WO2021194135A1 - 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치 - Google Patents

무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치 Download PDF

Info

Publication number
WO2021194135A1
WO2021194135A1 PCT/KR2021/002984 KR2021002984W WO2021194135A1 WO 2021194135 A1 WO2021194135 A1 WO 2021194135A1 KR 2021002984 W KR2021002984 W KR 2021002984W WO 2021194135 A1 WO2021194135 A1 WO 2021194135A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
drx
sidelink
base station
information
Prior art date
Application number
PCT/KR2021/002984
Other languages
English (en)
French (fr)
Inventor
권기범
Original Assignee
주식회사 아이티엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티엘 filed Critical 주식회사 아이티엘
Priority to EP21775923.2A priority Critical patent/EP4132208A4/en
Priority to CN202180023621.XA priority patent/CN115362752A/zh
Publication of WO2021194135A1 publication Critical patent/WO2021194135A1/ko
Priority to US17/934,208 priority patent/US20230019726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to DRX for a link between a network and a terminal in a wireless communication system, and specifically, to a DRX method and apparatus for a link between a network and a terminal based on communication between terminals.
  • D2D communication refers to direct communication between one terminal and another terminal.
  • Direct communication means that one terminal communicates with another terminal through network control or through the terminal's own judgment without passing through another network device.
  • V2X communication refers to a communication method that exchanges or shares information such as traffic conditions while communicating with road infrastructure and other vehicles while driving.
  • the V2X-based service may include, for example, an autonomous driving service, a vehicle remote control service, and the like.
  • other services based on inter-terminal communication may include interactive services such as games and large-capacity short-distance audio/video services such as AR or VR.
  • a discontinuous reception (DRX) (eg, first DRX) operation for a link between the network and the terminal (eg, the first link) may be configured.
  • inter-terminal communication may be configured for the corresponding terminal and a DRX (eg, second DRX) operation for the inter-terminal communication link (eg, second link) may be configured.
  • DRX discontinuous reception
  • second DRX eg, second DRX
  • a specific method for defining the first DRX operation for the first link based on the second DRX operation for the second link has not yet been prepared.
  • An object of the present disclosure is to provide a DRX method and apparatus for a terminal performing inter-terminal communication in a wireless communication system.
  • An additional technical problem of the present disclosure is to provide a method and apparatus for DRX of a terminal on a link between the terminal and a base station for a terminal performing sidelink transmission to another terminal.
  • a method of discontinuous reception (DRX) of a first terminal in a wireless communication system receives, from a second terminal, Hybrid Automatic Repeat reQuest (HARQ) feedback information for sidelink data transmitted by the first terminal to do; transmitting, by the first terminal, HARQ NACK information on uplink to the base station based on the HARQ feedback information from the second terminal; Sleeping while a first timer started after the first terminal transmits the HARQ NACK information is in progress; and monitoring a downlink control channel including resource allocation information for sidelink data retransmission while a second timer, which is started after the first timer expires, is in operation.
  • HARQ Hybrid Automatic Repeat reQuest
  • a DRX method and apparatus for a terminal performing inter-terminal communication in a wireless communication system may be provided.
  • a method and apparatus for DRX of the terminal on a link between the terminal and a base station may be provided.
  • FIG. 1 is a diagram for explaining a wireless communication system to which the present disclosure can be applied.
  • FIG. 2 is a diagram for explaining a link considered in V2X communication to which the present disclosure can be applied.
  • FIG 3 is a diagram for explaining a standalone scenario supporting 5G V2X using NR sidelink communication to which the present disclosure can be applied.
  • FIG. 4 is a diagram for explaining a Multi-RAT Dual Connectivity (MR-DC) scenario supporting 5G V2X using NR sidelink communication to which the present disclosure can be applied.
  • MR-DC Multi-RAT Dual Connectivity
  • FIG. 5 is a diagram for explaining a V2X operation scenario using communication with a terminal and a base station to which the present disclosure can be applied.
  • FIG. 6 is a diagram for explaining a V2X resource allocation scheme to which the present disclosure can be applied.
  • FIG. 7 is a diagram for explaining the structure of V2X communication to which the present disclosure can be applied.
  • FIG. 8 is a diagram exemplarily illustrating a protocol stack of a PC5 interface to which the present disclosure can be applied.
  • 9 and 10 are diagrams for explaining a sidelink transmission scheme.
  • 11 to 13 are diagrams for explaining examples of an SLRB setting method to which the present disclosure can be applied.
  • FIG. 14 is a diagram for describing a DRX operation to which the present disclosure can be applied.
  • 15 is a diagram for explaining an example of a DRX operation to which the present disclosure can be applied.
  • 16 is a diagram for explaining an additional example of a DRX operation to which the present disclosure can be applied.
  • 17 is a diagram illustrating the configuration of a base station apparatus and a terminal apparatus according to the present disclosure.
  • a component when a component is “connected”, “coupled” or “connected” to another component, it is not only a direct connection relationship, but also an indirect connection relationship in which another component exists in the middle. may also include. Also in this disclosure the terms “comprises” or “having” specify the presence of a recited feature, step, action, element and/or component, but one or more other features, steps, actions, elements, components and/or The presence or addition of groups thereof is not excluded.
  • first, second, etc. are used only for the purpose of distinguishing one component from other components and are not used to limit the components, unless otherwise specified, the order or It does not limit the importance, etc. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, a second component in one embodiment is referred to as a first component in another embodiment. can also be called
  • components that are distinguished from each other are for clearly explaining each characteristic, and do not necessarily mean that the components are separated. That is, a plurality of components may be integrated to form one hardware or software unit, or one component may be distributed to form a plurality of hardware or software units. Accordingly, even if not specifically mentioned, such integrated or dispersed embodiments are also included in the scope of the present disclosure.
  • components described in various embodiments do not necessarily mean essential components, and some may be optional components. Accordingly, an embodiment composed of a subset of components described in one embodiment is also included in the scope of the present disclosure. In addition, embodiments including other components in addition to components described in various embodiments are also included in the scope of the present disclosure.
  • the present disclosure describes a wireless communication network or a wireless communication system as a target, and operations performed in the wireless communication network are performed in the process of controlling the network and transmitting or receiving a signal from a device (eg, a base station) having jurisdiction over the wireless communication network. It may be made, or in the process of transmitting or receiving a signal between terminals or in a terminal coupled to a corresponding wireless network.
  • a device eg, a base station
  • 'Base station (BS: Base Station)' may be replaced by terms such as fixed station, Node B, eNodeB (eNB), ng-eNB, gNodeB (gNB), and access point (AP).
  • eNB eNodeB
  • gNB gNodeB
  • AP access point
  • UE User Equipment
  • MS Mobile Station
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • non-AP station can be replaced with terms such as User Equipment (UE), Mobile Station (MS), Mobile Subscriber Station (MSS), Subscriber Station (SS), and non-AP station.
  • transmitting or receiving a channel includes the meaning of transmitting or receiving information or a signal through a corresponding channel.
  • transmitting the control channel means transmitting control information or a signal through the control channel.
  • transmit a data channel means to transmit data information or a signal over the data channel.
  • D2D Device to Device (communication)
  • DCI Downlink Control Information
  • GNSS Global Navigation Satellite System
  • RSU RoadSide Unit
  • V2X Vehicle to X(everything)
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2I/N Vehicle to Infrastructure/Network
  • SFCI Sidelink Feedback Control Information
  • PSSCH Physical Sidelink Shared Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PSCCH Physical Sidelink Control Channel
  • PSDCH Physical Sidelink Discovery Channel
  • the 5G system may be defined as including all of the existing Long Term Evolution (LTE)-based systems as well as the NR system. That is, the 5G system may include not only the case where the NR radio access technology is applied alone, but also the case where the LTE-based radio access technology and the NR radio access technology are applied together. Examples of the present disclosure are not limited to being applied to a 5G system, and may be applied to various wireless communication systems.
  • LTE Long Term Evolution
  • V2X is V2V (vehicle-to-vehicle), which means LTE/NR-based communication between vehicles
  • V2P vehicle-to-pedestrian
  • V2I/N vehicle-to-infrastructure/network
  • the roadside unit may be a transport infrastructure entity implemented by a base station or a fixed terminal.
  • the RSU may be an entity that transmits a speed notification to a vehicle.
  • D2D may mean communication between terminals.
  • ProSe may mean a proximity service for a terminal performing D2D communication.
  • sidelink control information may mean control information related to the above-described sidelink.
  • a Physical Sidelink Shared Channel (PSSCH) may be a channel through which data is transmitted through a sidelink
  • a Physical Sidelink Control Channel (PSCCH) may be a channel through which control information is transmitted through a sidelink.
  • a Physical Sidelink Broadcast Channel (PSBCH) is a channel for transmitting a signal through a sidelink in a broadcast manner, and system information may be transmitted.
  • the terminal may be used in the sense of including a vehicle.
  • the terminal may refer to a device capable of performing sidelink communication and/or communication with a base station.
  • present disclosure includes examples applied to V2X communication, the scope of the present disclosure is not limited to being applied only to V2X. That is, embodiments of the present invention may be applied to various types of inter-terminal communication such as D2D or ProSe communication through a PC5 link or a sidelink.
  • FIG. 1 is a diagram for explaining a wireless communication system to which the present disclosure can be applied.
  • the network structure shown in FIG. 1 may be an Evolved-Universal Terrestrial Radio Access Network (E-UTRAN), which is a radio network structure of a Next Generation Radio Access Network (NG-RAN) or an Evolved-Universal Mobile Telecommunications System (E-UMTS).
  • E-UTRAN Evolved-Universal Terrestrial Radio Access Network
  • NG-RAN Next Generation Radio Access Network
  • E-UMTS Evolved-Universal Mobile Telecommunications System
  • the NG-RAN or E-UMTS system may include a Long Term Evolution (LTE), an LTE-A (advanced) system, or the like, or a 5G mobile communication network, new radio (NR), and the like.
  • LTE Long Term Evolution
  • LTE-A advanced mobile communication network
  • NR new radio
  • a base station (BS) 11 and a user equipment (UE) 12 may wirelessly transmit and receive data.
  • the wireless communication system 10 may support device-to-device (D2D) communication.
  • D2D device-to-device
  • terminal includes both the concept of a terminal device used by a general user, such as a smart phone, and a terminal device mounted on a vehicle. D2D communication in a wireless communication system will be described later.
  • the base station 11 may provide a communication service to a terminal existing within the coverage of the base station through a specific frequency band.
  • the coverage serviced by the base station may also be expressed in terms of a site.
  • a site may include a plurality of regions 15a, 15b, and 15c, which may be referred to as sectors. Each sector included in the site may be identified based on a different identifier. Each of the sectors 15a, 15b, and 15c may be interpreted as a partial area covered by the base station 11 .
  • the base station 11 generally refers to a station communicating with the terminal 12, eNodeB (evolved-NodeB), gNB (g-NodeB), BTS (Base Transceiver System), access point (Access Point), femto Base station (Femto eNodeB), home base station (HeNodeB: Home eNodeB), relay (relay), remote radio head (RRH: Remote Radio Head), DU (Distributed Unit), such as other terms may be called.
  • eNodeB evolved-NodeB
  • gNB g-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • Femto Base station Femto Base station
  • HeNodeB Home eNodeB
  • relay relay
  • RRH Remote Radio Head
  • DU Distributed Unit
  • the terminal 12 may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). , a wireless modem, a handheld device, and the like.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a wireless modem a handheld device, and the like.
  • the base station 11 may be referred to by various terms such as a megacell, a macrocell, a microcell, a picocell, and a femtocell, depending on the size of coverage provided by the base station.
  • the cell may be used as a term indicating all or part of a frequency band provided by the base station, coverage of the base station, or the base station.
  • downlink refers to a communication or communication path from the base station 11 to the terminal 12
  • uplink refers to communication from the terminal 12 to the base station 11 or communication path.
  • the transmitter may be a part of the base station 11
  • the receiver may be a part of the terminal 12
  • the transmitter may be a part of the terminal 12
  • the receiver may be a part of the base station 11 .
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA
  • a Time Division Duplex (TDD) method transmitted using different times or a Frequency Division Duplex (FDD) method transmitted using different frequencies may be used for uplink transmission and downlink transmission.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • FIG. 2 is a diagram for explaining a link considered in V2X communication to which the present disclosure can be applied.
  • Downlink (DL), uplink (UL) and sidelink (SL) communication may be possible in a communication system supporting V2X.
  • a communication system supporting V2X may support a PC5 link, which is a link between a terminal (UE) and a terminal (UE) defined in D2D (or ProSe).
  • the PC5 link refers to an interface defined between a terminal and a terminal, and may be defined as a sidelink (SL: SideLink) in the radio access layer.
  • the side link refers to a link in the radio access layer for direct communication between the vehicle and the vehicle, but is not limited thereto.
  • FIG 3 is a diagram for explaining a standalone scenario supporting 5G V2X using NR sidelink communication to which the present disclosure can be applied.
  • 5G V2X scenarios in which the UE uses NR sidelink communication can be classified as follows.
  • the gNB may provide control and configuration of LTE SL and NR SL for V2X communication of the terminal.
  • the ng-eNB may provide control and configuration of LTE SL and NR SL for V2X communication of the terminal.
  • the eNB may provide control and configuration of LTE SL and NR SL for V2X communication of the UE.
  • FIG. 4 is a diagram for explaining a Multi-RAT Dual Connectivity (MR-DC) scenario supporting 5G V2X using NR sidelink communication to which the present disclosure can be applied.
  • MR-DC Multi-RAT Dual Connectivity
  • LTE SL and NR SL may be controlled or configured by Uu while the UE is configured with NR-E-UTRA Dual Connectivity (NE-DC).
  • NE-DC may refer to a scenario in which a UE is connected to one gNB operating as a Master Node (MN) and one ng-eNB operating as a Secondary Node (SN) in a dual connectivity (DC) structure.
  • MN Master Node
  • SN Secondary Node
  • both the MN and the SN may be connected to a 5G core network (5GC).
  • 5GC 5G core network
  • LTE SL and NR SL may be controlled or configured by Uu while the terminal is set to NGEN-DC (NG-RAN - E-UTRA NR Dual Connectivity).
  • NGEN-DC may refer to a scenario in which a UE is connected to one ng-eNB operating as an MN and one gNB operating as an SN in a DC structure. In this case, both the MN and the SN may be connected to 5GC.
  • LTE SL and NR SL may be controlled or configured by Uu while the UE is set to EN-DC (E-UTRA - NR Dual Connectivity).
  • EN-DC may refer to a scenario in which a UE is connected to one ng-eNB operating as an MN and one gNB operating as an SN in a DC structure. In this case, both the MN and the SN may be connected to an Evolved Packet Core (EPC).
  • EPC Evolved Packet Core
  • the UE may use LTE RAT or NR RAT for sidelink transmission. This is determined according to the service type, and RAT selection can be performed in the V2X application layer. As an example, a given service type may relate to 1) LTE RAT only, 2) NR RAT only, 3) LTE or NR RAT, or 4) LTE and NR RAT. In this case, since unicast and groupcast, which will be described later, are transmission types newly introduced in NR V2X communication, the transmission mode is supported only by NR RAT, so RAT selection can be applied only to broadcast.
  • FIG. 5 is a diagram for explaining a V2X operation scenario using communication with a terminal and a base station to which the present disclosure can be applied.
  • a communication system supporting V2X may support only a Uu link, which is a link between a base station and a terminal (UE), or between a radio access network and a terminal (UE).
  • the Uu link may include an uplink (UL), a path through which the terminal transmits a signal to the base station, and a downlink (DL), a path through which the base station transmits a signal to the terminal.
  • UL uplink
  • DL downlink
  • the terminal may use a PC5 interface and/or a Uu interface in performing V2X communication. Interface selection may be performed in the V2X application layer, which may be determined based on Uu/PC5 interface availability information. In particular, for the Uu interface, whether the Uu interface can be used depending on whether the terminal is located within (In-coverage, IC) or out of network coverage (Out-of-coverage, OOC) network coverage (base station coverage) can be determined.
  • IC In-coverage
  • OOC Out-of-coverage
  • V2X communication may be achieved through a base station, or may be achieved through direct communication between terminals.
  • transmission and/or reception may be performed through a Uu link, which is a communication interface between the base station and the terminal of LTE.
  • Uu link which is a communication interface between the base station and the terminal of LTE.
  • PC5 link which is a communication interface between a terminal of LTE and a terminal, in LTE-based V2X communication.
  • FIG. 6 is a diagram for explaining a V2X resource allocation scheme to which the present disclosure can be applied.
  • the V2X terminal may have an operation mode defined according to a resource allocation method.
  • a network scheduling mode in which resource setting and scheduling is performed by the base station and a non-network scheduling mode in which the transmitting terminal autonomously finally determines the resource without network scheduling may exist. have.
  • the network scheduling mode may be a mode in which the base station schedules sidelink physical resources for NR V2X sidelink communication.
  • the base station means 3GPP NG-RAN and may be gNB or ng-eNB.
  • the base station is for the purpose of directly controlling NR V2X sidelink communication within the coverage of the base station based on the sidelink resource allocation request received from each terminal, a Physical Downlink Control Channel (PDCCH) (e.g., for NR V2X SL) DCI format), it is possible to directly perform data transmission scheduling for a sidelink physical resource to a transmitting terminal.
  • PDCH Physical Downlink Control Channel
  • the non-network scheduling mode may be a mode in which the terminal directly (or autonomously) selects and uses a sidelink physical resource from a pre-configured resource or resources set by the base station, without scheduling by the base station. .
  • the network scheduling mode may be referred to as mode 1, and the non-network scheduling mode may be referred to as mode 2.
  • FIG. 6(a) shows an example for mode 1
  • FIG. 6(b) shows an example for mode 2.
  • the base station may provide scheduling information on a resource to be used for sidelink data transmission to the sidelink transmission terminal (ie, the first terminal) through PDCCH downlink control information (DCI).
  • the first terminal may provide the sidelink receiving terminal (ie, the second terminal) with scheduling information on a resource to be used for sidelink data transmission through the PSCCH sidelink control information (SCI).
  • the first terminal may transmit the PSSCH sidelink data to the second terminal on a resource designated through the scheduling information.
  • the second terminal may receive PSSCH sidelink data based on the PSSCH scheduling information provided through the PSCCH SCI.
  • a reference signal (DMRS) for PSSCH demodulation may be transmitted together with PSSCH transmission.
  • DMRS reference signal
  • the first terminal may autonomously select a resource for transmitting control information and data on the sidelink by the terminal itself.
  • the first terminal may select a resource from a preset resource pool (ie, a set of resource candidates) by a method such as sensing.
  • the first terminal may transmit control information and data to the second terminal.
  • the first terminal may transmit the PSCCH SCI to the second terminal in the resource selected by the first terminal.
  • the SCI may include PSSCH scheduling information that the first terminal intends to transmit to the second terminal (ie, information indicating a sidelink data transmission resource selected by the first terminal).
  • the first terminal may transmit PSSCH sidelink data to the second terminal on a resource designated through scheduling information.
  • the second terminal may receive PSSCH sidelink data based on the PSSCH scheduling information provided through the PSCCH SCI.
  • a reference signal (DMRS) for PSSCH demodulation may be transmitted together with PSSCH transmission.
  • DMRS reference signal
  • the information indicating the above-described resource pool may be provided in advance by the base station to the first terminal and/or the second terminal through broadcast or higher layer (eg, RRC (Radio Resource Control) layer) signaling.
  • RRC Radio Resource Control
  • Mode 2 may be subdivided and defined as follows.
  • Mode 2-1 corresponds to a mode in which the terminal autonomously selects a sidelink physical resource.
  • the terminal itself may sense a necessary resource and directly determine the resource to perform sidelink communication.
  • Mode 2-2 corresponds to a mode in which the terminal can help other terminals select a sidelink physical resource.
  • one representative terminal may assist in resource selection of other transmitting terminals by providing a guide or information necessary for scheduling resources for sidelink communication of other terminals.
  • Mode 2-3 corresponds to a mode in which the terminal uses a preset sidelink physical resource.
  • the terminal may perform sidelink transmission on a pre-set sidelink physical resource without a separate resource selection operation.
  • Mode 2-4 corresponds to a mode in which the terminal schedules sidelink physical resources of other terminals.
  • a specific terminal may perform scheduling on a sidelink physical resource of another terminal similar to the base station in mode 1.
  • V2X network scheduling mode may correspond to mode 3 in direct link communication
  • V2X non-network scheduling mode may correspond to mode 4 in direct link communication.
  • this is only an example, and the scope of the present disclosure is not limited by the name of the mode.
  • mode 1, mode 2, or mode 2-1, 2-2, 2-3, and 2-4 for convenience of explanation, but the scope of the present disclosure is not limited to the V2X scheduling mode . That is, the following examples may be equally applied to communication for other services based on a sidelink, such as inter-terminal communication for AR, VR, etc., inter-terminal communication for disaster communication, and ProSe inter-terminal communication.
  • the V2X terminal may transmit or receive data regardless of the RRC state (eg, RRC CONNECTED, RRC IDLE, RRC INACTIVE state, etc.) of the terminal.
  • the V2X terminal may transmit or receive data both when it exists within network coverage (IC) or exists outside network coverage (OOC).
  • IC network coverage
  • OOC outside network coverage
  • inter-terminal communication may be performed between an IC terminal and an IC terminal, between an OOC terminal and an OOC terminal, and between an IC terminal and an OOC terminal.
  • NR sidelink communication and/or V2X sidelink communication may be configured or controlled through dedicated signaling or system information by the NG-RAN.
  • the UE in the RRC CONNECTED state may request sidelink resources by transmitting sidelink UE information to the serving cell.
  • the UE in the RRC CONNECTED state configures a sidelink radio bearer (SLRB) from the base station by transmitting QoS information (eg, QoS flow or QoS profile) to the serving cell. information can be received.
  • the UE in the RRC CONNECTED state may receive information on one or more preset resources from the base station by transmitting UE assistance information indicating a traffic pattern to the serving cell.
  • the UE in the RRC CONNECTED state may report a channel busy ratio (CBR) measurement value, location information, etc. to the base station for sidelink resource allocation.
  • CBR channel busy ratio
  • the base station may provide SLRB configuration information through system information.
  • SLRB configuration information may be preconfigured for a terminal outside the NG-RAN coverage.
  • the UE may perform sidelink transmission and reception based on an exception pool of the target cell.
  • FIG. 7 is a diagram for explaining the structure of V2X communication to which the present disclosure can be applied.
  • Each V2X terminal may include an application layer, a V2X layer, and an Access Stratum (AS) layer.
  • AS Access Stratum
  • the application layer of the transmitting terminal may set PC5 QoS parameters for each V2X message and deliver it to the V2X layer.
  • the V2X layer of the transmitting terminal may check the V2X service of the packet based on the higher layer parameters, and determine one or more transmission profiles (Tx Profile) corresponding thereto.
  • the higher layer parameters may include a service ID and/or QoS parameters such as a Provider Service Identifier (PSID) or an Intelligent Transport System-Application Identifier (ITS-AID).
  • PSID Provider Service Identifier
  • ITS-AID Intelligent Transport System-Application Identifier
  • the V2X layer may deliver a packet to the LTE and/or NR PC5 AS layer.
  • the AS layer of the transmitting terminal may check QoS information of the received packet and map the packet to a corresponding SLRB.
  • the AS layer forwards the packet through the protocol stack (ie, Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), Medium Access Control (MAC), and Physical (PHY) layers)), and accordingly prepares the packet for transmission and transmission may be performed.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the packet received through the AS layer may be delivered to the V2X layer and the application layer.
  • FIG. 8 is a diagram exemplarily illustrating a protocol stack of a PC5 interface to which the present disclosure can be applied.
  • the AS protocol stack for the control plane (PC5-C) of the PC5 interface of the terminal may include RRC, PDCP, RLC, MAC and PHY layers.
  • the AS protocol stack for the user plane (PC5-U) of the PC5 interface of the terminal may include Service Data Adaptation Protocol (SDAP), PDCP, RLC, MAC, and PHY layers.
  • SDAP Service Data Adaptation Protocol
  • the MAC layer includes radio resource selection, packet filtering, priority processing between uplink and sidelink, sidelink Hybrid Automatic Repeat request (HARQ) transmission, sidelink Link Control Protocol (LCP), sidelink SR (Scheduling Request), sidelink A Buffer Status Report (BSR) or the like may be performed.
  • the MAC layer may perform LCP based on the sidelink logical channel.
  • As the sidelink logical channel two types of a sidelink control channel (SCCH) through which control information is transmitted and a sidelink traffic channel (STCH) through which user information is transmitted can be used, and the logical channel is a sidelink-shared channel (SL-SCH) transmission channel. can be mapped to
  • SCCH sidelink control channel
  • STCH sidelink traffic channel
  • SL-SCH sidelink-shared channel
  • the RLC layer may perform a function of dividing and reassembling an RLC service data unit (SDU) and a function of discarding an RLC SDU.
  • the RLC layer may support RLC UM (Unacknowledged Mode) or RLC AM (Acknowledged Mode) mode.
  • UM or AM mode may be used for unicast transmission, and UM mode may be used for groupcast or broadcast transmission.
  • the PDCP layer may perform a timer-based SDU discard function.
  • the SDAP layer may perform mapping between QoS flows and SLRBs.
  • the RRC layer may transmit a PC5-RRC message between terminals through a PC5 interface. More specifically, the UE may exchange UE capability information and AS layer configuration information through a PC5-RRC message. The information may be stored as a UE context, and the UE may use the stored sidelink UE context for a service scheduled under a PC5-RRC connection.
  • 9 and 10 are diagrams for explaining a sidelink transmission scheme.
  • unicast transmission may mean that one terminal 910 transmits a message to another terminal 920 . That is, unicast transmission may mean one-to-one transmission.
  • Broadcast transmission may be a method of transmitting a message to all terminals regardless of whether the receiving terminal supports the service.
  • one terminal 930 may transmit a message regardless of whether the plurality of receiving terminals 940 , 950 , and 960 support the service.
  • the groupcast transmission method may be a method of sending a message to a plurality of terminals belonging to a group.
  • the terminal 1010 included in the group A may transmit a message to the receiving terminals 1020 and 1030 included in the group A through the groupcast method.
  • the groupcast method and the broadcast method can be distinguished in this respect.
  • the terminal 1030 included in the group B may transmit a message to the receiving terminals 1040 and 1050 included in the group B through the groupcast method.
  • Unicast and groupcast transmission methods may be applied for a new V2X service. For example, low latency and high reliability may be required to support a new V2X service. When information is shared based on broadcast, it may be difficult to satisfy these requirements. Therefore, in NR V2X, in addition to the broadcast method, there is a need to support unicast and/or groupcast, which are new two-way transmission mechanisms to handle high-speed data transmission between vehicles.
  • Table 1 shows examples of use cases including new V2X services.
  • QoS management may be related to V2X communication in terms of resource allocation, congestion control, in-device coexistence, power control, and SLRB setting.
  • QoS parameters of V2X packets can be provided to the AS by higher layers, and these QoS parameters include traffic priority, latency, reliability, minimum required communication range, and data rate. It may include requirements for SLRB may be configured in the terminal according to QoS information.
  • 11 to 13 are diagrams for explaining examples of an SLRB setting method to which the present disclosure can be applied.
  • 11 corresponds to an example in which SLRB is configured in a UE in an RRC CONNECTED state.
  • NR sidelink communication and/or V2X sidelink communication may be configured and controlled by the NG-RAN through dedicated signaling or system information.
  • a PC5 QoS profile (eg, a specific PC5 QoS parameter set and a PC5 QoS rule for each PC5 QoS flow) may be provided to the terminal in advance through the service authorization and provisioning procedure.
  • the PC5 QoS profile for each QoS flow may also be provided to the UE in advance by the base station (eg, gNB/ng-eNB).
  • step 1 when the packet is delivered to the AS layer of the terminal, in step 2, the terminal is based on the PC5 QoS rule set in step 0, the identifier of the related PC5 QoS flow(s) (ie, PC5 QFI (QoS Flow Identifier)(s))
  • step 3 the UE may transmit the PC5 QFI derived in step 2 to the base station in step 3.
  • the base station may derive the QoS profile of the reported PC5 QFI(s) based on the provisioning from 5GC in step 0.
  • the base station may transmit SLRB configuration information related to the PC5 QFI to the terminal through RRC dedicated signaling.
  • the SLRB configuration information may include a PC5 QoS flow for SLRB mapping, SDAP/PDCP/RLC/LCH configuration, and the like.
  • the AS layer of the terminal may set the SLRB(s) related to the PC5 QFI(s) of the packet according to the setting provided from the base station, and map the available packets to the configured SLRB(s). Thereafter, the terminal may perform sidelink unicast, groupcast or broadcast transmission in step 6.
  • the SLRB 12 corresponds to an example in which the SLRB is configured in a terminal located outside the network coverage.
  • PC5 QoS rules and SLRB configuration information for each PC5 QoS flow may be preset.
  • the terminal derives the PC5 QoS flow identifier of the packet, sets the SLRB(s) related to the PC5 QFI(s) of the packet according to the preset information, and , it is possible to map the available packets to the configured SLRB(s). Thereafter, the terminal may perform sidelink unicast, groupcast, or broadcast transmission in step 4.
  • the UE may self-assign a PC5 QoS flow identifier for PC5 QoS.
  • the base station cannot know the corresponding PC5 QoS profile only by the PC5 QoS flow identifier reported by the terminal. Accordingly, the base station may configure the SLRB based on the PC5 QoS profile.
  • the SLRB configuration information may be transmitted to the UE through RRC dedicated signaling, and may include SLRB mapping information and SDAP/PDCP/RLC/LCH configuration information according to a QoS profile.
  • the AS layer of the terminal may set the SLRB(s) related to the QoS profile of the packet according to the setting provided from the base station, and map the available packets to the configured SLRB(s). Thereafter, the terminal may perform sidelink unicast, groupcast or broadcast transmission.
  • SLRB 13 corresponds to an example in which SLRB is configured in a UE in RRC IDLE or RRC INACTIVE state.
  • the base station can broadcast the SLRB settings related to each available PC5 QoS profile using a V2X specific SIB (System Information Block).
  • SIB System Information Block
  • the UE checks the SLRB configuration information through the SIB, sets the SLRB(s) corresponding to the QoS profile of the available packet, and maps the packet to the configured SLRB(s). . Thereafter, the terminal may perform sidelink unicast, groupcast, or broadcast transmission in step 4.
  • mode 1 corresponds to a network scheduling mode
  • mode 2 corresponds to a non-network scheduling mode (or terminal autonomous resource allocation mode).
  • the resource allocation method that the base station can apply to the terminal for inter-terminal communication may include a dynamic resource allocation method and a configured grant method.
  • the configured grant scheme may include a grant-free (GF) scheme and a semi-persistent scheduling (SPS) scheme, and may be referred to as a configured grant type 1 and a configured grant type 2, respectively. have.
  • the base station may allocate resources necessary for inter-terminal communication to the first terminal through a predetermined DCI.
  • the first terminal may determine the sidelink control information based on the DCI information and generate the determined sidelink control information as the first SCI and the second SCI.
  • the first terminal may transmit the first SCI to the second terminal through the PSCCH, and the second SCI may be transmitted to the second terminal by using some of the PSSCH transmittable resources.
  • the second terminal may identify a sidelink resource through which the first terminal intends to transmit the PSSCH based on the first and second SCIs received from the first terminal.
  • the second terminal may receive sidelink data from the first terminal on the identified resource through the PSSCH.
  • the aforementioned DCI information is one-time, when the first terminal wants to perform new data transmission to the second terminal, it must receive additional resource allocation information from the base station through DCI.
  • a resource allocation method in the configured grant method is as follows.
  • the base station together with information on the radio resource of the sidelink, information on repetitive allocation such as the period and offset of the corresponding radio resource allocation (hereinafter, GF transmission resource allocation information) , information indicating activation of the corresponding GF transmission resource allocation information (hereinafter, GF transmission resource activation information) may be transmitted to the first terminal through RRC signaling.
  • GF transmission resource allocation information information on repetitive allocation such as the period and offset of the corresponding radio resource allocation
  • information indicating activation of the corresponding GF transmission resource allocation information hereinafter, GF transmission resource activation information
  • the first terminal may determine sidelink control information based on the GF transmission resource allocation information activated by the base station, and may generate the determined sidelink control information as the first SCI and the second SCI.
  • the first terminal may transmit the first SCI to the second terminal through the PSCCH, and the second SCI may be transmitted to the second terminal by using some of the PSSCH transmittable resources.
  • the second terminal may identify a sidelink resource through which the first terminal intends to transmit the PSSCH based on the first and second SCIs received from the first terminal.
  • the second terminal may receive sidelink data from the first terminal on the identified resource through the PSSCH.
  • the GF transmission resource allocation information received by the first terminal from the base station is valid until it receives a message indicating deactivation of the GF transmission resource through separate RRC signaling after being activated. Therefore, when the first terminal intends to transmit new data to the second terminal while the GF resource allocation information is valid or activated, using the sidelink radio resource arriving in the next period according to the GF resource allocation information. data can be transmitted.
  • the first terminal transmits the PSSCH data to the second terminal and then receives a HARQ NACK message for the corresponding data from the second terminal, retransmission of the corresponding data may be performed.
  • the sidelink resource for retransmission is not the sidelink resource indicated by the GF transmission resource allocation information, but the first terminal may be newly allocated from the base station in a dynamic resource allocation method.
  • the base station provides information on the radio resource of the sidelink, and information on repetitive allocation such as the period and offset of the radio resource allocation (hereinafter, SPS transmission resource allocation information). ) may be transmitted to the first terminal through RRC signaling.
  • the base station may transmit information indicating activation of SPS transmission resource allocation information (hereinafter, SPS transmission resource activation information) to the first terminal through separate signaling such as DCI.
  • SPS transmission resource activation information information indicating activation of SPS transmission resource allocation information
  • the first terminal may determine sidelink control information based on the SPS transmission resource allocation information activated by the base station and generate the determined sidelink control information as the first SCI and the second SCI.
  • the first terminal may transmit the first SCI to the second terminal through the PSCCH, and the second SCI may be transmitted to the second terminal by using some of the PSSCH transmittable resources.
  • the second terminal may identify a sidelink resource through which the first terminal intends to transmit the PSSCH based on the first and second SCIs received from the first terminal.
  • the second terminal may receive sidelink data from the first terminal on the identified resource through the PSSCH.
  • the SPS transmission resource allocation information received by the first terminal from the base station is valid until it receives a message indicating deactivation of the SPS transmission resource through separate signaling such as DCI after being activated. Therefore, when the first terminal intends to transmit new data to the second terminal while the SPS resource allocation information is valid or activated, using the sidelink radio resource arriving in the next period according to the SPS resource allocation information. data can be transmitted.
  • the first terminal when the first terminal transmits PSSCH data to the second terminal and receives a HARQ NACK message for the corresponding data from the second terminal, Retransmission may be performed.
  • the sidelink resource for retransmission does not use the sidelink resource indicated by the GF/SPS transmission resource allocation information, and the first terminal may be newly allocated from the base station in a dynamic resource allocation method.
  • mode 2 since the UE selects the resource for inter-terminal communication by itself, there is no need to be allocated a resource dynamically or in a configured grant method from the base station.
  • a procedure for the first terminal to select a resource may be performed.
  • the first terminal may sense a necessary resource, assist another terminal in selecting a resource, use a preset resource, or provide a resource to another terminal. can also be assigned.
  • the first terminal may generate scheduling information for the PSSCH to be transmitted on the selected sidelink resource as the first and second SCIs and transmit it to the second terminal.
  • the first SCI is also referred to as a first stage SCI, for example, SCI format 0-1 may be used.
  • the first SCI may correspond to the SCI transmitted through the PSCCH.
  • the first SCI may include information such as priority, time and/or frequency resource allocation for PSSCH, resource reservation period, DMRS pattern, second SCI format, MCS, and the like.
  • the second SCI format information may indicate the format of the second SCI transmitted through the PSSCH.
  • the size of the second SCI may be determined differently according to the indicated format. Accordingly, the size of time and/or frequency resources allocated for the second SCI in the PSSCH may be changed. For example, a format that requires resources of 2 symbols and 10 resource blocks (RBs), or a format that requires 3 symbols and 7 RBs, etc., may be set differently depending on the format of the second SCI. .
  • the second SCI is also referred to as a second stage SCI (2nd stage SCI), and for example, SCI format 0-2 may be used.
  • the second SCI may correspond to an SCI transmitted through the PSSCH.
  • Second SCI HARQ process identifier
  • NDI New data indicator
  • RV Redundancy Version
  • source identifier Source ID
  • destination identifier Destination ID
  • CSI report request indicator Channel State Information report
  • the second SCI is a specific type of groupcast (eg, HARQ NACK transmission resource is shared by all terminals in one group, and only in case of NACK, through the shared resource (or feedback channel))
  • groupcast eg, HARQ NACK transmission resource is shared by all terminals in one group, and only in case of NACK, through the shared resource (or feedback channel)
  • the second SCI is a zone ID, a communication range requirement ) may further include information and the like.
  • the NDI has a size of 1 bit, and may not be toggled in the case of transmission of the same data as the previous transmission, but may have a toggled value in the case of new data different from the previous transmission.
  • RV corresponds to a value for indicating a data area set according to a predetermined channel coding method and transmission data classification during HARQ retransmission.
  • the source ID is an identifier of a terminal that transmits sidelink data, and corresponds to the least significant (LSB) 8 bits among Source L2 IDs of a total size of 24 bits.
  • the destination ID is an identifier of the terminal receiving the sidelink data, and corresponds to the least significant (LSB) 16 bits among the destination L2 IDs with a total size of 24 bits.
  • LSB least significant
  • the CSI report request indicator has a size of 1 bit, and when 0, CSI report including RI (Rank Indicator), CQI (Channel Quality Indicator), etc. for the sidelink channel is not requested, and when 1, CSI report is requested. indicates.
  • the area ID corresponds to an indicator for each area divided according to geographic location.
  • the communication range requirement generally corresponds to the minimum reach distance for smooth communication in consideration of the QoS of the corresponding service.
  • the DRX operation described below may include a DRX operation for a link between a network (or a base station) and a terminal and a DRX operation for a link for communication between terminals.
  • DRX operation may be configured by RRC signaling for a MAC entity. This DRX operation is for controlling the activation of PDCCH monitoring of the MAC entity of the UE.
  • PDCCH monitoring is a specific PDCCH (eg, C-RNTI (Cell-Radio Network Temporary Identifier), CS-RNTI (Configured Scheduling-RNTI), INT-RNTI (Interruption-RNTI), SFI-RNTI (Slot Format Indication-) RNTI), Semi-Persistent CSI-RNTI (SP-CSI-RNTI), Transmit Power Control-Physical Uplink Control Channel-RNTI (TPC-PUCCH-RNTI), TPC-Physical Uplink Shared Channel-RNTI (TPC-PUSCH-RNTI) , SL-RNTI (Sidelink-RNTI), SL-CS-RNTI (Sidelink- Configured Scheduling-RNTI), or TPC-SRS-RNTI (TPC-Sounding Reference Symbol-RNTI) scr
  • RRC can control DRX operation by setting the following parameters:
  • - drx-onDurationTimer a timer defining a periodic PDCCH opportunity (occasion) period from the start of the DRX cycle;
  • - drx-InactivityTimer a timer defining an interval after the PDCCH occasion including a PDCCH indicating that there is a new uplink or downlink transmission for the corresponding MAC entity;
  • - drx-RetransmissionTimerDL (operated for every downlink (DL) HARQ process except for the broadcast HARQ process): a timer defining a maximum interval until a downlink retransmission is received;
  • - drx-RetransmissionTimerUL (operated for each uplink (UL) HARQ process): a timer defining a maximum interval until resource allocation information (grant) for uplink retransmission is received;
  • - drx-RetransmissionTimerSL (operated for each sidelink (SL) HARQ process): a timer defining a maximum interval until receiving resource allocation information (grant) for sidelink retransmission from the base station;
  • - drx-LongCycleStartOffset a drx-StartOffset value defining a subframe in which a long DRX cycle and a long and short DRX cycle start;
  • - drx-HARQ-RTT-TimerDL (operated for every downlink (DL) HARQ process except for the broadcast HARQ process): the minimum interval before the time when there can be downlink resource allocation for HARQ retransmission expected by the MAC entity;
  • active time the time the MAC entity monitors the PDCCH
  • - DRX Cycle Defined as a period in which on-duration is periodically repeated. For example, referring to FIG. 14 to be described later, the inactivation period from the end of the on duration to the end of the DRX Cycle is periodically may be repeated;
  • PDCCH occasion It is defined as a time interval expressed by the number of one or consecutive OFDM (Orthogonal Frequency Division Multiplex) symbols, and is set in the MAC entity to monitor the PDCCH.
  • OFDM Orthogonal Frequency Division Multiplex
  • the above-described timer related parameters for SL may be included in DRX configuration information for a radio link (eg, Uu link) between the base station and the terminal.
  • a radio link eg, Uu link
  • the timer-related parameters for the above-described SL are determined by the radio link between the base station and the terminal (eg, Uu link) may be included in DRX configuration information.
  • DRX parameter(s) values may be independently configured according to the DRX configuration information Uu interface and sidelink. Therefore, it may not be necessary to define a variable for distinguishing Uu and SL for these DRX parameter(s). That is, among the DRX parameter(s), those defined without being related to the Uu link (eg, DL/UL) or SL may be applied to the Uu link, may be applied to the SL, and are common to the Uu link and the SL. It may be applied, or it may be applied independently to each of the Uu link and the SL (even though the names of the parameters are the same, whether for Uu or SL is distinguished in the parameter setting process). In this way, the DRX operation and parameter setting between the base station and the terminal and the sidelink DRX operation and parameter setting may be applied individually.
  • the DRX operation and parameter setting between the base station and the terminal and the sidelink DRX operation and parameter setting may be applied individually.
  • FIG. 14 is a diagram for describing a DRX operation to which the present disclosure can be applied.
  • the DRX operation between the base station and the terminal may be described in relation to the operation of the terminal monitoring PDCCH transmission from the base station.
  • the following description is not limitedly applied only to the DRX operation between the base station and the terminal, and the same description may be applied to the DRX operation for communication between terminals (eg, sidelink).
  • the DRX operation for communication between terminals may be described in relation to the operation of the second terminal monitoring PSCCH transmission from the first terminal.
  • the UE repeats On Duration and DRX opportunity according to the DRX cycle. That is, the DRX cycle may correspond to a cycle that repeats On Duration.
  • On Duration means a time during which the terminal needs to wake up and perform PDCCH monitoring
  • the DRX opportunity means a time during which the terminal may not attempt reception in a sleep state. For example, if the terminal does not receive valid control information from the base station during On Duration, it may sleep by performing a DRX operation.
  • the active time includes a case in which the following operations are in progress:
  • SR scheduling request
  • the MAC entity may operate as follows:
  • SRS Periodic sounding reference signaling
  • the MAC entity may transmit aperiodic CSI report and aperiodic SRS through HARQ feedback and PUSCH regardless of whether PDCCH monitoring is progressed.
  • the MAC entity may not perform PDCCH monitoring in a period other than a complete PDCCH occasion in which all PDCCH occasions are included in the active time.
  • a DRX (eg, first DRX) operation for a link between the network and the terminal may be configured.
  • inter-terminal communication is established for the first terminal, and a DRX (eg, second DRX) operation for an inter-terminal communication link (eg, sidelink or PC5 link, hereinafter, second link) is configured.
  • the first terminal may be a terminal performing sidelink transmission on the second link to the second terminal, and may be a terminal performing downlink reception from a base station (or network) or uplink transmission to the base station.
  • the second DRX operation includes a DRX operation according to a resource allocation scheme for a second terminal (ie, a second link reception terminal) by a first terminal (ie, a second link transmitting terminal).
  • the second DRX operation is performed when the first terminal dynamically schedules sidelink data transmission for the second terminal, or the first terminal uses a configured grant scheme such as GF or SPS for the second terminal.
  • DRX operation in the case of scheduling link data transmission may be included.
  • the above-described resource allocation method for the second terminal should be distinguished from the resource allocation method for the first terminal (ie, mode 1 based on network scheduling or mode 2 based on non-network scheduling).
  • the operations related to the first and second timers for HARQ retransmission are defined as follows.
  • the first timer may be a timer that starts after the first terminal transmits sidelink HARQ feedback information to the base station and operates until a time point at which resource allocation information for sidelink HARQ retransmission is expected to be received from the base station. That is, the time interval defined by the first timer may correspond to a time interval in which the first terminal expects not to receive resource allocation information from the base station.
  • the first timer may correspond to the aforementioned drx-HARQ-RTT-TimerSL . That is, after transmitting sidelink HARQ feedback information (eg, NACK) to the base station on the uplink, the first terminal may be in a sleep state while the first timer is running.
  • sidelink HARQ feedback information eg, NACK
  • the first terminal may not monitor the PDCCH (ie, the PDCCH including resource allocation information for sidelink HARQ retransmission) from the base station. After the first timer expires, the first terminal may resume PDCCH monitoring.
  • the PDCCH ie, the PDCCH including resource allocation information for sidelink HARQ retransmission
  • the second timer may be started after the first timer expires or the first terminal transmits HARQ feedback information to the base station, and operates until a period in which resource allocation information for sidelink HARQ retransmission is expected to be received from the base station.
  • the time interval defined by the second timer may correspond to a time interval in which the first terminal expects to receive resource allocation information from the base station.
  • the second timer may correspond to the aforementioned drx-RetransmissionTimerSL.
  • the first terminal after the first terminal transmits sidelink HARQ feedback information (eg, NACK) to the base station on the uplink, the first terminal wakes up after sleeping for the first timer, or sidelink HARQ feedback information (eg, After transmitting the NACK to the base station on the uplink, the first terminal may monitor the PDCCH (ie, the PDCCH including resource allocation information for sidelink HARQ retransmission) from the base station while the second timer is operating.
  • sidelink HARQ feedback information eg, NACK
  • sidelink HARQ feedback information eg, NACK
  • the first terminal may monitor the PDCCH (ie, the PDCCH including resource allocation information for sidelink HARQ retransmission) from the base station while the second timer is operating.
  • Sidelink HARQ feedback information (eg, NACK) transmitted by the first terminal to the base station on the uplink is the second terminal for sidelink data (eg, PSSCH) transmitted by the first terminal to the second terminal It may be based on HARQ feedback information (eg, NACK) from
  • the first terminal may transmit sidelink HARQ feedback information indicating NACK to the base station in the following cases:
  • the first terminal may designate a specific radio resource of the sidelink feedback channel as a resource for transmitting the ACK or NACK signal while transmitting the PSCCH and the PSSCH to the second terminal. For example, based on the resource location of the PSSCH transmitted from the first terminal to the second terminal, the time and frequency resources for the second terminal to transmit the ACK/NACK signal may be determined according to the minimum ACK transmission interval information. Since the first terminal knows both the PSSCH resource location and the minimum ACK transmission interval information, when and at which frequency position the ACK or NACK for the sidelink data (ie, PSSCH) transmitted by the first terminal will be transmitted by the second terminal Able to know. Accordingly, the first terminal can also identify a case where the second terminal does not transmit any sidelink HARQ feedback information.
  • the HARQ feedback for downlink data (eg, PDSCH) received by the first terminal from the base station and SL HARQ feedback for sidelink data (eg, PSSCH) transmitted by the first terminal to the second terminal
  • the HARQ feedback that the first terminal transmits to the base station on the uplink should be distinguished.
  • the first terminal includes the HARQ feedback information (eg, NACK) received from the second terminal in the form of uplink control information (UCI) in the PUCCH and/or PUSCH and transmits it to the base station.
  • uplink transmission including SL HARQ feedback is referred to as "uplink transmission including SL HARQ feedback".
  • the HARQ process eg, SL HARQ process
  • the SL data transmitted by the first terminal is an SL grant (eg, PSCCH and/or PSSCH scheduling) provided from the base station through a PDCCH indicating SL transmission (eg, PDCCH scrambled with SL-RNTI) information) may be transmitted to the second terminal.
  • SL grant eg, PSCCH and/or PSSCH scheduling
  • PDCCH indicating SL transmission eg, PDCCH scrambled with SL-RNTI
  • the active time may include a case in which the second timer is operating.
  • the active time of the first terminal is not limited only when the second timer is in operation.
  • the MAC entity of the first terminal may operate as follows:
  • the first timer (eg, drx-HARQ-RTT-TimerSL) related to the HARQ process of the corresponding SL MAC PDU is the first time unit after uplink transmission including the SL HARQ feedback for the SL MAC PDU is finished can start from
  • a second timer (eg, drx-RetransmissionTimerSL) related to the HARQ process of the corresponding SL MAC PDU may be stopped.
  • the second timer (eg, drx-RetransmissionTimerSL) related to the HARQ process of the corresponding SL MAC PDU, from the first time unit after the first timer (eg, drx-HARQ-RTT-TimerSL) expires can start
  • Monitoring of the PDCCH scrambled with the SL-RNTI may be allowed only in a section in which the second timer is in progress.
  • the base station can identify the related HARQ process based on the resource location of the corresponding HARQ feedback (eg, NACK):
  • a second timer (eg, drx-RetransmissionTimerSL) related to the HARQ process of the corresponding SL MAC PDU may be started from the first time unit after uplink transmission including the SL HARQ feedback for the SL MAC PDU is finished. .
  • a single second timer (eg, drx-RetransmissionTimerSL) for all HARQ processes for sidelink, from the first time unit after uplink transmission including SL HARQ feedback for the SL MAC PDU is finished can start
  • the PDCCH indicating SL transmission is received from the base station (eg, according to the corresponding HARQ feedback (eg, NACK), the PDCCH including the SL grant for retransmission of the SL MAC PDU is received from the base station. case):
  • the second timer (eg, drx-RetransmissionTimerSL) related to the HARQ process of the corresponding SL MAC PDU may be stopped.
  • 15 is a diagram for explaining an example of a DRX operation to which the present disclosure can be applied.
  • FIG. 15 shows that when the second DRX on the second link (eg, sidelink) with the second terminal is configured for the first terminal, the first link (eg, the first link with the base station of the first terminal) , Uu link) may correspond to the first DRX operation.
  • the first link eg, the first link with the base station of the first terminal
  • Uu link may correspond to the first DRX operation.
  • the first terminal may request a resource for SL data transmission from the base station. For example, when new data (or transport block (TB)) to be transmitted to the second terminal is transmitted from the upper layer to the MAC layer, the first terminal may transmit resource request information to the base station.
  • new data or transport block (TB)
  • TB transport block
  • the resource request information may be a Scheduling Request (SR), a Buffer Status Report (BSR), or the like.
  • SR Scheduling Request
  • BSR Buffer Status Report
  • the scope of the present disclosure is not limited to specific examples of resource request information, and may include arbitrary control information for requesting the base station to allocate an SL resource for data to be transmitted by the first terminal to the second terminal. have.
  • the first terminal may receive SL grant information from the base station through the PDCCH.
  • the SL grant may include SL resource allocation information for data that the first terminal intends to transmit to the second terminal.
  • the SL grant may include resource allocation information for initial transmission of new data.
  • the PDCCH may be a PDCCH scrambled with an SL-RNTI.
  • the SL grant may include resource allocation information for periodic transmission of new data and information indicating whether to activate it.
  • the PDCCH may be a PDCCH scrambled with SL-CS-RNTI.
  • the base station Before transmitting the PDCCH for the periodic transmission, the base station may first set some of the corresponding resource allocation information to the first terminal through RRC signaling.
  • the resource allocation information may include information on a period.
  • the first terminal may transmit SL scheduling information (eg, SCI) to the second terminal through the PSCCH.
  • the SL scheduling information may include SL resource allocation information for the PSSCH for initial transmission of new data on the sidelink, and the like.
  • the first terminal may transmit the SL data to the second terminal through the PSSCH.
  • the SL data may correspond to initial transmission of new data.
  • the second terminal may receive the PSSCH from the corresponding resource based on the PSSCH transmission resource indicated by the SL scheduling information received through the PSCCH from the first terminal.
  • the second terminal may fail to decode the PSSCH.
  • the second terminal may generate a NACK as SL HARQ feedback information and transmit it to the first terminal.
  • the first terminal may determine a resource for NACK transmission, and in step S1545 may transmit the NACK to the base station.
  • the first terminal may generate NACK information in the form of UCI based on NACK which is SL HARQ feedback information transmitted from the second terminal.
  • the first terminal may determine an uplink resource (eg, PUCCH and/or PUSCH transmission resource) to which NACK information in the UCI form will be transmitted, and transmit the NACK to the base station on the determined resource. That is, the NACK transmitted from the first terminal to the base station may be a request for resource allocation for the first terminal to retransmit the same data (ie, sidelink data for which the second terminal fails to decode) to the second terminal.
  • the MAC entity of the first terminal is, in the first time unit (eg, symbol n+1) after the time unit (eg, symbol n) after the uplink transmission including the SL HARQ feedback for the SL MAC PDU is finished, A first timer (eg, drx-HARQ-RTT-TimerSL) related to the HARQ process of the corresponding SL MAC PDU may be started.
  • the second timer eg, drx-RetransmissionTimerSL
  • the MAC entity of the first terminal may stop the second timer.
  • the first terminal may maintain a sleep state and may not perform PDCCH monitoring.
  • the MAC entity of the first terminal is the first timer (eg, drx-HARQ-RTT-TimerSL) expired time unit ( For example, in the first time unit (eg, symbol m+1) after symbol m), a second timer (eg, drx-RetransmissionTimerSL) related to the HARQ process of the corresponding SL MAC PDU may be started.
  • the first timer eg, drx-HARQ-RTT-TimerSL
  • a second timer eg, drx-RetransmissionTimerSL
  • the first terminal may perform PDCCH monitoring. For example, the first UE may monitor the scrambled PDCCH with SL-RNTI. For example, only while the second timer (eg, drx-RetransmissionTimerSL) is in progress, the first terminal may be allowed to perform monitoring of the scrambled PDCCH with the SL-RNTI.
  • the second timer eg, drx-RetransmissionTimerSL
  • the first terminal may receive SL grant information from the base station through the PDCCH.
  • the SL grant may include resource allocation information for retransmission of data that the second terminal previously failed to decode.
  • the PDCCH may be a PDCCH scrambled with SL-RNTI or SL-CS-RNTI.
  • a method of confirming whether the resource allocation information for the sidelink transmitted on the PDCCH is retransmission differs depending on the type of the scrambled RNTI.
  • the PDCCH scrambled with SL-RNTI may include a value corresponding to an SL HARQ process requiring retransmission and a new data indicator (NDI) value. If the NDI value in the PDCCH is not changed compared to the previously received NDI value in the PDCCH, the UE may determine retransmission. If the NDI value in the PDCCH is changed compared with the previously received NDI value in the PDCCH, the UE may determine that new data is transmitted.
  • NDI new data indicator
  • the PDCCH scrambled with SL-CS-RNTI may include a value corresponding to an SL HARQ process requiring retransmission and an NDI value. If the value of NDI in the PDCCH is 0, the UE may determine retransmission. If the NDI value in the PDCCH is 1, the UE may determine new data transmission. In addition, in the case of the PDCCH scrambled by SL-CS-RNTI, the retransmission or new data transmission time may be determined as the next transmission cycle time based on previously set period information.
  • the first terminal transmits the second timer (eg, related to the HARQ process of the SL MAC PDU) drx-RetransmissionTimerSL) can be stopped.
  • the PDCCH received while the second timer (eg, drx-RetransmissionTimerSL) is in progress is an SL grant for retransmission of the corresponding SL MAC PDU according to the HARQ feedback (eg, NACK) transmitted in step S1545.
  • the HARQ feedback eg, NACK
  • the first terminal may transmit SL scheduling information (eg, SCI) to the second terminal through the PSCCH.
  • the SL scheduling information may include SL resource allocation information for a PSSCH for retransmission of sidelink data, and the like.
  • the first terminal may transmit the SL data to the second terminal through the PSSCH.
  • the SL data may correspond to retransmission of data that has previously failed to be decoded by the second terminal.
  • the second terminal may receive the PSSCH from the corresponding resource based on the PSSCH transmission resource indicated by the SL scheduling information received through the PSCCH from the first terminal.
  • 16 is a diagram for explaining an additional example of a DRX operation to which the present disclosure can be applied.
  • steps S1610 to S1665 correspond to steps S1510 to S1565 in the example of FIG. 15 , respectively, and thus overlapping descriptions are omitted.
  • the first terminal may determine a resource for NACK transmission, and in step S1545 may transmit the NACK to the base station. For example, the first terminal may determine an uplink resource for transmitting the UCI type NACK information generated from the second terminal based on NACK which is SL HARQ feedback information. The first terminal may transmit a NACK to the base station through PUCCH and/or PUSCH on the determined uplink resource.
  • the SL HARQ feedback transmission resource determined by the first terminal may be a resource differentiated for each of a plurality of sidelink HARQ processes.
  • different HARQ processes may be distinguished by one or more of a time resource, a frequency resource, and a code resource through which SL HARQ feedback is transmitted. That is, the SL HARQ feedback transmission resource location may indicate a related HARQ process.
  • the base station can identify which HARQ process is related to SL MAC PDU transmission/retransmission based on the resource location from which the SL HARQ feedback is received (eg, a combination of one or more of time, frequency, or code resource). have.
  • the SL HARQ feedback transmission resource determined by the first terminal may be a resource common to a plurality of sidelink HARQ processes.
  • the resource through which the SL HARQ feedback is transmitted may be determined regardless of the HARQ process.
  • the base station may not be able to identify which HARQ process is related to SL MAC PDU transmission/retransmission only by SL HARQ feedback.
  • the DRX-related operation of the first terminal may be performed as follows.
  • the base station can identify the related HARQ process based on the resource location of the SL HARQ feedback (eg, NACK) transmitted by the first terminal to the base station
  • the MAC entity of the first terminal is the SL MAC
  • the first time unit (eg, symbol m+1) after the time unit (eg, symbol m) after the uplink transmission including the SL HARQ feedback for the PDU is finished the first time unit (eg, symbol m+1) related to the HARQ process of the corresponding SL MAC PDU 2 timers (eg, RetransmissionTimerSL) may be started.
  • the base station cannot identify the related HARQ process based on the resource location of the SL HARQ feedback (eg, NACK) transmitted by the first terminal to the base station, the MAC entity of the first terminal is in the SL MAC PDU.
  • the first time unit eg, symbol m+1
  • the time unit eg, symbol m
  • a second timer eg, RetransmissionTimerSL
  • the first terminal may perform PDCCH monitoring. For example, the first UE may monitor the scrambled PDCCH with SL-RNTI. For example, only while the second timer (eg, drx-RetransmissionTimerSL) is in progress, the first terminal may be allowed to perform monitoring of the scrambled PDCCH with the SL-RNTI.
  • the second timer eg, drx-RetransmissionTimerSL
  • a second timer (eg, drx-RetransmissionTimerSL) may be started. That is, when the first terminal receives the NACK for the sidelink data from the second terminal and transmits the NACK to the base station, resource allocation information for retransmission of the sidelink data corresponding to the NACK from the immediately following time unit (i.e., PDCCH) can start monitoring.
  • PDCCH immediately following time unit
  • 17 is a diagram illustrating the configuration of a base station apparatus and a terminal apparatus according to the present disclosure.
  • the base station apparatus 1700 may include a processor 1710 , an antenna unit 1720 , a transceiver 1730 , and a memory 1740 .
  • the processor 1710 performs baseband-related signal processing and may include an upper layer processing unit 1711 and a physical layer processing unit 1715 .
  • the higher layer processing unit 1711 may process the operation of the MAC layer, the RRC layer, or higher layers.
  • the physical layer processing unit 1715 may perform PHY layer operations (eg, uplink reception signal processing, downlink transmission signal processing, etc.).
  • the processor 1710 may control the overall operation of the base station apparatus 1700 in addition to performing baseband-related signal processing.
  • the antenna unit 1720 may include one or more physical antennas, and when it includes a plurality of antennas, it may support MIMO transmission/reception.
  • the transceiver 1730 may include an RF transmitter and an RF receiver.
  • the memory 1740 may store information processed by the processor 1710 , software related to the operation of the base station apparatus 1700 , an operating system, an application, and the like, and may include components such as a buffer.
  • the processor 1710 of the base station apparatus 1700 may be configured to implement the operation of the base station in the embodiments described in the present invention.
  • the upper layer processing unit 1711 of the processor 1710 of the base station apparatus 1700 may include an SL resource allocator 1712 and a DRX parameter determiner 1713 .
  • the SL resource allocator 1712 is configured to allow the terminal device 1750 to receive a sidelink from another terminal device (eg, a sidelink transmission terminal) based on a request for a sidelink resource from the terminal device 1750 (eg, a sidelink transmission terminal).
  • UE may be allocated a sidelink resource for performing initial transmission.
  • the SL resource allocator 1712 is configured to allow the terminal device 1750 to perform other terminal devices (eg, side A sidelink resource for retransmission may be allocated to a link receiving terminal).
  • the SL resource allocator 1712 may generate sidelink resource allocation information (eg, SL grant) and transmit it to the physical layer processor 1715 .
  • sidelink resource allocation information eg, SL grant
  • the DRX parameter determiner 1713 determines a DRX parameter including a first timer and a second timer applied to the terminal device 1750 performing sidelink transmission, and transmits DRX configuration information including the first timer to the terminal device 1750 ) can be provided to
  • the physical layer processing unit 1715 may receive the sidelink resource request and/or SL HARQ feedback information received from the terminal device 1750 and transmit it to the higher layer processing unit 1711 .
  • the physical layer processing unit 1715 transmits the sidelink resource allocation information (eg, SL grant) transmitted from the SL resource allocation unit 1712 of the higher layer processing unit 1711 to the first terminal device 1750 through the PDCCH.
  • the PDCCH may be scrambled with SL-RNTI.
  • the terminal device 1750 may include a processor 1760 , an antenna unit 1770 , a transceiver 1780 , and a memory 1790 .
  • the processor 1760 performs baseband-related signal processing and may include an upper layer processing unit 1761 and a physical layer processing unit 1765 .
  • the higher layer processing unit 1761 may process the operation of the MAC layer, the RRC layer, or higher layers.
  • the physical layer processing unit 1765 may perform PHY layer operations (eg, downlink reception signal processing, uplink transmission signal processing, etc.).
  • the processor 1760 may control the overall operation of the terminal device 1760 in addition to performing baseband-related signal processing.
  • the antenna unit 1770 may include one or more physical antennas, and may support MIMO transmission/reception when including a plurality of antennas.
  • the transceiver 1780 may include an RF transmitter and an RF receiver.
  • the memory 1790 may store information processed by the processor 1760 , software related to the operation of the terminal device 1750 , an operating system, an application, and the like, and may include components such as a buffer.
  • the processor 1760 of the terminal device 1750 may be configured to implement the operation of the terminal in the embodiments described in the present invention.
  • the upper layer processing unit 1761 of the processor 1760 of the terminal device 1750 may include an SL resource management unit 1762 , an SL HARQ operation unit 1763 , and a DRX operation unit 1764 .
  • the SL resource management unit 1762 sends the base station device 1700 to the base station 1700 .
  • Sidelink resource request information to be transmitted may be generated.
  • the generated sidelink resource request information may be transmitted to the physical layer processing unit 1765 .
  • the SL resource management unit 1762 is configured to allow the terminal device 1750 to connect to another terminal device (eg, a sidelink) based on sidelink resource allocation information (eg, SL grant) provided from the base station device 1700 .
  • a sidelink resource for performing sidelink transmission eg, PSCCH and/or PSSCH transmission
  • This sidelink resource allocation information may be for sidelink initial transmission and/or retransmission.
  • the determined sidelink resource may be indicated to the physical layer processing unit 1765 .
  • the SL HARQ operation unit 1763 generates SL HARQ feedback information in the form of UCI to be transmitted through an uplink resource (eg, PUCCH and/or PUSCH resource) based on the SL HARQ feedback information received from another terminal.
  • the SL HARQ operation unit 1763 may determine a combination of one or more of time, frequency, and code resources for transmitting SL HARQ feedback information in the UCI form.
  • the SL HARQ feedback information transmission resource may be set as a resource differentiated for each different HARQ process, or set as a resource common to a plurality of HARQ processes.
  • the generated UCI-type SL HARQ feedback information and transmission resource information therefor may be transmitted to the physical layer processing unit 1765 .
  • the DRX operation unit 1764 starts a first timer (eg, drx-HARQ-RTT-TimerSL) in a time unit immediately following after transmitting the SL HARQ feedback information to the base station apparatus 1700, and the first timer After expiration, a second timer (eg, drx-RetransmissionTimerSL) may be started at the next time unit.
  • the DRX operation unit 1764 does not perform PDCCH monitoring from the base station device 1700 while the first timer is operating, and does not perform PDCCH monitoring from the base station device 1700 while the second timer is operating (eg, SL-RNTI). may instruct the physical layer processing unit 1765 to perform (monitoring the scrambled PDCCH).
  • the DRX parameter of the terminal device 1750 including the first timer and the second timer may be set by the base station device 1700 and provided to the terminal device 1750 as DRX configuration information.
  • the DRX operation unit 1764 may start a second timer (eg, drx-RetransmissionTimerSL) in the next time unit after transmitting the SL HARQ feedback information to the base station apparatus 1700 .
  • the DRX operation unit 1764 may instruct the physical layer processing unit 1765 to perform PDCCH monitoring from the base station apparatus 1700 while the second timer is in operation.
  • the physical layer processing unit 1765 performs monitoring of a PDCCH (eg, a PDCCH scrambled by SL-RNTI) including sidelink resource allocation information received from the base station device 1700, and provides the received sidelink resource allocation information. It may be transmitted to the upper layer processing unit 1761 .
  • a PDCCH eg, a PDCCH scrambled by SL-RNTI
  • the physical layer processing unit 1765 may transmit the sidelink resource allocation request information transmitted from the SL resource management unit 1762 of the higher layer processing unit 1761 to the base station apparatus 1700 through the PUCCH and/or the PUSCH.
  • transmission may be performed to the base station device 1700 through the PUCCH and/or the PUSCH.
  • the descriptions for the base station and the terminal in the examples of the present invention may be equally applied, and overlapping descriptions will be omitted.
  • Example methods of the present disclosure are expressed as a series of operations for clarity of description, but this is not intended to limit the order in which the steps are performed, and if necessary, each step may be performed simultaneously or in a different order.
  • other steps may be included in addition to the illustrated steps, steps may be excluded from some steps, and/or other steps may be included except for some steps.
  • various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • general purpose It may be implemented by a processor (general processor), a controller, a microcontroller, a microprocessor, and the like.
  • the scope of the present disclosure includes software or machine-executable instructions (eg, operating system, application, firmware, program, etc.) that cause operation according to the method of various embodiments to be executed on a device or computer, and such software or and non-transitory computer-readable media in which instructions and the like are stored and executed on a device or computer.
  • Instructions that can be used to program a processing system to perform the features described in this disclosure may be stored on/in a storage medium or computer-readable storage medium, and can be viewed using a computer program product including such storage medium.
  • Features described in the disclosure may be implemented.
  • the storage medium may include, but is not limited to, high-speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state memory device, one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or may include non-volatile memory such as other non-volatile solid state storage devices.
  • the memory optionally includes one or more storage devices located remotely from the processor(s).
  • the memory or alternatively the non-volatile memory device(s) within the memory includes a non-transitory computer-readable storage medium.
  • Features described in this disclosure may be stored on any one of the machine-readable media to control hardware of a processing system, causing the processing system to interact with other mechanisms that utilize results in accordance with embodiments of the present disclosure. It may be incorporated into software and/or firmware.
  • Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
  • Examples of the present disclosure may be applied to various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 DRX 방법 및 장치에 대한 것이다. 본 개시의 일 실시예에 따른 무선 통신 시스템에서 제 1 단말의 불연속수신(DRX) 방법은, 상기 제 1 단말이 전송한 사이드링크 데이터에 대한 HARQ(Hybrid Automatic Repeat reQuest) 피드백 정보를 제 2 단말로부터 수신하는 단계; 상기 제 2 단말로부터의 HARQ 피드백 정보에 기초하여, 제 1 단말이 기지국으로 상향링크 상에서 HARQ NACK 정보를 전송하는 단계; 상기 제 1 단말이 상기 HARQ NACK 정보를 전송한 후 시작되는 제 1 타이머가 진행 중인 동안 슬립하는 단계; 및 상기 제 1 타이머가 만료된 후 시작되는 제 2 타이머가 동작 중인 동안, 사이드링크 데이터 재전송에 대한 자원 할당 정보를 포함하는 하향링크 제어 채널을 모니터링하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 DRX 방법 및 장치
본 개시는 무선 통신 시스템에서 네트워크와 단말간 링크에 대한 DRX에 대한 것이며, 구체적으로는 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 DRX 방법 및 장치에 대한 것이다.
단말간(Device-to-Device, D2D) 통신은 하나의 단말이 다른 단말과 직접 통신하는 것을 말한다. 직접 통신이란 하나의 단말이 네트워크의 제어를 통해 또는 단말 스스로의 판단을 통해 다른 네트워크 장치를 통하지 않고 다른 단말과 통신하는 것을 의미한다.
이와 같은 단말간 통신은 차량 통신에 응용될 수 있으며 이를 통칭하여 V2X(vehicle-to-everything)이라 한다. V2X 통신은 운전 중 도로 인프라 및 다른 차량과 통신하면서 교통상황 등의 정보를 교환하거나 공유하는 통신 방식을 의미한다. V2X 기반 서비스는, 예를 들어,자율주행 서비스, 자동차 원격제어 서비스 등을 포함할 수 있다. 또한, 단말간 통신을 기반으로 하는 다른 서비스들에는 게임 등의 인터렉티브 서비스, AR이나 VR과 같은 대용량 근거리 오디오/비디오 서비스 등을 포함할 수 있다. 5G 시스템을 통해 다양한 단말간 통신기술이 필요한 서비스들을 지원하기 위한 성능 요구사항을 기반으로, 5G 시스템 내 무선접속기술(RAT)인 LTE 및 NR 시스템에 추가적으로 필요한 구체적 기술들에 대하여 논의 중에 있다.
단말에 대해서 네트워크와 단말간 링크(예를 들어, 제 1 링크)에 대한 불연속 수신(Discontinuous Reception, DRX) (예를 들어, 제 1 DRX) 동작이 설정될 수 있다. 또한, 해당 단말에 대해서 단말간 통신이 설정되고 단말간 통신 링크(예를 들어, 제 2 링크)에 대한 DRX(예를 들어, 제 2 DRX) 동작이 설정될 수 있다. 이 경우, 단말의 전체적인 에너지 효율을 높이기 위해서 제 2 링크에 대한 제 2 DRX가 제 1 링크에 대한 제 1 DRX 동작에 대한 영향을 최소화하는 것이 요구된다. 그러나, 아직까지는 제 2 링크에 대한 제 2 DRX 동작에 기초하여 제 1 링크에 대한 제 1 DRX 동작을 정의하는 구체적인 방안은 마련되어 있지 않다.
본 개시의 기술적 과제는 무선 통신 시스템에서 단말간 통신을 수행하는 단말에 대한 DRX 방법 및 장치를 제공하는 것이다.
본 개시의 추가적인 기술적 과제는 다른 단말에게 사이드링크 전송을 수행하는 단말에 대해서, 상기 단말과 기지국과의 링크 상에서의 상기 단말의 DRX 방법 및 장치를 제공하는 것이다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 양상에 따른 무선 통신 시스템에서 제 1 단말의 불연속수신(DRX) 방법은, 상기 제 1 단말이 전송한 사이드링크 데이터에 대한 HARQ(Hybrid Automatic Repeat reQuest) 피드백 정보를 제 2 단말로부터 수신하는 단계; 상기 제 2 단말로부터의 HARQ 피드백 정보에 기초하여, 제 1 단말이 기지국으로 상향링크 상에서 HARQ NACK 정보를 전송하는 단계; 상기 제 1 단말이 상기 HARQ NACK 정보를 전송한 후 시작되는 제 1 타이머가 진행 중인 동안 슬립하는 단계; 및 상기 제 1 타이머가 만료된 후 시작되는 제 2 타이머가 동작 중인 동안, 사이드링크 데이터 재전송에 대한 자원 할당 정보를 포함하는 하향링크 제어 채널을 모니터링하는 단계를 포함할 수 있다.
본 개시에 대하여 위에서 간략하게 요약된 특징들은 후술하는 본 개시의 상세한 설명의 예시적인 양상일 뿐이며, 본 개시의 범위를 제한하는 것은 아니다.
본 개시에 따르면, 무선 통신 시스템에서 단말간 통신을 수행하는 단말에 대한 DRX 방법 및 장치가 제공될 수 있다.
본 개시에 따르면, 다른 단말에게 사이드링크 전송을 수행하는 단말에 대해서, 상기 단말과 기지국과의 링크 상에서의 상기 단말의 DRX 방법 및 장치가 제공될 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템을 설명하기 위한 도면이다.
도 2는 본 개시가 적용될 수 있는 V2X 통신에서 고려되는 링크를 설명하기 위한 도면이다.
도 3은 본 개시가 적용될 수 있는 NR 사이드링크 통신을 사용하는 5G V2X를 지원하는 독립형(standalone) 시나리오를 설명하기 위한 도면이다.
도 4는 본 개시가 적용될 수 있는 NR 사이드링크 통신을 사용하는 5G V2X를 지원하는 MR-DC(Multi-RAT Dual Connectivity) 시나리오를 설명하기 위한 도면이다.
도 5는 본 개시가 적용될 수 있는 단말 및 기지국과의 통신을 이용한 V2X 동작 시나리오를 설명하기 위한 도면이다.
도 6은 본 개시가 적용될 수 있는 V2X 자원 할당 방식을 설명하기 위한 도면이다.
도 7은 본 개시가 적용될 수 있는 V2X 통신의 구조를 설명하기 위한 도면이다.
도 8은 본 개시가 적용될 수 있는 PC5 인터페이스의 프로토콜 스택을 예시적으로 나타내는 도면이다.
도 9 및 도 10은 사이드링크 전송 방식을 설명하기 위한 도면이다.
도 11 내지 도 13은 본 개시가 적용될 수 있는 SLRB 설정 방법의 예시들을 설명하기 위한 도면이다.
도 14는 본 개시가 적용될 수 있는 DRX 동작을 설명하기 위한 도면이다.
도 15는 본 개시가 적용될 수 있는 DRX 동작의 일례를 설명하기 위한 도면이다.
도 16은 본 개시가 적용될 수 있는 DRX 동작의 추가적인 예시를 설명하기 위한 도면이다.
도 17은 본 개시에 따른 기지국 장치 및 단말 장치의 구성을 나타내는 도면이다.
이하에서는 첨부한 도면을 참고로 하여 본 개시의 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 개시의 실시예를 설명함에 있어서 공지 구성 또는 기능에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그에 대한 상세한 설명은 생략한다. 그리고, 도면에서 본 개시에 대한 설명과 관계없는 부분은 생략하였으며, 유사한 부분에 대해서는 유사한 도면 부호를 붙인다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계 뿐만 아니라, 그 중간에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 본 개시에서 용어 "포함한다" 또는 "가진다"는 언급된 특징, 단계, 동작, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 단계, 동작, 요소, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
본 개시에 있어서, 제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되고 구성요소들을 제한하기 위해서 사용되지 않으며, 특별히 언급되지 않는 한 구성요소들 간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제1 구성요소는 다른 실시예에서 제2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제2 구성요소를 다른 실시예에서 제1 구성요소라고 칭할 수도 있다.
본 개시에 있어서, 서로 구별되는 구성요소들은 각각의 특징을 명확하게 설명하기 위함이며, 구성요소들이 반드시 분리되는 것을 의미하지는 않는다. 즉, 복수의 구성요소가 통합되어 하나의 하드웨어 또는 소프트웨어 단위로 이루어질 수도 있고, 하나의 구성요소가 분산되어 복수의 하드웨어 또는 소프트웨어 단위로 이루어질 수도 있다. 따라서, 별도로 언급하지 않더라도 이와 같이 통합된 또는 분산된 실시예도 본 개시의 범위에 포함된다.
본 개시에 있어서, 다양한 실시예에서 설명하는 구성요소들이 반드시 필수적인 구성요소들은 의미하는 것은 아니며, 일부는 선택적인 구성요소일 수 있다. 따라서, 일 실시예에서 설명하는 구성요소들의 부분집합으로 구성되는 실시예도 본 개시의 범위에 포함된다. 또한, 다양한 실시예에서 설명하는 구성요소들에 추가적으로 다른 구성요소를 포함하는 실시예도 본 개시의 범위에 포함된다.
본 개시에서 사용된 용어는 특정 실시예에 대한 설명을 위한 것이며 청구범위를 제한하려는 것이 아니다. 실시예의 설명 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 명백하게 다르게 나타내지 않는 한 복수 형태도 포함하도록 의도한 것이다. 또한, 본 개시에 사용된 용어 "및/또는"은 관련된 열거 항목 중의 하나를 지칭할 수도 있고, 또는 그 중의 둘 이상의 임의의 및 모든 가능한 조합을 지칭하고 포함하는 것을 의미한다.
본 개시는 무선 통신 네트워크 또는 무선 통신 시스템을 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 동작은 해당 무선 통신 네트워크를 관할하는 장치(예를 들어 기지국)에서 네트워크를 제어하고 신호를 송신 또는 수신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 또는 단말간 신호를 송신 또는 수신하는 과정에서 이루어질 수 있다.
기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNodeB(eNB), ng-eNB, gNodeB(gNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station), 비-AP 스테이션(non-AP STA) 등의 용어로 대체될 수 있다.
본 개시에서, 채널을 전송 또는 수신한다는 것은 해당 채널을 통해서 정보 또는 신호를 전송 또는 수신한다는 의미를 포함한다. 예를 들어, 제어 채널을 전송한다는 것은, 제어 채널을 통해서 제어 정보 또는 신호를 전송한다는 것을 의미한다. 유사하게, 데이터 채널을 전송한다는 것은, 데이터 채널을 통해서 데이터 정보 또는 신호를 전송한다는 것을 의미한다.
본 개시에서 사용하는 약어에 대한 정의는 다음과 같다.
AS: Access Stratum
BSR: Buffer Status Reporting
D2D: Device to Device (communication)
DCI: Downlink Control Information
GNSS: Global Navigation Satellite System
LC 또는 LCH: Logical Channel
MAC: Media Access Control
MCS: Modulation and Coding Scheme
RLC: Radio Link Control
RSU: RoadSide Unit
V2X: Vehicle to X(everything)
V2V: Vehicle to Vehicle
V2P: Vehicle to Pedestrian
V2I/N: Vehicle to Infrastructure/Network
SL: Sidelink
SCI: Sidelink Control Information
SFCI: Sidelink Feedback Control Information
PSSCH: Physical Sidelink Shared Channel
PSBCH: Physical Sidelink Broadcast Channel
PSCCH: Physical Sidelink Control Channel
PSDCH: Physical Sidelink Discovery Channel
ProSe: (Device to Device) Proximity Services
PPPP: ProSe Per-Packet Priority
PPPR: ProSe Per-Packet Reliability
QoS: Quality of Service
PQI: PC5 QoS Indicator
이하에서 설명하는 본 개시의 예시들은 5G 시스템에 적용될 수 있다. 5G 시스템은 NR 시스템 뿐만 아니라 기존 LTE(Long Term Evolution) 계열의 시스템을 모두 포함하는 것으로 정의될 수 있다. 즉, 5G 시스템은 NR 무선 접속 기술이 단독으로 적용되는 경우 뿐만 아니라, LTE 계열의 무선 접속 기술과 NR 무선 접속 기술이 같이 적용되는 경우를 포함할 수 있다. 본 개시의 예시들은 5G 시스템에 적용되는 것으로 제한되지 않으며, 다양한 무선 통신 시스템에 적용될 수 있다.
본 개시의 예시들은 단말간 통신에 대해서 적용될 수 있으며, 단말간 통신은 V2X 통신을 위해서 이용될 수 있다. V2X는 차량들 간의 LTE/NR 기반 통신을 뜻하는 V2V(vehicle-to-vehicle), 차량과 개인에 의해 휴대되는 단말 간의 LTE/NR 기반 통신을 뜻하는 V2P(vehicle-to-pedestrian), 차량과 도로변의 유닛/네트워크 간의 LTE/NR 기반 통신을 뜻하는 V2I/N(vehicle-to-infrastructure/network)을 포함할 수 있다. 이 때, 상기 도로변의 유닛(roadside unit, RSU)은 기지국 또는 고정된 단말에 의해 구현되는 교통 인프라 구조 독립체(transportation infrastructure entity)일 수 있다. 예를 들어, RSU는 차량에 속도 알림(speed notification)을 전송하는 독립체일 수 있다.
V2X와 관련한 용어에 있어서, D2D는 단말간 통신을 의미할 수 있다. 또한, ProSe는 D2D 통신을 수행하는 단말에 대한 근접 서비스를 의미할 수 있다. 또한, SCI(Sidelink Control Information)은 상술한 사이드링크와 관련된 제어 정보를 의미할 수 있다. 또한, PSSCH(Physical Sidelink Shared Channel)는 사이드링크를 통해 데이터가 전송되는 채널이고, PSCCH(Physical Sidelink Control Channel)는 사이드링크를 통해 제어 정보가 전송되는 채널일 수 있다. 또한, PSBCH(Physical Sidelink Broadcast Channel)는 사이드링크를 통해 신호를 브로드캐스트 방식으로 전송하는 채널로서 시스템 정보들이 전달될 수 있다.
V2X와 관련한 예시에서 단말은 차량을 포함하는 의미로 사용될 수 있다. 예를 들어, 단말은 사이드링크 통신 및/또는 기지국과의 통신을 수행할 수 있는 디바이스를 지칭할 수 있다.
본 개시는 V2X 통신에 적용되는 예시들을 포함하지만, 본 개시의 범위가 V2X에만 적용되는 것으로 제한되지 않는다. 즉, PC5 링크 또는 사이드링크를 통한 D2D 또는 ProSe 통신 등의 다양한 단말간 통신에 대해서 본 발명의 실시예들이 적용될 수 있다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템을 설명하기 위한 도면이다.
도 1에 도시된 망 구조는 NG-RAN(Next Generation Radio Access Network) 또는 E-UMTS(Evolved-Universal Mobile Telecommunications System)의 무선망 구조인 E-UTRAN(Evolved- Universal Terrestrial Radio Access Network)일 수 있다. NG-RAN 또는 E-UMTS 시스템은 LTE(Long Term Evolution), LTE-A(advanced) 시스템 등을 포함하거나, 5세대 이동통신망, NR(new radio) 등을 포함할 수 있다.
도 1을 참조하면, 무선 통신 시스템(10)에서 기지국(BS: Base Station, 11)과 단말(UE: User Equipment, 12)은 데이터를 무선으로 송신 및 수신할 수 있다. 또한, 무선 통신 시스템(10)은 단말간(D2D: device to device) 통신을 지원할 수도 있다. 이하 단말은 스마트폰 등 일반 사용자가 사용하는 단말 장치와 차량에 탑재되어 있는 단말 장치의 개념을 모두 포함한다. 무선 통신 시스템에서의 D2D 통신에 대해서는 후술한다.
무선 통신 시스템(10)에서 기지국(11)은 기지국의 커버리지 내에 존재하는 단말에게 특정 주파수 대역을 통하여 통신 서비스를 제공할 수 있다. 기지국에 의해 서비스되는 커버리지는 사이트(site)라는 용어로도 표현될 수 있다. 사이트(site)는 섹터라 부를 수 있는 다수의 영역들(15a, 15b, 15c)을 포함할 수 있다. 사이트에 포함되는 섹터 각각은 서로 다른 식별자를 기반으로 식별될 수 있다. 각각의 섹터(15a, 15b, 15c)는 기지국(11)이 커버하는 일부 영역으로 해석될 수 있다.
기지국(11)은 일반적으로 단말(12)과 통신하는 지점(station)을 말하며, eNodeB(evolved-NodeB), gNB(g-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(Femto eNodeB), 가내 기지국(HeNodeB: Home eNodeB), 릴레이(relay), 원격 무선 헤드(RRH: Remote Radio Head), DU(Distributed Unit) 등 다른 용어로 불릴 수 있다.
단말(12)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
또한, 기지국(11)은 해당 기지국이 제공하는 커버리지의 크기에 따라 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 용어로 불릴 수 있다. 셀은 기지국이 제공하는 주파수 대역 전체 혹은 일부, 기지국의 커버리지 또는 기지국을 지시하는 용어로 사용될 수 있다.
이하에서, 하향링크(DL: DownLink)는 기지국(11)에서 단말(12)로의 통신 또는 통신 경로를 의미하며, 상향링크(UL: UpLink)는 단말(12)에서 기지국(11)으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다.
한편 무선 통신 시스템(10)에 적용되는 다중 접속 기법에는 제한이 없다. 예를 들어, CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법이 사용될 수 있다. 또한, 상향링크 전송 및 하향링크 전송에는 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
도 2는 본 개시가 적용될 수 있는 V2X 통신에서 고려되는 링크를 설명하기 위한 도면이다.
V2X를 지원하는 통신 시스템에서 하향링크(DL), 상향링크(UL) 및 사이드링크(SL) 통신이 가능할 수 있다.
도 2를 참조하면, V2X를 지원하는 통신 시스템은 D2D(또는 ProSe)에 정의된 단말(UE)과 단말(UE) 간의 링크인 PC5 링크를 지원할 수 있다. PC5 링크는 단말과 단말 사이에 정의되는 인터페이스를 의미하며, 무선접속계층에서 사이드링크(SL: SideLink)라 정의될 수 있다. 사이드링크는 차량과 차량간의 직접 통신을 위한 무선접속계층에서의 링크를 의미하지만 상술한 바에 한정되는 것은 아니다.
도 3은 본 개시가 적용될 수 있는 NR 사이드링크 통신을 사용하는 5G V2X를 지원하는 독립형(standalone) 시나리오를 설명하기 위한 도면이다.
단말이 NR 사이드링크 통신을 사용하는 5G V2X 시나리오는 다음과 같이 분류할 수 있다.
도 3(a)를 참조하면, gNB가 단말의 V2X 통신을 위해 LTE SL 및 NR SL의 제어 및 설정을 제공할 수 있다.
도 3(b)를 참조하면, ng-eNB가 단말의 V2X 통신을 위해 LTE SL 및 NR SL의 제어 및 설정을 제공할 수 있다.
도 3(c)를 참조하면, eNB가 단말의 V2X 통신을 위해 LTE SL 및 NR SL의 제어 및 설정을 제공할 수 있다.
도 4는 본 개시가 적용될 수 있는 NR 사이드링크 통신을 사용하는 5G V2X를 지원하는 MR-DC(Multi-RAT Dual Connectivity) 시나리오를 설명하기 위한 도면이다.
도 4(a)를 참조하면, 단말이 NE-DC(NR - E-UTRA Dual Connectivity)로 설정되는 동안 Uu에 의해 LTE SL 및 NR SL이 제어 또는 설정될 수 있다. NE-DC는 이중 연결(DC) 구조에서 MN(Master Node)으로 동작하는 하나의 gNB 및 SN(Secondary Node)으로 동작하는 하나의 ng-eNB에 단말이 접속되는 시나리오를 의미할 수 있다. 이때, MN과 SN은 모두 5GC(5G Core network)에 연결될 수 있다.
도 4(b)를 참조하면, 단말이 NGEN-DC(NG-RAN - E-UTRA NR Dual Connectivity)로 설정되는 동안 Uu에 의해 LTE SL 및 NR SL이 제어 또는 설정될 수 있다. NGEN-DC는 DC 구조에서 MN으로 동작하는 하나의 ng-eNB와 SN으로 동작하는 하나의 gNB에 단말이 접속되는 시나리오를 의미할 수 있다. 이때, MN과 SN은 모두 5GC에 연결될 수 있다.
도 4(c)를 참조하면, 단말이 EN-DC(E-UTRA - NR Dual Connectivity)로 설정되는 동안 Uu에 의해 LTE SL 및 NR SL이 제어 또는 설정될 수 있다. EN-DC는 DC 구조에서 MN으로 동작하는 하나의 ng-eNB 및 SN으로 동작하는 하나의 gNB에 단말이 접속되는 시나리오를 의미할 수 있다. 이때, MN과 SN은 모두 EPC(Evolved Packet Core)에 연결될 수 있다.
이와 같이, 단말은 사이드링크 전송을 위해 LTE RAT 또는 NR RAT을 사용할 수 있다. 이는 서비스 유형에 따라 결정되며, V2X 어플리케이션 계층에서 RAT 선택을 수행할 수 있다. 일 예로, 주어진 서비스 유형은 1) LTE RAT 전용, 2) NR RAT 전용, 3) LTE 또는 NR RAT, 또는 4) LTE 및 NR RAT과 관련될 수 있다. 이때, 후술할 유니캐스트와 그룹캐스트는 NR V2X 통신에서 새로 도입된 전송 유형이므로 상기 전송 모드는 NR RAT에서만 지원되기 때문에, RAT 선택은 브로드캐스트에만 적용될 수 있다.
도 5는 본 개시가 적용될 수 있는 단말 및 기지국과의 통신을 이용한 V2X 동작 시나리오를 설명하기 위한 도면이다.
도 5를 참조하면, V2X를 지원하는 통신 시스템은 기지국과 단말(UE)간, 또는 무선 접속망과 단말(UE) 간의 링크인 Uu 링크만을 지원할 수도 있다. Uu 링크는 단말이 기지국으로 신호를 전송하는 경로인 상향링크(UL)와 기지국이 단말로 신호를 전송하는 경로인 하향링크(DL)를 포함할 수 있다.
단말은 V2X 통신을 수행함에 있어, PC5 인터페이스 및/또는 Uu 인터페이스를 사용할 수 있다. 인터페이스 선택은 V2X 어플리케이션 계층에서 수행할 수 있으며, 이는 Uu/PC5 인터페이스 이용 가능 정보를 기반으로 결정될 수 있다. 특히, Uu 인터페이스에 대해서는, 단말이 네트워크 커버리지(기지국 커버리지) 내(In-coverage, IC)에 위치하는지 또는 네트워크 커버리지 밖(Out-of-coverage, OOC)에 위치하는 지에 따라 Uu 인터페이스의 사용 가능 여부가 결정될 수 있다.
상술한 바와 같이, V2X 통신은 기지국을 거쳐서 이뤄질 수도 있고, 단말 간에 직접 통신을 통해서 이뤄질 수도 있다. 이때, 기지국을 거치는 경우 LTE 기반의 V2X 통신에서는 LTE의 기지국과 단말 간의 통신 인터페이스인 Uu 링크를 통해 송신 및/또는 수신이 수행될 수 있다. 또한, 단말 간의 직접 통신으로서 사이드링크를 이용하는 경우, LTE 기반의 V2X 통신에서는 LTE의 단말과 단말 간의 통신 인터페이스인 PC5 링크를 통해 송신 및/또는 수신이 이뤄질 수 있다.
도 6은 본 개시가 적용될 수 있는 V2X 자원 할당 방식을 설명하기 위한 도면이다.
V2X 단말은 자원 할당 방식에 따라서 동작 모드가 정의될 수 있다.
NR V2X 시스템도 LTE V2X 시스템과 마찬가지로 기지국에 의해서 자원 설정 및 스케줄링이 수행되는 네트워크 스케줄링 모드와, 네트워크 스케줄링 없이 송신 단말이 자율적으로(autonomously) 자원을 최종적으로 결정하는 모드인 비네트워크 스케줄링 모드가 존재할 수 있다.
네트워크 스케줄링 모드는 기지국이 NR V2X 사이드링크 통신을 위해 사이드링크 물리 자원을 스케줄링 하는 모드일 수 있다. 여기서, 기지국은 3GPP NG-RAN을 의미하며 gNB 또는 ng-eNB일 수 있다. 기지국은 각 단말로부터 수신한 사이드링크 자원할당 요청을 기반으로 NR V2X 사이드링크 통신을 해당 기지국 커버리지 내에서 직접 제어하기 위한 목적으로, PDCCH(Physical Downlink Control Channel)(예를 들어, NR V2X SL를 위한 DCI 포맷)를 이용하여 송신 단말에게 사이드링크 물리 자원에 대한 데이터 전송 스케줄링을 직접 수행할 수 있다.
비네트워크 스케줄링 모드는 기지국에 의한 스케줄링 없이, 기설정된(pre-configured) 자원 또는 기지국이 설정해준 자원들 내에서, 단말이 직접(또는 자율적으로) 사이드링크 물리 자원을 선택해서 사용하는 모드일 수 있다.
이하의 설명에 있어서 V2X 통신에서의 자원 할당 방식 중 네트워크 스케줄링 모드를 모드 1이라 하고, 비네트워크 스케줄링 모드를 모드 2라 할 수 있다.
도 6(a)는 모드 1에 대한 예시를 나타내고, 도 6(b)는 모드 2에 대한 예시를 나타낸다.
도 6(a)를 참조하면, 기지국은 PDCCH 하향링크 제어 정보(DCI)를 통해서 사이드링크 데이터 전송에 사용될 자원에 대한 스케줄링 정보를 사이드링크 전송 단말(즉, 제 1 단말)에게 제공할 수 있다. 이에 따라, 제 1 단말은 PSCCH 사이드링크 제어 정보(SCI)를 통해서 사이드링크 데이터 전송에 사용될 자원에 대한 스케줄링 정보를 사이드링크 수신 단말(즉, 제 2 단말)에게 제공할 수 있다. 그 후, 제 1 단말은 스케줄링 정보를 통해서 지정된 자원 상에서 PSSCH 사이드링크 데이터를 제 2 단말에게 전송할 수 있다. 제 2 단말은 PSCCH SCI를 통해서 제공된 PSSCH 스케줄링 정보에 기초하여, PSSCH 사이드링크 데이터를 수신할 수 있다. PSSCH 전송과 함께 PSSCH 복조를 위한 참조신호(DMRS)가 전송될 수 있다.
도 6(b)를 참조하면, 제 1 단말은 사이드링크 상에서 제어 정보 및 데이터를 전송하기 위한 자원을 단말 스스로 자율적으로 선택할 수 있다. 제 1 단말은 미리 설정된 자원 풀(즉, 자원 후보의 집합)에서 센싱(sensing) 등의 방식으로 자원을 선택할 수 있다. 이를 통해, 제 1 단말은 제어 정보 및 데이터를 제 2 단말로 전송할 수 있다. 예를 들어, 제 1 단말은 자신이 선택한 자원에서 제 2 단말에게 PSCCH SCI를 전송할 수 있다. SCI는 제 1 단말이 제 2 단말에게 전송하고자 하는 PSSCH 스케줄링 정보(즉, 제 1 단말이 선택한 사이드링크 데이터 전송 자원을 지시하는 정보)를 포함할 수 있다. 그 후, 제 1 단말은 스케줄링 정보를 통해서 지정된 자원 상에서 PSSCH 사이드링크 데이터를 제 2 단말에게 전송할 수 있다. 제 2 단말은 PSCCH SCI를 통해서 제공된 PSSCH 스케줄링 정보에 기초하여, PSSCH 사이드링크 데이터를 수신할 수 있다. PSSCH 전송과 함께 PSSCH 복조를 위한 참조신호(DMRS)가 전송될 수 있다.
전술한 자원 풀을 지시하는 정보는, 기지국이 브로드캐스트 또는 상위계층(예를 들어, RRC(Radio Resource Control) 계층) 시그널링을 통하여 제 1 단말 및/또는 제 2 단말에게 미리 제공할 수 있다.
모드 2는 다음과 같이 세분하여 정의될 수도 있다.
모드 2-1은 단말이 자율적으로 사이드링크 물리 자원을 선택하는 모드에 해당한다. 이 경우, 단말 스스로 필요한 자원을 센싱하고 직접 자원을 결정하여 사이드링크 통신을 수행할 수 있다.
모드 2-2는 단말이 다른 단말들의 사이드링크 물리 자원 선택을 도와줄 수 있는 모드에 해당한다. 이 경우, 하나의 대표 단말이 다른 단말들의 사이드링크 통신을 위한 자원을 스케줄링 하는데 필요한 가이드 또는 정보를 제공하여, 다른 송신 단말들의 자원 선택을 보조(assist)할 수 있다.
모드 2-3은 단말이 미리 설정된 사이드링크 물리 자원을 이용하는 모드에 해당한다. 이 경우, 단말은 별도의 자원 선택 동작 없이 사전에 미리 설정된 사이드링크 물리 자원 상에서 사이드링크 전송을 수행할 수 있다.
모드 2-4는 단말이 다른 단말들의 사이드링크 물리 자원을 스케줄링 하는 모드에 해당한다. 이 경우, 특정 단말은 모드 1에서의 기지국과 유사하게 다른 단말의 사이드링크 물리 자원에 대한 스케줄링을 수행할 수 있다.
전술한 V2X 네트워크 스케줄링 모드(모드 1)는 직접 링크 통신에서의 모드 3에 대응하고, V2X 비네트워크 스케줄링 모드(모드 2)는 직접 링크 통신에서의 모드 4에 대응할 수 있다. 다만, 이는 하나의 예시일 뿐, 그 모드의 명칭에 의해 본 개시의 범위가 한정되지 않는다.
이하의 예시들에서는 설명의 편의를 위해 모드 1, 모드 2, 또는 모드 2-1, 2-2, 2-3, 2-4를 언급하지만, 본 개시의 범위가 V2X 스케줄링 모드로 제한되는 것은 아니다. 즉, AR, VR 등을 위한 단말간 통신, 재난통신을 위한 단말간 통신, ProSe 단말간 통신 등과 같이 사이드링크를 기반으로 하는 다른 서비스들을 위한 통신에 대해서도 이하의 예시들이 동일하게 적용될 수 있다.
또한, V2X 단말은 단말의 RRC 상태(예를 들어, RRC CONNECTED, RRC IDLE, RRC INACTIVE 상태 등)에 상관없이 데이터를 송신 또는 수신할 수 있다. 또한, V2X 단말은 네트워크 커버리지 내(IC)에 존재하거나 또는 네트워크 커버리지 밖(OOC)에 존재하는 경우 모두 데이터를 송신 또는 수신할 있다. 예를 들어, IC 단말과 IC 단말간, OOC 단말과 OOC 단말간, IC 단말과 OOC 단말간의 단말간 통신이 수행될 수 있다.
단말이 NG-RAN 커버리지 내에 있을 때, NR 사이드링크 통신 및/또는 V2X 사이드링크 통신은 NG-RAN에 의한 전용(dedicated) 시그널링 또는 시스템 정보를 통해 설정 또는 제어될 수 있다.
예를 들어, RRC CONNECTED 상태에 있는 단말은 서빙 셀에 사이드링크 UE 정보(sidelink UE Information)를 전송함으로써 사이드링크 자원을 요구할 수 있다. 추가적인 예시로서, RRC CONNECTED 상태에 있는 단말은 서빙셀에 QoS 정보(예를 들어, QoS 플로우(flow) 또는 QoS 프로파일(profile))를 전송함으로써 기지국으로부터 사이드링크 무선 베어러(Sidelink Radio Bearer, SLRB) 설정 정보를 수신할 수 있다. 추가적인 예시로서, RRC CONNECTED 상태에 있는 단말은 서빙셀에 트래픽 패턴을 나타내는 단말 보조 정보(UE assistance Information)를 전송함으로써 기지국으로부터 하나 이상의 기설정된 자원에 대한 정보를 수신할 수 있다. 추가적인 예시로서, RRC CONNECTED 상태에 있는 단말은 사이드링크 자원 할당을 위해 기지국으로 CBR(Channel Busy Ratio) 측정 값, 위치 정보 등을 보고할 수 있다.
예를 들어, 단말이 RRC IDLE 상태 또는 RRC INACTIVE 상태일 때, 기지국은 시스템 정보를 통해 SLRB 설정 정보를 제공할 수 있다.
예를 들어, NG-RAN 커버리지 밖에 있는 단말에 대해서 SLRB 설정 정보가 사전 설정(preconfigured) 될 수 있다.
예를 들어, 단말은 핸드오버 시, 타겟 셀의 예외 풀(exceptional pool)에 기초하여 사이드링크 송신 및 수신을 수행할 수 있다.
도 7은 본 개시가 적용될 수 있는 V2X 통신의 구조를 설명하기 위한 도면이다.
각각의 V2X 단말은 어플리케이션 계층, V2X 계층, 그리고 AS(Access Stratum) 계층을 포함할 수 있다.
송신 단말의 어플리케이션 계층은 각각의 V2X 메시지에 대한 PC5 QoS 파라미터를 설정하여 V2X 계층으로 전달할 수 있다.
송신 단말의 V2X 계층은 상위계층 파라미터에 기반하여 패킷의 V2X 서비스를 확인하고, 이에 해당하는 하나 이상의 전송 프로파일(Tx Profile)을 결정할 수 있다. 여기서, 상위계층 파라미터는 PSID(Provider Service Identifier) 또는 ITS-AID(Intelligent Transport System-Application Identifier)와 같은 서비스 ID 및/또는 QoS 파라미터를 포함할 수 있다. 결정된 하나 이상의 전송 프로파일에 따라서 V2X 계층은 LTE 및/또는 NR PC5 AS 계층에 패킷을 전달할 수 있다.
송신 단말의 AS 계층은 전달받은 패킷의 QoS 정보를 확인하여 이에 해당하는 SLRB에 상기 패킷을 매핑시킬 수 있다. AS 계층은 프로토콜 스택(즉, PDCP(Packet Data Convergence Protocol, RLC(Radio Link Control), MAC(Medium Access Control, PHY(Physical) 계층들)을 통해 패킷을 전달하고, 이에 따라 해당 패킷이 전송된 준비 및 전송이 수행될 수 있다.
수신 단말에서는 AS 계층을 통하여 수신된 패킷이 V2X 계층 및 어플리케이션 계층으로 전달될 수 있다.
AS 계층의 구체적인 구성은 도 8을 참조하여 설명한다.
도 8은 본 개시가 적용될 수 있는 PC5 인터페이스의 프로토콜 스택을 예시적으로 나타내는 도면이다.
도 8(a)를 참조하면, 단말의 PC5 인터페이스의 제어 평면(PC5-C)에 대한 AS 프로토콜 스택은 RRC, PDCP, RLC, MAC 및 PHY 계층을 포함할 수 있다. 도 8(b)를 참조하면, 단말의 PC5 인터페이스의 사용자 평면(PC5-U)에 대한 AS 프로토콜 스택은 SDAP(Service Data Adaptation Protocol), PDCP, RLC, MAC 및 PHY 계층을 포함할 수 있다.
MAC 계층은 무선자원선택, 패킷 필터링, 상향링크와 사이드링크 간의 우선순위 처리, 사이드링크 HARQ(Hybrid Automatic Repeat reQuest) 전송, 사이드링크 LCP(Link Control Protocol), 사이드링크 SR(Scheduling Request), 사이드링크 BSR(Buffer Status Report) 등을 수행할 수 있다. 또한, MAC 계층은 사이드링크 논리 채널을 기반으로 LCP를 수행할 수 있다. 사이드링크 논리 채널은 제어 정보가 전송되는 SCCH(Sidelink Control Channel)와 사용자 정보가 전송되는 STCH(Sidelink Traffic Channel) 두 가지가 사용될 수 있으며, 상기 논리 채널은 SL-SCH(Sidelink-Shared Channel) 전송 채널에 매핑될 수 있다.
RLC 계층은 RLC SDU(Service Data Unit)의 분할 및 재조립 기능과 RLC SDU 폐기 기능 등을 수행할 수 있다. 또한, RLC 계층은 RLC UM(Unacknowledged Mode) 또는 RLC AM(Acknowledged Mode) 모드를 지원할 수 있다. 유니캐스트 전송에는 UM 또는 AM 모드가 사용되고, 그룹캐스트 또는 브로드캐스트 전송에는 UM 모드가 사용될 수 있다.
PDCP 계층은 타이머 기반의 SDU 폐기 기능을 수행할 수 있다.
SDAP 계층은 QoS 플로우와 SLRB 간의 매핑을 수행할 수 있다.
RRC 계층은 PC5 인터페이스를 통해 단말 간 PC5-RRC 메시지를 전송할 수 있다. 보다 구체적으로, 단말은 PC5-RRC 메시지를 통해 단말 캐퍼빌리티(UE capability) 정보와 AS 계층 설정 정보를 교환할 수 있다. 상기 정보는 단말 컨텍스트(UE context)로 저장될 수 있으며, 단말은 PC5-RRC 연결 하에서 예정된 서비스를 위해 저장된 사이드링크 UE context를 사용할 수 있다.
도 9 및 도 10은 사이드링크 전송 방식을 설명하기 위한 도면이다.
도 9를 참조하면, 유니캐스트 전송은 하나의 단말(910)이 다른 하나의 단말(920)로 메시지를 전송하는 것을 의미할 수 있다. 즉, 유니캐스트 전송은 일-대-일 전송을 의미할 수 있다.
브로드캐스트 전송은 수신 단말의 서비스 지원 여부와 무관하게 모든 단말에게 메시지를 전송하는 방식일 수 있다. 도 9에서 하나의 단말(930)은, 복수의 수신 단말(940, 950, 960)이 서비스를 지원하는지 여부와 무관하게 메시지를 전송할 수 있다.
도 10을 참조하면, 그룹캐스트 전송 방식은 그룹에 소속된 다수의 단말에게 메시지를 보내는 방식일 수 있다. 예를 들어, 그룹 A에 포함된 단말(1010)은 그룹캐스트 방식을 통해 그룹 A에 포함된 수신 단말들(1020, 1030)로 메시지를 전송할 수 있다. 여기서, 단말(1010)이 전송하는 메시지는 그룹 B에 포함된 수신 단말들에게는 전송되지 않으므로, 이 점에서 그룹캐스트와 브로드캐스트 방식이 구별될 수 있다. 한편, 그룹 B에 포함된 단말(1030)은 그룹캐스트 방식을 통해 그룹 B에 포함된 수신 단말들(1040, 1050)로 메시지를 전송할 수 있다.
유니캐스트 및 그룹캐스트 전송 방식이 새로운 V2X 서비스를 위해서 적용될 수 있다. 예를 들어, 새로운 V2X 서비스를 지원하기 위해서 낮은 지연시간, 높은 신뢰성이 요구될 수 있는데, 브로드캐스트 기반으로 정보를 공유하는 경우에는 이러한 요구사항을 만족하기 어려울 수 있다. 따라서, NR V2X에서는 브로드캐스트 방식 외에도 차량 간의 고속 데이터 전송을 처리하기 위해 새로운 양방향 전달 메커니즘인 유니캐스트 및/또는 그룹캐스트를 지원해야 할 필요가 있다.
표 1은 새로운 V2X 서비스를 포함하는 유스케이스의 예시들을 나타낸다.
Figure PCTKR2021002984-appb-T000001
전술한 V2X 서비스와 마찬가지로, 인터렉티브 서비스 및 AR, VR과 같은 대용량 근거리 멀티미디어 서비스를 위한 새로운 유스케이스가 적용될 수 있다. 따라서, 단말간 통신을 위해서 전술한 바와 같은 새로운 V2X 서비스는 물론 대용량 근거리 멀티미디어 서비스에 대한 다양한 QoS 정보를 고려할 필요가 있다. 즉, 단말간 통신에서 다양한 서비스를 위한 QoS 요구사항을 지원하기 위하여, 단말간 통신에서의 QoS 관리 동작을 새롭게 정의하는 것이 요구된다.
이하에서는 단말간 통신에서의 QoS 관리 동작에 대해서 설명한다.
QoS 관리는 자원 할당, 혼잡 제어, 장치 내 공존, 전력 제어 및 SLRB 설정의 측면에서 V2X 통신에 관련될 수 있다. 사이드링크 유니캐스트, 그룹캐스트 및 브로드캐스트의 경우, V2X 패킷의 QoS 파라미터가 상위 계층에 의해 AS에 제공될 수 있으며, 이러한 QoS 파라미터는 트래픽 우선순위, 대기시간, 신뢰성, 최소 요구 통신 범위, 데이터 속도 등에 대한 요구사항을 포함할 수 있다. QoS 정보에 따라 단말에 SLRB가 설정될 수 있다.
도 11 내지 도 13은 본 개시가 적용될 수 있는 SLRB 설정 방법의 예시들을 설명하기 위한 도면이다.
도 11은 RRC CONNECTED 상태의 단말에서 SLRB가 설정되는 예시에 해당한다.
단말이 NG-RAN 커버리지 내에 있는 경우, NR 사이드링크 통신 및/또는 V2X 사이드링크 통신은 전용 시그널링 또는 시스템 정보를 통해 NG-RAN에 의해 설정 및 제어될 수 있다.
단계 0에서 서비스 권한 부여 및 프로비저닝 절차를 통해 PC5 QoS 프로파일(예를 들어, 특정 PC5 QoS 파라미터 집합 및 각각의 PC5 QoS 플로우에 대한 PC5 QoS 규칙)이 단말에게 미리 제공될 수 있다. 또한, 이와 유사하게 각각의 QoS 플로우에 대한 PC5 QoS 프로파일도 기지국(예를 들어, gNB/ng-eNB)에 의해 단말에게 미리 제공될 수 있다.
단계 1에서 패킷이 단말의 AS 계층에 전달되면, 단계 2에서 단말은 단계 0에서 설정된 PC5 QoS 규칙에 기반하여 관련 PC5 QoS 플로우(들)의 식별자(즉, PC5 QFI(QoS Flow Identifier)(들)를 도출할 수 있다. 단계 3에서 단말은 단계 2에서 도출된 PC5 QFI를 단계 3에서 기지국에 전송할 수 있다.
기지국은 단계 0에서 5GC로부터의 프로비저닝에 기초하여 보고된 PC5 QFI(들)의 QoS 프로파일을 도출할 수 있다. 단계 4에서 기지국은 상기 PC5 QFI에 관련된 SLRB 설정 정보를 RRC 전용 시그널링을 통해 단말에게 전송할 수 있다. 상기 SLRB 설정 정보는 SLRB 매핑, SDAP/PDCP/RLC/LCH 설정 등에 대한 PC5 QoS 플로우 등을 포함할 수 있다.
단계 5에서, 단말의 AS 계층은 기지국으로부터 제공된 설정에 따라 패킷의 PC5 QFI (들)과 관련된 SLRB(들)를 설정하고, 사용 가능한 패킷을 설정된 SLRB(들)에 매핑할 수 있다. 이후, 단말은 단계 6에서 사이드링크 유니캐스트, 그룹캐스트 또는 브로드캐스트 전송을 수행할 수 있다.
도 12는 네트워크 커버리지 밖에 위치하는 단말에서 SLRB가 설정되는 예시에 해당한다.
단계 0에서 PC5 QoS 규칙과 각각의 PC5 QoS 플로우에 대한 SLRB 설정 정보는 사전에 설정될 수 있다. 단계 1 내지 단계 3에서, 단말의 AS 계층에 패킷이 전달되면, 단말은 패킷의 PC5 QoS 플로우 식별자를 도출하고, 사전 설정 정보에 따라 패킷의 PC5 QFI(들)과 관련된 SLRB(들)을 설정하고, 사용 가능한 패킷을 설정된 SLRB(들)에 매핑할 수 있다. 이후, 단말은 단계 4에서 사이드링크 유니캐스트, 그룹캐스트 또는 브로드캐스트 전송을 수행할 수 있다.
도 11 또는 도 12와 관련된 추가적인 예시로서, 단말은 PC5 QoS에 대한 PC5 QoS 플로우 식별자를 단말 스스로 할당(self-assign)할 수도 있다. 이 경우, 기지국은 단말이 보고한 PC5 QoS 플로우 식별자만으로 해당 PC5 QoS 프로파일을 알 수 없다. 따라서, 기지국은 PC5 QoS 프로파일을 기반으로 SLRB를 설정할 수 있다. 상기 SLRB 설정 정보는 RRC 전용 시그널링을 통해 단말에게 전송될 수 있으며, QoS 프로파일에 따른 SLRB 매핑 정보, SDAP/PDCP/RLC/LCH 설정 정보를 포함할 수 있다. 단말의 AS 계층은 기지국으로부터 제공된 설정에 따라 패킷의 QoS 프로파일과 관련된 SLRB(들)을 설정하고, 사용 가능한 패킷을 설정된 SLRB(들)에 매핑할 수 있다. 이후, 단말은 사이드링크 유니캐스트, 그룹캐스트 또는 브로드캐스트 전송을 수행할 수 있다.
도 13은 RRC IDLE 또는 RRC INACTIVE 상태의 단말에서 SLRB가 설정되는 예시에 해당한다.
단계 0에서 기지국은 V2X 특정 SIB(System Information Block)를 사용하여, 사용 가능한 각각의 PC5 QoS 프로파일과 관련된 SLRB 설정을 브로드캐스트할 수 있다. 단계 1과 2에서, 단말은 SIB를 통해 SLRB 설정 정보를 확인하고, 이에 따라 사용 가능한 패킷의 QoS 프로파일에 대응하는 SLRB(들)를 설정하고, 해당 패킷을 설정된 SLRB(들)에 매핑할 수 있다. 이후, 단말은 단계 4에서 사이드링크 유니캐스트, 그룹캐스트 또는 브로드캐스트 전송을 수행할 수 있다.
이하에서는, 단말간 통신에서의 자원 할당 모드의 구체적인 동작에 대해서 설명한다. 이하의 설명에서 모드 1은 네트워크 스케줄링 모드에 해당하고, 모드 2는 비네트워크 스케줄링 모드(또는 단말 자율 자원 할당 모드)에 해당한다.
모드 1으로 동작하는 단말에 대해서, 기지국이 단말간 통신을 위해 해당 단말에게 적용할 수 있는 자원할당 방식은, 동적 자원 할당 방식과 설정된 그랜트(configured grant) 방식을 포함할 수 있다. 여기서, 설정된 그랜트 방식은 그랜트-프리(Grant-Free, GF) 방식 및 반-영구적 스케줄링(Semi-Persistent Scheduling, SPS) 방식을 포함할 수 있으며, 각각 설정된 그랜트 타입 1 및 설정된 그랜트 타입 2로 칭할 수 있다.
동적 자원 할당 방식에서 기지국은 소정의 DCI를 통해 제 1 단말에게 단말간 통신에 필요한 자원을 할당해 줄 수 있다.
여기서, 제 1 단말은 DCI 정보를 기반으로 사이드링크 제어 정보를 결정하고, 결정된 사이드링크 제어 정보를 제 1 SCI 및 제 2 SCI로서 생성할 수 있다. 제 1 단말은 제 1 SCI를 PSCCH를 통하여 제 2 단말로 전송하고, 제 2 SCI를 PSSCH 전송 가능 자원 중 일부를 이용하여 제 2 단말로 전송할 수 있다.
제 2 단말은 제 1 단말로부터 수신된 제 1 및 제 2 SCI를 기반으로, 제 1 단말이 PSSCH를 전송하려는 사이드링크 자원을 식별할 수 있다. 제 2 단말은 식별된 자원 상에서 제 1 단말로부터의 사이드링크 데이터를 PSSCH를 통하여 수신할 수 있다.
전술한 DCI 정보는 일회성이므로, 제 1 단말이 제 2 단말에게 새로운 데이터 전송을 실시하고자 하는 경우, 반드시 기지국으로부터 추가 자원할당 정보를 DCI를 통해 수신하여야 한다.
설정된 그랜트 방식에서의 자원 할당 방식은 다음과 같다.
설정된 그랜트 타입 1(즉, GF 방식)의 경우, 기지국은 사이드링크의 무선자원에 대한 정보, 해당 무선자원 할당의 주기 및 오프셋과 같은 반복적 할당 등에 대한 정보(이하, GF 전송 자원 할당 정보)와 함께, 해당 GF 전송 자원 할당 정보에 대한 활성화를 지시하는 정보(이하, GF 전송 자원 활성화 정보)를 RRC 시그널링을 통해 제 1 단말에게 전송할 수 있다.
제 1 단말은 기지국에 의해서 활성화된 GF 전송 자원 할당 정보를 기반으로 사이드링크 제어 정보를 결정하고, 결정된 사이드링크 제어 정보를 제 1 SCI 및 제 2 SCI로서 생성할 수 있다. 제 1 단말은 제 1 SCI를 PSCCH를 통하여 제 2 단말로 전송하고, 제 2 SCI를 PSSCH 전송 가능 자원 중 일부를 이용하여 제 2 단말로 전송할 수 있다.
제 2 단말은 제 1 단말로부터 수신된 제 1 및 제 2 SCI를 기반으로, 제 1 단말이 PSSCH를 전송하려는 사이드링크 자원을 식별할 수 있다. 제 2 단말은 식별된 자원 상에서 제 1 단말로부터의 사이드링크 데이터를 PSSCH를 통하여 수신할 수 있다.
제 1 단말이 기지국으로부터 수신한 GF 전송 자원 할당 정보는, 활성화된 후 GF 전송 자원의 비활성화를 지시하는 메시지를 별도의 RRC 시그널링을 통하여 수신하기 전까지는 유효하게 적용된다. 따라서, GF 자원 할당 정보가 유효한 또는 활성화되어 있는 동안, 제 1 단말이 제 2 단말에게 새로운 데이터 전송을 실시하고자 하는 경우, 상기 GF 자원 할당 정보에 따라서 다음 주기에 도래하는 사이드링크 무선자원을 이용하여 데이터를 전송할 수 있다.
만약 제 1 단말이 제 2 단말에게 PSSCH 데이터 전송을 수행한 후, 제 2 단말로부터 해당 데이터에 대한 HARQ NACK 메시지를 수신한 경우, 해당 데이터에 대한 재전송이 수행될 수 있다. 여기서, 재전송을 위한 사이드링크 자원은, GF 전송 자원 할당 정보에 의해 지시되는 사이드링크 자원이 아니라, 동적 자원 할당 방식으로 제 1 단말이 기지국으로부터 새롭게 할당받을 수 있다.
다음으로, 설정된 그랜트 타입 2(즉, SPS 방식)의 경우, 기지국은 사이드링크의 무선자원에 대한 정보, 해당 무선자원 할당의 주기 및 오프셋과 같은 반복적 할당 등에 대한 정보(이하, SPS 전송 자원 할당 정보)를 RRC 시그널링을 통해 제 1 단말에게 전송할 수 있다.
이후 기지국은 DCI 등의 별도의 시그널링을 통하여, SPS 전송 자원 할당 정보의 활성화를 지시하는 정보(이하, SPS 전송 자원 활성화 정보)를 제 1 단말에게 전송할 수 있다.
제 1 단말은 기지국에 의해서 활성화된 SPS 전송 자원 할당 정보를 기반으로 사이드링크 제어 정보를 결정하고, 결정된 사이드링크 제어 정보를 제 1 SCI 및 제 2 SCI로서 생성할 수 있다. 제 1 단말은 제 1 SCI를 PSCCH를 통하여 제 2 단말로 전송하고, 제 2 SCI를 PSSCH 전송 가능 자원 중 일부를 이용하여 제 2 단말로 전송할 수 있다.
제 2 단말은 제 1 단말로부터 수신된 제 1 및 제 2 SCI를 기반으로, 제 1 단말이 PSSCH를 전송하려는 사이드링크 자원을 식별할 수 있다. 제 2 단말은 식별된 자원 상에서 제 1 단말로부터의 사이드링크 데이터를 PSSCH를 통하여 수신할 수 있다.
제 1 단말이 기지국으로부터 수신한 SPS 전송 자원 할당 정보는, 활성화된 후 SPS 전송 자원의 비활성화를 지시하는 메시지를 DCI 등의 별도의 시그널링을 통하여 수신하기 전까지는 유효하게 적용된다. 따라서, SPS 자원 할당 정보가 유효한 또는 활성화되어 있는 동안, 제 1 단말이 제 2 단말에게 새로운 데이터 전송을 실시하고자 하는 경우, 상기 SPS 자원 할당 정보에 따라서 다음 주기에 도래하는 사이드링크 무선자원을 이용하여 데이터를 전송할 수 있다.
전술한 GF 또는 SPS를 포함하는 설정된 그랜트 방식에 있어서, 제 1 단말이 제 2 단말에게 PSSCH 데이터 전송을 수행한 후, 제 2 단말로부터 해당 데이터에 대한 HARQ NACK 메시지를 수신한 경우, 해당 데이터에 대한 재전송이 수행될 수 있다. 여기서, 재전송을 위한 사이드링크 자원은, GF/SPS 전송 자원 할당 정보에 의해 지시되는 사이드링크 자원을 이용하지 않고, 동적 자원 할당 방식으로 제 1 단말이 기지국으로부터 새롭게 할당받을 수 있다.
다음으로, 모드 2에서는 단말간 통신을 위한 자원을 단말 스스로 선택하므로, 기지국으로부터 동적으로 또는 설정된 그랜트 방식으로 자원을 할당받을 필요는 없다. 모드 2에서는 제 1 단말이 자원을 선택하기 절차가 수행될 수 있다. 예를 들어, 모드 2의 세분화된 하위 모드에 따라서, 제 1 단말이 필요한 자원을 센싱할 수도 있고, 다른 단말의 자원 선택을 보조할 수도 있고, 미리 설정된 자원을 이용할 수도 있고, 다른 단말에게 자원을 할당할 수도 있다.
모드 2의 경우에도 제 1 단말은 선택한 사이드링크 자원 상에서 전송될 PSSCH에 대한 스케줄링 정보를, 제 1 및 제 2 SCI로서 생성하여 제 2 단말에게 전송할 수 있다.
이하에서는, 전술한 다양한 자원 할당 방식에 있어서 제 1 단말이 제 2 단말에게 전송하는 제 1 및 제 2 SCI에 대해서 구체적으로 설명한다.
제 1 SCI는 첫 번째 단계 SCI(1st stage SCI)라고도 하며, 예를 들어, SCI 포맷 0-1을 사용할 수 있다. 제 1 SCI는 PSCCH를 통해 전송되는 SCI에 해당할 수 있다.
제 1 SCI는, 우선순위(Priority), PSSCH에 대한 시간 및/또는 주파수 자원 할당, 자원 예약구간, DMRS 패턴, 제 2 SCI 포맷, MCS 등의 정보를 포함할 수 있다.
여기서, 제 2 SCI 포맷 정보는, PSSCH를 통해 전송되는 제 2 SCI의 포맷을 지시할 수 있다. 지시되는 포맷에 따라서 제 2 SCI의 크기가 상이하게 결정될 수 있다. 이에 따라, PSSCH 내에서 제 2 SCI를 위해 할당되는 시간 및/또는 주파수 자원의 크기가 변경될 수 있다. 예를 들어, 2개 심볼 및 10개 RB(resource block)의 자원이 필요한 포맷, 또는 3개 심볼 및 7개 RB가 필요한 포맷 등, 제 2 SCI의 포맷에 따라서 필요한 자원량이 상이하게 설정될 수 있다.
다음으로, 제 2 SCI는 두 번째 단계 SCI(2nd stage SCI)라고도 하며, 예를 들어, SCI 포맷 0-2를 사용할 수 있다. 제 2 SCI는 PSSCH를 통해 전송되는 SCI에 해당할 수 있다.
제 2 SCI는, HARQ 프로세스 식별자(HARQ process ID), NDI(New data indicator), RV(Redundancy Version), 소스 식별자(Source ID), 목적지 식별자(Destination ID), CSI 보고 요청 지시자(Channel State Information report request indicator) 등의 정보를 포함할 수 있다. 추가적으로, 제 1 SCI에 의해서 제 2 SCI가 특정 타입의 그룹캐스트(예를 들어, HARQ NACK 전송 자원을 하나의 그룹 내 모든 단말들이 공유하고, NACK인 경우에만 상기 공유 자원(또는 피드백 채널)을 통하여 HARQ 피드백을 전송하며, ACK인 경우에는 HARQ 피드백을 전송하지 않는 그룹캐스트 방식)에 해당하는 포맷을 가지는 것으로 지시되는 경우, 제 2 SCI는 영역 식별자(zone ID), 통신 범위 요구사항(communication range requirement) 정보 등을 더 포함할 수 있다.
여기서, NDI는 1 비트 크기이며, 이전 전송과 동일한 데이터의 전송인 경우에는 토글되지 않고, 이전 전송과 다른 새로운 데이터인 경우에는 토글되는 값을 가질 수 있다.
RV는 HARQ 재전송 시 미리 정해진 채널코딩 방식과 전송 데이터 구분에 따라 설정된 데이터 영역을 지시하기 위한 값에 해당한다.
소스 ID는 사이드링크 데이터를 전송하는 단말의 식별자로서, 전체 24 비트 크기의 Source L2 ID 중 최하위(LSB) 8비트에 해당한다.
목적지 ID는 사이드링크 데이터를 수신하는 단말의 식별자로서, 전체 24 비트 크기의 Destination L2 ID 중 최하위(LSB) 16비트에 해당한다.
CSI 보고 요청 지시자는 1비트 크기이며, 0인 경우 사이드링크 채널에 대한 RI(Rank Indicator), CQI(Channel Quality Indicator) 등을 포함하는 CSI 보고가 요청되지 않고, 1인 경우 CSI 보고가 요청되는 것을 나타낸다.
영역 ID는 지리적 위치에 따라 구분된 영역 각각에 대한 지시자에 해당한다.
통신 범위 요구사항은, 해당 서비스의 QoS를 고려하여 일반적으로 원활한 통신이 가능한 최소 도달 거리에 해당한다.
이하에서는, 불연속 수신(Discontinuous Reception, DRX)의 기본적인 동작 및 관련 파라미터에 대해서 설명한다. 이하에서 설명하는 DRX 동작은 네트워크(또는 기지국)와 단말 간의 링크에 대한 DRX 동작과, 단말간 통신을 위한 링크에 대한 DRX 동작을 포함할 수 있다.
먼저, DRX의 기본적인 동작 및 관련 파라미터에 대해서 설명한다. 이러한 DRX 동작 중의 일부 또는 전부는 본 개시에 따른 단말간 통신에 대해서 적용될 수 있다.
MAC 개체(entity)에 대해서 RRC 시그널링에 의해 DRX 동작이 설정될 수 있다. 이러한 DRX 동작은 단말(UE)의 MAC 개체의 PDCCH 모니터링의 활성화를 제어하기 위한 것이다. PDCCH 모니터링은, 특정 PDCCH(예를 들어, C-RNTI(Cell-Radio Network Temporary Identifier), CS-RNTI(Configured Scheduling-RNTI), INT-RNTI(Interruption-RNTI), SFI-RNTI(Slot Format Indication-RNTI), SP-CSI-RNTI(Semi-Persistent CSI-RNTI), TPC-PUCCH-RNTI(Transmit Power Control-Physical Uplink Control Channel-RNTI), TPC-PUSCH-RNTI(TPC-Physical Uplink Shared Channel-RNTI), SL-RNTI(Sidelink-RNTI), SL-CS-RNTI(Sidelink- Configured Scheduling-RNTI) 또는 TPC-SRS-RNTI(TPC-Sounding Reference Symbol-RNTI)로 스크램블링되어 전송되는 PDCCH)에 한정된 모니터링으로 정의될 수 있다. 그러나, 단말에 대해 DRX가 설정되어 있다고 해서, 해당 단말이 상기 특정 PDCCH 모니터링 동작만을 하도록 제한되지는 않는다.
RRC는 다음의 파라미터들을 설정함으로써 DRX 동작을 제어할 수 있다:
- drx-onDurationTimer: DRX 사이클(Cycle)의 시작시점부터 주기적인 PDCCH 기회(occasion) 구간을 정의하는 타이머;
- drx-SlotOffset: drx-onDurationTimer의 시작시점에 대한 지연 값;
- drx-InactivityTimer: 해당 MAC 개체에 대하여 새로운 상향링크 또는 하향링크 전송이 있음을 지시하는 PDCCH가 포함된 PDCCH occasion 이후 구간을 정의하는 타이머;
- drx-RetransmissionTimerDL (브로드캐스트 HARQ 프로세스를 제외한 하향링크(DL) HARQ 프로세스마다 운영): 하향링크 재전송을 수신할 때까지의 최대 구간을 정의하는 타이머;
- drx-RetransmissionTimerUL (상향링크(UL) HARQ 프로세스마다 운영): 상향링크 재전송을 위한 자원할당정보(grant)를 수신할 때까지의 최대 구간을 정의하는 타이머;
- drx-RetransmissionTimerSL (사이드링크(SL) HARQ 프로세스마다 운영): 기지국으로부터 사이드링크 재전송을 위한 자원할당정보(grant)를 수신할 때까지의 최대 구간을 정의하는 타이머;
- drx-LongCycleStartOffset: 롱(Long) DRX 사이클과 롱 및 쇼트(short) DRX 사이클이 시작하는 서브프레임을 정의하는 drx-StartOffset 값;
- drx-ShortCycle (optional): Short DRX cycle;
- drx-ShortCycleTimer (optional): 단말이 반드시 Short DRX cycle을 사용해야 하는 구간;
- drx-HARQ-RTT-TimerDL (브로드캐스트 HARQ 프로세스를 제외한 하향링크(DL) HARQ 프로세스마다 운영): MAC 개체가 기대하는 HARQ 재전송을 위한 하향링크 자원할당이 있을 수 있는 시점 전 최소 구간;
- drx-HARQ-RTT-TimerUL (상향링크(UL) HARQ 프로세스마다 운영): MAC 개체가 기대하는 HARQ 재전송을 위한 상향링크 자원할당이 있을 수 있는 시점 전 최소 구간;
- drx-HARQ-RTT-TimerSL (사이드링크(SL) HARQ 프로세스마다 운영): MAC 개체가 기대하는 기지국으로부터 사이드링크에 대한 HARQ 재전송을 위한 자원할당이 있을 수 있는 시점 전 최소 구간;
- 활성 시간(active time): MAC 개체가 PDCCH를 모니터링하는 시간;
- DRX 사이클(DRX Cycle): 온-듀레이션(on duration)이 주기적으로 반복되는 구간으로 정의되며, 예를 들어, 후술하는 도 14를 참조하면 해당 on duration 종료부터 DRX Cycle 종료까지 비활성화 구간이 주기적으로 반복될 수 있음;
- PDCCH 기회(PDCCH occasion): 하나 또는 연속적인 OFDM(Orthogonal Frequency Division Multiplex) 심볼들의 수로 표현되는 시간 구간으로 정의되며, PDCCH를 모니터링하기 위해 MAC 개체에 설정됨.
전술한 SL에 대한 타이머 관련 파라미터들은 기지국과 단말간 무선링크(예를 들어, Uu 링크)를 위한 DRX 설정 정보에 포함될 수 있다. 예를 들어, 해당 단말이 SL에 대한 HARQ 피드백 정보를 수신하고 이를 기반으로 하는 재전송 동작이 설정되어 있는 경우에, 전술한 SL에 대한 타이머 관련 파라미터들이 기지국과 단말간 무선링크(예를 들어, Uu 링크)를 위한 DRX 설정 정보에 포함될 수 있다.
그 외의 DRX 파라미터(들)의 값은 DRX 설정정보가 Uu 인터페이스 및 사이드링크에 따라 독립적으로 설정될 수 있다. 따라서, 이러한 DRX 파라미터(들)에 대해서 Uu 및 SL를 구별하기 위한 변수 정의는 필요하지 않을 수 있다. 즉, DRX 파라미터(들) 중에서 Uu 링크(예를 들어, DL/UL)나 SL에 관련되지 않고 정의되는 것들은, Uu 링크에 적용될 수도 있고, SL에 적용될 수도 있고, Uu 링크 및 SL에 대해서 공통으로 적용될 수도 있고, Uu 링크 및 SL 각각에 대해서 (파라미터의 명칭은 동일하더라도 파라미터 설정 과정에서 Uu에 대한 것인지 SL에 대한 것인지 구별됨) 독립적으로 적용될 수도 있다. 이와 같이, 기지국과 단말간 DRX 동작 및 파라미터 설정과 사이드링크 DRX 동작 및 파라미터 설정은 개별적으로 적용될 수 있다.
도 14는 본 개시가 적용될 수 있는 DRX 동작을 설명하기 위한 도면이다.
이하에서 설명하는 DRX 동작의 예시는 기지국과 단말간(예를 들어, Uu 링크)에 적용되는 것을 가정하여 설명한다. 예를 들어, 기지국과 단말간 DRX 동작은 단말이 기지국으로부터의 PDCCH 전송을 모니터링하는 동작과 관련하여 설명될 수 있다. 그러나, 이하의 설명이 기지국과 단말간 DRX 동작에만 제한적으로 적용되는 것은 아니며, 단말간 통신을 위한(예를 들어, 사이드링크) DRX 동작에 대해서도 동일한 설명이 적용될 수 있다. 예를 들어, 단말간 통신을 위한 DRX 동작은 제 2 단말이 제 1 단말로부터의 PSCCH 전송을 모니터링하는 동작과 관련하여 설명될 수 있다. 또한, 기지국과 단말간 DRX 동작 중에 DRX 명령(command) MAC CE(Control Element), 롱 DRX 명령 MAC CE, CSI-마스크(mask)에 관련된 동작 등은, 단말간 통신을 위한 DRX 동작에서 따로 언급하지 않더라도, 단말간 통신을 위한 DRX 동작에 동일하게 적용될 수 있다.
도 14를 참조하면 단말은 DRX cycle에 따라서 On Duration과 DRX 기회를 반복한다. 즉, DRX cycle은 On Duration을 반복하는 주기에 해당할 수 있다. On Duration은 단말이 깨어나 PDCCH 모니터링을 수행해야 하는 시간을 의미하고, DRX 기회는 단말이 슬립 상태에서 수신을 시도하지 않을 수 있는 시간을 의미한다. 예를 들어, 단말이 On Duration 동안 기지국으로부터의 유효한 제어 정보를 수신하지 않으면 DRX 동작을 수행하여 슬립할 수 있다.
이하에서는 도 14를 참조하여 전술한 DRX 동작에 대해서 보다 구체적으로 설명한다.
DRX가 설정되었을 때, 활성시간(Active Time)은 다음과 같은 동작들이 진행되는 경우를 포함한다:
- drx-onDurationTimer 또는 drx-InactivityTimer 또는 drx-RetransmissionTimerDL 또는 drx-RetransmissionTimerUL 또는 drx-RetransmissionTimerSL 타이머가 진행중일 때;
- 스케줄링 요청(SR)을 PUCCH를 통해 보냈거나, 전송이 계류중(pending)일 때.
DRX가 설정되었을 때, MAC 개체는 다음과 같이 동작할 수 있다:
1> 만일 임의의 MAC PDU를 하향링크에 설정된 자원(GF 또는 SPS)으로부터 수신하였다면:
2> 해당 MAC PDU의 HARQ process와 관련된 drx-HARQ-RTT-TimerDL를 상기 MAC PDU에 대한 DL HARQ 피드백을 포함한 전송이 끝난 후 첫번째 심볼부터 시작한다;
2> 해당 MAC PDU의 HARQ process와 관련된 drx-RetransmissionTimerDL를 중지(stop)한다.
1> 만일 임의의 MAC PDU가 상향링크에 설정된 자원(GF 또는 SPS)을 통해 송신되었다면:
2> 해당 MAC PDU의 HARQ process와 관련된 drx-HARQ-RTT-TimerUL를 상기 MAC PDU에 대한 첫번째 PUSCH 전송이 끝난 후 첫번째 심볼부터 시작한다;
2> 해당 MAC PDU의 HARQ process와 관련된 drx-RetransmissionTimerUL를 중지(stop)한다.
1> 만일 임의의 drx-HARQ-RTT-TimerDL가 만료되면:
2> 만일 해당 HARQ process의 데이터의 복호(decoding)가 실패한 경우:
3> 해당 MAC PDU의 HARQ process와 관련된 drx-RetransmissionTimerDLdrx-HARQ-RTT-TimerDL가 만료된 후 첫번째 심볼부터 시작한다.
1> 만일 임의의 drx-HARQ-RTT-TimerUL가 만료되면:
2> 해당 MAC PDU의 HARQ process와 관련된 drx-RetransmissionTimerULdrx-HARQ-RTT-TimerUL가 만료된 후 첫번째 심볼부터 시작한다.
1> 만일 DRX Command MAC CE 또는 Long DRX Command MAC CE를 수신한 경우:
2> drx-onDurationTimer를 중지한다;
2> drx-InactivityTimer를 중지한다.
1> 만일 drx-InactivityTimer가 만료되었거나 DRX Command MAC CE를 수신한 경우:
2> 만일 Short DRX cycle 이 설정되어 있는 경우:
3> drx-InactivityTimer가 만료된 후 첫번째 심볼 또는 DRX Command MAC CE의 수신이 끝난 후 첫번째 심볼에서 drx-ShortCycleTimer를 시작하거나, 진행중인 경우 해당 타이머를 재시작한다;
3> Short DRX Cycle을 사용한다.
2> 이외의 경우:
3> Long DRX cycle을 사용한다.
1> 만일 drx-ShortCycleTimer가 만료된 경우:
2> Long DRX cycle을 사용한다.
1> 만일 Long DRX Command MAC CE를 수신한 경우:
2> drx-ShortCycleTimer를 중지한다;
2> Long DRX cycle를 사용한다.
1> 만일 Short DRX Cycle이 적용되어 있으며, [(SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle); 또는
1> 만일Long DRX Cycle이 적용되어 있으며, [(SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset인 경우:
2> 서브프레임의 시작지점에서부터 drx-SlotOffset 후에 drx-onDurationTimer를 시작한다.
1> 만일 MAC 개체가 활성시간(active time)인 경우:
2> PDCCH를 모니터링한다;
2> 만일 PDCCH가 DL 전송임을 지시하는 경우:
3> 해당 MAC PDU의 HARQ process와 관련된 drx-HARQ-RTT-TimerDL를 상기 MAC PDU에 대한 DL HARQ 피드백을 포함한 전송이 끝난 후 첫번째 심볼부터 시작한다;
3> 해당 MAC PDU의 HARQ process와 관련된 drx-RetransmissionTimerDL를 중지(stop)한다.
2> 만일 PDCCH가 UL전송을 지시하는 경우:
3> 해당 MAC PDU의 HARQ process와 관련된 drx-HARQ-RTT-TimerUL를 상기 MAC PDU에 대한 첫번째 PUSCH 전송이 끝난 후 첫번째 심볼부터 시작한다;
3> 해당 MAC PDU의 HARQ process와 관련된 drx-RetransmissionTimerUL를 중지(stop)한다.
2> 만일 PDCCH가 DL의 새로운 전송임을 지시하거나 새로운 UL 전송을 지시하는 경우:
3> PDCCH 수신이 끝난 후 첫번째 심볼에서 drx-InactivityTimer를 시작하거나, 해당 타이머가 진행중인 경우 재시작한다.
1> 현재 심볼 n에서, 만일 MAC 개체가 자원할당, DRX Command MAC CE, Long DRX Command MAC CE, SR 전송 등 활성시간(active time)과 관련된 모든 조건들을 고려하였을 때 상기 심볼 n에서 4ms 이전 시점까지 활성시간이 아닌 경우:
2> 주기적 SRS(sounding reference signaling) 및 SPS SRS전송을 하지 않는다.
1> 만일 CSI-마스크(channel status information masking)가 상위계층(upper layers)에 의해 설정된 경우:
2> 현재 심볼 n에서, 만일 MAC 개체가 자원할당, DRX Command MAC CE, Long DRX Command MAC CE, SR 전송 등 활성시간(active time)과 관련된 모든 조건들을 고려하였을 때 상기 심볼 n에서 4ms 이전 시점까지 drx-onDurationTimer가 진행중이 아닌 경우:
3> PUCCH를 통한 CSI 보고를 하지 않는다.
1> 이외의 경우(otherwise):
2> 현재 심볼 n에서, 만일 MAC 개체가 자원할당, DRX Command MAC CE, Long DRX Command MAC CE, SR 전송 등 활성시간(active time)과 관련된 모든 조건들을 고려하였을 때 상기 심볼 n에서 4ms 이전 시점까지 활성시간이 아닌 경우:
3> PUCCH를 통한 CSI 및 PUSCH를 통한 SPS CSI 보고를 하지 않는다.
전술한 DRX 동작에 있어서, MAC 개체는 PDCCH 모니터링에 대한 진행여부와 상관없이 HARQ 피드백과 PUSCH를 통한 비주기적 CSI 보고 및 비주기적 SRS를 전송할 수 있다.
또한, MAC 개체는 모든 PDCCH occasion이 활성시간에 포함되는 완전한 PDCCH occasion이 아닌 구간에서는 PDCCH 모니터링을 하지 않을 수도 있다.
한편, 제 1 단말에 대해서 네트워크와 단말간 링크(예를 들어, Uu 링크, 이하, 제 1 링크)에 대한 DRX (예를 들어, 제 1 DRX) 동작이 설정될 수 있다. 또한, 상기 제 1 단말에 대해서 단말간 통신이 설정되고 단말간 통신 링크(예를 들어, 사이드링크 또는 PC5 링크, 이하, 제 2 링크)에 대한 DRX(예를 들어, 제 2 DRX) 동작이 설정될 수 있다. 즉, 제 1 단말은 제 2 단말에게 제 2 링크 상에서 사이드링크 전송을 수행하는 단말이면서, 기지국(또는 네트워크)로부터 하향링크 수신 또는 기지국으로 상향링크 전송을 수행하는 단말일 수 있다.
제 2 DRX 동작은 제 1 단말(즉, 제 2 링크 전송 단말)에 의한 제 2 단말(즉, 제 2 링크 수신 단말)에 대한 자원 할당 방식에 따른 DRX 동작을 포함한다. 예를 들어, 제 2 DRX 동작은, 제 1 단말이 제 2 단말에 대해서 동적으로 사이드링크 데이터 전송을 스케줄링하는 경우, 또는 제 1 단말이 제 2 단말에 대해서 GF 또는 SPS와 같은 설정된 그랜트 방식으로 사이드링크 데이터 전송을 스케줄링하는 경우에 있어서의 DRX 동작을 포함할 수 있다. 여기서, 전술한 제 2 단말에 대한 자원 할당 방식은, 제 1 단말에 대한 자원 할당 방식(즉, 네트워크 스케줄링 기반의 모드 1, 또는 비네트워크 스케줄링 기반의 모드 2)과 구분되어야 한다.
이하에서는, 제 1 단말에 대해서, 제 1 링크에 대한 제 1 DRX 동작을 위한 본 개시의 예시들에 대해서 설명한다.
본 개시에 따르면, 제 1 단말의 기지국과의 제 1 링크(예를 들어, Uu 링크)에 대한 제 1 DRX 동작에 있어서, HARQ 재전송에 대한 제 1 및 제 2 타이머와 관련된 동작은 다음과 같이 정의될 수 있다.
제 1 타이머는 제 1 단말이 사이드링크 HARQ 피드백 정보를 기지국으로 전송한 후 시작되어, 기지국으로부터 사이드링크 HARQ 재전송을 위한 자원 할당 정보가 수신될 것으로 기대되는 시점 전까지 동작하는 타이머일 수 있다. 즉, 제 1 타이머에 의해서 정의되는 시간 구간은, 제 1 단말이 기지국으로부터의 자원 할당 정보가 수신되지 않을 것으로 기대하는 시간 구간에 해당할 수 있다. 예를 들어, 제 1 타이머는 전술한 drx-HARQ-RTT-TimerSL에 해당할 수 있다. 즉, 제 1 단말은 사이드링크 HARQ 피드백 정보(예를 들어, NACK)를 상향링크 상에서 기지국으로 전송한 후, 제 1 타이머가 동작하는 도중에는 슬립 상태에 있을 수 있다. 또한, 제 1 타이머가 동작하는 도중에 제 1 단말은 기지국으로부터의 PDCCH(즉, 사이드링크 HARQ 재전송을 위한 자원 할당 정보를 포함하는 PDCCH)를 모니터링하지 않을 수 있다. 제 1 타이머가 만료된 후, 제 1 단말은 PDCCH 모니터링을 재개할 수 있다.
제 2 타이머는 제 1 타이머가 만료되거나 또는 제 1 단말이 HARQ 피드백 정보를 기지국으로 전송한 후 시작될 수 있고, 기지국으로부터 사이드링크 HARQ 재전송을 위한 자원 할당 정보가 수신될 것으로 예상되는 구간까지 동작하는 타이머일 수 있다. 즉, 제 2 타이머에 의해서 정의되는 시간 구간은, 제 1 단말이 기지국으로부터의 자원 할당 정보가 수신될 것으로 기대하는 시간 구간에 해당할 수 있다. 예를 들어, 제 2 타이머는 전술한 drx-RetransmissionTimerSL에 해당할 수 있다. 즉, 제 1 단말은 제 1 단말은 사이드링크 HARQ 피드백 정보(예를 들어, NACK)를 상향링크 상에서 기지국으로 전송한 후 제 1 타이머 동안 슬립하다가 깨어나서, 또는 사이드링크 HARQ 피드백 정보(예를 들어, NACK)를 상향링크 상에서 기지국으로 전송한 후, 제 2 타이머가 동작하는 도중에 제 1 단말은 기지국으로부터의 PDCCH(즉, 사이드링크 HARQ 재전송을 위한 자원 할당 정보를 포함하는 PDCCH)를 모니터링할 수 있다.
제 1 단말이 상향링크 상에서 기지국으로 전송하는 사이드링크 HARQ 피드백 정보(예를 들어, NACK)은, 제 1 단말이 제 2 단말로 전송한 사이드링크 데이터(예를 들어, PSSCH)에 대한 제 2 단말로부터의 HARQ 피드백 정보(예를 들어, NACK)에 기초한 것일 수 있다.
예를 들어, 제 1 단말은 다음과 같은 경우에 기지국으로 NACK을 지시하는 사이드링크 HARQ 피드백 정보를 전송할 수 있다:
- 유니캐스트 제 2 단말로부터 NACK 신호를 수신한 경우;
- 유니캐스트 제 2 단말로부터 ACK 또는 NACK 신호를 수신하지 못한 경우;
여기서, 제 1 단말은 제 2 단말에게 PSCCH 및 PSSCH를 전송하면서 사이드링크 피드백 채널의 특정 무선자원을 ACK 또는 NACK 신호를 전송하기 위한 자원으로 지정할 수 있다. 예를 들어, 제 1 단말이 제 2 단말에게 전송한 PSSCH의 자원위치를 기준으로, 최소 ACK 전송 간격 정보에 따라 제 2 단말이 ACK/NACK 신호를 전송할 시간 및 주파수 자원이 결정될 수 있다. 제 1 단말은 PSSCH 자원 위치 및 최소 ACK 전송 간격 정보를 모두 알고 있으므로, 자신이 전송한 사이드링크 데이터(즉, PSSCH)에 대한 ACK 또는 NACK이 언제 어떤 주파수 위치에서 제 2 단말에 의해서 전송될 것인지를 알 수 있다. 따라서 제 1 단말은 제 2 단말이 아무런 사이드링크 HARQ 피드백 정보를 전송하지 않은 경우도 파악할 수 있다.
- 그룹캐스트 제 2 단말로부터 NACK 신호를 수신한 경우.
제 1 단말이 기지국으로부터 수신한 하향링크 데이터(예를 들어, PDSCH)에 대한 HARQ 피드백과, 제 1 단말이 제 2 단말로 전송한 사이드링크 데이터(예를 들어, PSSCH)에 대한 SL HARQ 피드백을 제 2 단말로부터 수신한 후 이를 제 1 단말이 상향링크 상에서(예를 들어, PUCCH 및/또는 PUSCH를 통하여) 기지국으로 전달하는 HARQ 피드백은 구별되어야 한다. 이하에서는, 제 1 단말이 제 2 단말로부터 수신한 HARQ 피드백 정보(예를 들어, NACK)를 제 1 단말이 PUCCH 및/또는 PUSCH 내의 상향링크제어정보(UCI) 형태로 포함하여 기지국으로 전송하는 것을, "SL HARQ 피드백을 포함한 상향링크 전송"이라고 칭한다.
제 1 단말의 SL HARQ 재전송에 관련된 DRX 동작에 대한 본 개시의 예시들에 대해서 이하에서 설명한다.
이하의 예시들에서 제 1 단말이 SL 상에서 전송할 데이터(즉, SL MAC PDU)를 가지는 경우, 해당 SL MAC PDU에 대한 HARQ 프로세스(process)(예를 들어, SL HARQ process)가 결정되는 것으로 가정한다.
또한, 제 1 단말이 전송하는 SL 데이터는, SL 전송을 지시하는 PDCCH(예를 들어, SL-RNTI로 스크램블링된 PDCCH)를 통해 기지국으로부터 제공되는 SL 그랜트(예를 들어, PSCCH 및/또는 PSSCH 스케줄링 정보)에 기초하여 제 2 단말로 전송될 수 있다.
제 1 단말에 대해서 DRX가 설정된 경우, 활성시간(Active Time)은 제 2 타이머가 동작 중인 경우를 포함할 수 있다. 여기서, 제 1 단말의 활성 시간은 제 2 타이머가 동작 중인 경우만으로 제한되는 것은 아니다.
제 1 단말에 대해서 DRX가 설정된 경우, 제 1 단말의 MAC 개체는 다음과 같이 동작할 수 있다:
1> 만일 SL 전송을 지시하는 PDCCH를 기지국으로부터 수신하면:
2> 해당 SL MAC PDU의 HARQ process와 관련된 제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)를, 상기 SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 끝난 후 첫 번째 시간단위부터 시작할 수 있다.
2> 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 중지(stop)할 수 있다.
1> 만일 임의의 제 1 타이머(drx-HARQ-RTT-TimerSL)가 만료되면,
2> 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를, 제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)가 만료된 후 첫 번째 시간단위부터 시작할 수 있다.
2> 제 2 타이머가 진행 중인 구간에서만 SL-RNTI로 스크램블링된 PDCCH 모니터링이 허용될 수도 있다.
1> 만일 SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 수행된 경우:
2> 해당 HARQ 피드백(예를 들어, NACK)의 자원 위치에 기초하여, 관련된 HARQ process를 기지국이 식별할 수 있는 경우:
3> 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를, 상기 SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 끝난 후 첫 번째 시간단위부터 시작할 수 있다.
2> 해당 HARQ 피드백(예를 들어, NACK)의 자원 위치에 기초하여, 관련된 HARQ process를 기지국이 식별할 수 없는 경우:
3> 사이드링크에 대한 모든 HARQ process들에 대해서 단일의 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를, 상기 SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 끝난 후 첫 번째 시간단위부터 시작할 수 있다.
2> 만일 SL 전송을 지시하는 PDCCH를 기지국으로부터 수신하면 (예를 들어, 해당 HARQ 피드백(예를 들어, NACK)에 따라서 해당 SL MAC PDU의 재전송을 위한 SL 그랜트를 포함하는 PDCCH를 기지국으로부터 수신한 경우):
3> 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 중지(stop)할 수 있다.
도 15는 본 개시가 적용될 수 있는 DRX 동작의 일례를 설명하기 위한 도면이다.
도 15의 예시는 제 1 단말에 대해서 제 2 단말과의 제 2 링크(예를 들어, 사이드링크) 상에서의 제 2 DRX가 설정된 경우의, 제 1 단말의 기지국과의 제 1 링크(예를 들어, Uu 링크)에 대한 제 1 DRX 동작에 해당할 수 있다.
단계 S1510에서 제 1 단말은 SL 데이터 전송을 위한 자원을 기지국에게 요청할 수 있다. 예를 들어, 제 1 단말은 제 2 단말에게 전송할 신규 데이터(또는 전송 블록(TB))가 상위계층으로부터 MAC 계층에 전달된 경우, 기지국에게 자원 요청 정보를 전송할 수 있다.
예를 들어, 자원 요청 정보는 SR(Scheduling Request), BSR(Buffer Status Report) 등일 수 있다. 본 개시의 범위가 자원 요청 정보의 구체적인 예시로 제한되는 것은 아니며, 제 1 단말이 제 2 단말로 전송하려는 데이터를 위한 SL 자원을 할당하여 줄 것을 기지국에게 요청하기 위한 임의의 제어 정보를 포함할 수 있다.
단계 S1515에서 제 1 단말은 기지국으로부터 PDCCH를 통하여 SL 그랜트 정보를 수신할 수 있다. SL 그랜트는 제 1 단말이 제 2 단말로 전송하려는 데이터를 위한 SL 자원 할당 정보 등을 포함할 수 있다. 여기서, SL 그랜트는 신규 데이터의 초기 전송(initial transmission)을 위한 자원 할당 정보를 포함할 수 있다. 또한, 상기 PDCCH는 SL-RNTI로 스크램블링된 PDCCH일 수 있다. 또는, SL 그랜트는 신규 데이터의 주기적인 전송(periodic transmission)을 위한 자원 할당 정보 및 활성화 여부를 지시하는 정보를 포함할 수 있다. 이 경우, 상기 PDCCH는 SL-CS-RNTI로 스크램블링된 PDCCH일 수 있다. 기지국은, 상기 주기적인 전송을 위해 상기 PDCCH를 전송하기 이전에 RRC 시그널링을 통해 해당 자원할당 정보 중 일부를 먼저 제 1 단말에 설정할 수 있다. 상기 자원할당 정보는 주기에 대한 정보를 포함할 수 있다.
단계 S1520에서 제 1 단말은 제 2 단말로 PSCCH를 통하여 SL 스케줄링 정보(예를 들어, SCI)를 전송할 수 있다. SL 스케줄링 정보는 사이드링크 상에서 신규 데이터의 초기 전송을 위한 PSSCH에 대한 SL 자원 할당 정보 등을 포함할 수 있다.
단계 S1525에서 제 1 단말은 제 2 단말로 PSSCH를 통하여 SL 데이터를 전송할 수 있다. 여기서, SL 데이터는 신규 데이터의 초기 전송에 해당할 수 있다. 제 2 단말은 제 1 단말로부터의 PSCCH를 통하여 수신된 SL 스케줄링 정보에 의해서 지시되는 PSSCH 전송 자원에 기초하여, 해당 자원에서 PSSCH를 수신할 수 있다.
단계 S1530에서 제 2 단말은 PSSCH 복호에 실패할 수 있다. 이 경우, 단계 S1535에서 제 2 단말은 SL HARQ 피드백 정보로서 NACK을 생성하여 제 1 단말에게 전송할 수 있다.
단계 S1540에서 제 1 단말은 NACK 전송을 위한 자원을 결정하고, 단계 S1545에서 NACK을 기지국으로 전송할 수 있다. 예를 들어, 제 1 단말은 제 2 단말로부터 전달된 SL HARQ 피드백 정보인 NACK에 기초하여, UCI 형태의 NACK 정보를 생성할 수 있다. 또한, 제 1 단말은 UCI 형태의 NACK 정보가 전송될 상향링크 자원(예를 들어, PUCCH 및/또는 PUSCH 전송 자원)을 결정하고, 결정된 자원 상에서 NACK을 기지국으로 전송할 수 있다. 즉, 제 1 단말이 기지국으로 전송하는 NACK은, 제 1 단말이 제 2 단말로 동일한 데이터(즉, 제 2 단말이 복호에 실패한 사이드링크 데이터)를 재전송하기 위한 자원 할당을 요청하는 것일 수 있다.
제 1 단말의 MAC 개체는, SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 끝난 시간단위(예를 들어, 심볼 n) 후 첫 번째 시간단위(예를 들어, 심볼 n+1)에서, 해당 SL MAC PDU의 HARQ process와 관련된 제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)를 시작할 수 있다. 또한, 제 1 단말의 MAC 개체는, 만약 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 동작 중이라면, 상기 제 2 타이머를 중지(stop)할 수 있다.
제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)가 만료될 때까지 제 1 단말은 슬립 상태를 유지할 수 있고, PDCCH 모니터링을 수행하지 않을 수 있다.
제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)가 만료되면, 제 1 단말의 MAC 개체는, 제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)가 만료된 시간단위(예를 들어, 심볼 m) 후 첫 번째 시간단위(예를 들어, 심볼 m+1)에서, 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 시작할 수 있다.
제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 만료될 때까지 제 1 단말은 PDCCH 모니터링을 수행할 수 있다. 예를 들어, 제 1 단말은 SL-RNTI로 스크램블링된 PDCCH를 모니터링할 수 있다. 예를 들어, 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 진행 중인 동안에만, 제 1 단말이 SL-RNTI로 스크램블링된 PDCCH 모니터링을 수행하도록 허용될 수도 있다.
단계 S1550에서 제 1 단말은 기지국으로부터 PDCCH를 통하여 SL 그랜트 정보를 수신할 수 있다. 여기서, SL 그랜트는 이전에 제 2 단말이 복호에 실패한 데이터의 재전송을 위한 자원 할당 정보를 포함할 수 있다. 또한, 상기 PDCCH는 SL-RNTI 또는 SL-CS-RNTI로 스크램블링된 PDCCH일 수 있다.
상기 PDCCH로 전송되는 사이드링크에 대한 자원할당 정보가 재전송인지 여부에 대한 것을 확인하는 방법은 스크램블링된 RNTI 종류에 따라 다르다.
SL-RNTI로 스크램블링된 PDCCH는, 재전송이 요구되는 SL HARQ process에 대응하는 값 및 NDI (new data indicator) 값을 포함할 수 있다. 만약 PDCCH 내의 NDI의 값이 이전에 수신된 PDCCH 내의 NDI 값과 비교하여 변경되지 않은 경우, 단말은 재전송으로 판단할 수 있다. 만약 PDCCH 내의 NDI 값이, 이전에 수신된 PDCCH 내의 NDI 값과 비교하여 변경된 경우, 단말은 신규 데이터 전송으로 판단할 수 있다.
SL-CS-RNTI로 스크램블링된 PDCCH는, 재전송이 요구되는 SL HARQ process에 대응하는 값 및 NDI 값을 포함할 수 있다. 만약 PDCCH 내의 NDI의 값이 0인 경우, 단말은 재전송으로 판단할 수 있다. 만약 PDCCH 내의 NDI 값이 1인 경우, 단말은 신규 데이터 전송으로 판단할 수 있다. 또한 SL-CS-RNTI로 스크램블링된 PDCCH의 경우, 재전송 또는 신규 데이터 전송 시점은 이미 설정된 주기정보를 기반으로 다음 전송 주기 시점으로 결정할 수 있다.
제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 만료되기 전에 기지국으로부터 SL 전송을 지시하는 PDCCH를 수신한 경우, 제 1 단말은 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 중지(stop)할 수 있다. 여기서, 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 진행 중인 동안에 수신된 PDCCH는, 단계 S1545에서 전송된 HARQ 피드백(예를 들어, NACK)에 따라서 해당 SL MAC PDU의 재전송을 위한 SL 그랜트를 포함할 수 있다.
단계 S1560에서 제 1 단말은 제 2 단말로 PSCCH를 통하여 SL 스케줄링 정보(예를 들어, SCI)를 전송할 수 있다. SL 스케줄링 정보는 사이드링크 데이터의 재전송을 위한 PSSCH에 대한 SL 자원 할당 정보 등을 포함할 수 있다.
단계 S1565에서 제 1 단말은 제 2 단말로 PSSCH를 통하여 SL 데이터를 전송할 수 있다. 여기서, SL 데이터는 이전에 제 2 단말에서 복호에 실패한 데이터의 재전송에 해당할 수 있다. 제 2 단말은 제 1 단말로부터의 PSCCH를 통하여 수신된 SL 스케줄링 정보에 의해서 지시되는 PSSCH 전송 자원에 기초하여, 해당 자원에서 PSSCH를 수신할 수 있다.
도 16은 본 개시가 적용될 수 있는 DRX 동작의 추가적인 예시를 설명하기 위한 도면이다.
도 16의 예시에서 단계 S1610 내지 S1665는 각각 도 15의 예시에서의 단계 S1510 내지 S1565에 대응하므로 중복되는 설명은 생략한다.
단계 S1640에서 제 1 단말은 NACK 전송을 위한 자원을 결정하고, 단계 S1545에서 NACK을 기지국으로 전송할 수 있다. 예를 들어, 제 1 단말은 제 2 단말로부터 SL HARQ 피드백 정보인 NACK에 기초하여 생성한 UCI 형태의 NACK 정보를 전송할 상향링크 자원을 결정할 수 있다. 제 1 단말은 결정된 상향링크 자원 상에서 PUCCH 및/또는 PUSCH를 통하여 NACK을 기지국으로 전송할 수 있다.
여기서, 제 1 단말이 결정하는 SL HARQ 피드백 전송 자원은, 복수의 사이드링크 HARQ process마다 구별되는 자원일 수 있다. 예를 들어, 서로 다른 HARQ process는 SL HARQ 피드백이 전송되는 시간 자원, 주파수 자원 또는 코드 자원 중의 하나 이상에 의해서 구별될 수 있다. 즉, SL HARQ 피드백 전송 자원 위치는 관련된 HARQ process를 지시할 수 있다. 이에 따라, 기지국은 SL HARQ 피드백이 수신되는 자원 위치(예를 들어, 시간, 주파수, 또는 코드 자원 중의 하나 이상의 조합)에 기초하여, 어떤 HARQ process가 SL MAC PDU 전송/재전송에 관련된 것인지 식별할 수 있다.
또는, 제 1 단말이 결정하는 SL HARQ 피드백 전송 자원은, 복수의 사이드링크 HARQ process에 공통되는 자원일 수도 있다. 예를 들어, SL HARQ 피드백이 전송되는 자원은 HARQ process와 무관하게 결정될 수도 있다. 이 경우, 기지국은 SL HARQ 피드백만으로는 어떤 HARQ process가 SL MAC PDU 전송/재전송에 관련된 것인지 식별하지 못할 수도 있다.
단계 S1645에서 제 1 단말이 기지국으로 SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송을 수행한 경우, 제 1 단말의 DRX 관련 동작은 다음과 같이 수행될 수 있다.
예를 들어, 제 1 단말이 기지국으로 전송하는 SL HARQ 피드백(예를 들어, NACK)의 자원 위치에 기초하여 관련된 HARQ process를 기지국이 식별할 수 있는 경우, 제 1 단말의 MAC 개체는, SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 끝난 시간단위(예를 들어, 심볼 m) 후 첫 번째 시간단위(예를 들어, 심볼 m+1)에서, 해당 SL MAC PDU의 HARQ process와 관련된 제 2 타이머(예를 들어, RetransmissionTimerSL)를 시작할 수 있다.
또는, 제 1 단말이 기지국으로 전송하는 SL HARQ 피드백(예를 들어, NACK)의 자원 위치에 기초하여 관련된 HARQ process를 기지국이 식별할 수 없는 경우, 제 1 단말의 MAC 개체는, SL MAC PDU에 대한 SL HARQ 피드백을 포함한 상향링크 전송이 끝난 시간단위(예를 들어, 심볼 m) 후 첫 번째 시간단위(예를 들어, 심볼 m+1)에서, 사이드링크에 대한 모든 HARQ process에 공통되는 단일의 제 2 타이머(예를 들어, RetransmissionTimerSL)를 시작할 수 있다.
제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 만료될 때까지 제 1 단말은 PDCCH 모니터링을 수행할 수 있다. 예를 들어, 제 1 단말은 SL-RNTI로 스크램블링된 PDCCH를 모니터링할 수 있다. 예를 들어, 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)가 진행 중인 동안에만, 제 1 단말이 SL-RNTI로 스크램블링된 PDCCH 모니터링을 수행하도록 허용될 수도 있다.
제 1 단말의 SL HARQ 피드백 전송을 수행한 후 제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)를 시작하는 도 15의 예시와 달리, 도 16의 예시에서는 제 1 단말의 SL HARQ 피드백 전송을 수행한 후 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 시작할 수 있다. 즉, 제 1 단말은 제 2 단말로부터의 사이드링크 데이터에 대한 NACK을 수신하여 기지국으로 NACK을 전송한 경우, 바로 다음 시간 단위부터 해당 NACK에 대응하는 사이드링크 데이터 재전송을 위한 자원 할당 정보(즉, PDCCH)에 대한 모니터링을 시작할 수 있다.
도 17은 본 개시에 따른 기지국 장치 및 단말 장치의 구성을 나타내는 도면이다.
기지국 장치(1700)는 프로세서(1710), 안테나부(1720), 트랜시버(1730), 메모리(1740)를 포함할 수 있다.
프로세서(1710)는 베이스밴드 관련 신호 처리를 수행하며, 상위계층 처리부(1711) 및 물리계층 처리부(1715)를 포함할 수 있다. 상위계층 처리부(1711)는 MAC 계층, RRC 계층, 또는 그 이상의 상위계층의 동작을 처리할 수 있다. 물리계층 처리부(1715)는 PHY 계층의 동작(예를 들어, 상향링크 수신 신호 처리, 하향링크 송신 신호 처리 등)을 수행할 수 있다. 프로세서(1710)는 베이스밴드 관련 신호 처리를 수행하는 것 외에도, 기지국 장치(1700) 전반의 동작을 제어할 수도 있다.
안테나부(1720)는 하나 이상의 물리적 안테나를 포함할 수 있고, 복수개의 안테나를 포함하는 경우 MIMO 송수신을 지원할 수 있다. 트랜시버(1730)는 RF 송신기와 RF 수신기를 포함할 수 있다. 메모리(1740)는 프로세서(1710)의 연산 처리된 정보, 기지국 장치(1700)의 동작에 관련된 소프트웨어, 운영체제, 애플리케이션 등을 저장할 수 있으며, 버퍼 등의 구성요소를 포함할 수도 있다.
기지국 장치(1700)의 프로세서(1710)는 본 발명에서 설명하는 실시예들에서의 기지국의 동작을 구현하도록 설정될 수 있다.
예를 들어, 기지국 장치(1700)의 프로세서(1710)의 상위계층 처리부(1711)는 SL 자원 할당부(1712) 및 DRX 파라미터 결정부(1713)를 포함할 수 있다.
SL 자원 할당부(1712)는 단말 장치(1750) (예를 들어, 사이드링크 전송 단말)로부터의 사이드링크 자원 요청에 기초하여, 단말 장치(1750)가 다른 단말 장치(예를 들어, 사이드링크 수신 단말)에게 초기 전송을 수행할 사이드링크 자원을 할당할 수 있다.
또한, SL 자원 할당부(1712)는 단말 장치(1750) (예를 들어, 사이드링크 전송 단말)로부터의 SL HARQ 피드백 정보에 기초하여, 단말 장치(1750)가 다른 단말 장치(예를 들어, 사이드링크 수신 단말)에게 재전송을 수행할 사이드링크 자원을 할당할 수 있다.
SL 자원 할당부(1712)는 사이드링크 자원 할당 정보(예를 들어, SL 그랜트)를 생성하여 물리계층 처리부(1715)로 전달할 수 있다.
DRX 파라미터 결정부(1713)는 사이드링크 전송을 수행하는 단말 장치(1750)에 대해서 적용되는 제 1 타이머 및 제 2 타이머를 포함하는 DRX 파라미터를 결정하고, 이를 포함하는 DRX 설정 정보를 단말 장치(1750)에게 제공할 수 있다.
물리계층 처리부(1715)는 단말 장치(1750)로부터 수신되는 사이드링크 자원 요청 및/또는 SL HARQ 피드백 정보를 수신하여, 상위계층 처리부(1711)로 전달할 수 있다.
또한, 물리계층 처리부(1715)는 상위계층 처리부(1711)의 SL 자원 할당부(1712)로부터 전달되는 사이드링크 자원 할당 정보(예를 들어, SL 그랜트)를 PDCCH를 통해 제 1 단말 장치(1750)에게 전송할 수 있다. 여기서, PDCCH는 SL-RNTI로 스크램블링될 수 있다.
단말 장치(1750)는 프로세서(1760), 안테나부(1770), 트랜시버(1780), 메모리(1790)를 포함할 수 있다.
프로세서(1760)는 베이스밴드 관련 신호 처리를 수행하며, 상위계층 처리부(1761) 및 물리계층 처리부(1765)를 포함할 수 있다. 상위계층 처리부(1761)는 MAC 계층, RRC 계층, 또는 그 이상의 상위계층의 동작을 처리할 수 있다. 물리계층 처리부(1765)는 PHY 계층의 동작(예를 들어, 하향링크 수신 신호 처리, 상향링크 송신 신호 처리 등)을 수행할 수 있다. 프로세서(1760)는 베이스밴드 관련 신호 처리를 수행하는 것 외에도, 단말 장치(1760) 전반의 동작을 제어할 수도 있다.
안테나부(1770)는 하나 이상의 물리적 안테나를 포함할 수 있고, 복수개의 안테나를 포함하는 경우 MIMO 송수신을 지원할 수 있다. 트랜시버(1780)는 RF 송신기와 RF 수신기를 포함할 수 있다. 메모리(1790)는 프로세서(1760)의 연산 처리된 정보, 단말 장치(1750)의 동작에 관련된 소프트웨어, 운영체제, 애플리케이션 등을 저장할 수 있으며, 버퍼 등의 구성요소를 포함할 수도 있다.
단말 장치(1750)의 프로세서(1760)는 본 발명에서 설명하는 실시예들에서의 단말의 동작을 구현하도록 설정될 수 있다.
예를 들어, 단말 장치(1750)의 프로세서(1760)의 상위계층 처리부(1761)는 SL 자원 관리부(1762), SL HARQ 동작부(1763), DRX 동작부(1764)를 포함할 수 있다.
SL 자원 관리부(1762)는 단말 장치(1750) (예를 들어, 사이드링크 전송 단말)가 다른 단말 장치(예를 들어, 사이드링크 수신 단말)에게 전송할 데이터가 발생하는 경우, 기지국 장치(1700)에게 전송할 사이드링크 자원 요청 정보를 생성할 수 있다. 생성된 사이드링크 자원 요청 정보는 물리계층 처리부(1765)로 전달될 수 있다.
또한, SL 자원 관리부(1762)는 기지국 장치(1700)로부터 제공되는 사이드링크 자원 할당 정보(예를 들어, SL 그랜트)에 기초하여, 단말 장치(1750) 가 다른 단말 장치(예를 들어, 사이드링크 수신 단말)에게 사이드링크 전송(예를 들어, PSCCH 및/또는 PSSCH 전송)을 수행할 사이드링크 자원을 결정할 수 있다. 이러한 사이드링크 자원 할당 정보는 사이드링크 초기 전송 및/또는 재전송을 위한 것일 수 있다. 결정된 사이드링크 자원은 물리계층 처리부(1765)에게 지시될 수 있다.
SL HARQ 동작부(1763)는 단말 장치(1750)가 다른 단말로 전송한 사이드링크 데이터(예를 들어, PSSCH)에 대해서, 상기 다른 단말로부터 (예를 들어, 사이드링크 피드백 채널을 통하여) SL HARQ 피드백 정보를 수신할 수 있다. SL HARQ 동작부(1763)는 다른 단말로부터 수신된 SL HARQ 피드백 정보에 기초하여, 상향링크 자원(예를 들어, PUCCH 및/또는 PUSCH 자원)을 통하여 전송될 UCI 형태의 SL HARQ 피드백 정보를 생성할 수 있다. 또한, SL HARQ 동작부(1763)는 UCI 형태의 SL HARQ 피드백 정보가 전송될 시간, 주파수 또는 코드 자원 중의 하나 이상의 조합을 결정할 수도 있다. SL HARQ 피드백 정보 전송 자원은 서로 다른 HARQ process마다 구별되는 자원으로 설정될 수도 있고, 복수의 HARQ process에 공통되는 자원으로 설정될 수도 있다. 생성된 UCI 형태의 SL HARQ 피드백 정보 및 이에 대한 전송 자원 정보는 물리계층 처리부(1765)로 전달될 수 있다.
DRX 동작부(1764)는 기지국 장치(1700)로 SL HARQ 피드백 정보를 전송한 후 바로 다음 시간 단위에서 제 1 타이머(예를 들어, drx-HARQ-RTT-TimerSL)를 시작하고, 제 1 타이머가 만료된 후 바로 다음 시간 단위에서 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 시작할 수 있다. DRX 동작부(1764)는 제 1 타이머가 동작 중에는 기지국 장치(1700)로부터의 PDCCH 모니터링을 수행하지 않고, 제 2 타이머가 동작 중에는 기지국 장치(1700)로부터의 PDCCH 모니터링(예를 들어, SL-RNTI로 스크램블링된 PDCCH 모니터링)을 수행하도록 물리계층 처리부(1765)에게 지시할 수 있다. 또한, 제 1 타이머 및 제 2 타이머를 포함하는 단말 장치(1750)의 DRX 파라미터는 기지국 장치(1700)에 의해서 설정되어 단말 장치(1750)에게 DRX 설정 정보로서 제공될 수 있다.
또는, DRX 동작부(1764)는 기지국 장치(1700)로 SL HARQ 피드백 정보를 전송한 후 다음 시간 단위에서 제 2 타이머(예를 들어, drx-RetransmissionTimerSL)를 시작할 수 있다. DRX 동작부(1764)는 제 2 타이머가 동작 중에는 기지국 장치(1700)로부터의 PDCCH 모니터링을 수행하도록 물리계층 처리부(1765)에게 지시할 수 있다.
물리계층 처리부(1765)는 기지국 장치(1700)로부터 수신되는 사이드링크 자원 할당 정보를 포함하는 PDCCH(예를 들어, SL-RNTI로 스크램블링된 PDCCH) 모니터링을 수행하고, 수신된 사이드링크 자원 할당 정보를 상위계층 처리부(1761)로 전달할 수 있다.
또한, 물리계층 처리부(1765)는 상위계층 처리부(1761)의 SL 자원 관리부(1762)로부터 전달되는 사이드링크 자원 할당 요청 정보를 PUCCH 및/또는 PUSCH를 통하여 기지국 장치(1700)로 전송할 수 있다. 또한, SL HARQ 동작부(1763)로부터 전달되는 UCI 형태의 SL HARQ 피드백 정보 및 이에 대한 전송 자원 정보에 기초하여, PUCCH 및/또는 PUSCH를 통하여 기지국 장치(1700)로 전송할 수 있다.
기지국 장치 장치(1700) 및 단말 장치(1750)의 동작에 있어서 본 발명의 예시들에서 기지국 및 단말에 대해서 설명한 사항이 동일하게 적용될 수 있으며, 중복되는 설명은 생략한다.
본 개시의 예시적인 방법들은 설명의 명확성을 위해서 동작의 시리즈로 표현되어 있지만, 이는 단계가 수행되는 순서를 제한하기 위한 것은 아니며, 필요한 경우에는 각각의 단계가 동시에 또는 상이한 순서로 수행될 수도 있다. 본 개시에 따른 방법을 구현하기 위해서, 예시하는 단계에 추가적으로 다른 단계를 포함하거나, 일부의 단계를 제외하고 나머지 단계를 포함하거나, 또는 일부의 단계를 제외하고 추가적인 다른 단계를 포함할 수도 있다.
본 개시의 다양한 실시예는 모든 가능한 조합을 빠짐없이 나열한 것이 아니고 본 개시의 대표적인 양상을 설명하기 위한 것이며, 다양한 실시예에서 설명하는 사항들 중의 일부 또는 전부는 독립적으로 적용되거나 또는 둘 이상의 조합으로 적용될 수도 있다.
또한, 본 개시의 다양한 실시예는 하드웨어, 펌웨어(firmware), 소프트웨어, 또는 그들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 범용 프로세서(general processor), 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. 본 개시에서 설명하는 특징을 수행하는 프로세싱 시스템을 프로그래밍하기 위해 사용될 수 있는 명령은 저장 매체 또는 컴퓨터 판독가능 저장 매체 상에/내에 저장될 수 있고, 이러한 저장 매체를 포함하는 컴퓨터 프로그램 제품을 이용하여 본 개시에서 설명하는 특징이 구현될 수 있다. 저장 매체는 DRAM, SRAM, DDR RAM 또는 다른 랜덤 액세스 솔리드 스테이트 메모리 디바이스와 같은 고속 랜덤 액세스 메모리를 포함할 수 있지만, 이에 제한되지 않으며, 하나 이상의 자기 디스크 저장 디바이스, 광 디스크 저장 장치, 플래시 메모리 디바이스 또는 다른 비-휘발성 솔리드 스테이트 저장 디바이스와 같은 비-휘발성 메모리를 포함할 수 있다. 메모리는 선택적으로 프로세서(들)로부터 원격에 위치한 하나 이상의 저장 디바이스를 포함한다. 메모리 또는 대안적으로 메모리 내의 비-휘발성 메모리 디바이스(들)는 비-일시적 컴퓨터 판독가능 저장 매체를 포함한다. 본 개시에서 설명하는 특징은, 머신 판독가능 매체 중 임의의 하나에 저장되어 프로세싱 시스템의 하드웨어를 제어할 수 있고, 프로세싱 시스템이 본 개시의 실시예에 따른 결과를 활용하는 다른 메커니즘과 상호작용하도록 하는 소프트웨어 및/또는 펌웨어에 통합될 수 있다. 이러한 소프트웨어 또는 펌웨어는 애플리케이션 코드, 디바이스 드라이버, 운영 체제 및 실행 환경/컨테이너를 포함할 수 있지만 이에 제한되지 않는다.
본 개시의 예시들은 다양한 무선 통신 시스템에 적용될 수 있다.

Claims (1)

  1. 무선 통신 시스템에서 제 1 단말의 불연속수신(DRX) 방법에 있어서,
    상기 제 1 단말이 전송한 사이드링크 데이터에 대한 HARQ(Hybrid Automatic Repeat reQuest) 피드백 정보를 제 2 단말로부터 수신하는 단계;
    상기 제 2 단말로부터의 HARQ 피드백 정보에 기초하여, 제 1 단말이 기지국으로 상향링크 상에서 HARQ NACK 정보를 전송하는 단계;
    상기 제 1 단말이 상기 HARQ NACK 정보를 전송한 후 시작되는 제 1 타이머가 진행 중인 동안 슬립하는 단계; 및
    상기 제 1 타이머가 만료된 후 시작되는 제 2 타이머가 동작 중인 동안, 사이드링크 데이터 재전송에 대한 자원 할당 정보를 포함하는 하향링크 제어 채널을 모니터링하는 단계를 포함하는,
    불연속 수신 방법.
PCT/KR2021/002984 2020-03-23 2021-03-10 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치 WO2021194135A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21775923.2A EP4132208A4 (en) 2020-03-23 2021-03-10 DRX METHOD AND APPARATUS FOR LINKAGE BETWEEN A NETWORK AND A TERMINAL BASED ON DEVICE-TO-DEVICE COMMUNICATION IN A WIRELESS COMMUNICATION SYSTEM
CN202180023621.XA CN115362752A (zh) 2020-03-23 2021-03-10 用于无线通信系统中的基于设备到设备通信的基站和用户装备之间的链路的drx的方法和装置
US17/934,208 US20230019726A1 (en) 2020-03-23 2022-09-22 Drx method and apparatus for link between network and terminal based on device-to-device communication in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200034914A KR20210118542A (ko) 2020-03-23 2020-03-23 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치
KR10-2020-0034914 2020-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/934,208 Continuation US20230019726A1 (en) 2020-03-23 2022-09-22 Drx method and apparatus for link between network and terminal based on device-to-device communication in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021194135A1 true WO2021194135A1 (ko) 2021-09-30

Family

ID=77892333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002984 WO2021194135A1 (ko) 2020-03-23 2021-03-10 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치

Country Status (5)

Country Link
US (1) US20230019726A1 (ko)
EP (1) EP4132208A4 (ko)
KR (1) KR20210118542A (ko)
CN (1) CN115362752A (ko)
WO (1) WO2021194135A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112399644B (zh) * 2019-08-16 2023-01-13 华为技术有限公司 非连续接收方法、相关装置及系统
US11844066B2 (en) * 2020-04-09 2023-12-12 Lg Electronics Inc. Method and device for allocating sidelink resource in NR V2X
US11882546B2 (en) * 2021-04-02 2024-01-23 Qualcomm Incorporated Sidelink feedback for multiple transmit receive points
KR20240102951A (ko) * 2021-11-04 2024-07-03 엘지전자 주식회사 Nr v2x에서 sl drx 타이머를 개시하는 방법 및 장치
WO2023113498A1 (ko) * 2021-12-15 2023-06-22 엘지전자 주식회사 Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
US11824662B2 (en) * 2022-04-22 2023-11-21 Asus Technology Licensing Inc. Method and apparatus for discontinuous reception regarding PUCCH transmission in a wireless communication system
WO2024210504A1 (ko) * 2023-04-03 2024-10-10 엘지전자 주식회사 무선 통신 시스템에서 통신을 수행하기 위한 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030832A1 (ko) * 2016-08-12 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 카운터를 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치
KR20200029335A (ko) * 2018-09-10 2020-03-18 한국전자통신연구원 무선 통신 시스템에서 사이드링크 그룹캐스트를 위한 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169406A1 (en) * 2014-05-08 2015-11-12 Telefonaktiebolaget L M Ericsson (Publ) Relating activity periods for a ue performing device-to-device (d2d) and cellular operations
CN110661602A (zh) * 2018-06-29 2020-01-07 北京三星通信技术研究有限公司 信息处理方法及终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030832A1 (ko) * 2016-08-12 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 카운터를 기반으로 단말 자체적으로 자원을 재선택하는 방법 및 장치
KR20200029335A (ko) * 2018-09-10 2020-03-18 한국전자통신연구원 무선 통신 시스템에서 사이드링크 그룹캐스트를 위한 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on HARQ support for NR sidelink", 3GPP TSG-RAN WG2 #107BIS.; R2-1913701, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 October 2019 (2019-10-04), Chongqing, China; 20191014 - 20191018, XP051805166 *
INTERDIGITAL: "Impact of non-numeric K1 value on DRX Timers", 3GPP TSG-RAN WG2 #107BIS; R2-1912891, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 3 October 2019 (2019-10-03), Chongqing, China; 20191014 - 20191018, XP051790925 *
PANASONIC: "Impact of disabling HARQ on DRX", 3GPP TSG-RAN WG2 #107BIS; R2-1912570, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 October 2019 (2019-10-02), Chongqing, China; 20191014 - 20191018, XP051790611 *
See also references of EP4132208A4 *

Also Published As

Publication number Publication date
CN115362752A (zh) 2022-11-18
KR20210118542A (ko) 2021-10-01
EP4132208A1 (en) 2023-02-08
EP4132208A4 (en) 2024-04-17
US20230019726A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021194135A1 (ko) 무선 통신 시스템에서 단말간 통신에 기초한 네트워크와 단말간 링크에 대한 drx 방법 및 장치
WO2019216617A1 (en) Method and apparatus for triggering transmission carrier selection in wireless communication system
WO2019156528A1 (en) Method and apparatus for deprioritizing packet transmission based on reliability level or congestion level in wireless communication system
WO2020067816A1 (ko) Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
WO2014084638A1 (en) Method and apparatus for performing communication in a wireless communication system
WO2022139491A1 (ko) Nr v2x에서 디폴트 drx 설정에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022154652A1 (ko) 무선 통신 시스템에서 drx 동작 방법 및 장치
WO2017135573A1 (ko) 무선 통신 시스템에서 다중 무선 접속 기술에 기반한 신호 송신 방법 및 이를 위한 장치
WO2022191667A1 (en) Method and apparatus for new radio multicast broadcast service receiption
WO2022019615A1 (ko) 무선 통신 시스템에서 사이드링크의 비연속적 수신을 지원하기 위한 방법 및 장치
WO2021162397A1 (ko) 무선 통신 시스템에서 단말간 통신을 위한 센싱 대상 자원 결정 방법 및 장치
WO2022203438A1 (ko) Nr v2x에서 sl harq 피드백을 전송하는 방법 및 장치
WO2022019480A1 (ko) 무선 통신 시스템에서 단말간 통신을 위한 부분 센싱 방법 및 장치
WO2022154384A1 (en) Coordinated switching gap operations by ue comprising plurality of sims in wireless network
WO2022154413A1 (ko) Nr v2x에서 단말의 모빌리티에 기반하여 sl drx를 수행하는 방법 및 장치
WO2022131761A1 (ko) Nr v2x에서 자원 할당 정보에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2023090938A1 (ko) 무선 통신 시스템에서 사이드링크 데이터를 송수신하기 위한 방법 및 그 장치
WO2023014138A1 (ko) 무선 통신 시스템에서 하향링크 데이터의 그룹 공통 및 단말 특정 송신 또는 수신 방법 및 장치
WO2023022488A1 (ko) Nr v2x에서 사이드링크 전송 상태 지시 기반의 sl drx 동작 방법 및 장치
WO2022240184A1 (ko) 무선 통신 시스템에서 그룹 공통 전송을 위한 harq 기반 송수신 방법 및 장치
WO2022225310A1 (ko) Nr v2x에서 sl drx 동작을 수행하는 방법 및 장치
WO2023234726A1 (ko) 무선 통신 시스템에서 사이드링크 불연속 수신 설정 방법 및 장치
WO2022211584A1 (ko) 무선 통신 시스템에서 drx 동작 방법 및 장치
WO2023234724A1 (ko) 무선 통신 시스템에서 사이드링크 불연속 수신 설정 방법 및 장치
WO2023038410A1 (ko) 무선 통신 시스템에서 sl data를 송수신하기 위한 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217059975

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021775923

Country of ref document: EP

Effective date: 20221024