WO2021193432A1 - Method for producing production intermediate of cyclaniliprole - Google Patents

Method for producing production intermediate of cyclaniliprole Download PDF

Info

Publication number
WO2021193432A1
WO2021193432A1 PCT/JP2021/011379 JP2021011379W WO2021193432A1 WO 2021193432 A1 WO2021193432 A1 WO 2021193432A1 JP 2021011379 W JP2021011379 W JP 2021011379W WO 2021193432 A1 WO2021193432 A1 WO 2021193432A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
salt
formula
compound represented
cyclaniliprol
Prior art date
Application number
PCT/JP2021/011379
Other languages
French (fr)
Japanese (ja)
Inventor
堅一 浅川
祐介 熊倉
祐樹 高橋
大介 森戸
美樹 菅田
文浩 福井
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to JP2022510423A priority Critical patent/JPWO2021193432A1/ja
Priority to KR1020227032717A priority patent/KR20220157967A/en
Priority to CN202180022473.XA priority patent/CN115335368A/en
Publication of WO2021193432A1 publication Critical patent/WO2021193432A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P7/00Arthropodicides
    • A01P7/04Insecticides

Definitions

  • the present invention relates to a method for producing an intermediate for producing cyclaniliprol. Furthermore, the present invention also relates to a method for producing cyclaniliprol using the intermediate for producing cyclaniliprol.
  • Cycraniliprole (3-bromo-N- [2-bromo-4-chloro-6-[[(1-cyclopropylethyl) amino] carbonyl] phenyl] -1- (3-chloropyridin-2-) (Il) -1H-pyrazole-5-carboxamide; a compound represented by the formula (IV) described later) is described as Compound No. 16 in Patent Document 1, and is useful as an active ingredient of a commercially available agricultural pesticide.
  • Compound. As a method for producing cyclaniliprol, for example, Patent Documents 2 to 4 are known. Further, a compound having a structure similar to that of cyclaniliprol and a method for producing the same are also known (for example, Patent Documents 5 to 10).
  • cyclaniliprol When cyclaniliprol is industrially manufactured as an active ingredient for pesticides, it must comply with the prescribed standards.
  • the problem to be solved by the present invention is to produce high-purity cyclaniliprol in high yield and at low cost. More specifically, it is intended to suppress the inclusion of the impurity (B) described later in cyclaniliprol as an active ingredient of pesticides, and to produce cyclaniliprol with high yield and high purity.
  • Patent Document 1 describes a method that can be used for producing cyclaniliprol as reaction [A].
  • the present inventors produce cyclaniliprol represented by the formula (IV) according to the following scheme according to this reaction [A]
  • the compounds represented by the formula (B) which are impurities hereinafter referred to as “B”.
  • Impurity (B) is produced as a by-product, and it is very difficult to remove this impurity (B) from the obtained cyclaniliprol. It was found that it is not suitable for the production of high-purity cyclaniliprol that meets the above standards.
  • Patent Document 2 discloses a method for producing cyclaniliprol via reaction [N] as a method for producing cyclaniliprol using a raw material having no Br on the benzene ring. ..
  • the yield of Example 17 (4) is very low, about 14%
  • the yield of Example 19 (2) is very low, about 37%.
  • the problem concerning the generation of the impurity (B) is not described in Patent Document 2 and is not recognized.
  • the present invention is a compound represented by the formula (I) or a salt thereof (hereinafter, also simply referred to as a compound (I)):
  • R is OH or halogen
  • compound (I) useful for producing cyclaniliprol can be produced in high yield and high purity. Furthermore, from the compound (I) obtained by the present invention, high-purity cyclaniliprol satisfying the specifications as an active ingredient for pesticides can be produced.
  • the method for producing compound (I) of the present invention is characterized by reacting compound (II) with compound (III) in the presence of a condensing agent and / or a base.
  • a condensing agent and / or a base when R is OH, the compound (II) and the compound (III) are preferably reacted in the presence of a condensing agent and a base, and when R is a halogen, the compound (II) and the compound (II) are reacted. It is preferable to react with compound (III) in the presence of a base. This reaction may be carried out in the presence of a solvent.
  • the salt of the compound (I), the compound (II) or the compound (III) includes any pesticide-acceptable salt, for example, an alkali metal salt (sodium salt, potassium salt, etc.), alkaline earth.
  • Metal salts magnesium salts, calcium salts, etc.
  • ammonium salts alkylammonium salts (dimethylammonium salts, triethylammonium salts, etc.)
  • acid addition salts salts, perchlorates, sulfates, nitrates, acetates, methanesulfones) (Salt, etc.) and the like.
  • the halogen represented by R include chlorine, bromine, iodine and the like, and chlorine is preferable.
  • the amount of compound (II) and compound (III) to be used is not particularly limited as long as the reaction proceeds, but is, for example, 0.8 to 1.2 mol, preferably 0. 9 to 1.1 mol, more preferably 0.95 to 1.05 mol of compound (III) can be used.
  • the compound (II) and the compound (III) in the present invention can be produced by a method known in the art, for example, the method described in Patent Documents 2, 5, 7 or the like, or a method similar thereto, or commercially available. Goods can also be used.
  • a compound (III) in which R is halogen is used
  • the compound (III) in which R is halogen is a halogenating agent (III) in which R is OH according to a method well known in the art. It can also be obtained by reacting with an acid halide such as thionyl chloride or oxalyl chloride).
  • sulfonyl chloride methanesulfonyl chloride, p-toluenesulfonyl chloride, etc.
  • acid halide thionyl chloride, oxalyl chloride, etc.
  • the amount of the condensing agent used is not particularly limited as long as the reaction proceeds, but is, for example, 1 to 2 mol, preferably 1 to 1.8 mol, more preferably 1 to 1 to 1 mol of the compound (II). It is 1.5 mol.
  • the bases used in this reaction include organic bases such as pyridine and picoline (for example, 2-picoline, 3-picoline, 4-picoline), alkali metal carbonates or alkali metal hydrogen carbonates, and alkaline earths.
  • organic bases such as pyridine and picoline (for example, 2-picoline, 3-picoline, 4-picoline), alkali metal carbonates or alkali metal hydrogen carbonates, and alkaline earths.
  • Inorganic bases such as metal carbonates or alkaline earth metal carbonates are preferred, among which pyridine, picoline (eg, 2-picoline, 3) are preferred from the standpoint of yield and purity of the resulting compound (I).
  • -Picoline, 4-picoline alkali metal carbonates or alkali metal carbonates are more preferred, and pyridine or picoline (eg 2-picoline, 3-picoline, 4-picoline) are even more preferred, among which 3-picoline. Is particularly preferable.
  • the above-mentioned base used in this reaction may be one kind or two or more kinds.
  • the amount of the base used is not particularly limited as long as the reaction proceeds, but is, for example, 0 to 10 mol, preferably 1 to 7 mol, and more preferably 1 to 4 mol with respect to 1 mol of the compound (II). be.
  • the solvent that may be used in this reaction is not particularly limited as long as it does not adversely affect the reaction, and is, for example, ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), nitriles (acetoyl, propionitrile, etc.). ), Ethers (tetratetra, diethyl ether, etc.), halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), esters (ethyl acetate, isopropyl acetate, etc.), polar solvents (dimethylformamide, dimethylacetamide, N.
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • nitriles acetoyl, propionitrile, etc.
  • Ethers
  • -Methylpyrrolidone dimethylsulfoxide, etc.
  • aromatic hydrocarbons toluene, xylene, etc.
  • pyridines pyridine, picolin, etc.
  • the number is preferably two or more, and more preferably one or two or more selected from the group consisting of ketones, nitriles, ethers, polar solvents, and pyridines.
  • the amount of the solvent used is not particularly limited as long as the reaction proceeds, but is, for example, 0 to 50 times the amount (V / W), preferably 0 to 30 times the amount (V / W) of the compound (II). It is more preferably 0 to 20 times the amount (V / W), and further preferably 1 to 20 times the amount (V / W).
  • the order of addition of compound (II), compound (III), condensing agent and base, and optionally solvent is not particularly limited, and may be added and mixed in any order.
  • the addition of these components to the reaction system may be carried out all at once or in portions, or may be continuous.
  • all the components may be mixed at once, or some components may be added later, and specific examples of such addition include, for example, (i). ) Mix compound (II), base and solvent, and add compound (III) and condensing agent to it.
  • (Ii) Mix compound (II), compound (III) base and solvent, and add condensing agent there. Addition and the like can be mentioned.
  • the temperature of this reaction is usually about 0 to 50 ° C, preferably about 0 to 30 ° C.
  • the reaction time is usually about 1 to 24 hours, preferably about 1 to 5 hours.
  • room temperature usually means about 0 to 40 degreeC, more specifically, 10 to 30 degreeC.
  • compound (I) can be isolated by performing post-treatment by a conventional method such as neutralization, extraction, washing and drying, if necessary. Then, if necessary, compound (I) may be purified by a conventional method such as recrystallization and repulp. Alternatively, it can be used as it is in the next reaction without isolating compound (I) or purifying the isolated compound (I).
  • the purity of compound (I) obtained by this reaction is usually 95% by weight or more, preferably 97% by weight or more, and more preferably 98.5% by weight or more.
  • a compound represented by the following formula (A) or a salt thereof hereinafter, also simply referred to as an impurity (A) contained as an impurity:
  • the content of the compound is usually 1% by weight or less, preferably 0.3% by weight or less, based on the total amount of the compound represented by the formula (I) or a salt thereof and the impurity (A).
  • it is substantially free of impurities (A).
  • substantially not contained means that an amount of an impurity or the like may be mixed, and for example, the content ratio of the impurity (A) is less than 0.1% by weight.
  • Cyclaniliprol can be produced by reacting the compound (I) obtained as described above with a brominating agent. This reaction may be carried out in the presence of a base and a solvent. Examples of the brominating agent used in this method include bromine and hypobromous acid, and bromine is particularly preferable.
  • the amount of the brominating agent used is not particularly limited as long as the reaction proceeds, but for 1 mol of compound (I), for example, 0.5 to 5 mol, preferably 1 to 3 mol, more preferably 1 mol. Up to 2 moles of brominating agent can be used.
  • Bases that may be used in this reaction include metal hydroxides (sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.), metal hydrides (sodium hydride, potassium hydride, etc.), and metal alkoxides (sodium methoxy). Do, sodium ethoxyoxide, potassium t-butoxide, etc.) are preferable, among these, metal hydroxide is more preferable, and sodium hydroxide and potassium hydroxide are further preferable.
  • the above-mentioned base used in this reaction may be one kind or two or more kinds. The amount of the base used is not particularly limited as long as the reaction proceeds, but is, for example, 1 to 10 mol, preferably 1.5 to 5 mol, more preferably 1.5 mol, per 1 mol of compound (I). ⁇ 3.5 mol.
  • the solvent that may be used in this reaction is not particularly limited as long as it does not adversely affect the reaction, but ethers (diethyl ether, butylmethyl ether, tetrahydrofuran, dioxane, dimethoxyethane, etc.) and halogenated hydrocarbons (chlorobenzene).
  • esters More preferably, it is one kind or two or more kinds selected from the group consisting of the kind.
  • the amount of the solvent used is not particularly limited as long as the reaction proceeds, but is, for example, 0 to 50 times the amount (V / W), preferably 1 to 30 times the amount (V / W) of the compound (I). The amount is 3 to 20 times (V / W).
  • the order of adding the compound (I), the brominating agent, and if necessary, the base and the solvent is not particularly limited, and the compounds may be mixed in any order.
  • the addition of these components to the reaction system may be carried out all at once or in portions, or may be continuous.
  • the order of addition is as follows: (i) compound (I) and a brominating agent, if necessary, a solvent is mixed and a base is added thereto, or (ii) compound (I) and a base, and if necessary, a solvent is mixed. Then, a brominating agent may be added thereto.
  • the temperature of this reaction is usually about ⁇ 20 to 120 ° C., preferably about 0 to 50 ° C.
  • the reaction time is generally about 0.5 to 48 hours, preferably about 1 to 24 hours.
  • cyclaniliprol can be isolated by performing post-treatment by a conventional method such as neutralization, extraction, washing and drying, if necessary. Further, due to the conditions of the reaction and / or post-treatment, cyclaniliprol may be isolated as a salt or a solvate, in which case, for example, a conventional method such as neutralization and solvation. Can be converted into a free cyclaniliprol. Then, if necessary, cyclaniliprol can be purified by a conventional method such as recrystallization or repulp. The purity of cyclaniliprol obtained by this reaction is usually 90% by weight or more, preferably 95% by weight or more, and more preferably 97% by weight or more. In addition to the cyclaniliprol obtained by this reaction, the compound represented by the following formula (B) or a salt thereof contained as an impurity:
  • the content of is usually 1% by weight or less, preferably 0.3% by weight or less, and more preferably impurities, based on the total amount of cyclaniliprol and the compound represented by the formula (B).
  • (B) is substantially not contained.
  • substantially not contained means that an amount of impurities may be mixed, and for example, the content ratio of impurities (B) is less than 0.1% by weight.
  • the various components in the method of the present invention are appropriately selected from the above-mentioned plurality of examples and conditions, for example, not only the above-mentioned examples and conditions in the normal range but also the examples and conditions in a preferable range. Can be combined with each other.
  • R is OH or halogen
  • R is OH
  • the compound represented by the formula (II) or a salt thereof is reacted with the compound represented by the formula (III) or a salt thereof in the presence of a condensing agent and a base.
  • R is a halogen
  • the compound represented by the formula (II) or a salt thereof is reacted with the compound represented by the formula (III) or a salt thereof in the presence of a base [1]. ]
  • the content ratio of [1] to [15] is 1% by weight or less based on the total amount of the compound represented by the formula (I) or a salt thereof and the compound represented by the formula (A) or a salt thereof.
  • a compound represented by the formula (I) obtained by the production method according to any one of [1] to [17] or a salt thereof is reacted with a brominating agent to form cyclaniliprol.
  • Production method [19] The production method according to [18], wherein the brominating agent is bromine or hypobromous acid.
  • the production method according to [18] or [19], wherein the reaction is carried out in the presence of a base.
  • the base is one or more selected from the group consisting of metal hydroxides, metal hydrides and metal alkoxides.
  • the production method according to [20] wherein the base is a metal hydroxide.
  • HPLC analysis conditions in this example are as follows.
  • Mobile phase Liquid A: 0.1% aqueous formic acid solution
  • Liquid B acetonitrile Gradient conditions are as follows.
  • the purity (content ratio) is indicated by an area% value by high performance liquid chromatography (HPLC) and / or a weight% value converted from the area%.
  • the area% value is obtained by measuring the reaction product obtained by the synthetic experiment by HPLC.
  • the weight% value is calculated by, for example, the conversion method described below.
  • a measurement solvent is added to the cyclaniliprol standard product to prepare a cyclaniliprol standard solution, and the standard solution is measured three times by HPLC.
  • the average value of the area values obtained by the HPLC measurement is calculated, and the average value is divided by the weight of the cyclaniliprol standard product used in the measurement to calculate the unit area value.
  • the unit area value of the compound (I) standard product, the impurity (A) standard product, or the impurity (B) standard product is calculated respectively.
  • the unit area value is calculated in the same manner.
  • the unit area value of the reaction product and the unit area value of the standard product are compared, the ratio is calculated, and the weight% value is calculated. It is also possible to calculate the sensitivity ratio from the unit area value of each of the above standard products and convert it from the sensitivity ratio to obtain the impurity content.
  • Example 1 Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.6 g of compound (IIIa), 0.59 g of 3-picoline and 10 mL of tetrahydrofuran is ice-cooled, and 0.31 g of methanesulfonyl chloride is used. Was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 88.1. At that time, no impurity (A) was detected.
  • Example 2 Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.6 g of compound (IIIa), 0.59 g of 3-picoline and 10 mL of N-methylpyrrolidone is ice-cooled and methanesulfonyl chloride. 0.31 g was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 98.6. At that time, no impurity (A) was detected.
  • the calculated average value was divided by 15.41, which is the mass value of the standard cyclaniliprol product, to calculate the unit area value of 66069.
  • the unit area values 72447, 91829 and 81242 of the compound (I), the impurity (A) and the impurity (B) were calculated.
  • the compound (I) obtained by synthesis is also calculated by comparing the area value obtained by the HPLC measurement with the unit area value of the standard product in the same manner, and the weight% value indicating the content ratio of impurities is calculated.
  • the weight% value indicating the content ratio of impurities is calculated.
  • Example 8 Synthesis of compound (I) 0.45 g of methanesulfonyl chloride at room temperature was slowly added to a mixed solution of 0.79 g of compound (II), 1.0 g of compound (IIIa), 0.39 g of sodium carbonate and 10 mL of acetone. Dropped. When the reaction was checked by HPLC after stirring at the same temperature for 1 hour, compound (I) was produced in 75.5 area%. At that time, no impurity (A) was detected. Subsequently, 0.15 g of sodium carbonate and 0.15 g of methanesulfonyl chloride were added to the reaction solution, and the mixture was stirred overnight at room temperature. As a result, compound (I) was produced in an area% of 97.2. At that time, no impurity (A) was detected.
  • Example 9 Synthesis of cyclaniliprol A mixed solution of 11.6 g of compound (I) and 58 mL of ethyl acetate obtained according to Example 3 was ice-cooled, and 5.2 g of bromine was slowly added dropwise. Next, 13.8 g of an aqueous sodium hydroxide solution was slowly added dropwise, and the mixture was stirred at the same temperature for 1 hour. After confirming that the reaction was completed, 12.7 g of an aqueous sodium sulfite solution under an ice bath was added dropwise, and the mixture was stirred at the same temperature for 1 hour. The slurry was filtered and the solid was washed with 11.6 g of water.
  • Example 11 Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.63 g of compound (IIIa), 0.39 g of 3-picoline, and 5 mL of pyridine as a solvent is ice-cooled and methanesulfonyl chloride. 0.26 g was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred at the same temperature for 1 hour, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 96.8. At that time, no impurity (A) was detected.

Abstract

Provided is a method for producing a production intermediate of high-purity cyclaniliprole. According to this method, a production intermediate of high-purity cyclaniliprole can be produced at a high yield by reacting a compound represented by formula (II) or a salt thereof with a compound represented by formula (III) or a salt thereof in the presence of a condensing agent and/or a base. By using this intermediate, high-purity cyclaniliprole can be produced.

Description

シクラニリプロールの製造中間体の製造方法Manufacturing method of cyclaniliprol manufacturing intermediate
 本発明は、シクラニリプロールの製造中間体の製造方法に関する。さらに、本発明は、当該シクラニリプロールの製造中間体を使用するシクラニリプロールの製造方法にも関する。 The present invention relates to a method for producing an intermediate for producing cyclaniliprol. Furthermore, the present invention also relates to a method for producing cyclaniliprol using the intermediate for producing cyclaniliprol.
 シクラニリプロール(cyclaniliprole;3-ブロモ-N-[2-ブロモ-4-クロロ-6-[[(1-シクロプロピルエチル)アミノ]カルボニル]フェニル]-1-(3-クロロピリジン-2-イル)-1H-ピラゾール-5-カルボキサミド;後述の式(IV)で表される化合物)は、特許文献1に化合物No.16として記載されており、市販の農業用殺虫剤の有効成分として有用な化合物である。シクラニリプロールの製造方法としては、例えば、特許文献2~4が知られている。また、シクラニリプロールと類似する構造を有する化合物及びその製造方法も知られている(例えば、特許文献5~10)。 Cycraniliprole (3-bromo-N- [2-bromo-4-chloro-6-[[(1-cyclopropylethyl) amino] carbonyl] phenyl] -1- (3-chloropyridin-2-) (Il) -1H-pyrazole-5-carboxamide; a compound represented by the formula (IV) described later) is described as Compound No. 16 in Patent Document 1, and is useful as an active ingredient of a commercially available agricultural pesticide. Compound. As a method for producing cyclaniliprol, for example, Patent Documents 2 to 4 are known. Further, a compound having a structure similar to that of cyclaniliprol and a method for producing the same are also known (for example, Patent Documents 5 to 10).
国際公開第2005/077934号International Publication No. 2005/077934 国際公開第2008/072745号International Publication No. 2008/072745 国際公開第2008/072743号International Publication No. 2008/072743 国際公開第2008/155990号International Publication No. 2008/155990 国際公開第2003/016283号International Publication No. 2003/016283 国際公開第2004/011453号International Publication No. 2004/011453 国際公開第2006/062978号International Publication No. 2006/062978 国際公開第2008/070158号International Publication No. 2008/070158 国際公開第2019/207595号International Publication No. 2019/207595 中国特許出願公開第102285964号明細書Chinese Patent Application Publication No. 102285964
 農薬原体としてシクラニリプロールを工業的に製造する場合、所定の規格に適合しなければならない。本発明が解決しようする課題は、高純度のシクラニリプロールを、高収率かつ安価に製造することである。より詳しくは、農薬原体としてのシクラニリプロールへの後述の不純物(B)の含有を抑制し、シクラニリプロールを高収率かつ高純度で製造することである。 When cyclaniliprol is industrially manufactured as an active ingredient for pesticides, it must comply with the prescribed standards. The problem to be solved by the present invention is to produce high-purity cyclaniliprol in high yield and at low cost. More specifically, it is intended to suppress the inclusion of the impurity (B) described later in cyclaniliprol as an active ingredient of pesticides, and to produce cyclaniliprol with high yield and high purity.
 特許文献1には、反応[A]としてシクラニリプロールの製造に利用可能な方法が記載されている。しかしながら、本発明者らは、この反応[A]に従って下記のスキームの通り式(IV)で表されるシクラニリプロールを製造すると、不純物である式(B)で表される化合物(以下、不純物(B)ともいう)が副生し、かつ得られたシクラニリプロールからこの不純物(B)を除去することが非常に困難であり、特許文献1に記載の方法は、農薬原体としての規格を満たす高純度のシクラニリプロールの製造には不適であることを見出した。 Patent Document 1 describes a method that can be used for producing cyclaniliprol as reaction [A]. However, when the present inventors produce cyclaniliprol represented by the formula (IV) according to the following scheme according to this reaction [A], the compounds represented by the formula (B) which are impurities (hereinafter referred to as “B”). Impurity (B) is produced as a by-product, and it is very difficult to remove this impurity (B) from the obtained cyclaniliprol. It was found that it is not suitable for the production of high-purity cyclaniliprol that meets the above standards.
Figure JPOXMLDOC01-appb-C000006
 このような不純物(B)の副生に関する記述は特許文献1には無く、不純物(B)の生成に関する課題は同文献では認識されていない。
Figure JPOXMLDOC01-appb-C000006
There is no description about the by-product of the impurity (B) in Patent Document 1, and the problem regarding the formation of the impurity (B) is not recognized in the same document.
 本発明者らは、上記課題を解決すべくさらに検討を進めたところ、不純物(B)の生成はベンゼン環上のBrの存在に起因することも見出した。このため、特許文献1に記載の方法では、不純物(B)の副生を十分に抑制できないと考えられた。 As a result of further studies to solve the above problems, the present inventors have also found that the formation of the impurity (B) is due to the presence of Br on the benzene ring. Therefore, it was considered that the method described in Patent Document 1 could not sufficiently suppress the by-product of the impurity (B).
 一方、特許文献2には、ベンゼン環上にBrを有さない原料を用いるシクラニリプロールの製造方法として、反応[N]を経由してシクラニリプロールを製造する方法が開示されている。しかしながら、特許文献2における反応[N]に相当する具体例では、例えば、実施例17(4)の収率は約14%、実施例19(2)の収率は約37%と非常に低く、シクラニリプロールの工業的製造方法として利用するためには、収率の大幅な向上が必要であった。また、不純物(B)の生成に関する課題は特許文献2でも記載が無く、認識されていない。 On the other hand, Patent Document 2 discloses a method for producing cyclaniliprol via reaction [N] as a method for producing cyclaniliprol using a raw material having no Br on the benzene ring. .. However, in the specific example corresponding to the reaction [N] in Patent Document 2, for example, the yield of Example 17 (4) is very low, about 14%, and the yield of Example 19 (2) is very low, about 37%. In order to use it as an industrial production method for cyclaniliprol, it was necessary to significantly improve the yield. Further, the problem concerning the generation of the impurity (B) is not described in Patent Document 2 and is not recognized.
 本発明者らが上記の課題を解決するために種々検討を行ったところ、不純物(B)の生成はベンゼン環上のBrの存在に起因することを見出し、ベンゼン環上にBrを有さない原料を経由してシクラニリプロールを製造する必要があると考えられた。そして、ベンゼン環上にBrを有さない原料を使用する場合であっても、特定の反応試薬を選択することにより、高収率で、不純物の含有量が非常に少ないシクラニリプロールの製造中間体を製造することが可能な製造方法を見出した。そして、このようにして製造されたシクラニリプロールの製造中間体から、農薬原体としての規格に適合する高純度のシクラニリプロールを製造できることも見出した。 As a result of various studies conducted by the present inventors in order to solve the above problems, it was found that the formation of the impurity (B) is due to the presence of Br on the benzene ring, and there is no Br on the benzene ring. It was considered necessary to produce cyclaniliprol via raw materials. Then, even when a raw material having no Br on the benzene ring is used, by selecting a specific reaction reagent, cyclaniliprol with a high yield and a very low impurity content can be produced. We have found a manufacturing method capable of manufacturing an intermediate. It was also found that high-purity cyclaniliprol conforming to the standard as an active ingredient for pesticides can be produced from the production intermediate of cyclaniliprol produced in this manner.
 すなわち、本発明は、式(I)で表される化合物又はその塩(以下、単に化合物(I)ともいう): That is, the present invention is a compound represented by the formula (I) or a salt thereof (hereinafter, also simply referred to as a compound (I)):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
の製造方法であって、式(II)で表される化合物又はその塩(以下、単に化合物(II)ともいう): The compound represented by the formula (II) or a salt thereof (hereinafter, also simply referred to as compound (II)):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
と、式(III)で表される化合物又はその塩(以下、単に化合物(III)ともいう): And a compound represented by the formula (III) or a salt thereof (hereinafter, also simply referred to as compound (III)):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式(III)中、Rは、OH又はハロゲンである]
とを、縮合剤及び/又は塩基の存在中で反応させる、製造方法を提供する。さらに、本発明は、このようにして製造された化合物(I)を、臭素化剤と反応させる、シクラニリプロールの製造方法も提供する。
[In formula (III), R is OH or halogen]
Provided is a production method for reacting with and in the presence of a condensing agent and / or a base. Furthermore, the present invention also provides a method for producing cyclaniliprol, in which the compound (I) thus produced is reacted with a brominating agent.
 本発明によれば、シクラニリプロールの製造に有用な化合物(I)を高収率かつ高純度で製造することができる。さらに、本発明によって得られた化合物(I)から、農薬原体としての規格を満たす高純度のシクラニリプロールを製造することができる。 According to the present invention, compound (I) useful for producing cyclaniliprol can be produced in high yield and high purity. Furthermore, from the compound (I) obtained by the present invention, high-purity cyclaniliprol satisfying the specifications as an active ingredient for pesticides can be produced.
[化合物(I)の製造方法]
 本発明の化合物(I)の製造方法は、化合物(II)と化合物(III)とを縮合剤及び/又は塩基の存在中で反応させることを特徴とする。ここで、Rが、OHである場合、化合物(II)と化合物(III)とを、縮合剤及び塩基の存在中で反応させることが好ましく、Rが、ハロゲンである場合、化合物(II)と化合物(III)とを、塩基の存在中で反応させることが好ましい。本反応は、溶媒の存在中で行ってもよい。
[Method for producing compound (I)]
The method for producing compound (I) of the present invention is characterized by reacting compound (II) with compound (III) in the presence of a condensing agent and / or a base. Here, when R is OH, the compound (II) and the compound (III) are preferably reacted in the presence of a condensing agent and a base, and when R is a halogen, the compound (II) and the compound (II) are reacted. It is preferable to react with compound (III) in the presence of a base. This reaction may be carried out in the presence of a solvent.
 化合物(I)、化合物(II)又は化合物(III)の塩としては、農薬上許容されるものであればあらゆるものを含み、例えば、アルカリ金属塩(ナトリウム塩、カリウム塩など)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩など)、アンモニウム塩、アルキルアンモニウム塩(ジメチルアンモニウム塩、トリエチルアンモニウム塩など)、酸付加塩(塩酸塩、過塩素酸塩、硫酸塩、硝酸塩、酢酸塩、メタンスルホン酸塩など)などが挙げられる。Rとして示されるハロゲンとしては、例えば、塩素、臭素、ヨウ素などが挙げられ、塩素が好ましい。 The salt of the compound (I), the compound (II) or the compound (III) includes any pesticide-acceptable salt, for example, an alkali metal salt (sodium salt, potassium salt, etc.), alkaline earth. Metal salts (magnesium salts, calcium salts, etc.), ammonium salts, alkylammonium salts (dimethylammonium salts, triethylammonium salts, etc.), acid addition salts (salt salts, perchlorates, sulfates, nitrates, acetates, methanesulfones) (Salt, etc.) and the like. Examples of the halogen represented by R include chlorine, bromine, iodine and the like, and chlorine is preferable.
 化合物(II)と化合物(III)の使用量について、反応が進行する限り特に限定されないが、化合物(II)1モルに対して、例えば、0.8~1.2モル、好ましくは、0.9~1.1モル、より好ましくは、0.95~1.05モルの化合物(III)を使用することができる。 The amount of compound (II) and compound (III) to be used is not particularly limited as long as the reaction proceeds, but is, for example, 0.8 to 1.2 mol, preferably 0. 9 to 1.1 mol, more preferably 0.95 to 1.05 mol of compound (III) can be used.
 本発明における化合物(II)及び化合物(III)は、当技術分野において公知の方法、例えば、特許文献2、5、7などに記載された方法又はそれに準じる方法により製造することができ、或いは市販品を使用することもできる。また、Rがハロゲンである化合物(III)を使用する場合、Rがハロゲンである化合物(III)は、当技術分野における周知の方法に従って、RがOHである化合物(III)をハロゲン化剤(塩化チオニル、塩化オキサリルなどの酸ハロゲン化物など)と反応させることにより得ることもできる。 The compound (II) and the compound (III) in the present invention can be produced by a method known in the art, for example, the method described in Patent Documents 2, 5, 7 or the like, or a method similar thereto, or commercially available. Goods can also be used. When a compound (III) in which R is halogen is used, the compound (III) in which R is halogen is a halogenating agent (III) in which R is OH according to a method well known in the art. It can also be obtained by reacting with an acid halide such as thionyl chloride or oxalyl chloride).
 本反応において使用される縮合剤としては、塩化スルホニル(塩化メタンスルホニル、塩化p-トルエンスルホニルなど)、酸ハロゲン化物(塩化チオニル、塩化オキサリルなど)が好ましく、これらの中でも、収率及び得られる化合物(I)の純度の観点から、塩化スルホニルがより好ましく、塩化メタンスルホニルが特に好ましい。縮合剤の使用量は、反応が進行する限り特に限定されないが、化合物(II)1モルに対して、例えば、1~2モル、好ましくは、1~1.8モル、より好ましくは、1~1.5モルである。 As the condensing agent used in this reaction, sulfonyl chloride (methanesulfonyl chloride, p-toluenesulfonyl chloride, etc.) and acid halide (thionyl chloride, oxalyl chloride, etc.) are preferable, and among these, the yield and the obtained compound From the viewpoint of the purity of (I), sulfonyl chloride is more preferable, and methanesulfonyl chloride is particularly preferable. The amount of the condensing agent used is not particularly limited as long as the reaction proceeds, but is, for example, 1 to 2 mol, preferably 1 to 1.8 mol, more preferably 1 to 1 to 1 mol of the compound (II). It is 1.5 mol.
 本反応において使用される塩基としては、ピリジン、ピコリン(例えば、2-ピコリン、3-ピコリン、4-ピコリン)などの有機塩基、及びアルカリ金属の炭酸塩又はアルカリ金属の炭酸水素塩、アルカリ土類金属の炭酸塩又はアルカリ土類金属の炭酸水素塩などの無機塩基が好ましく、これらの中でも、収率及び得られる化合物(I)の純度の観点から、ピリジン、ピコリン(例えば、2-ピコリン、3-ピコリン、4-ピコリン)、アルカリ金属の炭酸塩又はアルカリ金属の炭酸水素塩がより好ましく、ピリジン又はピコリン(例えば、2-ピコリン、3-ピコリン、4-ピコリン)が更に好ましく、中でも3-ピコリンが特に好ましい。本反応において使用される上記塩基は、1種でもよく、2種以上であってもよい。
 塩基の使用量は、反応が進行する限り特に限定されないが、化合物(II)1モルに対して、例えば、0~10モル、好ましくは、1~7モル、より好ましくは、1~4モルである。
The bases used in this reaction include organic bases such as pyridine and picoline (for example, 2-picoline, 3-picoline, 4-picoline), alkali metal carbonates or alkali metal hydrogen carbonates, and alkaline earths. Inorganic bases such as metal carbonates or alkaline earth metal carbonates are preferred, among which pyridine, picoline (eg, 2-picoline, 3) are preferred from the standpoint of yield and purity of the resulting compound (I). -Picoline, 4-picoline), alkali metal carbonates or alkali metal carbonates are more preferred, and pyridine or picoline (eg 2-picoline, 3-picoline, 4-picoline) are even more preferred, among which 3-picoline. Is particularly preferable. The above-mentioned base used in this reaction may be one kind or two or more kinds.
The amount of the base used is not particularly limited as long as the reaction proceeds, but is, for example, 0 to 10 mol, preferably 1 to 7 mol, and more preferably 1 to 4 mol with respect to 1 mol of the compound (II). be.
 本反応において使用してもよい溶媒としては、反応に悪影響を及ぼさない限り特に限定されないが、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、ニトリル類(アセトニトリル、プロピオニトリルなど)、エーテル類(テトラヒドロフラン、ジエチルエーテルなど)、ハロゲン化炭化水素類(ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼンなど)、エステル類(酢酸エチル、酢酸イソプロピルなど)、極性溶媒類(ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシドなど)、芳香族炭化水素類(トルエン、キシレンなど)、ピリジン類(ピリジン、ピコリンなど)、又はこれらの混合溶媒が挙げられる。これらの中でも、収率及び得られる化合物(I)の純度の観点から、ケトン類、ニトリル類、エーテル類、ハロゲン化炭化水素類、極性溶媒類、及びピリジン類からなる群から選択される1種又は2種以上であることが好ましく、ケトン類、ニトリル類、エーテル類、極性溶媒類、及びピリジン類からなる群から選択される1種又は2種以上であることがより好ましい。溶媒の使用量は反応が進行する限り特に限定されないが、化合物(II)に対して、例えば、0~50倍量(V/W)、好ましくは、0~30倍量(V/W)、より好ましくは0~20倍量(V/W)であり、更に好ましくは1~20倍量(V/W)である。 The solvent that may be used in this reaction is not particularly limited as long as it does not adversely affect the reaction, and is, for example, ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), nitriles (acetoyl, propionitrile, etc.). ), Ethers (tetratetra, diethyl ether, etc.), halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.), esters (ethyl acetate, isopropyl acetate, etc.), polar solvents (dimethylformamide, dimethylacetamide, N. -Methylpyrrolidone, dimethylsulfoxide, etc.), aromatic hydrocarbons (toluene, xylene, etc.), pyridines (pyridine, picolin, etc.), or a mixed solvent thereof. Among these, one selected from the group consisting of ketones, nitriles, ethers, halogenated hydrocarbons, polar solvents, and pyridines from the viewpoint of yield and purity of the obtained compound (I). Alternatively, the number is preferably two or more, and more preferably one or two or more selected from the group consisting of ketones, nitriles, ethers, polar solvents, and pyridines. The amount of the solvent used is not particularly limited as long as the reaction proceeds, but is, for example, 0 to 50 times the amount (V / W), preferably 0 to 30 times the amount (V / W) of the compound (II). It is more preferably 0 to 20 times the amount (V / W), and further preferably 1 to 20 times the amount (V / W).
 本反応において、化合物(II)、化合物(III)、縮合剤及び塩基、必要により溶媒の添加の順序は、特に限定されず、任意の順序で添加及び混合すればよい。これらの成分の反応系への添加は、一度に又は分割して行ってもよいし、連続的であってもよい。例えば、添加の順序としては、すべての成分を一度に混合してもよいし、或いは、一部の成分を後で添加してもよく、このような添加の具体例としては、例えば、(i)化合物(II)、塩基及び溶媒を混合し、そこに化合物(III)及び縮合剤を添加する、(ii)化合物(II)、化合物(III)塩基及び溶媒を混合し、そこに縮合剤を添加するなどが挙げられる。 In this reaction, the order of addition of compound (II), compound (III), condensing agent and base, and optionally solvent is not particularly limited, and may be added and mixed in any order. The addition of these components to the reaction system may be carried out all at once or in portions, or may be continuous. For example, as the order of addition, all the components may be mixed at once, or some components may be added later, and specific examples of such addition include, for example, (i). ) Mix compound (II), base and solvent, and add compound (III) and condensing agent to it. (Ii) Mix compound (II), compound (III) base and solvent, and add condensing agent there. Addition and the like can be mentioned.
 本反応の温度は、通常、約0~50℃、好ましくは、約0~30℃である。反応時間は、通常、約1~24時間、好ましくは、約1~5時間である。なお、本明細書において「室温」とは、通常、約0~40℃、より具体的には、10~30℃を意味する。 The temperature of this reaction is usually about 0 to 50 ° C, preferably about 0 to 30 ° C. The reaction time is usually about 1 to 24 hours, preferably about 1 to 5 hours. In addition, in this specification, "room temperature" usually means about 0 to 40 degreeC, more specifically, 10 to 30 degreeC.
 本反応の終了後、必要に応じて、例えば、中和、抽出、洗浄及び乾燥などの常法による後処理を行うことにより、化合物(I)を単離することができる。その後、必要により、再結晶及びリパルプなどの常法により、化合物(I)を精製してもよい。或いは、化合物(I)を単離することなく、又は単離された化合物(I)を精製することなく、そのまま次の反応に使用することもできる。 After completion of this reaction, compound (I) can be isolated by performing post-treatment by a conventional method such as neutralization, extraction, washing and drying, if necessary. Then, if necessary, compound (I) may be purified by a conventional method such as recrystallization and repulp. Alternatively, it can be used as it is in the next reaction without isolating compound (I) or purifying the isolated compound (I).
 本反応により得られる化合物(I)の純度は、通常、95重量%以上、好ましくは、97重量%以上、より好ましくは、98.5重量%以上である。また、本反応により得られる化合物(I)以外に、不純物として含まれる下記式(A)で表される化合物又はその塩(以下、単に不純物(A)ともいう): The purity of compound (I) obtained by this reaction is usually 95% by weight or more, preferably 97% by weight or more, and more preferably 98.5% by weight or more. In addition to the compound (I) obtained by this reaction, a compound represented by the following formula (A) or a salt thereof (hereinafter, also simply referred to as an impurity (A)) contained as an impurity:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
の含有割合は、式(I)で表される化合物又はその塩及び不純物(A)の合計量に対して通常、1重量%以下であり、好ましくは、0.3重量%以下であり、より好ましくは、不純物(A)を実質的に含有しない。ここで、実質的に含有しないとは不純物程度の量が混入してもよいことを意味し、例えば不純物(A)の含有割合が0.1重量%未満であることを意味する。このような化合物(I)を使用してシクラニリプロールを製造することにより、農薬原体としての規格を満たす高純度のシクラニリプロールを製造することができる。 The content of the compound is usually 1% by weight or less, preferably 0.3% by weight or less, based on the total amount of the compound represented by the formula (I) or a salt thereof and the impurity (A). Preferably, it is substantially free of impurities (A). Here, substantially not contained means that an amount of an impurity or the like may be mixed, and for example, the content ratio of the impurity (A) is less than 0.1% by weight. By producing cyclaniliprol using such compound (I), high-purity cyclaniliprol satisfying the specifications as an active ingredient of pesticides can be produced.
[シクラニリプロールの製造方法]
 前述のようにして得られた化合物(I)を臭素化剤と反応させることにより、シクラニリプロールを製造することができる。本反応は、塩基及び溶媒の存在中で行ってもよい。
本方法において使用される臭素化剤としては、臭素、次亜臭素酸などが挙げられ、なかでも臭素が好ましい。
[Manufacturing method of cyclani lipol]
Cyclaniliprol can be produced by reacting the compound (I) obtained as described above with a brominating agent. This reaction may be carried out in the presence of a base and a solvent.
Examples of the brominating agent used in this method include bromine and hypobromous acid, and bromine is particularly preferable.
 臭素化剤の使用量について、反応が進行する限り特に限定されないが、化合物(I)1モルに対して、例えば、0.5~5モル、好ましくは、1~3モル、より好ましくは、1~2モルの臭素化剤を使用することができる。 The amount of the brominating agent used is not particularly limited as long as the reaction proceeds, but for 1 mol of compound (I), for example, 0.5 to 5 mol, preferably 1 to 3 mol, more preferably 1 mol. Up to 2 moles of brominating agent can be used.
 本反応において使用してもよい塩基としては、金属水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなど)、金属水素化物(水素化ナトリウム、水素化カリウムなど)、金属アルコキシド(ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシドなど)が好ましく、これらの中でも、金属水酸化物がより好ましく、水酸化ナトリウム、水酸化カリウムが更に好ましい。本反応において使用される上記塩基は、1種でもよく、2種以上であってもよい。
 塩基の使用量は、反応が進行する限り特に限定されないが、化合物(I)1モルに対して、例えば、1~10モル、好ましくは、1.5~5モル、より好ましくは、1.5~3.5モルである。
Bases that may be used in this reaction include metal hydroxides (sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.), metal hydrides (sodium hydride, potassium hydride, etc.), and metal alkoxides (sodium methoxy). Do, sodium ethoxyoxide, potassium t-butoxide, etc.) are preferable, among these, metal hydroxide is more preferable, and sodium hydroxide and potassium hydroxide are further preferable. The above-mentioned base used in this reaction may be one kind or two or more kinds.
The amount of the base used is not particularly limited as long as the reaction proceeds, but is, for example, 1 to 10 mol, preferably 1.5 to 5 mol, more preferably 1.5 mol, per 1 mol of compound (I). ~ 3.5 mol.
 本反応において使用してもよい溶媒としては、反応に悪影響を及ぼさない限り特に限定されないが、エーテル類(ジエチルエーテル、ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタンなど)、ハロゲン化炭化水素類(クロロベンゼン、ジクロロベンゼン、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン、ジクロロエチレンなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレンなど)、脂肪族炭化水素類(ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸プロピル(酢酸イソプロピル、酢酸ノルマルプロピルなど)、酢酸ブチルなど)、ケトン類(アセトン、メチルエチルケトン、シクロヘキサノンなど)、ニトリル類(アセトニトリル、プロピオニトリルなど)、アミド類(例えば、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミド、ジメチルアセトアミド、N-メチルピロリドンなど)、又はこれらの混合溶媒が挙げられる。これらの中でも、収率及び得られるシクラニリプロールの純度の観点から、エーテル類、ハロゲン化炭化水素類及びエステル類からなる群から選択される1種又は2種以上であることが好ましく、エステル類からなる群から選択される1種又は2種以上であることがより好ましい。溶媒の使用量は反応が進行する限り特に限定されないが、化合物(I)に対して、例えば、0~50倍量(V/W)、好ましくは、1~30倍量(V/W)、より3~20倍量(V/W)である。 The solvent that may be used in this reaction is not particularly limited as long as it does not adversely affect the reaction, but ethers (diethyl ether, butylmethyl ether, tetrahydrofuran, dioxane, dimethoxyethane, etc.) and halogenated hydrocarbons (chlorobenzene). , Dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, dichloroethylene, etc.), aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons (pentane, hexane, heptane, octane, cyclohexane, etc.) ), Esters (methyl acetate, ethyl acetate, propyl acetate (isopropyl acetate, normal propyl acetate, etc.), butyl acetate, etc.), ketones (acetone, methyl ethyl ketone, cyclohexanone, etc.), nitriles (acetamide, propionitrile, etc.), Amides (eg, N, N-dimethylformamide, dimethylsulfoxide, hexamethylphosphoric triamide, dimethylacetamide, N-methylpyrrolidone, etc.), or a mixed solvent thereof can be mentioned. Among these, from the viewpoint of yield and purity of the obtained cyclaniliprol, one or more selected from the group consisting of ethers, halogenated hydrocarbons and esters is preferable, and esters More preferably, it is one kind or two or more kinds selected from the group consisting of the kind. The amount of the solvent used is not particularly limited as long as the reaction proceeds, but is, for example, 0 to 50 times the amount (V / W), preferably 1 to 30 times the amount (V / W) of the compound (I). The amount is 3 to 20 times (V / W).
 本反応において、化合物(I)及び臭素化剤、必要により塩基及び溶媒の添加の順序は、特に限定されず、任意の順序で混合すればよい。これらの成分の反応系への添加は、一度に又は分割して行ってもよいし、連続的であってもよい。例えば、添加の順序としては、(i)化合物(I)及び臭素化剤、必要により溶媒を混合し、そこに塩基を添加する、或いは(ii)化合物(I)及び塩基、必要により溶媒を混合し、そこに臭素化剤を添加するなどが挙げられる。 In this reaction, the order of adding the compound (I), the brominating agent, and if necessary, the base and the solvent is not particularly limited, and the compounds may be mixed in any order. The addition of these components to the reaction system may be carried out all at once or in portions, or may be continuous. For example, the order of addition is as follows: (i) compound (I) and a brominating agent, if necessary, a solvent is mixed and a base is added thereto, or (ii) compound (I) and a base, and if necessary, a solvent is mixed. Then, a brominating agent may be added thereto.
 本反応の温度は、通常、約-20~120℃、好ましくは、約0~50℃である。反応時間は、通常、約0.5~48時間、好ましくは、約1~24時間である。 The temperature of this reaction is usually about −20 to 120 ° C., preferably about 0 to 50 ° C. The reaction time is generally about 0.5 to 48 hours, preferably about 1 to 24 hours.
 本反応の終了後、必要に応じて、例えば、中和、抽出、洗浄及び乾燥などの常法による後処理を行うことにより、シクラニリプロールを単離することができる。また、反応及び/又は後処理の条件に起因して、シクラニリプロールは、塩や溶媒和物として単離される場合があるが、その場合、例えば、中和及び脱溶媒和などの常法により、フリー体のシクラニリプロールに変換することができる。その後、必要により、再結晶、リパルプなどの常法により、シクラニリプロールを精製することもできる。本反応により得られるシクラニリプロールの純度は、通常、90重量%以上、好ましくは、95重量%以上、より好ましくは、97重量%以上である。また、本反応により得られるシクラニリプロール以外に、不純物として含まれる下記式(B)で表される化合物又はその塩: After completion of this reaction, cyclaniliprol can be isolated by performing post-treatment by a conventional method such as neutralization, extraction, washing and drying, if necessary. Further, due to the conditions of the reaction and / or post-treatment, cyclaniliprol may be isolated as a salt or a solvate, in which case, for example, a conventional method such as neutralization and solvation. Can be converted into a free cyclaniliprol. Then, if necessary, cyclaniliprol can be purified by a conventional method such as recrystallization or repulp. The purity of cyclaniliprol obtained by this reaction is usually 90% by weight or more, preferably 95% by weight or more, and more preferably 97% by weight or more. In addition to the cyclaniliprol obtained by this reaction, the compound represented by the following formula (B) or a salt thereof contained as an impurity:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
の含有割合は、シクラニリプロール及び式(B)で表される化合物の合計量に対して、通常、1重量%以下、好ましくは、0.3重量%以下であり、より好ましくは、不純物(B)を実質的に含有しない。ここで、実質的に含有しないとは不純物程度の量が混入してもよいことを意味し、例えば不純物(B)の含有割合が0.1重量%未満であることを意味する。 The content of is usually 1% by weight or less, preferably 0.3% by weight or less, and more preferably impurities, based on the total amount of cyclaniliprol and the compound represented by the formula (B). (B) is substantially not contained. Here, substantially not contained means that an amount of impurities may be mixed, and for example, the content ratio of impurities (B) is less than 0.1% by weight.
 本発明の方法における種々の構成要素は、前述した複数の例示や条件の中から、例えば、前述した通常範囲の例示及び条件だけでなく好ましい範囲の例示及び条件の中から適宜選択し、かつ、相互に組み合わせることができる。 The various components in the method of the present invention are appropriately selected from the above-mentioned plurality of examples and conditions, for example, not only the above-mentioned examples and conditions in the normal range but also the examples and conditions in a preferable range. Can be combined with each other.
 以下に本発明の好ましい実施形態の一例を列記するが、本発明はこれらに限定されるものではない。
[1]式(I)で表される化合物又はその塩:
Examples of preferred embodiments of the present invention are listed below, but the present invention is not limited thereto.
[1] A compound represented by the formula (I) or a salt thereof:
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
の製造方法であって、
式(II)で表される化合物又はその塩:
It is a manufacturing method of
The compound represented by the formula (II) or a salt thereof:
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
と、式(III)で表される化合物又はその塩: And the compound represented by the formula (III) or a salt thereof:
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(III)中、Rは、OH又はハロゲンである]
とを、縮合剤及び/又は塩基の存在中で反応させる、製造方法。
[2]Rが、OHである場合、式(II)で表される化合物又はその塩と、式(III)で表される化合物又はその塩とを、縮合剤及び塩基の存在中で反応させる、[1]に記載の製造方法。
[3]Rが、ハロゲンである場合、式(II)で表される化合物又はその塩と、式(III)で表される化合物又はその塩とを、塩基の存在中で反応させる、[1]に記載の製造方法。
[4]縮合剤が、塩化スルホニル又は酸ハロゲン化物である、[1]又は[2]に記載の製造方法。
[5]縮合剤が、塩化スルホニルである、[1]又は[2]に記載の製造方法。
[6]縮合剤が、塩化メタンスルホニルである、[1]又は[2]に記載の製造方法。
[7]塩基が、ピリジン、ピコリン、アルカリ金属の炭酸塩及びアルカリ金属の炭酸水素塩からなる群から選択される1種又は2種以上である、[1]~[6]のいずれか一項に記載の製造方法。
[8]塩基が、ピリジン又はピコリンである、[1]~[6]のいずれか一項に記載の製造方法。
[9]塩基が、ピリジン又は3-ピコリンである、[1]~[6]のいずれか一項に記載の製造方法。
[10]反応が、溶媒の存在下で行われる、[1]~[9]のいずれか一項に記載の製造方法。
[11]溶媒が、ケトン類、ニトリル類、エーテル類、ハロゲン化炭化水素類、極性溶媒類、ピリジン類及び芳香族炭化水素類からなる群から選択される1種又は2種以上である、[10]に記載の製造方法。
[12]溶媒が、ケトン類、ニトリル類、エーテル類、ハロゲン化炭化水素類、極性溶媒類、及びピリジン類からなる群から選択される1種又は2種以上である、[10]に記載の製造方法。
[13]溶媒が、ケトン類、ニトリル類、エーテル類、極性溶媒類、及びピリジン類からなる群から選択される1種又は2種以上である、[10]に記載の製造方法。
[14]溶媒が、テトラヒドロフラン、N-メチルピロリドン、アセトン、アセトニトリル、3-ピコリン及びピリジンからなる群から選択される1種又は2種以上である、[10]に記載の製造方法。
[15]得られる式(I)で表される化合物又はその塩の純度が、95重量%以上である、[1]~[14]のいずれか一項に記載の方法。
[16]得られる式(I)で表される化合物又はその塩以外に、不純物として含まれる下記式(A)で表される化合物又はその塩:
[In formula (III), R is OH or halogen]
A production method in which and is reacted in the presence of a condensing agent and / or a base.
[2] When R is OH, the compound represented by the formula (II) or a salt thereof is reacted with the compound represented by the formula (III) or a salt thereof in the presence of a condensing agent and a base. , [1].
[3] When R is a halogen, the compound represented by the formula (II) or a salt thereof is reacted with the compound represented by the formula (III) or a salt thereof in the presence of a base [1]. ] The manufacturing method described in.
[4] The production method according to [1] or [2], wherein the condensing agent is a sulfonyl chloride or an acid halide.
[5] The production method according to [1] or [2], wherein the condensing agent is sulfonyl chloride.
[6] The production method according to [1] or [2], wherein the condensing agent is methanesulfonyl chloride.
[7] Any one of [1] to [6], wherein the base is one or more selected from the group consisting of pyridine, picoline, alkali metal carbonate and alkali metal hydrogen carbonate. The manufacturing method described in.
[8] The production method according to any one of [1] to [6], wherein the base is pyridine or picoline.
[9] The production method according to any one of [1] to [6], wherein the base is pyridine or 3-picoline.
[10] The production method according to any one of [1] to [9], wherein the reaction is carried out in the presence of a solvent.
[11] The solvent is one or more selected from the group consisting of ketones, nitriles, ethers, halogenated hydrocarbons, polar solvents, pyridines and aromatic hydrocarbons. 10] The manufacturing method according to.
[12] The method according to [10], wherein the solvent is one or more selected from the group consisting of ketones, nitriles, ethers, halogenated hydrocarbons, polar solvents, and pyridines. Production method.
[13] The production method according to [10], wherein the solvent is one or more selected from the group consisting of ketones, nitriles, ethers, polar solvents, and pyridines.
[14] The production method according to [10], wherein the solvent is one or more selected from the group consisting of tetrahydrofuran, N-methylpyrrolidone, acetone, acetonitrile, 3-picoline and pyridine.
[15] The method according to any one of [1] to [14], wherein the obtained compound represented by the formula (I) or a salt thereof has a purity of 95% by weight or more.
[16] In addition to the obtained compound represented by the formula (I) or a salt thereof, the compound represented by the following formula (A) or a salt thereof contained as an impurity:
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
の含有割合が、式(I)で表される化合物又はその塩及び式(A)で表される化合物又はその塩の合計量に対して、1重量%以下である、[1]~[15]のいずれか一項に記載の製造方法。
[17]得られる式(I)の化合物又はその塩以外に、不純物として、式(A)で表される化合物又はその塩を実質的に含有しない、[1]~[15]のいずれか一項に記載の製造方法。
The content ratio of [1] to [15] is 1% by weight or less based on the total amount of the compound represented by the formula (I) or a salt thereof and the compound represented by the formula (A) or a salt thereof. ] The manufacturing method according to any one of the items.
[17] Any one of [1] to [15], which does not substantially contain the compound represented by the formula (A) or a salt thereof as an impurity in addition to the obtained compound of the formula (I) or a salt thereof. The manufacturing method described in the section.
[18][1]~[17]のいずれか一項に記載の製造方法により得られた式(I)で表される化合物又はその塩を、臭素化剤と反応させる、シクラニリプロールの製造方法。
[19]臭素化剤が、臭素又は次亜臭素酸である、[18]に記載の製造方法。
[20]反応が、塩基の存在下で行われる、[18]又は[19]に記載の製造方法。
[21]塩基が、金属水酸化物、金属水素化物及び金属アルコキシドからなる群から選択される1種又は2種以上である、[20]に記載の製造方法。
[22]塩基が、金属水酸化物である、[20]に記載の製造方法。
[23]反応が、溶媒の存在下で行われる、[18]~[22]のいずれか一項に記載の製造方法。
[24]溶媒が、エーテル類、ハロゲン化炭化水素類、芳香族炭化水素類、脂肪族炭化水素類、エステル類、ケトン類、ニトリル類及びアミド類からなる群から選択される1種又は2種以上である、[23]に記載の製造方法。
[25]溶媒が、エーテル類、ハロゲン化炭化水素類及びエステル類からなる群から選択される1種又は2種以上である、[23]に記載の製造方法。
[26]溶媒が、エステル類からなる群から選択される1種又は2種以上である、[23]に記載の製造方法。
[27]溶媒が、酢酸メチル、酢酸エチル、酢酸プロピル及び酢酸ブチルからなる群から選択される1種又は2種以上である、[23]に記載の製造方法。
[28]溶媒が、酢酸メチル、酢酸エチル、酢酸イソプロピル及び酢酸ブチルからなる群から選択される1種又は2種以上である、[23]に記載の製造方法。
[29]得られるシクラニリプロールの純度が、90重量%以上である、[18]~[28]のいずれか一項に記載の方法。
[30]得られるシクラニリプロール以外に、不純物として含まれる下記式(B)で表される化合物又はその塩:
[18] A compound represented by the formula (I) obtained by the production method according to any one of [1] to [17] or a salt thereof is reacted with a brominating agent to form cyclaniliprol. Production method.
[19] The production method according to [18], wherein the brominating agent is bromine or hypobromous acid.
[20] The production method according to [18] or [19], wherein the reaction is carried out in the presence of a base.
[21] The production method according to [20], wherein the base is one or more selected from the group consisting of metal hydroxides, metal hydrides and metal alkoxides.
[22] The production method according to [20], wherein the base is a metal hydroxide.
[23] The production method according to any one of [18] to [22], wherein the reaction is carried out in the presence of a solvent.
[24] One or two solvents selected from the group consisting of ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons, esters, ketones, nitriles and amides. The manufacturing method according to [23] described above.
[25] The production method according to [23], wherein the solvent is one or more selected from the group consisting of ethers, halogenated hydrocarbons and esters.
[26] The production method according to [23], wherein the solvent is one or more selected from the group consisting of esters.
[27] The production method according to [23], wherein the solvent is one or more selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate and butyl acetate.
[28] The production method according to [23], wherein the solvent is one or more selected from the group consisting of methyl acetate, ethyl acetate, isopropyl acetate and butyl acetate.
[29] The method according to any one of [18] to [28], wherein the obtained cyclaniliprol has a purity of 90% by weight or more.
[30] In addition to the obtained cyclaniliprol, a compound represented by the following formula (B) or a salt thereof contained as an impurity:
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
の含有割合が、シクラニリプロール及び式(B)で表される化合物の合計量に対して、1重量%以下である、[18]~[29]のいずれか一項に記載の製造方法。
[31]得られるシクラニリプロール以外に、不純物として、式(B)で表される化合物又はその塩を実質的に含有しない、[18]~[28]のいずれか一項に記載の製造方法。
The production method according to any one of [18] to [29], wherein the content ratio of is 1% by weight or less based on the total amount of cyclaniliprol and the compound represented by the formula (B). ..
[31] The production according to any one of [18] to [28], which does not substantially contain the compound represented by the formula (B) or a salt thereof as an impurity other than the obtained cyclaniliprol. Method.
 次に本発明の実施例を記載するが、本発明はこれらに限定して解釈されるものではない。
 本実施例において使用した化合物(IIIa)、(IIIb)及び化合物(V)の構造を下記に示す。
・化合物(IIIa):
Next, examples of the present invention will be described, but the present invention is not construed as being limited thereto.
The structures of compounds (IIIa), (IIIb) and compound (V) used in this example are shown below.
-Compound (IIIa):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
・化合物(IIIb): -Compound (IIIb):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
・化合物(V) -Compound (V)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 本実施例におけるHPLCの分析条件は以下の通りである。
・使用機器:株式会社島津製作所製Nexera XSシリーズ
・カラム:株式会社クロマニックテクノロジーズ製SunShell C18(2.6μm、2.1×100mm)
・検出:UV検出器(240nm)
・カラム温度:40℃
・流速:0.5mL/min
・移動相:A液:0.1%ギ酸水溶液、及びB液:アセトニトリル
 グラジエント条件は以下の通りである。
The HPLC analysis conditions in this example are as follows.
-Equipment used: Nexera XS series manufactured by Shimadzu Corporation-Column: SunShell C18 manufactured by Chromanic Technologies Co., Ltd. (2.6 μm, 2.1 x 100 mm)
-Detection: UV detector (240 nm)
-Column temperature: 40 ° C
・ Flow velocity: 0.5 mL / min
-Mobile phase: Liquid A: 0.1% aqueous formic acid solution, and Liquid B: acetonitrile Gradient conditions are as follows.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 純度(含有割合)は、高速液体クロマトグラフ(HPLC)による面積%値および/または面積%から換算した重量%値で示す。
 面積%値は、合成実験により得られた反応生成物をHPLCで測定することによって得られる。
 重量%値は、例えば、以下記載の換算方法で算出される。シクラニリプロール標準品に測定溶媒を加え、シクラニリプロール標準液を調製し、その標準液をHPLCで3回測定する。HPLCの測定で得られた面積値の平均値を算出し、その平均値を、測定で使用したシクラニリプロール標準品の重量で割り単位面積値を算出する。同様の方法で、化合物(I)標準品、不純物(A)標準品、又は不純物(B)標準品の単位面積値を夫々算出する。実施例記載の反応生成物も、同様の方法で単位面積値を算出する。反応生成物の単位面積値及び標準品の単位面積値を比較し比率計算し、重量%値を算出する。また、上記各標準品の単位面積値から感度比を算出し、その感度比から換算して不純物含量を求める事も可能である。
The purity (content ratio) is indicated by an area% value by high performance liquid chromatography (HPLC) and / or a weight% value converted from the area%.
The area% value is obtained by measuring the reaction product obtained by the synthetic experiment by HPLC.
The weight% value is calculated by, for example, the conversion method described below. A measurement solvent is added to the cyclaniliprol standard product to prepare a cyclaniliprol standard solution, and the standard solution is measured three times by HPLC. The average value of the area values obtained by the HPLC measurement is calculated, and the average value is divided by the weight of the cyclaniliprol standard product used in the measurement to calculate the unit area value. In the same manner, the unit area value of the compound (I) standard product, the impurity (A) standard product, or the impurity (B) standard product is calculated respectively. For the reaction products described in the examples, the unit area value is calculated in the same manner. The unit area value of the reaction product and the unit area value of the standard product are compared, the ratio is calculated, and the weight% value is calculated. It is also possible to calculate the sensitivity ratio from the unit area value of each of the above standard products and convert it from the sensitivity ratio to obtain the impurity content.
[実施例1]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.6g、3-ピコリン0.59g及びテトラヒドロフラン10mLの混合液を氷冷し、塩化メタンスルホニル0.31gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が88.1面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 1] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.6 g of compound (IIIa), 0.59 g of 3-picoline and 10 mL of tetrahydrofuran is ice-cooled, and 0.31 g of methanesulfonyl chloride is used. Was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 88.1. At that time, no impurity (A) was detected.
[実施例2]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.6g、3-ピコリン0.59g及びN-メチルピロリドン10mLの混合液を氷冷し、塩化メタンスルホニル0.31gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が98.6面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 2] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.6 g of compound (IIIa), 0.59 g of 3-picoline and 10 mL of N-methylpyrrolidone is ice-cooled and methanesulfonyl chloride. 0.31 g was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 98.6. At that time, no impurity (A) was detected.
[実施例3]化合物(I)の合成
 化合物(II)0.83g、化合物(IIIa)1.0g、3-ピコリン0.81g及びアセトン10mLの混合液に、室温下塩化メタンスルホニル0.5gをゆっくりと滴下した。同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が89.7面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 3] Synthesis of compound (I) 0.5 g of methanesulfonyl chloride at room temperature was added to a mixed solution of 0.83 g of compound (II), 1.0 g of compound (IIIa), 0.81 g of 3-picoline and 10 mL of acetone. Dropped slowly. When the reaction was checked by HPLC after stirring overnight at the same temperature, compound (I) was produced in an area% of 89.7. At that time, no impurity (A) was detected.
[実施例4]化合物(I)の合成
 化合物(II)0.83g、化合物(IIIa)1.0g、3-ピコリン0.81g及びアセトニトリル10mLの混合液に、室温下塩化メタンスルホニル0.5gをゆっくりと滴下した。同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が88.9面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 4] Synthesis of compound (I) 0.5 g of methanesulfonyl chloride at room temperature was added to a mixed solution of 0.83 g of compound (II), 1.0 g of compound (IIIa), 0.81 g of 3-picoline and 10 mL of acetonitrile. Dropped slowly. When the reaction was checked by HPLC after stirring overnight at the same temperature, compound (I) was produced in an area% of 88.9. At that time, no impurity (A) was detected.
[実施例5]化合物(I)の合成
 化合物(II)0.83g、3-ピコリン0.78g及びアセトン10mLの混合液に、氷浴下化合物(IIIb)1.04gをゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が89.4面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 5] Synthesis of compound (I) 1.04 g of compound (IIIb) under an ice bath was slowly added dropwise to a mixed solution of 0.83 g of compound (II), 0.78 g of 3-picoline and 10 mL of acetone. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 89.4. At that time, no impurity (A) was detected.
[実施例6]化合物(I)の合成
 化合物(II)0.83g、3-ピコリン0.78g及びアセトニトリル10mLの混合液に、氷浴下化合物(IIIb)1.04gをゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が91.0面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 6] Synthesis of compound (I) 1.04 g of compound (IIIb) under an ice bath was slowly added dropwise to a mixed solution of 0.83 g of compound (II), 0.78 g of 3-picoline and 10 mL of acetonitrile. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced at 91.0 area%. At that time, no impurity (A) was detected.
[実施例7]化合物(I)の合成
 化合物(II)16.9g、化合物(IIIa)20g、ピリジン12.3g及びアセトン98mLの混合液に、室温下塩化メタンスルホニル8.9gをゆっくりと滴下した。同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が93.3面積%で生成していた。その際に、不純物(A)は検出されなかった。反応終了を確認した後に、水49gをゆっくり滴下し、同温度で45分間撹拌した。スラリーをろ過し、得られた固体をアセトン水で洗浄、温風乾燥機で一晩乾燥させる事で、化合物(I)32.6gを得た(収率:92%;純度:96重量%、98.4面積%)。
 なお、上記の純度の面積%から重量%への換算方法は以下のとおりである。
 シクラニリプロール標準品15.41mgを25mLメスフラスコに秤量し、ジメチルホルムアミド1mL、水2mL及びアセトニトリル20mLを添加し溶解させ、アセトニトリルでメスアップし標準液を調製した。調製した標準液をHPLCで3回測定した。HPLCの測定により得られた面積値の平均値を算出した。その算出した平均値を、シクラニリプロール標準品の質量値である15.41で割り、単位面積値66069を算出した。同様の方法で、化合物(I)、不純物(A)及び不純物(B)の単位面積値72447、91829及び81242を算出した。次に、合成して得られた化合物(I)も同様の方法でHPLCの測定により得られた面積値と標準品の単位面積値を比較し比率計算し、不純物の含有割合を示す重量%値を算出した。
[Example 7] Synthesis of compound (I) 8.9 g of methanesulfonyl chloride at room temperature was slowly added dropwise to a mixed solution of 16.9 g of compound (II), 20 g of compound (IIIa), 12.3 g of pyridine and 98 mL of acetone. .. When the reaction was checked by HPLC after stirring at the same temperature overnight, compound (I) was produced in 93.3 area%. At that time, no impurity (A) was detected. After confirming the completion of the reaction, 49 g of water was slowly added dropwise, and the mixture was stirred at the same temperature for 45 minutes. The slurry was filtered, the obtained solid was washed with acetone water, and dried overnight in a warm air dryer to obtain 32.6 g of compound (I) (yield: 92%; purity: 96% by weight, 98.4 area%).
The conversion method from the area% of purity to the weight% is as follows.
15.41 mg of the cyclaniliprol standard product was weighed in a 25 mL volumetric flask, 1 mL of dimethylformamide, 2 mL of water and 20 mL of acetonitrile were added and dissolved, and the standard solution was prepared by measuring with acetonitrile. The prepared standard solution was measured by HPLC three times. The average value of the area values obtained by the measurement of HPLC was calculated. The calculated average value was divided by 15.41, which is the mass value of the standard cyclaniliprol product, to calculate the unit area value of 66069. In the same manner, the unit area values 72447, 91829 and 81242 of the compound (I), the impurity (A) and the impurity (B) were calculated. Next, the compound (I) obtained by synthesis is also calculated by comparing the area value obtained by the HPLC measurement with the unit area value of the standard product in the same manner, and the weight% value indicating the content ratio of impurities is calculated. Was calculated.
[実施例8]化合物(I)の合成
 化合物(II)0.79g、化合物(IIIa)1.0g、炭酸ナトリウム0.39g及びアセトン10mLの混合液に、室温下塩化メタンスルホニル0.45gをゆっくりと滴下した。同温度で1時間撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が75.5面積%で生成していた。その際に、不純物(A)は検出されなかった。続いて、反応液に炭酸ナトリウム0.15gと塩化メタンスルホニル0.15gを追加し、室温で一晩撹拌したところ、化合物(I)が97.2面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 8] Synthesis of compound (I) 0.45 g of methanesulfonyl chloride at room temperature was slowly added to a mixed solution of 0.79 g of compound (II), 1.0 g of compound (IIIa), 0.39 g of sodium carbonate and 10 mL of acetone. Dropped. When the reaction was checked by HPLC after stirring at the same temperature for 1 hour, compound (I) was produced in 75.5 area%. At that time, no impurity (A) was detected. Subsequently, 0.15 g of sodium carbonate and 0.15 g of methanesulfonyl chloride were added to the reaction solution, and the mixture was stirred overnight at room temperature. As a result, compound (I) was produced in an area% of 97.2. At that time, no impurity (A) was detected.
[実施例9]シクラニリプロールの合成
 実施例3に準じて得た化合物(I)11.6g及び酢酸エチル58mLの混合液を氷冷し、臭素5.2gをゆっくりと滴下した。次に水酸化ナトリウム水溶液13.8gをゆっくりと滴下し、同温度で1時間撹拌した。反応が完結していることを確認した後に、氷浴下亜硫酸ナトリウム水溶液12.7gを滴下し、同温度で1時間撹拌した。スラリーをろ過し、固体を水11.6gで洗浄した。得られた固体にメタノール17.4mLを加え、1時間還流させた後に室温に冷却した。スラリーをろ過し、固体を温風乾燥機で一晩乾燥させる事で、シクラニリプロール12.9gを得た(収率:95%)。また、得られたシクラニリプロール中に不純物(B)は検出されなかった(純度:98重量%、97.6面積%)。
 なお、上記の純度の面積%から重量%への換算方法は、上記実施例7と同様の方法で行った。
[Example 9] Synthesis of cyclaniliprol A mixed solution of 11.6 g of compound (I) and 58 mL of ethyl acetate obtained according to Example 3 was ice-cooled, and 5.2 g of bromine was slowly added dropwise. Next, 13.8 g of an aqueous sodium hydroxide solution was slowly added dropwise, and the mixture was stirred at the same temperature for 1 hour. After confirming that the reaction was completed, 12.7 g of an aqueous sodium sulfite solution under an ice bath was added dropwise, and the mixture was stirred at the same temperature for 1 hour. The slurry was filtered and the solid was washed with 11.6 g of water. 17.4 mL of methanol was added to the obtained solid, and the mixture was refluxed for 1 hour and then cooled to room temperature. The slurry was filtered and the solid was dried overnight in a warm air dryer to give 12.9 g of cyclaniliprol (yield: 95%). In addition, no impurity (B) was detected in the obtained cyclaniliprol (purity: 98% by weight, 97.6 area%).
The conversion method from the area% of the purity to the weight% was carried out in the same manner as in Example 7.
[実施例10]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.67g、3-ピコリン0.59g、及び溶媒として3-ピコリン2mLの混合液を氷冷し、塩化メタンスルホニル0.29gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が97.8面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 10] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.67 g of compound (IIIa), 0.59 g of 3-picoline, and 2 mL of 3-picoline as a solvent is ice-cooled and chloride. 0.29 g of methanesulfonyl was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 97.8. At that time, no impurity (A) was detected.
[実施例11]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.63g、3-ピコリン0.39g、及び溶媒としてピリジン5mLの混合液を氷冷し、塩化メタンスルホニル0.26gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で1時間撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が96.8面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 11] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.63 g of compound (IIIa), 0.39 g of 3-picoline, and 5 mL of pyridine as a solvent is ice-cooled and methanesulfonyl chloride. 0.26 g was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred at the same temperature for 1 hour, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 96.8. At that time, no impurity (A) was detected.
[実施例12]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.63g、3-ピコリン0.39g及びアセトン5mLの混合液を氷冷し、塩化メタンスルホニル0.26gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で66時間撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が93.0面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 12] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.63 g of compound (IIIa), 0.39 g of 3-picoline and 5 mL of acetone was ice-cooled and 0.26 g of methanesulfonyl chloride. Was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred at the same temperature for 66 hours, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 93.0. At that time, no impurity (A) was detected.
[実施例13]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.63g、3-ピコリン0.39g及びジメチルホルムアミド5mLの混合液を氷冷し、塩化メタンスルホニル0.26gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で2時間撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が97.6面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 13] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.63 g of compound (IIIa), 0.39 g of 3-picoline and 5 mL of dimethylformamide was ice-cooled to obtain methanesulfonyl chloride 0. 26 g was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred at the same temperature for 2 hours, and then the reaction was checked by HPLC. As a result, compound (I) was produced in an area% of 97.6. At that time, no impurity (A) was detected.
[実施例14]化合物(I)の合成
 化合物(II)0.5g、化合物(IIIa)0.63g、3-ピコリン0.39g及びN-メチルピロリドン5mLの混合液を氷冷し、塩化メタンスルホニル0.26gを氷冷下ゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で2時間撹拌した後にHPLCにて反応チェックを行ったところ、化合物(I)が92.4面積%で生成していた。その際に、不純物(A)は検出されなかった。
[Example 14] Synthesis of compound (I) A mixture of 0.5 g of compound (II), 0.63 g of compound (IIIa), 0.39 g of 3-picoline and 5 mL of N-methylpyrrolidone is ice-cooled and methanesulfonyl chloride. 0.26 g was slowly added dropwise under ice cooling. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred at the same temperature for 2 hours, and then the reaction was checked by HPLC. As a result, compound (I) was produced in 92.4 area%. At that time, no impurity (A) was detected.
[比較例1]シクラニリプロールの合成
 化合物(V)1.11g、化合物(IIIa)1.0g、3-ピコリン0.81g及びアセトン10mLの混合液に、室温下塩化メタンスルホニル0.5gをゆっくりと滴下した。同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、シクラニリプロールが42.9面積%で生成していた。その際に、不純物(B)の生成量は0.3面積%であった。
[Comparative Example 1] Synthesis of cyclaniliprol 0.5 g of methanesulfonyl chloride at room temperature was added to a mixed solution of 1.11 g of compound (V), 1.0 g of compound (IIIa), 0.81 g of 3-picoline and 10 mL of acetone. Dropped slowly. When the reaction was checked by HPLC after stirring overnight at the same temperature, cyclaniliprol was produced in an area% of 42.9. At that time, the amount of the impurity (B) produced was 0.3 area%.
[比較例2]シクラニリプロールの合成
 化合物(V)1.11g、化合物(IIIa)1.0g、3-ピコリン0.81g、アセトニトリル10mLの混合液に、室温下塩化メタンスルホニル0.5gをゆっくりと滴下した。同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、シクラニリプロールが79.9面積%で生成していた。その際に、不純物(B)の生成量は5.3面積%であった。
[Comparative Example 2] Synthesis of cyclaniliprol 0.5 g of methanesulfonyl chloride at room temperature was added to a mixed solution of 1.11 g of compound (V), 1.0 g of compound (IIIa), 0.81 g of 3-picoline, and 10 mL of acetonitrile. Dropped slowly. When the reaction was checked by HPLC after stirring overnight at the same temperature, cyclaniliprol was produced in an area% of 79.9. At that time, the amount of the impurity (B) produced was 5.3 area%.
[比較例3]シクラニリプロールの合成
 化合物(V)1.11g、3-ピコリン0.78g、アセトン13mLの混合液に、氷浴下化合物(IIIb)1.09gをゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、シクラニリプロールが73.0面積%で生成していた。その際に、不純物(B)の生成量は4.2面積%であった。
[Comparative Example 3] Synthesis of cyclaniliprol 1.09 g of compound (IIIb) under an ice bath was slowly added dropwise to a mixed solution of 1.11 g of compound (V), 0.78 g of 3-picoline, and 13 mL of acetone. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, cyclaniliprol was produced at 73.0 area%. At that time, the amount of the impurity (B) produced was 4.2 area%.
[比較例4]シクラニリプロールの合成
 化合物(V)1.11g、3-ピコリン0.78g、アセトニトリル13mLの混合液に、氷浴下化合物(IIIb)1.09gをゆっくりと滴下した。滴下終了後に室温に昇温し、同温度で一晩撹拌した後にHPLCにて反応チェックを行ったところ、シクラニリプロールが57.7面積%で生成していた。その際に、不純物(B)の生成量は6.4面積%であった。
[Comparative Example 4] Synthesis of cyclaniliprol 1.09 g of compound (IIIb) under an ice bath was slowly added dropwise to a mixed solution of 1.11 g of compound (V), 0.78 g of 3-picoline, and 13 mL of acetonitrile. After completion of the dropping, the temperature was raised to room temperature, the mixture was stirred overnight at the same temperature, and then the reaction was checked by HPLC. As a result, cyclaniliprol was produced in an area% of 57.7. At that time, the amount of the impurity (B) produced was 6.4 area%.
 実施例1~14では、不純物(A)は検出されなかった。さらに、このような本発明の方法により得られた化合物(I)から得られた、実施例9のシクラニリプロールは、比較例1~4とは異なり、不純物(B)の生成は確認されず、農薬原体としての規格を満たす高純度のシクラニリプロールの製造が可能であった。
 なお、2020年3月25日に出願された日本特許出願2020-054157号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
In Examples 1 to 14, no impurity (A) was detected. Furthermore, unlike Comparative Examples 1 to 4, the cyclaniliprol of Example 9 obtained from the compound (I) obtained by the method of the present invention was confirmed to produce an impurity (B). However, it was possible to produce high-purity cyclaniliprol that meets the specifications as a pesticide drug substance.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2020-054157 filed on March 25, 2020 are cited here and incorporated as disclosure of the specification of the present invention. It is a thing.

Claims (9)

  1.  式(I)で表される化合物又はその塩:
    Figure JPOXMLDOC01-appb-C000001
    の製造方法であって、
    式(II)で表される化合物又はその塩:
    Figure JPOXMLDOC01-appb-C000002
    と、式(III)で表される化合物又はその塩:
    Figure JPOXMLDOC01-appb-C000003
    [式(III)中、Rは、OH又はハロゲンである]
    とを、縮合剤及び/又は塩基の存在中で反応させる、製造方法。
    The compound represented by the formula (I) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000001
    It is a manufacturing method of
    The compound represented by the formula (II) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000002
    And the compound represented by the formula (III) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000003
    [In formula (III), R is OH or halogen]
    A production method in which and is reacted in the presence of a condensing agent and / or a base.
  2.  Rが、OHである場合、式(II)で表される化合物又はその塩と、式(III)で表される化合物又はその塩とを、縮合剤及び塩基の存在中で反応させる、請求項1に記載の製造方法。 Claim that when R is OH, the compound represented by the formula (II) or a salt thereof is reacted with the compound represented by the formula (III) or a salt thereof in the presence of a condensing agent and a base. The manufacturing method according to 1.
  3.  Rが、ハロゲンである場合、式(II)で表される化合物又はその塩と、式(III)で表される化合物又はその塩とを、塩基の存在中で反応させる、請求項1に記載の製造方法。 The first aspect of the present invention, wherein when R is a halogen, the compound represented by the formula (II) or a salt thereof is reacted with the compound represented by the formula (III) or a salt thereof in the presence of a base. Manufacturing method.
  4.  縮合剤が、塩化スルホニルである、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the condensing agent is sulfonyl chloride.
  5.  塩基が、ピリジン、ピコリン、アルカリ金属の炭酸塩及びアルカリ金属の炭酸水素塩からなる群から選択される1種又は2種以上である、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the base is one or more selected from the group consisting of pyridine, picoline, alkali metal carbonate and alkali metal hydrogen carbonate. ..
  6.  得られる式(I)で表される化合物又はその塩の純度が、95重量%以上である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the obtained compound represented by the formula (I) or a salt thereof has a purity of 95% by weight or more.
  7.  得られる式(I)で表される化合物又はその塩以外に、不純物として含まれる下記式(A)で表される化合物又はその塩:
    Figure JPOXMLDOC01-appb-C000004
    の含有割合が、式(I)で表される化合物又はその塩及び式(A)で表される化合物又はその塩の合計量に対して、1重量%以下である、請求項1~6のいずれか一項に記載の製造方法。
    In addition to the obtained compound represented by the formula (I) or a salt thereof, the compound represented by the following formula (A) or a salt thereof contained as an impurity:
    Figure JPOXMLDOC01-appb-C000004
    1 to 6 by weight or less based on the total amount of the compound represented by the formula (I) or a salt thereof and the compound represented by the formula (A) or a salt thereof. The manufacturing method according to any one of the following items.
  8.  得られる式(I)で表される化合物又はその塩以外に、不純物として、式(A)で表される化合物又はその塩:
    Figure JPOXMLDOC01-appb-C000005
    を実質的に含有しない、請求項1~6のいずれか一項に記載の方法。
    In addition to the obtained compound represented by the formula (I) or a salt thereof, as an impurity, the compound represented by the formula (A) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000005
    The method according to any one of claims 1 to 6, which does not substantially contain.
  9.  請求項1~8のいずれか一項に記載の製造方法により得られた式(I)で表される化合物又はその塩を、臭素化剤と反応させる、シクラニリプロールの製造方法。 A method for producing cyclaniliprol, wherein the compound represented by the formula (I) obtained by the production method according to any one of claims 1 to 8 or a salt thereof is reacted with a brominating agent.
PCT/JP2021/011379 2020-03-25 2021-03-19 Method for producing production intermediate of cyclaniliprole WO2021193432A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022510423A JPWO2021193432A1 (en) 2020-03-25 2021-03-19
KR1020227032717A KR20220157967A (en) 2020-03-25 2021-03-19 Method for producing intermediates for the production of cyclaniliprole
CN202180022473.XA CN115335368A (en) 2020-03-25 2021-03-19 Process for producing intermediate for production of cyclic bromodiamide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054157 2020-03-25
JP2020-054157 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021193432A1 true WO2021193432A1 (en) 2021-09-30

Family

ID=77892508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011379 WO2021193432A1 (en) 2020-03-25 2021-03-19 Method for producing production intermediate of cyclaniliprole

Country Status (4)

Country Link
JP (1) JPWO2021193432A1 (en)
KR (1) KR20220157967A (en)
CN (1) CN115335368A (en)
WO (1) WO2021193432A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013158A (en) * 2006-12-15 2009-01-22 Ishihara Sangyo Kaisha Ltd Production method of anthranil amide compound
US20100317864A1 (en) * 2008-04-01 2010-12-16 Bin Li Preparation Method of Phenylcarboxamides
WO2020117493A1 (en) * 2018-12-03 2020-06-11 Fmc Corporation Method for preparing n-phenylpyrazole-1-carboxamides

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI327566B (en) 2001-08-13 2010-07-21 Du Pont Novel substituted ihydro 3-halo-1h-pyrazole-5-carboxylates,their preparation and use
TWI343376B (en) 2002-07-31 2011-06-11 Du Pont Method for preparing 3-halo-4, 5-dihydro-1h-pyrazoles
KR100963370B1 (en) 2004-02-18 2010-06-14 이시하라 산교 가부시끼가이샤 Anthranilamides, process for the production thereof, and pest controllers containing the same
TWI363756B (en) * 2004-12-07 2012-05-11 Du Pont Method for preparing n-phenylpyrazole-1-carboxamides
TWI395728B (en) 2006-12-06 2013-05-11 Du Pont Process for preparing 2-amino-5-cyanobenzoic acid derivatives
JP2009001541A (en) 2006-12-15 2009-01-08 Ishihara Sangyo Kaisha Ltd Method for producing anthranilamide compound using new pyrazole compound as intermediate
CN101558056B (en) * 2006-12-15 2013-05-01 石原产业株式会社 Process for production of anthranilamide compound
CN104496901B (en) * 2006-12-15 2016-05-25 石原产业株式会社 The manufacture method of anthranilamide compound
JP2009023991A (en) 2007-06-20 2009-02-05 Ishihara Sangyo Kaisha Ltd Method for producing anthranilamide compound
WO2019207595A1 (en) 2018-04-23 2019-10-31 Natco Pharma Limited An improved process for the preparation of anthranilamide derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013158A (en) * 2006-12-15 2009-01-22 Ishihara Sangyo Kaisha Ltd Production method of anthranil amide compound
US20100317864A1 (en) * 2008-04-01 2010-12-16 Bin Li Preparation Method of Phenylcarboxamides
WO2020117493A1 (en) * 2018-12-03 2020-06-11 Fmc Corporation Method for preparing n-phenylpyrazole-1-carboxamides

Also Published As

Publication number Publication date
KR20220157967A (en) 2022-11-29
JPWO2021193432A1 (en) 2021-09-30
CN115335368A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
EP3882236B1 (en) Production method for 2,5-dicyano-3,6-dihalogenopyrazine
US20160280662A1 (en) 5-fluoro-4-imino-3-(alkyl/substituted alkyl)-1-(arylsulfonyl)-3,4-dihydropyrimidin-2(1h)-one and processes for their preparation
US11180443B2 (en) Preparation method for m-diamide compounds
PT2285779E (en) Method for manufacturing aryl carboxamides
CN110878084A (en) Preparation method of nicosulfuron original drug
KR101583851B1 (en) Method for producing 3-methyl-2-thiophenecarboxylic acid
JP2005526049A (en) Preparation of benzisoxazole methanesulfonyl chloride and its method of amidation to form zonisamide
WO2021193432A1 (en) Method for producing production intermediate of cyclaniliprole
CN112876404B (en) Synthesis method of phthalimide trifluoro-methionation reagent
EP3812369B1 (en) A bromination method for m-diamide compounds
EP1807401B1 (en) Process for the preparation of phenyl 2-pyrimidinyl ketones and their novel intermediates
CN105949108B (en) A kind of 3- (4- Methoxv-phenylsulfanvls) -1- methyl -- the preparation method of 1H- pyrrole-2,5-diones compounds
CN103360307B (en) Preparation method of 5-chloro-2,4-dihydroxypyridine
JP4138067B2 (en) Method for producing methine derivative
JP3646224B2 (en) Method for producing benzoylacetonitrile derivative
JP2006001871A (en) Method for preparing 2-oxo-1-phenyl-3-oxabicyclo[3.1.0]hexane
CN101534644B (en) Process for preparing pyridinamines and novel polymorphs thereof
JP5275235B2 (en) Novel production method of α-methyl-β-ketoester
EP3406595B1 (en) Method for producing 2-aminonicotinic acid benzyl ester derivative
JP3213775B2 (en) Method for producing 2-cyano-4,6-dimethoxypyrimidine
CN108341771B (en) Preparation method of 3-cyano-2, 6-dihydroxypyridine sodium hydrate
CA2406401A1 (en) Process for preparation of sulfonamide derivatives and crystals thereof
CN113845452A (en) Synthetic method of triketone compound
CN113845450A (en) Synthesis method of mesotrione and homologs thereof
TW202241859A (en) Methods for the preparation of 5-bromo-2-(3-chloro-pyridin-2-yl)-2h-pyrazole-3-carboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776065

Country of ref document: EP

Kind code of ref document: A1