WO2021193596A1 - 一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物 - Google Patents

一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物 Download PDF

Info

Publication number
WO2021193596A1
WO2021193596A1 PCT/JP2021/011891 JP2021011891W WO2021193596A1 WO 2021193596 A1 WO2021193596 A1 WO 2021193596A1 JP 2021011891 W JP2021011891 W JP 2021011891W WO 2021193596 A1 WO2021193596 A1 WO 2021193596A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
inhibitor
arrest
temporary treatment
embryogenesis
Prior art date
Application number
PCT/JP2021/011891
Other languages
English (en)
French (fr)
Inventor
恭光 長尾
遠藤 仁司
坂下 英司
司 大森
盛禎 早川
Original Assignee
学校法人自治医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人自治医科大学 filed Critical 学校法人自治医科大学
Priority to JP2022510521A priority Critical patent/JPWO2021193596A1/ja
Priority to US17/914,323 priority patent/US20230220331A1/en
Priority to EP21774433.3A priority patent/EP4130244A4/en
Publication of WO2021193596A1 publication Critical patent/WO2021193596A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0604Whole embryos; Culture medium therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention particularly relates to a temporary treatment medium for temporary treatment of an in vitro culture, a treatment kit, an embryogenesis arrest inhibitor, an embryogenesis arrest inhibitory method, a developmental engineering product preparation method, a transplantation method, a therapeutic method, and development.
  • a temporary treatment medium for temporary treatment of an in vitro culture a treatment kit, an embryogenesis arrest inhibitor, an embryogenesis arrest inhibitory method, a developmental engineering product preparation method, a transplantation method, a therapeutic method, and development.
  • Non-Patent Document 1 it has been described that by enhancing the action of Rho-kinase by introducing recombinant Rho-kinase into cells or the like, the survival rate of embryos whose cytoskeleton has been damaged by freezing is increased. There is.
  • This Rho kinase is a kind of serine-threonine protein phosphorylating enzyme, and there are two isoforms of ROCK1 and ROCK2 having high homology. By acting on the cytoskeleton, both are primarily associated with important physiological functions, including regulation of cell shape and movement.
  • Non-Patent Document 1 it is described that the viability of embryos is significantly reduced by using "Rho-kinase inhibitor” that suppresses the action of Rho-kinase (see the summary of Non-Patent Document 1 and the like).
  • Patent Document 1 a method of forming retinal pigment epithelial cells from pluripotent stem cells such as iPS cells and ES cells using Y27632, which is a kind of Rho-kinase inhibitor, is described.
  • Non-Patent Document 1 cannot sufficiently suppress embryo damage during the production of genetically modified animals, and production of an individual in a strain sensitive to artificial embryo manipulation accompanied by damage. Was extremely difficult.
  • the present invention has been made in view of such a situation, and an object of the present invention is to solve the above-mentioned problems.
  • the temporary treatment medium of the present invention is a temporary treatment medium for reducing damage caused by manipulation of an in vitro culture containing any or any combination of pluripotent stem cells, germ cells, fertilized eggs, and embryos. It is characterized by containing an intracellular skeletal regulator and / or an antiproliferative agent.
  • the treatment kit of the present invention is characterized by containing the temporary treatment medium.
  • the embryonic development arrest inhibitor of the present invention contains an apoptosis inhibitor, reduces damage caused by manipulation of the in vitro culture, and suppresses embryogenesis arrest.
  • the method for suppressing embryogenesis arrest of the present invention reduces damage caused by manipulation of an in vitro culture containing pluripotent stem cells, germ cells, fertilized eggs, and any or any combination of embryos, and suppresses embryogenesis arrest.
  • a method for suppressing embryonic arrest which comprises treating with a temporary treatment medium containing an intracellular skeletal regulator and / or an apoptosis inhibitor for a specific period before and / or after a damaging operation.
  • the method for producing a developmental engineering product of the present invention is to prepare a developmental engineering product containing any or any combination of individuals, organs, tissues, and cells from the in vitro culture treated by the method for suppressing embryogenesis. It is characterized by.
  • the transplantation method of the present invention is characterized in that the in vitro culture treated by the embryogenesis arrest suppressing method and / or the developmental engineering product prepared by the developmental engineering product preparation method is transplanted.
  • the therapeutic method of the present invention is a therapeutic method for mammals, in which the in vitro culture treated by the embryogenesis arrest suppressing method and / or the developmental engineering product prepared by the developmental engineering product preparation method is transplanted. It is characterized by doing.
  • the developmental engineering product of the present invention is characterized in that it was produced by the above-mentioned method for producing a developmental engineering product.
  • pluripotent stem cells, germ cells, fertilized eggs, embryos, etc. are cultured in vitro, and molecular biological, genetic engineering, and reproduction are performed. It is necessary to perform processing, treatment, operation, etc. (hereinafter, simply referred to as “operation”) by engineering, developmental engineering, reproductive medicine, regenerative medicine, and various other techniques.
  • operation processing, treatment, operation, etc.
  • the cells are damaged, so that the developmental stage arrest (hereinafter referred to as “embryogenic arrest”) occurs depending on the strain or animal species. Therefore, in many cases, even an individual could not be produced.
  • the present inventors reduced the damage by repeating diligent experiments and treating the cells damaged by the operation with a temporary treatment medium containing an endoskeleton regulator and / or an apoptosis inhibitor. We have found that it is possible to suppress embryonic arrest, and have completed the present invention.
  • the temporary treatment medium of the present embodiment is a temporary treatment medium for reducing damage caused by manipulation of the in vitro culture, and is characterized by containing an endoskeleton regulator and / or an apoptosis inhibitor.
  • the in vitro culture of the present embodiment is used for molecular biology, genetic engineering, reproductive engineering, developmental engineering, reproductive medicine, regenerative medicine, etc. (hereinafter referred to as "developmental engineering, etc.”), and is used for in vitro culture. Includes any or any combination of animal pluripotent stem cells, germ cells, fertilized eggs, and embryos used in various operations.
  • the pluripotent stem cell of the present embodiment includes, for example, a pluripotent stem cell (Stem Cell) capable of differentiating into various cells in organisms such as mammals including humans and other vertebrates.
  • the pluripotent stem cells of the present embodiment can be subcultured, maintain a state in which differentiation does not proceed even after subculture, and the karyotype or the like is unlikely to change, or the epigenetic phenotype is unlikely to change. It is preferable to have properties. Further, it is preferable that the pluripotent stem cells of the present embodiment have sufficient proliferative ability in vitro (in vitro) or in vivo (in vivo) in relation to this.
  • pluripotent stem cells of the present embodiment include embryonic stem cells (hereinafter referred to as “ES cells”) and induced pluripotent stem cells (hereinafter referred to as “iPS”). “Cells”), other artificially generated or selected pluripotent stem cells and the like.
  • ES cells embryonic stem cells
  • iPS induced pluripotent stem cells
  • Cells other artificially generated or selected pluripotent stem cells and the like.
  • These pluripotent stem cells of the present embodiment are stem cells created by reprogramming somatic cells using various vectors such as retrovirus, adenovirus, and plasmid containing a specific gene, RNA, and low molecular weight compounds. May be good.
  • the pluripotent stem cells of the present embodiment do not necessarily have to be cells having pluripotency close to totipotency, but naive cells having higher pluripotency than usual should be used. Is also possible. Further, it is preferable that the pluripotent stem cell of the present embodiment has a differentiation ability to differentiate into a developmental engineering product described later, such as being generated as an individual by chimerizing with a germ cell described below. In addition, the pluripotent stem cells of the present embodiment are cultured on feeder cells or on a cell culture plate coated with a basement membrane matrix such as collagen, maintained, and then obtained or cryopreserved. It is possible to obtain it.
  • the pluripotent stem cells of the present embodiment include cells prepared from cells obtained from patients with diseases, cells that serve as models for other diseases, cells in which a reporter gene has been integrated (reporter cells), and conditions. It may be a cell capable of nal knockout or knock-in, other genetically modified cells, or the like.
  • This gene recombination includes addition, modification and deletion of genes in a chromosome, addition of genes by various vectors and artificial chromosomes, modification of epigenetic control, addition of artificial genetic substances such as PNA, and other gene recombination.
  • the germ cells of the present embodiment include primordial germ cells, spermatocytes, egg bud cells, germ cells before meiosis, other germ cell-derived cells, egg cells, sperm, cells capable of particulation, as described above. It includes cells capable of forming malformations different from pluripotent stem cells, and other cells that may develop individually by some operation. As the germ cells according to the present embodiment, those that have been cryopreserved and thawed may be used.
  • the fertilized egg of the present embodiment is a fertilized egg in which an animal egg cell and a sperm are fertilized, a part-time development egg, or other developing egg-like cell.
  • This fertilized egg may be one fertilized by in vitro fertilization or microinsemination, or may be a cell (cell of a fertilized egg clone) acquired at a time when cleavage is started and there is full capacity. , A cryopreserved one that has been thawed may be used. In this embodiment, it is possible to use a fertilized egg in a form generally used by those skilled in the art.
  • the embryo of the present embodiment is a cell mass at a stage where the number of cells is increased from a fertilized egg by cleavage and reaches a certain number.
  • the embryo of the present embodiment can also be applied to a split embryo, for example, an embryo such as an embryo obtained by dividing a two-cell stage embryo into two.
  • the embryo of the present embodiment may be a divided embryo, for example, an embryo such as an embryo obtained by dividing a two-cell stage embryo into two, or an embryo developed into a morula or a gastrula. ..
  • the embryo of the present embodiment may be a blastocyst or the like.
  • the embryo of the present embodiment may be an embryo derived from a cell having totipotency, which is prepared by using a primordial germ cell or the like prepared from pluripotent stem cells.
  • the mammalian embryo targeted in this embodiment may be a chimera in which cells of a plurality of types of animals are mixed.
  • the chimeric embryo may be combined with cells of an animal other than a mammal.
  • the target of the embryo treatment of the present embodiment it is applied not only to an embryo but also to an embryoid body that does not necessarily grow into an individual or a foetation but differentiates only into tissues and organs (organs) of each lineage (series). It is possible.
  • an embryo in which a part of the embryo is removed for analysis that is, a biopsy embryo is also applicable.
  • an embryo that has been cryopreserved and thawed may be used as the embryo of the present embodiment.
  • This cryopreservation may be a blastocyst common to those skilled in the art. That is, as the in vitro culture according to the present embodiment, those that have been cryopreserved and thawed may be used.
  • the method for obtaining the embryo according to the present embodiment is not particularly limited.
  • the embryo of this embodiment can be obtained by internal fertilization, in vitro fertilization, or nuclear transfer.
  • the mammalian embryo of the present embodiment is a mammalian embryo whose genetic information has been processed by a method such as transgenic, gene knockout, or conditional knockout in which a gene has been introduced by a gene recombination method using various vectors or the like. There may be.
  • This processing of genetic information involves methylation of a specific site of a chromosome, whether it is gene transfer or removal into the genome by genome editing or the like, or extrachromosomal gene transfer such as a plasmid or artificial chromosome. It may be epigenetic control such as control or modification of histones, or it may be addition of PNA or an artificial base, and various other methods for processing genetic information can be used.
  • the in vitro culture of the present embodiment may be selected in the form of a colony or the like by various markers or visual inspection.
  • the in vitro culture of the present embodiment may be a mixed cell population, a tissue, an organ or the like (hereinafter, referred to as “tissue or the like”).
  • tissue or the like a mixed cell population, a tissue, an organ or the like.
  • These in vitro cultures may contain a mixture of those in various differentiation and developmental states. That is, each cell belonging to the in vitro culture may be in the stage of development and may not be sufficiently differentiated or may be immature.
  • the animal to which the in vitro culture of the present embodiment belongs is not particularly limited, and includes a wide range of vertebrates and invertebrates.
  • Vertebrates include fish, amphibians, reptiles, birds, and mammals.
  • Mammals to be treated with the embryos of the present embodiment include, for example, Primates, Rodentia, Lagomorpha, Cetartiodactyla, Perissodactyla, or meat. It is derived from the order Carnivora and can be treated with, for example, the temporary treatment medium of the present embodiment prepared for different embryos for each eye or species. It should be noted that all embryos of Eutheria embryonic mammals, including rare mammals other than these eyes, can be applied to the embryo treatment of the present embodiment.
  • Examples of domestic animals include pigs (Sus scrofa domestics), cows (Bos taurus), sheep (Ovis aries), and the like as animals of the order Artiodactyla.
  • Examples of animals of the order Odd-toed ungulate include horses (Equus cavallus) and the like.
  • Examples of the companion animal include cats (Felis silvestris catus), dogs (Canis lupus familiaris), ferrets (Mustella putorius) and the like as carnivorous animals.
  • Examples of non-human primate animals include gorillas, chimpanzees, rhesus macaques, other simians, and other primates.
  • rodents include the Ryukyu mouse (Mus caroli), the Amsterdam mouse (Mus spretus), and their subspecies described in the examples below. Seeds etc. are also mentioned.
  • the subspecies according to the present embodiment may be a subspecies in classification, a subspecies in which the sequence of mitochondrial DNA and the like are at least partially different from those existing.
  • wild species a species or subspecies having a variation in genomic information may be set.
  • the other heterogeneous eyes mentioned above may also be included.
  • these different kinds of animals are referred to in association with animals having similar appearances and properties, such as “heterogeneous mice”, “heterogeneous rats”, and “heterogeneous cats” for convenience.
  • animals having similar appearances and properties such as “heterogeneous mice”, “heterogeneous rats”, and “heterogeneous cats” for convenience.
  • the above-mentioned classification of experimental animals, livestock, companion animals and the like is for convenience, and is also used for different purposes, such as breeding purposes and medical purposes.
  • the animal according to the present embodiment may be an animal that has already been genetically modified, an animal that has been genetically modified by mating, a systematic animal, or another genetically modified animal.
  • the animal of the present embodiment includes a wide range of animals such as invertebrates, spinal animals, mollusks, ring-shaped animals, arthropods, etc., which are generated by breaking eggs.
  • the animal to which the in vitro culture of this embodiment belongs may be derived from a mammal of a strain that is particularly sensitive to the operation of this embodiment and is prone to embryonic arrest. Furthermore, as shown in Examples described later, such mammals have continued inbreeding for more than 20 generations, mainly hybrids, which are hybrids with a clear genetic background, mainly siblings and siblings. It may be an inbred strain, which is a line of animals and plants obtained in the above. Further, it may be a mutant (gene mutation) animal such as a nude mouse, a predetermined disease model animal, a heterogeneous animal changed as a species, a hybrid animal between species, or the like. Furthermore, it also includes animals, subspecies, etc. that have been artificially bred and fixed as species.
  • the operation on the in vitro culture of the present embodiment includes a treatment involving damage to the in vitro culture necessary for developmental engineering and the like.
  • This operation includes not only the operation on the in vitro culture itself but also the operation on the mother and germ cells associated with the acquisition of the in vitro culture.
  • the damage of the in vitro culture includes the damage caused by various operations such as experiments and treatments after the acquisition of the in vitro culture. Specifically, this damage is caused by cells such as organelles including nuclei, DNA containing genes, intracellular skeleton, various other intracellular structures, cell membranes, and extracellular matrix which are extracellular structures. Includes damage or alteration of various structures necessary for survival and normal differentiation of cells.
  • DNA in the nucleus is nicked or nicked.
  • the operation may be such that double-strand break (DSB) occurs. And these damages may be at least partially recoverable by the metabolism of the cells.
  • DSB double-strand break
  • the operation on the in vitro culture of the present embodiment is accompanied by, for example, a treatment involving damage to the embryo (cell), an over-ovulation treatment to the mother regarding the ease of supply of the embryo, and a transplantation of a frozen embryo.
  • Embryo freezing or thawing cell dissociation, nuclear transplantation (NT), microinsemination (intracytoplasmic sperm injection, in vitro fertilization, intracytoplasmic sperm injection, ICSI), microinjection (MI), electroporation (Electrification, Electroporation, EP) and the like.
  • the treatment involving damage to the nucleus and DNA in the nucleus includes exposure to a large amount or high molecular weight (long sequence) DNA or RNA, treatment involving multiple DSBs described later, and the like.
  • operations such as cell fusion are also included in the operations of the present embodiment.
  • Cell fusion and the like also include the production of polyploid cells such as aneuploids and tetraploids.
  • the operation on the in vitro culture of the present embodiment includes various treatments such as osmotic pressure change, perforation with other chemical substances, perforation with forceps, and in vitro fertilization (In Vitro Fertilization, IVF).
  • these treatments include those performed for introducing nuclei, chromosomes, DNA, RNA and the like into in vitro cultures for the purpose of developmental engineering and the like.
  • This introduction may be carried out using various media.
  • this medium for example, various methods for introducing a DDS (Drug Delivery System) such as a plasmid, a viral vector, or a liposome, or another polymer into the cell may be used.
  • DDS Drug Delivery System
  • the viral vector may be constructed using a virus common to those skilled in the art such as adenovirus, adeno-associated virus, and retrovirus. Further, when using these media, the above-mentioned operation may be performed. Alternatively, the above-mentioned operation can be performed in order to produce the above-mentioned pluripotent stem cells and the like. In addition, various processes related to immature egg in vitro maturation (IVM), embryo transfer (Blastocyst Transfer, BT) and the like may also be included in the operation of the present embodiment. This embryo transfer also includes surgical transfer to the fallopian tubes, transplantation to the non-surgical uterus, etc., which are common to those skilled in the art.
  • IVMM immature egg in vitro maturation
  • BT embryo transfer
  • This embryo transfer also includes surgical transfer to the fallopian tubes, transplantation to the non-surgical uterus, etc., which are common to those skilled in the art.
  • the operation on the in vitro culture of the present embodiment includes various methods for performing a treatment that causes great damage to the in vitro culture, such as a treatment involving a plurality of DSBs.
  • a treatment involving such a plurality of DSBs include the production of a gene-mutant animal at a plurality of places.
  • the gene-mutant animals at the plurality of locations also include, for example, a method for producing a gene knockout, a knock-in, a conditional knockout animal, and the like. More specifically, it also includes a 2-step method for producing a conditional knockout animal.
  • the 2STEP method is a method in which electroporation is continuously performed and a Flox sequence is inserted into two locations by genome editing (see, for example, Non-Patent Document 2). This makes it possible to produce an animal (Flox animal) having a locus in which the target gene region is sandwiched between the Cre recombinase target sequence loxP.
  • the intracellular skeleton modifier of the present embodiment is a substance that regulates the polymerization, depolymerization, aggregation, dissociation, action, etc. of proteins related to the intracellular skeleton.
  • the intracellular skeleton of the present embodiment is a polymer or aggregate of structural proteins such as actin filaments, microtubules, and intermediate filaments that constitute the cytoskeleton, nuclear skeleton, membrane structure, and other intracellular skeletal structures. Etc. are included.
  • the intracellular skeleton modifier of the present embodiment may be, for example, a substance involved in the polymerization or depolymerization of actin and myosin inside and outside the nucleus related to DSB repair.
  • the intracellular skeletal regulator of the present embodiment it is possible to use a substance that regulates the cell cycle according to the period and this ratio of these cell cycles. That is, by adjusting the polymerization, depolymerization, aggregation, dissociation, etc. of the intracellular skeleton with the intracellular skeleton modifier, it is possible to promote DSB repair of DNA in the nucleus damaged by the operation described later. be. This makes it possible to suppress the generation stoppage due to damage.
  • the apoptosis inhibitor of the present embodiment is a substance that delays and / or suppresses apoptosis of cells in the developmental stage or the maintenance stage. This includes substances that have the effect and action of delaying and / or suppressing apoptosis associated with DSB repair and cell cycle regulation in the above-mentioned endoskeleton regulator. That is, the endoskeleton regulator and the apoptosis inhibitor may be the same substance.
  • the intracellular skeletal regulator and / or apoptosis inhibitor of the present embodiment is, for example, a protein, a nucleic acid, a small molecule compound, various other organic compounds, and the like, and is not particularly limited.
  • Rho kinase an inhibitor of Rho kinase (Rock1 or Rock2) as the intracellular skeletal regulator and / or apoptosis inhibitor.
  • Rho kinase inhibitor for example, it is preferable to use a Rock inhibitor.
  • the Rock inhibitor is, for example, Y-27632 (trans-4-[(1R) -1-Aminoethyl] -N-4-pyrid inylcyclohexanecarboxamide), Fasudil (1- (5-isoquinolinesulfonyl) hoppi).
  • the concentration of the Rock inhibitor contained in the temporary treatment medium of the present embodiment can be appropriately set by those skilled in the art according to the type, state, density, type and content of operation, other conditions and the like of the in vitro culture.
  • the concentration of this Rock inhibitor is, for example, about 1/2 to 1/100 of the "optimal" concentration of 20 ⁇ M shown in Non-Patent Document 1 (see p.6 of Non-Patent Document 1, paragraph 4, etc.). It may be low concentration. That is, the Rock inhibitor does not necessarily have to be at a concentration that completely suppresses the activity of Rho kinase.
  • the concentration of the Rock inhibitor contained in the temporary treatment medium of the present embodiment is, for example, 0.1 ⁇ M to 20 ⁇ M, preferably 5 ⁇ M to 15 ⁇ M, and more preferably 8 ⁇ M to 12 ⁇ M for Y-27632. It is preferable to have. In the examples described later, an example in which Y-27632 is temporarily treated with a temporary treatment medium contained at a concentration of 10 ⁇ M is described.
  • an endoskeleton regulator having no or little anti-apoptosis effect in normal cells.
  • an intracellular skeletal regulator for example, cytochalasin B (Cytochalasin B, CAS number: 14930-96-2, 2H-Oxycrotetradecino [2,3-d] isoindole-2,18 (5H) ) -Dione, 6,7,8,9,10,12a,13,14,15,15a,16,17-dodecahydro-5,13-dihydroxy-9,15-dimethyl-14methylene-16- (phenylmethyl) )-, (3E, 5R, 9R, 11E, 12aS, 13S, 15S, 15aS, 16S, 18aS)-) can also be used.
  • the same effect can be obtained even at a dose such as 1/20 to 1/5 of Y-27632.
  • the cytochalasin B is preferably 0.01 ⁇ M to 15 ⁇ M, preferably 1 ⁇ M to 12 ⁇ M, and more preferably 3 ⁇ M to 8 ⁇ M. That is, better results can be obtained when the amount of cytochalasin B is several ⁇ M less than that of Y-27632.
  • the concentration of the intracellular skeletal regulator and / or the apoptosis inhibitor of the present embodiment may be constant in each period described later, may be changed in each period, and may be changed stepwise in each period. You may.
  • the intracellular skeletal regulator and / or apoptosis inhibitor according to the present embodiment is an example of the embryogenesis arrest inhibitor according to the present embodiment.
  • these embryogenesis inhibitors reduce the damage caused by manipulation of in vitro cultures containing pluripotent stem cells, germ cells, fertilized eggs, and any or any combination of embryos, and embryogenesis arrest. Suppress.
  • the embryogenesis arrest inhibitor according to the present embodiment is used for the temporary treatment medium according to the present embodiment.
  • the temporary treatment medium of the present embodiment contains components according to the type, state, density, type and content of operation, other conditions, etc. of the in vitro culture.
  • This component may include, for example, a component for forming a medium necessary for culturing an in vitro culture and water.
  • the temporary treatment medium of the present embodiment may be used by adding a pH buffer compound, amino acids, vitamins, antioxidants, antibiotics, collagen precursors, trace metal ions and complexes, various salts and the like. More specifically, the temporary treatment medium of the present embodiment may contain, for example, components of a medium commonly used by those skilled in the art for culturing in vitro cultures.
  • a medium such as general DMEM (Dulvecco's Modified Eagle Medium) can be used.
  • DMEM Densecco's Modified Eagle Medium
  • the medium may contain serum and various serum substitutes.
  • the medium containing the various serum substitutes may be used in a culture system containing no heterologous components (Xeno-Free, XF, or Animal Component-Free, ACF).
  • the medium may also contain various RNAs, peptides, proteins and the like for promoting differentiation and growth. These include various differentiation-inducing factors, growth factors and the like. Further, it may contain a small molecule compound for inducing differentiation such as retinoic acid, which is necessary depending on the type of operation. Alternatively, the temporary treatment medium of the present embodiment may contain only components that prevent cells from dying in a short period of time, such as PBS.
  • the treatment kit of the present embodiment is characterized by including the above-mentioned temporary treatment medium.
  • the treatment kit of the present embodiment includes a solution for operation (solution) suitable for various operations, a normal medium used for normal culture, and a medium for operation according to the type of operation (hereinafter, "operation”. It may contain reagents necessary for other operations such as "solution”).
  • reagents include, for example, the probes and primers of the present embodiment, various enzymes, buffer solutions, cleaning solutions, lysates, reagents for inspection, and the like.
  • an in vitro culture a container, other materials, equipment, tools, etc.
  • the treatment kit of this embodiment may include reagents, food, cages, drinking water, and the like for maintaining the developmental engineering products described below.
  • the treatment kit having a structure containing a carrier and other reagents necessary for the treatment described later.
  • the method for suppressing embryogenesis arrest of the present embodiment is a method for suppressing embryogenesis arrest by reducing damage caused by manipulation of an in vitro culture. Specifically, the method for suppressing embryogenesis arrest of the present embodiment is characterized in that it is treated with a temporary treatment medium containing an endoskeleton regulator and / or an apoptosis inhibitor for a specific period before and / or after the operation. do.
  • the main flow of the method for suppressing embryonic development arrest of the present embodiment will be described.
  • the treatment period and the period it is preferable to appropriately set the treatment period and the period. Specifically, after preparing the in vitro culture, temporary treatment is performed with the temporary treatment medium of the present embodiment for the first specific period. Then, during the first waiting period, the medium or the operating solution is replaced with a waiting period, and then the operation is performed. Then, for the second specific period, the medium is changed to the normal medium of the present embodiment and waits. Then, the temporary treatment is performed again instead of the temporary treatment medium of the present embodiment. Further, in some cases, after waiting for the third waiting period, the subsequent processing is performed.
  • an in vitro culture to be treated is prepared.
  • This preparation includes various preparatory treatments such as collection of in vitro cultures, thawing of cryopreserved ones, picking up colonies, dissociation of cell clusters, and preparation of drops in which the culture solution is coated with mineral oil or the like.
  • the treatment with the temporary treatment medium of the present embodiment is performed only for the first specific period before the operation on the prepared in vitro culture.
  • This first specific period can be appropriately set according to the type of in vitro culture to be performed later and the type of operation.
  • the first specific period is, for example, preferably about 1 minute to 2 hours, more preferably about 15 minutes to 1 hour, and even more preferably about 30 minutes to 1 hour. be.
  • the temporary treatment during the first specific period may not be performed.
  • the in vitro culture treated with this temporary treatment medium is collected with a centrifuge or the like, washed with a minimum medium containing little serum or the like or a washing solution such as PBS (Phosphate Buffered Saline), and then recovered again, usually. Transfer to medium.
  • This normal medium is a medium usually used in the stage before the operation, and is appropriately set depending on the type of operation such as DMEM medium, serum-free medium, and PBS itself.
  • the first waiting period is preferably, for example, about 1 minute to 2 hours, and more preferably about 15 minutes to 1 hour.
  • the first waiting period may not be provided. That is, the temporary treatment medium may be washed, replaced with an operation solution (operation medium or the like) or a normal medium, and an in vitro culture may be added to perform the operation as it is.
  • the above-mentioned operation on the in vitro culture is performed.
  • This operation can cause damage to the in vitro culture.
  • the operation is performed after the in vitro culture is added to the operation solution.
  • the manipulated in vitro culture is collected, transferred to a normal medium, and waited for a second waiting period.
  • This second waiting period can be appropriately set depending on the type and content of the operation. Specifically, the second waiting period is preferably, for example, about 1 minute to 2 hours, and more preferably about 15 minutes to 1 hour. Alternatively, the following temporary processing can be performed immediately without passing through this second waiting period. That is, the second waiting period may not be required.
  • the treatment with the temporary treatment medium of the present embodiment is performed only for the second specific period before the operation on the in vitro culture.
  • the optimum value can be adjusted by those skilled in the art for this second specific period depending on the animal species, strain, type of operation, and the like. Specifically, when an inbred strain or the like, in which embryonic arrest is unlikely to occur even when manipulated, that is, when an in vitro culture having low sensitivity to manipulation is used, the second specific period is made longer than the first specific period. It is possible. For example, unfrozen and inbred mice and rats can be temporarily treated with the temporary treatment medium of the present embodiment for a long time such as 1 to 12 hours as the second specific period.
  • the effect of suppressing embryogenesis arrest is higher when the time is longer than 1 hour.
  • the pig can be temporarily treated with the temporary treatment medium of the present embodiment for a long period of 1 hour to 3 days as the second specific period.
  • the second specific period should be about the same as or slightly longer than the first specific period, and then the normal medium will be described below. It is better to wait during the third waiting period.
  • frozen eggs and embryos are used, they are less resistant to manipulation damage than unfrozen in vitro cultures, and embryonic arrest is likely to occur due to damage to DNA, that is, they are sensitive to manipulation. (Ii) It is preferable to shorten the specific period. With such a configuration, the effect of suppressing embryogenesis arrest can be further enhanced.
  • the manipulated in vitro culture is then collected and transferred to normal medium. Then, depending on the case, an operation such as transplantation to the uterus may be performed after waiting for the third waiting period. Further, after that, it waits until the development stage and is acquired as a developmental engineering product described later.
  • an intracellular skeletal regulator and / or an apoptosis inhibitor is immersed in the cells to enhance the activity of DSB repair in the nuclear skeleton and the activity of DSB repair is high.
  • the first specific period is 30 to 1 hour
  • the first waiting period is 0 to 1 hour
  • the second waiting period is 0 to 1 hour
  • the second specific period is 1 to 12 hours.
  • the first specific period is 30 to 1 hour
  • the first waiting period is 0 to 1 hour
  • the second waiting period is 0 to 1 hour
  • the second specific period is preferably 30 minutes to 1 hour
  • the third waiting period is preferably 1 to 12 hours.
  • the first specific period is 30 to 1 hour
  • the first waiting period is 0 to 1 hour
  • the second waiting period is 0.
  • the second specific period is about 1 hour
  • the second specific period is 30 minutes to 1 hour
  • the third waiting period is 1 to 12 hours.
  • the first specific period is 30 to 1 hour
  • the first waiting period is 0 hours
  • the second specific period is 0 hours
  • the second specific period is 1 hour to 3 days. Is preferable.
  • the treatment with these temporary treatment media may be performed only before the operation or only after the operation.
  • the first specific period, the first waiting period, the second waiting period, and the second specific period may be different, and the temporary treatment at that time may be different.
  • the concentrations of each intracellular skeletal regulator and / or apoptosis inhibitor contained in the medium may also be different. These can be optimized and adjusted by those skilled in the art.
  • the treatment with the temporary treatment medium may be performed a plurality of times before and / or after the operation. In this case, it is preferable to provide a waiting period after changing to a normal medium after the treatment.
  • the method for producing a developmental engineering product of the present embodiment is characterized in that a developmental engineering product is produced from an in vitro culture treated by the above-mentioned method for suppressing embryogenesis.
  • the developmental engineering product of the present embodiment is characterized in that it was produced by the above-mentioned developmental engineering product production method.
  • the developmental engineering products of this embodiment include any or any combination of individuals, organs, tissues, and cells. Among them, the individual includes a chimeric individual, a model organism, and an individual necessary for other experiments, reproductive engineering, and medical treatment. Organs and tissues do not necessarily have to be mature to the level of organs, as long as specific differentiated cells have a specific structure as a cell mass. In addition, cells include dissociated cell clumps that do not have a particular structure.
  • the developmental engineering products produced by the present embodiment can be obtained by animals, strains, etc., which cannot be achieved by conventional methods, and can be distinguished by those skilled in the art because there are few mutations due to damage. ..
  • a person skilled in the art of the present embodiment belongs, there is a special circumstance that it is very difficult for a person skilled in the art to directly identify it due to its structure or characteristics.
  • the drug discovery support method of the present embodiment is characterized in that the developmental engineering product produced by the developmental engineering product production method of the present embodiment is evaluated.
  • the drug discovery support method of the present embodiment can administer a drug related to toxicity and / or disease for drug discovery to a developmental engineering product and evaluate the state of the developmental engineering product.
  • a candidate drug for drug screening for which toxicity needs to be examined, a candidate drug for treating a disease, or the like can be used.
  • Candidate drugs of this embodiment include, for example, small molecule compounds, peptides, proteins, cell extracts and supernatants, fermented products, other synthetic compounds and natural compounds. The purity, degree of purification, and the like of these candidate drugs may be arbitrary.
  • the diseases targeted by the drug screening of the present embodiment include arbitrary diseases. Toxicity of these can be evaluated by performing expression analysis, morphological analysis, etc. of marker genes of developmental engineering products. In addition, screening may be performed according to the protocol of clinical trials or by those skilled in the art using any method. In these analyzes, it can be estimated that the candidate drug is less toxic when the normal function is maintained in the cells to which the candidate drug is administered.
  • the therapeutic method of the present embodiment is a therapeutic method for mammals, in which an in vitro culture treated by the above-mentioned embryogenesis arrest suppressing method and / or a developmental engineering product prepared by the above-mentioned developmental engineering product preparation method is used. It is characterized by transplantation.
  • the treatment method of the present embodiment can be used for reproductive medicine by applying the method of suppressing embryogenesis arrest of the present embodiment to, for example, a frozen fertilized egg or a blastocyst. This makes it applicable to mothers who have difficulty in establishing embryos due to, for example, genetic background, old age, various diseases, and the like.
  • the transplantation method of the present embodiment also functions as a therapeutic method.
  • the developmental engineering product itself produced by the above-mentioned method for producing the developmental engineering product, or the processed or extracted product is obtained as the medicine (medical composition) of the present embodiment and treated. It may be used for. That is, in the treatment method of the present embodiment, it can be used as regenerative medicine for treating diseases of animals including humans.
  • the developmental engineering product of this embodiment is a live pluripotent stem cell obtained from a patient or produced or generated, or a pluripotent stem cell having a similar type such as HLA. Obtained from rallies, etc. These cells may be produced by the above-mentioned operations, may be operated on those produced, and may be treated with the above-mentioned temporary treatment medium before and / or after these operations.
  • the acquired pluripotent stem cells and the like are induced to differentiate, then cultured for a specific period of time, and are acquired as developmental engineering products of the present embodiment at any stage of cells, cell clusters, tissues, organs and the like.
  • the acquired developmental engineering product may be processed by dissociation or the like.
  • These acquired developmental engineering products can be injected into the diseased site of a patient such as a disease, and can be used for treatment such as transplantation as at least a part of a sheet, tissue or organ.
  • the product of the developmental engineering of the present embodiment may be transplanted to the patient by preparing a single-layer or multi-layer sheet using the culture equipment used by those skilled in the art. Further, it is also possible to transplant a more organized culture by culturing the cells of the present embodiment using an appropriate carrier or laminating using a 3D printer or the like. That is, the transplantation method of the present embodiment also functions as the treatment method of the present embodiment. Further, the developmental engineering product of this embodiment can be used as a medicine.
  • the transplantation method and the treatment method of the present embodiment are applied to humans among mammals, they should be carried out within the necessary range and limit in accordance with the ethics of various reproductive medicines. That is, it is necessary to avoid genetic modification normally, and even if genetic modification is necessary for the purpose, it is necessary to carry out the gene modification to the minimum extent according to specific criteria such as prevention of genetic diseases and infectious diseases. ..
  • the present invention is carried out in Japan, transplantation and treatment after the provision of the culture is performed by a doctor. Therefore, the "animal" of the therapeutic method of the present invention does not include humans (Homo sapiens). On the other hand, in other countries, the definitions of "animal” and “treatment method” are not limited.
  • the medicine according to the embodiment of the present invention can also be used for animal treatment for treating animals other than humans.
  • This animal is not particularly limited and includes a wide range of vertebrates and invertebrates.
  • Vertebrates include fish, amphibians, reptiles, birds, and mammals.
  • mammals include, for example, the above-mentioned Primates, Rodentsia, Lagomorpha, Cetartiodactyla, or Perissodaactyla, Carnivorous. It may be various animals of (Carnivora).
  • the drug according to the embodiment of the present invention can be used not only for human treatment but also for various animal treatments, livestock growth promotion and the like.
  • the medicine according to the embodiment of the present invention can also be a therapeutic target for a part of the body of an animal, or an organ or tissue extracted or excreted from the animal.
  • this treatment is a treatment in a broad sense, and can be applied to bioreactors, cultures in model animals, cultures of cultured organs for human transplantation, and the like.
  • the developmental engineering product of the present embodiment can be used for various purposes other than regenerative medicine, such as bioreactor, production of artificial organs, and creation of cloned individuals.
  • the administration interval and dose of the developmental engineering product can be appropriately selected and changed according to various conditions such as the condition of the disease and the condition of the subject.
  • the single dose and frequency of administration of the developmental engineering product according to the embodiment of the present invention depend on the purpose of administration and further depending on various conditions such as the age and weight of the patient, symptoms and severity of disease. It can be selected and changed as appropriate.
  • the number and duration of administration may be only once, or may be administered once to several times a day for several weeks, the state of the disease may be monitored, and administration may be repeated or repeated depending on the state.
  • the developmental engineering product of the present invention can be used in combination with other compositions and the like. Further, the product of the developmental engineering product of the present invention may be administered at the same time as other compositions, or may be administered at intervals, but the order of administration is not particularly limited. Further, in the embodiment of the present invention, the period for which the disease is improved or alleviated is not particularly limited, but may be temporary improvement or alleviation, or may be improvement or alleviation for a certain period of time.
  • mice Although it has been reported that a plurality of gene-mutated mice, Flox mice, knock-in mice, etc. can be produced by various methods, the animal species and strains that can be actually produced are limited.
  • BDF1 non-inbred strain
  • CRISPR-Cas genome editing
  • specific strains of limited animals eg, mouse hybrid strains
  • 2STEP method which seems to have the highest damage due to embryo manipulation
  • no successful cases have been reported in pure mice (C57BL / 6, etc.), which are widely used in animal experiments.
  • hybrid mice that are highly resistant to embryo manipulation many embryos are arrested or developmentally arrested by highly damaged embryo manipulation, and a large amount of fertilized eggs are used to ensure the production of the target genetically modified animal. Needed supply.
  • the temporary treatment medium according to the embodiment of the present invention can reduce damage to embryos and the like due to the operation of in vitro culture, and efficiently produce individuals, organs, tissues, cells and the like. It will be possible. That is, embryos are treated with a temporary treatment medium containing an endoskeleton regulator and / or an apoptosis inhibitor that protects and stabilizes fertilized eggs from strains that are less resistant to manipulation at a specific time. It suppresses developmental arrest and enables development into blastocysts and individual production. This makes it possible to facilitate embryo manipulation of inbred mice, which are widely used in experiments, reduce the number of fertilized eggs required for embryo manipulation, and increase the efficiency of individual production.
  • the temporary treatment medium containing the apoptosis-suppressing substance of the present embodiment almost eliminates embryogenesis arrest that occurs after electroporation in, and the inbred strain C57BL necessary for genome editing. / 6
  • the normal number of fertilized eggs is sufficient.
  • Rho-kinase inhibitors compositions mediated by actions on genes, gene products, agonists / antagonists, and other pathways for which Rho-kinase expression is regulated can also be used as Rho-kinase inhibitors.
  • cytochalasins and the like may be added to the operation solution in order to prevent physical damage during operations such as cell fusion, nuclear transfer, and injection.
  • the temporary treatment medium according to the embodiment of the present invention can be used in combination with other compositions and the like.
  • the temporary treatment medium it is possible to efficiently produce individuals, organs, tissues, cells and the like. Furthermore, it is conceivable to enable the use of genes other than Cas9 shown in the following examples, such as gene modification of rare varieties, gene therapy of animals with genetic diseases, pet treatment, fertility treatment.
  • the embryogenesis arrest suppression method and the developmental engineering product production method according to the embodiment of the present invention will be described more specifically as examples based on specific experiments.
  • this embodiment is merely an example, and the present invention is not limited thereto.
  • PZM-5 medium (manufactured by Functional Peptide Research Institute: IFP0410P): medium for porcine culture embryo development
  • PBM medium (manufactured by Functional Peptide Research Institute: IFP1030P): medium for late porcine embryo culture
  • KSOM AA medium the present inventors
  • MR1ECM medium manufactured by Ark Resources
  • mWM medium manufactured by modified Whiten's medium
  • Opti-MEM medium manufactured by GIBCO BRL
  • M2 medium manufactured by Sigma, catalog number M7167
  • Y-27632 (manufactured by Fuji Film Wako: 036-24023).
  • IVF In Vitro Fertilization
  • dbcAMP SIGMA aldrich: D0627
  • FSH Merck Serono: Gonardev Subcutaneous Injection 150
  • PMSG Kyoritsu Seiyaku: Ceralmon
  • hCG Keritsu Seiyaku: Guestron
  • TGF- ⁇ TGF- ⁇ (R & D systems: 239-) A
  • Pig follicular fluid prepared by the present inventors. Collected liquid at the time of egg collection at 10000 rpm, 30 min supernatant filtration sterilized liquid).
  • CrRNA tracrRNA stock solution (100 ⁇ L)
  • CrRNA (100 ⁇ M) was prepared at 4.5 ⁇ L (final 18 ⁇ M), tracrRNA (100 ⁇ M) at 4.5 ⁇ L (final 18 ⁇ M), and Nuclease-free Duplex Buffet at 16 ⁇ L. The final amount was 25 ⁇ L.
  • the crRNA and tracrRNA were heated at 95 ° C. for 5 minutes and hybridized at 15-25 ° C.
  • crRNA: tracrRNA: 100 ⁇ M 3.39 ug. / ⁇ L
  • 1 ⁇ M 33.9 ng / ⁇ L.
  • NEPA21 registered trademark, manufactured by Neppagene: Gene transfer device body, CUY501P1-1.5: MS platinum block electrode, 1 mm gap Capacity: 5 ⁇ L, C115CB or C115CB-2: Cable (connected to device body), C117: Cable (C115CB) (Connected to a platinum plate electrode) was used.
  • TAKE Technique for Animal Knockout system by Electroporation, also referred to as "TAKE" TAKE was performed according to the method described in Patent Document 2.
  • 1. In the bathtub of the electrode, Cas9 Nuclease, gRNA, ssODN solution and the like were put into a genome editing solution or Opti-MEM solution having a volume suitable for knockout or knockin. 2. The solution resistance value was adjusted to be 200 ⁇ (190 to 210 ⁇ ). 3.
  • the in vitro culture was taken out from the culture solution coated with mineral oil (hereinafter referred to as “drop”), and washed once with the Opti-MEM solution contained in the dish. 4.
  • drop mineral oil
  • the in vitro culture was then charged into the genome editing solution or Opti-MEM solution in the electrodes. 5.
  • the actual resistance value was measured. When the resistance value was 160 ⁇ or less, the genome editing solution or the Opti-MEM solution was slightly aspirated, the resistance value was measured again, and the resistance value was adjusted to around 200 ⁇ (about 190 ⁇ to 210 ⁇ ). When the resistance value was 220 ⁇ or more, a genome editing solution or an Opti-MEM solution was added, the resistance value was measured again, and the resistance value was adjusted to 200 ⁇ (about 190 ⁇ to 210 ⁇ ). 6. Immediately after aligning the resistance values, the start button of NEPA21 was pressed to perform electroporation (EP) processing. 7. After the EP treatment, the in vitro culture was taken out. After that, the in vitro culture washed with another Opti-MEM solution was put into a liquid in a bathtub, the resistance values were made uniform, and EP was performed in the same manner.
  • EP electroporation
  • Y-27632-added mWM medium Y-27632 final concentration 10 ⁇ M, an example of the “temporary treatment medium” of this example
  • Y-27632-free mWM medium normal of this example.
  • An example of "medium” was dropped on each 35 mm Petri dish in 5 drops to prepare a drop coated with paraffin oil.
  • Pronuclear stage embryos were collected from the drops, placed in mWM medium supplemented with Y-27632, and cultured for about 30 minutes to 1 hour (temporary treatment). 3. 3. After that, TAKE was performed.
  • the pronuclear stage embryo was washed, and then transferred to a genome editing solution for TAKE or an Opti-MEM solution.
  • a genome editing solution for TAKE or an Opti-MEM solution The same applies to the following processing. 4.
  • the cells were placed in mWM medium supplemented with Y-27632 (temporary treatment) and cultured under the conditions of 37 ° C., 5% CO 2 , and (5% OO 2) until the next day (1 hour or more and 12 hours or less). 5. If necessary, culture was continued or embryo transfer was performed in Y-free mWM medium.
  • Y-27632-added mWM medium (Y-27632 final concentration 10 ⁇ M, an example of the “temporary treatment medium” of this example), Y-27632-free mWM medium (“normal medium” of this example). (Example)) was dropped on a 35 mm Petri dish by 5 drops, and drops coated with paraffin oil were prepared. 2. Pronuclear stage embryos were collected from the drops, placed in mWM medium supplemented with Y-27632, and cultured for about 30 minutes to 1 hour (temporary treatment). 3. 3. After that, TAKE was performed. 4.
  • the cells were placed in mWM medium supplemented with Y-27632 and cultured for about 30 minutes to 1 hour (temporary treatment). 5. Then, the cells were placed in Y-free mWM medium and cultured under the conditions of 37 ° C., 5% CO 2 , and (5% O 2) until the next day. If necessary, culture was continued or embryo transfer was performed in mWM medium without Y-27632 addition.
  • the cells were placed in mWM medium supplemented with Y-27632 and cultured for about 30 minutes to 1 hour (temporary treatment). Then, the cells were placed in Y-27632-free mWM medium and cultured under 37 ° C., 5% CO 2 , and 5% O 2 conditions until transplantation. 5. Then, if necessary, the culture was continued in the Y-27632-free mWM medium to establish ES cells.
  • IVF embryos were placed in PZM-5 medium supplemented with Y-27632 and cultured for about 30 minutes to 1 hour (temporary treatment). 4. After that, TAKE was performed. 5. The cells were returned to Y-27632-free PZM-5 medium (an example of the "normal medium” of this example) and cultured under 39 ° C., 5% CO 2 , and 5% O 2 conditions. 6. If necessary, sampling was performed at the development stage. If the culture is to be continued until the blastocyst stage, a drop containing Y-27632-free PZM-5 medium and PBM medium should be added 4 days after insemination. It was prepared in the same manner as in the step of. 7.
  • the cells were placed in mWM medium supplemented with Y-27632 and cultured for about 30 minutes to 1 hour (temporary treatment). 7. Then, it was transferred to Y-27632-free mWM medium. If necessary, culture was continued or embryo transfer was performed.
  • the cells were placed in KSOM AA medium supplemented with Y-27632 and cultured under 37 ° C., 5% CO 2 , and 5% O 2 conditions for 30 minutes or more and 12 hours (temporary treatment). 5. Then, it was placed in Y-27632-free KSOM AA medium (an example of the "normal medium” of this example), and cultured under 37 ° C., 5% CO 2 , and 5% O 2 conditions until the second TAKE. 6. The next day, the embryos that had become two cells were separated, and about 20 to 22 hours after egg collection, they were placed in KSOM AA medium supplemented with Y-27632 again and cultured for about 30 minutes to 1 hour (temporary treatment). 7.
  • the second TAKE was performed.
  • the cells were placed in KSOM AA medium supplemented with Y-27632 and cultured for about 30 minutes to 1 hour (temporary treatment).
  • KSOM AA medium supplemented with Y-27632 and cultured for about 30 minutes to 1 hour (temporary treatment).
  • mR1ECM medium an example of "normal medium” of this example. Culture was continued or embryo transfer was performed as needed.
  • mice and rats were mated with vas deferens ligated males and plugged, about 10 each were transplanted into the left and right oviducts or uterus of plug-confirmed mature female mice and rats.
  • about 10 embryos were transplanted into the uterus by a non-surgical method.
  • the mouse shows the difficulty of creating an individual of a hybrid, a closed colony, an inbred (B6, etc.), a disease model, and a heterologous mouse.
  • Rats show the difficulty of creating individuals for hybrids, closed colonies, inbreds (F344 etc.), disease models. Pigs, sheep, dogs, monkeys, and humans have also shown difficulty in some treatments.
  • the symbols in each column indicate that " ⁇ " is (easy, low difficulty), “ ⁇ ” is (possible, normal difficulty), and " ⁇ " is (high difficulty). Indicates that the difficulty level is "x" (impossible). That is, it shows that it is difficult in the order of " ⁇ "-" ⁇ "-" ⁇ "-" ⁇ ". "?” Indicates that the difficulty level is unknown.
  • the present inventors have actually shown that the difficulty level at the tip of the arrow in each column can be produced by the embryogenesis arrest suppressing method and the developmental engineering product production method of this example. Is shown.
  • the gray (dark) backgrounds in each column indicate the areas where the effects of this example can be expected, but there are no test examples yet. In this way, it is possible to realize the embryogenesis arrest suppression method and the developmental engineering product production method of this example for a wide range of mammals, strains, and operations.
  • the cells were cultured in a culture medium containing Y-27632 as an example of the endoskeleton regulator and / or apoptosis inhibitor of the present embodiment.
  • MKIII ver.1 the endoskeleton regulator and / or apoptosis inhibitor of the present embodiment.
  • MKIII ver.1 two types of gRNA
  • MKIII ver.2 the birth rate increased about 5 times.
  • NHEJ non-homologous end binding
  • the present inventors conducted an experiment to obtain a Flox mouse by a 2-step method targeting the Mecp2 gene. The results are shown in Table 2 below:
  • the loxP sequence was inserted only on the left side by the first electroporation step (Left loxP), the loxP sequence was inserted only on the right side by the second electroporation step (Right loxP), and The proportions of both loxP sequences inserted by both steps (2loxP) are shown, respectively.
  • FIG. 4 shows an example of a Flox mouse in which conditional knockout is possible with this 2loxP.
  • lane "27” a band (5398 bp or 5440 bp) indicating that it is a Flox mouse is generated.
  • inbred Flox mice that can be knocked out conditionally by the 2STEP method using two types of genes, and all of them were successful so far only from the experimental group to which Y-27632 was added. Inbred Flox mice for which no examples were reported were obtained. As described above, the temporary processing by Y-27632 is considered to be effective for a system vulnerable to damage such as B6.
  • FIG. 5 shows an example of the obtained individual. Individual creation from frozen embryos in heterologous inbred mouse SPR2 has not been possible in the past.
  • FIG. 4 shows a treatment example in which ES cells were established from the early embryos of the electroporated heterologous inbred mouse SPR2 and the heterologous mouse Mus caroli (Ryukyu mouse)
  • a treatment example in which ES cells were established from the early embryos of the electroporated heterologous inbred mouse SPR2 and the heterologous mouse Mus caroli (Ryukyu mouse) will be described.
  • electroporation was attempted to edit the genome, and ES cells were established at a high rate.
  • Mus caroli ES cells were knocked out of the Tyr gene by genome editing and a part of them was analyzed, it was shown that NHEJ occurred and heterologous mouse ES cells were established.
  • FIG. 6 shows a dish of ES cells established with Mus caroli. The morphology of ES cells can be visually confirmed.
  • FIG. 7 shows a Mus caroli in which the Tyr gene is knocked out. Arrowhead is a band that indicates knockout.
  • FIG. 8A shows the results of the control not treated with the temporary treatment medium of the present embodiment. None of them even developed into blastocysts.
  • FIG. 8B shows the results of treatment with the temporary treatment medium of the present embodiment before and after electroporation. 71.8% developed to the blastocyst.
  • FIG. 8C shows a control that was not electroporated and was not treated with the temporary treatment medium of this embodiment. 71.4% developed to the blastocyst.
  • the 2-cell stage development rate was calculated as the ratio of 2-cell stage embryos to pronuclear stage embryos
  • the blastocyst stage development rate was calculated as the ratio of blastocyst stage to 2-cell stage embryos.
  • inbred rat F344 was treated with the temporary treatment medium of the present embodiment before and after electroporation to develop blastocysts without stopping embryogenesis. Specifically, 74 (71.8%) of 103 embryos in the 2-cell stage developed up to the blastocyst stage. This ratio was about the same as that without treatment and without electroporation.
  • Inbred strain SPR2 of heterologous mice in which thawed 2-cell stage embryos were cultured in the temporary treatment medium of this example for a specific period before and after electroporation, was obtained by transplanting 17 2-cell stage embryos into the oviduct, and 7 animals. I was able to obtain an individual. Furthermore, 16 embryos (blasts) developed in mWM medium up to the blastocyst stage were transplanted into the uterus 3.5 days after confirmation of the plug, and 5 individuals could be obtained.
  • the effect of the temporary treatment medium of this example was measured on porcine fertilized embryos that had undergone in vitro maturation and in vitro fertilization with frozen semen.
  • 35 out of 123 embryos in the 2-cell stage developed into late blastocysts (dilated or prolapsed blastocysts).
  • no blastocysts were obtained when the cells were cultured only in the control normal medium and electroporated.
  • blastocysts were obtained, and those in which the Left LoxP sequence was knocked in were first examined by PCR. Then, while LoxP could not be knocked in when treated with only the normal medium (0/12, 0%), it was confirmed in the blastocyst when treated with the temporary treatment medium of this example (0/12, 0%). 19/67, 28%). In addition, blastocysts developed without stopping development, and Flox having loxP sequences at both ends of the target gene could be confirmed in the blastocysts (1/67, 1.5%).
  • the LoxP sequence which was not knocked in at the normal ssODN concentration and the number of pulses, could be knocked in by culturing in a culture medium containing Y-27632 before and after electroporation. At this time, it became possible to double the concentration of ssODN during electroporation and double the number of electroporations.
  • a multi-gene knockout (Knock-Out, KO) mouse was prepared using an immunodeficient mouse (nude, nude mouse) embryo. Specifically, a male BALB / c-nu / nu and a female BALB / c-nu / + treated with hyperovulation were crossed to collect pronuclear stage embryos.
  • crRNA: tracrRNA Two guide RNAs (crRNA: tracrRNA) for the BBOX1 gene and two guide RNAs (crRNA: tracrRNA) for the IL2RG gene are electroporated at about 100 ng / ⁇ L, totaling about 400 ng / ⁇ L, with 14 transfer pulses.
  • the cells were cultured in the temporary treatment medium of this example. As a result, 63 embryos were transplanted and 16 embryos were born. When some of them (4 surviving pups and 3 stillborn pups) were analyzed, mutations were found in 3 of them, and 1 of them was confirmed to have mutations in 2 genes.
  • the surviving pups # 2 and # 4 in Table 6 below are successful examples.
  • a temporary treatment medium a medium obtained by adding Y-27632 to 10 ⁇ M was used as a temporary treatment medium (in this example, it is referred to as “Y + medium”).
  • Y + medium a medium obtained by adding Y-27632 to 10 ⁇ M was used as a temporary treatment medium
  • a normal medium an mWM medium to which Y-27632 was not added was used. (In this example, it is referred to as "Y-medium").
  • the prepared frozen embryos were thawed and developed as they were in Y-medium to the blastocyst stage.
  • half of the embryos that had developed to the blastocyst were transferred to Y + medium and placed for 30 minutes.
  • the embryos were transferred to Y-medium again and placed for 30 minutes.
  • the embryos treated with Y + medium and the embryos not treated were frozen in one tube each. Both tubes were then thawed and placed in normal medium for 10 minutes.
  • the embryos were equally divided into Y + medium and Y- medium, respectively, and placed for 1 hour.
  • each tube was returned to Y-medium again and the embryo was observed. This observation was made immediately after thawing, 3 hours and 24 hours later.
  • cytochalasin B which is a substance other than Y-27632
  • CB cytochalasin B
  • Y-medium a normal medium
  • CB + medium a temporary treatment medium
  • the concentrations of CB contained in the CB + medium were 5 ⁇ M and 10 ⁇ M.
  • the recovery rates when frozen embryos were thawed and re-frozen and re-thawed in blastocysts were compared.
  • 107 C57BL / 6J manufactured by Claire 2-cell stage frozen embryos were used.
  • the 2-cell stage frozen embryos were thawed and blastocysts were developed as they were in a normal medium. The blastocysts were then transferred to each of the media described above and placed for 30 minutes. Then, the embryos were transferred to Y-medium again and placed for 30 minutes. Next, each embryo was frozen. The embryos were then thawed and placed in M2 medium for 10 minutes. Then, each embryo was evenly separated and placed on the medium for 1 hour. The embryos were observed by returning to Y-medium again. This observation was made immediately after thawing, 3 hours and 24 hours later.
  • CB + medium As a result, as a result of comparison using CB + medium and Y + medium, it was confirmed that CB + medium also had many embryo survival and recovery as well as Y + medium. Specifically, as a result of comparison using Y-medium (control), Y + medium, and CB + medium, it was confirmed that the medium using Y-27632 had the highest survival and recovery of embryos. The next best result was CB + medium (CB concentration 5 ⁇ M). In the data observed 3 hours after CB + (CB concentration 5 ⁇ M), the results were as good as those of Y + medium. In the CB + medium concentration comparison, the recovery rate of 5 ⁇ M was 15% higher than that of 10 ⁇ M at the stage after 24 hours. The control Y-medium had the lowest recovery rate in the verification.
  • Example 2 of the present invention the results of a treatment example in which the in vitro culture due to damage caused by other strains or other types of operations are temporarily treated will be described.
  • the materials and methods are the same as in Example 1 above.
  • the inbred mouse B6J, the combined immunodeficiency mouse NOD-scid, and the inbred rat Wistar-Imamici according to Example 2 are all manufactured by Claire Japan.
  • DNA fragments of the Flox sequence can be inserted into multiple sites of inbred rat early embryos, which are extremely difficult to operate, at the same time, and individual preparations can be performed after genome editing with a gRNA concentration of 2 times and a Cas9 protein concentration of 5 times. did it.
  • FIG. 10 shows an example of an individual that developed as a large defect knockout inbred rat. "With major defect” was the major defect knockout inbred rat of this example, and "without major defect” was the control rat. In this way, it has become possible to produce homozygous gene-deficient individuals.
  • genome-edited individuals of inbred strain mice, inbred strains of heterologous mice, inbred strain rats, or rats based on inbred strains are produced by multiple electroporations, and high concentrations are used.
  • By introducing fertilized eggs of DNA, RNA, and protein it has become possible to prepare genome-edited individuals of inbred mice, inbred strains of heterologous mice, inbred strain rats, or rats similar to inbred strains.
  • mice and rats are subjected to operations that cause great damage, especially operations in which freeze-thaw is performed multiple times at a time such as the two-cell stage, in addition to pronuclear stage embryos. It became possible.
  • the temporary treatment medium containing Y-27632 according to the present embodiment was able to reduce and stabilize the damage to the embryo during freezing and thawing of the blastocyst.
  • Nude mice, disease model inbred rats, and mice generally have low fertility. There are few fertilized eggs that can be collected, and it is difficult to operate the fertilized eggs outside the body. The same is true for rare and endangered species.
  • By each treatment using the temporary treatment medium according to the present embodiment it is possible to utilize reproduction and reproductive engineering using such a few, valuable, and fragile early embryos.
  • mice prepared using the temporary treatment medium according to the present embodiment were examined. Double knockout mice of the IL2RG gene and the Bbox1 gene were mated with each other using the NOD-sid mouse of Treatment Example 14 described above, and it was examined whether or not the pups were affected by Y-27632. The results are shown in Table 22 below.
  • the commercially available "NOG" strain mouse is a highly severe combined immunodeficiency mouse in which the IL2RG gene is disrupted in the NOD-scid mouse. Since this commercially available NOG mouse is not licensed to reproduce, it is not possible to freely produce a mouse in combination with a knockout mouse of another gene. Even in such a case, by directly producing a double knockout containing IL2RG, it can be easily used for research and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

胚等の操作による胚発生停止を抑制する一時処理培地を提供する。一時処理培地は、多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む体外培養物への操作によるダメージを減少させる。このため、一時処理培地は、細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む。この細胞内骨格調整剤及び/又はアポトーシス抑制剤は、Rhoキナーゼ阻害剤であることが好適である。具体的には、Rhoキナーゼ阻害剤は、Rock阻害剤を用いることが可能である。このRock阻害剤は、例えば、Y-27632である。一時処理培地は、ダメージを伴う操作の前及び/又は後の特定期間、体外培養物を処理するのに用いられる。

Description

一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物
 本発明は、特に、体外培養物への一時処理を行うための一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物に関する。
 従来、発生工学や生殖医療が、ヒト、マウス、ラット、ウサギ、ブタ、ウシ、ウマ、サル等で多用されてきている。配偶子の凍結および融解技術は必須の技術であるが、種によっては効率の低いことがある。生殖技術を実施の際に、卵などの配偶子が安定化され、凍結・融解操作、ICSI、核移植、キメラ胚作製、遺伝子導入操作などに耐えることが可能な技術、例えば胚を安定化する技術が求められている。たとえば、近年、疾患モデル動物の作製や遺伝子治療モデルの基盤研究として、CRISPR-Cas等のゲノム編集による遺伝子改変動物の作製が多く報告されている。
 遺伝子改変動物等を作製するためには、体外で胚を培養及び遺伝子を改変等の胚操作をする必要がある。
 しかし、体外で培養及び操作された胚はダメージを受けるため、系統や動物種によっては、個体まで作製できない場合が多かった。
 従来、非特許文献1を参照すると、組み換えRhoキナーゼを細胞に導入等してRhoキナーゼの作用を増強することで、凍結により細胞骨格にダメージをうけた胚の生存率を増加させると記載されている。このRhoキナーゼは、セリン-スレオニンタンパク質リン酸化酵素の一種であり、相同性の高いROCK1とROCK2の二つのアイソフォームがある。いずれも細胞骨格に作用することにより、主に細胞の形状と動きの調節を含む、重要な生理機能に関連している。
 ここで、非特許文献1によれば、Rhoキナーゼの作用を抑える「Rhoキナーゼインヒビター」を用いると、胚の生存率が著しく下がることが記載されている(非特許文献1の要約等参照)。
 一方、特許文献1を参照すると、Rhoキナーゼインヒビターの一種であるY27632を用いて、iPS細胞やES細胞等の多能性幹細胞から網膜色素上皮細胞を形成させる方法が記載されている。
国際公開第2018/164240号 特開2015-70825号公報
Gu他、「Rho/RhoA-associated kinase pathway improves the anti-freezing potentiality of murine hatched and diapaused blastocysts」、Sci Rep、(米)、2017、7:6705 Horii,T他、「Efficient generation of conditional knockout mice via sequential introduction of lox sites」、Sci Rep、(米)、7、:7891
 しかしながら、非特許文献1のRhoキナーゼ増強では、遺伝子改変動物の作製の際に、胚のダメージを十分抑えることはできず、ダメージを伴う人工的胚操作等に感受性のある系統での個体の作製は、極めて難しかった。
 本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消することを課題とする。
 本発明の一時処理培地は、多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む体外培養物への操作によるダメージを減少させるための一時処理培地であって、細胞内骨格調整剤及び/又はアポトーシス抑制剤を含むことを特徴とする。
 本発明の処理キットは、前記一時処理培地を含むことを特徴とする。
 本発明の胚発生停止抑制剤は、アポトーシス抑制剤を含み、体外培養物への操作によるダメージを減少させ、胚発生停止を抑制することを特徴とする。
 本発明の胚発生停止抑制方法は、多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む体外培養物への操作によるダメージを減少させ、胚発生停止を抑制する胚発生停止抑制方法であって、ダメージを伴う操作の前及び/又は後の特定期間、細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む一時処理培地で処理することを特徴とする。
 本発明の発生工学産物作製方法は、前記胚発生停止抑制方法により処理された前記体外培養物から、個体、器官、組織、及び細胞のいずれか又は任意の組み合わせを含む発生工学産物を作製することを特徴とする。
 本発明の移植方法は、前記胚発生停止抑制方法により処理された前記体外培養物、及び/又は前記発生工学産物作製方法にて作製された前記発生工学産物を移植することを特徴とする。
 本発明の治療方法は、哺乳類の治療方法であって、前記胚発生停止抑制方法により処理された前記体外培養物、及び/又は前記発生工学産物作製方法にて作製された前記発生工学産物を移植することを特徴とする。
 本発明の発生工学産物は、前記発生工学産物作製方法にて作製されたことを特徴とする。
 本発明によれば、ダメージを伴う人工的胚操作等に感受性のある系統でも個体の作製を行うことが可能な時処理培地を提供することができる。
本発明の実施の形態に係る胚発生停止抑制方法のフローを示す概念図である。 本発明の実施例1に係る胚発生停止抑制方法及び発生工学産物作製方法により個体の作製が可能となった系統、操作の結果をまとめた表である。 本発明の実施例1に係るC57BL/6Jマウスを用いたエレクトロポレーションによるノックアウトマウスの作製例を示す表である。 本発明の実施例1に係るC57BL/6Jを用いた2STEP法によるFloxマウスを確認した電気泳動写真である。 本発明の実施例1に係る異種マウスMus spretus(アルジェリアハツカネズミ)の近交系SPR2(異種マウス近交系SPR2)の凍結卵から発生させた一個体の写真である。 本発明の実施例1に係る異種マウスMus caroliで樹立したES細胞の写真である。 本発明の実施例1に係るTyr遺伝子をノックアウトしたMus caroliを確認した電気泳動の写真である。 本発明の実施例1に係る近交系ラットをゲノム編集した胚の状態を示す表である。 本発明の実施例1に係る近交系ラットをゲノム編集した胚の状態を示す表である。 本発明の実施例1に係る近交系ラットをゲノム編集した胚の状態を示す表である。 本発明の実施例1に係る異種マウス近交系SPR2をゲノム編集して発生した個体の写真である。 本発明の実施例1に係る異種マウス近交系SPR2をゲノム編集して発生した個体の写真である。 本発明の実施例1に係る異種マウス近交系SPR2をゲノム編集して発生した個体の写真である。 本発明の実施例2に係る近交系ラットのエレクトロポレーションによるホモ大欠損ノックアウトを行い発生した個体の写真である。
<実施の形態>
 遺伝子改変動物等を作製するためには体外で多能性幹細胞、生殖細胞、受精卵、胚等(以下、「体外培養物」という。)を培養し、分子生物学的、遺伝子工学的、生殖工学的、発生工学的、生殖医療的、再生医療的、その他の各種技術による処理、処置、操作等(以下、単に「操作」という。)をする必要がある。しかし体外培養物の操作では、細胞にダメージを受けるため、系統や動物種によっては発生段階の停止(以下、「胚発生停止」という。)が生じる。このため、個体まで作製できない場合が多かった。
 そこで、本発明者らは、鋭意実験を繰り返し、操作によりダメージを受けた細胞に対して細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む一時処理培地で処理することで、ダメージを減少させ、胚発生停止を抑制することが可能であることを見いだし、本発明を完成させるに至った。
〔一時処理培地〕
 本実施形態の一時処理培地は、体外培養物への操作によるダメージを減少させるための一時処理培地であって、細胞内骨格調整剤及び/又はアポトーシス抑制剤を含むことを特徴とする。
 ここで、本実施形態の体外培養物は、分子生物学、遺伝子工学、生殖工学、発生工学、生殖医療、再生医療等(以下、「発生工学等」という。)に用いられ、体外で培養や各種操作に用いられる動物の多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む。
 本実施形態の多能性幹細胞は、例えば、ヒトを含む哺乳類、その他の脊椎動物等の生物で各種細胞に分化可能な、多分化能を備える幹細胞(Stem Cell)を含む。ここで、本実施形態の多能性幹細胞は、継代可能であり、継代しても分化が進まない状態を保ち、核型等が変化しにくく、又はエピジェネティックな表現型が変化しにくい性質を有することが好適である。また、本実施形態の多能性幹細胞は、これに関連して、生体外(in vitro)又は生体内(in vivo)で十分な増殖能力を備えていることが好適である。このような本実施形態の多能性幹細胞の具体例としては、胚性幹細胞(Embryonic Stem Cell、以下、「ES細胞」という。)、人工多能性幹細胞(Induced Pluripotent Stem Cell、以下、「iPS細胞」という。)、その他の人工的に生成され若しくは選択された多能性を備える幹細胞等が挙げられる。これら本実施形態の多能性幹細胞は、特定の遺伝子を含むレトロウイルスやアデノウイルスやプラスミド等の各種ベクター、RNA、低分子化合物等により、体細胞を再プログラミングして作成された幹細胞であってもよい。
 加えて、本実施形態の多能性幹細胞としては、必ずしも全能性に近い多分化能を備えている細胞である必要はないものの、通常より多分化能が高いナイーブ(Naive)な細胞を用いることも可能である。また、本実施形態の多能性幹細胞は、下記で説明する生殖細胞とキメラ化することで個体として発生する等、後述する発生工学産物に分化する分化能力を備えることが好適である。
 また、本実施形態の多能性幹細胞は、フィーダー細胞上又はコラーゲン等の基底膜マトリックスをコーティングした細胞培養用プレート等で培養され、維持された後、これを取得したり、凍結保存したものを取得したりすることが可能である。
 さらに加えて、本実施形態の多能性幹細胞は、疾患の患者から得られた細胞から作成された細胞、その他の疾患のモデルとなる細胞、レポーター遺伝子が組み込まれた細胞(レポーター細胞)、コンディショナルノックアウトやノックインが可能な細胞、その他の遺伝子組み換えされた細胞等であってもよい。この遺伝子組み換えは、染色体内の遺伝子の追加や修飾や削除、各種ベクターや人工染色体による遺伝子等の付加、エピジェネティック制御の変更、PNA等の人工遺伝物質の付加、その他の遺伝子組み換えを含む。
 本実施形態の生殖細胞は、始原生殖細胞、精原細胞、卵祖細胞、減数分裂をする前の生殖細胞、生殖細胞由来のその他の細胞、卵細胞、精子、単為発生可能な細胞、上述の多能性幹細胞とは異なる奇形腫形成能力のある細胞、その他、何らかの操作で個体発生する可能性のある細胞を含む。本実施形態に係る生殖細胞も、凍結保存されたものが解凍されたものが用いられてもよい。
 本実施形態の受精卵は、動物の卵細胞と精子とが受精された受精卵、単為発生卵、その他の発生可能な卵様細胞である。この受精卵は、体外受精や顕微授精で受精されたものであってもよく、卵割が開始され全分能がある時点で取得された細胞(受精卵クローンの細胞)等であってもよく、凍結保存されたものが解凍されたものが用いられてもよい。本実施形態では、その他、当業者に一般的に用いられる形式の受精卵を用いることが可能である。
 本実施形態の胚は、受精卵から卵割により細胞数を増やし、ある程度の数に達した段階の細胞塊である。本実施形態の胚は、分割胚、例えば、2細胞期胚を二分割した胚のような胚にも適用可能である。または、本実施形態の胚は、分割胚、例えば、2細胞期胚を二分割した胚のような胚であってもよく、桑実胚、原腸胚へと発達したものであってもよい。または、本実施形態の胚は、胚盤胞(blastocyst)等であってもよい。
 ここで、本実施形態の胚は、多能性幹細胞から作成された始原生殖細胞等を用いて作成された、全能性をもつ細胞に由来した胚であってもよい。加えて、本実施形態の対象となる哺乳類の胚は、複数の種類の動物の細胞が混合されたキメラであってもよい。この際、キメラの胚に、哺乳類以外の動物の細胞等が組み合わせられていてもよい。
 また、本実施形態の胚処理の対象として、単なる胚ではなく、必ずしも個体や胎児に成長せず、各系統(系列)の組織や器官(臓器)にのみ分化するような胚様体についても適用可能である。この際、胚の一部を解析用に取り除いた胚、すなわちバイオプシーした胚も適用可能である。
 さらに、本実施形態の胚は、凍結保存されたものが解凍されたものが用いられてもよい。この凍結保存は、当業者に一般的な胚盤胞であってもよい。
 すなわち、本実施形態に係る体外培養物は、いずれも凍結保存されたものが解凍されたものが用いられてもよい。
 本実施形態に係る胚を得るための方法は特に限定されない。たとえば、本実施形態の胚は、体内受精、体外受精、核移植によって得ることができる。
 加えて、本実施形態の哺乳類の胚は、各種ベクター等により、遺伝子組み換えの手法で遺伝子を導入されたトランスジェニック、遺伝子ノックアウト、コンディショナルノックアウト等の手法で遺伝情報を加工された哺乳類の胚であってもよい。この遺伝情報の加工は、ゲノム編集等によるゲノム中への遺伝子導入若しくは除去であっても、プラスミドや人工染色体のような染色体外への遺伝子導入であっても、染色体の特定部位のメチル化の制御やヒストンの修飾等のエピジェネティック制御であっても、PNAや人工的な塩基の付加であってもよく、その他の各種遺伝情報の加工手法が使用可能である。
 ここで、本実施形態の体外培養物は、各種マーカーや目視等によりコロニー等の形式で選択したものであってもよい。また、本実施形態の体外培養物は、混合細胞集団、組織、臓器等(以下、「組織等」という。)であってもよい。これらの体外培養物は、様々な分化や発生の状態のものを混合して含んでいてもよい。すなわち、体外培養物に属する各細胞は、発生の段階にあって十分分化していなかったり、未成熟であったりしてもよい。
 本実施形態の体外培養物が属する動物は、特に限定されるものではなく、脊椎動物及び無脊椎動物を広く含む。脊椎動物としては、魚類、両生類、は虫類、鳥類、及び哺乳類を含む。
 本実施形態の胚処理の対象となる哺乳類は、例えば、霊長目(Primates)、齧歯目(Rodentia)、ウサギ目(Lagomorpha)、鯨偶蹄目(Cetartiodactyla)、奇蹄目(Perissodactyla)、又は食肉目(Carnivora)由来であり、例えば、それぞれの目や種毎に異なる胚用に用意した、本実施形態の一時処理培地で処理可能である。なお、これらの目以外の稀少な哺乳類を含む、真獣下綱(Eutheria)の有胎盤哺乳類の胚について、本実施形態の胚処理の対象としてすべて適用可能である。
 本実施形態の体外培養物が属する動物について、上述の目単位とは異なる観点で説明すると、例えば、ヒト(Homo sapiens)、実験動物、家畜、伴侶動物等が挙げられる。このうち、実験動物としては、齧歯目の動物として、マウス(Mus musculus)、ラット(Rattus norvegicus)、ハムスター(Mesocricetus auratus)、モルモット(Cavia porcellus)等が挙げられる。ウサギ目の動物としては、ウサギ(Leporinae Trouessart)等が挙げられる。家畜としては、例えば、鯨偶蹄目の動物として、ブタ(Sus scrofa domesticus)、ウシ(Bos taurus)、ヒツジ(Ovis aries)等が挙げられる。奇蹄目の動物としては、ウマ(Equus caballus)等が挙げられる。また、伴侶動物としては、食肉目の動物として、ネコ(Felis silvestris catus)、イヌ(Canis lupus familiaris)、フェレット(Mustela putorius)等が挙げられる。また、ヒト以外の霊長目の動物としては、類人猿であるゴリラ(Gorilla)やチンパンジー(Pan troglodytes)、アカゲサル(Macaca mulatta)、その他の真猿類(Simiiformes)、それ以外の霊長類等が挙げられる。この他にも、上述の例とは種が異なる異種の動物、例えば、齧歯目としては、後述の実施例で記載したオキナワハツカネズミ(Mus caroli)、アルジェリアハツカネズミ(Mus spretus)、及びこれらの亜種等も挙げられる。このうち、本実施形態に係る亜種は、分類上の亜種、ミトコンドリアDNAの配列等が既存のものと少なくとも一部は異なっているもの等てあってもよい。また、いわゆる「野生種」として、ゲノム情報的なバリエーションがある種や亜種が設定されてもよい。これに加え、上述の他の目の異種についても含まれてもよい。これら異種の動物は、本実施形態においては、便宜上、「異種マウス」「異種ラット」「異種ネコ」のように、見た目や性質等が近い動物に対応付けて称呼する。さらに、上述の実験動物、家畜、伴侶動物等の分類は、便宜上のものであり、それぞれ別の目的、更に、繁殖目的や医療目的等でも用いられる。さらに、本実施形態係る動物は、既に遺伝子改変された動物、交配による遺伝子改変が生じた動物、系統化された動物、その他の遺伝的に改変された動物であってもよい。
 また、本実施形態の動物は、無脊椎動物等であっても、脊索動物、軟体動物、環形動物、節足動物等の卵割を行い発生する動物も広く含む。
 本実施形態の体外培養物が属する動物は、特に、本実施形態の操作に感受性があり、胚発生停止が起こりやすい系統の哺乳類に由来してもよい。さらに、後述する実施例で示すように、このような哺乳類は、遺伝子的背景が明らかな状態の雑種である交雑系(hybrid)、主に兄妹、姉弟同士の近親交配を20世代以上継続して得られた動植物の系統である近交系(Inbred strain)等であってもよい。さらに、ヌードマウス等のミュータント(遺伝子変異)系の動物、所定の疾患モデル動物、又は、種として変化した異種の動物、種同士の交雑(Hybrid)動物等であってもよい。さらに、人工的に品種改良、種として固定された動物、亜種等も含む。
 ここで、本実施形態の体外培養物への操作(人工的胚操作等、以下、単に「操作」という。)は、発生工学等に必要な体外培養物のダメージを伴う処理を含む。この操作は、体外培養物自体への操作に加え、体外培養物の取得に伴う母体や生殖細胞等への操作も含む。また、体外培養物のダメージは、体外培養物を取得してからの実験や処理等の各種操作に伴うダメージを含む。具体的には、このダメージは、核を含む細胞内器官、遺伝子を含むDNA、細胞内骨格、その他の細胞内の各種構造物、細胞膜、及び細胞外の構造物である細胞外マトリックス等、細胞の生存や正常な分化等に必要な各種構造の損傷又は変質等を含む。特に、本実施形態においては、細胞に与える物理的又は器質的なストレス、電離、細胞内小器官の破壊等に伴う活性酸素、化学物質による損傷等により、核内のDNAにニック(Nick)や二重鎖切断(Double Strand Break、DSB)が生じるような操作であってもよい。
 そして、これらのダメージは、細胞が代謝することで少なくとも一部は回復可能であってもよい。逆に、細胞がダメージから回復しない場合には、セルサイクルの停止、分化の停止や変化、アポトーシス、ネクローシス、その他の正常とは異なる状態に変化する。
 具体的には、本実施形態の体外培養物への操作は、例えば、胚(細胞)へのダメージを伴う処理として、胚の易供給性に関する母体への過排卵処置、凍結胚の移植に伴う胚の凍結又は解凍、細胞の解離、核移植(Nuclear Transplantation、NT)、顕微授精(卵細胞質内精子注入法、体外受精、intracytoplasmic sperm injection、ICSI)、マイクロインジェクション(Microinjection、MI)、エレクトロポレーション(電気穿孔法、Electroporation、EP)等を含む。または、核及び核内のDNAへのダメージを伴う処理としては、多量又は高分子(長い配列の)DNAやRNAの暴露、後述する複数回のDSBを伴う処理等を含む。さらに、細胞融合等の操作も、本実施形態の操作に含む。細胞融合等においては、異数体、4倍体等の倍数体の細胞の作成も含まれる。
 これらに加えて、本実施形態の体外培養物への操作は、浸透圧変化、その他の化学物質による穿孔、鉗子等による穿孔、体外受精(In Vitro Fertilization、IVF)、等の各種処理を含む。これらの処理は、上述のように、発生工学等の目的で、核、染色体、DNAやRNA等を体外培養物へ導入するために行われるものを含む。この導入は、各種媒体を用いて行われてもよい。この媒体としては、例えば、プラスミドやウイルスベクター、リポソーム等のDDS(Drug Delivery System)、その他の高分子を細胞内に導入する各種手法を用いてもよい。このうち、ウイルスベクターは、アデノウイルス、アデノ随伴ウイルス、レトロウイルス等の当業者に一般的なウイルスを用いて構成されてもよい。さらに、これらの媒体を使用する際に、上述の操作を行ってもよい。または、上述の多能性幹細胞等を作製するために、上述の操作を行うことも可能である。なお、未熟卵体外成熟(in vitro maturation、IVM)、胚移植(Blastocyst Transfer、BT)等に関連する各種の処理も、本実施形態の操作に含まれてもよい。この胚移植は、当業者に一般的な卵管への外科的な移植、非外科的な子宮への移植等も含む。
 より具体的には、本実施形態の体外培養物への操作は、複数回のDSBを伴う処理等、体外培養物へ大きなダメージを与える処理を行う各種手法も含まれる。このような複数回のDSBを伴う処理としては、例えば、複数個所の遺伝子変異動物の作製が挙げられる。この複数個所の遺伝子変異動物は、例えば、遺伝子ノックアウト、ノックイン、コンディショナルノックアウト動物等を作製する手法も含む。より具体的には、コンディショナルノックアウト動物を作成するための2STEP法等も含む。2STEP法は、連続してエレクトロポレーションを行い、2箇所にFlox配列をゲノム編集にて挿入させる方法である(例えば、非特許文献2参照。)。これにより、標的となる遺伝子領域を、Creリコンビナーゼ標的配列loxPで挟んだ遺伝子座を持つ動物(Flox動物)を作製可能である。
 本実施形態の細胞内骨格調整剤は、細胞内骨格に関連するタンパクの重合、脱重合、集合、解離、動作等を調整する物質である。本実施形態の細胞内骨格は、細胞骨格、核骨格、膜構造体、その他の細胞内の骨格的な構造を構成するアクチンフィラメント、微小管、中間径フィラメント等の構造タンパク質の重合体や集合体等を含む。具体的には、本実施形態の細胞内骨格調整剤は、例えば、DSB修復に関連する核内外のアクチン、ミオシンの重合や脱重合等に関与するような物質であってもよい。ここで、DSB修復の活性は細胞周期によって異なり、受精卵から初期胚の発達段階において、主要な細胞周期が体細胞とは異なっていることが知られている。このため、本実施形態委の細胞内骨格調整剤は、これらの細胞周期の期間やこの割合に合わせ、細胞周期を調整する物質を用いることが可能である。すなわち、細胞内骨格調整剤により、細胞内骨格の重合、脱重合、集合、解離等を調整することで、後述する操作によりダメージを受けた核内のDNAのDSB修復を促進することが可能である。これにより、ダメージによる発生停止を抑えることが可能となる。
 また、本実施形態のアポトーシス抑制剤は、発生段階又は維持段階の細胞のアポトーシスを遅延及び/又は抑制する物質である。これは、上述の細胞内骨格調整剤におけるDSB修復や細胞周期の調整に伴って、アポトーシスを遅延及び/又は抑制する効果、作用を伴う物質を含む。すなわち、細胞内骨格調整剤及びアポトーシス抑制剤は、同じ物質であってもよい。
 ここで、本実施形態の細胞内骨格調整剤及び/又はアポトーシス抑制剤は、例えば、タンパク質、核酸、低分子化合物、その他の各種有機化合物等であり、特に限定されない。
 本実施形態においては、細胞内骨格調整剤及び/又はアポトーシス抑制剤は、例えば、Rhoキナーゼ(Rock1又はRock2)の阻害剤を用いることが好適である。
 このRhoキナーゼ阻害剤は、例えば、Rock阻害剤を用いることが好適である。
 このRock阻害剤は、例えば、Y-27632(trans-4-[(1R)-1-Aminoethyl]-N-4-pyrid inylcyclohexanecarboxamide)、Fasudil(1-(5-isoquinolinesulfonyl)homopiperazine)又はH-1152((S)-(+)-4-Glycyl-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]-h exahydro-1H-1,4-diazepine)等を用いることが可能であるが、これに限定されない。これ以外のRock阻害剤についても、好適に用いることが可能である。
 本実施形態の一時処理培地に含まれるRock阻害剤の濃度は、体外培養物の種類、状態、密度、操作の種類や内容、その他の条件等に応じて、当業者により適宜設定可能である。このRock阻害剤の濃度は、例えば、非特許文献1で示された「最適」濃度20μM(非特許文献1のp.6、第4段落等参照。)の1/2~1/100程度の低濃度であってもよい。すなわち、Rock阻害剤は、Rhoキナーゼの活性を必ずしも完全に抑制する濃度でなくてもよい。
 具体的には、本実施形態の一時処理培地に含まれるRock阻害剤の濃度は、例えば、Y-27632であれば、0.1μM~20μM、好ましくは5μM~15μM、より好ましくは8μM~12μMであることが好適である。後述の実施例では、Y-27632について10μMの濃度で含まれる一時処理培地で一時処理をする例について記載している。
 この他にも、本実施形態においては、通常の細胞において、アポトーシス抑制作用の認められない又は少ない細胞内骨格調整剤を用いることも可能である。
 本実施形態において、このような細胞内骨格調整剤として、例えば、サイトカラシンB(Cytochalasin B、CAS番号:14930-96-2、2H-Oxacyclotetradecino[2,3-d]isoindole-2,18(5H)-dione, 6,7,8,9,10,12a,13,14,15,15a,16,17-dodecahydro-5,13-dihydroxy-9,15-dimethyl-14-methylene-16-(phenylmethyl)-, (3E,5R,9R,11E,12aS,13S,15S,15aS,16S,18aS)-)を用いることも可能である。
 サイトカラシンBを用いる場合、Y-27632の1/20~1/5等の用量でも、同様の効果を得ることが可能である。具体的には、サイトカラシンBは、0.01μM~15μM、好ましくは1μM~12μM、より好ましくは3μM~8μMであることが好適である。すなわち、サイトカラシンBは、Y-27632よりも数μM少ない量の方が、良好な結果を得られる。
 その他の細胞内骨格調整剤及び/又はアポトーシス抑制剤の場合、上述の濃度の範囲から設定できる。加えて、本実施形態の細胞内骨格調整剤及び/又はアポトーシス抑制剤の濃度は、後述する各期間において、一定でもよく、各期間において変化させてもよく、それぞれの期間で段階的に変化させてもよい。
 加えて、本実施形態に係る細胞内骨格調整剤及び/又はアポトーシス抑制剤は、本実施形態に係る胚発生停止抑制剤の一例である。上述したように、これら胚発生停止抑制剤は、多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む体外培養物への操作によるダメージを減少させ、胚発生停止を抑制する。また、本実施形態に係る胚発生停止抑制剤は、本実施形態に係る一時処理培地用に用いられる。
 その他に、本実施形態の一時処理培地は、体外培養物の種類、状態、密度、操作の種類や内容、その他の条件等に応じた成分を含む。
 この成分としては、例えば、体外培養物を培養するのに必要な培地を構成するための成分及び水を含んでいてもよい。たとえば、本実施形態の一時処理培地は、pHバッファー化合物、アミノ酸、ビタミン類、抗酸化剤、抗生物質、コラーゲン前駆体、微量金属イオンや錯体、各種塩等が加えられて使用されてもよい。
 より具体的には、本実施形態の一時処理培地は、例えば、当業者が体外培養物の培養に一般的に使用する培地の成分を含んでいてもよい。この培地としては、例えば、一般的なDMEM(Dulbecco's Modified Eagle Medium)等の培地を用いることが可能である。または、多能性幹細胞、生殖細胞、受精卵、胚等に特化した特定成分を含む培地等を用いることが可能である。加えて、培地には、血清や各種血清代替物が含まれていてもよい。この各種血清代替物が含まれた培地は、異種由来成分不含有(Xeno-Free、XF、又はAnimal Component-Free、ACF)の培養系で使用されてもよい。
 さらに、培地には、分化や生育を促進するための各種RNA、ペプチド、タンパク質等も含んでいてもよい。これらは、各種分化誘導因子、成長因子等を含む。また、操作の種類によって必要なレチノイン酸のような分化誘導用の低分子化合物等を含んでいてもよい。
 または、本実施形態の一時処理培地は、PBSのように、細胞が短い期間で死滅しないようにした成分のみが含まれていてもよい。
〔処理キット〕
 本実施形態の処理キットは、上述の一時処理培地を含んで構成されることを特徴とする。これに加えて、本実施形態の処理キットは、各種の操作に合わせた操作用の溶液(用液)、通常培養時に用いる通常培地、操作の種類に応じた操作用の培地(以下、「操作溶液」という。)、その他の操作に必要な試薬を含んでいてもよい。このような試薬としては、例えば、本実施形態のプローブやプライマー、各種酵素、緩衝液、洗浄液、溶解液、検査用の試薬等も含まれる。
 加えて、本実施形態の操作に必要な体外培養物、容器、その他の資材、器材、道具類等を加えて、本実施形態の処理キットとして提供されてもよい。さらに、本実施形態の処理キットは、後述する発生工学産物を維持するための試薬、食餌、ケージ、飲料水、その他のものが含まれていてもよい。
 加えて、後述する治療に必要な担体その他の試薬を含んだ構成の処理キットを提供することも可能である。
 さらに、通常培地に付加して一時処理培地として完成するような細胞内骨格調整剤及び/又はアポトーシス抑制剤と、濃度や処理方法を記載したマニュアル等を添付した処理キットとして提供することも可能である。
〔胚発生停止抑制方法〕
 本実施形態の胚発生停止抑制方法は、体外培養物への操作によるダメージを減少させ、胚発生停止を抑制する方法である。具体的には、本実施形態の胚発生停止抑制方法は、操作の前及び/又は後の特定期間、細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む一時処理培地で処理することを特徴とする。
 具体的に、図1を参照して、本実施形態の胚発生停止抑制方法の主な流れについて説明する。
 本実施形態の胚発生停止抑制方法においては、処理の期間及び期間を適切に設定することが好適である。具体的には、体外培養物を準備した後、第一特定期間、本実施形態の一時処理培地にて一時処理を行う。その後、第一待機期間、通常培地又は操作溶液に替えて、待機してから、操作を行う。その後、第二特定期間、本実施形態の通常培地に替えて、待機する。そして、本実施形態の一時処理培地に替えて、もう一度、一時処理を行う。さらに、場合によっては、第三待機期間、待機してから、その後の処理を行う。
 より具体的に説明すると、まず、本実施形態の胚発生停止抑制方法では、処理を行う体外培養物を用意する。この用意は、体外培養物の採取、冷凍保存されていたものの解凍、コロニーのピックアップ、細胞塊の解離、培養液をミネラルオイル等で被覆するドロップの作製等の各種準備処理を含む。
 次に、用意された体外培養物への操作の前の第一特定期間だけ、本実施形態の一時処理培地による処理を行う。この第一特定期間は、後に行う体外培養物の種類や操作の種類に応じて適宜設定可能である。第一特定期間は、例えば、1分~2時間程度であることが好適であり、15分~1時間程度であることがより好適であり、30分~1時間程度であることが更に好適である。この第一特定期間の一時処理を行うことで、体外培養物の胚発生停止抑制効果を高めることができる。なお、種や系統によっては、第一特定期間の一時処理は、行わなくてもよい。
 次に、この一時処理培地で処理された体外培養物を遠心器等で回収して、血清等をあまり含まない最小培地やPBS(Phosphate Buffered Saline)等の洗浄液で洗浄して再度回収し、通常培地に移す。この通常培地は、操作を行う前段階で通常用いられる培地であり、DMEM培地、無血清培地、PBS自体等、操作の種類によって適宜設定される。そして、通常培地に移された体外培養物は、操作まで第一待機期間、待機される。この第一待機期間は、例えば、1分~2時間程度であることが好適であり、15分~1時間程度であることがより好適である。この範囲より長いと、体外培養物の胚発生停止抑制効果が十分得られないことがある。
 なお、この第一待機期間は、なくてもよい。つまり、一時処理培地を洗浄して、操作溶液(操作用の培地等)や通常培地に替え、体外培養物を投入等して、そのまま操作を行ってもよい。
 次に、上述の体外培養物への操作が行われる。この操作により、体外培養物にダメージが生じることがある。この際、操作の種類によっては、体外培養物を操作溶液に投入してから、操作を行う。なお、操作の種類によっては、通常培地又は一時処理培地のままで操作を行うことも可能である。
 その後、操作が行われた体外培養物は、回収され、通常培地に移されて、第二待機期間だけ待機される。この第二待機期間は、操作の種類や内容等により適宜設定可能である。具体的には、この第二待機期間は、例えば、1分~2時間程度であることが好適であり、15分~1時間程度であることがより好適である。または、この第二待機期間を経ることなく、すぐ下記の一時処理を行うことも可能である。すなわち、第二待機期間も、なくてもよい。
 ここで、体外培養物への操作の前の第二特定期間だけ、本実施形態の一時処理培地による処理を行う。この第二特定期間は、動物種、系統、操作の種類等により、最適な値を当業者により調整可能である。具体的には、非近交系等、操作しても胚発生停止が起こりにくい、すなわち、操作に感受性が低い体外培養物を用いる場合には、第一特定期間より第二特定期間を長くすることが可能である。たとえば、未凍結で近交系のマウスやラットについては、この第二特定期間として、1~12時間のような長い時間、本実施形態の一時処理培地で一時処理をすることが可能である。この場合、1時間よりも特定程度長い方が、胚発生停止を抑制する効果が高くなる。または、ブタについては、第二特定期間として、1時間~3日間という長い期間、本実施形態の一時処理培地で一時処理をすることが可能である。
 逆に、近交系や異種等の操作に感受性がある体外培養物を用いる場合は、第二特定期間を第一特定期間と同じ程度か少し長い程度にして、その後、通常培地下記で説明する第三待機期間、待機するのがよい。同様に、冷凍卵や胚を用いた場合、未凍結の体外培養物よりも操作よるダメージの耐性が低く、DNA等のダメージにより胚発生停止が起こりやすい、すなわち、操作に感受性があるため、第二特定期間を短くすることが好適である。
 このように構成することで、胚発生停止抑制効果をより高めることができる。
 その後、操作が行われた体外培養物は、回収されて通常培地に移される。そして、場合によっては、第三待機期間、待ってから、子宮への移植等の操作が行われてもよい。
 さらに、その後、発生段階まで待機され、後述する発生工学産物として取得される。
 これらの一時処理培地による処理の特定期間の間に、細胞内に細胞内骨格調整剤及び/又はアポトーシス抑制剤が浸漬され、核骨格におけるDSB修復の活性を亢進させたり、DSB修復の活性が高い細胞サイクルまで細胞サイクルを調整したり、細胞サイクルの進展に伴う細胞内骨格の重合や脱重合を調整したりして、本来ならダメージによりアポトーシスやセルサイクル停止等の経路が惹起されるところを抑制することで、操作によるダメージの耐性が上昇すると推測される。この上で、通常培地に移されることで、細胞内骨格調整剤及び/又はアポトーシス抑制剤による悪影響を抑え、正常な細胞サイクルへ復帰させ、細胞内骨格の重合や脱重合を正常なレベルに戻し、細胞が自ら修復されることで胚発生停止が抑制されると推測される。
 上述の各期間のいずれを用いるか、及び、各期間の長さは、動物種、系統、操作の種類等により、最適な値を当業者により調整可能である。
 下記に、実際の処理時間についての具体例をまとめたものを示す。
Figure JPOXMLDOC01-appb-T000001
 この表で示すように、マウス又はラットにおいては、未凍結の卵又は胚を用いる未凍結近交系の場合、第一特定期間は30~1時間、第一待機期間は0~1時間、第二待機期間は0~1時間、第二特定期間は1~12時間であることが好適である。または、凍結卵又は凍結胚を用いる凍結近交系の場合、第一特定期間は30~1時間、第一待機期間は0~1時間、第二待機期間は0~1時間、第二特定期間は30分~1時間、第三待機期間は1~12時間であることが好適である。または、凍結又は未凍結の野生マウス若しくはラット、異種マウス若しくはラット等の近交系の場合、第一特定期間は30~1時間、第一待機期間は0~1時間、第二待機期間は0~1時間、第二特定期間は30分~1時間、第三待機期間は1~12時間であることが好適である。ブタにおいては、IVM、IVF胚の場合、第一特定期間は30~1時間、第一待機期間は0時間、第二特定期間は0時間、第二特定期間は1時間~3日間であることが好適である。
 なお、これらの一時処理培地での処理は、上述のように、操作の前の処理のみ行っても、操作の後の処理のみ行ってもよい。操作の前及び後の一時処理培地の処理を両方行うことで、動物種、系統、操作の種類によっては、胚発生停止の抑制効果を高めることが可能である。加えて、一時処理培地での処理を操作の前又は後で行う場合に、第一特定期間、第一待機期間、第二待機期間、第二特定期間は異なってもよく、その際の一時処理培地に含まれる各細胞内骨格調整剤及び/又はアポトーシス抑制剤の濃度も異なってもよい。これらは、当業者により最適化して調整可能である。
 さらに、操作の前及び/又は後に一時処理培地での処理を複数回行ってもよい。この場合、処理の後の通常培地への変更後に待機期間を設けることが好適である。
〔発生工学産物作製方法、発生工学産物〕
 本実施形態の発生工学産物作製方法は、上述の胚発生停止抑制方法により処理された体外培養物から、発生工学産物を作製することを特徴とする。
 本実施形態の発生工学産物は、上述の発生工学産物作製方法にて作製されたことを特徴とする。
 ここで、本実施形態の発生工学産物は、個体、器官、組織、及び細胞のいずれか又は任意の組み合わせを含む。このうち、個体としては、キメラ個体、モデル生物、その他の実験、生殖工学、医療上に必要な個体を含む。器官や組織は、必ずしも臓器のレベルまで成熟したものでなくてもよく、特定の分化した細胞が細胞塊として特定の構造を備えていればよい。さらに、細胞は、特定の構造がない細胞塊が解離されたものを含む。
 本実施形態によって作製された発生工学産物は、従来の手法では不可能な動物、系統等で可能とするものを得られ、更に、ダメージによる突然変異等も少ないため、当業者に区別可能である。しかしながら、本実施形態の当業者の属する分野において、その構造又は特性により、直接特定することは、当業者にとって非常に難しいという特段の事情が存在する。
〔創薬支援方法〕
 本実施形態の創薬支援方法は、本実施形態の発生工学産物作製方法にて作製された発生工学産物を評価することを特徴とする。
 加えて、本実施形態の創薬支援方法は、発生工学産物に対して、創薬のための毒性及び/又は疾患に関する薬物を投与し、発生工学産物の状態を評価することも可能である。
 本実施形態の創薬のための毒性及び/又は疾患に関する薬物としては、毒性を調べる必要のある薬剤スクリーニングの候補薬物、疾患を治療するための候補薬物等を用いることが可能である。本実施形態の候補薬物は、例えば、低分子化合物、ペプチド、タンパク質、細胞の抽出物や上清や発酵産物、その他の合成化合物や天然化合物等が挙げられる。これらの候補薬物は、純度や精製度等が任意であってもよい。また、本実施形態の薬剤スクリーニングが対象とする疾患は、任意の疾患を含む。
 これらについて、発生工学産物のマーカー遺伝子等の発現解析、形態解析等を行うことで、毒性の評価が可能である。さらに、臨床試験のプロトコルに合わせたり、当業者に任意の方法を用いたりして、スクリーニングを行ってもよい。
 これらの解析において、候補薬物を投与した細胞において、正常な機能が維持された場合に、当該候補薬物が毒性の少ないものと推定可能である。
〔治療法、移植方法、医薬〕
 本実施形態の治療方法は、哺乳類の治療方法であって、上述の胚発生停止抑制方法により処理された体外培養物、及び/又は上述の発生工学産物作製方法にて作製された発生工学産物を移植することを特徴とする。
 本実施形態の治療方法は、例えば、凍結受精卵や胚盤胞等に、本実施形態の胚発生停止抑制方法を適用して、生殖医療に用いることが可能である。これにより、例えば、遺伝的背景、高齢、各種疾病等で胚の定着が難しい母体についても、適用可能となる。この際、本実施形態の発生工学産物を母胎に移植することで、本実施形態の移植方法は、治療方法としても機能する。
 または、本実施形態の治療方法として、上述の発生工学産物作製方法にて作製された発生工学産物そのもの、又は加工若しくは抽出したものを本実施形態の医薬(医療用組成物)として取得し、治療に用いてもよい。すなわち、本実施形態の治療方法においては、再生医療として、ヒトを含む動物の疾患を治療するために用いることが可能である。
 この本実施形態の治療方法の際、まず、本実施形態の発生工学産物は、患者から取得して作成又は生成された多能性幹細胞、又は、HLA等の型が近い多能性幹細胞のライブラリー等から取得される。これらの細胞は、上述の操作で製造されても、製造されたものについて操作が行われてもよく、これらの操作の前及び/又は後に、上述の一時処理培地で処理されてもよい。取得された多能性幹細胞等は、分化誘導され、その後、特定期間培養され、細胞、細胞塊、組織、又は器官等のいずれかの段階で、本実施形態の発生工学産物として取得される。取得された発生工学産物は、解離等されて加工されてもよい。そして、これらのいずれかの期間、一時処理培地で処理される。
 これらの取得された発生工学産物は、疾患等の患者の疾病の部位に注入、シートや組織や臓器の少なくとも一部として移植等の治療に用いることができる。この際、本実施形態の発生工学産物を、当業者に用いられる培養器材を用いて単層又は多層のシートを作成し、患患に移植してもよい。さらに、本実施形態の細胞を、適切な担体を用いて培養したり、3Dプリンター等を用いて積層したりして、より組織化された培養物を移植することも可能である。
 すなわち、本実施形態の移植方法は、本実施形態の治療方法としても機能する。
 さらに、本実施形態の発生工学産物を、医薬として用いることも可能である。
 なお、本実施形態の移植方法、治療方法を哺乳類の内、ヒトに適用する場合、各種生殖医療の倫理に則って、必要な範囲、限度での実施を行うようにする。すなわち、遺伝子改変等は通常はしないようにし、目的上、遺伝子改変等が必要であっても、例えば、遺伝疾患や感染症予防等の特定の基準に従って、最低限の程度で実施する必要がある。
 また、本発明を日本国で実施する場合、培養物の提供より後の移植、治療は医師により行われる。このため、本発明の治療方法の「動物」は、ヒト(Homo sapiens)を含まないものとする。一方、それ以外の国においては、「動物」「治療法」の定義は、限定されない。
 一方、本発明の実施の形態に係る医薬は、ヒト以外の動物の治療を行う動物治療にも用いることが可能である。この動物は、特に限定されるものではなく、脊椎動物及び無脊椎動物を広く含む。脊椎動物としては、魚類、両生類、は虫類、鳥類、及び哺乳類を含む。具体的には、例えば、哺乳類は、例えば、上述の霊長目(Primates)、齧歯目(Rodentia)、ウサギ目(Lagomorpha)、鯨偶蹄目(Cetartiodactyla)、又は奇蹄目(Perissodactyla)、食肉目(Carnivora)の各種の動物であってもよい。具体的には、マウス、ラット、ハムスター、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、イヌ、ネコ、フェレット、又は非ヒューマンのトランスジェニック霊長類等であってもよい。また、野生動物としては、哺乳類の他にも、魚類、家禽を含む鳥類、爬虫類等を含む。また、エビや昆虫等を含む甲殻類、その他のイカ等の無脊椎動物等も広く含む。
 すなわち、本発明の実施の形態に係る医薬は、ヒトの治療の他に、各種動物の治療、家畜の発育増進等の方法にも用いることができる。
 加えて、本発明の実施の形態に係る医薬は、動物の体内の一部分、又は動物から摘出又は排出された臓器や組織等についても、治療用の対象とすることができる。さらに、この治療は広義の治療であり、バイオリアクター、モデル動物での培養、人体移植用の培養臓器の培養等にも適用可能である。
 加えて、本実施形態の発生工学産物は、再生医療以外の治療用途、例えば、バイオリアクター、人工臓器の製造、クローン個体の作成等、各種用途に使用可能である。
 本発明の実施の形態に係る治療法を行う際に、発生工学産物の投与間隔及び投与量は、疾患の状況、さらに対象の状態等の種々の条件に応じて適宜選択及び変更することが可能である。
 本発明の実施の形態に係る発生工学産物の1回の投与量及び投与回数は、投与の目的により、更に、患者の年齢及び体重、症状及び疾患の重篤度等の種々の条件に応じて適宜選択及び変更することが可能である。
 投与回数及び期間は、1回のみでもよいし、1日1回~数回、数週間程度投与し、疾患の状態をモニターし、その状態により再度又は繰り返し投与を行ってもよい。
 加えて、本発明の発生工学産物は、他の組成物等と併用することも可能である。また、他の組成物と同時に本発明の発生工学産物を投与してもよく、また間隔を空けて投与してもよいが、その投与順序は特に問わない。
 また、本発明の実施の形態において、疾患が改善又は軽減される期間は特に限定されないが、一時的な改善又は軽減であってもよいし、一定期間の改善又は軽減であってもよい。
 以上のように構成することで、以下のような効果を得ることができる。
 従来から、遺伝子改変動物等を作製するためには体外で胚を培養し、遺伝子を改変等の胚操作をする必要がある。しかし体外で培養及び操作された胚はダメージを受けるため、系統や動物種によっては個体まで作製できない場合が多い。
 たとえば、従来の方法で近交系の動物を用いた場合、大量の受精卵を用いる必要があった。具体的には、例えば、エレクトロポレーション法で、近交系C57BL/6をゲノム編集するには大量の受精卵を必要とした。しかも、体外の複数回の胚操作を行った場合、胚発生は、ほぼ停止した。つまり、近交系C57BL/6は、1度のエレクトロポレーション操作しかすることができなかった。これは、近交系C57BL/6の場合はダメージに対する耐性が低いためであった。
 ここで、複数個所の遺伝子変異マウス、Floxマウス、ノックインマウス等は、様々な方法で、作製できると報告されているものの、実際に作製可能な動物種及び系統は限定的であった。
 また、複数回の操作が必要な場合はダメージに耐性を持つ非近交系(BDF1等)を使用していた。具体的には、疾患モデル動物の作製や遺伝子治療モデルの基盤研究として、近年、CRISPR-Cas等のゲノム編集による遺伝子改変動物の作製が多く報告されている。しかし、現在、人工的胚操作に耐性の高い、限られた動物の特定の系統(例えば、マウス交雑系統)の報告以外は極めて少なかった。
 たとえば、胚操作によるダメージが最も高いと思われる2STEP法では、動物実験に汎用される純系マウス(C57BL/6等)での成功例は、報告されていなかった。
 また、胚操作に耐性の高い交雑系マウスにおいても、ダメージの高い胚操作では多くの胚が成熟停止や発生停止となり、目的の遺伝子改変動物の確実な作製のためには、大量に受精卵の供給が必要であった。
 すなわち、従来の遺伝子改変動物等の作製では、まず体外での培養及び操作に耐えうる動物種や系統を選別することが必要であり、更にそれらの受精卵を大量に用いること、及び胚操作のダメージを極力減らすことが必要であった。
 これに対して、本発明の実施の形態に係る一時処理培地は、体外培養の操作による胚等へのダメージを減少させ、効率的に個体、器官、組織、及び細胞等の作製を行うことが可能となる。
 すなわち、操作に耐性の低い系統の受精卵等を操作する際の特定時期に、ダメージから守り安定化させる細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む一時処理培地で処理することで、胚発生停止を抑制し、胚盤胞への発生や個体作製が可能となる。これにより、実験に汎用される近交系マウスの胚操作を容易にし、胚操作に必要な受精卵数を削減させ、個体作製の効率を上昇させることが可能である。すなわち、大量の受精卵を得ることが難しく、体外培養や操作に抵抗性が低い動物種や系統の初期胚から効率的に遺伝子改変等の個体、組織、器官、及び細胞等を得ることが可能となる。このため、遺伝子改変動物等を作製する発生工学における基幹技術として利用可能である。
 具体的には、下記の実施例で示すように、本実施形態のアポトーシス抑制物質を含む一時処理培地により、でエレクトロポレーション後に起きる胚発生停止がほとんどなくなり、ゲノム編集に必要な近交系C57BL/6受精卵数が通常数で十分となる。また、複数回の操作の必要が必要な2STEP法によるFloxマウスの作製が近交系C57BL/6で可能であった。さらに、従来不可能であった異種マウスを用いて、ES細胞を確立したり、個体を作製したりすることが可能となった。
 すなわち、本実施形態の一時処理培地を用いることで、
 1.少量の受精卵で、個体作製が可能となる。
 2.体外の複数回の胚操作が可能となる。
 3.複数個所の遺伝子変異、Flox、ノックインなど様々な方法で様々な動物種及び特殊な系統等から個体及び細胞が作製できる。
 4.ヒトの生殖補助技術等にも応用できる。
 なお、上述の実施形態及び下記で説明する実施例においては、発生工学産物として、体外培養及び操作によりダメージを受ける胚から効率的に個体作製を行う例について記載した。
 これについて、従来の個体作製を行う技術を併用して、この上で、本実施形態の胚発生停止抑制方法、一時処理培地等を、成功率を高めるために実施することが可能である。
 また、上述の実施形態では、Rhoキナーゼ阻害剤として、Y-27632のような低分子化合物を一時処理培地に含ませる例について記載した。
 しかしながら、Rhoキナーゼの発現調整の対象となる遺伝子、遺伝子産物、アゴニスト/アンタゴニスト、その他のパスウェイに対する作用を介した組成物を、Rhoキナーゼ阻害剤として用いることも可能である。
 なお、上述の一時処理培地に加え、操作溶液にも、細胞融合、核移植、インジェクション等の操作時の物理的破損を防止するために、サイトカラシン類等が添加されていてもよい。
 また、本発明の実施の形態に係る一時処理培地は、他の組成物等と併用することも可能である。
 また、本実施形態に係る一時処理培地を用いて、効率的に個体、器官、組織、及び細胞等の作製を行うことが可能である。さらに、希少品種の遺伝子改変、遺伝病を持つ動物の遺伝子治療、ペットの治療、不妊治療、下記の実施例で示すCas9以外の技術を使用可能とするようなことも考えられる。
 以下で、本発明の実施の形態に係る胚発生停止抑制方法、発生工学産物作製方法について、具体的な実験を基にして、実施例としてさらに具体的に説明する。しかしながら、この実施例は一例にすぎず、これに限定されるものではない。
〔材料と方法〕
[試薬]
(主な試薬類)
 PZM-5培地(機能性ペプチド研究所製:IFP0410P):ブタ培養胚発生用培地、PBM培地(機能性ペプチド研究所製:IFP1030P):ブタ後期胚培養用培地、KSOM AA培地(本発明者らが作製)、mR1ECM培地(アーク・リソース製)、mWM培地(modified Whitten’s medium)培地(アーク・リソース製)、Opti-MEM培地(GIBCO BRL製)、M2培地(Sigma製、カタログ番号M7167)、Y-27632(富士フィルム和光製:036-24023)。
 その他、IVF(In Vitro Fertilization、体外受精)関連試薬は、機能性ペプチド研究所から入手した。dbcAMP(SIGMA aldrich製:D0627)、FSH(メルクセローノ製:ゴナールエフ皮下注150)、PMSG(共立製薬製:セラルモン)、hCG(共立製薬製:ゲストロン)、TGF-α(R&D systems製:239-A)、ブタ卵胞液(本発明者らが作製。採卵時回収液を10000rpm、30min上清ろ過滅菌液)。
(その他の試薬類の調整)
(2nmol Alt-R CRISPR crRNA)
 IDTEバッファー又はNuclease-free水 20μLに入れて100μMにした。分注して-80℃に保存した。
(20nmol Alt-R CRISPR tracrRNA)
 IDTEバッファー又はNuclease-free水 200μL入れて100μMにした。分注して-80℃に保存した。
(crRNA:tracrRNAストック溶液(100μL))
 crRNA(100μM)を4.5μL(最終18μM)、tracrRNA(100μM)を4.5μL(最終18μM)、及びNuclease-free Duplex Bufferを16μLで調製した。最終量は、25 μLとした。
 crRNAとtracrRNAは、95℃で5分加熱し、15~25℃でハイブリダイズした。参考として、crRNA平均分子量:11,700g/molであり100μM=1.17ug/μL、tracrRNA分子量:22,182g/molであり100μM=2.22ug/μL、crRNA:tracrRNA:100μM=3.39 ug/μL、1μM=33.9ng/μLであった。
(エレクトロポレーション法のワーキング溶液(10μL)(CUY21 EDIT))
 GeneArt Platinum Cas9 Nuclease(1ug/μL,Thermo)を1.0 μL(最終100ng/μL)、crRNA:tracrRNAストック溶液(18μM)を1.7μL(最終3μM、約100ng/μL)、ssODN(高濃度1本鎖オリゴデオキシヌクレオチド、single‐stranded oligodeoxynucleotide)(100μM)を0.76μL(最終 約400ng/μL)、及びOpti-MEM溶液をI6.6μLにて調製。これを標準的な濃度とした。
[機器類]
 NEPA21(登録商標、ネッパジーン製):遺伝子導入装置本体、CUY501P1-1.5:MS 白金ブロック電極、1mm gap 容量:5μL、C115CB又はC115CB-2:ケーブル(装置本体に接続)、C117:ケーブル(C115CBを経由して、白金プレート電極に接続)を用いた。
[胚発生停止抑制方法、一時処理方法、その他の培養方法]
(受精卵エレクトロポレーション法(Technique for Animal Knockout system by Electroporation、以下「TAKE」ともいう。)
 TAKEは、特許文献2に記載の方法に準じて行った。
 1. 電極のバスタブ内に、Cas9 Nuclease、gRNA、ssODN溶液等を、ノックアウトかノックインか等に合わせた容量のゲノム編集用溶液又はOpti-MEM溶液に投入した。
 2. 溶液抵抗値は、200Ω(190~210Ω)になるよう、調整した。
 3. まず、体外培養物を、培養液がミネラルオイルで被覆されたもの(以下、「ドロップ」という)から取りだし、ディッシュに入れたOpti-MEM溶液で一度洗浄した。
 4. 次いで、電極内のゲノム編集用溶液又はOpti-MEM溶液中に、体外培養物を投入した。
 5. 実際の抵抗値を測定した。抵抗値が160Ω以下であった場合、ゲノム編集用溶液又はOpti-MEM溶液を少し吸引して、再度抵抗値を測定し、200Ω前後(190Ω~210Ω程度)に揃えた。抵抗値が220Ω以上であった場合、ゲノム編集用溶液又はOpti-MEM溶液を添加して、再度抵抗値を測定し、200Ω(190Ω~210Ω程度)に揃えた。
 6. 抵抗値を揃えた後、直ちにNEPA21のスタートボタンを押し、エレクトロポレーション(EP)処理を行った。
 7. EP処理後、体外培養物を取りだした。

 その後は、他のOpti-MEM溶液で洗浄した体外培養物をバスタブ内の液中に入れて、抵抗値を揃えて、同様にEPを行った。
(未凍結近交系の場合)
 1. TAKEを行う3時間前までに、Y-27632添加mWM培地(Y-27632終濃度10μM、本実施例の「一時処理培地」の一例)、Y-27632無添加mWM培地(本実施例の「通常培地」の一例)を、それぞれ35mmペトリディッシュに5滴落としパラフィンオイルで被覆したドロップを作製した。
 2. ドロップから前核期胚を採取し、Y-27632添加mWM培地に入れて、30分から1時間程度培養した(一時処理)。
 3. その後、TAKEを行った。このTAKEの際は、上述のように、前核期胚、洗浄後、TAKE用のゲノム編集用溶液又はOpti-MEM溶液に移されていた。以下の処理でも同様である。
 4. TAKE後、Y-27632添加mWM培地に入れ(一時処理)、翌日(1時間以上12時間以内)まで37℃、5% CO2、(5% OO2)条件下で培養した。
 5. 必要に応じてY無添加mWM培地で培養の継続、又は、胚移植を行った。
(標準的な凍結近交系又は特殊系統の場合)
 1. TAKEを行う3時間前までにY-27632添加mWM培地(Y-27632終濃度10μM、本実施例の「一時処理培地」の一例)、Y-27632無添加mWM培地(本実施例の「通常培地」の一例)をそれぞれ35mmペトリディッシュに5滴落としパラフィンオイルで被覆したドロップを作製した。
 2. ドロップから前核期胚を採取し、Y-27632添加mWM培地に入れて30分から1時間程度培養した(一時処理)。
 3. その後、TAKEを行った。
 4. TAKE後、Y-27632添加mWM培地に入れて30分から1時間程度培養した(一時処理)。
 5. その後、Y無添加mWM培地に入れ、翌日まで37℃、5% CO2、(5% O2)条件下で培養した。必要に応じてY-27632無添加mWM培地で培養の継続、あるいは胚移植を行った。
(凍結及び未凍結異種野生マウス由来近交系の場合)
 1. TAKEを行う3時間前までにY-27632添加mWM培地(Y-27632終濃度10μM、本実施例の「一時処理培地」の一例)、Y-27632無添加mWM培地(本実施例の「通常培地」の一例)をそれぞれ35mmペトリディッシュに5滴落としパラフィンオイルで被覆したドロップを作製した。
 2. ドロップから2細胞期胚を採取又は融解し、Y-27632添加mWM培地に入れて30分から1時間程度培養した(一時処理)。
 3. その後、TAKEを行った。
 4. TAKE後、Y-27632添加mWM培地に入れて30分から1時間程度培養した(一時処理)。その後、Y-27632無添加mWM培地に入れ、移植まで37℃、5% CO2、5% O2条件下で培養した。
 5. その後、必要に応じてY-27632無添加mWM培地で培養の継続を行い、ES細胞の樹立を行った。
(ブタIVM、IVF胚の場合)
 1. TAKEを行う前日にY-27632添加PZM-5培地(Y-27632終濃度10μM、本実施例の「一時処理培地」の一例)を35mmペトリディッシュに5滴落とし、パラフィンオイルで被覆したドロップを作製した。本実施例のドロップでは、培地を20μL滴下し、オイルを1mL入れ、その後、培地を再度20μL加え、オイルで完全に覆った。このドロップは、TAKEするものの2倍の枚数を作製した。
 2. 当業者に一般的な手法に基づいてIVFを行った。
 3. 媒精の翌日に、IVF胚をY-27632添加PZM-5培地に投入し、30分から1時間程度培養した(一時処理)。
 4. その後、TAKEを行った。
 5. Y-27632無添加PZM-5培地(本実施例の「通常培地」の一例)に戻し、39℃、5% CO2、5% O2条件下で培養した。
 6. 必要に応じて、発生段階でサンプリング等を行った。胚盤胞期まで培養を継続する場合は、媒精の4日後にY-27632無添加のPZM-5培地とPBM培地とを含むドロップを1.のステップと同様に作製しておいた。
 7. 媒精の5日後に桑実期、胚盤胞期まで発生した胚をPBM培地(本実施例の「通常培地」の一例)に移した。残りの生存胚もY-27632無添加PZM-5培地に移し、発生が進んだら、適宜PBM培地に移した。
 8. 媒精の7~8日後に胚盤胞~拡張胚盤胞となった。
(近交系マウス2STEP法)
 1. TAKEを行う3時間前までにY-27632添加mWM培地(Y-27632終濃度10μM、本実施例の「一時処理培地」の一例)、Y-27632無添加mWM培地(本実施例の「通常培地」の一例)を、それぞれ35mmペトリディッシュに5滴落としパラフィンオイルで被覆したドロップを作製した。このドロップは、TAKEするものの2倍の枚数を作製した。
 2. 前核期胚を採取し、Y-27632添加mWM培地に入れて30分から1時間程度培養した(一時処理)。
 3. その後、一回目のTAKEを行った。
 3a.凍結卵の場合、一回目のTAKE後、Y-27632添加mWM培地に入れて30分から1時間程度培養した(一時処理)。
 3b.未凍結卵の場合、一回目のTAKE後、Y-27632添加mWM培地に入れ、翌日まで37℃、5% CO2、(5% O2)条件下で培養した(一時処理)。
 4. 一時処理後、Y-27632無添加mWM培地に入れ、翌日まで37℃、5% CO2、(5% O2)条件下で培養した。
 5. いずれも、翌日確認し、2細胞期になった胚に、二回目のTAKEを行った。
 6. 二回目のTAKE後、Y-27632添加mWM培地に入れ、30分から1時間程度培養した(一時処理)。
 7. その後、Y-27632無添加mWM培地に移した。必要に応じて、培養の継続、又は胚移植を行った。
(近交系ラット2STEP法)
 1. TAKEを行う3時間前までにY-27632添加KSOM AA培地(Y-27632終濃度10μM、本実施例の「一時処理培地」の一例)を35mmペトリディッシュに5滴落としパラフィンオイルで被覆したドロップを作製した。
 2. 前核期胚を採取し、Y-27632添加KSOM AA培地に入れて30分から1時間程度培養した(一時処理)。
 3. その後、一回目のTAKEを行った。
 4. TAKE後、Y-27632添加KSOM AA培地に入れ、30分以上12時間まで37℃、5% CO2、5% O2条件下で培養した(一時処理)。
 5. その後、Y-27632無添加KSOM AA培地に入れ(本実施例の「通常培地」の一例)、二回目のTAKEまで37℃、5% CO2、5% O2条件下で培養した。
 6. 翌日、2細胞になった胚を分別し、採卵から20~22時間程度で、再度Y-27632添加KSOM AA培地に入れて30分から1時間程度培養した(一時処理)。
 7. その後、二回目のTAKEを行った。
 8. 二回目のTAKE後、Y-27632添加KSOM AA培地に入れ30分から1時間程度培養した(一時処理)。
 9. その後、mR1ECM培地(本実施例の「通常培地」の一例)に移した。必要に応じて培養の継続、あるいは胚移植を行った。
(胚移植)
 定法に従い、マウス、ラットに精管結紮雄と交配しプラグ確認した午後に、プラグ確認成熟メスマウス、ラットの左右卵管又は子宮に各10個前後を移植した。
 また、ブタの場合は、各10個前後の胚を、子宮に非外科的な手法で移植した。
〔結果〕
[全体まとめ]
 まず、図2により、本実施例の胚発生停止抑制方法及び発生工学産物作製方法により個体の作製が可能となった系統、操作について説明する。
 図2において、マウスは、交雑系、クローズドコロニー、近交系(B6等)、疾患モデル、異種マウスの個体の作成難易度を示している。ラットは、交雑系、クローズドコロニー、近交系(F344等)、疾患モデルについての個体の作成難易度を示している。また、ブタ、ヒツジ、イヌ、サル、ヒトも、一部の処理における難易度について示している。また、各操作については、胚(細胞)へのダメージを与える操作として、過排卵処置、凍結胚(移植、胚凍結)、核移植(NT)、顕微授精(ICSI)、マイクロインジェクション(MI)、エレクトロポレーション法(EP)の各操作について示す。さらに、核へのダメージとして、多量又は高分子のDNAの暴露、複数回のDSBを伴う操作(2STEP法等)について示す。さらに、細胞融合等として、異数体、倍数体(4倍体等)にする操作について示す。
 具体的には、各欄の記号は、個体の作製について、「◎」は(容易、低難易度)、「〇」は(可能、通常難易度)、「△」は(高難易度)、「×」(不可能)の難易度であることを示す。すなわち、「◎」~「〇」~「△」~「×」の順で難しいことを示す。「?」は、難易度が不明であることを示す。
 ここで、各欄の矢印の先の難易度は、本実施例の胚発生停止抑制方法、発生工学産物作製方法により作製が可能になったことが、本発明者らにより実際に示されたものを示す。各欄の背景がグレー(濃い)箇所は、本実施例の効果が期待できる範囲であるものの、まだ試験例がない箇所を示す。
 このように、幅広い哺乳類、系統、操作について、本実施例の胚発生停止抑制方法及び発生工学産物作製方法を実現可能である。
 以下において、この図2で示した各体外培養物の処理例について説明する。
(処理例1)
 まず、C57BL/6Jマウスを用いたエレクトロポレーション法によるノックアウトマウスの作製例について説明する。
 従来、通常、エレクトロポレーション法(TAKE)で処置した受精卵は発生率、産子率が低くなるためレシピエント1匹当たりの移植胚数を増やす必要がある。
 本作製例では、Y-27632を添加することで発生率、産子率を高くして移植胚数の低減を目的とした。
 このため、本作製例では、TAKE前後にY-27632を含む一時処理培地で、一時処理した。体外培養物として、C57BL/6J(クレアジャパン)の前核期胚、MCH(メス、クレアジャパン製)、メスを使用した。
 図3によると、結果として、エレクトロポレーション前後に本実施形態の細胞内骨格調整剤及び/又はアポトーシス抑制剤の一例としてY-27632を含む培養液で培養した。Mk-3遺伝子を2種類のgRNA(「MKIII ver.1」又は「MKIII ver.2」)でノックアウトしたところ、出生率が約5倍となった。この際、非相同末端結合(non-homologous end joining、NHEJ)効率は、変わらなかった。
(処理例2)
 次に、C57BL/6Jを用いた2STEP法によるFloxマウスの作製例について説明する。
 従来、2STEP法で処置した近交系受精卵は、発生率、産子率が著しく低くなるため近交系Floxマウスが得られなかった。このため、本作製例では、発生率、産子率を高くし、近交系Floxマウスを作製することを目的とした。
 このため、本作製例では、Y-27632を含む一時処理培地で、2STEP法のエレクトロポレーション(EP)の前及び後に一時処理した。体外培養物として、C57BL/6J(クレアジャパン)の前核期胚、MCH(メス、クレアジャパン製)を使用した。
 本発明者らは、Mecp2遺伝子をターゲットとした2STEP法によるFloxマウスを得る実験を行った。
 この結果を、下記の表2に示す:
Figure JPOXMLDOC01-appb-T000002
 表2において、「m」は通常培地での処理、「Y]は一時処理培地での一時処理を示す。それぞれの実験区は、2STEP法の第一のエレクトロポレーションのステップ、第二のエレクトロポレーションのステップにおいて、それぞれ、通常培地(m)又は一時処理培地(Y)で処理したことを示す。すなわち、「m->m」は、全て通常培地、「m->Y」は第一のエレクトロポレーションのステップのみ一時処理培地で一時処理、「Y->Y」は、両方のステップで一時処理培地にて一時処理を行った。
 各欄は、第一のエレクトロポレーションのステップによる左側のみloxP配列が挿入されたもの(Left loxP)、第二のエレクトロポレーションのステップによる右側のみloxP配列が挿入されたもの(Right loxP)、両方のステップにより両方のloxP配列が挿入されたもの(2loxP)の割合を、それぞれ示す。
 結果として、胚盤胞15個中1個(7%)、新生児で25匹中1匹(4%)のC57BL/6JのFloxマウスが得られた。一方、Y-27632を添加しない実験区では、胚盤胞、新生児ともに得られなかった。
 Drb1遺伝子においても同様に新生児でC57BL/6JのFloxマウスが得られた。
 図4に、この2loxPで、コンディショナルノックアウトが可能になったFloxマウスの例を示す。「27」のレーンにおいて、Floxマウスであることを示すバンド(5398bp又は5440bp)が生じている。
 このように、2STEP法で、コンディショナルノックアウトが可能な、近交系Floxマウスの作製を2種類の遺伝子を用いて試みたところ、いずれもY-27632を添加した実験区だけから、これまで成功例が報告されていなかった近交系Floxマウスが得られた。このように、Y-27632による一時処理は、B6等のダメージに弱い系統に有効であると考えられる。
(処理例3)
 次に、異種マウスMus spretus(アルジェリアハツカネズミ)の近交系SPR2(以下、単に「異種近交系マウスSPR2」又は単に「SPR2」という。)の凍結卵からの個体作製例、及び異種マウス凍結胚からのES細胞樹立を行った処理例について説明する。
 本作製例では、SPR2の2細胞凍結卵を融解後、Y-27632を含む一時処理培地で1時間培養し、偽妊娠メスマウスの子宮に移植した。
 この例では、異種近交系マウスSPR2の2細胞凍結卵を融解後、Y-27632を含む培養液で1時間培養、偽妊娠メスマウスの子宮に移植したところ、凍結卵由来個体(移植胚16個、出生仔6匹)が得られた。
 この結果を、下記の表3に示す:
Figure JPOXMLDOC01-appb-T000003
 図5は、得られた個体の一例を示す。異種近交系マウスSPR2での凍結胚からの個体作成は、従来は不可能であった。
 次に、異種近交系マウスSPR2凍結胚からのES細胞樹立の処理例の結果について説明する。
 異種近交系マウスSPR2の2細胞凍結卵を融解後、Y-27632を含む一時処理培地で胚盤胞まで培養し、ES細胞の樹立を試みた。結果として、効率にES細胞が樹立できた(凍結胚5個、樹立数2株)。一方、Y-27632を加えない場合、個体作製およびES細胞は樹立されなかった。
 このように、Y-27632の一時処理により、従来は不可能であった、異種マウスの凍結胚からのES細胞の作成も行うことができた。
(処理例4)
 次に、エレクトロポレーションした異種近交系マウスSPR2、及び異種マウスMus caroli(オキナワハツカネズミ)の初期胚からのES細胞樹立を行った処理例について説明する。
 異種近交系マウスSPR2、及び異種マウスMus caroliの初期胚をY-27632入り培地で培養後、エレクトロポレーションしゲノム編集を試み、高率にES細胞を樹立した。Mus caroliのES細胞について、ゲノム編集によるTyr遺伝子のノックアウトを行い、その一部を解析したところ、NHEJが起きており、異種マウスES細胞が樹立されることが示された。
 図6は、Mus caroliで樹立したES細胞のディッシュを示す。ES細胞らしい形態が目視で確認できる。
 図7は、Tyr遺伝子をノックアウトしたMus caroliを示す。アローヘッドは、ノックアウトを示すバンドである。
(処理例5)
 次に、本実施例の一時処理培地が、エレクトロポレーションの発生に与える悪影響を低減できるかを検証した例について説明する。
 まず、近交系ラット胚等を用いたエレクトロポレーション後の発生に与える影響について実験した。
 近交系ラットF344は、2回、エレクトロポレーション)を行うと、胚発生停止が生じる。これについて、本実施形態の一時処理培地にて、エレクトロポレーション前及び後の特定期間、培養して結果を確認した。
 図8Aは、コントロールで、本実施形態の一時処理培地にて処理をしなかったものの結果を示す。胚盤胞まで発生したものは皆無であった。
 図8Bは、エレクトロポレーションの前及び後、本実施形態の一時処理培地にて処理したものの結果を示す。71.8%が胚盤胞まで発生した。
 図8Cは、コントロールで、エレクトロポレーションを行わず、本実施形態の一時処理培地での処理もしなかったものを示す。71.4%が胚盤胞まで発生した。
 これらの図において、2細胞期の発生率は前核期胚に対する2細胞期胚の割合、胚盤胞期の発生率は2細胞期胚に対する胚盤胞期の割合として算出された。
 結果として、近交系ラットF344は、エレクトロポレーションの前及び後、本実施形態の一時処理培地にて処理することで、胚発生停止することなく胚盤胞まで発生した。具体的には、2細胞期の胚103個中、74個(71.8%)が胚盤胞期まで発生した。
 この割合は、無処理でエレクトロポレーションを行わなかったものと、ほぼ同じであった。
 次に、凍結融解した後、エレクトロポレーション後に胚移植して個体を得ることができない異種近交系マウスSPR2における、本実施例の一時処理培地の効果を測定した。
 この結果を、下記の表4に示す:
Figure JPOXMLDOC01-appb-T000004
 融解2細胞期胚を、エレクトロポレーション前後の特定期間、本実施例の一時処理培地で培養した、異種マウス近交系SPR2は2細胞期胚を17個卵管に移植したもので7匹の個体を得ることができた。
 さらに、mWM培地で胚盤胞期まで発生させた胚(ブラスト)16個を、プラグ確認後3.5日の子宮に移植したもので、5匹の個体を得ることができた。
 また、体外成熟および凍結精液による体外受精を行ったブタ受精胚について、本実施例の一時処理培地の効果を測定した。
 結果として、本実施例の一時処理培地で培養した場合、2細胞期の胚123個中、35個が後期胚盤胞(拡張又は脱出胚盤胞)にまで発生した。これに対して、コントロールの通常培地のみで培養し、エレクトロポレーションを行った場合、胚盤胞は得られなかった。
(処理例6)
 次に、近交系ラットF344に高濃度ssODNを用いたエレクトロポレーションによるノックイン(Knock-In、KI)によるFloxラットの作製例について説明する。
 近交系F344ラットをエレクトロポレーションする場合、ssODNの濃度及びトランスレーションパルス数を増加させると発生が停止してしまっていた。さらに、通常の濃度、回数であっても2回、エレクトロポレーションすると発生が停止してしまっていた。近交系F344ラットにおいて、エレクトロポレーション前後に、本実施例の一時処理培地で培養することで、ssODN濃度、トランスレーションパルス数を増加させることでノックインされなかったLoxP配列をノックインが可能か、加えて2STEPのFloxが可能か検証した。
 本作製例では、2STEP法によるノックインをF344ラット前核期胚で行った。通常の濃度の2倍800ng/μLのssODN、約2倍の14回のトランスファーパルスでエレクトロポレーションを行った。エレクトロポレーションの前及び後の特定期間、本実施例の一時処理培地で培養した。
 この結果を、下記の表5に示す:
Figure JPOXMLDOC01-appb-T000005
 表中の86サンプルのうち、胚盤胞まで発生したものを67個取得し、まずLeft LoxP配列がノックインされたものをPCRで調べた。すると、通常培地のみで処理した場合にはLoxPがノックインできなかった(0/12、0%)のに対して、本実施例の一時処理培地で処理したものでは胚盤胞で確認できた(19/67、28%)。また、発生停止をすることなく胚盤胞まで発生し、標的遺伝子の両端にloxP配列を有するFloxが胚盤胞で確認できた(1/67、1.5%)。
 すなわち、通常のssODN濃度、及びパルス数ではノックインされなかったLoxP配列を、エレクトロポレーション前及び後に、Y-27632を含む培養液で培養することで、ノックインすることができた。この際、エレクトロポレーションの際のssODNの濃度を2倍にし、エレクトロポレーションの回数を2倍にすることが可能となった。
(処理例7)
 次に、疾患モデルマウスなど大量の受精卵を得ることの困難なマウスから少量の受精胚から複数遺伝子ノックアウト(Knock-Out、KO)マウスの作製例について説明する。
 本作製例では、免疫不全マウス(nude、ヌードマウス)胚を用いた複数遺伝子KOマウスを作製した。
 具体的には、BALB/c-nu/nuのオスと過排卵処置をしたBALB/c-nu/+のメスを掛け合わせ、前核期胚を採取した。BBOX1遺伝子に対して2個、IL2RG遺伝子に対して2個のガイドRNA(crRNA:tracrRNA)を1個当たり約100ng/μL、合計約400ng/μLで、トランスファーパルス14回でエレクトロポレーションし、エレクトロポレーションの前及び後、本実施例の一時処理培地で培養した。
 この結果、63個の胚を移植して、16匹が生まれた。一部(生存仔4匹、死産仔3匹)を解析したところ3匹で変異が見られ、1匹は2つの遺伝子に変異が確認された。下記の表6の生存仔の#2及び#4が、成功例である。
Figure JPOXMLDOC01-appb-T000006
 結果として、ヌードマウスにおいて、BALB/c mBBOX1及びmIL2RGの両遺伝子をノックアウトしたものが作製できた。一方、通常培地だけで処理したコントロールでは、そもそも個体が生まれなかった。
(処理例8)
 次に、異種ノックアウト(KO)マウスの作製例について説明する。
 異種近交系マウスSPR2の2細胞期胚を用いて、Tyr遺伝子に対して4個のガイドRNA(crRNA:tracrRNA)を1個当たり約100ng/μL、合計約400ng/μLを用いて、1回又は2回エレクトロポレーションした。エレクトロポレーションの前及び後、本実施例の一時処理培地で培養した。
 その結果を、下記の表7に示す:
Figure JPOXMLDOC01-appb-T000007
 結果として、1回だけエレクトロポレーションした場合、胚を20個移植し7匹の個体が得られた。その内、モザイクが3匹であった。2回、エレクトロポレーションした場合、胚を13個移植し7匹の個体が得られた。その内、モザイク3匹、白(ホモまたはコンパウンドヘテロ)が3匹得られた。
 図9A、図9B、図9Cは、得られた個体の一例を示す。
 このように、異種近交系マウスSPR2の2細胞凍結卵から、Tyr遺伝子をノックアウトしたノックアウトマウスを作製するのに成功した。すなわち、異種マウスの近交系を用いてKOホモ(コンパウンドヘテロを含む)を効率的に作製することができた。
(処理例9)
 次に、近交系マウスB6J系統の初期胚で、胚盤胞段階で保存してある凍結胚を用いて、本実施形態の通常培地一時処理培地を用いた際に操作の前後で用いることで、発生が変化するか比較を行った例について説明する。
 本処理例では、一時処理培地として、mWM培地に、Y-27632を10μMになるよう添加したものを用いた(この例では、「Y+培地」という。)。また、通常培地として、Y-27632を加えないmWM培地を用いた。(この例では、「Y-培地」という。)。
 処理としては、用意された凍結胚を融解し、そのままY-培地で胚盤胞段階まで発生させた。
 次に、胚盤胞まで発生した胚の半数をY+培地へ移して30分、載置した。その後、再びY-培地に胚を移し替え、30分間載置した。
 次に、Y+培地で処理した胚と、処理しなかった胚とを、それぞれ1本のチューブで凍結した。
 次に、両方のチューブを融解し、10分、通常培地に載置した。
 その後、Y+培地と、Y-培地とに、それぞれ胚を均等に分割し、1時間、載置した。
 次に、再び、各チューブをY-培地に戻して、胚を観察した。この観察は、融解直後、3時間後、及び24時間後に行った。
 これらの操作及び処理の結果を、以下の表8に示す。
Figure JPOXMLDOC01-appb-T000008
 Y-音地とY+培地とを比較した結果、Y+培地を使用した培地の方が、生存、回復した胚を多く確認することができた。Y+培地を凍結の前及び後に使用した胚の回復率が、一番良い結果であり、次に良い状態だったのはY+培地を凍結前に使い凍結後にはY-培地を使用したものであった。続いて、凍結前後でY-培地、Y+培地をそれぞれ使ったもの、Y-培地のままのものという結果になった。それぞれの胚は凍結を2回行っているものの、Y+培地で発生させると、92%まで回復させることができた。
(処理例10)
 次に、細胞内骨格調整剤として、Y-27632以外のものである、サイトカラシンB(以下、「CB」という。)に、同様の効果があるか否かを検証した例について説明する。
 本処理例では、上述の処理例9と同様に通常培地(以下、処理例9と同様に「Y-培地」という。)、Y-27632を加えた一時処理培地(以下、処理例9と同様に「Y+培地」という。)、CBを加えた培地(以下、「CB+培地」という。)を使用した。CB+培地に含まれるCBの濃度は、5μM及び10μMのものを用意した。操作としては、凍結胚を融解発生させ胚盤胞で再凍結、再融解した場合の回復率を比較した。
 処理としては、C57BL/6J(クレア製)2細胞期の凍結胚を107個使用し、まず、2細胞期凍結胚を融解し、そのまま通常培地で胚盤胞まで発生させた。
 次に、胚盤胞を上述の各培地に移し、30分間、載置した。その後再びY-培地に胚を移し替え、30分間、載置した。
 次に、胚をそれぞれ凍結した。
 次に、胚を融解し、M2培地で10分間、載置した。
 その後、培地にそれぞれ胚を均等に分別して1時間、載置した。
 再びY-培地に戻して胚を観察した。この観察は、融解直後、3時間後、及び24時間後に行った。
 これらの操作及び処理の結果を、以下の表9に示す。
Figure JPOXMLDOC01-appb-T000009
 結果として、CB+培地とY+培地を使用して比較した結果、CB+培地もY+培地と同様に胚の生存、回復を多く確認することができた。
 具体的には、Y-培地(コントロール)、Y+培地、CB+培地を使用して比較した結果、Y-27632を使用した培地が一番胚の生存、回復を多く確認することができた。その次に結果が良かったものはCB+培地(CB濃度5μM)であった。CB+(CB濃度5μM)の3時間後に観察したデータでは、Y+培地と並んだ良い結果となっていた。CB+培地の濃度比較では、5μMの方が、24時間後の段階で10μMに比べて回復率が15%の高かった。
 コントロールのY-培地は検証した中では一番回復率が低かった。    
 なお、上記実施の形態の構成及び動作は例であって、本発明の趣旨を逸脱しない範囲で適宜変更して実行することができることは言うまでもない。
 次に、本発明の実施例2として、他の系統、他の種類の操作によるダメージ等による体外培養物を一時処理した処理例の結果について説明する。
 各処理例について、材料と方法は、上述の実施例1と同様である。
 実施例2に係る近交系マウスB6J、複合型免疫不全マウスNOD-scid、近交系ラットWistar-Imamichiは、いずれもクレアジャパン製である。
(処理例11)
 実施例1に係る処理例2の近交系マウスとは異なる近交系(B6系統のB6J)マウスを用いて、上述の処理例2と同様の2ステップ法によるノックインを行い、更に個体作製を行った。
 この2STEP法での個体作製の結果を下記の表10に示す。
Figure JPOXMLDOC01-appb-T000010
 さらに、同様にして、高濃度ssODNを用いたエレクトロポレーション法(1STEP法)での近交系マウスB6J系統での個体作製も行った。
 この結果を下記の表11に示す。
Figure JPOXMLDOC01-appb-T000011
 このように、1STEP法でもFlox近交系マウス個体の作製が可能となった。
(処理例12)
 実施例1に係る処理例6と同様の近交系ラットの前核期胚について、高濃度ssODNを用いたエレクトロポレーション法(1STEP法)によるノックインを行い、更に個体作製を行った。
 上述の処理例6のように、通常のssODN濃度およびトランスファーパルス数ではノックインされなかったLoxPについて、上述の実施例1と同様の一時処理を行った。具体的には、エレクトロポレーション前後に、1時間の一時処理、24時間の通常培地での培養(待機期間)、1時間の一時処理を行った。
 これにより、ssODNの濃度、エレクトロポレーション回数を2倍にすることが可能となりノックインすることができた。さらにCas9の濃度を5倍にすると、1回のエレクトロポレーションでFlox近交系ラットが得られた。
 この結果を下記の表12、表13に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 結果として、操作難度の非常に高い近交系ラット初期胚、複数部位に同時にFlox配列のDNA断片を挿入し、gRNA濃度2倍、Cas9タンパク質濃度5倍として、ゲノム編集後に個体作製を行うことができた。
 このように、操作難度の非常に高い近交系ラット、近交系マウスの初期胚の複数部位に同時にゲノム編集を行うことが可能であった。
(処理例13)
 近交系ラットを用いたエレクトロポレーションによるホモ大欠損ノックアウトの個体の作製を行った。
 近交系に準ずるWistar-Imamich系統、近交系WKY系統について、通常では欠損することが出来なかったKlotho遺伝子(40Kbp)について、エレクトロポレーションによりノックアウトを行った際、上述の実施例1と同様の一時処理を行った。具体的には、エレクトロポレーション前後に、1時間の一時処理、24時間の通常培地での培養(待機期間)、1時間の一時処理を行った。
 これにより、高効率で40Kbpもの遺伝子を欠損した(大欠損)ノックアウト近交系ラットが得られ、多くはホモであった。
  この結果を、下記の表14、表15に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 図10に、大欠損ノックアウト近交系ラットとして発生した個体の一例を示す。「大欠損あり」が本実施例の大欠損ノックアウト近交系ラット、「大欠損なし」がコントロールのラットであった。
 このように、ホモの遺伝子大欠損個体を作製することが可能となった。
 上述したように、本実施例では、複数回のエレクトロポレーションによる近交系マウス、異種マウスの近交系、近交系ラットまたは近交系に準ずるラットのゲノム編集個体作製、及び高濃度のDNA、RNA、タンパク質の受精卵導入による近交系マウス、異種マウスの近交系、近交系ラットまたは近交系に準ずるラットのゲノム編集個体作製等が可能となった。
(処理例14)
 次に、実施例1の処理例7と同様に、別系統の重症複合免疫不全マウスのNOD-scid系統において、複数遺伝子のゲノム編集を行ったものの個体作製を行った。
 ここでは、BALB/c nudeに用いた上述の処理例と同じ処理法にて、NOD-scidマウスのmBBOX1及びmIL2RGの両遺伝子をノックアウトしたものの個体を作製した。
 この結果を、下記の表16に示す。
Figure JPOXMLDOC01-appb-T000016
 結果として、9個体中6個体(66.7%)で2つの遺伝子のいずれかに変異が生じていた。
 このように、操作難度の非常に高く、入手(調整)が容易でない免疫不全マウス初期胚、複数遺伝子の複数部位にゲノム編集し、個体作製することが可能となった。
(処理例15)
 次に、実施例1に係る処理例9と同様にして、通常のマウスではなく近交系マウスB6J系統の初期胚で、複数回の凍結融解を行って回復するかどうかを調べた。
 この結果を、下記の表17に示す。
Figure JPOXMLDOC01-appb-T000017
(処理例16)
 次に、実施例1に係る処理例1と同様にして、近交系ラットのF344の未凍結の前核期胚(1セル)において、エレクトロポレーション法によるノックアウトも作製した。この際の条件は、gRNA濃度が規定量の2倍、パルス14回、減数率20%であった。
 この結果を下記の表18に示す。
Figure JPOXMLDOC01-appb-T000018
(処理例17)
 次に、凍結融解した近交系ラットWistar-Imamichiの前核期胚(1セル)、2細胞期(2セル)において、TAKEによるノックアウトも作製した。この際の条件は、gRNA濃度が規定量(1倍)、パルス7回、減数率40%であった。
 この結果を下記の表19に示す。
Figure JPOXMLDOC01-appb-T000019
 このように、近交系のマウス、ラットであっても、ダメージの大きな操作、特に前核期胚に加えて、2細胞期のような時期に凍結融解を複数回行っての操作等を行うことが可能となった。
(処理例18)
 次に、C57BL/6J系統のマウスの胚盤胞を用いた凍結胚移植を行った際の発生効率について検討した。
 具体的には、C57BL/6Jマウスの胚盤胞について、上述のY-27632を用いた一時処理培地又はコントロールの通常培地を用いて、凍結ー融解操作を行った。この上で、レシピエント(MCHマウス)に、1匹あたり平均20個の胚盤胞を子宮に移植した。帝王切開(CS)にて出産し、着床痕と産仔数を確認した。仮親に哺乳させ、離乳マウス数を確認し離乳生存率を算定した。なお、胚の培地は、mWM培地を基に使用した。
 この結果を、下記の表20に示す。
Figure JPOXMLDOC01-appb-T000020
 結果として、Y-27632を使用しない場合に比べ、Y-27632を使用して凍結胚盤胞を融解して移植した場合は、移植した胚盤胞の数に対する産仔数が多く、離乳生存率も向上していた。
 このため、本実施形態に係るY-27632を含む一時処理培地は、胚盤胞の凍結融解の際の胚へのダメージを減少させ安定化させることができた。
(処理例19)
 次に、免疫不全マウスNOD-scidの初期胚を用いて、複数標的のゲノム編集の効率について検討した。
 操作難度が非常に高く、調整が容易でない免疫不全マウスの初期胚に、複数遺伝子の複数部位(合計4箇所)のCRISPR-Cas9を混合した高濃度RNA-タンパク質をエレクトロポレーション(ゲノム編集)し、レシピエントの子宮に移植し、産仔を得た。
 この結果を、下記の表21に示す。
Figure JPOXMLDOC01-appb-T000021
 結果として、本実施形態に係るY-27632を含む一時処理培地を使用しない場合は全く産仔が得られなかった。一方、Y-27632を使用した場合は、ゲノム編集による高濃度RNA-タンパク質とエレクトロポレーションのストレスに耐えて、移植した卵が少なくても産仔を得た。しかも、ゲノム編集の効率が、従来より劇的に向上していた。
 このように、本実施形態に係るY-27632を含む一時処理培地を用いることで、(1)操作難易度の高い免疫不全マウスの初期胚を安定化させ、効率よく産仔を得ることができる。(2)高濃度核酸-タンパク質溶液と、エレクトロポレーションのストレスを回避できる。(3)ゲノム編集による二本鎖切断(DSB)の修復効率を上げ、ゲノム編集効率を高効率化することができる。
 ヌードマウス、疾患モデル近交系ラット、マウスは一般に繁殖能力が低い。採卵できる受精卵も少なく体外で受精卵を操作することも困難である。希少品種、絶滅危惧種についても同様と考えられる。本実施形態に係る一時処理培地を用いた各処理により、このように数少ない、貴重な、しかも脆弱な初期胚を用いた繁殖、生殖工学を利用することを可能とすることができる。
(処理例20)
 次に、本実施形態に係る一時処理培地を使用して作製したマウスの継代効率について検討した。
 上述の処理例14のNOD-scidマウスを用いたIL2RG遺伝子とBbox1遺伝子のダブルノックアウトマウス同士で交配し、仔マウスにY-27632の影響がないかを検討した。
 この結果を、下記の表22に示す。
Figure JPOXMLDOC01-appb-T000022
 結果として、第一世代(F1)、第二世代(F2)共に、1胎から平均6~8匹の仔が出産された。これは、ベースとなるNOD-scidマウスの産仔率とほぼ同等である。また、子孫マウスの表現型に異常はなかった。
 このように、本実施形態に係るY-27632の使用は、マウスの継代と表現型に影響を与えなかった。
 ここで、市販の「NOG」系統のマウスは、NOD-scidマウスにおいてIL2RG遺伝子を破壊した高度の重症複合免疫不全マウスである。この市販のNOGマウスは、ライセンス上、繁殖が許可されていないため、その他の遺伝子のノックアウトマウスとの組み合わせマウスを自由に作製することができない。このような場合であっても、IL2RGを含むダブルノックアウトを直接作製することで、容易に研究等に用いることが可能となる。
 本発明によれば、体外培養物への操作によるダメージを減少させるための一時処理培地を提供することができ、産業上利用可能である。

Claims (23)

  1.  多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む体外培養物への操作によるダメージを減少させるための一時処理培地であって、
     細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む
     ことを特徴とする一時処理培地。
  2.  前記細胞内骨格調整剤及び/又は前記アポトーシス抑制剤は、Rhoキナーゼ阻害剤である
     ことを特徴とする請求項1に記載の一時処理培地。
  3.  前記Rhoキナーゼ阻害剤は、
     Rock阻害剤を含む
     ことを特徴とする請求項2に記載の一時処理培地。
  4.  前記Rock阻害剤は、Y-27632であり、
     前記Y-27632の濃度は、0.1μM~20μMである
     ことを特徴とする請求項3に記載の一時処理培地。
  5.  前記細胞内骨格調整剤は、サイトカラシンBである
     ことを特徴とする請求項1に記載の一時処理培地。
  6.  前記サイトカラシンBの濃度は、0.1μM~15μMである
     ことを特徴とする請求項5に記載の一時処理培地。
  7.  前記体外培養物は、霊長目(Primates)、齧歯目(Rodentia)、ウサギ目(Lagomorpha)、鯨偶蹄目(Cetartiodactyla)、奇蹄目(Perissodactyla)、又は食肉目(Carnivora)由来である
     ことを特徴とする請求項1乃至6のいずれか1項に記載の一時処理培地。
  8.  請求項1乃至7のいずれか1項に記載の一時処理培地を含む
     ことを特徴とする処理キット。
  9.  アポトーシス抑制剤を含み、
     体外培養物への操作によるダメージを減少させ、胚発生停止を抑制する
     ことを特徴とする胚発生停止抑制剤。
  10.  前記体外培養物が生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む
     ことを特徴とする請求項9に記載の胚発生停止抑制剤。
  11.  前記胚発生停止抑制剤は、一時処理培地用である
     ことを特徴とする請求項9又は10に記載の胚発生抑制停止剤。
  12.  前記アポトーシス抑制剤は、Rhoキナーゼ阻害剤である
     ことを特徴とする請求項9乃至11のいずれか1項に記載の胚発生停止抑制剤。
  13.  前記Rhoキナーゼ阻害剤は、
     Rock阻害剤を含む
     ことを特徴とする請求項12に記載の胚発生停止抑制剤。
  14.  前記Rock阻害剤は、Y-27632である
     ことを特徴とする請求項13に記載の胚発生停止抑制剤。
  15.  多能性幹細胞、生殖細胞、受精卵、及び胚のいずれか又は任意の組み合わせを含む体外培養物への操作によるダメージを減少させ、胚発生停止を抑制する胚発生停止抑制方法であって、
     ダメージを伴う操作の前及び/又は後の特定期間、細胞内骨格調整剤及び/又はアポトーシス抑制剤を含む一時処理培地で処理する
     ことを特徴とする胚発生停止抑制方法。
  16.  前記体外培養物は、霊長目(Primates)、齧歯目(Rodentia)、ウサギ目(Lagomorpha)、鯨偶蹄目(Cetartiodactyla)、奇蹄目(Perissodactyla)、又は食肉目(Carnivora)由来である
     ことを特徴とする請求項15に記載の胚発生停止抑制方法。
  17.  前記特定期間は、前記操作に感受性のある動物種、系統、及び/又は凍結卵を用いた場合は、1時間以内である
     ことを特徴とする請求項15又は16に記載の胚発生停止抑制方法。
  18.  前記体外培養物は、前記操作に感受性のある系統の哺乳類に由来する
     ことを特徴とする請求項17に記載の胚発生停止抑制方法。
  19.  前記操作は、複数回のエレクトロポレーション法であり、
     前記哺乳類は、交雑系、近郊系、疾患モデル、又は異種である
     ことを特徴とする請求項18に記載の胚発生停止抑制方法。
  20.  請求項15乃至19のいずれか1項に記載の胚発生停止抑制方法により処理された前記体外培養物から、個体、器官、組織、及び細胞のいずれか又は任意の組み合わせを含む発生工学産物を作製する
     ことを特徴とする発生工学産物作製方法。
  21.  請求項15乃至19のいずれか1項に記載の胚発生停止抑制方法により処理された前記体外培養物、及び/又は
     請求項20に記載の発生工学産物作製方法にて作製された前記発生工学産物を移植する
     ことを特徴とする移植方法。
  22.  哺乳類の治療方法であって、
     請求項15乃至19のいずれか1項に記載の胚発生停止抑制方法により処理された前記体外培養物、及び/又は
     請求項20に記載の発生工学産物作製方法にて作製された前記発生工学産物を移植する
     ことを特徴とする治療方法。
  23.  請求項20に記載の発生工学産物作製方法にて作製された
     ことを特徴とする発生工学産物。
PCT/JP2021/011891 2020-03-24 2021-03-23 一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物 WO2021193596A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022510521A JPWO2021193596A1 (ja) 2020-03-24 2021-03-23
US17/914,323 US20230220331A1 (en) 2020-03-24 2021-03-23 Temporary treatment medium, treatment kit, embryogenesis arrest inhibitor, embryogenesis arrest inhibitory method, developmental engineering product preparation method, transplantation method, therapeutic method, and developmental engineering product
EP21774433.3A EP4130244A4 (en) 2020-03-24 2021-03-23 TEMPORARY TREATMENT MEDIUM, TREATMENT KIT, EMBRYONIC DEVELOPMENT ARREST INHIBITOR, METHOD FOR INHIBITING EMBRYON DEVELOPMENT ARREST, METHOD FOR PRODUCING DEVELOPMENT ENGINEERING PRODUCT, TRANSFER METHOD, THERAPEUTIC METHOD AND ENGINEERING PRODUCT ENIERIE OF DEVELOPMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052748 2020-03-24
JP2020-052748 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193596A1 true WO2021193596A1 (ja) 2021-09-30

Family

ID=77892601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011891 WO2021193596A1 (ja) 2020-03-24 2021-03-23 一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物

Country Status (4)

Country Link
US (1) US20230220331A1 (ja)
EP (1) EP4130244A4 (ja)
JP (1) JPWO2021193596A1 (ja)
WO (1) WO2021193596A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068103A1 (ja) * 2009-12-01 2011-06-09 独立行政法人国立がん研究センター ラット胚性幹細胞を用いたキメララットの作製法
JP2015070825A (ja) 2013-10-04 2015-04-16 国立大学法人京都大学 エレクトロポレーションを利用した哺乳類の遺伝子改変方法
JP2016521971A (ja) * 2013-04-23 2016-07-28 イェダ リサーチ アンド ディベロップメント カンパニー リミテッド 単離ナイーブ型多能性幹細胞およびそれを発生させる方法関連出願本出願は、米国特許法119条第(e)項に基づき、2014年1月29日出願の米国特許仮出願第61/932,935号、2013年9月17日出願の米国特許仮出願第61/878,769号、および2013年4月23日出願の米国特許仮出願第61/814,920号の優先権を主張する。また、本出願は、同時に提出された同出願人による同時係属出願である、YaqubHANNA、NoaNOVERSHTERN、およびYoachRAISによる米国特許出願(発明の名称「単離ナイーブ型多能性幹細胞およびそれを発生させる方法(ISOLATEDNAIVEPLURIPOTENTSTEMCELLSANDMETHODSOFGENERATINGSAME)」)(代理人事件記録簿第58870号)にも関する。上記出願の内容はその全体を参考として本明細書に組み込む。
JP2016214138A (ja) * 2015-05-19 2016-12-22 国立研究開発法人理化学研究所 栄養膜外胚葉様構造体及びその製造方法
WO2018164240A1 (ja) 2017-03-08 2018-09-13 大日本住友製薬株式会社 網膜色素上皮細胞の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408903B1 (en) * 2009-03-20 2014-08-06 Agency For Science, Technology And Research Culture of pluripotent and multipotent cells on microcarriers
CN102395672A (zh) * 2009-04-13 2012-03-28 加利福尼亚大学董事会 用于干细胞培养的方法和组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068103A1 (ja) * 2009-12-01 2011-06-09 独立行政法人国立がん研究センター ラット胚性幹細胞を用いたキメララットの作製法
JP2016521971A (ja) * 2013-04-23 2016-07-28 イェダ リサーチ アンド ディベロップメント カンパニー リミテッド 単離ナイーブ型多能性幹細胞およびそれを発生させる方法関連出願本出願は、米国特許法119条第(e)項に基づき、2014年1月29日出願の米国特許仮出願第61/932,935号、2013年9月17日出願の米国特許仮出願第61/878,769号、および2013年4月23日出願の米国特許仮出願第61/814,920号の優先権を主張する。また、本出願は、同時に提出された同出願人による同時係属出願である、YaqubHANNA、NoaNOVERSHTERN、およびYoachRAISによる米国特許出願(発明の名称「単離ナイーブ型多能性幹細胞およびそれを発生させる方法(ISOLATEDNAIVEPLURIPOTENTSTEMCELLSANDMETHODSOFGENERATINGSAME)」)(代理人事件記録簿第58870号)にも関する。上記出願の内容はその全体を参考として本明細書に組み込む。
JP2015070825A (ja) 2013-10-04 2015-04-16 国立大学法人京都大学 エレクトロポレーションを利用した哺乳類の遺伝子改変方法
JP2016214138A (ja) * 2015-05-19 2016-12-22 国立研究開発法人理化学研究所 栄養膜外胚葉様構造体及びその製造方法
WO2018164240A1 (ja) 2017-03-08 2018-09-13 大日本住友製薬株式会社 網膜色素上皮細胞の製造方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CAS, no. 14930-96-2
CHATTERJEE PAPRI, CHEUNG YURI, LIEW CHEE: "Transfecting and Nucleofecting Human Induced Pluripotent Stem Cells", JOURNAL OF VISUALIZED EXPERIMENTS, no. 56, XP055862568, DOI: 10.3791/3110 *
GU ET AL.: "Rho/RhoA-associated kinase pathway improves the anti-freezing potentiality of murine hatched and diapaused blastocysts", SCI REP, US, vol. 7, 2017, pages 6705
HORII TAKURO, KOBAYASHI RYOSUKE, KIMURA MIKA, MORITA SUMIYO, HATADA IZUHO: "Calcium-Free and Cytochalasin B Treatment Inhibits Blastomere Fusion in 2-Cell Stage Embryos for the Generation of Floxed Mice via Sequential Electroporation", CELLS, vol. 9, no. 5, 28 April 2020 (2020-04-28), pages 1088, XP055862571, DOI: 10.3390/cells9051088 *
HORII, T. ET AL.: "Efficient generation of conditional knockout mice via sequential introduction of lox sites", SCI REP, (USA, vol. 7, pages 7891
HWANG IN-SUL, HARA HIROMASA, CHUNG HAK-JAE, HIRABAYASHI MASUMI, HOCHI SHINICHI: "Rescue of Vitrified-Warmed Bovine Oocytes with Rho-Associated Coiled-Coil Kinase Inhibitor", BIOLOGY OF REPRODUCTION, NEW YORK, NY [U.A.] : ACADEM. PRESS, US, vol. 89, no. 2, 1 August 2013 (2013-08-01), US , pages 1 - 6, XP055862522, ISSN: 0006-3363, DOI: 10.1095/biolreprod.113.109769 *
KIM DAEHWAN, SUL HYEONSEOK, JUNG YEON-GIL, ROH SANGHO: "Holding of bovine blastocysts at suprazero temperatures using small molecules", SCIENTIFIC REPORTS, vol. 7, no. 1, 1 December 2017 (2017-12-01), XP055862560, DOI: 10.1038/s41598-017-10014-9 *
MELLOTT ADAM J., GODSEY MEGAN E., SHINOGLE HEATHER E., MOORE DAVID S., FORREST M. LAIRD, DETAMORE MICHAEL S.: "Improving Viability and Transfection Efficiency with Human Umbilical Cord Wharton's Jelly Cells Through Use of a ROCK Inhibitor", CELLULAR REPROGRAMMING, MARY ANN LIEBERT, INC. PUBLISHERS, US, vol. 16, no. 2, 1 April 2014 (2014-04-01), US , pages 91 - 97, XP055862556, ISSN: 2152-4971, DOI: 10.1089/cell.2013.0069 *
MOTOMURA KENICHIRO, OKADA NAOKO, MORITA HIDEAKI, HARA MARIKO, TAMARI MASATO, ORIMO KEISUKE, MATSUDA GO, IMADOME KEN-ICHI, MATSUDA : "A Rho-associated coiled-coil containing kinases (ROCK) inhibitor, Y-27632, enhances adhesion, viability and differentiation of human term placenta-derived trophoblasts in vitro", PLOS ONE, vol. 12, no. 5, 1 January 2017 (2017-01-01), pages e0177994, XP055862565, DOI: 10.1371/journal.pone.0177994 *
NAKAO H. ET AL.: "A Possible Aid in Targeted Insertion of Large DNA Elements", CRISPR/CAS IN MOUSE ZYGOTES, GENESIS, vol. 54, 2016, pages 65 - 77, XP055516915, DOI: 10.1002/dvg.22914 *
See also references of EP4130244A4
WATANABE K. ET AL.: "A ROCK inhibitor permits survival of dissociated human embryonic stem cells", NATURE BIOTECHNOLOGY, vol. 25, no. 6, 2007, pages 681 - 686, XP002478043, DOI: 10.1038/nbt1310 *

Also Published As

Publication number Publication date
JPWO2021193596A1 (ja) 2021-09-30
US20230220331A1 (en) 2023-07-13
EP4130244A1 (en) 2023-02-08
EP4130244A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
US20200017882A1 (en) Engineering of humanized car t-cell and platelets by genetic complementation
Haueter et al. Genetic vasectomy—Overexpression of Prm1‐EGFP fusion protein in elongating spermatids causes dominant male sterility in mice
AU2016344152A1 (en) Compositions and methods for chimeric embryo-assisted organ production
Clark et al. Pigs taking wing with transposons and recombinases
US8119785B2 (en) Nucleic acid sequences and homologous recombination vectors for distruption of a Fel D I gene
US11771068B2 (en) Method for producing non-human large mammal or fish each capable of producing gamete originated from different individual
US20190254266A1 (en) Engineering of Humanized Kidney by Genetic Complementation
US20210251200A1 (en) Production method for animal models with disease associated phenotypes
EP3264891A1 (en) Etv2 and uses thereof
US20210037797A1 (en) Inducible disease models methods of making them and use in tissue complementation
US20240041010A1 (en) Generation of surrogate sires and dams by ablation of endogenous germline
Mukai et al. Impacts of oocyte/zygote timing for in vitro fertilization and gene editing in the dog
WO2021193596A1 (ja) 一時処理培地、処理キット、胚発生停止抑制剤、胚発生停止抑制方法、発生工学産物作製方法、移植方法、治療方法、及び発生工学産物
US10626417B2 (en) Method of genetically altering and producing allergy free cats
WO2023100925A1 (ja) 不等分裂抑制剤、染色体異数性抑制剤、培地、体外受精培地、細胞処理キット、不等分裂抑制方法、体外受精方法、移植方法、不妊治療方法、及び産仔取得方法
JP4903392B2 (ja) 遺伝子ホモ改変哺乳動物細胞、遺伝子ホモ改変非ヒト哺乳動物、及びそれらの樹立、作出方法。
Li et al. Application state of genome-editing tools in cattle
Pinkert Genetic engineering of farm mammals
Bader et al. Scientific background
Murakami et al. Influence of the DNA amount per microinjection on the development and EGFP expression in bovine embryos
Spell et al. Somatic cell cloning in the beef industry
Weschka bb. Transgenic animals carrying human genes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021774433

Country of ref document: EP

Effective date: 20221024