐리어를 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서, 상기 투과창의 하부는 정사각형 또는 직사각형 형상일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서, 상기 칩 캐리어의 안쪽 모양이 네모인 경우에는 중앙 부위에 원형의 큰 홀이 뚫려있는 금속 기판을 추가적으로 사용할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서, 상기 투과창에 형성된 차단막은 상기 투과창의 내측면과 외측면의 적어도 일부 영역에 300~600nm 파장의 일부 범위에서 3% 이하의 광학적 반사도를 가지는 무반사 코팅층일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지에서, 상기 투과창은 0.2~0.8mm 두께의 유리 재질로 이루어져 있고, 상기 투과창의 하부 접합면 부위는 0.4~1.6mm 두께인 것일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지는, 상기 투과창과 상기 MEMS 스캐너소자, 그리고 상기 기저층은 접합을 통해 밀폐되는 구조를 이루며, 밀폐된 내부의 압력은 10 -1 ~ 10 -4 기압의 진공 상태를 이루는 것일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법은, 글래스 웨이퍼(glass wafer)에 습식 에칭(wet etching)을 이용하여 내재공간(cavity)을 형성하는 단계(a1); 스캐너 소자와의 전기적 연결을 위하여 상기 글래스 웨이퍼(glass wafer)에 DRIE 또는 샌드 블라스트(sand blast)를 이용하여 비아-홀(via-hole)을 형성하는 단계(a2); 상기 비아-홀(via-hole) 위치에 정렬하여 별도의 Si 웨이퍼에 금속 패턴(seed layer)을 형성하는 단계(a3); 상기 글래스 웨이퍼(glass wafer)와 Si 웨이퍼를 어노딕 본딩(anodic bonding)하는 단계(a4);상기 비아-홀(via-hole)에 도전성 재료를 채우는 단계(a5); 상기 Si 웨이퍼의 상단(top)을 CMP 가공하여 높이를 낮추는 단계(a6); 미러 표면, 전기배선 및 패드(pad) 위에 금속 패턴을 형성하는 단계(a7); DRIE 공정으로 상기 Si 웨이퍼의 상단에 소자 구조 및 전극을 형성하는 단계(a8); 및 외부 구조체 위에 반구형 또는 타원체형의 투과창을 접합하는 단계(a9);를 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서, 상기 투과창을 접합하는 단계(a9) 이후 표면 실장기술 (Surface Mounting Technology)을 이용하여 PCB (printed circuit board)에 접착하는 단계를 더 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법은, Si 웨이퍼에 습식에칭(wet etching) 또는 DRIE를 이용하여 내재공간을 형성하는 단계(b1); 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상기 Si 웨이퍼의 상단의 높이를 낮추는 단계(b2); 스캐너 소자의 가장 바깥쪽에 있는 장벽 영역에 절연막을 형성하는 단계(b3); 미러 표면, 배선 및 장벽의 해당 위치에 금속(metal)을 증착하는 단계(b4); DRIE 공정으로 상기 Si 웨이퍼 상단의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 만들고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 만드는 단계(b5); 내부 전극과 외부 장벽 사이에 와이어링(wiring)을 수행하는 단계(b6); 및 외부 구조체 위에 진공 분위기에서 반구형 또는 타원체형의 투과창을 접착함으로써 밀봉을 수행하는 단계(b7);를 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서, 상기 내재공간을 형성하는 단계(b1)에서 Si 웨이퍼 대신에 캐비티(cavity)가 있는 유리 웨이퍼를 어노딕 본딩(anodic bonding)하는 것일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서, 상기 별도의 장벽을 만드는 단계(b5)에서 상기 장벽은 전기적인 플로팅(floating)을 방지하기 위하여 내부 전극과 트렌치(trench) 없이 직접 연결하는 것일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서, 상기 투과창을 접착함으로써 밀봉을 수행하는 단계(b7)에서 상기 투과창의 접착을 강화하기 위하여 금속(metal) 위에 여러 개의 홀(hole) 또는 딤플(dimple)을 형성하는 것일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법은, Si 웨이퍼에 습식 에칭(wet etching) 또는 DRIE를 이용하여 내재공간을 형성하는 단계(c1); 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상기 Si 웨이퍼의 상단의 높이를 낮추는 단계(c2); DRIE 공정으로 상기 Si 웨이퍼의 상단에 내부 전극과 장벽 사이에 트렌치(trench)를 형성하는 단계(c3); 절연체를 상기 트렌치(trench)에 채우고 상기 장벽 위까지 증착하는 단계(c4); 내부 전극과 장벽의 전기적 연결 및 미러 반사면 형성을 위하여 금속(metal)을 증착하는 단계(c5); 금속을 패시베이션(passivation)한 후 DRIE로 스캐너 소자 패턴을 형성하는 단계(c6); 및 외부 구조체 위에 진공 분위기에서 반구형 또는 타원체형의 투과창을 접착함으로써 밀봉을 수행하는 단계(c7);를 포함할 수 있다.
또한, 반사면 형성을 위하여 유전체 박막을 제일 먼저 제작할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서, 상기 내재공간을 형성하는 단계(c1)에서 고진공 유지를 위하여 잔류 가스를 흡착하는 게터(getter) 물질을 내부공간에 추가할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서, 상기 절연체를 채우고 증착하는 단계(c4) 이후 평탄화 공정을 더 수행할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법은, Si 웨이퍼를 준비하는 단계(d1); 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 Si 웨이퍼의 상단의 높이를 낮추는 단계(d2); 배선의 해당 위치에 금속(metal)을 증착하는 단계(d3); DRIE 공정으로 Si 웨이퍼 상단의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 형성하고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 형성하는 단계(d4); (100) Si 하부 기판에 결정성 습식 에칭(wet etching)을 이용하여 스루홀(through-hole)을 형성하는 단계(d5); 미러 안쪽을 스캐너의 반사면으로 사용하기 위하여 금속(metal)을 코팅(coating)하는 단계(d6); 별도의 Si 웨이퍼에 절연막 패턴을 형성하는 단계(d7); 상기 별도의 Si 웨이퍼에 금속 라인(metal line)을 형성한 후, 패시베이션(passivation)된 상태에서 내재공간(cavity)을 형성하는 단계(d8); 및 스캐너 소자가 있는 웨이퍼를 뒤집은 후, 플립-칩 본딩(flip-chip bonding)으로 상기 별도의 Si 웨이퍼를 부착하는 단계(d9);를 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법의 상기 별도의 Si 웨이퍼를 부착하는 단계(d9)에서, 내부 전극은 도전성 용접으로 접착하고 외부 장벽은 절연체로 접착할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법의 상기 장벽을 칩(chip) 바깥 테두리에 형성하는 단계(d4)가 상기 스루홀(through-hole)을 형성하는 단계(d5) 이후에 수행될 수도 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법은, Si 웨이퍼를 준비하고, 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 Si 웨이퍼의 상단의 높이를 낮추는 단계(d1); 배선 및 장벽의 해당 위치에 금속(metal)을 증착하는 단계(d2); DRIE 공정으로 Si 웨이퍼 상단의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 형성하고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 형성하는 단계(d3); (100) Si 하부 기판에 결정성 습식 에칭(wet etching)을 이용하여 스루홀(through-hole)을 형성하는 단계(d4); 미러 안쪽을 스캐너의 반사면으로 사용하기 위하여 금속(metal)을 코팅(coating)하는 단계(d5); 상기 Si 하부 기판 상면에 투과창을 접합하는 단계(d6); 상기 Si 웨이퍼의 상단에 솔더링을 하는 단계(d7); 및 금속 라인(metal line)이 형성되고, 내재공간(cavity)이 있는 별도의 회로기판을 준비하고, 스캐너 소자가 있는 웨이퍼를 뒤집은 후, 플립-칩 본딩(flip-chip bonding)으로 상기 별도의 회로기판을 부착하는 단계(d8);를 포함할 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법에서 상기 별도의 회로기판은 PCB, 세라믹 회로기판, 및 ASIC 회로기판 중 하나일 수 있다.
또한, 본 발명에 의한 광스캐너 패키지의 제조방법의 상기 별도의 회로기판을 부착하는 단계(d8)에서, 내부 전극 및 외부 장벽은 도전성 용접으로 접착될 수 있다.
상기와 같이 구성되는 본 발명은 반구형 투과창의 입사와 출사 위치에서 투과창의 기울기가 서로 다르므로 부반사 (sub-reflection)에 의한 간섭을 줄일 수 있다.
또한, 입사각(α) 및 최대 출사각(β)이 작으므로 무반사코팅 설계가 용이하고 광손실을 줄일 수 있다.
또한, 레이저의 스캔각(γ)이 크더라도 최대 출사각(β)이 작아서 출사 레이저광의 특성 변화가 작다는 장점이 있다.
또한, 2축 양쪽으로 모두 곡률이 있기 때문에 2축 구동에서도 입사 방향에 대한 제한이 작다.
또한, 반구형 (또는 낮은 반구형)으로 제작된 투과창은 내부가 진공일 경우에 외부압력에 대하여 압축응력을 나타내며, 응력이 집중되지 않으므로 두께를 0.4~0.8mm 정도로 얇게 제작할 수 있다.
또한, 투과창은 미러의 회전 공간을 만들기 위하여 원래 단차가 필요한데, 같은 높이의 돌출구조를 이용하여 목적을 달성할 수 있으므로 추가 공정이 필요없다.
도 1은 미러, 스프링, 구동기, 고정체 및 하부 기판으로 구성된 종래 MEMS 스캐너의 구조를 나타내는 도,
도 2는 자율주행의 핵심센서인 LiDAR에 사용되는 MEMS 스캐너의 예시를 나타내는 도,
도 3은 입사광의 일부가 투과창 표면에서 반사하여 스캔범위 안으로 들어가는 경우를 나타내는 도,
도 4는 스캐닝 미러를 입사각 방향으로 기울이는 경우를 나타내는 도,
도 5는 입사각 방향으로 투과창을 기울이는 경우를 나타내는 도,
도 6은 입사평면과 구동평면이 서로 수직일 때, 부반사광이 주반사광의 스캔각과 무관함을 보여주는 도,
도 7은 부반사 문제를 해결하기 위하여 투과창을 기울인 종래 광스캐너 패키지 구조를 나타내는 도,
도 8은 본 발명의 일실시예에 따른, 내재공간이 있는 유리 하부 기판 및 반구형 투과창으로 구성된 광스캐너 패키지 구조를 나타내는 도,
도 9는 본 발명의 스캐너에서 입사평면과 구동평면이 서로 수직일 때, 부반사광이 주반사광의 스캔각과 무관함을 보여주는 도,
도 10은 본 발명의 다른 실시예에 따른 렌즈 또는 광학요소가 결합된 투과창이 적용된 광스캐너 패키지 구조를 나타내는 도
도 11은 도 8의 광스캐너 패키지의 제조 과정을 나타내는 도,
도 12는 경사면의 내재공간을 갖는 실리콘 하부 기판과 전극 분리를 위하여 트렌치(trench)가 형성된 광스캐너 패키지 구조를 나타내는 도,
도 13은 도 12의 광스캐너 패키지의 제조 과정을 나타내는 도,
도 14는 수직단면의 내재공간을 갖는 실리콘 하부 기판, 밀봉을 위한 기저층 및 전극 분리를 위하여 트렌치가 형성된 광스캐너 패키지 구조를 나타내는 도,
도 15는 관통된 내재공간을 갖는 실리콘 하부 기판이 회로기판에 밀봉된 광스캐너 패키지 구조를 나타내는 도,
도 16은 도 14의 광스캐너 패키지의 제조 과정을 나타내는 도,
도 17은 트렌치에 절연물질이 충진된 광스캐너 패키지 구조를 나타내는 도,
도 18은 효과적 밀봉을 위하여 절연막을 증착한 후 평탄화 공정을 수행한 광스캐너 패키지 구조를 나타내는 도,
도 19는 도 17의 광스캐너 패키지의 제조 과정을 나타내는 도,
도 20은 원활한 전기적 연결을 위하여 스캐너소자를 뒤집은 상태에서 경사진 내재 공간을 제작한 후, 별도의 기저층을 이용하여 밀봉한 광스캐너 패키지 구조를 나타내는 도,
도 21은 도 20에서 내재공간이 포함된 PCB기판을 기저층으로 사용하여 솔더로 밀봉한 광스캐너 패키지 구조를 나타내는 도,
도 22는 도 20에서 하부 기판에 수직단면의 내재 공간을 제작한 광스캐너 패키지 구조를 나타내는 도,
도 23은 도 21에서 하부 기판에 수직단면의 내재 공간을 제작한 광스캐너 패키지 구조를 나타내는 도,
도 24는 도 21의 광스캐너 패키지의 제조 과정을 나타내는 도,
도 25는 도 21에서 별도의 Si 웨이퍼 대신 구동 및 센싱 회로를 포함한 CMOS Si 기판을 사용한 광스캐너 패키지 구조를 나타내는 도,
도 26은 도 25에서 하부의 Si 회로기판의 스루홀을 통해 바닥면의 솔더 패드와 전기적으로 연결되는 전기배선을 갖는 광스캐너 패키지 구조를 나타내는 도,
도 27은 칩 캐리어를 이용한 광스캐너의 패키지 구조를 나타내는 도,
도 28은 본 발명의 일실시예에 따른 광스캐너 패키지의 3차원 형상을 나타내는 도,
도 29는 도 28의 광스캐너 패키지가 중앙선을 따라 절단된 형상을 나타내는 도임.
도 8은 본 발명의 일실시예에 따른, 내재공간이 있는 유리 하부 기판(113) 및 반구형 투과창(51)으로 구성된 광스캐너 패키지 구조를 나타낸다. 도 8의 광스캐너 패키지 구조는 스캐너소자(100), 내재공간(311)이 있는 하부 기판(113) 및 반구형 투과창(51)으로 구성된다. 투과창(51)은 낮은 반구형 (shallow semi-spherical) 형태이기 때문에 입사와 출사 위치에서 투과창의 기울기가 서로 다르므로 부반사(sub-reflection)에 의한 간섭을 줄일 수 있다. 낮은 반구형(shallow semi-spherical)으로서 직경(D)에 대한 높이(h)의 비율이 0.3~0.4 범위에 있는 경우, 부반사광이 레이저로 돌아오는 광량을 줄일 수 있어 레이저의 불안정을 감소시킬 수 있다. 낮은 반구형의 경우에는 입사각(α)이 직각이 아닌 예각을 갖는다.
도 8의 실시예에서는 입사각(α) 및 최대 출사각(β)이 작으므로 무반사코팅 설계가 용이하고 광손실을 줄일 수 있다. 레이저의 스캔각(γ)이 크더라도 최대 출사각(β)이 작아서 출사 레이저광의 특성 변화가 작다. 또한 2축 양쪽으로 모두 곡률이 있기 때문에 2축 구동에서도 입사 방향에 대한 제한이 작게 된다. 투과창은 정확하게 구형(sphere)의 일부일 필요는 없으며, 럭비공과 같은 타원체(ellipsoid)의 일부일 수 있다.
도 9는 본 발명의 스캐너에서 입사평면과 구동평면이 서로 수직일 때, 부반사광이 주반사광의 스캔각과 무관함을 보여주는 도이다. 도 9에서는, 반구형 특성으로 인하여 x, y축 양쪽 방향으로 곡률이 있어서 구동의 수직 방향에 대해서도 부반사 문제가 훨씬 덜하다는 것을 보여준다. 투과창 형태는 2축으로 곡률이 있는 구조이며, 하부는 도 27에서와 같이 칩 형상과 비슷하게 사각형 형상일 수도 있다. 투과창의 하부가 사각형 형상이더라도 위로 갈수록 구형 (spherical)의 구조를 가지도록 만들 수 있으며, 이 경우에도 부반사 간섭을 효과적으로 피할 수 있다. 다른 빛과의 간섭을 피하기 위하여 입사광 및 출사광 영역을 제외하고 불투명하게 사용하는 광파장에서 불투명 코팅(optical shield)의 차단막(221)이 형성될 수 있다.
반구형 구조는 외부압력이 있을 때, 압축응력이 나타나며 응력이 집중되지도 않는다. 유리는 압축응력에 강하여 1기압에서 두께를 0.4~0.8mm 정도로 얇게 제작해도 안전하게 사용할 수 있다. 통상적으로 스캐너 부품은 시스템 케이스(case)로 보호되고 있어 직접적인 충격이 가해지는 경우는 거의 없다. 수십 G의 가속도로 인한 간접적인 충격이 있는 경우에도 응력에 주는 영향은 외부 압력보다 1/10 이하이므로 무시할 수 있다.
도 10은 본 발명의 다른 실시예에 따른 렌즈가 결합된 투과창이 적용된 광스캐너 패키지 구조를 나타낸다. 도 10과 같이 입사광(70)이 평행(collimation)인 경우 입사광 및 출사광 위치에 렌즈(222), 예를 들면 볼록렌즈를 위치시키면 출사광(71)은 다시 평행(collimation)으로 된다. 이 때 미러(125)에 도달하는 빔의 단면적이 줄기 때문에 미러 크기가 작아도 되며, 따라서 높은 주파수로 스캔할 때 발생하는 미러의 동적 변형(dynamic deformation)도 줄어든다.
한편, 투과창이 반구형일 경우에는 입사각과 출사각이 항상 수직을 이루게 되어 레이저 빔의 단면 형상이 크게 변하지 않으나, 투과창의 높이가 다소 커진다는 문제가 있다. 이 높이를 낮추기 위해서는 투과창의 하부직경(D)과 높이(h)의 비율이 0.3~0.4 범위에 있는 낮은 반구형이거나 타원체의 일부를 사용할 수 있다. 이 경우 레이저빔의 단면 형상 변화가 최소화되도록 입사광과 출사광이 통과하는 투과창의 일부 영역에 레이저빔의 형상을 보상하기 위한 구면 렌즈 또는 비구면 광학요소를 포함할 수 있다.
미러의 구동각은 공기저항(air squeeze damping)에 큰 영향을 받는데, 미러 크기가 작아지면 공기저항도 작아져 구동각이 커지거나 또는 구동주파수를 올릴 수 있다. 구동각 또는 구동주파수를 동일하게 유지하는 경우, 구동기 (예를 들면, comb 전극)의 일부를 구동각 측정을 위한 일체형(integrated) 센서로 활용할 수도 있다. 렌즈는 투과창과 일체형(integrated)으로 제작할 수 있으며, 결과적으로 일체형 렌즈와 일체형 센서를 이용하여 라이다(LiDAR) 등의 광학시스템을 작게 제작할 수 있다. 일체형 렌즈가 있는 투과창은 사출성형으로 제작될 수 있으며, 필요에 따라 비구면 렌즈 및 오목렌즈와 조합될 수도 있다.
도 11은 도 8의 광스캐너 패키지의 제조 과정을 나타낸다. 도 11을 참조하여 본 발명의 일실시예에 따른 광스캐너 패키지, 즉 MEMS 미러 스캐너의 제조 방법을 살펴보면 다음과 같다. 단, 식각 마스크로 사용되는 감광막의 패턴을 제작하는 과정은 당연히 필요한 공정이므로 광스캐너 패키지의 제조과정에서 생략하였다.
a1) 글래스 웨이퍼(glass wafer)에 습식 에칭(wet etching)을 이용하여 내재공간(cavity)(311)을 형성한다.
a2) Si 스캐너 소자와의 전기적 연결을 위하여 글래스 웨이퍼(glass wafer)에 DRIE 또는 샌드 블라스트(sand blast)를 이용하여 비아-홀(via-hole)을 만든다.
a3) 비아-홀(via-hole) 위치에 정렬하여 별도의 Si 웨이퍼에 금속 패턴인 시드 레이어(seed layer)(211)을 만든다.
a4) 글래스 웨이퍼(glass wafer)와 Si 웨이퍼를 어노딕 본딩(anodic bonding)한다.
a5) 비아-홀(via-hole)에 도전성 재료를 채운다. 예를 들어, 도전성 재료는 전기도금을 이용하여 비아-홀에 채워질 수 있다. 금속으로 채워진 경우 비아 메탈(212)이라고 한다.
a6) CMP로 상단(top) Si의 높이를 맞춘다. Si의 높이는 대략 30-90 um으로 맞춘다.
a7) 미러 표면, 전기배선 및 패드(pad) 위에 금속 패턴을 만든다.
a8) DRIE 공정으로 상단 Si에 소자 구조 및 전극을 만든다. 이 경우, 내재공간이 있어서 릴리즈(release) 공정이 필요없다.
a9) 진공 에폭시(Vacuum epoxy), 프릿 글래스(frit glass) 또는 어노딕 본딩(anodic bonding)을 이용하여 외부 구조체 위에 반구형 투과창(52)을 접합한다.
위 공정 a9) 이후 표면 실장기술 (Surface Mounting Technology)을 이용하여 PCB (printed circuit board)에 접착할 수 있다.
위 제조 과정에서 공정 a5)를 a9) 이후에 수행할 수도 있다.
유리 기판의 비아 메탈(via metal) 공정이 추가되지만, SMT (surface Mount Technology) 적용이 가능하므로 공정이 단순하고 제품 크기를 축소시킬 수 있다는 장점이 있다.
공정 a9)에서 웨이퍼 레벨(wafer-level)로 Si 위에 투과창을 글래스 어노딕 본딩(glass anodic bonding) 하면, 스캐너 소자가 보호받는 상태가 되므로 칩 다이싱(chip dicing)이 용이해진다.
공정 a9)의 접합과정이 진공에서 이루어지면 스캐너의 진공 패키징이 가능하다.
본 발명에서 사용된 Si은 결정성 실리콘(crystal Si)이며, 이는 기존의 폴리실리콘(poly-Si) 보다 물성의 재현성이 좋고, 항복응력(yield-stress)이 3배 이상 높으므로 수명(life-time)이 길어진다.
한편, 유리 투과창을 독립적으로 만들어 다이싱(dicing)하면 칩-레벨(chip-level) 패키징용으로 사용할 수도 있다.
도 12는 경사면의 내재공간(311)을 갖는 실리콘 하부 기판(113)과 전극 분리를 위하여 트렌치(140)가 형성된 광스캐너 패키지 구조를 나타내며, 도 12에는 진공 패키징을 위한 전기배선(interconnection)의 일 실시예인 와이어링(wiring)이 도시되어 있다. 도 12에 도시된 것과 같은 스캐너 소자(100)를 단일(single) SOI로 만들면 공정이 매우 간단하며, 전극 분리를 위해서는 트렌치(140)를 형성하면 된다.
그러나 구동각 확대를 위하여 진공 패키징이 필요한 경우, 이 트렌치는 심각한 누출(leak)의 요인이 될 수 있다.
본 발명에서는 트렌치의 누출 및 배선 문제를 아래의 제조방법으로 해결하였다. 도 12 및 도 13을 참조하여 제조방법을 설명하면 다음과 같다.
b1) Si 웨이퍼에 습식에칭(wet etching) 또는 DRIE를 이용하여 내재공간(311)을 형성한다.
b2) 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상단(top) Si의 높이를 대략 30-90 um 로 맞춘다.
b3) 소자의 가장 바깥쪽에 있는 장벽(barrier)(142) 영역에 절연막을 형성한다.
b4) 미러 표면, 배선 및 장벽의 해당 위치에 금속(metal)을 증착한다.
b5) DRIE 공정으로 상단(top) Si의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 만들고, 동시에 내부 전극(145)과 트렌치(140)로 분리된 별도의 장벽(142)을 칩(chip) 바깥 테두리에 만든다.
b6) 내부 전극(145)과 외부 장벽(142) 사이에 와이어링(wiring)을 수행한다.
b7) 외부 구조체 위에 진공 에폭시(vacuum epoxy) 또는 프릿 글래스(frit glass)를 이용하여 진공 분위기에서 투과창(51)을 접착함으로써 밀봉을 수행한다.
b8) 투과창(51) 외부에서 추가적인 와이어링을 수행한다.
위 공정 b1)에서 Si 웨이퍼 대신에 캐비티(cavity)가 있는 유리 웨이퍼를 어노딕 본딩(anodic bonding)할 수도 있다.
공정 b5)의 장벽(142)은 플로팅(floating)을 방지하기 위하여 내부 전극(145)과 트렌치 없이 직접 연결할 수도 있다.
공정 b7)에서 투과창의 접착을 강화하기 위하여 금속(metal) 위에 여러 개의 홀(hole) 또는 딤플(dimple)을 형성할 수도 있다.
도 14는 수직단면의 내재공간(311)을 갖는 실리콘 하부 기판(113), 밀봉을 위한 기저층(40) 및 전극 분리를 위하여 트렌치(140)가 형성된 광스캐너 패키지 구조를 나타낸다. 도 16은 도 14의 광스캐너 패키지의 제조 과정을 나타낸다. 도 14 및 도 16에 도시된 것과 같이 도 13의 공정 b1), b2) 대신, SOI 웨이퍼(114)를 이용하여 먼저 스캐너 소자(100)와 하부 기판(113)에 스루홀(through-hole)을 만든 후 별도의 기저층(40)을 접합할 수 있다. 여기에서 스캐너 소자보다 스루홀(through-hole)을 먼저 만드는 경우, 스루홀(through-hole)에 폴리머를 임시적으로 코팅하여 스캐너 소자를 안정하게 제작할 수 있다. 스캐너 소자를 먼저 만드는 경우에는 하부 기판의 스루홀(through-hole)을 제작하기 전에 스캐너 소자의 보호를 위하여 스캐너 소자에 폴리머 코팅을 할 수 있다.
그리고 도 15에 도시된 것과 같이, 제일 하부에 Si 또는 글래스 기판 대신, PCB 또는 CCB (ceramic circuit board), 또는 ASIC 회로기판과 같은 회로기판(321)을 사용할 수도 있다.
도 17 및 도 18은 진공 패키징을 위한 전기배선(interconnection)의 실시예로서, 트렌치 필링(trench filling)을 이용하여 전기배선을 형성한 예시를 도시하고 있다. 도 17 및 도 18에는 트렌치(140)에 절연체(141)가 채워져 있는 상태가 도시되어 있다.
도 19는 도 17의 광스캐너 패키지의 제조 과정을 나타내며, 그 제조 과정은 다음과 같다.
c1) Si 웨이퍼에 습식 에칭(wet etching) 또는 DRIE를 이용하여 내재공간을 형성한다.
c2) 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상단(top) Si의 높이를 대략 30-90 um 로 맞춘다.
c3) DRIE 공정으로 상단(top) Si에 내부 전극과 장벽 사이에 트렌치(trench)를 만든다.
c4) 절연체(141)를 트렌치(140)에 채우고 장벽 위까지 증착되도록 한다.
c5) 내부 전극과 장벽의 전기적 연결 및 미러 반사면 형성을 위하여 금속(metal)을 증착한다.
c6) 금속을 패시베이션(passivation)한 후 DRIE로 스캐너 소자 패턴을 형성한다.
c7) 외부 구조체 위에 진공 에폭시(vacuum epoxy) 또는 프릿 글래스(frit glass)를 이용하여 진공 분위기에서 투과창을 접착함으로써 밀봉을 수행한다.
위 공정 c1)에서 고진공 유지를 위하여 잔류 가스를 흡착하는 게터(getter)(도 14의 도면부호 312) 물질을 내부공간에 추가할 수 있다.
한편, 도 19의 제조과정에서 반사면 형성을 위하여 유전체 박막을 제일 먼저 제작할 수도 있다.
도 18에 도시된 것과 같이 투과창을 부착할 때, 일반적으로 바닥면이 평활하므로 그에 대응하는 하부 부착면도 단차 없이 평활해야 한다. 따라서 공정 c4) 이후 평탄화 공정을 수행할 수 있다.
공정 c7)의 투과창 접착을 원활하게 수행하기 위하여, 공정 c4) 이후 평탄화공정을 수행할 수도 있다.
위와 같이 도 17 및 도 18의 구조를 절연체 트렌치 필링을 이용하여 제조하면 불필요한 와이어링 작업을 최소화할 수 있어서 양산에 유리하다.
도 20 내지 도 23은 PCB 기판상에 플립-칩 본딩된 실시예들을 도시하고 있다. 도 20의 광스캐너 패키지의 플립-칩 본딩을 이용한 전기배선 과정을 살펴보면 아래와 같다.
d1) Si 웨이퍼를 준비한다.
d2) 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상단(top) Si의 높이를 대략 30-90 um 로 맞춘다.
d3) 배선의 해당 위치에 금속(metal)을 증착한다.
d4) DRIE 공정으로 상단(top) Si의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 만들고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 만든다.
d5) (100) Si 하부 기판(113)에 결정성 습식 에칭(wet etching)을 이용하여 스루홀(through-hole)을 만든다.
d6) 미러 안쪽을 스캐너의 반사면으로 사용하기 위하여 금속(metal)을 코팅(coating)한다.
d7) 별도의 Si 웨이퍼(도면부호 40 참조)에 절연막 패턴을 만든다.
d8) 상기 별도의 Si 웨이퍼에 금속 라인(metal line)을 형성한 후, 패시베이션(passivation)된 상태에서 내재공간(cavity)을 형성한다.
d9) 스캐너 소자가 있는 웨이퍼를 뒤집은 후, 플립-칩 본딩(flip-chip bonding)으로 상기 별도의 Si 웨이퍼를 부착한다. 이 때 내부 전극은 도전성 용접(conductive welding)을, 외부 장벽은 절연체로 접착한다.
위 공정 d4)를 d5) 이후에 수행할 수도 있다.
위 제작 공정은 칩-레벨(chip-level) 또는 웨이퍼-레벨(wafer-level)로 진공 패키징이 가능하다.
도 21은 도 20에서 내재공간이 포함된 PCB기판을 기저층으로 사용하여 솔더로 밀봉한 광스캐너 패키지 구조를 나타내며, 도 24는 도 21의 광스캐너 패키지의 제조 과정을 나타낸다. 도 21 및 도 24를 참조하면, 공정 d7)에서 별도의 Si 웨이퍼 대신 내재공간(cavity)이 있는 PCB 또는 CCB(세라믹 회로기판) 또는 ASIC 회로기판과 같은 회로기판(321)을 사용할 수 있다. 이 경우에 전기 배선의 상단(top) Si 구조는 방사형 방향으로 길게 제작한다. 이는 열팽창 차이가 있는 기판과 접착할 경우 온도 변화로 인한 분리 위험성을 최소화하기 위한 것이다.
도 22 및 도 23에 도시된 것과 같이 도 21에서 d5)의 결정성 식각 대신, DRIE를 이용하여 하부 기판(113)의 수직가공을 수행함으로써 투과창 크기를 줄일 수 있다. 도 20 내지 도 23에 있어서 하부 기판의 전기적인 플로팅(floating)을 방지하기 위하여 추가로 와이어링(wiring)을 할 수 있다.
도 25는 도 21에서 별도의 Si 웨이퍼 대신 구동 및 센싱 회로를 포함한 CMOS Si 회로기판(322)을 사용한 광스캐너 패키지 구조를 나타낸다. 미러의 구동에 필요한 공간 확보를 위해 50~300um 높이의 메탈 범프(metal bump) 또는 솔더 볼(solder ball)과 같은 솔더(352a, 352b)를 사용하여 전기적 연결 및 실링을 할 수 있다. 안쪽의 솔더(352a)는 전기적 연결을 위한 전극용이고 바깥쪽의 솔더(352b)는 실링을 위한 것이다. 이러한 구조는 별도의 와이어링이 필요 없고, 직접 본딩이 가능하다. 도 26은 도 25에서 하부의 Si 회로기판(321)의 스루홀(353)을 통해 바닥면의 솔더 패드(354)와 전기적으로 연결되는 전기배선을 갖는 광스캐너 패키지 구조를 나타낸다. 이를 통해 칩 스케일의 패키지를 구현할 수 있다.
도 27은 칩 캐리어를 이용한 패키지 구조를 도시하고 있는데, 반구형 투과창을 이용하되, 이를 칩 캐리어(chip carrier) 위에 직접 접착하는 방법으로 진공패키징을 수행할 수 있다. 칩 캐리어(chip carrier)의 안쪽 모양은 투과창의 형태에 따라 원형 또는 타원형으로 만들 수 있다. 칩 캐리어의 안쪽 모양이 네모인 경우에는 구면 형태인 투과창과 맞추기 위하여 중앙 부위에 원형의 큰 홀이 뚫려있는 metal 기판을 사용할 수 있다. 이러한 방법으로 제작된 광스캐너는 밀봉(hermetic sealing)이 아닌 경우, 진공이 아닌 일반 대기압 조건에서도 사용할 수 있다.
도 28은 본 발명의 일실시예 따른 광스캐너 패키지의 3차원 형상을 나타내며, 도 29는 중앙선을 따라 절단된 형상을 나타낸다. 도 28 및 도 29에는 3차원 형상의 광스캐너 패키지가 고정체(121), 스프링(122), 미러(125), 고정전극(131), 구동전극(132)을 포함하는 스캐너 소자 및 투과창(51)을 포함하는 것으로 도시되어 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 본 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
100: 스캐너 소자
11, 111: 상부 기판
12, 112: 산화막
13, 113: 하부 기판
113a: 회로보드
114: SOI 웨이퍼
21, 121: 고정체
22, 122: 스프링
25, 125: 미러
126: 금속 반사막
31, 131: 고정전극
32, 132: 구동전극
140: 트렌치
141: 절연체
142: 장벽
145: 내부 전극
40; 기저층
50, 51, 52: 투과창
70: 입사광
71, 71a, 71b, 171: 주반사광
72, 172: 부반사광
211: 시드 레이어(seed layer)
212: 비아 메탈 (via metal)
221: 차단막
222: 렌즈
311: 내재공간 (cavity)
312: 게터
321: 회로기판
322: CMOS Si 회로기판
352, 352a, 352b: 솔더
353: 스루홀(through-hole)
354: 솔더패드

Claims (35)

  1. 광스캐너 패키지에 있어서,
    미러, 스프링, 구동기, 고정체를 포함하는 MEMS 스캐너소자;
    상기 MEMS 스캐너소자의 하부에 위치하며 상기 MEMS 스캐너소자와 접합된 형태로 상기 MEMS 스캐너소자를 지지하는 하부 기판; 및
    외형이 반구형(semi-spherical) 또는 타원체(ellipsoid)의 일부에 해당하는 껍데기(shell) 형상을 가지며, 하부에 연속적으로 이어져 있는 접합면을 가지는 투과창을 포함하고,
    상기 투과창은 2축으로 곡률이 있는 구조인 것을 특징으로 하는 광스캐너 패키지.
  2. 제1항에 있어서,
    입사광과 출사광이 통과하는 투과창의 일부 영역에 렌즈 또는 광학요소를 포함하는 것을 특징으로 하는 광스캐너 패키지.
  3. 제2항에 있어서,
    상기 렌즈는 상기 투과창과 일체형으로 형성된 것을 특징으로 하는 광스캐너 패키지.
  4. 제1항 또는 제2항에 있어서,
    상기 투과창의 하부직경(D)과 높이(h)의 비율이 0.3~0.4 범위에 있는 낮은 반구형이거나 타원체의 일부인 것을 특징으로 하는 광스캐너 패키지.
  5. 제1항 또는 제2항에 있어서,
    상기 하부 기판은 유리 재질로 이루어져 있고, 상기 하부 기판 상부에는 내재공간이 존재하는 것을 특징으로 하는 광스캐너 패키지.
  6. 제5항에 있어서,
    상기 하부 기판 위아래 방향으로 비아 메탈이 있는 것을 특징으로 하는 광스캐너 패키지.
  7. 제1항 또는 제2항에 있어서,
    상기 투과창에서 입사광 및 출사광 영역을 제외한 영역에 불투명한 차단막이 형성되어 있는 것을 특징으로 하는 광스캐너 패키지.
  8. 제1항 또는 제2항에 있어서,
    결정성 실리콘 재질의 하부 기판 상부에 존재하는 경사면 각도가 54.7도인 내재공간;
    전극 분리를 위하여 스캐너 외부에 트렌치 구조로 형성된 실리콘 전극;
    트렌치 구조의 바깥쪽에 끊어짐이 없는 실리콘 장벽(barrier);
    상기 장벽 위에 형성된 절연막; 및
    상기 실리콘 전극 및 절연막 위에 형성된 두 종류의 금속 전극;을 더 포함하고,
    상기 실리콘 장벽의 금속 전극 위에 밀봉된 투과창이 있는 것을 특징으로 하는 광스캐너 패키지.
  9. 제8항에 있어서,
    상기 투과창의 하부는 유리 밀봉재로 붙여진 것을 특징으로 하는 광스캐너 패키지.
  10. 제8항에 있어서,
    내재공간이 하부로 관통된 하부 기판에 밀봉하기 위한 별도의 실리콘 기판 또는 회로기판을 포함하는 것을 특징으로 하는 광스캐너 패키지.
  11. 제8항에 있어서,
    트렌치 구조를 채우고 장벽 위에 형성된 절연막; 및
    상기 절연막 위에 형성된 금속 회로 패턴;을 더 포함하고,
    상기 금속 패턴 위에 밀봉된 투과창이 있는 것을 특징으로 하는 광스캐너 패키지.
  12. 제1항 또는 제2항에 있어서,
    상기 하부 기판의 하부쪽으로 갈수록 넓어지거나 또는 동일한 단면 형상을 가진 내재공간;
    미러의 하부에 형성된 금속 반사막; 및
    스캐너소자와 하부 기판의 상하 위치가 바뀐 상태에서 솔더로 밀봉된 회로기판을 기저층으로 포함하는 것을 특징으로 하는 광스캐너 패키지.
  13. 제12항에 있어서,
    상기 스캐너소자의 전극은 솔더로, 장벽은 유리 밀봉재로 붙여진 내재공간이 있는 실리콘 기판을 포함하는 것을 특징으로 하는 광스캐너 패키지.
  14. 제13항에 있어서,
    상기 스캐너소자의 전극과 장벽위에 유리 밀봉재로 붙여진 내재공간이 있는 실리콘 기판을 포함하는 것을 특징으로 하는 광스캐너 패키지.
  15. 제1항 또는 제2항에 있어서,
    상기 하부 기판의 아래쪽에 부착된 칩 캐리어를 포함하는 것을 특징으로 하는 광스캐너 패키지.
  16. 제15항에 있어서,
    상기 투과창의 하부는 정사각형 또는 직사각형 형상인 것을 특징으로 하는 광스캐너 패키지.
  17. 제15항에 있어서,
    상기 칩 캐리어의 안쪽 모양이 네모인 경우에는 중앙 부위에 원형의 큰 홀이 뚫려있는 금속 기판을 추가적으로 사용하는 것을 특징으로 하는 광스캐너 패키지.
  18. 제7항에 있어서,
    상기 투과창에 형성된 차단막은 상기 투과창의 내측 면과 외측면의 적어도 일부 영역에 300~600nm 파장의 일부 범위에서 3% 이하의 광학적 반사도를 가지는 무반사 코팅층인 것을 특징으로 하는 광스캐너 패키지.
  19. 제1항 또는 제2항에 있어서,
    상기 투과창은 0.2~0.8mm 두께의 유리 재질로 이루어져 있고, 상기 투과창의 하부 접합면 부위는 0.4~1.6mm 두께인 것을 특징으로 하는 광스캐너 패키지.
  20. 제1항 또는 제2항에 있어서,
    상기 투과창과 상기 MEMS 스캐너소자, 그리고 상기 기저층은 접합을 통해 밀폐되는 구조를 이루며, 밀폐된 내부의 압력은 10 -1 ~ 10 -4 기압의 진공 상태를 이루는 것을 특징으로 하는 광스캐너 패키지.
  21. 광스캐너 패키지의 제조방법에 있어서,
    글래스 웨이퍼(glass wafer)에 습식 에칭(wet etching)을 이용하여 내재공간(cavity)을 형성하는 단계(a1);
    스캐너 소자와의 전기적 연결을 위하여 상기 글래스 웨이퍼(glass wafer)에 DRIE 또는 샌드 블라스트(sand blast)를 이용하여 비아-홀(via-hole)을 형성하는 단계(a2);
    상기 비아-홀(via-hole) 위치에 정렬하여 별도의 Si 웨이퍼에 금속 패턴(seed layer)을 형성하는 단계(a3);
    상기 글래스 웨이퍼(glass wafer)와 Si 웨이퍼를 어노딕 본딩(anodic bonding)하는 단계(a4);
    상기 비아-홀(via-hole)에 도전성 재료를 채우는 단계(a5);
    상기 Si 웨이퍼의 상단(top)을 CMP 가공하여 높이를 낮추는 단계(a6);
    미러 표면, 전기배선 및 패드(pad) 위에 금속 패턴을 형성하는 단계(a7);
    DRIE 공정으로 상기 Si 웨이퍼의 상단에 소자 구조 및 전극을 형성하는 단계(a8); 및
    외부 구조체 위에 반구형 또는 타원체형의 투과창을 접합하는 단계(a9);를 포함하는 광스캐너 패키지의 제조방법.
  22. 제21항에 있어서,
    상기 투과창을 접합하는 단계(a9) 이후 표면 실장기술 (Surface Mounting Technology)을 이용하여 PCB (printed circuit board)에 접착하는 단계를 더 포함하는 광스캐너 패키지의 제조방법.
  23. 광스캐너 패키지의 제조방법에 있어서,
    Si 웨이퍼에 습식에칭(wet etching) 또는 DRIE를 이용하여 내재공간을 형성하는 단계(b1);
    산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상기 Si 웨이퍼의 상단의 높이를 낮추는 단계(b2);
    스캐너 소자의 가장 바깥쪽에 있는 장벽 영역에 절연막을 형성하는 단계(b3);
    미러 표면, 배선 및 장벽의 해당 위치에 금속(metal)을 증착하는 단계(b4);
    DRIE 공정으로 상기 Si 웨이퍼 상단의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 만들고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 만드는 단계(b5);
    내부 전극과 외부 장벽 사이에 와이어링(wiring)을 수행하는 단계(b6); 및
    외부 구조체 위에 진공 분위기에서 반구형 또는 타원체형의 투과창을 접착함으로써 밀봉을 수행하는 단계(b7);를 포함하는 광스캐너 패키지의 제조방법.
  24. 제23항에 있어서,
    상기 내재공간을 형성하는 단계(b1)에서 Si 웨이퍼 대신에 캐비티(cavity)가 있는 유리 웨이퍼를 어노딕 본딩(anodic bonding)하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  25. 제23항 또는 제24항에 있어서,
    상기 별도의 장벽을 만드는 단계(b5)에서 상기 장벽은 전기적인 플로팅(floating)을 방지하기 위하여 내부 전극과 트렌치(trench) 없이 직접 연결하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  26. 제23항 또는 제24항에 있어서,
    상기 투과창을 접착함으로써 밀봉을 수행하는 단계(b7)에서 상기 투과창의 접착을 강화하기 위하여 금속(metal) 위에 여러 개의 홀(hole) 또는 딤플(dimple)을 형성하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  27. 광스캐너 패키지의 제조방법에 있어서,
    Si 웨이퍼에 습식 에칭(wet etching) 또는 DRIE를 이용하여 내재공간을 형성하는 단계(c1);
    산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 상기 Si 웨이퍼의 상단의 높이를 낮추는 단계(c2);
    DRIE 공정으로 상기 Si 웨이퍼의 상단에 내부 전극과 장벽 사이에 트렌치(trench)를 형성하는 단계(c3);
    절연체를 상기 트렌치(trench)에 채우고 상기 장벽 위까지 증착하는 단계(c4);
    내부 전극과 장벽의 전기적 연결 및 미러 반사면 형성을 위하여 금속(metal)을 증착하는 단계(c5);
    금속을 패시베이션(passivation)한 후 DRIE로 스캐너 소자 패턴을 형성하는 단계(c6); 및
    외부 구조체 위에 진공 분위기에서 반구형 또는 타원체형의 투과창을 접착함으로써 밀봉을 수행하는 단계(c7);를 포함하는 광스캐너 패키지의 제조방법.
  28. 제27항에 있어서,
    상기 내재공간을 형성하는 단계(c1)에서 고진공 유지를 위하여 잔류 가스를 흡착하는 게터(getter) 물질을 내부공간에 추가하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  29. 제27항 또는 제28항에 있어서,
    상기 절연체를 채우고 증착하는 단계(c4) 이후 평탄화 공정을 더 수행하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  30. 광스캐너 패키지의 제조방법에 있어서,
    Si 웨이퍼를 준비하는 단계(d1);
    산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 Si 웨이퍼의 상단의 높이를 낮추는 단계(d2);
    배선의 해당 위치에 금속(metal)을 증착하는 단계(d3);
    DRIE 공정으로 Si 웨이퍼 상단의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 형성하고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 형성하는 단계(d4);
    (100) Si 하부 기판에 결정성 습식 에칭(wet etching)을 이용하여 스루홀(through-hole)을 형성하는 단계(d5);
    미러 안쪽을 스캐너의 반사면으로 사용하기 위하여 금속(metal)을 코팅(coating)하는 단계(d6);
    별도의 Si 웨이퍼에 절연막 패턴을 형성하는 단계(d7);
    상기 별도의 Si 웨이퍼에 금속 라인(metal line)을 형성한 후, 패시베이션(passivation)된 상태에서 내재공간(cavity)을 형성하는 단계(d8); 및
    스캐너 소자가 있는 웨이퍼를 뒤집은 후, 플립-칩 본딩(flip-chip bonding)으로 상기 별도의 Si 웨이퍼를 부착하는 단계(d9);를 포함하는 광스캐너 패키지의 제조방법.
  31. 제30항에 있어서,
    상기 별도의 Si 웨이퍼를 부착하는 단계(d9)에서, 상기 내부 전극은 도전성 용접으로 접착하고 상기 외부 장벽은 절연체로 접착하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  32. 제30항 또는 제31항에 있어서,
    상기 장벽을 칩(chip) 바깥 테두리에 형성하는 단계(d4)가 상기 스루홀(through-hole)을 형성하는 단계(d5) 이후에 수행되는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  33. 광스캐너 패키지의 제조방법에 있어서,
    Si 웨이퍼를 준비하고, 산화막(BOX: buried oxide)이 형성된 별도의 Si 웨이퍼와 퓨전 본딩(fusion bonding)을 한 후 CMP로 Si 웨이퍼의 상단의 높이를 낮추는 단계(d1);
    배선 및 장벽의 해당 위치에 금속(metal)을 증착하는 단계(d2);
    DRIE 공정으로 Si 웨이퍼 상단의 안쪽에 스캐너 구동 및 센싱용 Si 전극을 형성하고, 동시에 내부 전극과 트렌치(trench)로 분리된 별도의 장벽을 칩(chip) 바깥 테두리에 형성하는 단계(d3);
    (100) Si 하부 기판에 결정성 습식 에칭(wet etching)을 이용하여 스루홀(through-hole)을 형성하는 단계(d4);
    미러 안쪽을 스캐너의 반사면으로 사용하기 위하여 금속(metal)을 코팅(coating)하는 단계(d5);
    상기 Si 하부 기판 상면에 투과창을 접합하는 단계(d6);
    상기 Si 웨이퍼의 상단에 솔더링을 하는 단계(d7); 및
    금속 라인(metal line)이 형성되고, 내재공간(cavity)이 있는 별도의 회로기판을 준비하고, 스캐너 소자가 있는 웨이퍼를 뒤집은 후, 플립-칩 본딩(flip-chip bonding)으로 상기 별도의 회로기판을 부착하는 단계(d8);를 포함하는 광스캐너 패키지의 제조방법.
  34. 제33항에 있어서,
    상기 별도의 회로기판은 PCB, 세라믹 회로기판, 및 ASIC 회로기판 중 하나인 것을 특징으로 하는 광스캐너 패키지의 제조방법.
  35. 제33항 또는 제34항에 있어서,
    상기 별도의 회로기판을 부착하는 단계(d8)에서, 상기 내부 전극 및 상기 외부 장벽은 도전성 용접으로 접착하는 것을 특징으로 하는 광스캐너 패키지의 제조방법.
PCT/KR2021/003801 2020-03-26 2021-03-26 광스캐너 패키지 및 제조 방법 WO2021194316A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/914,757 US20230127991A1 (en) 2020-03-26 2021-03-26 Light scanner package and method for manufacturing same
JP2022558515A JP2023519917A (ja) 2020-03-26 2021-03-26 光スキャナーパッケージ及び製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0036837 2020-03-26
KR20200036837 2020-03-26
KR1020210039815A KR102615202B1 (ko) 2020-03-26 2021-03-26 광스캐너 패키지 및 제조 방법
KR10-2021-0039815 2021-03-26

Publications (1)

Publication Number Publication Date
WO2021194316A1 true WO2021194316A1 (ko) 2021-09-30

Family

ID=77892087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003801 WO2021194316A1 (ko) 2020-03-26 2021-03-26 광스캐너 패키지 및 제조 방법

Country Status (3)

Country Link
US (1) US20230127991A1 (ko)
JP (1) JP2023519917A (ko)
WO (1) WO2021194316A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296519A (ja) * 2001-03-29 2002-10-09 Ricoh Co Ltd 光変調装置及びその光変調装置の製造方法並びにその光変調装置を具備する画像形成装置及びその光変調装置を具備する画像投影表示装置
KR20030050799A (ko) * 2001-12-19 2003-06-25 주식회사 엘지이아이 정전구동 마이크로미러 및 그 제조방법, 그를 이용한광스위치
US6661084B1 (en) * 2000-05-16 2003-12-09 Sandia Corporation Single level microelectronic device package with an integral window
JP2011112807A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Mems光スキャナおよびその製造方法
KR20200031106A (ko) * 2017-07-28 2020-03-23 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Mems 거울 배열 및 mems 거울 배열의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661084B1 (en) * 2000-05-16 2003-12-09 Sandia Corporation Single level microelectronic device package with an integral window
JP2002296519A (ja) * 2001-03-29 2002-10-09 Ricoh Co Ltd 光変調装置及びその光変調装置の製造方法並びにその光変調装置を具備する画像形成装置及びその光変調装置を具備する画像投影表示装置
KR20030050799A (ko) * 2001-12-19 2003-06-25 주식회사 엘지이아이 정전구동 마이크로미러 및 그 제조방법, 그를 이용한광스위치
JP2011112807A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Co Ltd Mems光スキャナおよびその製造方法
KR20200031106A (ko) * 2017-07-28 2020-03-23 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Mems 거울 배열 및 mems 거울 배열의 제조 방법

Also Published As

Publication number Publication date
JP2023519917A (ja) 2023-05-15
US20230127991A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2011034259A1 (ko) 광소자 기판, 광소자 디바이스 및 그 제조 방법
WO2019182305A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2014133367A1 (ko) 발광 모듈
WO2017155282A1 (ko) 반도체 발광소자 및 이의 제조방법
WO2019088353A1 (ko) 액체 렌즈를 포함하는 카메라 모듈 및 광학 기기
WO2020251106A1 (ko) 마이크로미터 단위 크기의 반도체 발광 소자를 이용하는 발광 장치 및 그 제조 방법
WO2020122378A1 (ko) 표시 장치
WO2018080100A1 (ko) 렌즈 광학계
WO2021101175A1 (en) Electronic device including camera module
WO2020171370A1 (ko) 표시 장치
WO2021194316A1 (ko) 광스캐너 패키지 및 제조 방법
WO2019045277A1 (ko) 픽셀용 발광소자 및 엘이디 디스플레이 장치
WO2020122377A1 (ko) 표시 장치 및 표시 장치 제조 방법
US9006878B2 (en) Method and device for wafer scale packaging of optical devices using a scribe and break process
WO2021145549A1 (ko) 표시모듈 및 이의 제조 방법
WO2014115929A1 (ko) 반도체칩의 밀폐형 패키지 및 공정 방법
WO2021020782A1 (ko) 광학 장치
WO2021194037A1 (ko) 마이크로 광학소자 및 이를 포함하는 광전자 모듈
WO2018080103A1 (ko) 렌즈 광학계
WO2020050490A1 (ko) 발광 다이오드 패키지
WO2020017744A1 (ko) 표시장치 및 표시장치 제조방법
KR102615202B1 (ko) 광스캐너 패키지 및 제조 방법
WO2019147063A1 (ko) 반도체 발광소자 및 이의 제조방법
WO2011059137A1 (ko) 광소자 디바이스 및 그 제조 방법
WO2023171898A1 (ko) 표시 장치 및 그것의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21776368

Country of ref document: EP

Kind code of ref document: A1