WO2021193981A1 - 三次元(3d)組織培養用のサポーティングバス - Google Patents

三次元(3d)組織培養用のサポーティングバス Download PDF

Info

Publication number
WO2021193981A1
WO2021193981A1 PCT/JP2021/014105 JP2021014105W WO2021193981A1 WO 2021193981 A1 WO2021193981 A1 WO 2021193981A1 JP 2021014105 W JP2021014105 W JP 2021014105W WO 2021193981 A1 WO2021193981 A1 WO 2021193981A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
weight
bath
supporting
dimensional
Prior art date
Application number
PCT/JP2021/014105
Other languages
English (en)
French (fr)
Inventor
典弥 松▲崎▼
カン・ドンヒ
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to US17/907,122 priority Critical patent/US20230105586A1/en
Priority to EP21776357.2A priority patent/EP4130235A4/en
Priority to JP2022510781A priority patent/JPWO2021193981A1/ja
Publication of WO2021193981A1 publication Critical patent/WO2021193981A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/30Constructional details, e.g. recesses, hinges biodegradable
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides

Definitions

  • the present invention relates to a supporting bath for three-dimensional (3D) tissue culture and a method for producing a cultured three-dimensional tissue using the same.
  • the conventional supporting bath for three-dimensional tissue culture contains a gel having thixotropic properties composed of particles.
  • a gel having thixotropic properties composed of particles.
  • the present inventors have formed a thixotropic gel containing a polymer and water in a bath, and the gel is soluble in a solvent.
  • the present invention provides: [1] A supporting bath for three-dimensional tissue culture in which a gel containing a polymer and water and having thixotropy is formed in a bath, and the gel is soluble in a solvent. [2] The supporting bath according to [1], wherein the concentration of the polymer with respect to the total of water and the polymer is 0.01% by weight or more. [3] The supporting bath according to [1] or [2], wherein the polymer is a polysaccharide. [4] The supporting bath according to [3], wherein the polysaccharide is gellan gum. [5] The supporting bath according to any one of [1] to [4], wherein the solvent is water forming a gel or a solution added for dissolution.
  • [6] (i) A step of forming a three-dimensional tissue precursor on the supporting bus according to any one of [1] to [5] by using a three-dimensional bioprinting method. (Ii) A method for producing a cultured three-dimensional tissue, which comprises a step of dissolving a gel in a supporting bath and (iii) a step of culturing the three-dimensional tissue in the obtained solution. [7] The production method according to [6], wherein the gel is dissolved in a solvent. [8] The production method according to [7], wherein the solvent is water forming a gel or a solution added for dissolution. [9] The production method according to [8], wherein the solution added for dissolution is an aqueous Tris solution.
  • the gel can be prepared from a polymer and water, the gel can be prepared easily and efficiently.
  • the gel can be prepared in high yield or low cost.
  • the properties of the gel can be adjusted because the gel can be prepared from different types and concentrations of macromolecules.
  • the viscosity, permeability, durability, transparency or color of the gel can be adjusted.
  • the gel since the gel is soluble in a solvent, the gel can be dissolved and removed.
  • the gel can be dissolved physically or chemically in the water forming the gel or in a solution added for dissolution.
  • the amount of uptake of the supporting bath into the print gel can be reduced, so that the amount of excess or unnecessary uptake of the supporting bath into the three-dimensional tissue to be cultured can be reduced.
  • FIG. 1 (a) is a schematic diagram of printing in a supporting bath containing a gel or solution.
  • FIG. 1B is a schematic diagram of gel dissolution and solution removal after printing and culture of the formed three-dimensional tissue precursor.
  • FIG. 1 (c) shows that 0.1 wt% gellan gum using DMEM as a solvent is in a gel state (left) and 0.1 wt% gelatin using DMEM as a solvent is in a liquid state (right). show.
  • FIG. 1 (d) shows the measurement result of the viscosity of 0.1 wt% gellan gum gel at the shear rate.
  • FIG. 2 (a) shows a photograph after three-dimensional cell printing into a 0.15 wt% gellan gum gel dissolved in PBS 1x in a supporting bath.
  • FIG. 2B shows a photograph of the gellan gum gel after being dissolved in Tris-HCl buffer.
  • FIG. 2 (c) shows a photograph after culturing for 5 days (left) and fluorescence after treatment with calcein AM (green fluorescence, live cells) and Ethidium homodimer-1 (red fluorescence, dead cells) for confirming cell survival. The photo (right) is shown.
  • FIG. 3 shows the results of the fluorescence intensities (au) obtained before and after removal with Tris-HCl when using an F-GG bulk gel (linear gel), that is, to a print gel. The amount of intake of the supporting bath is shown.
  • FIG. 4 shows the recovery viscosity when F-GG bulk gel (linear gel) is used.
  • FIG. 5 shows the results with a sol-gel transition for a 0.15 wt% gellan gum (GG) bulk gel (linear gel) supporting bath.
  • the present invention provides, in one embodiment, a supporting bath for three-dimensional tissue culture in which a gel containing a polymer and water and having thixotropy is formed in a bath, and the gel is soluble in a solvent. ..
  • thixotropy refers to a fluid property having a property (sol-gel transition) in which a gel turns into a sol by a physical stimulus, for example, pressure, and if left untreated, it returns to the gel again. That is, thixotropy has a phenomenon that the viscosity decreases while the liquid is subjected to shearing, and a hysteresis is observed in the shear stress-shear velocity curve, and there is a phenomenon that there is a yield value.
  • a stress-controlled rheometer is mainly known as a device capable of best measuring such thixotropy characteristics.
  • the stress control leometer applies a controlled torque (slip stress) to the sample and, as a result, measures the angular displacement velocity (slip velocity) at which flow begins and rotates, making it easy to obtain a shear stress-slip velocity curve. Can be done. This is different from other commonly used rotational viscometers such as B-type viscometers, capillary viscometers, and falling ball viscometers, which can measure the yield value on the shear stress-slip velocity curve extremely accurately. can.
  • the thixotropic property has, for example, 0.00001 Pas to 100,000 Pas, 0.0001 Pas to 10,000 Pas, 0.001 Pas to 1000 Pas, or 0.01 Pas to 100 Pas as the difference between the presence and absence of shear stress. good.
  • the supporting bath can undergo rapid gelation at room temperature or higher.
  • the supporting bath is liquid before gelation and remains solid during gelation.
  • the supporting bath becomes a liquid due to the pressure of the nozzle of the dispenser used in the three-dimensional bioprinting method, for example, and returns to the gel again after the pressure is released.
  • the supporting bath may be subjected to a three-dimensional bioprinting method in a liquid state before gelation, and then gelled.
  • the supporting bath can maintain the three-dimensional tissue precursor in the gel state.
  • the supporting bath is maintained, for example, under cell viability conditions (eg temperature and pH).
  • the supporting bath is maintained, for example, under conditions where cell growth is not inhibited (eg temperature and pH).
  • the supporting bath is maintained in the liquid state before gelation, for example, at 0 ° C to 10 ° C, particularly 4 ° C.
  • the supporting bath is maintained in the gel state, for example, at 30 ° C. to 40 ° C., particularly 37 ° C.
  • the supporting bath is maintained at, for example, pH 7.0 to pH 7.8, particularly pH 7.4.
  • the supporting bath may be housed or held in a container, eg, in a transparent cylindrical container.
  • the supporting bath may be placed in a sterile condition.
  • the supporting bath may further contain, for example, a culture component for culturing a three-dimensional tissue, in addition to the polymer and water.
  • the culture component may be coated with a soluble material, such as a protein, such as gelatin.
  • the conditions under which the soluble substance is dissolved may be the same as or different from the conditions under which the gel in the supporting bath is dissolved.
  • Soluble substances are dissolved by various stimuli, such as over time, by physical stimuli, such as light, temperature or pressure, or by chemical stimuli, such as solutions that dissolve gels, such as solutions containing enzymes.
  • the coated component can be released into the bath.
  • the soluble material can release the dissolved and coated culture components into the bath under the conditions of culturing the three-dimensional tissue, for example at 37 ° C.
  • the supporting bath may further include a support to form a three-dimensional tissue precursor.
  • the support is, for example, a scaffold.
  • the 3D tissue precursor is placed or plotted on the support by the 3D bioprinting method.
  • the cultured three-dimensional tissue may be composed of a three-dimensional tissue precursor and a support together. Two or more supports may be placed, for example, at both ends of the three-dimensional tissue precursor.
  • the gel is, for example, a hydrogel.
  • Hydrogel refers to a substance that forms a porous structure by solidifying a liquid using water as a dispersion medium through a sol-gel transition and losing fluidity.
  • the gel is a matrix containing a network of hydrophilic polymer chains.
  • the gel is obtained by cross-linking a polymer which is a gel material.
  • the gel used is preferably a hydrophilic polymer cross-linked by a cell-compatible cross-linking reaction, such as a poly (ethylene glycol) (PEG) -based polymer, most preferably a multi-arm (ie, branched) PEG-based polymer. It is composed.
  • the gel may be an oil-based gel, and examples thereof include hydrogels.
  • Polymers that are gel materials include, for example, agar, gelatin, agarose, xanthan gum, gellan gum, sclerotiu gum, arabiya gum, tragant gum, karaya gum, cellulose gum, and tamarind gum.
  • Di (meth) acrylate polymers PPEGDA, PPEGDM
  • polyhydroxyethyl methacrylate polyacrylamide, poly (N, N-dimethylacrylamide), poly2-acrylamide-2-methylpropansulfonic acid, poly (N-isopropylacrylamide)
  • Polyvinylpyrrolidone polystyrene sulfonic acid, polyethylene glycol, carboxyvinyl polymer, alkyl-modified carboxyvinyl polymer, maleic anhydride copolymer, polyalkylene oxide resin, poly (methylvinyl ether-alt-maleic acid anhydride) and polyethylene glycol.
  • Synthetic polymers such as crosslinked products, polyethylene glycol crosslinked products, N-vinylacetamide crosslinked products, acrylamide crosslinked products, starch / alginate graft copolymer crosslinked products; silicone; (DN hydrogel); Examples thereof include a mixture of two or more of these.
  • the polymer as the gel material is, for example, collagen (for example, one or more selected from the group consisting of type I, type II, type III, type IV, type V, and type XI), glucomannan, and the like. Fibrin, alginic acid, polyvinyl alcohol, PPEGDA, PPEGDM, polyhydroxyethyl methacrylate, polyvinylpyrrolidone, polyacrylamide, poly (N, N-dimethylacrylamide), poly (N-isopropylacrylamide), silicone, DN hydrogel, fibronectin, laminin, Elastin, glycosaminoglycans (eg, hyaluronic acid), proteoglycans, and gelatin, and mixtures of two or more thereof are preferred.
  • collagen for example, one or more selected from the group consisting of type I, type II, type III, type IV, type V, and type XI
  • glucomannan and the like.
  • Fibrin alginic acid,
  • the polymer as the gel material may be, for example, nanofibers, for example, cellulose nanofibers.
  • the polymer as the gel material may be used alone or in combination of two or more.
  • the gel may be uniform or homogeneous.
  • the polymer gel may be a particle gel (gel fine particles) or a bulk (linear or linear) gel.
  • Particle gel or bulk gel refers to the appearance shape of the gel.
  • the polymer gel used in the supporting bath of the present invention is preferably a bulk (linear or linear) gel.
  • Bulk (linear or linear) gels differ from particle gels. The use of bulk (linear or linear) gels can reduce the uptake of the supporting bath into the print gel, thus reducing the excess or unnecessary uptake of the supporting bath into the cultured 3D tissue. Can be reduced.
  • the size of the bulk gel is determined with respect to the longest (or shortest) dimension of the bulk, for example, 0.1 mm or more, 0.5 mm or more, 1.0 mm or more, 5 mm or more, 10 mm or more, 20 mm or more, 30 mm or more. 40 mm or more, 50 mm or more, 100 mm or more, 500 mm or more, 1000 mm or more.
  • the concentration of the polymer with respect to the total of water and the polymer is, for example, 0.001% by weight or more, 0.005% by weight or more, 0.01% by weight or more, 0.05% by weight or more, 0.1. By weight% or more or 1% by weight or more.
  • the concentration of the polymer with respect to the total of water and the polymer is, for example, 5.0% by weight or less, 4.5% by weight or less, 4.0% by weight or less, 3.5% by weight or less, 3.0% by weight or less, 2.5% by weight or less, or 2.0% by weight or less.
  • the concentration of the polymer with respect to the total of water and the polymer is, for example, 0.001% by weight to 5.0% by weight, 0.001% by weight to 4.5% by weight, 0.001% by weight to 4.0% by weight. , 0.001% by weight to 3.5% by weight, 0.001% by weight to 3.0% by weight, 0.001% by weight to 2.5% by weight, 0.001% by weight to 2.0% by weight, 0 .005% by weight to 5.0% by weight, 0.005% by weight to 4.5% by weight, 0.005% by weight to 4.0% by weight, 0.005% by weight to 3.5% by weight, 0.005% by weight Weight% to 3.0% by weight, 0.005% to 2.5% by weight, 0.005% to 2.0% by weight, 0.01% to 5.0% by weight, 0.01% by weight ⁇ 4.5% by weight, 0.01% by weight ⁇ 4.0% by weight, 0.01% by weight ⁇ 3.5% by weight, 0.01% by weight ⁇ 3.0% by weight, 0.01% by weight ⁇ 2 .5% by weight, 0.01% by weight
  • the type of gel and the concentration of the polymer relative to the total of water and polymer are the properties of the gel, such as the yield or cost of gel preparation, gel viscosity, permeability, durability, transparency, color or solubility. , Or can be appropriately adjusted by one of ordinary skill in the art, taking into account the characteristics of the cell, such as cell type, biocompatibility or cell viability.
  • the concentration of the polymer with respect to the total of water and the polymer is usually 0.01% by weight to 2.0% by weight, for example, 0.05% by weight. ⁇ 1.0% by weight or 0.08% by weight to 0.5% by weight, preferably 0.1% by weight to 0.2% by weight, for example, 0.11% by weight to 0.19% by weight, 0. It is 12% by weight to 0.18% by weight, or 0.13% by weight to 0.17% by weight, more preferably 0.14% by weight to 0.16% by weight, for example, 0.15% by weight.
  • 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 100% of the polymer can constitute a gel.
  • the gel can be adjusted to a viscosity that allows the three-dimensional tissue precursor or three-dimensional structure to be maintained in the gel.
  • the gel can be adjusted to a viscosity that prevents the three-dimensional tissue precursor or the three-dimensional structure from sinking in the gel.
  • the viscosity of the gel is measured using, for example, a texture analyzer.
  • the viscosity of the gel can be adjusted as appropriate, for example, depending on the strength of the nozzle of the dispenser used in the three-dimensional bioprinting method.
  • the viscosity of the gel is, for example, the viscosity at which the nozzle of the dispenser does not break, bend, or deform.
  • the gel can be regulated to be permeable enough to deliver water, nutrients, air, etc. to the cells.
  • the gel can be adjusted to have high durability against drying and the like.
  • the gel can be used for 30 minutes or more, 1 hour or more, 1 day or more, 2 days or more, 3 days or more, 4 days or more, 5 days or more, 10 days or more, 15 days or more, or 20 days or more. can.
  • the gel has high transparency so that the tissue in the gel can be easily observed.
  • a gel is a gel that does not have cytotoxicity or inhibitory activity on cell behavior, or has low cytotoxicity or inhibitory activity on cell behavior.
  • the gel is dissolved by various stimuli, such as over time, by physical stimuli, such as light, temperature or pressure, or by chemical stimuli, such as solutions that dissolve the gel, such as solutions containing enzymes.
  • the gel is dissolved in a solvent, for example, in the water forming the gel or in a solution added for dissolution.
  • the gel is an aqueous solution of tris (trishydroxymethylaminomethane) and is dissolved in a solvent that is the water that forms the gel.
  • an aqueous solution of tris (trishydroxymethylaminomethane) is about 50 mM.
  • the gel polymer is cross-linked, for example, through a covalent or non-covalent cross-linking reaction.
  • the covalent cross-linking reaction may be an enzymatic reaction.
  • the covalent cross-linking reaction may be a mild chemically selective reaction.
  • the water may be water containing no impurities or substantially free of impurities, for example, distilled water, or water containing another component, for example, physiological saline or a buffer solution.
  • the buffer is, for example, phosphate buffered physiological saline, sodium chloride solution, phosphate solution, water or phosphate buffer.
  • the polymer is any polymer that can form a gel having thixotropic properties when dissolved in water, after which the gel is soluble.
  • the macromolecule may be a protein, a polysaccharide, or the like.
  • a macromolecule is a macromolecule that does not have cytotoxicity or inhibitory activity on cell behavior, or has low cytotoxicity or inhibitory activity on cell behavior.
  • the polysaccharide is, for example, gellan gum.
  • the solvent is the water forming the gel and / or the solution added for dissolution.
  • the gel can be dissolved in the water forming the gel over time or by physical irritation.
  • the gel can be dissolved by chemical stimulation in a solution added for dissolution of the gel.
  • the solution added for lysis of the gel is, for example, a buffer solution that does not have cytotoxicity or cytotoxicity or has low cytotoxicity or cytotoxicity.
  • the buffer is, for example, phosphate buffered physiological saline, sodium chloride solution, phosphate solution, phosphate buffer or Tris (Trishydroxymethylaminomethane) aqueous solution.
  • the cell may be a human-derived cell or a non-human animal-derived cell.
  • Animals are, for example, insects, fish, amphibians, reptiles, birds or mammals. Animals are, for example, frogs, chickens, humans, monkeys, pigs, horses, cows, sheep, dogs, cats, mice or rabbits.
  • the animal is, for example, a cow or a human.
  • the cell is, for example, a cell from which a mesenchymal stem cell, an embryonic stem cell, an induced pluripotent stem cell, or the like is derived.
  • the cell is, for example, a cell derived from a healthy cell or an unhealthy cell.
  • the cell may be a cultured cell.
  • the cultured cells include primary cultured cells, subcultured cells, cell line cells and the like.
  • the cell may be a cell derived from any tissue.
  • the cells are, for example, cutaneous fibroblasts, umbilical vein endothelial cells, myoblasts or myoblasts.
  • a three-dimensional tissue is, for example, an aggregate of cells containing cultured cells and an extracellular matrix.
  • a three-dimensional tissue is, for example, a mature tissue or organ.
  • the three-dimensional tissue may further have a vascular structure.
  • the three-dimensional tissue can be any tissue, such as epithelial tissue, connective tissue, muscle tissue, and nervous tissue.
  • the three-dimensional tissue is, for example, epithelial tissue or muscle tissue.
  • the three-dimensional tissue can also be any organ, such as the intestine, stomach, liver, pancreas, lungs, heart, brain.
  • a three-dimensional tissue is composed of a plurality of cells, for example, 2, 5, 10, 20, 20, 30, 40, 50, 100 or 500 or more cells.
  • a three-dimensional tissue is composed of, for example, 1000 cells, 5000 cells, or 10000 cells or less.
  • the three-dimensional tissue may be arranged via the extracellular matrix to form the three-dimensional structure.
  • the tissue precursor is, for example, a state before the formation of mature tissue.
  • a tissue precursor is a population of premature cells formed in a supporting bath using a three-dimensional bioprinting method.
  • the extracellular matrix may contain a substance that can play a role in in vitro cell culture or an artificially synthesized substance.
  • the extracellular matrix includes, but is not limited to, fibronectin, gelatin, collagen, laminin, polylysine and the like.
  • the extracellular matrix may be one type or two or more types.
  • the extracellular matrix may form cell-cell adhesion between adjacent cells.
  • the present invention provides, in one embodiment, a method for producing a cultured three-dimensional tissue using the supporting bath.
  • This method (I) A step of forming a three-dimensional tissue precursor on the above supporting bus by using a three-dimensional bioprinting method.
  • (Ii) includes a step of dissolving the gel in the supporting bath and (iii) a step of culturing the three-dimensional tissue in the obtained solution.
  • the method for producing a cultured three-dimensional tissue can produce a three-dimensional tissue by culturing the formed three-dimensional tissue precursor.
  • the three-dimensional bioprinting method is a process in which cells forming a three-dimensional tissue precursor are arranged or plotted on a supporting bath.
  • the three-dimensional bioprinting method may be automated or semi-automated computer-aided, or may be manual.
  • the three-dimensional bioprinting method is a method of placing or plotting cells in a supporting bath using a dispenser having nozzles, such as a multi-nozzle dispenser.
  • the multi-nozzle dispenser can, for example, arrange or plot 2, 4, 8, 16, and 32 cells at a time.
  • the nozzle allows the cells to be ejected to a predetermined supporting bus position.
  • the nozzle diameter is greater than or equal to the size that cells to be arranged or plotted can pass through, such as 5 ⁇ m or greater, 10 ⁇ m or greater, 50 ⁇ m or greater, 100 ⁇ m or greater, 500 ⁇ m or greater, or 1000 ⁇ m or greater.
  • the moving speed of the nozzle is, for example, 0.1 mm / s or more, 0.5 mm / s or more, 1 mm / s or more, 2 mm / s or more, or 5 mm / s or more.
  • the moving speed of the nozzle is, for example, 20 mm / s or less, 10 mm / s or less, 5 mm / s or less, 2 mm / s or less, or 1 mm / s or less.
  • step (i) is carried out, for example, at 0 ° C to 40 ° C.
  • the cells are maintained at a temperature at which they are retained, for example, 30 ° C. to 40 ° C., particularly 37 ° C.
  • the three-dimensional tissue precursor may be matured and stabilized in order to form and retain the three-dimensional tissue precursor.
  • the supporting bath can be removed from the three-dimensional structure by dissolving the gel in the supporting bath in a solvent.
  • this means can remove the supporting bath from the 3D tissue more refined, easily and quickly than when physically removing the supporting bath from the 3D tissue (eg scraping or cleaning). can.
  • this means is also less likely to damage the 3D tissue than when physically removing (eg, scraping or cleaning) the supporting bath from the 3D tissue.
  • the gel may be dissolved in the solvent within 3 days, within 24 hours, within 12 hours, within 6 hours, within 3 hours or within 1 hour.
  • the step (ii) may include a step of dissolving the gel and then removing the dissolved gel.
  • a culture component for culturing a three-dimensional tissue may be added.
  • the step (iii) may further include a step of inducing differentiation of the three-dimensional tissue, a step of electrically stimulating the three-dimensional tissue, and / or a step of confirming cell survival.
  • step (iii) refers to a step of retaining cells under conditions suitable for maintenance, growth and / or differentiation.
  • the conditions refer to, for example, the temperature at which the cells are retained, the culture components, the CO2 content and the cell density.
  • the conditions are, for example, 37 ° C. and 5% CO2.
  • Example 1 1.
  • Gellan gum (Gellan gum (KELCOGEL AFT) /SANSHO/ ⁇ /Lot. # 4H9829A) was dissolved at 100 ° C. to prepare a 0.1 wt% gellan gum solution. Then 1 mL FBS and 100 uL antibiotics were added. Then 2.65 mg CaCl 2 was added. The prepared gellan gum gel showed a gel state (see FIG. 1 (c)).
  • gelatin solution 10 mg gelatin was mixed with 10 mL DMEM (10% FBS, 1% antibiotics) and then dissolved at 37 degrees Celsius for 1 hour to prepare.
  • the prepared gelatin solution showed a liquid (see FIG. 1 (c)).
  • the 0.1 wt% gellan gum gel had a high viscosity at the initial stage (about 822 Pa ⁇ s), and when a shearing force was applied, it decreased significantly (about 0.082 Pa ⁇ s) and became a liquid. When the shear force was removed, it increased again (about 734 Pa ⁇ s) (see FIG. 1 (d)).
  • Example 2 1. 1. Preparation of Gellan Gum Supporting Bath After dissolving 0.15 wt% gellan gum in PBS 1x at 100 degrees Celsius, a gel was formed in a printing container.
  • Cell culture Skin fibroblasts were cultured in a culture flask for adherent cells using a culture medium (DMEM, 10% FBS, 1% antibiotics). When the cells in the culture flask reached 80% or more of the confluence, subculture was performed to proliferate the cells.
  • Human umbilical vein endothelial cells were cultured in a culture flask for adherent cells in the same manner as skin fibroblasts, except that a culture medium (EGM-2) was used.
  • Example 3 1. Preparation of supporting bath for particle gel or bulk gel (linear gel) A support bath was prepared using gellan gum (GG) dissolved in PBS at a predetermined concentration. After dissolving 1 wt% of GG, the mixture was cooled to room temperature and treated with a homogenizer for 6 minutes to obtain a particle gel having a particle size of 20 ⁇ m. Further, a particle gel having a particle size of 6 ⁇ m was obtained by further sonication treatment. Further, olive oil and span80 were dispersed in a GG aqueous solution to prepare a W / O emulsion, and gelation was performed to obtain a particle gel having a particle size of 50 nm.
  • GG gellan gum
  • the bulk gel bath was prepared by heating a 0.15 wt% GG solution and then cooling it to room temperature.
  • Fluorescent labeled supporting baths were prepared by adjusting each supporting bath to contain fluorescein-modified GG (F-GG) at 0.015 wt%.
  • the obtained print gel was dissolved with trypsin, and the fluorescence intensity (au) of the obtained solution was quantified by the fluorescence spectrum.
  • the results of the fluorescence intensities (au) obtained before and after removal with Tris-HCl are shown in FIG.
  • the amount of the supporting bath incorporated into the print gel decreased.
  • the amount of the F-GG bulk gel supporting bath incorporated into the print gel was smaller than the amount of the F-GG particle gel incorporating the F-GG particle gel supporting bath into the print gel.
  • the F-GG bulk gel has a lower recovery viscosity than the F-GG particle gel.
  • the F-GG particle gel it was found that the higher the recovery viscosity, the smaller the amount of the F-GG particle gel taken up.
  • the amount of uptake of the supporting bath into the print gel was smaller than that of the F-GG particle gel (see FIG. 4).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Developmental Biology & Embryology (AREA)
  • Sustainable Development (AREA)
  • Pregnancy & Childbirth (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[課題]三次元組織培養のために有用なサポーティングバスおよびそれを用いる培養三次元組織の製造方法を提供すること。 [解決手段]高分子および水を含み、チキソトロピー性を有するゲルがバス中に形成されており、ゲルが溶媒に溶解可能である、三次元組織培養用のサポーティングバスおよびその製造方法を使用する。

Description

三次元(3D)組織培養用のサポーティングバス
 本発明は、三次元(3D)組織培養用のサポーティングバス(supporting bath)およびそれを用いる培養三次元組織の製造方法に関する。
 現在、培養三次元組織の製造方法には、三次元細胞積層法または三次元(3D)バイオプリンティング(bio−printing)法などの様々な方法がある。三次元バイオプリンティング法は、サポーティングバスとして、粒子で構成されたチキソトロピー性(thixotropy)を有するゲルを使用することが報告されている(特許文献1)。サポーティングバスを用いる三次元バイオプリンティング法は、従来の空気中で行われる三次元バイオプリンティング法と比較して、サポーティングバスの内部に細胞を配置することによって、細胞または組織の維持または乾燥の防止に役立つ。
国際公開2017/049066
 従来の三次元組織培養用のサポーティングバスは、粒子で構成されたチキソトロピー性を有するゲルを含む。しかしながら、粒子で構成されたゲルは、ゲルを調製すること、ゲルの特性を調節すること、またはゲルを取り除くこと等が困難である。そのため、ゲルを調製すること、ゲルの特性を調節すること、またはゲルを取り除くこと等が容易であるゲルを含むバスおよびそれを用いる培養三次元組織の製造方法が必要とされている。
 本発明者らは、上記課題を解決するため鋭意研究を行った結果、高分子および水を含み、チキソトロピー性を有するゲルがバス中に形成されており、ゲルが溶媒に溶解可能である、三次元組織培養用のサポーティングバスを見いだし、本発明を完成させるに至った。
 すなわち、本発明は以下を提供する:
[1]高分子および水を含み、チキソトロピー性を有するゲルがバス中に形成されており、ゲルが溶媒に溶解可能である、三次元組織培養用のサポーティングバス。
[2]水と高分子の合計に対する高分子の濃度が0.01重量%以上である、[1]に記載のサポーティングバス。
[3]高分子が多糖類である、[1]または[2]に記載のサポーティングバス。
[4]多糖類がジェランガムである、[3]に記載のサポーティングバス。
[5]溶媒が、ゲルを形成している水、または溶解のために追加する溶液である、[1]~[4]のいずれかに記載のサポーティングバス。
[6](i)[1]~[5]のいずれかに記載のサポーティングバスに三次元バイオプリンティング法を用いて三次元組織前駆体を形成する工程、
(ii)サポーティングバス中のゲルを溶解させる工程、および
(iii)得られた溶液中で三次元組織を培養する工程
を含む、培養三次元組織の製造方法。
[7]溶媒にゲルを溶解させる、[6]に記載の製造方法。
[8]溶媒が、ゲルを形成している水または溶解のために追加する溶液である、[7]に記載の製造方法。
[9]溶解のために追加する溶液がトリス水溶液である、[8]に記載の製造方法。
 本発明によれば、例えば、ゲルが高分子および水から調製されうるので、ゲルを容易かつ効率的に調製することができる。例えば、ゲルを高収率または低コストで調製することができる。
 本発明によれば、ゲルが様々な種類および様々な濃度の高分子から調製されうるので、ゲルの特性を調節することができる。例えば、ゲルの粘度、透過性、耐久性、透明度または色を調節することができる。
 本発明によれば、ゲルが溶媒に溶解可能であるので、ゲルを溶解して取り除くことができる。例えば、物理的または化学的に、ゲルを形成している水にまたは溶解のために追加する溶液に、ゲルを溶解させることができる。
 本発明によれば、プリントゲルへのサポーティングバスの取り込み量を減少させることができるので、培養される三次元組織へのサポーティングバスの過剰または不必要な取り込み量を減少させることができる。
図1(a)は、ゲルまたは溶液を含むサポーティングバス中でのプリンティングの模式図である。図1(b)は、プリンティング後のゲルの溶解および溶液の除去ならびに形成された三次元組織前駆体の培養の模式図である。図1(c)は、DMEMを溶媒として使用した0.1wt% ジェランガムがゲル状であること(左)、およびDMEMを溶媒として使用した0.1wt% ゼラチンが液体状であること(右)を示す。図1(d)は、0.1wt% ジェランガムゲルのせん断速度による粘度の測定結果である。 図2(a)は、サポーティングバス中のPBS1xに溶解させた0.15wt%ジェランガムゲル中への三次元細胞プリンティング後の写真を示す。図2(b)は、ジェランガムゲルをTris−HCl bufferで溶解した後の写真を示す。図2(c)は、5日間培養後の写真(左)および細胞生存確認のためのcalcein AM(緑色蛍光、生細胞)とEthidium homodimer−1(赤色蛍光、死細胞)で処理した後の蛍光写真(右)を示す。 図3は、F−GGバルクゲル(直鎖状ゲル)を用いた場合の、Tris−HClでの除去前および除去後の得られた蛍光強度(a.u.)の結果、すなわちプリントゲルへのサポーティングバスの取り込み量を示す。 図4は、F−GGバルクゲル(直鎖状ゲル)を用いた場合の、回復粘度を示す。 図5は、0.15wt%のジェランガム(GG)のバルクゲル(直鎖状ゲル)のサポーティングバスについて、ゾル−ゲル転移ありの結果を示す。
 本発明は、一実施形態において、高分子および水を含み、チキソトロピー性を有するゲルがバス中に形成されており、ゲルが溶媒に溶解可能である、三次元組織培養用のサポーティングバスを提供する。
 本発明において、チキソトロピー性は、物理的刺激、例えば圧力によって、ゲルがゾルに変わり、これを放置しておくと再びゲルに戻る性質(ゾル−ゲル転移)を有する流体特性を指す。すなわち、チキソトロピー性は、液体がずりを受ける間に粘度が低下する現象を有し、ずり応力−ずり速度曲線にヒステリシスが見られ、降伏値がある現象を有する。このようなチキソトロピー性の特徴を最もよく測定できる装置として、おもにストレス制御式レオメーターが知られている。ストレス制御レオメーターは、制御されたトルク(ずり応力)をサンプルに与え、その結果として流動が始まり回転する角変位速度(ずり速度)を測定して、ずり応力−ずり速度曲線が容易に得ることができる。これは、他の一般に用いられているB型粘度計のような回転粘度計や毛管粘度計、落球粘度計とは違い、ずり応力−ずり速度曲線における降伏値の測定が極めて正確に行うことができる。本発明において、チキソトロピー性は、例えば、ずり応力存在下および非存在下の差として、0.00001Pasから100000Pas、0.0001Pasから10000Pas、0.001Pasから1000Pas、または0.01Pasから100Pasを有してよい。
 本発明において、サポーティングバスは、室温またはそれより高温で急速ゲル化を受けることができる。サポーティングバスは、ゲル化前に液体であり、ゲル化中は固体状態を維持する。サポーティングバスは、例えば、三次元バイオプリンティング法にて用いられるディスペンサーのノズルの圧力によって液体となり、圧力が解消した後は再びゲルに戻る。あるいは、サポーティングバスは、例えば、ゲル化前の液体状態において三次元バイオプリンティング法が行われ、その後にゲル化処理されてもよい。サポーティングバスは、ゲルの状態において、三次元組織前駆体を維持することができる。サポーティングバスは、例えば、細胞生存条件(例えば温度およびpH)下で維持される。サポーティングバスは、例えば、細胞成長が阻害されない条件(例えば温度およびpH)下で維持される。サポーティングバスは、ゲル化前の液体状態において、例えば0℃~10℃、特に4℃で維持される。サポーティングバスは、ゲルの状態において、例えば30℃~40℃、特に37℃で維持される。サポーティングバスは、例えばpH7.0~pH7.8、特にpH7.4で維持される。サポーティングバスは、容器中に、例えば、透明な円柱型の容器中に収容または保持されていてもよい。サポーティングバスは、無菌状態に置かれてもよい。
 本発明において、サポーティングバスは、高分子および水に加えて、例えば、三次元組織を培養するための培養成分をさらに含んでいてもよい。培養成分は、溶解可能な物質、例えば、タンパク質、例えば、ゼラチンで被覆されていてもよい。溶解可能な物質が溶解される条件は、サポーティングバス中のゲルが溶解される条件と同じであっても、異なっていてもよい。溶解可能な物質は、様々な刺激によって、例えば時間の経過によって、物理的刺激、例えば光、温度または圧力によって、または化学的刺激、例えばゲルを溶解する溶液、例えば酵素を含む溶液によって溶解され、被覆されていた成分をバスに放出することができる。例えば、溶解可能な物質は、三次元組織を培養する条件で、例えば37℃で、溶解されて、被覆されていた培養成分をバスに放出することができる。
 本発明において、サポーティングバスは、さらに、三次元組織前駆体を形成するために支持体を含んでいてもよい。支持体は、例えば足場(スキャフォールド)である。三次元バイオプリンティング法によって三次元組織前駆体が、支持体上に配置またはプロットされる。培養三次元組織は、三次元組織前駆体および支持体が一緒になって構成されてもよい。2つ以上の支持体が、例えば三次元組織前駆体の両末端に、配置されてもよい。
 本発明において、ゲルは、例えばハイドロゲルである。ハイドロゲルは、ゾル−ゲル転移を通して水を分散媒とする液体が固まって流動性を喪失し多孔性構造を成す物質を指す。
 本発明において、ゲルは、親水性ポリマー鎖のネットワークを含むマトリックスである。ゲルは、ゲル材料である高分子を架橋することにより得られる。使用されるゲルは、好ましくは、細胞適合架橋反応により架橋された親水性ポリマー、例えばポリ(エチレングリコール)(PEG)ベースのポリマー、最も好ましくはマルチアーム(つまり、分岐状)PEGベースのポリマーにより構成される。
 本発明において、ゲルは、油性ゲルであってもよく、例えばハイドロゲルが挙げられる。ゲル材料(分散媒である水に分散させることによってゲルを形成する材料)である高分子は、例えば、寒天、ゼラチン、アガロース、キサンタンガム、ジェランガム、スクレロチウガム、アラビヤガム、トラガントガム、カラヤガム、セルロースガム、タマリンドガム、グアーガム、ローカストビーンガム、グルコマンナン、キトサン、カラギーナン、クインスシード、ガラクタン、マンナン、デンプン、デキストリン、カードラン、カゼイン、ペクチン、コラーゲン、フィブリン、ペプチド、マトリゲル、コンドロイチン硫酸ナトリウム等のコンドロイチン硫酸塩、ヒアルロン酸(ムコ多糖類)及びヒアルロン酸ナトリウム等のヒアルロン酸塩、アルギン酸、アルギン酸ナトリウム、及びアルギン酸カルシウム等のアルギン酸塩、並びにこれらの誘導体等の天然高分子;メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース等のセルロース誘導体及びこれらの塩;ポリアクリル酸、ポリメタクリル酸、アクリル酸・メタクリル酸アルキルコポリマー、等のポリ(メタ)アクリル酸類及びこれらの塩;ポリビニルアルコール、ポリエチレングリコールジ(メタ)アクリレートの重合体(PPEGDA、PPEGDM)、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリ(N,N−ジメチルアクリルアミド)、ポリ2−アクリルアミド−2−メチルプロパンスルホン酸、ポリ(N−イソプロピルアクリルアミド)、ポリビニルピロリドン、ポリスチレンスルホン酸、ポリエチレングリコール、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー、無水マレイン酸コポリマー、ポリアルキレンオキサイド系樹脂、ポリ(メチルビニルエーテル−alt−マレイン酸無水物)とポリエチレングリコールとの架橋体、ポリエチレングリコール架橋体、N−ビニルアセトアミド架橋体、アクリルアミド架橋体、デンプン・アクリル酸塩グラフトコポリマー架橋物等の合成高分子;シリコーン;相互侵入網目構造ハイドロゲル及びセミ相互侵入網目構造ハイドロゲル(DNハイドロゲル);これらの2種以上の混合物等が挙げられる。
 本発明において、ゲル材料である高分子は、例えば、コラーゲン(例えば、I型、II型、III型、IV型、V型、及びXI型からなる群より選択される1以上)、グルコマンナン、フィブリン、アルギン酸、ポリビニルアルコール、PPEGDA、PPEGDM、ポリヒドロキシエチルメタクリレート、ポリビニルピロリドン、ポリアクリルアミド、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、シリコーン、DNハイドロゲル、フィブロネクチン、ラミニン、エラスチン、グリコサミノグリカン(例えば、ヒアルロン酸)、プロテオグリカン、及びゼラチン、及びこれらの2種以上の混合物であることが好ましい。本発明において、ゲル材料である高分子は、例えば、ナノファイバー、例えばセルロースナノファイバーであってもよい。本発明において、ゲル材料である高分子は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。本発明において、ゲルは、均一または均質であってよい。
 本発明において、ポリマーのゲルは、粒子ゲル(ゲル微粒子)であってもよく、またはバルク(直鎖状または線状)ゲルであってもよい。粒子ゲルまたはバルクゲルは、ゲルの外観形状をいう。本発明のサポーティングバスに使用されるポリマーのゲルは、好ましくはバルク(直鎖状または線状)ゲルである。バルク(直鎖状または線状)ゲルは、粒子ゲルと異なる。バルク(直鎖状または線状)ゲルの使用は、プリントゲルへのサポーティングバスの取り込み量を減少させることができるので、培養される三次元組織へのサポーティングバスの過剰または不必要な取り込み量を減少させることができる。
 本発明において、バルクゲルの大きさは、バルクの最長寸法(または最短寸法)について、例えば、0.1mm以上、0.5mm以上、1.0mm以上、5mm以上、10mm以上、20mm以上、30mm以上、40mm以上、50mm以上、100mm以上、500mm以上、1000mm以上である。
 本発明において、水と高分子の合計に対する高分子の濃度は、例えば、0.001重量%以上、0.005重量%以上、0.01重量%以上、0.05重量%以上、0.1重量%以上または1重量%以上である。水と高分子の合計に対する高分子の濃度は、例えば、5.0重量%以下、4.5重量%以下、4.0重量%以下、3.5重量%以下、3.0重量%以下、2.5重量%以下、または2.0重量%以下である。水と高分子の合計に対する高分子の濃度は、例えば、0.001重量%~5.0重量%、0.001重量%~4.5重量%、0.001重量%~4.0重量%、0.001重量%~3.5重量%、0.001重量%~3.0重量%、0.001重量%~2.5重量%、0.001重量%~2.0重量%、0.005重量%~5.0重量%、0.005重量%~4.5重量%、0.005重量%~4.0重量%、0.005重量%~3.5重量%、0.005重量%~3.0重量%、0.005重量%~2.5重量%、0.005重量%~2.0重量%、0.01重量%~5.0重量%、0.01重量%~4.5重量%、0.01重量%~4.0重量%、0.01重量%~3.5重量%、0.01重量%~3.0重量%、0.01重量%~2.5重量%、0.01重量%~2.0重量%、0.05重量%~5.0重量%、0.05重量%~4.5重量%、0.05重量%~4.0重量%、0.05重量%~3.5重量%、0.05重量%~3.0重量%、0.05重量%~2.5重量%、0.05重量%~2.0重量%、0.1重量%~5.0重量%、0.1重量%~4.5重量%、0.1重量%~4.0重量%、0.1重量%~3.5重量%、0.1重量%~3.0重量%、0.1重量%~2.5重量%、または0.1重量%~2.0重量%である。
 本発明において、ゲルの種類および水と高分子の合計に対する高分子の濃度は、ゲルの特性、例えばゲル調製の収率またはコスト、ゲルの粘度、透過性、耐久性、透明度、色または溶解性、または細胞の特性、例えば細胞種、生体適合性または細胞生存性を考慮して、当業者によって適宜調節することができる。
 本発明において、ゲル材料である高分子がジェランガムである場合、水と高分子の合計に対する高分子の濃度は、通常、0.01重量%~2.0重量%、例えば、0.05重量%~1.0重量%または0.08重量%~0.5重量%、好ましくは、0.1重量%~0.2重量%、例えば、0.11重量%~0.19重量%、0.12重量%~0.18重量%、または0.13重量%~0.17重量%、より好ましくは0.14重量%~0.16重量%、例えば0.15重量%である。
 本発明において、例えば、高分子の70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、または100%が、ゲルを構成することができる。
 例えば、ゲルは、三次元組織前駆体または三次元組織をゲル中に維持することができる粘度に調節することができる。例えば、ゲルは、三次元組織前駆体または三次元組織がゲル中を沈んでいかない粘度に調節することができる。例えば、ゲルの粘度は、例えばテクスチャーアナライザーを使用して測定される。ゲルの粘度は、例えば、三次元バイオプリンティング法にて用いられるディスペンサーのノズルの強度に依存して適宜、調節することができる。ゲルの粘度は、例えば、ディスペンサーのノズルが、折れない、曲がらない、または変形しない粘度である。
 例えば、ゲルは、水、栄養素および空気などを細胞に送達することができる透過性に調節することができる。
 例えば、ゲルは、乾燥などに対して高い耐久性に調節することができる。例えば、ゲルは、30分以上、1時間以上、1日間以上、2日間以上、3日間以上、4日間以上、5日間以上、10日間以上、15日間以上、または20日間以上、使用することができる。
 例えば、ゲルは、ゲル中の組織を容易に観察することができるように高い透明度を有する。
 例えば、ゲルは、細胞毒性または細胞挙動阻害性を有さないか、または細胞毒性または細胞挙動阻害性が低いゲルである。
 ゲルは、様々な刺激によって、例えば時間の経過によって、物理的刺激、例えば光、温度または圧力によって、または化学的刺激、例えばゲルを溶解する溶液、例えば酵素を含む溶液によって溶解される。ゲルは、溶媒に、例えば、ゲルを形成している水または溶解のために追加する溶液に、溶解される。例えば、ゲルは、トリス(トリスヒドロキシメチルアミノメタン)水溶液で、ゲルを形成している水である溶媒に溶解される。例えば、トリス(トリスヒドロキシメチルアミノメタン)水溶液は、約50mMである。
 本発明において、ゲルのポリマーは、例えば、共有結合または非共有結合の架橋反応を介して架橋されている。共有結合架橋反応は、酵素反応であってもよい。共有結合架橋反応は、穏やかな化学選択的反応であってもよい。
 本発明において、水は、不純物を含まない、または実質的に含まない水、例えば蒸留水であってもよく、または別の成分を含む水、例えば生理食塩水または緩衝液であってもよい。緩衝液は、例えば、リン酸塩緩衝生理食塩水、塩化ナトリウム溶液、リン酸溶液、水またはリン酸緩衝液である。
 本発明において、高分子は、水に溶解されるとチキソトロピー性を有するゲルを構成することができ、その後にゲルは溶解可能である、あらゆる高分子である。高分子は、タンパク質または多糖類などであってよい。例えば、高分子は、細胞毒性または細胞挙動阻害性を有さないか、または細胞毒性または細胞挙動阻害性が低い高分子である。多糖類は、例えばジェランガムである。
 本発明において、溶媒は、ゲルを形成している水および/または溶解のために追加する溶液である。ゲルは、時間の経過によって、または物理的刺激によって、ゲルを形成している水に溶解されうる。ゲルは、化学的刺激によって、ゲルの溶解のために追加する溶液に溶解されうる。ゲルの溶解のために追加する溶液は、例えば、細胞毒性または細胞挙動阻害性を有さないか、または細胞毒性または細胞挙動阻害性が低い緩衝液である。緩衝液は、例えば、リン酸塩緩衝生理食塩水、塩化ナトリウム溶液、リン酸溶液、リン酸緩衝液またはトリス(トリスヒドロキシメチルアミノメタン)水溶液である。
 本発明において、細胞は、ヒト由来の細胞であってよく、またはヒト以外の動物由来の細胞であってもよい。動物は、例えば、昆虫、魚類、両生類、爬虫類、鳥類または哺乳類である。動物は、例えば、カエル、ニワトリ、ヒト、サル、ブタ、ウマ、ウシ、ヒツジ、イヌ、ネコ、マウスまたはウサギである。動物は、例えば、ウシまたはヒトである。細胞は、例えば、間葉系幹細胞、胚性幹細胞または人工多能性幹細胞等の由来の細胞である。細胞は、例えば、健常細胞または非健常細胞由来の細胞である。細胞は、培養細胞であってもよい。培養細胞としては、初代培養細胞、継代培養細胞、及び細胞株細胞等が挙げられる。また、細胞は、あらゆる組織由来の細胞であってよい。細胞は、例えば皮膚線維芽細胞、臍帯静脈内皮細胞、筋細胞または筋芽細胞である。
 本発明において、三次元組織は、例えば、培養された細胞と細胞外マトリックスとを含む細胞の集合体である。三次元組織は、例えば、成熟された組織または臓器である。三次元組織は、さらに、血管構造を有していてもよい。三次元組織は、あらゆる組織であってよく、例えば、上皮組織、結合組織、筋組織、神経組織である。三次元組織は、例えば上皮組織、筋組織である。三次元組織は、また、あらゆる臓器であってよく、例えば、腸、胃、肝臓、膵臓、肺、心臓、脳である。三次元組織は、複数個以上、例えば、2個、5個、10個、20個、30個、40個、50個、100個または500個以上の細胞から構成される。三次元組織は、例えば、1000個、5000個、10000個以下の細胞から構成される。三次元組織は、細胞外マトリックスを介して配置され三次元構造を形成していてもよい。
 本発明において、組織前駆体は、例えば、成熟された組織が形成される前の状態である。例えば、組織前駆体は、サポーティングバス中に、三次元バイオプリンティング法を用いて形成された成熟前の細胞の集団である。
 本発明において、細胞外マトリックスは、in vitro細胞培養において役割を果たしうる物質または、人工的に合成された物質を含んでもよい。細胞外マトリックスは、限定はされないが、フィブロネクチン、ゼラチン、コラーゲン、ラミニン及びポリリジン等を含む。細胞外マトリックスは、一種類であってもよいし、二種類以上であってもよい。細胞外マトリックスは、隣接する細胞同士の細胞間接着を形成してもよい。
 本発明は、一実施形態において、上記サポーティングバスを用いる培養三次元組織の製造方法を提供する。この方法は、
(i)上記サポーティングバスに三次元バイオプリンティング法を用いて三次元組織前駆体を形成する工程、
(ii)サポーティングバス中のゲルを溶解させる工程、および
(iii)得られた溶液中で三次元組織を培養する工程
を含む。
 本発明において、上記培養三次元組織の製造方法は、形成された三次元組織前駆体を培養して、三次元組織を製造することができる。
 上記工程(i)において、三次元バイオプリンティング法は、サポーティングバスに、三次元組織前駆体を形成する細胞が配置またはプロットされるプロセスである。三次元バイオプリンティング法は、自動化または半自動化のコンピューター支援であってよく、または手動であってもよい。例えば、三次元バイオプリンティング法は、ノズルを有するディスペンサー、例えばマルチノズルディスペンサーを用いて、サポーティングバスに細胞を配置またはプロットする方法である。マルチノズルディスペンサーは、例えば2個、4個、8個、16個、32個の細胞を一度に配置またはプロットすることができる。ノズルによって、細胞を所定のサポーティングバス位置に噴射することができる。ノズル口径は、配置またはプロットされる細胞が通過することができる大きさ以上、例えば5μm以上、10μm以上、50μm以上、100μm以上、500μm以上または1000μm以上である。ノズルの移動速度は、例えば0.1mm/s以上、0.5mm/s以上、1mm/s以上、2mm/s以上または5mm/s以上である。ノズルの移動速度は、例えば20mm/s以下、10mm/s以下、5mm/s以下、2mm/s以下または1mm/s以下である。
 上記工程(i)は、例えば0℃~40℃で実施される。上記工程(i)において、三次元バイオプリンティング後は、細胞が保持される温度、例えば30℃~40℃、特に37℃で維持される。上記工程(i)において、三次元組織前駆体を形成するのと同時に、三次元組織前駆体を形成保持するために三次元組織前駆体を成熟および安定化させてもよい。
 上記工程(ii)において、サポーティングバス中のゲルを溶媒に溶解させることによって、サポーティングバスを三次元組織から取り除くことができる。例えば、この手段は、サポーティングバスを三次元組織から物理的に取り除く(例えば削る、または洗浄する)ときと比較して、より精錬に、容易にかつ迅速にサポーティングバスを三次元組織から取り除くことができる。例えば、この手段は、また、サポーティングバスを三次元組織から物理的に取り除く(例えば削る、または洗浄する)ときと比較して、三次元組織を傷つけにくい。ゲルは、3日以内、24時間以内、12時間以内、6時間以内、3時間以内または1時間以内で溶媒に溶解されてよい。
 上記工程(ii)において、ゲルを溶解させた後に、溶解されたゲルを取り除く工程を含んでもよい。
 上記工程(iii)において、三次元組織を培養するための培養成分を加えてもよい。
 上記工程(iii)において、三次元組織を分化誘導する工程、三次元組織を電気刺激する工程および/または細胞の生存を確認する工程をさらに含んでもよい。
 上記工程(iii)は、維持、成長および/または分化に適切な条件で細胞を保持する工程を指す。条件は、例えば、細胞が保持される温度、培養成分、CO2含有量および細胞密度を指す。条件は、例えば37℃、5%CO2である。
 以下に実施例を示して本発明をさらに具体的かつ詳細に説明するが、本発明の範囲がこれらの実施例に限定されると解すべきではない。
実施例1
1. ジェランガムゲルの調製
 8.9mL Ca2+非含有DMEM(DMEM/Gibco/10569010)(10% FBS(FBS/Corning/35−010−CV)、1% antibiotics(Antibiotics/Nacalai/02892−54))に10mg ジェランガム(Gellan gum(KELCOGEL AFT)/SANSHO/−/Lot.# 4H9829A)を摂氏100度で溶解させて、0.1wt% ジェランガム溶液を調製した。その後、1mL FBSと100uL antibioticsを追加した。その後、2.65mg CaClを追加した。調製されたジェランガムゲルはゲル状を示した(図1(c)参照)。
2. ゼラチン溶液の調製
 10mL DMEM(10% FBS、1% antibiotics)に10mg ゼラチンを混合後、摂氏37度で1時間にわたって溶解させて調製した。調製されたゼラチン溶液は液体を示した(図1(c)参照)。
3. ジェランガムゲルのレオロジー特性の測定
 チキソトロピー性を測定するために、せん断速度による粘度を測定した。レオメーター基板(Thermo Scientific HAKKE RheoStress 6000,ThermoFisher Scientific)にジェランガムゲルを約800uLでロードした後、初期30秒間は0.01/sのせん断速度で次の30秒間は100/sのせん断速度で、その後再び0.01/sのせん断速度を適用して測定した。0.1wt% ジェランガムゲルは、初期に高い粘度を持ち(約822Pa・s)、せん断力を加えると非常に低下して(約0.082Pa・s)液状になった。せん断力を除去すれば、再び増加した(約734Pa・s)(図1(d)参照)。
実施例2
1. ジェランガムのサポーティングバスの作成
 PBS 1xに0.15wt% ジェランガムを摂氏100度で溶解させた後、プリンティング容器内でゲルを形成させた。
2. 細胞培養
 皮膚線維芽細胞を付着細胞用培養フラスコで培養液(DMEM、10% FBS、1% antibiotics)を使用して培養した。培養フラスコ中の細胞がコンフルエント80%以上になると継代培養を行って細胞を増殖させた。
 ヒト臍帯静脈内皮細胞は、培養液(EGM−2)を使用する以外、皮膚線維芽細胞と同様に付着細胞用培養フラスコで培養した。
3. バイオインクの調製
 皮膚線維芽細胞およびヒト臍帯静脈内皮細胞を培養フラスコから回収し、次のような組成を持つバイオインクを調製した。皮膚線維芽細胞:6.6×10 細胞/mLおよびヒト臍帯静脈内皮細胞:3.4×10 細胞/mL、コラーゲンマイクロ繊維:1.2wt%、およびフィブリノーゲン:5mg/mL。
4. 細胞プリンティング
 調製されたバイオインクをシリンジに挿入し、サポーティングバス中に連続的なライン形態で細胞プリンティングを実施した。プリンティングは22Gノズル(内径0.39mm、外径0.72mm)を使用され、移動速度は2mm/sであった。約450uL バイオインクを使用した(図2(a)参照)。プリンティング後、摂氏37度で20分間インキュベートした。その後、Tris−HCl buffer(pH 7.4、50mM)で摂氏37度1時間処理してサポーティングバス中のジェランガムゲルを溶解し(図2(b)参照)、サポーティングバス中の溶液を除去した。その後、皮膚線維芽細胞培養液およびヒト臍帯静脈内皮細胞用培養液を1:1で混合した培養液を加えて、細胞を培養した。
5. 細胞生存能測定
 7日間細胞培養後、培養液を除去し、PBS1xで細胞を洗浄した。洗浄後、染色溶液(PBS1x中に 2uM Calcein AM と 4uM Ethidium homodimer−1)で細胞を摂氏37度で15分間処理した。PBS1xで洗浄後、共焦点レーザー顕微鏡を使用して三次元組織を撮影した(図2(c)参照)。
実施例3
1.粒子ゲルまたはバルクゲル(直鎖状ゲル)のサポーティングバスの調製
 所定濃度にPBSへ溶解したジェランガム(GG)を用いてサポートバスを作製した。1wt%のGGを溶解後に室温まで冷却し、ホモジナイザーで6分間処理することで粒径20μmの粒子ゲルを得た。また、さらにソニケーション処理を行うことで粒径6μmの粒子ゲルを得た。さらに、オリーブ油とspan80をGG水溶液中に分散させることでW/Oエマルションを作製し、ゲル化させることで粒径50nmの粒子ゲルを得た。バルクゲルバスは、0.15wt%のGG溶液を加熱後に室温へ冷却することで作製した。各サポーティングバスへフルオレセイン修飾GG(F−GG)が0.015wt%で含まれるように調整することで、蛍光ラベル化サポーティングバスを調製した。
2.プリントゲルへのサポーティングバスの取り込み量の確認
 各蛍光ラベル化サポーティングバスに、2wt%フィブリノーゲンと0.6U/mlのトロンビンを含むPBS溶液をプリントし、1時間ゲル化させることで円柱状のゲルを得た。得られたプリントゲルを回収し、PBSで優しく洗浄後に共焦点レーザー顕微鏡にて3次元的に観察することで、プリントゲルに取り込まれた蛍光GGを観察した。40mLの50mM Tris−HClにプリントゲルを1日浸漬させ、さらに、新鮮な40mLの50mM Tris−HClにプリントゲルを1日浸漬させた。また、得られたプリントゲルをトリプシンを用いて溶解し、得られた溶液の蛍光強度(a.u.)を蛍光スペクトルにより定量した。Tris−HClでの除去前および除去後の得られた蛍光強度(a.u.)の結果は図3に示される。粒径の増加に伴い、プリントゲルへのサポーティングバスの取り込み量は減少した。プリントゲルへのF−GGバルクゲルのサポーティングバスの取り込み量は、プリントゲルへのF−GG粒子ゲルのサポーティングバスの取り込み量より、少なかった。
3. 回復粘度の測定
 チキソトロピー性を測定するために、せん断速度による粘度を測定した。レオメーター基板(Thermo Scientific HAKKE RheoStress 6000,ThermoFisher Scientific)にジェランガムゲルを約800uLでロードした後、初期30秒間は0.01/sのせん断速度で、次の30秒間は100/sのせん断速度で、その後再び0.01/sのせん断速度を適用して測定した。粒径の増加に伴い回復粘度は増加した。回復粘度は、再び0.01/sのせん断速度を適用した後に測定された粘度である。F−GGバルクゲルは、F−GG粒子ゲルよりも、回復粘度が低い。F−GG粒子ゲルについて、回復粘度が高いほどF−GG粒子ゲルの取り込み量を低減できることを見出した。F−GGバルクゲルは、低い回復粘度にも関わらず、F−GG粒子ゲルよりも、プリントゲルへのサポーティングバスの取り込み量は少なかった(図4参照)。
実施例4
1.サポーティングバスのゾル−ゲル転移の確認
 0.15wt%のジェランガム(GG)のバルクゲル(直鎖状ゲル)のサポーティングバスについて、レオメーター基板(Thermo Scientific HAKKE RheoStress 6000,ThermoFisher Scientific)を用いて、周波数依存的に貯蔵弾性率(G’)および損失弾性率(G’’)を測定した。使用された条件は以下の通りである。
条件:p20 TiL(直径20mm、平板);300μL;gap=0.5mm;mode=CS;τ=10.0Pa;周波数=0.1~10Hz;T=20℃
 0.15wt%の直鎖状のジェランガム(GG)のサポーティングバスがゾル−ゲル転移を有することが、図5に示される。図5において、緑青色線が貯蔵弾性率(G’)を示し、濃い青色線が損失弾性率(G’’)を示す。

Claims (9)

  1.  高分子および水を含み、チキソトロピー性を有するゲルがバス中に形成されており、ゲルが溶媒に溶解可能である、三次元組織培養用のサポーティングバス。
  2.  水と高分子の合計に対する高分子の濃度が0.01重量%以上である、請求項1に記載のサポーティングバス。
  3.  高分子が多糖類である、請求項1または2に記載のサポーティングバス。
  4.  多糖類がジェランガムである、請求項3に記載のサポーティングバス。
  5.  溶媒が、ゲルを形成している水、または溶解のために追加する溶液である、請求項1~4のいずれかに記載のサポーティングバス。
  6.  (i)請求項1~5のいずれかに記載のサポーティングバスに三次元バイオプリンティング法を用いて三次元組織前駆体を形成する工程、
    (ii)サポーティングバス中のゲルを溶解させる工程、および
    (iii)得られた溶液中で三次元組織を培養する工程
    を含む、培養三次元組織の製造方法。
  7.  溶媒にゲルを溶解させる、請求項6に記載の製造方法。
  8.  溶媒が、ゲルを形成している水または溶解のために追加する溶液である、請求項7に記載の製造方法。
  9.  溶解のために追加する溶液がトリス水溶液である、請求項8に記載の製造方法。
PCT/JP2021/014105 2020-03-26 2021-03-25 三次元(3d)組織培養用のサポーティングバス WO2021193981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/907,122 US20230105586A1 (en) 2020-03-26 2021-03-25 Supporting bath for three-dimensional (3d) tissue culture
EP21776357.2A EP4130235A4 (en) 2020-03-26 2021-03-25 SUPPORT BATH FOR THREE-DIMENSIONAL (3D) TISSUE CULTURE
JP2022510781A JPWO2021193981A1 (ja) 2020-03-26 2021-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056029 2020-03-26
JP2020056029 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193981A1 true WO2021193981A1 (ja) 2021-09-30

Family

ID=77892303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014105 WO2021193981A1 (ja) 2020-03-26 2021-03-25 三次元(3d)組織培養用のサポーティングバス

Country Status (4)

Country Link
US (1) US20230105586A1 (ja)
EP (1) EP4130235A4 (ja)
JP (1) JPWO2021193981A1 (ja)
WO (1) WO2021193981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014377A1 (ja) * 2022-07-12 2024-01-18 Jsr株式会社 3dプリンティング支持体用又は3d細胞培養支持体用組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116572524A (zh) * 2023-05-17 2023-08-11 宁波大学 卡拉胶在生物3d打印中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049066A1 (en) 2015-09-18 2017-03-23 University Of Florida Research Foundation, Incorporated Apparatus for culturing and interacting with a three-dimensional cell culture
WO2017141691A1 (ja) * 2016-02-16 2017-08-24 国立大学法人大阪大学 脈管系構造を有する三次元組織の製造方法、および脈管系構造のゲルを含む三次元組織
WO2018191244A1 (en) * 2017-04-10 2018-10-18 TheWell Bioscience Hydrogel for cell culture and biomedical applications
US20190249134A1 (en) * 2016-03-15 2019-08-15 Boston Biomedical, Inc. Cell cultures and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3230044T3 (pl) * 2014-12-11 2021-02-08 ETH Zürich Przeszczep rusztowania do naprawy chrząstki i sposób jego wytwarzania
JP7177045B2 (ja) * 2016-06-03 2022-11-22 ビコ グループ アー・ベー 化粧品の試験及び移植のためのモデルとして使用するための、新規のプリンティングヘッドを用いたヒト皮膚の3dバイオプリンティングのための、フィブリン含有又は非含有のrgd接合多糖類バイオインクの調製及び適用
US20210154368A1 (en) * 2018-04-09 2021-05-27 Case Western Reserve University Bioink and crosslinkable support medium for printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049066A1 (en) 2015-09-18 2017-03-23 University Of Florida Research Foundation, Incorporated Apparatus for culturing and interacting with a three-dimensional cell culture
WO2017141691A1 (ja) * 2016-02-16 2017-08-24 国立大学法人大阪大学 脈管系構造を有する三次元組織の製造方法、および脈管系構造のゲルを含む三次元組織
US20190249134A1 (en) * 2016-03-15 2019-08-15 Boston Biomedical, Inc. Cell cultures and use thereof
WO2018191244A1 (en) * 2017-04-10 2018-10-18 TheWell Bioscience Hydrogel for cell culture and biomedical applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014377A1 (ja) * 2022-07-12 2024-01-18 Jsr株式会社 3dプリンティング支持体用又は3d細胞培養支持体用組成物

Also Published As

Publication number Publication date
US20230105586A1 (en) 2023-04-06
EP4130235A4 (en) 2024-07-10
EP4130235A1 (en) 2023-02-08
JPWO2021193981A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US7601525B2 (en) Alginate gel scaffold having a plurality of continuous parallel microtubular copper capillaries
JP6987811B2 (ja) 細胞の凍結保存方法
WO2021193981A1 (ja) 三次元(3d)組織培養用のサポーティングバス
Liu et al. The application of hyaluronic acid hydrogels to retinal progenitor cell transplantation
KR101756935B1 (ko) 이중 가교를 갖는 하이드로젤 지지체, 그의 용도 및 이단계 가교를 사용하여 그를 제조하는 하는 방법
US20090202640A1 (en) Hydrogels of polysaccharide mixtures for tissue engineering and as carriers of active compounds
US20220280694A1 (en) Detergent-free decellularized extracellular matrix preparation methods and bioinks for 3d printing
EP3932437A1 (en) Printing system for obtaining biological fibers
Zhang et al. “All-in-one” zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting
WO2003006635A1 (fr) Support pour culture de cellules et de tissus et procede de culture
MXPA06006930A (es) Uso de matrices de alginato para controlar la proliferacion celular.
JP2020516311A (ja) 細胞培養および生物医学的応用のためのヒドロゲル
US20160250385A1 (en) Neuronal replacement and reestablishment of axonal connections
Chen et al. Hyaluronic acid-based biphasic scaffold with layer-specific induction capacity for osteochondral defect regeneration
US20230119663A1 (en) Muscle tissue produced by bioprinting
Veernala et al. Cell encapsulated and microenvironment modulating microbeads containing alginate hydrogel system for bone tissue engineering
WO2018043153A1 (ja) 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
WO2021065395A1 (ja) フィブリンシートの製造方法
JP7162618B2 (ja) 3dバイオプリンティング及び薬物送達のための調整可能なレオロジーを有する架橋ずり減粘流体
Jiang et al. SDF-1α and CTGF functionalized Gelatin methacryloyl (GelMA) hydrogels enhance fibroblast activation to promote wound healing
KR102262206B1 (ko) 망막색소상피세포를 포함하는 하이드로겔 조성물 및 이의 용도
US20230089316A1 (en) Biomaterial preserving composition
US11241504B2 (en) Thermoresponsive injectable microparticles-gel composites with low dose of recombinant BMP-9 and VEGF for bone repair
Park et al. Alginate hydrogels as matrices for tissue engineering
KR20240034967A (ko) 하이브리드 바이오프린팅 기술을 이용한 세포-스페로이드가 포함된 세포 구조체 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776357

Country of ref document: EP

Effective date: 20221026