WO2021193354A1 - Resin composition, wiring board and method for producing conductive pattern - Google Patents

Resin composition, wiring board and method for producing conductive pattern Download PDF

Info

Publication number
WO2021193354A1
WO2021193354A1 PCT/JP2021/011087 JP2021011087W WO2021193354A1 WO 2021193354 A1 WO2021193354 A1 WO 2021193354A1 JP 2021011087 W JP2021011087 W JP 2021011087W WO 2021193354 A1 WO2021193354 A1 WO 2021193354A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
film
pattern
composition according
Prior art date
Application number
PCT/JP2021/011087
Other languages
French (fr)
Japanese (ja)
Inventor
日比野利保
此島陽平
三井博子
山舖有香
井上欣彦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180018245.5A priority Critical patent/CN115210322B/en
Priority to JP2021516506A priority patent/JP7095803B2/en
Priority to KR1020227021240A priority patent/KR20220158678A/en
Publication of WO2021193354A1 publication Critical patent/WO2021193354A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a method for manufacturing a resin composition, a wiring board, and a conductive pattern.
  • a pattern is formed on a substrate using a resin composition containing conductive particles and a binder resin, and then the conductive particles are brought into contact with each other by heating.
  • a method of obtaining a conductive pattern is common (Patent Document 1).
  • the method for forming a pattern on a substrate include a screen printing method, an inkjet method, and a photolithography method. Among them, the screen printing method and the inkjet method are not suitable for forming fine patterns, and the photolithography method is said to be suitable for forming fine patterns.
  • the resin composition using conductive fine particles having a sufficiently small particle size include a resin composition using surface-coated silver fine particles (Patent Document 2).
  • Patent Document 2 the surface energy of the silver fine particles can be appropriately controlled.
  • the coloring patterns used for color filters and the like are also required to have high definition.
  • the coloring pattern is formed by the same method as the conductive pattern using a coloring pigment-containing resin composition containing a pigment and a binder resin.
  • the present invention has been devised in view of the drawbacks of the prior art, and an object of the present invention is to obtain a pattern having excellent dispersibility and adhesion, and in particular, a resin composition containing conductive particles.
  • a resin composition capable of maintaining adhesion with a base material even if fusion of the surface of silver fine particles is promoted in order to increase conductivity.
  • the present inventors have found that it is extremely effective to include the compound (B) having a structure that enhances the adhesion to the substrate and a functional group that produces an amino group by heat in the resin composition in order to solve the above-mentioned problems. I found that.
  • the present invention contains fine particles, a compound (B) having a structure represented by the general formula (1) and a functional group that produces an amino group by heat, and a binder resin (C), and the fine particles are organic pigments ( F) or a resin composition which is an inorganic particle (G) having a coating layer containing carbon.
  • X represents a Si, Ti or Zr atom.
  • R 1 to R 3 are independently hydroxy groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups and isobutoxy groups, respectively. Alternatively, it indicates a hydrocarbon group having 1 to 6 carbon atoms. R 1 to R 3 may be the same or different, but at least one is a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, or an isopropoxy. Group, butoxy group or isobutoxy group.
  • the resin composition of the present invention it is possible to obtain a pattern having both good dispersibility (that is, good conductivity in a resin composition containing conductive particles) and adhesion even in a fine pattern. It becomes.
  • the resin composition of the present invention contains fine particles, a compound (B) having a structure represented by the general formula (1) and a functional group that produces an amino group by heat, and a binder resin (C). It is characterized by being an organic pigment (F) or an inorganic particle (G) having a coating layer containing carbon.
  • Organic pigment (F) The resin composition of the present invention preferably contains an organic pigment (F) as fine particles.
  • Organic pigments include colored organic pigments, for example, diketopyrrolopyrrole pigments; azo pigments such as azo, disazo, polyazo; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine; aminoanthraquinone, Anthraquinone pigments such as diaminodianthraquinone, antrapyrimidine, flavantron, antoanthron, indantron, pyranthron, biolantron; quinacridone pigments; dioxazine pigments; perinone pigments; perylene pigments; thioindigo pigments; isoindolin pigments; Examples thereof include isoindolinone-based pigments; quinophthalone-based pigments; slene-based pigments; and metal complex-based pigments.
  • diketopyrrolopyrrole pigments such as azo, disazo, polyazo
  • organic pigments include black organic pigments and mixed color organic pigments.
  • the black organic pigment include carbon black, perylene black, aniline black, and benzofuranone pigments.
  • the mixed color organic pigment include those obtained by mixing two or more kinds of pigments having colors such as red, blue, green, purple, yellow, magenta, and cyan to make a pseudo black color. Two or more of these organic pigments may be contained. Among these, carbon black is preferable from the viewpoint of further improving the light-shielding property of the colored film and adjusting the conductivity of the colored film.
  • the surface of the organic pigment (F) is acid-treated. Since the surface is acid-treated, the dispersion stability is improved, and the adhesion to the base material can be improved by the interaction with the compound (B).
  • a method for acid treating the surface of carbon black a method of oxidizing the surface by O 3 (JP-A-11-181326 discloses) a method for wet oxidation treatment of the surface (Japanese Patent No. 4,464,081), and sulfonic acid groups, etc.
  • a method of surface modification with an organic group composed of a non-polymer group International Publication No. 2006/044676
  • the content ratio of the organic pigment (F) is preferably 10 to 70% by mass with respect to 100% by mass of the solid content.
  • the content ratio is preferably 20% by mass or more.
  • the content ratio is 70% by mass or less, the dispersion stability of the organic pigment (F) can be improved and the adhesion to the base material can be ensured.
  • the content ratio is preferably 60% by mass or less.
  • the total solid content means all the components excluding the solvent among the components contained in the resin composition.
  • the resin composition of the present invention preferably contains inorganic particles (G) having a coating layer containing carbon (hereinafter, may be simply referred to as "inorganic particles (G)").
  • the inorganic particles (G) are particles whose surface is coated with, for example, a carbon compound.
  • Examples of carbon compounds include aromatic hydrocarbons, aliphatic hydrocarbons, or oxides, nitrides, sulfides, phosphides, and the like thereof. Among these, aromatic hydrocarbons, aliphatic hydrocarbons or oxides thereof are preferable from the viewpoint of being able to suppress fusion of inorganic particles (G) at low temperatures.
  • the inorganic particles (G) By containing the inorganic particles (G), various functions such as conductivity and light-shielding property can be imparted to the cured product of the resin composition of the present invention. Further, since the surface of the inorganic particles (G) is coated with a coating layer containing carbon, fusion of the inorganic particles (G) at a low temperature is suppressed, the resolution is lowered due to the coarsening of the particles, and residue is generated. Can be suppressed. Further, the adhesion can be improved by reacting with a functional group that produces an amino group by heat described later.
  • Examples of the inorganic particles (G) include conductive particles (A).
  • Examples of the conductive particles include gold (Au), silver (Ag), copper (Cu), nickel (Ni), tin (Sn), bismuth (Bi), lead (Pb), zinc (Zn), and palladium ( Examples thereof include metal fine particles such as Pd), platinum (Pt), aluminum (Al), tungsten (W) and molybdenum (Mo).
  • metal fine particles containing at least one element selected from the group consisting of gold, silver, copper, nickel, tin, bismuth, lead, zinc, palladium, platinum and aluminum are preferable, and silver is preferable from the viewpoint of improving conductivity. It is more preferable that the fine particles of.
  • Examples of the method of coating the surface of the inorganic particles with a coating layer containing carbon include a method of contacting the reactive gas with the inorganic particles by a thermal plasma method (Japanese Patent Laid-Open No. 2007-138287).
  • the surface of the inorganic particles (G) is preferably completely coated, but as long as this object is achieved, it is permissible for some particles to be incompletely coated.
  • the average thickness of the coating layer is preferably 0.1 to 10 nm. Within this range, the fine pattern processability can be improved by suppressing the fusion of the inorganic fine particles, and the desired function can be further improved by heat treatment at a temperature of 300 ° C. or lower.
  • the average thickness of the coating layer measure the mass loss of the inorganic particles (G) by a hot balance, and assume that all the values are due to the combustion of carbon. It can be calculated as 0.
  • Conductive particles having a known particle size (Dp) are coated with carbon having an average thickness of A ( ⁇ m), and the number of carbon-coated conductive particles is defined as n.
  • W 1 (g) the mass first weighed in the hot balance measurement
  • W 2 g
  • the density of inorganic particles is ⁇
  • Dp and W are derived from the following equations. If 2 is known, n can be calculated.
  • the average thickness A of the coating layer can be calculated from the following formula.
  • W 1- W 2 ⁇ 4/3 x ⁇ (Dp / 2 + A) 3- ⁇ / 6 x Dp 3 ⁇ x 2.0 x n
  • the surface of the conductive particles (A), which are the inorganic particles (G) may be acidic or basic depending on the type of material forming the coating layer containing carbon.
  • the pH of the suspension in which the conductive particles (A) are suspended in water at a concentration of 1% by mass is preferably 4.0 to 10.0. This pH is measured as follows.
  • conductive particles (A) 0.3 g is added to 2.7 g of pure water to prepare a suspension having a concentration of 1% by mass, and then the mixture is stirred for 5 minutes and allowed to stand for 15 minutes. The supernatant of the obtained suspension is collected and measured using a pH meter.
  • the pH is 4.0 or more, the carbon coating layer strongly interacts with the dispersant described later, so that stable dispersion can be achieved even with a small dispersant content.
  • the pH 10.0 or less, the reaction between the conductive particles (A) and the binder resin (C) can be suppressed, the pH of the resin composition can be kept in an appropriate range, and the storage stability can be improved. ..
  • the type and introduction ratio of the reactive gas should be changed. Can be achieved with.
  • the average primary particle size of the fine particles is preferably 1 to 700 nm.
  • the average primary particle size of the conductive particles (A) is preferably 1 to 700 nm.
  • the average primary particle size is 1 nm or more, the specific surface area of the particles can be reduced, and even a small amount of dispersant can be stably dispersed.
  • the average primary particle size is 700 nm or less, a fine pattern can be formed.
  • the average primary particle size of the fine particles is calculated from the average value of the particle sizes of 100 primary particles randomly selected using a scanning electron microscope. The particle size of each primary particle is calculated from the average value obtained by measuring the major axis and minor axis of each primary particle.
  • the content ratio of the inorganic particles (G) is preferably 65 to 95% by mass with respect to 100% by mass of the solid content.
  • the content ratio is 65% by mass or more, the residual organic component does not interfere with the contact between the inorganic particles (G), and the conductivity is further improved when the inorganic particles (G) are the conductive particles (A). ..
  • the content ratio is preferably 75% by mass or more.
  • the content ratio is 95% by mass or less, the residual organic component can stabilize the dispersibility of the inorganic particles (G) in the resin composition and form a fine pattern on the substrate.
  • the residue can be reduced.
  • the content ratio is preferably 85% by mass or less.
  • the total solid content means all the components excluding the solvent among the components contained in the resin composition.
  • the ratio of the inorganic particles (G) to the total solid content can be calculated by quantitatively analyzing all the components of the resin composition.
  • the ratio of each component described later can also be calculated by the same method.
  • the method for analyzing all the components of the resin composition is as follows.
  • the resin composition is diluted with an organic solvent, and 1 1 H-NMR measurement, GC measurement and GC / MS measurement are carried out to examine the outline thereof.
  • centrifugation is performed to separate the soluble component and the insoluble component.
  • the insoluble component is extracted with a highly polar organic solvent and then centrifuged to further separate the soluble component and the insoluble component.
  • IR measurement, 1 H-NMR measurement and GC / MS measurement are performed on the mixed solution of the soluble components obtained in (ii) and (iii) above. Further, the above mixed solution is separated by GPC.
  • IR measurement and 1 H-NMR measurement are performed on the obtained sample. Further, for the preparative material, GC measurement, GC / MS measurement, thermal decomposition GC / MS measurement and MALDI / MS measurement are performed as necessary.
  • V IR measurement or TOF-SIMS measurement is performed on the insoluble component obtained in (iii) above. If it is confirmed that organic matter is present, thermal decomposition GC / MS or TPD / MS measurement is performed.
  • the content of each component contained in the resin composition can be determined by comprehensively judging the measurement results of (i), (iv) and (v) above.
  • the highly polar organic solvent used in (iii) above is preferably chloroform, methanol or the like.
  • Compound (B) having a functional group that produces an amino group by heat and a structure represented by the general formula (1) The resin composition of the present invention may be referred to as a compound (B) having a structure represented by the following general formula (1) and a functional group that produces an amino group by heat (hereinafter, simply referred to as "compound (B)". ) Is contained.
  • X represents a Si, Ti or Zr atom.
  • R 1 to R 3 independently represent a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 1 to R 3 may be the same or different, but at least one is a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group or an isobutoxy group.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms include an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear or branched, and may be partially or wholly cyclic.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a cyclopentyl group, a hexyl group and a cyclohexyl group.
  • a methyl group, an ethyl group or a propyl group is preferable from the viewpoint of having less steric hindrance and not hindering adhesion to the substrate.
  • compound (B) After forming a pattern, compound (B) is heated in a temperature range of, for example, 100 to 300 ° C. for 5 to 120 minutes to form an amino group.
  • the generated amino group interacts with the surface of the organic pigment (F) or the inorganic particle (G), and the structure represented by the general formula (1) interacts with the base material, so that the pattern and the base material adhere to each other. Is improved. Adhesion conforms to JIS K5600-5-6 (1999) and can be evaluated by a cross-cut test.
  • Y represents a Si, Ti or Zr atom.
  • R 4 to R 6 are independently hydroxy groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups and isobutoxy groups, respectively.
  • R 4 to R 6 may be the same or different, but at least one is cross-linked oxygen.
  • the central element X of the general formula (1) is preferably Si from the viewpoint of reactivity.
  • R 1 to R 3 of the general formula (1) are preferably a methoxy group or an ethoxy group, and more preferably a methoxy group, from the viewpoint of adhesion to the base material.
  • Examples of the functional group that produces an amino group by heat include an amide group, an imine group, a ureido group and an isocyanate group.
  • the stability of the resin composition and the coating film can be enhanced, and the adhesion to the substrate after heating can be further improved.
  • a ureido group is particularly preferable from the viewpoint of enhancing the dispersion stability of the organic pigment (F) and the inorganic particles (G) of the resin composition, further improving the conductivity, and suppressing the residue.
  • the compound (B) is 3-trimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine.
  • 3-ureidopropyltriethoxysilane and 3-ureidopropyltrimethoxysilane are more preferable as the compound having a ureido group.
  • Particularly preferred is 3-ureidopropyltrimethoxysilane.
  • the content of the compound (B) is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the fine particles. In particular, it is preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the conductive particles (A).
  • the content is 0.1 part by mass or more, the adhesion can be further improved.
  • the content of compound (B) is more preferably 0.5 parts by mass or more.
  • the conductivity can be further improved.
  • the content of compound (B) is more preferably 1.0 part by mass or less.
  • the content of the compound (B) is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the organic pigment (F).
  • the content of compound (B) is more preferably 1.0 part by mass or more.
  • the content of compound (B) is more preferably 7.0 parts by mass or less.
  • the resin composition of the present invention contains a binder resin (C).
  • the binder resin (C) is appropriately selected according to the viscosity of the resin composition and the like, and is not particularly limited.
  • the binder resin (C) for example, a cellulosic resin such as ethyl cellulose or nitrocellulose, an acetal resin such as polyvinyl butyral, an acrylic resin obtained by polymerizing butyl methacrylate, methyl methacrylate or the like is preferably used.
  • an acrylic resin is particularly preferable from the viewpoint of ease of composition design.
  • the acrylic resin refers to a resin obtained by copolymerizing at least a (meth) acrylic monomer with a resin component.
  • examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, and tert.
  • a compound having a carbon-carbon double bond can be used as a copolymerization component other than the (meth) acrylic monomer.
  • Such compounds include, for example, aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, ⁇ -methylstyrene or p-hydroxylstyrene, (meth) acrylamide, N-methylol.
  • Amide-based unsaturated compounds such as (meth) acrylamide or N-vinylpyrrolidone, (meth) acrylonitrile, allyl alcohol, vinyl acetate, cyclohexyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether , 2-Hydroxyethyl vinyl ether or 4-hydroxybutyl vinyl ether.
  • the binder resin (C) preferably has an acid dissociative group.
  • the acid dissociable group is an organic group that is thermally oxidatively decomposed and desorbed by the action of an acid under heating.
  • the acid dissociative group is easily thermally oxidatively decomposed and desorbed, and the resin composition of the present invention is cured.
  • the material can be shrunk to increase the proportion of fine particles in the cured product and further improve its function.
  • the fine particles are inorganic particles (G)
  • a photoacid generator and / or a thermoacid generator which will be described later, are used in combination, the effect becomes even more remarkable.
  • the acid dissociative group is preferably an organic group having 4 to 15 carbon atoms. Since the acid dissociative group has 4 or more carbon atoms, it vaporizes at a low temperature after desorption, so that the function is further improved without generating large bubbles in the cured product and hindering the contact between the fine particles. ..
  • the acid dissociative group preferably has 6 or more carbon atoms.
  • the acid dissociative group has 15 or less carbon atoms, the dissociative group does not remain in the cured product after desorption and does not interfere with the contact between the fine particles, and the function is further improved. Further, even if bubbles are generated in the cured product, they can be easily eliminated by heating.
  • Examples of the acid dissociative group include a tert-butyl group, a tert-butoxycarbonyl group, a benzyl group, a methyladamantyl group or a tetrahydropyranyl group.
  • the binder resin (C) is preferably a resin obtained by copolymerizing 20 to 80 mol% of a compound having an acid dissociative group.
  • the binder resin (C) is an acrylic resin, it is preferable that the (meth) acrylic acid ester having an acid dissociative group is contained in the acrylic resin in an amount of 20 to 80 mol% as a monomer component.
  • the resin composition of the present invention is preferable to use as a photosensitive resin composition because a fine wiring pattern can be formed.
  • the alkali-soluble group include a carboxyl group, an alcoholic hydroxyl group, a phenolic hydroxyl group, a sulfo group, a phosphoric acid group, an acid anhydride group and the like, but the carboxyl group is particularly preferable from the viewpoint of reactivity and versatility. ..
  • the binder resin (C) is an acrylic resin having an alkali-soluble group from the viewpoint of ease of composition design.
  • the binder resin (C) is an acrylic resin having an alkali-soluble group
  • examples of the compound containing a carboxyl group, which is a copolymerization component that imparts alkali solubility include (meth) acrylic acid, itaconic acid, and crotonic acid. , Maleic acid or fumaric acid or acid anhydrides thereof.
  • the carboxylic acid equivalent of the binder resin (C) is preferably 50 to 1,000 g / mol.
  • the carboxylic acid equivalent of the binder resin (C) can be calculated by measuring the acid value.
  • the double bond equivalent of the binder resin (C) is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be compatible at a high level.
  • the double bond equivalent of the binder resin (C) can be calculated by measuring the iodine value.
  • the weight average molecular weight (Mw) of the binder resin (C) is preferably 1,000 to 100,000 in terms of polystyrene measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the binder resin (C) has carbon-carbon at the side chain or the molecular terminal.
  • a (meth) acrylic copolymer having a double bond examples include a vinyl group, an allyl group, and a (meth) acrylic group.
  • a glycidyl group or an isocyanate group is added to the mercapto group, amino group, hydroxyl group or carboxyl group in the (meth) acrylic copolymer.
  • Examples of the compound having a glycidyl group and a carbon-carbon double bond include glycidyl (meth) acrylate, allyl glycidyl ether or glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate or glycidyl isocrotonate.
  • Examples of the compound having an isocyanate group and a carbon-carbon double bond include (meth) acryloyl isocyanate and (meth) acryloyloxyethyl isocyanate.
  • the content of the binder resin (C) is preferably in the range of 1 to 30% by mass when the solid content is 100% by mass.
  • the viscosity of the resin composition suitable for coating can be adjusted, and when it is 30% by mass or less, the function can be further improved.
  • Photosensitizer (D) When the resin composition of the present invention is used as a photosensitive resin composition, it preferably contains a photosensitive agent (D) from the viewpoint of forming a fine pattern. By containing the photosensitizer (D), it is possible to impart positive or negative photosensitivity to the resin composition.
  • a photopolymerization initiator As the photosensitizer (D), a photopolymerization initiator, a photoacid generator, and a photobase generator are preferably used.
  • the photopolymerization initiator include acetphenone compounds, benzophenone compounds, benzoin ether compounds, ⁇ -aminoalkylphenone compounds, thioxanthone compounds, organic peroxides, imidazole compounds, titanosen compounds, and triazine compounds. , Acylphosphine oxide compound, quinone compound or oxime ester compound, but an oxime ester compound having high sensitivity even when added in a small amount is preferable, and an oxime ester compound having a carbazole skeleton is more preferable.
  • oxime ester compound having no carbazole skeleton examples include 1,2-propanedione-3-cyclopentane, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 1,2. -Octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] and the like, and specific examples of the oxime ester compound having a carbazole skeleton include 3-cyclopentylethaneone, 1-[.
  • the content of the photopolymerization initiator (D) is preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C).
  • Examples of the photoacid generator include quinone diazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts and the like, but quinone diazide compounds are more preferable.
  • the quinone diazide compound includes a compound having a 5-naphthoquinone diazidosulfonyl group and a compound having a 4-naphthoquinone diazidosulfonyl group, and any of these is preferably used.
  • the quinonediazide sulfonic acid ester is a polyhydroxy compound with quinonediazide sulfonic acid bonded by an ester, a polyamino compound with quinonediazide sulfonic acid bonded with a sulfonamide, and a polyhydroxypolyamino compound with quinonediazide sulfonic acid bonded with an ester bond and /. Alternatively, those bonded with a sulfonamide may be mentioned.
  • the content of the photoacid generator is preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C).
  • Examples of the photobase generator include amide compounds and ammonium salts.
  • Examples of the amide compound include 2-nitrophenylmethyl-4-methacryloyloxypiperidine-1-carboxylate, 9-anthrylmethyl-N, N-dimethylcarbamate, 1- (anthraquinone-2yl) ethylimidazole carboxylate, and the like. Examples thereof include (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine.
  • ammonium salt examples include 1,2-diisopropyl-3- (bisdimethylamino) methylene) guanidium 2- (3-benzoylphenyl) propionate, (Z)- ⁇ [bis (dimethylamino) methylidene] amino ⁇ -N. -Cyclohexylamino) metaniminium tetrakis (3-fluorophenyl) borate, 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguanidium n-butyltriphenylborate and the like.
  • the content of the photobase generator is preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C).
  • the resin composition of the present invention may contain a dispersant. By containing the dispersant, the fine particles can be stably present in the resin composition.
  • amine-based ones are preferable.
  • examples of commercially available amine-based dispersants include DISPERBYK (registered trademark) 142, 145, 161, 167, 180, 2001, 2008, 2022, 2150, 6919 or 21116 (all manufactured by Big Chemie Japan). Be done.
  • the dispersant preferably has an acrylic block copolymer structure.
  • acrylic block copolymer structure examples include DISPERBYK® 2001, 2008, 2022, 2150, 6919 or 21116.
  • the content of the dispersant is preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the fine particles and other particles described later in the resin composition.
  • the content of the dispersant is preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the fine particles and other particles described later in the resin composition.
  • the resin composition of the present invention uses an acrylic monomer, and when the fine particles are conductive particles (A), contact and fuse the conductive particles with each other. It may be contained within a range that does not inhibit it.
  • acrylic monomer examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol hexa (meth) acrylate.
  • examples thereof include pentaerythritol penta (meth) acrylate or an alkyl-modified product thereof, an alkyl ether-modified product or an alkyl ester-modified product thereof.
  • the content of the acrylic monomer in the resin composition is preferably in the range of 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin (C).
  • the resin composition of the present invention may contain a solvent.
  • the solvent include propylene glycol monomethyl ether, propylene glycol monobutyl ether, diacetone alcohol, propylene glycol monoethyl ether acetate, ethyl acetoacetate, cyclopentanone, cyclohexanone, ⁇ -butyrolactone, ethylene glycol monobutyl ether acetate, and diethylene glycol monoethyl.
  • Ether acetate diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol methyl ether acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, 1,3-butylene glycol diacetate, cyclohexanol acetate, Examples thereof include dimethyl sulfoxide, methyl ethyl ketone, isobutyl acetate, butyl acetate, propyl acetate, isopropyl acetate or acetyl acetone.
  • the resin composition of the present invention may contain a polymerization inhibitor.
  • a polymerization inhibitor By containing an appropriate amount of the polymerization inhibitor, the resolution after development is improved.
  • the polymerization inhibitor is not particularly limited and known ones can be used. Examples thereof include dit-butylhydroxytoluene, butylhydroxyanisole, hydroquinone, 4-methoxyphenol, 1,4-benzoquinone and t-butylcatechol. ..
  • Examples of commercially available polymerization inhibitors include "IRGANOX 1010", “IRGANOX 245", (all manufactured by BASF) and the like.
  • the resin composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber By containing the ultraviolet absorber, the light resistance of the obtained cured product is improved, and the resolution after development is improved in applications requiring pattern processing.
  • the ultraviolet absorber is not particularly limited and known ones can be used, but benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferably used from the viewpoint of transparency and non-coloring property.
  • the resin composition of the present invention may contain particles other than the organic pigment (F) and the inorganic particles (G) in order to improve the dispersibility and control the conductivity.
  • examples of other particles include conductive particles or metal oxide fine particles or inorganic pigments which are not surface-coated.
  • the particle size of these other particles is preferably 1 to 100 nm.
  • the particle size is 1 nm or more, the use of a dispersant for stabilizing dispersion can be reduced, and when the fine particles are conductive particles (A), the conductivity can be further improved.
  • the particle size is 100 nm or less, the resolution of the pattern is improved and a fine pattern can be formed. Twice
  • the resin composition of the present invention may contain a thermoacid generator.
  • the binder resin (C) is a binder resin having an acid dissociable group
  • the generated acid promotes the decomposition of the acid dissociable group, and the heat treatment temperature in air can be lowered.
  • a photoacid generator may be contained. The photoacid generator is as described above.
  • thermoacid generator which is a compound that generates acid by heat
  • examples of the thermoacid generator include SI-150L, SI-160L, SI-180L or SI-200 (all manufactured by Sanshin Chemical Industry Co., Ltd.), 4- Hydroxyphenyldimethylsulfonium, benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-acetylphenylmethylsulfonium or 2-methylbenzyl-4-benzoyloxyphenylmethylsulfonium
  • these methane sulfonates, trifluoromethane sulfonates, camphor sulfonates or p-toluene sulfonates can be mentioned.
  • Phenylmethyl sulfonium or these methane sulfonates, trifluoromethane sulfonates, camphor sulfonates or p-toluene sulfonates can be preferably used.
  • the content of the thermoacid generator promotes the decomposition of the acid dissociable group in the binder resin (C) having the acid dissociative group, and causes the inorganic particles (G) to come into contact with each other.
  • the range is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C) in order to obtain higher functions without hindering.
  • the resin composition of the present invention contains a photoacid generator
  • the resin composition may further contain a sensitizer.
  • the sensitizer is preferably one that vaporizes by heat treatment, or one that fades by light irradiation even when it remains in the cured product of the resin composition of the present invention, and from the viewpoint of high resolution in pattern processing, light Those that fade with irradiation are more preferable.
  • Examples of the sensitizer that vaporizes by heat treatment or fades by light irradiation include coumarin such as 3,3'-carbonylbis (diethylaminocoumarin), anthracene such as 9,10-anthracene, benzophenone, and 4,4'.
  • -Aromatic ketones such as dimethoxybenzophenone, acetophenone, 4-methoxyacetophenone or benzaldehyde or biphenyl, 1,4-dimethylnaphthalene, 9-fluorenone, fluorene, phenanthrene, triphenylene, pyrene, anthracene, 9-phenylanthracene, 9-methoxyanthracene , 9,10-diphenylanthracene, 9,10-bis (4-methoxyphenyl) anthracene, 9,10-bis (triphenylsilyl) anthracene, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9, 10-Dipropoxyanthracene (DPA; manufactured by Kawasaki Kasei Co., Ltd.), 9,10-dibutoxyanthracene (DBA; manufactured by Kawasaki Kasei Co., Ltd.), 9,10-dipenta
  • the thermal decomposition product sublimates, evaporates or thermally decomposes by heat treatment sublimates or evaporates.
  • the vaporization temperature of the sensitizer it does not vaporize at the drying temperature, but decomposes and vaporizes during thermosetting, and when the fine particles are conductive particles (A), the conductive particles are brought into contact with each other and fused to each other. It is preferably 150 to 300 ° C.
  • the content of the sensitizer is such that the sensitizing effect for exposing the photoacid generator is sufficient, the contact between the fine particles is not hindered, and a higher function is obtained.
  • the resin composition of the present invention contains a pigment and / or a dye that absorbs visible light within a range that does not hinder the contact and fusion of the conductive particles when the fine particles are the conductive particles (A). It doesn't matter. Since the resin composition contains an inorganic pigment and / or a dye that absorbs visible light, the visible light reflection of the pattern after heating can be suppressed. It is also preferable that the inorganic particles (G) are inorganic pigments.
  • pigments that absorb visible light include lactam pigments, perylene pigments, phthalocyanine pigments, isoindoline pigments, diaminoanthraquinone pigments, dioxazine pigments, indantron pigments, carbon black or inorganic pigments. Be done.
  • Examples of blue pigments include C.I. I. Pigment Blue (hereinafter “PB”) 15, PB15: 1, PB15: 2, PB15: 3, PB15: 4, PB15: 5, PB15: 6, PB16 or PB60.
  • Examples of the purple pigment include C.I. I. Pigment Violet (hereinafter “PV”) 19, PV23 or PV37.
  • Examples of the red pigment include C.I. I. Pigment Red (hereinafter, "PR") 149, PR166, PR177, PR179, PR209 or PR254.
  • Examples of the green pigment include C.I. I. Pigment green (hereinafter, "PG") 7, PG36 or PG58.
  • Examples of the yellow pigment include C.I. I.
  • Pigment Yellow (hereinafter, “PY”) 150, PY138, PY139 or PY185 can be mentioned.
  • the black pigment include furnace black such as HCF, MCF, LFF, RCF, SAF, ISAF, HAF, XCF, FEF, GPF or SRF, thermal black such as FT or MT, and carbon such as channel black or acetylene black.
  • black or lactam pigments for example, "Irgaphor” (registered trademark) Black S0100CF; manufactured by BASF).
  • carbon black having excellent heat resistance, light resistance and visible light absorption is preferable, and furnace black or lactam pigment is more preferable from the viewpoint of dispersibility.
  • the content of the pigment having absorption in visible light is preferably 0.1 to 10% by mass with respect to the total solid content in the composition.
  • dyes that absorb visible light include ferrocene dyes, fluorenone dyes, perylene dyes, triphenylmethane dyes, coumarin dyes, diphenylamine dyes, quinacridone dyes, quinophthalone dyes, phthalocyanine dyes, or Examples thereof include xanthene dyes, but black dyes having excellent heat resistance, light resistance and visible light absorption are preferable, and VALIFAST (registered trademark) Black 1888, VALIFAST (registered trademark) Black 3830, NUBIAN (registered trademark) Black PA- 2802 or OIL Black 860 is preferable.
  • the content of the dye having absorption in visible light is preferably 0.1 to 10% by mass with respect to the total solid content in the composition.
  • the resin composition of the present invention may further contain an adhesion improver in addition to the compound (B).
  • adhesion improver examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxy.
  • silane coupling agents such as silane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-acryloxypropyltriethoxysilane.
  • the resin composition of the present invention may further contain a surfactant, if necessary.
  • the surfactant examples include an anionic surfactant such as ammonium lauryl sulfate or polyoxyethylene alkyl ether sulfate triethanolamine, a cationic surfactant such as stearylamine acetate or lauryltrimethylammonium chloride, lauryldimethylamine oxide or lauryl.
  • Amphoteric surfactants such as carboxymethylhydroxyethyl imidazolium betaine
  • nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether or sorbitan monostearate, fluorosurfactants or silicone surfactants Can be mentioned.
  • the content of the surfactant is preferably 0.001 to 10% by mass with respect to the entire composition in order to improve the coatability and the uniformity of the coating film surface.
  • the content of the surfactant is 0.001% by mass or more, the coatability and the uniformity of the coating film surface are improved.
  • the content of the surfactant is more preferably 0.01% by mass or more.
  • the content of the surfactant is 10% by mass or less, coating film defects such as repellents and dents and aggregation of particles can be suppressed.
  • the wiring substrate of the present invention preferably has a conductive pattern made of a cured product of the resin composition of the present invention containing the conductive particles (A).
  • the base material of the wiring board of the present invention is preferably a transparent board.
  • the transparent substrate include a glass substrate and a resin film.
  • the transparent substrate is preferably a glass substrate from the viewpoint that the developing solution easily permeates during pattern formation and suppresses the residue.
  • the glass substrate include a glass substrate containing two layers of SiO or two layers of SiO on the surface, a non-alkali glass substrate, and the like.
  • the resin film examples include a film made of at least one selected from the group consisting of polyimide, polyimidesiloxane, polyethersulfone, polybenzoxazole, aramid, polysulfone and epoxy resin.
  • the surface of the resin film may contain two layers of SiO.
  • the wiring board of the present invention may have a film containing an organic component in addition to a conductive pattern made of a cured product of the resin composition of the present invention. From the viewpoint of protecting the conductive pattern, it is preferable that the film containing an organic component is formed on the upper part of the conductive pattern. By having a film containing an organic component, it is possible to prevent scratches due to an external force or the like, and a highly reliable wiring board can be obtained.
  • the wiring board of the present invention can be suitably used as a member for a touch panel.
  • a touch panel member it can be used for routing wiring that connects the touch sensor wiring arranged in a mesh shape and the touch sensor wiring. Further, it is also preferable to form the touch sensor wiring and the routing wiring at the same time.
  • the base material of the wiring substrate of the present invention may be used as the cover glass, or the cover material may be bonded onto the wiring substrate of the present invention via OCA.
  • the width of the conductive pattern is preferably 1 to 6 ⁇ m.
  • the width of the conductive pattern is 1 ⁇ m or more, it is not easily affected by defects caused by foreign substances and the like, and a conductive pattern having a desired shape can be formed.
  • the width of the conductive pattern is 6 ⁇ m or less, it becomes difficult to visually recognize the wiring.
  • the width of the conductive pattern is more preferably 4 ⁇ m or less.
  • the wiring board of the present invention preferably further has a black layer.
  • the black layer By having the black layer, the reflectance of the wiring pattern can be reduced to suppress the reflection of external light, and the visibility of the wiring can be suppressed to greatly improve the visibility.
  • a black positive photosensitive composition is applied to the entire surface and exposed from the base material surface via the wiring pattern, so that the developing solution can be used leaving the upper part of the wiring pattern. Examples thereof include a method of melting and removing by development.
  • the resin composition of the present invention is prepared by mixing fine particles, compound (B), and binder resin (C), and then using a ball mill, a sand grinder, a three-roll mill, a mild disperser, a medialess disperser, or the like. Manufactured using. If you want to disperse the fine particles uniformly, use a dispersant to prepare a dispersion in which the fine particles are dispersed in an organic solvent in advance, and use this dispersion as a monomer, polymer, adhesion improver, surfactant, and polymerization inhibitor. It may be produced by a method of mixing with a solution containing an agent or the like.
  • the dispersion liquid of the inorganic particles (G) having a coating layer containing carbon is preferably dispersed using a mild disperser or a medialess disperser in order to prevent the surface coating layer from being damaged, and is medialess. It is more preferable to disperse using a disperser.
  • the dispersion liquid of the inorganic particles (G) having a coating layer containing carbon is, for example, a mild disperser Nanogetter (registered trademark) (Ashizawa Finetech Co., Ltd.) or a high-pressure wet medialess atomizer Nanomizer (Namizer Co., Ltd.). ) Or the like, and inorganic particles (G) having a coating layer containing carbon are dispersed in an organic solvent.
  • the method for producing a conductive pattern of the present invention includes a coating step of applying the resin composition of the present invention on a substrate so as to have a desired pattern shape to obtain a coating film, and drying the coating film to form a dry film.
  • the drying step of obtaining the drying film and the heating step of heating the dried film to obtain a conductive film are provided.
  • the method for producing a conductive pattern of the present invention includes a coating step of applying the resin composition of the present invention on a substrate so as to have a desired pattern shape to obtain a coating film.
  • Examples of the base material used in the coating step include a silicon wafer, a ceramic substrate, and an organic substrate.
  • the ceramic substrate include soda glass, soda glass obtained by sputtering SiO 2 on the surface, non-alkali glass, glass substrate such as borosilicate glass or quartz glass, alumina substrate, aluminum nitride substrate or silicon carbide substrate.
  • the organic substrate include an epoxy substrate, a polyetherimide resin substrate, a polyetherketone resin substrate, a polysulfone resin substrate, a polyimide film or a polyester film.
  • Examples of the method of applying the resin composition of the present invention on the surface of the base material include coating using a spin coater, bar coater, blade coater, roll coater, die coater, calendar coater or meniscus coater, screen printing, and spray coating. Alternatively, a dip coat may be mentioned.
  • the method for producing a conductive pattern of the present invention includes a drying step of drying a coating film to obtain a dried film.
  • drying method in the drying step examples include a hot plate, a hot air dryer (oven), vacuum drying, vacuum drying, and drying by infrared irradiation.
  • the drying temperature and time may be appropriately determined depending on the composition of the resin composition and the film thickness of the coating film to be dried, but it is preferable to heat in a temperature range of 50 to 150 ° C. for 10 seconds to 30 minutes.
  • the ultimate pressure for vacuum drying is preferably 5 to 200 Pa, more preferably 10 to 100 Pa.
  • the method for producing a conductive pattern of the present invention includes a heating step of heating a dry film to obtain a conductive film.
  • the compound (B) By heating the dry film of the resin composition, conductivity is obtained, and at the same time, the compound (B) has an amino group and interacts with the coating layer of the inorganic particles (G) having a coating layer containing carbon. Therefore, the adhesion with the base material is improved.
  • Examples of the heating method in the heating process include the same as in the drying process.
  • the atmosphere, temperature and time of heating may be appropriately determined depending on the composition of the resin composition and the film thickness of the coating film to be heated, but heating in air in a temperature range of 100 to 300 ° C. for 5 to 120 minutes. Is preferable. 150 to 270 ° C. is more preferable, and heating in the temperature range of 160 to 260 ° C. for 30 to 120 minutes is more preferable.
  • an exposure step of exposing the dry film to obtain an exposure film and a development step of developing the exposure film to form a pattern are provided, and a conductive pattern is formed by a photolithography method. It is also preferable to form.
  • the compound (B) does not have an amino group and does not react with the inorganic particles (G) in the exposure step, it is possible to form a good pattern having good developer solubility and no development residue in the subsequent developing step. .. After the pattern is formed, an amino group is expressed in the heating step, and the adhesion to the substrate can be improved.
  • the light source used in the exposure step for example, j-line, i-line, h-line or g-line of a mercury lamp is preferable.
  • alkaline substance used in the alkaline developing solution in the developing step examples include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate or aqueous ammonia, ethylamine or n-propyl.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate or aqueous ammonia, ethylamine or n-propyl.
  • Primary amines such as amines, secondary amines such as diethylamine or di-n-propylamine, tertiary amines such as triethylamine or methyldiethylamine, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH) , Tertiary ammonium salts such as choline, triethanolamine, diethanolamine, monoethanolamine, alcohol amines such as dimethylaminoethanol or diethylaminoethanol, or pyrrole, piperidine, 1,8-diazabicyclo [5,4,0] -7- Examples include organic alkalis such as undecene, 1,5-diazabicyclo [4,3,0] -5-nonane or cyclic amines such as morpholin, and these include ethanol, ⁇ -butyrolactone, dimethylformamide or N-methyl-. 2-A water-soluble organic solvent such as pyrrolidone may be added as appropriate
  • a surfactant such as a non-ionic surfactant to these alkaline developers.
  • the conductive pattern is formed in a mesh shape on the substrate, it can be used as a transparent conductive wiring provided in a touch panel, a display panel such as a liquid crystal display or an organic EL, a wearable terminal, or the like.
  • A-2 Silver particles having an average thickness of 3 nm and a primary particle size of 40 nm (manufactured by Nisshin Engineering Co., Ltd.).
  • the pH of a suspension of water with a concentration of 1% by mass is 4.5.
  • A-3 Silver particles with a primary particle size of 200 nm (product name: DJA03N; manufactured by Toyo Kagaku Kogyo Co., Ltd.).
  • the pH of a suspension of water with a concentration of 1% by mass is 5.0.
  • [Binder resin (C)] (C-1) 2.0 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 38.7 g of methacrylic acid, 79.3 g of benzyl methacrylate, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • NCI-831E registered trademark (oxime ester compound; manufactured by ADEKA Corporation).
  • P-1 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF; manufactured by Central Glass Co., Ltd.) 29.3 g (0.08 mol), 1,3-bis (3) under a dry nitrogen stream. 1.24 g (0.005 mol) of -aminopropyl) tetramethyldisiloxane, 3.27 g (0.03 mol) of 3-aminophenol as an end-capping agent to 150 g of N-methyl-2-pyrrolidone (NMP) Dissolved.
  • NMP N-methyl-2-pyrrolidone
  • a positive photoresist (P-1) was applied using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) at 300 rpm for 10 seconds and at 1000 rpm for 5 seconds.
  • the substrate was spin-coated with a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 2 minutes to obtain a prebaked film having a film thickness of 1 ⁇ m.
  • the prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask.
  • a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask.
  • AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.
  • shower development was performed with a 2.38 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed.
  • the obtained substrate was etched by immersing it in a ferric nitrate aqueous solution having a concentration of 55%, and the resist was peeled off by exposure and development.
  • an oven (“IHPS-222”; manufactured by ESPEC CORPORATION)
  • post-baking was performed at 230 ° C. for 30 minutes (in air)
  • a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) was used on each of the substrates (S-1) to (S-3) at 300 rpm for 10 seconds.
  • Spin-coated at 500 rpm for 1 second, and prebaked the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 5 minutes to obtain a film thickness of 1 ⁇ m.
  • a prebake film was obtained.
  • the prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask.
  • PPA-501F parallel light mask aligner
  • AD-1200 automatic developing device manufactured by Takizawa Sangyo Co., Ltd.
  • shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed.
  • pattern processing was performed.
  • was done using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION)
  • post-baking was performed at 230 ° C. for 30 minutes (in air) to obtain a volume resistivity evaluation pattern.
  • the resin composition 1 is spin-coated on (S-1) using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) under the conditions of 300 rpm for 10 seconds and 500 rpm for 1 second. Then, the substrate was prebaked at 100 ° C. for 5 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) to obtain a prebaked film having a film thickness of 1 ⁇ m. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed at 230 ° C. for 30 minutes (in the air) to obtain a solid film made of the resin composition 1.
  • a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) was used on each of the substrates (S-1) to (S-3) at 300 rpm for 10 Spin coat at 500 rpm for 1 second, and prebak the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 5 minutes to achieve a film thickness of 1 ⁇ m. Pre-baked film was obtained.
  • the prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and without using a mask.
  • the obtained solid film was evaluated for its adhesion to the substrate. Specifically, a cross-cut test was conducted in accordance with JIS K5600-5-6 (1999) by a 6-grade evaluation of 5B to 0B (the larger the number, the higher the adhesion). If the adhesion is 2B or less, the touch panel may malfunction due to peeling of the cured product. Therefore, the adhesion is preferably 3B or more, and more preferably 4B or more.
  • Resin compositions 2 to 17 are applied onto the substrates (S-1) to (S-3) at 300 rpm for 10 seconds using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.). Spin-coat at 500 rpm for 1 second, pre-bake the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 5 minutes, and pre-bake with a film thickness of 1 ⁇ m. A film was obtained.
  • a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.).
  • the prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask. After that, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed. Was done. After exposure and development, the minimum pattern size after development at the exposure amount for forming a line-and-space pattern of 5 ⁇ m in a width of 1: 1 was measured and used as the resolution. The amount of exposure was measured with an I-line illuminometer.
  • the residue on the substrate was evaluated by the transmittance evaluation of the unexposed portion of the substrate on which the volume resistivity evaluation pattern formed by the above resin compositions 2 to 17 was formed. Specifically, for the unexposed portion, the transmittance at 400 nm before and after the film formation was measured using a spectrophotometer (U-3410; manufactured by Hitachi, Ltd.). Then, when the transmittance before film formation was T 0 and the transmittance after film formation was T, the change in transmittance represented by the formula (T 0 ⁇ T) / T 0 ⁇ 100 was calculated. When the change in transmittance was 1.0% or less, it was judged that the effect of suppressing the residue was sufficient.
  • Example 1 80.00 g of conductive particles (A-1) having a coating layer containing carbon, 2.00 g of DISPERBYK21116, 100.00 g of PGMEA, and 100.00 g of DPM are mixed with a homogenizer at 1200 rpm for 30 minutes, and further. , High-pressure wet medialess atomizer Nanomizer (Namizer Co., Ltd.) was used for dispersion to obtain a silver particle dispersion.
  • a resin composition 1 was obtained by adding 73.75 g of PGMEA and 100.00 g of DPM to a mixture of 43.75 g of the resin (C-1) and stirring the mixture.
  • Table 1 shows the results of conductivity and adhesion evaluation.
  • Example 2 First, 80.00 g of conductive particles (A-1) having a coating layer containing carbon, 2.00 g of DISPERBYK21116, 100.00 g of PGMEA, and 100.00 g of DPM were mixed with a homogenizer at 1200 rpm for 30 minutes. Further, the silver particle dispersion was obtained by dispersing using a high-pressure wet medialess atomizer nanomizer (Namogenizer Co., Ltd.). A binder having a structure represented by the general formula (1) and a compound (B-1) having a functional group that produces an amino group by heat, 0.50 g, and a solid content concentration of 40% by mass, based on 282.00 g of this silver fine particle dispersion.
  • Table 1 shows the results of patterning property, conductivity, residue on the substrate and adhesion evaluation.
  • Examples 3 to 14 and Comparative Examples 1 to 3 In the same manner as in Example 2, photosensitive resin compositions 3 to 17 having the compositions shown in Tables 1 and 2 were obtained, and the respective photosensitive resin compositions were subjected to the same method as in Example 2 on the substrates shown in Tables 1 and 2. A similar evaluation was made. The evaluation results are shown in Tables 1 and 2.
  • Examples 15 to 19, Comparative Examples 4 to 5 (Colored Resin Composition 1) 300 g of carbon black (TPK1227 manufactured by Cabot) whose surface was modified with a sulfonic acid group, 150 g of a 40 wt% solution of propylene glycol monomethyl ether acetate (PGMEA) of acrylic polymer (C-1), and a tertiary amino group as a polymer dispersant. 37.5 g of "DISPERBYK” (registered trademark) LPN-21116 having a quaternary ammonium salt and 102.5 g of PGMEA were charged into a tank, and the mixture was stirred with a homomixer for 20 minutes to obtain a preliminary dispersion.
  • DISPERBYK registered trademark
  • Carbon black dispersion Bk-1 (822.6 g), propylene glycol monomethyl ether acetate 40 wt% solution (344.5 g) of acrylic polymer (C-1), KBM-manufactured by Shin-Etsu Chemical Co., Ltd. as an adhesion improver
  • Example 2 Cold Resin Composition 2 300 g of carbon black (TPK1227 manufactured by Cabot) whose surface was modified with a sulfonic acid group, 150 g of a 40 wt% solution of propylene glycol monomethyl ether acetate (PGMEA) of acrylic polymer (C-1), and a tertiary amino group as a polymer dispersant. 37.5 g of "DISPERBYK” (registered trademark) LPN-21116 having a quaternary ammonium salt and 102.5 g of PGMEA were charged into a tank, and the mixture was stirred with a homomixer for 20 minutes to obtain a preliminary dispersion.
  • DISPERBYK registered trademark
  • Carbon black dispersion Bk-1 (822.6 g), propylene glycol monomethyl ether acetate 40 wt% solution (117.3 g) of acrylic polymer (C-1), dipentaerythritol hexaacrylate as a polyfunctional monomer (Nippon Kayaku) Propylene glycol monomethyl ether acetate 50% by weight solution (92.7 g) of DPHA Co., Ltd., ADEKA Co., Ltd.
  • "Adecacruise" NCI-831 (11.6 g) as a photopolymerization initiator, Shinetsu as an adhesion improver A solution prepared by dissolving KBM-585 (7.5 g) manufactured by Kagaku Co., Ltd.
  • the colored resin composition 1 is spin-coated on (S-2) using a spin coater (“1H-DS (trade name)” manufactured by Mikasa Co., Ltd.), and the substrate is hot-plate (Dainippon Screen Mfg. Co., Ltd.). )), Prebaked at 100 ° C. for 10 minutes to obtain a prebaked film. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking is performed at 230 ° C. for 30 minutes (in air) to obtain a solid film composed of the colored resin composition 1 having a thickness of 1.5 ⁇ m.
  • the colored resin compositions 2 to 7 are separately spin-coated on (S-2) using a spin coater (“1H-DS (trade name)” manufactured by Mikasa Co., Ltd.), and the substrate is hot-plate (large).
  • a prebaked film was obtained by prebaking at 100 ° C. for 10 minutes using "SCW-636 (trade name)” manufactured by Nippon Screen Mfg. Co., Ltd.
  • the prebake film was exposed using a mask aligner (manufactured by Union Optical Co., Ltd.) using an ultra-high pressure mercury lamp as a light source and without using a mask.
  • the obtained solid film was evaluated for its adhesion to the substrate. Specifically, a cross-cut test was conducted in accordance with JIS K5600-5-6 (1999) by a 6-grade evaluation of 5B to 0B (the larger the number, the higher the adhesion). If the adhesion is 2B or less, the touch panel may malfunction due to peeling of the cured product. Therefore, the adhesion is preferably 3B or more, and more preferably 4B or more.
  • the colored resin compositions 2 to 7 are spin-coated on (S-2) using a spin coater (“1H-DS (trade name)” manufactured by Mikasa Co., Ltd.), and the substrate is hot-plate (Dainippon Screen).
  • a prebaked film was obtained by prebaking at 100 ° C. for 10 minutes using “SCW-636 (trade name)” manufactured by Mfg. Co., Ltd.
  • the prebake film was exposed using a mask aligner (manufactured by Union Optical Co., Ltd.) using an ultra-high pressure mercury lamp as a light source and through a desired mask.
  • the resin composition of the present invention can be suitably used for forming conductive patterns and coloring patterns used in touch panels, displays, image sensors, organic electroluminescence lighting, solar cells and the like.

Abstract

The present invention provides a resin composition which is capable of forming a pattern that achieves a good balance between adhesion and good dispersibility (i. e. good conductivity in cases where the resin composition contains conductive particles) even if the pattern is a fine pattern. A resin composition which contains fine particles, a compound (B) that has a structure represented by general formula (1) and a functional group that produces an amino group by means of heat, and a binder resin (C), wherein the fine particles are composed of an organic pigment (F) or inorganic particles (G) that have coating layers containing carbon. (In general formula (1), X represents an Si, Ti or Zr atom; each of R1 to R3 independently represents a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group or a hydrocarbon group having from 1 to 6 carbon atoms; and the R1 to R3 moieties may be the same as or different from each other, provided that at least one of the moieties is a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group or an isobutoxy group.)

Description

樹脂組成物、配線基板及び導電性パターンの製造方法Method for manufacturing resin composition, wiring board and conductive pattern
 本発明は、樹脂組成物、配線基板及び導電性パターンの製造方法に関する。 The present invention relates to a method for manufacturing a resin composition, a wiring board, and a conductive pattern.
 近年、テレビやモバイル、カーナビゲーション、デジタルサイネージ等、様々なディスプレイで大型化、高精細化が進んでいる。大型化に伴っては電子配線の配線長が長くなるため、消費電力維持の観点から、配線の導電性向上、すなわち低抵抗化への要求が高まっている。高精細化についても、電子配線を微細化すると配線断面積が小さくなるため、配線抵抗を同等とするためには導電性を上げることが必要となる。 In recent years, various displays such as TVs, mobiles, car navigation systems, and digital signage have become larger and have higher definition. As the size of the electronic wiring increases, the length of the electronic wiring increases. Therefore, from the viewpoint of maintaining power consumption, there is an increasing demand for improving the conductivity of the wiring, that is, reducing the resistance. As for high definition, as the electronic wiring is miniaturized, the wiring cross-sectional area becomes smaller, so it is necessary to increase the conductivity in order to make the wiring resistance equivalent.
 電子配線に用いられる導電性パターンを形成する方法としては、導電性粒子とバインダー樹脂とを含有する樹脂組成物を用いてパターンを基板上に形成した後、加熱することにより導電性粒子を接触させ、導電性パターンを得る方法が一般的である(特許文献1)。基板上にパターンを形成する方法としては、例えば、スクリーン印刷法、インクジェット法又はフォトリソグラフィー法が挙げられる。中でもスクリーン印刷法やインクジェット法は、微細パターンを形成するには不向きであり、微細パターンの形成にはフォトリソグラフィー法が適しているとされている。 As a method of forming a conductive pattern used for electronic wiring, a pattern is formed on a substrate using a resin composition containing conductive particles and a binder resin, and then the conductive particles are brought into contact with each other by heating. , A method of obtaining a conductive pattern is common (Patent Document 1). Examples of the method for forming a pattern on a substrate include a screen printing method, an inkjet method, and a photolithography method. Among them, the screen printing method and the inkjet method are not suitable for forming fine patterns, and the photolithography method is said to be suitable for forming fine patterns.
 ここで、粒子径が十分に小さい導電性微粒子を用いることで粒子の表面エネルギーを低減し、導電性粒子同士の融着を促進して電子配線の導電性を上げる技術が知られている。粒子径が十分に小さい導電性微粒子を用いた樹脂組成物としては、表面被覆された銀微粒子(特許文献2)を用いた樹脂組成物が挙げられる。表面被覆された銀微粒子を用いることで、銀微粒子の表面エネルギーを適度に制御できる。 Here, there is known a technique of reducing the surface energy of particles by using conductive fine particles having a sufficiently small particle size, promoting fusion of the conductive particles, and increasing the conductivity of electronic wiring. Examples of the resin composition using conductive fine particles having a sufficiently small particle size include a resin composition using surface-coated silver fine particles (Patent Document 2). By using the surface-coated silver fine particles, the surface energy of the silver fine particles can be appropriately controlled.
 一方、カラーフィルタ等に用いられる着色パターンについても同様に、高精細化が求められている。着色パターンは、顔料とバインダー樹脂とを含有する着色顔料含有樹脂組成物を用い、導電性パターンと同様な方法により形成される。 On the other hand, the coloring patterns used for color filters and the like are also required to have high definition. The coloring pattern is formed by the same method as the conductive pattern using a coloring pigment-containing resin composition containing a pigment and a binder resin.
特開2000-199954号公報Japanese Unexamined Patent Publication No. 2000-199954 特開2013-196997号公報Japanese Unexamined Patent Publication No. 2013-196997
 しかしながら、表面被覆された銀微粒子を用いた樹脂組成物においては、導電性を上げるために高温加熱等により銀微粒子表面の融着を促進させると、基材との密着性が低下するという課題があった。一方、密着性を付与するため、アミノ基を有する密着改良剤を添加する手法があるが、樹脂組成物中で銀微粒子の分散性を悪化させ、導電性を低下させるという課題があった。そのため、密着性と導電性向上の両立は困難であった。 However, in the resin composition using the surface-coated silver fine particles, if the fusion of the silver fine particles surface is promoted by high-temperature heating or the like in order to increase the conductivity, there is a problem that the adhesion to the base material is lowered. there were. On the other hand, there is a method of adding an adhesion improver having an amino group in order to impart adhesion, but there is a problem that the dispersibility of silver fine particles in the resin composition is deteriorated and the conductivity is lowered. Therefore, it has been difficult to achieve both adhesion and improved conductivity.
 また、着色顔料含有樹脂組成物においても、アミノ基を有する密着改良剤を添加した場合、顔料の分散性が悪化し、保存安定性を低下させるという課題があった。 Further, also in the color pigment-containing resin composition, when an adhesion improver having an amino group is added, there is a problem that the dispersibility of the pigment is deteriorated and the storage stability is lowered.
 本発明は、係る従来技術の欠点に鑑み創案されたもので、その目的とするところは、分散性と密着性に優れたパターンを得ることであり、特に、導電性粒子を含有する樹脂組成物においては、導電性を上げるために銀微粒子表面の融着を促進させても、基材との密着性を維持することが可能な樹脂組成物を提供することにある。このような樹脂組成物を用いることにより、良好な分散性(すなわち、導電性粒子を含有する樹脂組成物においては良好な導電性)と密着性を両立するパターンを得ることができる。 The present invention has been devised in view of the drawbacks of the prior art, and an object of the present invention is to obtain a pattern having excellent dispersibility and adhesion, and in particular, a resin composition containing conductive particles. In the present invention, it is an object of the present invention to provide a resin composition capable of maintaining adhesion with a base material even if fusion of the surface of silver fine particles is promoted in order to increase conductivity. By using such a resin composition, it is possible to obtain a pattern having both good dispersibility (that is, good conductivity in a resin composition containing conductive particles) and adhesion.
 本発明者らは、鋭意検討した結果、樹脂組成物に基材密着性を高める構造及び熱によりアミノ基を生じる官能基を有する化合物(B)を含有させることが、上記課題の解決に極めて有効であることを見出した。 As a result of diligent studies, the present inventors have found that it is extremely effective to include the compound (B) having a structure that enhances the adhesion to the substrate and a functional group that produces an amino group by heat in the resin composition in order to solve the above-mentioned problems. I found that.
 すなわち本発明は、微粒子、一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B)、並びにバインダー樹脂(C)を含有し、前記微粒子が、有機顔料(F)、または、炭素を含む被覆層を有する無機粒子(G)である、樹脂組成物である。 That is, the present invention contains fine particles, a compound (B) having a structure represented by the general formula (1) and a functional group that produces an amino group by heat, and a binder resin (C), and the fine particles are organic pigments ( F) or a resin composition which is an inorganic particle (G) having a coating layer containing carbon.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、XはSi、Ti又はZr原子を示す。R~Rはそれぞれ独立に、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基又は炭素数1~6の炭化水素基を示す。R~Rはそれぞれ同じであっても異なっていてもよいが、少なくとも一つはヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基又はイソブトキシ基である。) (In the general formula (1), X represents a Si, Ti or Zr atom. R 1 to R 3 are independently hydroxy groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups and isobutoxy groups, respectively. Alternatively, it indicates a hydrocarbon group having 1 to 6 carbon atoms. R 1 to R 3 may be the same or different, but at least one is a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, or an isopropoxy. Group, butoxy group or isobutoxy group.)
 本発明の樹脂組成物によれば、微細なパターンにおいても良好な分散性(すなわち、導電性粒子を含有する樹脂組成物においては良好な導電性)と密着性を両立するパターンを得ることが可能となる。 According to the resin composition of the present invention, it is possible to obtain a pattern having both good dispersibility (that is, good conductivity in a resin composition containing conductive particles) and adhesion even in a fine pattern. It becomes.
 本発明の樹脂組成物は、微粒子、一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B)、並びにバインダー樹脂(C)を含有し、前記微粒子が、有機顔料(F)、または、炭素を含む被覆層を有する無機粒子(G)であることを特徴とする。 The resin composition of the present invention contains fine particles, a compound (B) having a structure represented by the general formula (1) and a functional group that produces an amino group by heat, and a binder resin (C). It is characterized by being an organic pigment (F) or an inorganic particle (G) having a coating layer containing carbon.
 [有機顔料(F)]
 本発明の樹脂組成物は、微粒子として有機顔料(F)を含有することが好ましい。
[Organic pigment (F)]
The resin composition of the present invention preferably contains an organic pigment (F) as fine particles.
 有機顔料としては着色有機顔料があり、例えば、ジケトピロロピロール系顔料;アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料;銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料;アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料;キナクリドン系顔料;ジオキサジン系顔料;ペリノン系顔料;ペリレン系顔料;チオインジゴ系顔料;イソインドリン系顔料;イソインドリノン系顔料;キノフタロン系顔料;スレン系顔料;金属錯体系顔料などが挙げられる。 Organic pigments include colored organic pigments, for example, diketopyrrolopyrrole pigments; azo pigments such as azo, disazo, polyazo; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine; aminoanthraquinone, Anthraquinone pigments such as diaminodianthraquinone, antrapyrimidine, flavantron, antoanthron, indantron, pyranthron, biolantron; quinacridone pigments; dioxazine pigments; perinone pigments; perylene pigments; thioindigo pigments; isoindolin pigments; Examples thereof include isoindolinone-based pigments; quinophthalone-based pigments; slene-based pigments; and metal complex-based pigments.
 有機顔料として、例えば、黒色有機顔料、混色有機顔料等が挙げられる。黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。混色有機顔料としては、赤、青、緑、紫、黄色、マゼンダ、シアンなどの色を有する2種以上の顔料を混色して疑似黒色化したものが挙げられる。これらの有機顔料を2種以上含有してもよい。これらの中でも、着色膜の遮光性をより向上させ、着色膜の導電性を調整する観点から、カーボンブラックが好ましい。 Examples of organic pigments include black organic pigments and mixed color organic pigments. Examples of the black organic pigment include carbon black, perylene black, aniline black, and benzofuranone pigments. Examples of the mixed color organic pigment include those obtained by mixing two or more kinds of pigments having colors such as red, blue, green, purple, yellow, magenta, and cyan to make a pseudo black color. Two or more of these organic pigments may be contained. Among these, carbon black is preferable from the viewpoint of further improving the light-shielding property of the colored film and adjusting the conductivity of the colored film.
 また、本発明において、その効果をより顕著なものとするために、有機顔料(F)の表面は酸性処理されていることが好ましい。表面が酸性処理されていることにより、分散安定性が向上すると共に、化合物(B)との相互作用により、基材密着性を向上させることが可能となる。カーボンブラックの表面を酸性処理する方法としては、Oにより表面を酸化する方法(特開平11-181326号公報)、表面の湿式酸化処理する方法(特許第4464081号公報)、およびスルホン酸基等の非ポリマー基からなる有機基による表面修飾する方法(国際公開第2006/044676号)等が知られている。 Further, in the present invention, in order to make the effect more remarkable, it is preferable that the surface of the organic pigment (F) is acid-treated. Since the surface is acid-treated, the dispersion stability is improved, and the adhesion to the base material can be improved by the interaction with the compound (B). As a method for acid treating the surface of carbon black, a method of oxidizing the surface by O 3 (JP-A-11-181326 discloses) a method for wet oxidation treatment of the surface (Japanese Patent No. 4,464,081), and sulfonic acid groups, etc. A method of surface modification with an organic group composed of a non-polymer group (International Publication No. 2006/044676) and the like are known.
 本発明の樹脂組成物において、固形分100質量%に対し、有機顔料(F)の含有比率は、10~70質量%であることが好ましい。含有比率が10質量%以上であることにより、着色力のある被膜を薄膜にて形成することができる。含有比率は好ましくは20質量%以上である。一方、含有比率が70質量%以下であることにより、有機顔料(F)の分散安定性を向上させることができると共に基材との密着性も担保することができる。含有比率は好ましくは60質量%以下である。ここで全固形分とは、樹脂組成物が含有する成分の内、溶剤を除く全成分をいう。 In the resin composition of the present invention, the content ratio of the organic pigment (F) is preferably 10 to 70% by mass with respect to 100% by mass of the solid content. When the content ratio is 10% by mass or more, a coating having a coloring power can be formed with a thin film. The content ratio is preferably 20% by mass or more. On the other hand, when the content ratio is 70% by mass or less, the dispersion stability of the organic pigment (F) can be improved and the adhesion to the base material can be ensured. The content ratio is preferably 60% by mass or less. Here, the total solid content means all the components excluding the solvent among the components contained in the resin composition.
 [炭素を含む被覆層を有する無機粒子(G)]
 本発明の樹脂組成物は、炭素を含む被覆層を有する無機粒子(G)(以下、単に「無機粒子(G)」と称することがある。)を含有することが好ましい。無機粒子(G)は、例えば炭素化合物等で表面被覆された粒子である。炭素化合物の例としては、芳香族炭化水素、脂肪族炭化水素、またはそれらの酸化物、窒化物、硫化物、リン化物等が挙げられる。この中でも低温での無機粒子(G)同士の融着を抑制可能である観点から、芳香族炭化水素、脂肪族炭化水素またはこれらの酸化物が好ましい。無機粒子(G)を含有することにより、本発明の樹脂組成物の硬化物に導電性や遮光性等の種々の機能を付与することができる。また、無機粒子(G)の表面が炭素を含む被覆層により被覆されているため、低温での無機粒子(G)同士の融着を抑制し、粒子粗大化による解像度の低下や、残渣の発生を抑制することができる。さらに後述の熱によりアミノ基を生じる官能基と反応することにより、密着性を向上させることができる。
[Inorganic particles (G) having a coating layer containing carbon]
The resin composition of the present invention preferably contains inorganic particles (G) having a coating layer containing carbon (hereinafter, may be simply referred to as "inorganic particles (G)"). The inorganic particles (G) are particles whose surface is coated with, for example, a carbon compound. Examples of carbon compounds include aromatic hydrocarbons, aliphatic hydrocarbons, or oxides, nitrides, sulfides, phosphides, and the like thereof. Among these, aromatic hydrocarbons, aliphatic hydrocarbons or oxides thereof are preferable from the viewpoint of being able to suppress fusion of inorganic particles (G) at low temperatures. By containing the inorganic particles (G), various functions such as conductivity and light-shielding property can be imparted to the cured product of the resin composition of the present invention. Further, since the surface of the inorganic particles (G) is coated with a coating layer containing carbon, fusion of the inorganic particles (G) at a low temperature is suppressed, the resolution is lowered due to the coarsening of the particles, and residue is generated. Can be suppressed. Further, the adhesion can be improved by reacting with a functional group that produces an amino group by heat described later.
 無機粒子(G)としては、導電性粒子(A)が挙げられる。導電性粒子としては、例えば、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、錫(Sn)、ビスマス(Bi)、鉛(Pb)、亜鉛(Zn)、パラジウム(Pd)、白金(Pt)、アルミニウム(Al)、タングステン(W)又はモリブデン(Mo)等の金属微粒子が挙げられる。中でも金、銀、銅、ニッケル、錫、ビスマス、鉛、亜鉛、パラジウム、白金及びアルミニウムからなる群から選ばれる少なくとも一つの元素を含有する金属微粒子であることが好ましく、導電性向上の観点から銀の微粒子であることがより好ましい。 Examples of the inorganic particles (G) include conductive particles (A). Examples of the conductive particles include gold (Au), silver (Ag), copper (Cu), nickel (Ni), tin (Sn), bismuth (Bi), lead (Pb), zinc (Zn), and palladium ( Examples thereof include metal fine particles such as Pd), platinum (Pt), aluminum (Al), tungsten (W) and molybdenum (Mo). Among them, metal fine particles containing at least one element selected from the group consisting of gold, silver, copper, nickel, tin, bismuth, lead, zinc, palladium, platinum and aluminum are preferable, and silver is preferable from the viewpoint of improving conductivity. It is more preferable that the fine particles of.
 炭素を含む被覆層で無機粒子の表面を被覆する方法としては、例えば、熱プラズマ法により反応性ガスと無機粒子を接触させる方法(特開2007-138287号公報)が挙げられる。無機粒子(G)の表面は、完全に被覆されていることが好ましいが、本目的が達成される限りにおいては、一部に被覆が不完全な粒子が存在することは許容される。 Examples of the method of coating the surface of the inorganic particles with a coating layer containing carbon include a method of contacting the reactive gas with the inorganic particles by a thermal plasma method (Japanese Patent Laid-Open No. 2007-138287). The surface of the inorganic particles (G) is preferably completely coated, but as long as this object is achieved, it is permissible for some particles to be incompletely coated.
 被覆層の平均厚みは、0.1~10nmが好ましい。この範囲であれば、無機微細粒子同士の融着を抑制することで、微細パターン加工性を向上させ、かつ300℃以下の温度で熱処理することにより所望の機能をより向上させることができる。 The average thickness of the coating layer is preferably 0.1 to 10 nm. Within this range, the fine pattern processability can be improved by suppressing the fusion of the inorganic fine particles, and the desired function can be further improved by heat treatment at a temperature of 300 ° C. or lower.
 被覆層の平均厚みは、無機粒子(G)の熱天秤による質量減少を測定し、その値がすべて炭素の燃焼によるものと仮定し、粒子径から被覆層の平均厚みを炭素の密度を2.0として算出することができる。粒子径(Dp)が分かっている導電性粒子に炭素を平均厚みA(μm)で被覆し、炭素被覆した導電性粒子の個数をnとする。熱天秤測定で最初に秤取した質量をW(g)、完全に炭素を燃焼させた後の質量をW(g)、無機粒子の密度をρとすると、以下の式からDpとWとが分かればnを算出することができる。
=π/6×Dpρ×n
 そして、以下の式から被覆層の平均厚みAを算出することができる。
-W={4/3×π(Dp/2+A)-π/6×Dp}×2.0×n
 無機粒子(G)である導電性粒子(A)は炭素を含む被覆層を形成する材料の種類により、表面が酸性又は塩基性を帯びることがある。導電性粒子(A)を濃度1質量%で水に懸濁させた懸濁液のpHは4.0~10.0であることが好ましい。このpHは以下のようにして測定される。純水2.7g中に導電性粒子(A)0.3gを加え、濃度1質量%の懸濁液を調製し、その後、5分間攪拌し、15分間静置する。得られた懸濁液の上澄み液を採取し、pHメーターを用いて測定する。pHが4.0以上であることで、炭素被覆層が後述する分散剤と強固に相互作用するため、少ない分散剤含有量でも安定に分散できる。pHが10.0以下であることで、導電性粒子(A)とバインダー樹脂(C)との反応を抑制すると共に、樹脂組成物のpHを適切な範囲に保ち、保存安定性を良好にできる。導電性粒子(A)の懸濁液のpHを制御するためには、例えば、熱プラズマ法により導電性粒子(A)を作製する場合においては、反応性ガスの種類や導入割合を変更することで達成できる。
For the average thickness of the coating layer, measure the mass loss of the inorganic particles (G) by a hot balance, and assume that all the values are due to the combustion of carbon. It can be calculated as 0. Conductive particles having a known particle size (Dp) are coated with carbon having an average thickness of A (μm), and the number of carbon-coated conductive particles is defined as n. Assuming that the mass first weighed in the hot balance measurement is W 1 (g), the mass after completely burning carbon is W 2 (g), and the density of inorganic particles is ρ, Dp and W are derived from the following equations. If 2 is known, n can be calculated.
W 2 = π / 6 × Dp 3 ρ × n
Then, the average thickness A of the coating layer can be calculated from the following formula.
W 1- W 2 = {4/3 x π (Dp / 2 + A) 3- π / 6 x Dp 3 } x 2.0 x n
The surface of the conductive particles (A), which are the inorganic particles (G), may be acidic or basic depending on the type of material forming the coating layer containing carbon. The pH of the suspension in which the conductive particles (A) are suspended in water at a concentration of 1% by mass is preferably 4.0 to 10.0. This pH is measured as follows. 0.3 g of conductive particles (A) is added to 2.7 g of pure water to prepare a suspension having a concentration of 1% by mass, and then the mixture is stirred for 5 minutes and allowed to stand for 15 minutes. The supernatant of the obtained suspension is collected and measured using a pH meter. When the pH is 4.0 or more, the carbon coating layer strongly interacts with the dispersant described later, so that stable dispersion can be achieved even with a small dispersant content. When the pH is 10.0 or less, the reaction between the conductive particles (A) and the binder resin (C) can be suppressed, the pH of the resin composition can be kept in an appropriate range, and the storage stability can be improved. .. In order to control the pH of the suspension of the conductive particles (A), for example, when the conductive particles (A) are produced by the thermal plasma method, the type and introduction ratio of the reactive gas should be changed. Can be achieved with.
 微粒子の平均1次粒子径は、1~700nmであることが好ましい。特に、導電性粒子(A)の平均1次粒子径は、1~700nmであることが好ましい。平均1次粒子径が1nm以上であることにより、粒子比表面積を小さくすることができ、少ない分散剤量でも安定に分散できる。また、平均1次粒子径が700nm以下であることにより、微細なパターンを形成することができる。ここで微粒子の平均1次粒子径は、走査型電子顕微鏡を用いて無作為に選択した100個の1次粒子の粒子径の平均値により算出する。それぞれの1次粒子の粒子径は、1次粒子における長径と短径を測定し、その平均値から算出する。 The average primary particle size of the fine particles is preferably 1 to 700 nm. In particular, the average primary particle size of the conductive particles (A) is preferably 1 to 700 nm. When the average primary particle size is 1 nm or more, the specific surface area of the particles can be reduced, and even a small amount of dispersant can be stably dispersed. Further, when the average primary particle size is 700 nm or less, a fine pattern can be formed. Here, the average primary particle size of the fine particles is calculated from the average value of the particle sizes of 100 primary particles randomly selected using a scanning electron microscope. The particle size of each primary particle is calculated from the average value obtained by measuring the major axis and minor axis of each primary particle.
 本発明の樹脂組成物において、固形分100質量%に対し、無機粒子(G)の含有比率は、65~95質量%であることが好ましい。含有比率が65質量%以上であることにより、残留有機成分が、無機粒子(G)同士の接触を妨げず、無機粒子(G)が導電性粒子(A)である場合導電性がより向上する。含有比率は好ましくは75質量%以上である。一方、含有比率が95質量%以下であることにより、残留有機成分が、樹脂組成物中の無機粒子(G)の分散性を安定化させ、微細なパターンを形成することができ、基板上の残渣を低減することができる。含有比率は好ましくは85質量%以下である。ここで全固形分とは、樹脂組成物が含有する成分の内、溶剤を除く全成分をいう。 In the resin composition of the present invention, the content ratio of the inorganic particles (G) is preferably 65 to 95% by mass with respect to 100% by mass of the solid content. When the content ratio is 65% by mass or more, the residual organic component does not interfere with the contact between the inorganic particles (G), and the conductivity is further improved when the inorganic particles (G) are the conductive particles (A). .. The content ratio is preferably 75% by mass or more. On the other hand, when the content ratio is 95% by mass or less, the residual organic component can stabilize the dispersibility of the inorganic particles (G) in the resin composition and form a fine pattern on the substrate. The residue can be reduced. The content ratio is preferably 85% by mass or less. Here, the total solid content means all the components excluding the solvent among the components contained in the resin composition.
 全固形分に占める無機粒子(G)の割合は、樹脂組成物の全成分を定量分析することにより算出することができる。なお、後述する各成分の割合も同様の方法で算出することができる。 The ratio of the inorganic particles (G) to the total solid content can be calculated by quantitatively analyzing all the components of the resin composition. The ratio of each component described later can also be calculated by the same method.
 樹脂組成物の全成分の分析方法は以下のとおりである。
(i) 樹脂組成物を有機溶媒で希釈し、H-NMR測定、GC測定及びGC/MS測定をしてその概要を調べる。
(ii) 樹脂組成物を有機溶媒で抽出した後に遠心分離を行い、可溶成分と不溶成分とを分離する。
(iii) 上記不溶成分について、高極性有機溶媒で抽出した後に遠心分離を行い、可溶成分と不溶成分とをさらに分離する。
(iv) 上記(ii)及び(iii)で得られた可溶成分の混合液について、IR測定、H-NMR測定及びGC/MS測定を行う。さらに、上記混合液をGPC分取する。得られた分取物についてIR測定及びH-NMR測定を行う。また、該分取物については、必要に応じてGC測定、GC/MS測定、熱分解GC/MS測定及びMALDI/MS測定を行う。
(v) 上記(iii)で得られた不溶成分についてIR測定又はTOF-SIMS測定を行う。有機物が存在することが確認された場合には、熱分解GC/MS又はTPD/MS測定を行う。
(vi) 上記(i)、(iv)及び(v)の測定結果を総合的に判断することで、樹脂組成物が含有する各成分の含有率を求めることができる。なお、上記(iii)で用いる高極性有機溶媒としては、クロロホルム又はメタノール等が好ましい。
The method for analyzing all the components of the resin composition is as follows.
(I) The resin composition is diluted with an organic solvent, and 1 1 H-NMR measurement, GC measurement and GC / MS measurement are carried out to examine the outline thereof.
(Ii) After extracting the resin composition with an organic solvent, centrifugation is performed to separate the soluble component and the insoluble component.
(Iii) The insoluble component is extracted with a highly polar organic solvent and then centrifuged to further separate the soluble component and the insoluble component.
(Iv) IR measurement, 1 H-NMR measurement and GC / MS measurement are performed on the mixed solution of the soluble components obtained in (ii) and (iii) above. Further, the above mixed solution is separated by GPC. IR measurement and 1 H-NMR measurement are performed on the obtained sample. Further, for the preparative material, GC measurement, GC / MS measurement, thermal decomposition GC / MS measurement and MALDI / MS measurement are performed as necessary.
(V) IR measurement or TOF-SIMS measurement is performed on the insoluble component obtained in (iii) above. If it is confirmed that organic matter is present, thermal decomposition GC / MS or TPD / MS measurement is performed.
(Vi) The content of each component contained in the resin composition can be determined by comprehensively judging the measurement results of (i), (iv) and (v) above. The highly polar organic solvent used in (iii) above is preferably chloroform, methanol or the like.
 [一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B)]
 本発明の樹脂組成物は、下記一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B)(以下、単に「化合物(B)」と称することがある。)を含有する。
[Compound (B) having a functional group that produces an amino group by heat and a structure represented by the general formula (1)]
The resin composition of the present invention may be referred to as a compound (B) having a structure represented by the following general formula (1) and a functional group that produces an amino group by heat (hereinafter, simply referred to as "compound (B)". ) Is contained.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、XはSi、Ti又はZr原子を示す。R~Rはそれぞれ独立に、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基又は炭素数1~6の炭化水素基を示す。R~Rはそれぞれ同じであっても異なっていてもよいが、少なくとも一つはヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基又はイソブトキシ基である。 In the general formula (1), X represents a Si, Ti or Zr atom. R 1 to R 3 independently represent a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group or a hydrocarbon group having 1 to 6 carbon atoms. R 1 to R 3 may be the same or different, but at least one is a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group or an isobutoxy group.
 炭素数1~6の炭化水素基としては、脂肪族炭化水素基が挙げられる。脂肪族炭化水素基は直鎖であっても分岐していてもよく、一部または全体が環状であってもよい。炭素数1~6の炭化水素基は、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、シクロペンチル基、ヘキシル基又はシクロヘキシル基などが挙げられる。これらの中でも立体障害が小さく、基板との密着を阻害しない観点から、メチル基、エチル基又はプロピル基が好ましい。 Examples of the hydrocarbon group having 1 to 6 carbon atoms include an aliphatic hydrocarbon group. The aliphatic hydrocarbon group may be linear or branched, and may be partially or wholly cyclic. Examples of the hydrocarbon group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a cyclopentyl group, a hexyl group and a cyclohexyl group. Among these, a methyl group, an ethyl group or a propyl group is preferable from the viewpoint of having less steric hindrance and not hindering adhesion to the substrate.
 化合物(B)は、パターンを形成した後、例えば100~300℃の温度範囲で、5~120分加熱することで、アミノ基が生成する。生成したアミノ基が有機顔料(F)または無機粒子(G)の表面と相互作用し、一般式(1)で表される構造が基材と相互作用することで、パターンと基材の密着性が向上する。密着性は、JIS K5600-5-6(1999年)に準拠し、クロスカット試験で評価することができる。さらに、R~Rのうち、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基は加熱により脱離してシラノール基を生成し、シラノール基同士が縮重合して、一般式(2)で表される構造及びアミノ基を有する化合物(E)が生成する。 After forming a pattern, compound (B) is heated in a temperature range of, for example, 100 to 300 ° C. for 5 to 120 minutes to form an amino group. The generated amino group interacts with the surface of the organic pigment (F) or the inorganic particle (G), and the structure represented by the general formula (1) interacts with the base material, so that the pattern and the base material adhere to each other. Is improved. Adhesion conforms to JIS K5600-5-6 (1999) and can be evaluated by a cross-cut test. Further, among the R 1 ~ R 3, hydroxy group, a methoxy group, an ethoxy group, a propoxy group, isopropoxy group, butoxy group, isobutoxy group desorbed to produce a silanol group by heating, silanol groups are polycondensed As a result, the compound (E) having the structure represented by the general formula (2) and an amino group is produced.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、YはSi、Ti又はZr原子を示す。R~Rはそれぞれ独立に、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、炭素数1~6の炭化水素基又は架橋酸素を示す。R~Rはそれぞれ同じであっても異なっていてもよいが、少なくとも一つは架橋酸素である。)
 一方、加熱前の樹脂組成物中では化合物(B)中にアミノ基が存在しないため、化合物(B)が有機顔料(F)または無機粒子(G)の表面と反応せず、安定に存在できる。そのため、樹脂組成物の保存中には、粘度変化や、有機顔料(F)または無機粒子(G)の分散性悪化による機能阻害を防ぎ、樹脂組成物の塗布膜中では現像残渣による基板の透過率低下を引き起こすことがない。また、パターン加工性を向上させることができる。ここで、アミノ基を生じる目的の加熱と、樹脂組成物パターンに機能を付与する目的の加熱を同時に行うこともできる。
(In the general formula (2), Y represents a Si, Ti or Zr atom. R 4 to R 6 are independently hydroxy groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups and isobutoxy groups, respectively. , A hydrocarbon group having 1 to 6 carbon atoms or cross-linked oxygen. R 4 to R 6 may be the same or different, but at least one is cross-linked oxygen.)
On the other hand, since the amino group does not exist in the compound (B) in the resin composition before heating, the compound (B) does not react with the surface of the organic pigment (F) or the inorganic particles (G) and can exist stably. .. Therefore, during storage of the resin composition, functional inhibition due to viscosity change and deterioration of dispersibility of the organic pigment (F) or inorganic particles (G) is prevented, and the substrate is permeated by the development residue in the coating film of the resin composition. Does not cause a decrease in rate. Moreover, the pattern workability can be improved. Here, heating for the purpose of generating an amino group and heating for the purpose of imparting a function to the resin composition pattern can be performed at the same time.
 一般式(1)の中心元素Xとしては、反応性の観点から、Siであることが好ましい。また、一般式(1)のR~Rとしては、基材との密着性の観点から、メトキシ基又はエトキシ基であることが好ましく、メトキシ基であることがより好ましい。 The central element X of the general formula (1) is preferably Si from the viewpoint of reactivity. Further, R 1 to R 3 of the general formula (1) are preferably a methoxy group or an ethoxy group, and more preferably a methoxy group, from the viewpoint of adhesion to the base material.
 熱によりアミノ基を生じる官能基としては、アミド基、イミン基、ウレイド基およびイソシアネート基が挙げられる。これらの官能基の少なくとも一種を用いることで、樹脂組成物及び塗布膜の安定性を高め、加熱後の基材との密着性をより向上できる。樹脂組成物の有機顔料(F)や無機粒子(G)の分散安定性を高めて導電性をより向上させ、残渣を抑制させる観点から、特にウレイド基が好ましい。 Examples of the functional group that produces an amino group by heat include an amide group, an imine group, a ureido group and an isocyanate group. By using at least one of these functional groups, the stability of the resin composition and the coating film can be enhanced, and the adhesion to the substrate after heating can be further improved. A ureido group is particularly preferable from the viewpoint of enhancing the dispersion stability of the organic pigment (F) and the inorganic particles (G) of the resin composition, further improving the conductivity, and suppressing the residue.
 化合物(B)は、具体的には、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリプロポキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリメトキシシリル-N-(フェニルメチレン)プロピルアミン、3-トリエトキシシリル-N-(フェニルメチレン)プロピルアミン、3-トリプロポキシシリル-N-(フェニルメチレン)プロピルアミン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン及び3-イソシアネートプロピルトリメトキシシランが挙げられる。中でも、ウレイド基を有する化合物として、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシランがより好ましい。特に好ましくは、3-ウレイドプロピルトリメトキシシランが挙げられる。 Specifically, the compound (B) is 3-trimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine. , 3-Tripropoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-trimethoxysilyl-N- (phenylmethylene) propylamine, 3-triethoxysilyl-N- (phenylmethylene) propylamine , 3-Tripropoxysilyl-N- (phenylmethylene) propylamine, 3-ureidopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-isocyanuppropyltriethoxysilane and 3-isocyanuppropyltrimethoxysilane. .. Of these, 3-ureidopropyltriethoxysilane and 3-ureidopropyltrimethoxysilane are more preferable as the compound having a ureido group. Particularly preferred is 3-ureidopropyltrimethoxysilane.
 本発明の樹脂組成物において、化合物(B)の含有量は、微粒子100質量部に対し、0.1~10質量部であることが好ましい。特に、導電性粒子(A)100質量部に対し、0.1~2.5質量部であることが好ましい。含有量が0.1質量部以上であることで密着性をより向上できる。化合物(B)の含有量は、より好ましくは0.5質量部以上である。一方、含有量が2.5質量部以下であることで、導電性をより向上させることができる。化合物(B)の含有量は、より好ましくは1.0質量部以下である。 In the resin composition of the present invention, the content of the compound (B) is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the fine particles. In particular, it is preferably 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the conductive particles (A). When the content is 0.1 part by mass or more, the adhesion can be further improved. The content of compound (B) is more preferably 0.5 parts by mass or more. On the other hand, when the content is 2.5 parts by mass or less, the conductivity can be further improved. The content of compound (B) is more preferably 1.0 part by mass or less.
 本発明の樹脂組成物において、化合物(B)の含有量は、有機顔料(F)100質量部に対し、0.5~10質量部であることが好ましい。含有量が0.5質量部以上であることで密着性をより向上できる。化合物(B)の含有量は、より好ましくは1.0質量部以上である。一方、含有量が10質量部以下であることで、保存安定性をより向上させることができる。化合物(B)の含有量は、より好ましくは7.0質量部以下である。 In the resin composition of the present invention, the content of the compound (B) is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the organic pigment (F). When the content is 0.5 parts by mass or more, the adhesion can be further improved. The content of compound (B) is more preferably 1.0 part by mass or more. On the other hand, when the content is 10 parts by mass or less, the storage stability can be further improved. The content of compound (B) is more preferably 7.0 parts by mass or less.
 [バインダー樹脂(C)]
 本発明の樹脂組成物は、バインダー樹脂(C)を含有する。バインダー樹脂(C)は樹脂組成物の粘度等に合わせて適切に選択されるものであり、特に制限をうけない。バインダー樹脂(C)としては、例えば、エチルセルロース、ニトロセルロースなどのセルロース系樹脂や、ポリビニルブチラールなどのアセタール系樹脂、ブチルメタクリレート、メチルメタクリレートなどを重合して得られるアクリル系樹脂などが好ましく使用されるが、組成設計の容易さの観点より、アクリル系樹脂が特に好ましい。ここでアクリル系樹脂とは、樹脂成分に少なくとも(メタ)アクリル系モノマーを共重合させた樹脂をいう。ここで(メタ)アクリル系モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、tert-ブトキシカルボニル(メタ)アクリレート、ベンジル(メタ)アクリレート、メチルアダマンチル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、テトラヒドロピラニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、イソボニル(メタ)アクリレート又はフェニル(メタ)アクリレートが挙げられる。
[Binder resin (C)]
The resin composition of the present invention contains a binder resin (C). The binder resin (C) is appropriately selected according to the viscosity of the resin composition and the like, and is not particularly limited. As the binder resin (C), for example, a cellulosic resin such as ethyl cellulose or nitrocellulose, an acetal resin such as polyvinyl butyral, an acrylic resin obtained by polymerizing butyl methacrylate, methyl methacrylate or the like is preferably used. However, an acrylic resin is particularly preferable from the viewpoint of ease of composition design. Here, the acrylic resin refers to a resin obtained by copolymerizing at least a (meth) acrylic monomer with a resin component. Here, examples of the (meth) acrylic monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, and tert. -Butoxycarbonyl (meth) acrylate, benzyl (meth) acrylate, methyladamantyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydropyranyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl ( Examples thereof include meta) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, isobonyl (meth) acrylate or phenyl (meth) acrylate.
 (メタ)アクリル系モノマー以外の共重合成分としては、炭素-炭素二重結合を有する化合物が使用可能である。そのような化合物としては、例えば、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン若しくはp-ヒドロキシルスチレン等の芳香族ビニル化合物、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド若しくはN-ビニルピロリドン等のアミド系不飽和化合物、(メタ)アクリロニトリル、アリルアルコール、酢酸ビニル、シクロヘキシルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、2-ヒドロキシエチルビニルエーテル又は4-ヒドロキシブチルビニルエーテルが挙げられる。 As a copolymerization component other than the (meth) acrylic monomer, a compound having a carbon-carbon double bond can be used. Such compounds include, for example, aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, α-methylstyrene or p-hydroxylstyrene, (meth) acrylamide, N-methylol. Amide-based unsaturated compounds such as (meth) acrylamide or N-vinylpyrrolidone, (meth) acrylonitrile, allyl alcohol, vinyl acetate, cyclohexyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether , 2-Hydroxyethyl vinyl ether or 4-hydroxybutyl vinyl ether.
 バインダー樹脂(C)は、酸解離性基を有することが好ましい。酸解離性基とは、加熱下で酸の作用により、熱酸化分解および脱離する有機基である。このような酸解離性基を有することで、例えば、酸性雰囲気下、100~300℃で加熱することにより、酸解離性基が容易に熱酸化分解及び脱離し、本発明の樹脂組成物の硬化物が収縮して、該硬化物中の微粒子比率を上昇させ、機能をより向上させることができる。そしてその結果として、例えば微粒子が無機粒子(G)の場合、比抵抗10~1,000μΩ・cmの所望の導電性を得ることが容易となる。この場合、後述する光酸発生剤及び/又は熱酸発生剤を併用すると、その効果はさらに顕著となる。 The binder resin (C) preferably has an acid dissociative group. The acid dissociable group is an organic group that is thermally oxidatively decomposed and desorbed by the action of an acid under heating. By having such an acid dissociable group, for example, by heating at 100 to 300 ° C. in an acidic atmosphere, the acid dissociative group is easily thermally oxidatively decomposed and desorbed, and the resin composition of the present invention is cured. The material can be shrunk to increase the proportion of fine particles in the cured product and further improve its function. As a result, for example, when the fine particles are inorganic particles (G), it becomes easy to obtain a desired conductivity having a specific resistance of 10 to 1,000 μΩ · cm. In this case, when a photoacid generator and / or a thermoacid generator, which will be described later, are used in combination, the effect becomes even more remarkable.
 酸解離性基は炭素数4~15の有機基であることが好ましい。酸解離性基の炭素数が4以上であることで、脱離後、低温で気化するため、前記硬化物中に大きな気泡が発生して微粒子同士の接触を妨げることなく、機能がより向上する。酸解離性基の炭素数は好ましくは6以上である。一方、酸解離性基の炭素数が15以下であることで、脱離後、解離性基が前記硬化物中に残存して微粒子同士の接触を妨げることがなく、機能がより向上する。また、前記硬化物中に気泡が発生しても加熱によって消失させることが容易である。 The acid dissociative group is preferably an organic group having 4 to 15 carbon atoms. Since the acid dissociative group has 4 or more carbon atoms, it vaporizes at a low temperature after desorption, so that the function is further improved without generating large bubbles in the cured product and hindering the contact between the fine particles. .. The acid dissociative group preferably has 6 or more carbon atoms. On the other hand, when the acid dissociative group has 15 or less carbon atoms, the dissociative group does not remain in the cured product after desorption and does not interfere with the contact between the fine particles, and the function is further improved. Further, even if bubbles are generated in the cured product, they can be easily eliminated by heating.
 酸解離性基としては、例えば、tert-ブチル基、tert-ブトキシカルボニル基、ベンジル基、メチルアダマンチル基又はテトラヒドロピラニル基が挙げられる。 Examples of the acid dissociative group include a tert-butyl group, a tert-butoxycarbonyl group, a benzyl group, a methyladamantyl group or a tetrahydropyranyl group.
 バインダー樹脂(C)は、酸解離性基を有する化合物を20~80モル%共重合した樹脂であることが好ましい。特に、バインダー樹脂(C)がアクリル系樹脂である場合、酸解離性基を有する(メタ)アクリル酸エステルをアクリル系樹脂中にモノマー成分として20~80モル%含有することが好ましい。 The binder resin (C) is preferably a resin obtained by copolymerizing 20 to 80 mol% of a compound having an acid dissociative group. In particular, when the binder resin (C) is an acrylic resin, it is preferable that the (meth) acrylic acid ester having an acid dissociative group is contained in the acrylic resin in an amount of 20 to 80 mol% as a monomer component.
 本発明の樹脂組成物を感光性樹脂組成物として用いることは、微細な配線パターンを形成できるため好ましい。感光性樹脂組成物とするために、さらに後述の感光剤(D)を有し、バインダー樹脂(C)がアルカリ可溶性基を有することが好ましい。アルカリ可溶性基としては、カルボキシル基、アルコール性水酸基、フェノール性水酸基、スルホ基、リン酸基、酸無水物基等を挙げることができるが、特に反応性と汎用性の観点から、カルボキシル基が好ましい。 It is preferable to use the resin composition of the present invention as a photosensitive resin composition because a fine wiring pattern can be formed. In order to obtain a photosensitive resin composition, it is preferable to further have a photosensitive agent (D) described later and the binder resin (C) to have an alkali-soluble group. Examples of the alkali-soluble group include a carboxyl group, an alcoholic hydroxyl group, a phenolic hydroxyl group, a sulfo group, a phosphoric acid group, an acid anhydride group and the like, but the carboxyl group is particularly preferable from the viewpoint of reactivity and versatility. ..
 バインダー樹脂(C)がアルカリ可溶性基を有するアクリル系樹脂であることが、組成設計の容易さより好ましい。バインダー樹脂(C)がアルカリ可溶性基を有するアクリル系樹脂である場合、アルカリ可溶性を付与する共重合成分であるカルボキシル基を含有する化合物としては、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸若しくはフマル酸又はこれらの酸無水物が挙げられる。 It is preferable that the binder resin (C) is an acrylic resin having an alkali-soluble group from the viewpoint of ease of composition design. When the binder resin (C) is an acrylic resin having an alkali-soluble group, examples of the compound containing a carboxyl group, which is a copolymerization component that imparts alkali solubility, include (meth) acrylic acid, itaconic acid, and crotonic acid. , Maleic acid or fumaric acid or acid anhydrides thereof.
 バインダー樹脂(C)のカルボン酸当量は、50~1,000g/molが好ましい。バインダー樹脂(C)のカルボン酸当量は、酸価を測定することで算出することができる。また、バインダー樹脂(C)の二重結合当量は、硬度と耐クラック性とを高いレベルで両立できるため、150~10,000g/molであることが好ましい。バインダー樹脂(C)の二重結合当量は、ヨウ素価を測定することで算出することができる。 The carboxylic acid equivalent of the binder resin (C) is preferably 50 to 1,000 g / mol. The carboxylic acid equivalent of the binder resin (C) can be calculated by measuring the acid value. Further, the double bond equivalent of the binder resin (C) is preferably 150 to 10,000 g / mol because both hardness and crack resistance can be compatible at a high level. The double bond equivalent of the binder resin (C) can be calculated by measuring the iodine value.
 バインダー樹脂(C)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、1,000~100,000であることが好ましい。重量平均分子量(Mw)を上記範囲とすることで、良好な塗布特性が得られ、パターン形成する際の現像液への溶解性も良好となる。 The weight average molecular weight (Mw) of the binder resin (C) is preferably 1,000 to 100,000 in terms of polystyrene measured by gel permeation chromatography (GPC). By setting the weight average molecular weight (Mw) in the above range, good coating characteristics can be obtained, and the solubility in a developing solution at the time of pattern formation is also good.
 本発明の樹脂組成物を感光性樹脂組成物として用いる場合、感光性樹脂組成物の露光による硬化反応の速度を大きくするためには、バインダー樹脂(C)は側鎖又は分子末端に炭素-炭素二重結合を有する(メタ)アクリル系共重合体とすることが好ましい。炭素-炭素二重結合を有する官能基としては、例えば、ビニル基、アリル基又は(メタ)アクリル基が挙げられる。このような官能基を(メタ)アクリル系共重合体に付加させるには、(メタ)アクリル系共重合体中のメルカプト基、アミノ基、水酸基又はカルボキシル基に対して、グリシジル基若しくはイソシアネート基と、炭素-炭素二重結合とを有する化合物又は(メタ)アクリル酸クロライド若しくはアリルクロライドを付加反応させる方法がある。 When the resin composition of the present invention is used as the photosensitive resin composition, in order to increase the rate of curing reaction by exposure of the photosensitive resin composition, the binder resin (C) has carbon-carbon at the side chain or the molecular terminal. It is preferable to use a (meth) acrylic copolymer having a double bond. Examples of the functional group having a carbon-carbon double bond include a vinyl group, an allyl group, and a (meth) acrylic group. In order to add such a functional group to the (meth) acrylic copolymer, a glycidyl group or an isocyanate group is added to the mercapto group, amino group, hydroxyl group or carboxyl group in the (meth) acrylic copolymer. , There is a method of addition reaction of a compound having a carbon-carbon double bond or (meth) acrylic acid chloride or allyl chloride.
 グリシジル基と炭素-炭素二重結合とを有する化合物としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル又はグリシジルエチルアクリレート、クロトニルグリシジルエーテル、グリシジルクロトネート又はグリシジルイソクロトネートが挙げられる。イソシアネート基と炭素-炭素二重結合とを有する化合物としては、例えば、(メタ)アクリロイルイソシアネート又は(メタ)アクリロイルオキシエチルイソシアネートが挙げられる。 Examples of the compound having a glycidyl group and a carbon-carbon double bond include glycidyl (meth) acrylate, allyl glycidyl ether or glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate or glycidyl isocrotonate. Examples of the compound having an isocyanate group and a carbon-carbon double bond include (meth) acryloyl isocyanate and (meth) acryloyloxyethyl isocyanate.
 本発明の樹脂組成物において、バインダー樹脂(C)の含有量は、固形分100質量%とした場合に、1~30質量%の範囲内であることが好ましい。1質量%以上とすることで塗布に適した樹脂組成物の粘度に調整することができ、30質量%以下とすることで機能をより向上させることができる。 In the resin composition of the present invention, the content of the binder resin (C) is preferably in the range of 1 to 30% by mass when the solid content is 100% by mass. When it is 1% by mass or more, the viscosity of the resin composition suitable for coating can be adjusted, and when it is 30% by mass or less, the function can be further improved.
 [感光剤(D)]
 本発明の樹脂組成物は、感光性樹脂組成物として用いる場合、微細なパターンを形成する観点から、感光剤(D)を含有することが好ましい。感光剤(D)を含有することで、樹脂組成物にポジ型あるいはネガ型の感光性を付与することができる。
[Photosensitizer (D)]
When the resin composition of the present invention is used as a photosensitive resin composition, it preferably contains a photosensitive agent (D) from the viewpoint of forming a fine pattern. By containing the photosensitizer (D), it is possible to impart positive or negative photosensitivity to the resin composition.
 感光剤(D)としては、光重合開始剤、光酸発生剤、光塩基発生剤が好ましく用いられる。光重合開始剤としては、例えば、アセトフェノン系化合物、ベンゾフェノン系化合物、ベンゾインエーテル系化合物、α-アミノアルキルフェノン系化合物、チオキサントン系化合物、有機過酸化物、イミダゾール系化合物、チタノセン系化合物、トリアジン系化合物、アシルホスフィンオキシド化合物、キノン化合物又はオキシムエステル系化合物が挙げられるが、少量の添加であっても感度の高い、オキシムエステル系化合物が好ましく、カルバゾール骨格を有するオキシムエステル系化合物がより好ましい。 As the photosensitizer (D), a photopolymerization initiator, a photoacid generator, and a photobase generator are preferably used. Examples of the photopolymerization initiator include acetphenone compounds, benzophenone compounds, benzoin ether compounds, α-aminoalkylphenone compounds, thioxanthone compounds, organic peroxides, imidazole compounds, titanosen compounds, and triazine compounds. , Acylphosphine oxide compound, quinone compound or oxime ester compound, but an oxime ester compound having high sensitivity even when added in a small amount is preferable, and an oxime ester compound having a carbazole skeleton is more preferable.
 カルバゾール骨格を有さないオキシムエステル系化合物の具体例としては、1,2-プロパンジオン-3-シクロペンタン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]等が挙げられ、カルバゾール骨格を有するオキシムエステル系化合物の具体例としては、3-シクロペンチルエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等が挙げられる。 Specific examples of the oxime ester compound having no carbazole skeleton include 1,2-propanedione-3-cyclopentane, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 1,2. -Octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] and the like, and specific examples of the oxime ester compound having a carbazole skeleton include 3-cyclopentylethaneone, 1-[. 9-Ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime), etanone, 1- [9-ethyl-6- (2-methylbenzoyl)- 9H-carbazole-3-yl]-, 1- (0-acetyloxime) and the like can be mentioned.
 本発明の樹脂組成物において、光重合開始剤(D)の含有量は、バインダー樹脂(C)100質量部に対して、好ましくは1~50質量部の範囲である。 In the resin composition of the present invention, the content of the photopolymerization initiator (D) is preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C).
 光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などを挙げることができるが、キノンジアジド化合物がより好ましい。キノンジアジド化合物は、5-ナフトキノンジアジドスルホニル基を有したもの、4-ナフトキノンジアジドスルホニル基を有したものがあり、これらのいずれも好ましく用いられる。該キノンジアジドスルホン酸エステルは、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。本発明の樹脂組成物において、光酸発生剤の含有量は、バインダー樹脂(C)100質量部に対して、好ましくは1~50質量部の範囲である。 Examples of the photoacid generator include quinone diazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts and the like, but quinone diazide compounds are more preferable. The quinone diazide compound includes a compound having a 5-naphthoquinone diazidosulfonyl group and a compound having a 4-naphthoquinone diazidosulfonyl group, and any of these is preferably used. The quinonediazide sulfonic acid ester is a polyhydroxy compound with quinonediazide sulfonic acid bonded by an ester, a polyamino compound with quinonediazide sulfonic acid bonded with a sulfonamide, and a polyhydroxypolyamino compound with quinonediazide sulfonic acid bonded with an ester bond and /. Alternatively, those bonded with a sulfonamide may be mentioned. In the resin composition of the present invention, the content of the photoacid generator is preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C).
 光塩基発生剤としては、アミド化合物、アンモニウム塩などが挙げられる。 Examples of the photobase generator include amide compounds and ammonium salts.
 アミド化合物としては、例えば、2-ニトロフェニルメチル-4-メタクリロイルオキシピペリジン-1-カルボキシラート、9-アントリルメチル-N,N-ジメチルカルバメート、1-(アントラキノン-2イル)エチルイミダゾールカルボキシラート、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジンなどが挙げられる。 Examples of the amide compound include 2-nitrophenylmethyl-4-methacryloyloxypiperidine-1-carboxylate, 9-anthrylmethyl-N, N-dimethylcarbamate, 1- (anthraquinone-2yl) ethylimidazole carboxylate, and the like. Examples thereof include (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine.
 アンモニウム塩としては、例えば、1,2-ジイソプロピル-3-(ビスジメチルアミノ)メチレン)グアニジウム2-(3-ベンゾイルフェニル)プロピオナート、(Z)-{[ビス(ジメチルアミノ)メチリデン]アミノ}-N-シクロヘキシルアミノ)メタニミニウムテトラキス(3-フルオロフェニル)ボラート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムn-ブチルトリフェニルボラートなどが挙げられる。 Examples of the ammonium salt include 1,2-diisopropyl-3- (bisdimethylamino) methylene) guanidium 2- (3-benzoylphenyl) propionate, (Z)-{[bis (dimethylamino) methylidene] amino} -N. -Cyclohexylamino) metaniminium tetrakis (3-fluorophenyl) borate, 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguanidium n-butyltriphenylborate and the like.
 本発明の樹脂組成物において、光塩基発生剤の含有量は、バインダー樹脂(C)100質量部に対して、好ましくは1~50質量部の範囲である。 In the resin composition of the present invention, the content of the photobase generator is preferably in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C).
 [分散剤]
 本発明の樹脂組成物は、分散剤を含有しても構わない。分散剤を含有することで、樹脂組成物中に微粒子を安定的に存在させることができる。
[Dispersant]
The resin composition of the present invention may contain a dispersant. By containing the dispersant, the fine particles can be stably present in the resin composition.
 分散剤としては、アミン系のものが好ましい。市販のアミン系の分散剤としては、例えば、DISPERBYK(登録商標)142、145、161、167、180、2001、2008、2022、2150、6919又は21116(以上、いずれもビックケミー・ジャパン製)が挙げられる。 As the dispersant, amine-based ones are preferable. Examples of commercially available amine-based dispersants include DISPERBYK (registered trademark) 142, 145, 161, 167, 180, 2001, 2008, 2022, 2150, 6919 or 21116 (all manufactured by Big Chemie Japan). Be done.
 さらに分散性を向上させるため、分散剤は、アクリル系ブロック共重合体構造を有することが好ましい。アクリル系ブロック共重合体構造を有する市販のアミン系の分散剤としては、例えば、DISPERBYK(登録商標)2001、2008、2022、2150、6919又は21116が挙げられる。 In order to further improve the dispersibility, the dispersant preferably has an acrylic block copolymer structure. Examples of commercially available amine-based dispersants having an acrylic block copolymer structure include DISPERBYK® 2001, 2008, 2022, 2150, 6919 or 21116.
 本発明の樹脂組成物において、分散剤の含有量は、樹脂組成物中に微粒子と後述する他の粒子との合計100質量部に対し、1~10質量部が好ましい。分散剤の含有量をこの範囲とすることにより、樹脂組成物中に微粒子の分散が良好、且つ微細なパターン加工が可能であり、微粒子が導電性粒子(A)である場合には樹脂組成物中に導電性粒子(A)の接触及び融着が進み、より高い機能を得ることができる。 In the resin composition of the present invention, the content of the dispersant is preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the fine particles and other particles described later in the resin composition. By setting the content of the dispersant within this range, fine particles can be dispersed well in the resin composition and fine pattern processing can be performed. When the fine particles are conductive particles (A), the resin composition The contact and fusion of the conductive particles (A) proceed inside, and a higher function can be obtained.
 [アクリルモノマー]
 本発明の樹脂組成物は、感光性能を調整し、パターン加工性を向上する観点から、アクリルモノマーを、微粒子が導電性粒子(A)である場合には導電性粒子同士の接触及び融着を阻害しない範囲内で含有しても構わない。
[Acrylic monomer]
From the viewpoint of adjusting the photosensitive performance and improving the pattern processability, the resin composition of the present invention uses an acrylic monomer, and when the fine particles are conductive particles (A), contact and fuse the conductive particles with each other. It may be contained within a range that does not inhibit it.
 アクリルモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート若しくはジペンタエリスリトールペンタ(メタ)アクリレート又はこれらのアルキル変性物、アルキルエーテル変性物若しくはアルキルエステル変性物が挙げられる。 Examples of the acrylic monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol penta (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol hexa (meth) acrylate. Examples thereof include pentaerythritol penta (meth) acrylate or an alkyl-modified product thereof, an alkyl ether-modified product or an alkyl ester-modified product thereof.
 樹脂組成物中のアクリルモノマーの含有量は、バインダー樹脂(C)100質量部に対して、好ましくは10~200質量部の範囲である。 The content of the acrylic monomer in the resin composition is preferably in the range of 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin (C).
 [溶剤]
 本発明の樹脂組成物は、溶剤を含有しても構わない。溶剤としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ダイアセトンアルコール、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、シクロヘキサノールアセテート、ジメチルスルホキシド、メチルエチルケトン、酢酸イソブチル、酢酸ブチル、酢酸プロピル、酢酸イソプロピル又はアセチルアセトンが挙げられる。
[solvent]
The resin composition of the present invention may contain a solvent. Examples of the solvent include propylene glycol monomethyl ether, propylene glycol monobutyl ether, diacetone alcohol, propylene glycol monoethyl ether acetate, ethyl acetoacetate, cyclopentanone, cyclohexanone, γ-butyrolactone, ethylene glycol monobutyl ether acetate, and diethylene glycol monoethyl. Ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol methyl ether acetate, dipropylene glycol dimethyl ether, propylene glycol diacetate, 1,3-butylene glycol diacetate, cyclohexanol acetate, Examples thereof include dimethyl sulfoxide, methyl ethyl ketone, isobutyl acetate, butyl acetate, propyl acetate, isopropyl acetate or acetyl acetone.
 [重合禁止剤]
 本発明の樹脂組成物は、重合禁止剤を含有してもよい。重合禁止剤を適量含有することで、現像後の解像度が向上する。重合禁止剤としては特に限定はなく公知のものが使用でき、たとえば、ジ-t-ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、ハイドロキノン、4-メトキシフェノール、1,4-ベンゾキノン、t-ブチルカテコールが挙げられる。また、市販の重合禁止剤としては、「IRGANOX 1010」、「IRGANOX 245」、(以上、BASF製)等が挙げられる。
[Polymerization inhibitor]
The resin composition of the present invention may contain a polymerization inhibitor. By containing an appropriate amount of the polymerization inhibitor, the resolution after development is improved. The polymerization inhibitor is not particularly limited and known ones can be used. Examples thereof include dit-butylhydroxytoluene, butylhydroxyanisole, hydroquinone, 4-methoxyphenol, 1,4-benzoquinone and t-butylcatechol. .. Examples of commercially available polymerization inhibitors include "IRGANOX 1010", "IRGANOX 245", (all manufactured by BASF) and the like.
 [紫外線吸収剤]
 本発明の樹脂組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤を含有することで、得られる硬化物の耐光性が向上し、パターン加工を必要とする用途では現像後の解像度が向上する。紫外線吸収剤としては特に限定はなく公知のものが使用できるが、透明性、非着色性の面から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましく用いられる。
[UV absorber]
The resin composition of the present invention may contain an ultraviolet absorber. By containing the ultraviolet absorber, the light resistance of the obtained cured product is improved, and the resolution after development is improved in applications requiring pattern processing. The ultraviolet absorber is not particularly limited and known ones can be used, but benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferably used from the viewpoint of transparency and non-coloring property.
 [他の粒子]
 本発明の樹脂組成物は、分散性向上や、導電性をコントロールするため、有機顔料(F)や無機粒子(G)以外の他の粒子を含有しても構わない。他の粒子としては、例えば、表面被覆されていない導電性粒子若しくは金属酸化物微粒子又は無機顔料が挙げられる。
[Other particles]
The resin composition of the present invention may contain particles other than the organic pigment (F) and the inorganic particles (G) in order to improve the dispersibility and control the conductivity. Examples of other particles include conductive particles or metal oxide fine particles or inorganic pigments which are not surface-coated.
 これら他の粒子の粒子径は、1~100nmが好ましい。粒子径が1nm以上であると、分散安定化のための分散剤の使用を少なくでき、微粒子が導電性粒子(A)である場合には導電性をより向上させることができる。一方で、粒子径が100nm以下であることにより、パターンの解像度が向上し、微細なパターン形成ができる。  The particle size of these other particles is preferably 1 to 100 nm. When the particle size is 1 nm or more, the use of a dispersant for stabilizing dispersion can be reduced, and when the fine particles are conductive particles (A), the conductivity can be further improved. On the other hand, when the particle size is 100 nm or less, the resolution of the pattern is improved and a fine pattern can be formed. Twice
 [熱酸発生剤及び光酸発生剤]
 本発明の樹脂組成物は、熱酸発生剤を含有しても構わない。バインダー樹脂(C)が酸解離性基を有するバインダー樹脂である場合、発生した酸によって、酸解離性基の分解が促進され、空気下での熱処理温度を低下させることが可能となる。また、光酸発生剤を含有しても構わない。光酸発生剤は既述の通りである。
[Thermal acid generator and photoacid generator]
The resin composition of the present invention may contain a thermoacid generator. When the binder resin (C) is a binder resin having an acid dissociable group, the generated acid promotes the decomposition of the acid dissociable group, and the heat treatment temperature in air can be lowered. Further, a photoacid generator may be contained. The photoacid generator is as described above.
 熱により酸を発生する化合物である熱酸発生剤としては、例えば、SI-150L、SI-160L、SI-180L若しくはSI-200(以上、いずれも三新化学工業(株)製)、4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム若しくは2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム又はこれらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩若しくはp-トルエンスルホン酸塩が挙げられる。中でも4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム若しくは2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム又はこれらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩若しくはp-トルエンスルホン酸塩が好ましく使用できる。 Examples of the thermoacid generator, which is a compound that generates acid by heat, include SI-150L, SI-160L, SI-180L or SI-200 (all manufactured by Sanshin Chemical Industry Co., Ltd.), 4- Hydroxyphenyldimethylsulfonium, benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-acetylphenylmethylsulfonium or 2-methylbenzyl-4-benzoyloxyphenylmethylsulfonium Alternatively, these methane sulfonates, trifluoromethane sulfonates, camphor sulfonates or p-toluene sulfonates can be mentioned. Among them, 4-hydroxyphenyldimethylsulfonium, benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-acetylphenylmethylsulfonium or 2-methylbenzyl-4-benzoyloxy. Phenylmethyl sulfonium or these methane sulfonates, trifluoromethane sulfonates, camphor sulfonates or p-toluene sulfonates can be preferably used.
 本発明の樹脂組成物において、熱酸発生剤の含有量は、酸解離性基含を有するバインダー樹脂(C)中の酸解離性基の分解を促進し、無機粒子(G)同士の接触を妨げず、より高い機能を得るため、バインダー樹脂(C)100質量部に対し、好ましくは1~50質量部の範囲である。 In the resin composition of the present invention, the content of the thermoacid generator promotes the decomposition of the acid dissociable group in the binder resin (C) having the acid dissociative group, and causes the inorganic particles (G) to come into contact with each other. The range is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the binder resin (C) in order to obtain higher functions without hindering.
 [増感剤]
 本発明の樹脂組成物が光酸発生剤を含有する場合、樹脂組成物はさらに増感剤を含有しても構わない。増感剤は、熱処理により気化するもの、又は、本発明の樹脂組成物の硬化物に残存した場合においても、光照射によって退色するものが好ましく、パターン加工における高解像性の観点から、光照射によって退色するものがより好ましい。
[Sensitizer]
When the resin composition of the present invention contains a photoacid generator, the resin composition may further contain a sensitizer. The sensitizer is preferably one that vaporizes by heat treatment, or one that fades by light irradiation even when it remains in the cured product of the resin composition of the present invention, and from the viewpoint of high resolution in pattern processing, light Those that fade with irradiation are more preferable.
 熱処理により気化する、又は、光照射によって退色する増感剤としては、例えば、3,3’-カルボニルビス(ジエチルアミノクマリン)等のクマリン、9,10-アントラキノン等のアントラキノン、ベンゾフェノン、4,4’-ジメトキシベンゾフェノン、アセトフェノン、4-メトキシアセトフェノン若しくはベンズアルデヒド等の芳香族ケトン又はビフェニル、1,4-ジメチルナフタレン、9-フルオレノン、フルオレン、フェナントレン、トリフェニレン、ピレン、アントラセン、9-フェニルアントラセン、9-メトキシアントラセン、9,10-ジフェニルアントラセン、9,10-ビス(4-メトキシフェニル)アントラセン、9,10-ビス(トリフェニルシリル)アントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン(DPA;川崎化成(株)製)、9,10-ジブトキシアントラセン(DBA;川崎化成(株)製)、9,10-ジペンタオキシアントラセン、2-t-ブチル-9,10-ジブトキシアントラセン若しくは9,10-ビス(トリメチルシリルエチニル)アントラセン等の縮合芳香族が挙げられる。 Examples of the sensitizer that vaporizes by heat treatment or fades by light irradiation include coumarin such as 3,3'-carbonylbis (diethylaminocoumarin), anthracene such as 9,10-anthracene, benzophenone, and 4,4'. -Aromatic ketones such as dimethoxybenzophenone, acetophenone, 4-methoxyacetophenone or benzaldehyde or biphenyl, 1,4-dimethylnaphthalene, 9-fluorenone, fluorene, phenanthrene, triphenylene, pyrene, anthracene, 9-phenylanthracene, 9-methoxyanthracene , 9,10-diphenylanthracene, 9,10-bis (4-methoxyphenyl) anthracene, 9,10-bis (triphenylsilyl) anthracene, 9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 9, 10-Dipropoxyanthracene (DPA; manufactured by Kawasaki Kasei Co., Ltd.), 9,10-dibutoxyanthracene (DBA; manufactured by Kawasaki Kasei Co., Ltd.), 9,10-dipentaoxyanthracene, 2-t-butyl-9 , 10-Dibutoxyanthracene or 9,10-bis (trimethylsilylethynyl) anthracene and other condensed aromatics.
 熱処理により気化する増感剤としては、熱処理により昇華、蒸発又は熱分解による熱分解物が昇華若しくは蒸発するものが好ましい。増感剤の気化温度としては、乾燥温度では気化せず、熱硬化時に分解及び気化して、微粒子が導電性粒子(A)である場合には導電性粒子同士を接触及び融着させるため、150~300℃が好ましい。 As the sensitizer that vaporizes by heat treatment, it is preferable that the thermal decomposition product sublimates, evaporates or thermally decomposes by heat treatment sublimates or evaporates. As the vaporization temperature of the sensitizer, it does not vaporize at the drying temperature, but decomposes and vaporizes during thermosetting, and when the fine particles are conductive particles (A), the conductive particles are brought into contact with each other and fused to each other. It is preferably 150 to 300 ° C.
 本発明の樹脂組成物において、増感剤の含有量は、光酸発生剤を感光するための増感効果が十分となり、微粒子同士の接触を妨げず、より高い機能を得るため、バインダー樹脂(C)100質量部に対し、0.001~20質量部が好ましく、0.005~15質量部がより好ましい。 In the resin composition of the present invention, the content of the sensitizer is such that the sensitizing effect for exposing the photoacid generator is sufficient, the contact between the fine particles is not hindered, and a higher function is obtained. C) With respect to 100 parts by mass, 0.001 to 20 parts by mass is preferable, and 0.005 to 15 parts by mass is more preferable.
 [可視光に吸収を有する顔料及び/又は染料]
 本発明の樹脂組成物は、可視光に吸収を有する顔料及び/又は染料を、微粒子が導電性粒子(A)である場合には導電性粒子同士の接触及び融着を阻害しない範囲で含有しても構わない。樹脂組成物が可視光に吸収を有する無機顔料及び/又は染料を含有することより、加熱後のパターンの可視光反射を抑制できる。前記無機粒子(G)が無機顔料であることも好ましい。
[Pigments and / or dyes that absorb visible light]
The resin composition of the present invention contains a pigment and / or a dye that absorbs visible light within a range that does not hinder the contact and fusion of the conductive particles when the fine particles are the conductive particles (A). It doesn't matter. Since the resin composition contains an inorganic pigment and / or a dye that absorbs visible light, the visible light reflection of the pattern after heating can be suppressed. It is also preferable that the inorganic particles (G) are inorganic pigments.
 可視光に吸収を有する顔料としては、例えば、ラクタム系顔料、ペリレン系顔料、フタロシアニン系顔料、イソインドリン系顔料、ジアミノアントラキノン系顔料、ジオキサジン系顔料、インダントロン系顔料、カーボンブラック又は無機顔料が挙げられる。 Examples of pigments that absorb visible light include lactam pigments, perylene pigments, phthalocyanine pigments, isoindoline pigments, diaminoanthraquinone pigments, dioxazine pigments, indantron pigments, carbon black or inorganic pigments. Be done.
 青色の顔料としては、例えば、C.I.ピグメントブルー(以下、「PB」)15、PB15:1、PB15:2、PB15:3、PB15:4、PB15:5、PB15:6、PB16又はPB60が挙げられる。紫色の顔料としては、例えば、C.I.ピグメントバイオレット(以下、「PV」)19、PV23又はPV37が挙げられる。赤色の顔料としては、例えば、C.I.ピグメントレッド(以下、「PR」)149、PR166、PR177、PR179、PR209又はPR254が挙げられる。緑色の顔料としては、例えば、C.I.ピグメントグリーン(以下、「PG」)7、PG36又はPG58が挙げられる。黄色の顔料としては、例えば、C.I.ピグメントイエロー(以下、「PY」)150、PY138、PY139又はPY185が挙げられる。黒色の顔料としては、例えば、HCF、MCF、LFF、RCF、SAF、ISAF、HAF、XCF、FEF、GPF若しくはSRF等のファーネスブラック、FT若しくはMT等のサーマルブラック、チャンネルブラック又はアセチレンブラック等のカーボンブラックあるいはラクタム系顔料(例えば、“Irgaphor”(登録商標)ブラックS0100CF;BASF社製)が挙げられる。中でも、耐熱性、耐光性及び可視光の吸収性に優れるカーボンブラックが好ましく、分散性の観点から、ファーネスブラック又はラクタム系顔料がより好ましい。 Examples of blue pigments include C.I. I. Pigment Blue (hereinafter “PB”) 15, PB15: 1, PB15: 2, PB15: 3, PB15: 4, PB15: 5, PB15: 6, PB16 or PB60. Examples of the purple pigment include C.I. I. Pigment Violet (hereinafter “PV”) 19, PV23 or PV37. Examples of the red pigment include C.I. I. Pigment Red (hereinafter, "PR") 149, PR166, PR177, PR179, PR209 or PR254. Examples of the green pigment include C.I. I. Pigment green (hereinafter, "PG") 7, PG36 or PG58. Examples of the yellow pigment include C.I. I. Pigment Yellow (hereinafter, “PY”) 150, PY138, PY139 or PY185 can be mentioned. Examples of the black pigment include furnace black such as HCF, MCF, LFF, RCF, SAF, ISAF, HAF, XCF, FEF, GPF or SRF, thermal black such as FT or MT, and carbon such as channel black or acetylene black. Examples thereof include black or lactam pigments (for example, "Irgaphor" (registered trademark) Black S0100CF; manufactured by BASF). Among them, carbon black having excellent heat resistance, light resistance and visible light absorption is preferable, and furnace black or lactam pigment is more preferable from the viewpoint of dispersibility.
 本発明の樹脂組成物において、可視光に吸収を有する顔料の含有量は、組成物中の全固形分に対し、0.1~10質量%が好ましい。 In the resin composition of the present invention, the content of the pigment having absorption in visible light is preferably 0.1 to 10% by mass with respect to the total solid content in the composition.
 可視光に吸収を有する染料としては、例えば、フェロセン系染料、フルオレノン系染料、ペリレン系染料、トリフェニルメタン系染料、クマリン系染料、ジフェニルアミン系染料、キナクリドン系染料、キノフタロン系染料、フタロシアニン系染料又はキサンテン系染料が挙げられるが、耐熱性、耐光性及び可視光の吸収性に優れる黒色染料が好ましく、VALIFAST(登録商標) Black 1888、VALIFAST(登録商標) Black 3830、NUBIAN(登録商標) Black PA-2802又はOIL Black 860が好ましい。 Examples of dyes that absorb visible light include ferrocene dyes, fluorenone dyes, perylene dyes, triphenylmethane dyes, coumarin dyes, diphenylamine dyes, quinacridone dyes, quinophthalone dyes, phthalocyanine dyes, or Examples thereof include xanthene dyes, but black dyes having excellent heat resistance, light resistance and visible light absorption are preferable, and VALIFAST (registered trademark) Black 1888, VALIFAST (registered trademark) Black 3830, NUBIAN (registered trademark) Black PA- 2802 or OIL Black 860 is preferable.
 本発明の樹脂組成物において、可視光に吸収を有する染料の含有量は、組成物中の全固形分に対し、0.1~10質量%が好ましい。 In the resin composition of the present invention, the content of the dye having absorption in visible light is preferably 0.1 to 10% by mass with respect to the total solid content in the composition.
 [密着改良剤]
 本発明の樹脂組成物は、化合物(B)以外にも、さらに密着改良剤を含有できる。密着改良剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン又は3-アクリロキシプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。
[Adhesion improver]
The resin composition of the present invention may further contain an adhesion improver in addition to the compound (B). Examples of the adhesion improver include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxy. Examples thereof include silane coupling agents such as silane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-acryloxypropyltriethoxysilane.
 [界面活性剤]
 本発明の樹脂組成物は、さらに必要に応じて、界面活性剤を含有しても構わない。
[Surfactant]
The resin composition of the present invention may further contain a surfactant, if necessary.
 界面活性剤としては、例えば、ラウリル硫酸アンモニウム若しくはポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等の陰イオン界面活性剤、ステアリルアミンアセテート若しくはラウリルトリメチルアンモニウムクロライド等の陽イオン界面活性剤、ラウリルジメチルアミンオキサイド若しくはラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン等の両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル若しくはソルビタンモノステアレート等の非イオン界面活性剤、フッ素系界面活性剤又はシリコーン系界面活性剤が挙げられる。 Examples of the surfactant include an anionic surfactant such as ammonium lauryl sulfate or polyoxyethylene alkyl ether sulfate triethanolamine, a cationic surfactant such as stearylamine acetate or lauryltrimethylammonium chloride, lauryldimethylamine oxide or lauryl. Amphoteric surfactants such as carboxymethylhydroxyethyl imidazolium betaine, nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether or sorbitan monostearate, fluorosurfactants or silicone surfactants Can be mentioned.
 本発明の樹脂組成物において、界面活性剤の含有量は、塗布性及び塗膜表面の均一性を良好にするため、組成物全体に対し、0.001~10質量%が好ましい。界面活性剤の含有量が0.001質量%以上であることで、塗布性及び塗膜表面の均一性が向上する。界面活性剤の含有量は0.01質量%以上がより好ましい。一方、界面活性剤の含有量が10質量%以下であることでハジキや凹み等の塗膜欠陥や、粒子の凝集を抑制することができる。 In the resin composition of the present invention, the content of the surfactant is preferably 0.001 to 10% by mass with respect to the entire composition in order to improve the coatability and the uniformity of the coating film surface. When the content of the surfactant is 0.001% by mass or more, the coatability and the uniformity of the coating film surface are improved. The content of the surfactant is more preferably 0.01% by mass or more. On the other hand, when the content of the surfactant is 10% by mass or less, coating film defects such as repellents and dents and aggregation of particles can be suppressed.
 本発明の配線基板は、導電性粒子(A)を含有する本発明の樹脂組成物の硬化物からなる導電性パターンを具備することが好ましい。本発明の配線基板の基材は、透明基板であることが好ましい。透明基板としては、ガラス基板、樹脂フィルムが挙げられる。パターン形成時に現像液が浸透しやすく、残渣を抑制する観点より、透明基板としては、ガラス基板であることが好ましい。ガラス基板としては表面にSiO層またはSiO層を含むガラス基板、無アルカリガラス基板等があげられる。樹脂フィルムとしては、ポリイミド、ポリイミドシロキサン、ポリエーテルスルホン、ポリベンゾオキサゾール、アラミド、ポリスルホンおよびエポキシ樹脂からなる群から選ばれる少なくとも一種からなるフィルム等が挙げられる。樹脂フィルムの表面にSiO層を含んでいてもよい。これらを基材として用いることにより、本発明の樹脂組成物の硬化物からなる導電性パターンとの密着性の高い配線基板を得ることができる。 The wiring substrate of the present invention preferably has a conductive pattern made of a cured product of the resin composition of the present invention containing the conductive particles (A). The base material of the wiring board of the present invention is preferably a transparent board. Examples of the transparent substrate include a glass substrate and a resin film. The transparent substrate is preferably a glass substrate from the viewpoint that the developing solution easily permeates during pattern formation and suppresses the residue. Examples of the glass substrate include a glass substrate containing two layers of SiO or two layers of SiO on the surface, a non-alkali glass substrate, and the like. Examples of the resin film include a film made of at least one selected from the group consisting of polyimide, polyimidesiloxane, polyethersulfone, polybenzoxazole, aramid, polysulfone and epoxy resin. The surface of the resin film may contain two layers of SiO. By using these as a base material, it is possible to obtain a wiring board having high adhesion to a conductive pattern made of a cured product of the resin composition of the present invention.
 また、本発明の配線基板は、本発明の樹脂組成物の硬化物からなる導電性パターンに加え、有機成分を含む膜を有していても良い。導電性パターンを保護する観点から、有機成分を含む膜は導電性パターンの上部に形成することが好ましい。有機成分を含む膜を有することで、外力などによるキズを防ぐことができ、信頼性の高い配線基板を得ることができる。 Further, the wiring board of the present invention may have a film containing an organic component in addition to a conductive pattern made of a cured product of the resin composition of the present invention. From the viewpoint of protecting the conductive pattern, it is preferable that the film containing an organic component is formed on the upper part of the conductive pattern. By having a film containing an organic component, it is possible to prevent scratches due to an external force or the like, and a highly reliable wiring board can be obtained.
 また、本発明の配線基板は、タッチパネル用部材として好適に用いることができる。タッチパネル用部材として用いる場合、メッシュ状に配置したタッチセンサ配線とタッチセンサ配線を接続する引回し配線に用いることができる。さらに、タッチセンサ配線と引回し配線を同時に形成することも好ましい。本発明の配線基板の基材をカバーガラスとして用いても良いし、本発明の配線基板上にOCAを介してカバー材を貼合しても良い。 Further, the wiring board of the present invention can be suitably used as a member for a touch panel. When used as a touch panel member, it can be used for routing wiring that connects the touch sensor wiring arranged in a mesh shape and the touch sensor wiring. Further, it is also preferable to form the touch sensor wiring and the routing wiring at the same time. The base material of the wiring substrate of the present invention may be used as the cover glass, or the cover material may be bonded onto the wiring substrate of the present invention via OCA.
 本発明の配線基板は、前記導電性パターンの幅が1~6μmであることが好ましい。導電性パターンの幅が1μm以上であることで、異物などによる欠陥の影響を受けにくく、所望の形状の導電性パターンを形成することができる。一方、導電性パターンの幅が6μm以下であることにより配線が視認されにくくなる。導電性パターンの幅は4μm以下がより好ましい。 In the wiring board of the present invention, the width of the conductive pattern is preferably 1 to 6 μm. When the width of the conductive pattern is 1 μm or more, it is not easily affected by defects caused by foreign substances and the like, and a conductive pattern having a desired shape can be formed. On the other hand, when the width of the conductive pattern is 6 μm or less, it becomes difficult to visually recognize the wiring. The width of the conductive pattern is more preferably 4 μm or less.
 本発明の配線基板は、さらに黒色層を有することが好ましい。黒色層を有することで、配線パターンの反射率を低減して外光反射を抑制できると共に、配線見えを抑制し視認性を大幅に向上できる。黒色層の形成方法としては、配線パターンを形成した後に黒色ポジ型感光性組成物を全面に塗布し、基材面から配線パターンを介して露光することで、配線パターン上部を残して現像液可溶とし、現像により除去する方法が挙げられる。 The wiring board of the present invention preferably further has a black layer. By having the black layer, the reflectance of the wiring pattern can be reduced to suppress the reflection of external light, and the visibility of the wiring can be suppressed to greatly improve the visibility. As a method for forming the black layer, after forming the wiring pattern, a black positive photosensitive composition is applied to the entire surface and exposed from the base material surface via the wiring pattern, so that the developing solution can be used leaving the upper part of the wiring pattern. Examples thereof include a method of melting and removing by development.
 [樹脂組成物の製造方法]
 本発明の樹脂組成物は、微粒子、化合物(B)、並びにバインダー樹脂(C)を混合させた後、ボールミルや、サンドグラインダー、3本ロールミル、マイルド分散機、メディアレス分散機等の分散機を用いて製造される。微粒子を均一に分散したい場合は、分散剤を用いて、予め有機溶剤中に微粒子を分散させた分散液を調製し、この分散液を、モノマー、ポリマー、密着改良剤、界面活性剤及び重合禁止剤等を含有する溶液と混合する方法により製造しても良い。特に、炭素を含む被覆層を有する無機粒子(G)の分散液は、表面被覆層が損傷を受けるのを防ぐために、マイルド分散機又はメディアレス分散機を用いて分散させることが好ましく、メディアレス分散機を用いて分散させることがより好ましい。炭素を含む被覆層を有する無機粒子(G)の分散液は、例えば、マイルド分散機ナノゲッター(登録商標)(アシザワファインテック(株))又は高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー(株))等の分散機を用いて、有機溶剤中に炭素を含む被覆層を有する無機粒子(G)を分散させて製造される。
[Manufacturing method of resin composition]
The resin composition of the present invention is prepared by mixing fine particles, compound (B), and binder resin (C), and then using a ball mill, a sand grinder, a three-roll mill, a mild disperser, a medialess disperser, or the like. Manufactured using. If you want to disperse the fine particles uniformly, use a dispersant to prepare a dispersion in which the fine particles are dispersed in an organic solvent in advance, and use this dispersion as a monomer, polymer, adhesion improver, surfactant, and polymerization inhibitor. It may be produced by a method of mixing with a solution containing an agent or the like. In particular, the dispersion liquid of the inorganic particles (G) having a coating layer containing carbon is preferably dispersed using a mild disperser or a medialess disperser in order to prevent the surface coating layer from being damaged, and is medialess. It is more preferable to disperse using a disperser. The dispersion liquid of the inorganic particles (G) having a coating layer containing carbon is, for example, a mild disperser Nanogetter (registered trademark) (Ashizawa Finetech Co., Ltd.) or a high-pressure wet medialess atomizer Nanomizer (Namizer Co., Ltd.). ) Or the like, and inorganic particles (G) having a coating layer containing carbon are dispersed in an organic solvent.
 [導電性および着色パターンの製造方法]
 本発明の導電性パターンの製造方法は、本発明の樹脂組成物を基板上に所望のパターン形状となるように塗布して塗布膜を得る塗布工程と、前記塗布膜を乾燥して乾燥膜を得る乾燥工程と、前記乾燥膜を加熱して導電膜を得る加熱工程と、を備える。
[Manufacturing method of conductive and colored patterns]
The method for producing a conductive pattern of the present invention includes a coating step of applying the resin composition of the present invention on a substrate so as to have a desired pattern shape to obtain a coating film, and drying the coating film to form a dry film. The drying step of obtaining the drying film and the heating step of heating the dried film to obtain a conductive film are provided.
 本発明の導電性パターンの製造方法は、本発明の樹脂組成物を基板上に所望のパターン形状となるように塗布して塗布膜を得る塗布工程を含む。 The method for producing a conductive pattern of the present invention includes a coating step of applying the resin composition of the present invention on a substrate so as to have a desired pattern shape to obtain a coating film.
 塗布工程で用いる基材としては、例えば、シリコンウエハー、セラミックス基板又は有機系基板が挙げられる。セラミックス基板としては、例えば、ソーダガラス、表面にSiOをスパッタリングしたソーダガラス、無アルカリガラス、ホウケイ酸ガラス若しくは石英ガラス等のガラス基板、アルミナ基板、窒化アルミニウム基板又は炭化ケイ素基板が挙げられる。有機系基板としては、例えば、エポキシ基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ポリイミドフィルム又はポリエステルフィルムが挙げられる。 Examples of the base material used in the coating step include a silicon wafer, a ceramic substrate, and an organic substrate. Examples of the ceramic substrate include soda glass, soda glass obtained by sputtering SiO 2 on the surface, non-alkali glass, glass substrate such as borosilicate glass or quartz glass, alumina substrate, aluminum nitride substrate or silicon carbide substrate. Examples of the organic substrate include an epoxy substrate, a polyetherimide resin substrate, a polyetherketone resin substrate, a polysulfone resin substrate, a polyimide film or a polyester film.
 本発明の樹脂組成物を基材面上に塗布する方法としては、例えば、スピンコーター、バーコーター、ブレードコーター、ロールコーター、ダイコーター、カレンダーコーター若しくはメニスカスコーターを用いた塗布、スクリーン印刷、スプレー塗布又はディップコートが挙げられる。 Examples of the method of applying the resin composition of the present invention on the surface of the base material include coating using a spin coater, bar coater, blade coater, roll coater, die coater, calendar coater or meniscus coater, screen printing, and spray coating. Alternatively, a dip coat may be mentioned.
 本発明の導電性パターンの製造方法は、塗布膜を乾燥して乾燥膜を得る乾燥工程を含む。 The method for producing a conductive pattern of the present invention includes a drying step of drying a coating film to obtain a dried film.
 乾燥工程における乾燥方法としては、例えば、ホットプレート、熱風乾燥機(オーブン)、減圧乾燥、真空乾燥又は赤外線照射による乾燥が挙げられる。 Examples of the drying method in the drying step include a hot plate, a hot air dryer (oven), vacuum drying, vacuum drying, and drying by infrared irradiation.
 乾燥の温度及び時間は、樹脂組成物の組成や、乾燥する塗布膜の膜厚によって適宜決定すればよいが、50~150℃の温度範囲で10秒~30分加熱することが好ましい。 The drying temperature and time may be appropriately determined depending on the composition of the resin composition and the film thickness of the coating film to be dried, but it is preferable to heat in a temperature range of 50 to 150 ° C. for 10 seconds to 30 minutes.
 中でも、ホットプレート又は熱風乾燥機(オーブン)での加熱と、減圧乾燥とを併用することが、塗布膜が含有する樹脂の熱硬化を抑制しながら、溶剤を乾燥除去できるため、好ましい。減圧乾燥の到達圧力としては、5~200Paが好ましく、10~100Paがより好ましい。 Above all, it is preferable to use both heating with a hot plate or a hot air dryer (oven) and vacuum drying together because the solvent can be dried and removed while suppressing the thermosetting of the resin contained in the coating film. The ultimate pressure for vacuum drying is preferably 5 to 200 Pa, more preferably 10 to 100 Pa.
 本発明の導電性パターンの製造方法は、乾燥膜を加熱して導電膜を得る加熱工程を含む。 The method for producing a conductive pattern of the present invention includes a heating step of heating a dry film to obtain a conductive film.
 樹脂組成物の乾燥膜を加熱することで導電性を得ると同時に、化合物(B)がアミノ基を有するようになり、炭素を含む被覆層を有する無機粒子(G)の被覆層と相互作用するため、基材との密着性が向上する。 By heating the dry film of the resin composition, conductivity is obtained, and at the same time, the compound (B) has an amino group and interacts with the coating layer of the inorganic particles (G) having a coating layer containing carbon. Therefore, the adhesion with the base material is improved.
 加熱工程における加熱方法としては、乾燥工程と同様のものが挙げられる。加熱の雰囲気、温度及び時間は、樹脂組成物の組成や、加熱する塗布膜の膜厚によって適宜決定すればよいが、空気中、100~300℃の温度範囲で、5~120分加熱することが好ましい。150~270℃がさらに好ましく、より好ましくは、160~260℃の温度範囲で、30~120分の加熱である。 Examples of the heating method in the heating process include the same as in the drying process. The atmosphere, temperature and time of heating may be appropriately determined depending on the composition of the resin composition and the film thickness of the coating film to be heated, but heating in air in a temperature range of 100 to 300 ° C. for 5 to 120 minutes. Is preferable. 150 to 270 ° C. is more preferable, and heating in the temperature range of 160 to 260 ° C. for 30 to 120 minutes is more preferable.
 また、前述の乾燥工程と加熱工程の間に、前記乾燥膜を露光して露光膜を得る露光工程と、前記露光膜を現像してパターンを形成する現像工程を備え、フォトリソ法により導電性パターンを形成することも好ましい。この場合、露光工程では化合物(B)はアミノ基を有さず、無機粒子(G)と反応しないため、続く現像工程において現像液溶解性が良好であり現像残渣のない良好なパターンを形成できる。パターン形成した後、加熱工程においてアミノ基が発現し、基材との密着性を向上できる。 Further, between the above-mentioned drying step and heating step, an exposure step of exposing the dry film to obtain an exposure film and a development step of developing the exposure film to form a pattern are provided, and a conductive pattern is formed by a photolithography method. It is also preferable to form. In this case, since the compound (B) does not have an amino group and does not react with the inorganic particles (G) in the exposure step, it is possible to form a good pattern having good developer solubility and no development residue in the subsequent developing step. .. After the pattern is formed, an amino group is expressed in the heating step, and the adhesion to the substrate can be improved.
 露光工程で用いる光源としては、例えば、水銀灯のj線、i線、h線又はg線が好ましい。 As the light source used in the exposure step, for example, j-line, i-line, h-line or g-line of a mercury lamp is preferable.
 現像工程でアルカリ性現像液に用いるアルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム若しくはアンモニア水等の無機アルカリ類、エチルアミン若しくはn-プロピルアミン等の1級アミン類、ジエチルアミン若しくはジ-n-プロピルアミン等の2級アミン類、トリエチルアミン若しくはメチルジエチルアミン等の3級アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、コリン等の4級アンモニウム塩、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール若しくはジエチルアミノエタノール等のアルコールアミン類又はピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン若しくはモルホリン等の環状アミン類等の有機アルカリ類が挙げられるが、これらにエタノール、γーブチロラクトン、ジメチルホルムアミド又はN-メチル-2-ピロリドン等の水溶性有機溶剤を適宜加えても構わない。 Examples of the alkaline substance used in the alkaline developing solution in the developing step include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate or aqueous ammonia, ethylamine or n-propyl. Primary amines such as amines, secondary amines such as diethylamine or di-n-propylamine, tertiary amines such as triethylamine or methyldiethylamine, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH) , Tertiary ammonium salts such as choline, triethanolamine, diethanolamine, monoethanolamine, alcohol amines such as dimethylaminoethanol or diethylaminoethanol, or pyrrole, piperidine, 1,8-diazabicyclo [5,4,0] -7- Examples include organic alkalis such as undecene, 1,5-diazabicyclo [4,3,0] -5-nonane or cyclic amines such as morpholin, and these include ethanol, γ-butyrolactone, dimethylformamide or N-methyl-. 2-A water-soluble organic solvent such as pyrrolidone may be added as appropriate.
 また、より良好な導電性パターンを得るため、これらのアルカリ性現像液にさらに非イオン系界面活性剤等の界面活性剤を0.01~1質量%添加することも好ましい。 Further, in order to obtain a better conductive pattern, it is also preferable to add 0.01 to 1% by mass of a surfactant such as a non-ionic surfactant to these alkaline developers.
 導電性パターンを基板上にメッシュ状に形成すれば、タッチパネル、液晶若しくは有機EL等のディスプレイパネル又はウェアラブル端末等が具備する、透明導電配線として使用することができる。 If the conductive pattern is formed in a mesh shape on the substrate, it can be used as a transparent conductive wiring provided in a touch panel, a display panel such as a liquid crystal display or an organic EL, a wearable terminal, or the like.
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。合成例及び実施例に用いた化合物のうち、略語を使用しているものについて、以下に示す。
AIBN:2,2’-アゾビス(イソブチロニトリル)
TMAH:テトラメチルアンモニウムヒドロキサイド。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Among the compounds used in the synthesis examples and examples, those using abbreviations are shown below.
AIBN: 2,2'-azobis (isobutyronitrile)
TMAH: Tetramethylammonium hydroxide.
 まず、実施例及び比較例で用いた材料について説明する。 First, the materials used in Examples and Comparative Examples will be described.
 [有機顔料(F)]
 (F-1)スルホン酸基により表面が修飾されたカーボンブラック(キャボット製TPK1227)。
[Organic pigment (F)]
(F-1) Carbon black (TPK1227 manufactured by Cabot) whose surface is modified with a sulfonic acid group.
 (F-2)特殊な表面処理を行っていないカーボンブラック(三菱ケミカル製MA-100)
 [炭素を含む被覆層を有する無機粒子(G)]
 (A-1)該被覆層の平均厚みが3nmで、1次粒子径が50nmの銀粒子(日清エンジニアリング株式会社製)。濃度1質量%の水の懸濁液のpHが8.0。
(F-2) Carbon black without special surface treatment (MA-100 manufactured by Mitsubishi Chemical Corporation)
[Inorganic particles (G) having a coating layer containing carbon]
(A-1) Silver particles having an average thickness of 3 nm and a primary particle size of 50 nm (manufactured by Nisshin Engineering Co., Ltd.). The pH of a suspension of water with a concentration of 1% by mass is 8.0.
 (A-2)該被覆層の平均厚みが3nmで、1次粒子径が40nmの銀粒子(日清エンジニアリング株式会社製)。濃度1質量%の水の懸濁液のpHが4.5。 (A-2) Silver particles having an average thickness of 3 nm and a primary particle size of 40 nm (manufactured by Nisshin Engineering Co., Ltd.). The pH of a suspension of water with a concentration of 1% by mass is 4.5.
 (A-3)1次粒子径が200nmの銀粒子(品名:DJA03N;東洋化学工業株式会社製)。濃度1質量%の水の懸濁液のpHが5.0。炭素を含む被覆層なし。 (A-3) Silver particles with a primary particle size of 200 nm (product name: DJA03N; manufactured by Toyo Kagaku Kogyo Co., Ltd.). The pH of a suspension of water with a concentration of 1% by mass is 5.0. No coating layer containing carbon.
 [一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B)]
 (B-1)KBM-585:3-ウレイドプロピルトリメトキシシラン(信越化学株式会社製)
 (B-2)KBE-585:3-ウレイドプロピルトリエトキシシラン(信越化学株式会社製)
 (B-3)KBE-9007:3-イソシアネートプロピルトリエトキシシラン(信越化学株式会社製)
 (B’-4)KBE-903:3-アミノプロピルトリエトキシシラン(信越化学株式会社製)。
[Compound (B) having a functional group that produces an amino group by heat and a structure represented by the general formula (1)]
(B-1) KBM-585: 3-ureidopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
(B-2) KBE-585: 3-ureidopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
(B-3) KBE-9007: 3-Isocyanatepropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
(B'-4) KBE-903: 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.).
 [バインダー樹脂(C)]
 (C-1)
 500mlのフラスコにAIBNを2.0g、PGMEAを50g仕込んだ。その後、メタクリル酸を38.7g、ベンジルメタクリレートを79.3g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、バインダー樹脂(C-1)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは18,000であった。
[Binder resin (C)]
(C-1)
2.0 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 38.7 g of methacrylic acid, 79.3 g of benzyl methacrylate, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of the binder resin (C-1). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 18,000.
 (C-2)
 500mlのフラスコにAIBNを1.5g、PGMEAを50g仕込んだ。その後、メタクリル酸を38.7g、スチレンを46.9g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、バインダー樹脂(C-2)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは14,000であった。
(C-2)
1.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 38.7 g of methacrylic acid, 46.9 g of styrene, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, and the mixture was stirred at room temperature for a while and inside the flask. Was sufficiently replaced with nitrogen by bubbling, and then heated and stirred at 70 ° C. for 5 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of the binder resin (C-2). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 14,000.
 [分散剤]
 DISPERBYK(登録商標)21116(ビックケミー・ジャパン株式会社製)。
[Dispersant]
DISPERBYK (registered trademark) 21116 (manufactured by Big Chemie Japan Co., Ltd.).
 [溶剤]
 PGMEA:プロピレングリコールモノメチルエーテルアセテート(三協化学(株)製)
 DPM:ジプロピレングリコールモノメチルエーテル(東邦化学工業(株)製)。
[solvent]
PGMEA: Propylene glycol monomethyl ether acetate (manufactured by Sankyo Chemical Co., Ltd.)
DPM: Dipropylene glycol monomethyl ether (manufactured by Toho Chemical Industry Co., Ltd.).
 [光重合開始剤]
 NCI-831E(登録商標)(オキシムエステル系化合物;ADEKA(株)製)。
[Photopolymerization initiator]
NCI-831E (registered trademark) (oxime ester compound; manufactured by ADEKA Corporation).
 [アクリルモノマー]
 ライトアクリレート(登録商標)PE-3A(共栄社化学(株)製)。
[Acrylic monomer]
Light acrylate (registered trademark) PE-3A (manufactured by Kyoeisha Chemical Co., Ltd.).
 ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製DPHA)。 Dipentaerythritol hexaacrylate (DPHA manufactured by Nippon Kayaku Co., Ltd.).
 [ポジ型フォトレジスト]
 (P-1)
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF;セントラル硝子(株)製)29.3g(0.08モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3-アミノフェノール3.27g(0.03モル)をN-メチル-2-ピロリドン(NMP)150gに溶解した。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(ODPA;マナック(株)製)31.0g(0.1モル)をNMP50gとともに加えて、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド樹脂を得た。
[Positive photoresist]
(P-1)
2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF; manufactured by Central Glass Co., Ltd.) 29.3 g (0.08 mol), 1,3-bis (3) under a dry nitrogen stream. 1.24 g (0.005 mol) of -aminopropyl) tetramethyldisiloxane, 3.27 g (0.03 mol) of 3-aminophenol as an end-capping agent to 150 g of N-methyl-2-pyrrolidone (NMP) Dissolved. To this, 31.0 g (0.1 mol) of 3,3', 4,4'-diphenyl ether tetracarboxylic dianhydride (ODPA; manufactured by Manac Co., Ltd.) was added together with 50 g of NMP, and the mixture was stirred at 20 ° C. for 1 hour. Then, the mixture was stirred at 50 ° C. for 4 hours. Then, 15 g of xylene was added, and the mixture was stirred at 150 ° C. for 5 hours while azeotropically boiling water with xylene. After the stirring was completed, the solution was poured into 3 L of water to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried in a vacuum dryer at 80 ° C. for 24 hours to obtain a polyimide resin.
 また、別途、乾燥窒素気流下、TrisP-HAP(本州化学工業(株)製)、15.3gと5-ナフトキノンジアジドスルホニル酸クロリド40.3gを1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.2gを系内が35℃以上にならないように滴下した。滴下後、30℃で2時間攪拌した。トリエチルアミン塩をろ過し、濾液を水に投入させた。その後析出した沈殿を真空乾燥機で乾燥し、キノンジアジド化合物を得た。 Separately, under a dry nitrogen stream, 15.3 g of TrisP-HAP (manufactured by Honshu Chemical Industry Co., Ltd.) and 40.3 g of 5-naphthoquinonediazidosulfonyl acid chloride were dissolved in 450 g of 1,4-dioxane to bring the temperature to room temperature. .. Here, 15.2 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system did not rise above 35 ° C. After the dropping, the mixture was stirred at 30 ° C. for 2 hours. The triethylamine salt was filtered and the filtrate was added to water. Then, the precipitated precipitate was dried in a vacuum dryer to obtain a quinonediazide compound.
 得られたポリイミド樹脂11.0g、キノンジアジド化合物4.0g、乳酸エチルを63.75g及びPGMEA21.25gを100mlのPPボトルに加え、撹拌した。次に、0.2μmのフィルターでろ過を行い、ポジ型フォトレジスト(P-1)を得た。 11.0 g of the obtained polyimide resin, 4.0 g of the quinonediazide compound, 63.75 g of ethyl lactate and 21.25 g of PGMEA were added to a 100 ml PP bottle and stirred. Next, filtration was performed with a 0.2 μm filter to obtain a positive photoresist (P-1).
 [基板]
 (S-1)表面にSiOをスパッタリングしたガラス基板(TU060;TOKEN社製)
 (S-2)無アルカリガラス基板(OA-10G;日本電気硝子株式会社製)
 (S-3)ポリイミドフィルム(ネオプリム;三菱ガス化学株式会社製)。
[substrate]
(S-1) Glass substrate with SiO 2 sputtered on the surface (TU060; manufactured by TOKEN)
(S-2) Non-alkali glass substrate (OA-10G; manufactured by Nippon Electric Glass Co., Ltd.)
(S-3) Polyimide film (Neoprim; manufactured by Mitsubishi Gas Chemical Company, Inc.).
 実施例1~14、比較例1~3
 <導電性評価>
 樹脂組成物1については、(S-1)基板上に、スピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、500rpmで1秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で5分間プリベークし、膜厚1μmのプリベーク膜を得た。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、樹脂組成物1からなるベタ膜を得た。得られたベタ膜上に、ポジ型フォトレジスト(P-1)をスピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、1000rpmで5秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で2分間プリベークし、膜厚1μmのプリベーク膜を得た。プリベーク膜をパラレルライトマスクアライナー(キヤノン(株)製「PLA-501F(商品名)」)を用いて超高圧水銀灯を光源とし、所望のマスクを介して露光した。この後、自動現像装置(滝沢産業(株)製「AD-1200(商品名)」)を用いて、2.38wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。得られた基板を濃度55%硝酸第2鉄水溶液へ浸漬させることでエッチングし、露光、現像することでレジストを剥離した。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、体積抵抗率評価パターンを得た。
Examples 1 to 14, Comparative Examples 1 to 3
<Evaluation of conductivity>
The resin composition 1 is spun on the (S-1) substrate using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) under the conditions of 300 rpm for 10 seconds and 500 rpm for 1 second. After coating, the substrate was prebaked at 100 ° C. for 5 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) to obtain a prebaked film having a film thickness of 1 μm. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed at 230 ° C. for 30 minutes (in the air) to obtain a solid film made of the resin composition 1. On the obtained solid film, a positive photoresist (P-1) was applied using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) at 300 rpm for 10 seconds and at 1000 rpm for 5 seconds. The substrate was spin-coated with a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 2 minutes to obtain a prebaked film having a film thickness of 1 μm. The prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask. After that, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 2.38 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed. Was done. The obtained substrate was etched by immersing it in a ferric nitrate aqueous solution having a concentration of 55%, and the resist was peeled off by exposure and development. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed at 230 ° C. for 30 minutes (in air) to obtain a volume resistivity evaluation pattern.
 樹脂組成物2~17については、(S-1)~(S-3)各基板上に、スピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、500rpmで1秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で5分間プリベークし、膜厚1μmのプリベーク膜を得た。プリベーク膜をパラレルライトマスクアライナー(キヤノン(株)製「PLA-501F(商品名)」)を用いて超高圧水銀灯を光源とし、所望のマスクを介して露光した。この後、自動現像装置(滝沢産業(株)製「AD-1200(商品名)」)を用いて、0.07wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、体積抵抗率評価パターンを得た。 For the resin compositions 2 to 17, a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) was used on each of the substrates (S-1) to (S-3) at 300 rpm for 10 seconds. , Spin-coated at 500 rpm for 1 second, and prebaked the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 5 minutes to obtain a film thickness of 1 μm. A prebake film was obtained. The prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask. After that, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed. Was done. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed at 230 ° C. for 30 minutes (in air) to obtain a volume resistivity evaluation pattern.
 得られた体積抵抗率評価パターンについて、表面抵抗測定機(ロレスタ(登録商標)-FP;三菱油化株式会社製)で測定した表面抵抗値ρs(Ω/□)と、表面粗さ形状測定機(サーフコム(登録商標)1400D;株式会社東京精密製)にて測定した膜厚t(cm)とを測定し、両値を乗算することで、体積抵抗率(μΩ・cm)を算出した。 Regarding the obtained volume resistivity evaluation pattern, the surface resistance value ρs (Ω / □) measured by a surface resistance measuring machine (Loresta (registered trademark) -FP; manufactured by Mitsubishi Yuka Co., Ltd.) and a surface roughness shape measuring machine. (The thickness t (cm) measured by Surfcom (registered trademark) 1400D; manufactured by Tokyo Seimitsu Co., Ltd.) was measured, and the volume resistivity (μΩ · cm) was calculated by multiplying both values.
 <密着性評価>
 樹脂組成物1については、(S-1)上に、スピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、500rpmで1秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で5分間プリベークし、膜厚1μmのプリベーク膜を得た。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、樹脂組成物1からなるベタ膜を得た。
<Adhesion evaluation>
The resin composition 1 is spin-coated on (S-1) using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) under the conditions of 300 rpm for 10 seconds and 500 rpm for 1 second. Then, the substrate was prebaked at 100 ° C. for 5 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) to obtain a prebaked film having a film thickness of 1 μm. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking was performed at 230 ° C. for 30 minutes (in the air) to obtain a solid film made of the resin composition 1.
 樹脂組成物2~17については別途、(S-1)~(S-3)各基板上に、スピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、500rpmで1秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で5分間プリベークし、膜厚1μmのプリベーク膜を得た。プリベーク膜をパラレルライトマスクアライナー(キヤノン(株)製「PLA-501F(商品名)」)を用いて超高圧水銀灯を光源とし、マスクを介さずに露光した。この後、自動現像装置(滝沢産業(株)製「AD-1200(商品名)」)を用いて、0.07wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、樹脂組成物2~17それぞれの樹脂組成物からなるベタ膜を得た。 Separately, for the resin compositions 2 to 17, a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.) was used on each of the substrates (S-1) to (S-3) at 300 rpm for 10 Spin coat at 500 rpm for 1 second, and prebak the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 5 minutes to achieve a film thickness of 1 μm. Pre-baked film was obtained. The prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and without using a mask. Then, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, and then rinse with water for 30 seconds. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking is performed at 230 ° C. for 30 minutes (in the air) to make the resin compositions 2 to 17 solid. A membrane was obtained.
 得られたベタ膜について、基材との密着性を評価した。具体的には、JIS K5600-5-6(1999年)に準拠して、5B~0Bの6段階評価(数字が大きい程、密着性が高い)によるクロスカット試験を行った。なお、密着性が2B以下であると、硬化物の剥離によるタッチパネルの動作不良等を引き起こしかねないため、密着性は3B以上であることが好ましく、4B以上であることがより好ましい。 The obtained solid film was evaluated for its adhesion to the substrate. Specifically, a cross-cut test was conducted in accordance with JIS K5600-5-6 (1999) by a 6-grade evaluation of 5B to 0B (the larger the number, the higher the adhesion). If the adhesion is 2B or less, the touch panel may malfunction due to peeling of the cured product. Therefore, the adhesion is preferably 3B or more, and more preferably 4B or more.
 <パターニング性評価>
 樹脂組成物2~17を、(S-1)~(S-3)各基板上に、スピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて300rpmで10秒、500rpmで1秒の条件でスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で5分間プリベークし、膜厚1μmのプリベーク膜を得た。プリベーク膜をパラレルライトマスクアライナー(キヤノン(株)製「PLA-501F(商品名)」)を用いて超高圧水銀灯を光源とし、所望のマスクを介して露光した。この後、自動現像装置(滝沢産業(株)製「AD-1200(商品名)」)を用いて、0.07wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。露光、現像後、5μmのラインアンドスペースパターンを1対1の幅に形成する露光量における現像後の最小パターン寸法を測定し、解像度とした。露光量はI線照度計で測定した。
<Evaluation of patterning property>
Resin compositions 2 to 17 are applied onto the substrates (S-1) to (S-3) at 300 rpm for 10 seconds using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.). Spin-coat at 500 rpm for 1 second, pre-bake the substrate using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.) at 100 ° C. for 5 minutes, and pre-bake with a film thickness of 1 μm. A film was obtained. The prebake film was exposed using a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) using an ultrahigh pressure mercury lamp as a light source and through a desired mask. After that, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed. Was done. After exposure and development, the minimum pattern size after development at the exposure amount for forming a line-and-space pattern of 5 μm in a width of 1: 1 was measured and used as the resolution. The amount of exposure was measured with an I-line illuminometer.
 <基板上残渣評価>
 上記の樹脂組成物2~17による体積抵抗率評価パターンが形成された基板の未露光部分について、透過率評価により、基板上の残渣を評価した。具体的には、未露光部分について、膜形成前後の400nmにおける透過率を、分光光度計(U-3410;日立製作所株式会社製)を用いて測定した。そして、膜形成前の透過率をT、膜形成後の透過率をTとしたときに、式(T-T)/T×100で表される透過率変化を算出した。透過率変化が1.0%以下である場合は、残渣抑制の効果が十分であると判断した。
<Evaluation of residue on substrate>
The residue on the substrate was evaluated by the transmittance evaluation of the unexposed portion of the substrate on which the volume resistivity evaluation pattern formed by the above resin compositions 2 to 17 was formed. Specifically, for the unexposed portion, the transmittance at 400 nm before and after the film formation was measured using a spectrophotometer (U-3410; manufactured by Hitachi, Ltd.). Then, when the transmittance before film formation was T 0 and the transmittance after film formation was T, the change in transmittance represented by the formula (T 0 −T) / T 0 × 100 was calculated. When the change in transmittance was 1.0% or less, it was judged that the effect of suppressing the residue was sufficient.
 (実施例1)
 炭素を含む被覆層を有する導電性粒子(A-1)80.00g、DISPERBYK21116を2.00g、PGMEA100.00g、DPM100.00gに対し、ホモジナイザーにて、1200rpm、30分の混合処理を施し、さらに、高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー(株))を用いて分散して、銀粒子分散体を得た。この銀微粒子分散体282.00gに対し、一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B-1)0.50g、固形分濃度40質量%のバインダー樹脂(C-1)を43.75g混合したものに、PGMEA73.75g、DPM100.00gを添加し撹拌することにより、樹脂組成物1を得た。
(Example 1)
80.00 g of conductive particles (A-1) having a coating layer containing carbon, 2.00 g of DISPERBYK21116, 100.00 g of PGMEA, and 100.00 g of DPM are mixed with a homogenizer at 1200 rpm for 30 minutes, and further. , High-pressure wet medialess atomizer Nanomizer (Namizer Co., Ltd.) was used for dispersion to obtain a silver particle dispersion. A binder having a structure represented by the general formula (1) and a compound (B-1) having a functional group that produces an amino group by heat, 0.50 g, and a solid content concentration of 40% by mass, based on 282.00 g of this silver fine particle dispersion. A resin composition 1 was obtained by adding 73.75 g of PGMEA and 100.00 g of DPM to a mixture of 43.75 g of the resin (C-1) and stirring the mixture.
 導電性及び密着性評価の結果を、表1に示す。 Table 1 shows the results of conductivity and adhesion evaluation.
 (実施例2)
 まず、炭素を含む被覆層を有する導電性粒子(A-1)80.00g、DISPERBYK21116を2.00g、PGMEA100.00g、DPM100.00gに対し、ホモジナイザーにて、1200rpm、30分の混合処理を施し、さらに、高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー(株))を用いて分散して、銀粒子分散体を得た。この銀微粒子分散体282.00gに対し、一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B-1)0.50g、固形分濃度40質量%のバインダー樹脂(C-1)を25.00g、(D)感光剤であるNCI-831Eを1.50g、PE-3Aを6.00g混合したものに、PGMEA85.00g、DPM100.00gを添加し撹拌することにより、樹脂組成物2を得た。
(Example 2)
First, 80.00 g of conductive particles (A-1) having a coating layer containing carbon, 2.00 g of DISPERBYK21116, 100.00 g of PGMEA, and 100.00 g of DPM were mixed with a homogenizer at 1200 rpm for 30 minutes. Further, the silver particle dispersion was obtained by dispersing using a high-pressure wet medialess atomizer nanomizer (Namogenizer Co., Ltd.). A binder having a structure represented by the general formula (1) and a compound (B-1) having a functional group that produces an amino group by heat, 0.50 g, and a solid content concentration of 40% by mass, based on 282.00 g of this silver fine particle dispersion. Add 85.00 g of PGMEA and 100.00 g of DPM to a mixture of 25.00 g of resin (C-1), 1.50 g of NCI-831E (D) photosensitizer, and 6.00 g of PE-3A, and stir. As a result, the resin composition 2 was obtained.
 パターニング性、導電性、基板上残渣及び密着性評価の結果を、表1に示す。 Table 1 shows the results of patterning property, conductivity, residue on the substrate and adhesion evaluation.
 (実施例3~14及び比較例1~3)
 実施例2と同様の方法で、表1~2記載の組成の感光性樹脂組成物3~17を得て、それぞれの感光性樹脂組成物について表1~2記載の基板上で実施例2と同様の評価をした。評価結果を、表1~2に示す。
(Examples 3 to 14 and Comparative Examples 1 to 3)
In the same manner as in Example 2, photosensitive resin compositions 3 to 17 having the compositions shown in Tables 1 and 2 were obtained, and the respective photosensitive resin compositions were subjected to the same method as in Example 2 on the substrates shown in Tables 1 and 2. A similar evaluation was made. The evaluation results are shown in Tables 1 and 2.
 (実施例15~19、比較例4~5)
 (着色樹脂組成物1)
 スルホン酸基により表面が修飾されたカーボンブラック(キャボット製TPK1227)300g、アクリルポリマー(C-1)のプロピレングリコールモノメチルエーテルアセテート(PGMEA)40重量%溶液150g、高分子分散剤として3級アミノ基と4級アンモニウム塩を有する“DISPERBYK”(登録商標)LPN-21116を37.5gおよびPGMEA1012.5gをタンクに仕込み、ホモミキサーで20分撹拌し、予備分散液を得た。0.05mmφジルコニアビーズを75体積%充填した遠心分離セパレーターを具備した寿工業(株)製分散機ウルトラアペックスミルに、得られた予備分散液を供給し、回転速度8m/sで3時間分散を行い、固形分濃度25重量%、着色材/樹脂(重量比)=80/20の着色材分散液Bk-1を得た。
(Examples 15 to 19, Comparative Examples 4 to 5)
(Colored Resin Composition 1)
300 g of carbon black (TPK1227 manufactured by Cabot) whose surface was modified with a sulfonic acid group, 150 g of a 40 wt% solution of propylene glycol monomethyl ether acetate (PGMEA) of acrylic polymer (C-1), and a tertiary amino group as a polymer dispersant. 37.5 g of "DISPERBYK" (registered trademark) LPN-21116 having a quaternary ammonium salt and 102.5 g of PGMEA were charged into a tank, and the mixture was stirred with a homomixer for 20 minutes to obtain a preliminary dispersion. The obtained pre-dispersion liquid was supplied to the Ultra Apex Mill, a disperser manufactured by Kotobuki Kogyo Co., Ltd., equipped with a centrifuge separator filled with 75% by volume of 0.05 mmφ zirconia beads, and dispersed at a rotation speed of 8 m / s for 3 hours. Then, a colorant dispersion liquid Bk-1 having a solid content concentration of 25% by weight and a colorant / resin (weight ratio) = 80/20 was obtained.
 カーボンブラック分散液Bk-1(822.6g)に、アクリルポリマー(C-1)のプロピレングリコールモノメチルエーテルアセテート40重量%溶液(344.5g)、密着性改良剤として信越化学(株)製KBM-585(7.5g)、シリコーン系界面活性剤のプロピレングリコールモノメチルエーテルアセテート10重量%溶液(4.0g)を、プロピレングリコールモノメチルエーテルアセテート(218.5g)に溶解した溶液を添加し、着色樹脂組成物1を得た。 Carbon black dispersion Bk-1 (822.6 g), propylene glycol monomethyl ether acetate 40 wt% solution (344.5 g) of acrylic polymer (C-1), KBM-manufactured by Shin-Etsu Chemical Co., Ltd. as an adhesion improver A solution prepared by dissolving 585 (7.5 g), a 10 wt% solution of a silicone-based surfactant propylene glycol monomethyl ether acetate (4.0 g) in propylene glycol monomethyl ether acetate (218.5 g) was added to form a colored resin composition. I got the thing 1.
 (着色樹脂組成物2)
 スルホン酸基により表面が修飾されたカーボンブラック(キャボット製TPK1227)300g、アクリルポリマー(C-1)のプロピレングリコールモノメチルエーテルアセテート(PGMEA)40重量%溶液150g、高分子分散剤として3級アミノ基と4級アンモニウム塩を有する“DISPERBYK”(登録商標)LPN-21116を37.5gおよびPGMEA1012.5gをタンクに仕込み、ホモミキサーで20分撹拌し、予備分散液を得た。0.05mmφジルコニアビーズを75体積%充填した遠心分離セパレーターを具備した寿工業(株)製分散機ウルトラアペックスミルに、得られた予備分散液を供給し、回転速度8m/sで3時間分散を行い、固形分濃度25重量%、着色材/樹脂(重量比)=80/20の着色材分散液Bk-1を得た。
(Colored Resin Composition 2)
300 g of carbon black (TPK1227 manufactured by Cabot) whose surface was modified with a sulfonic acid group, 150 g of a 40 wt% solution of propylene glycol monomethyl ether acetate (PGMEA) of acrylic polymer (C-1), and a tertiary amino group as a polymer dispersant. 37.5 g of "DISPERBYK" (registered trademark) LPN-21116 having a quaternary ammonium salt and 102.5 g of PGMEA were charged into a tank, and the mixture was stirred with a homomixer for 20 minutes to obtain a preliminary dispersion. The obtained pre-dispersion liquid was supplied to the Ultra Apex Mill, a disperser manufactured by Kotobuki Kogyo Co., Ltd., equipped with a centrifuge separator filled with 75% by volume of 0.05 mmφ zirconia beads, and dispersed at a rotation speed of 8 m / s for 3 hours. Then, a colorant dispersion liquid Bk-1 having a solid content concentration of 25% by weight and a colorant / resin (weight ratio) = 80/20 was obtained.
 カーボンブラック分散液Bk-1(822.6g)に、アクリルポリマー(C-1)のプロピレングリコールモノメチルエーテルアセテート40重量%溶液(117.3g)、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製DPHA)のプロピレングリコールモノメチルエーテルアセテート50重量%溶液(92.7g)、光重合開始剤としてADEKA(株)“アデカクルーズ”NCI-831(11.6g)、密着性改良剤として信越化学(株)製KBM-585(7.5g)、シリコーン系界面活性剤のプロピレングリコールモノメチルエーテルアセテート10重量%溶液(4.0g)を、プロピレングリコールモノメチルエーテルアセテート(218.5g)に溶解した溶液を添加し、着色樹脂組成物2を得た。 Carbon black dispersion Bk-1 (822.6 g), propylene glycol monomethyl ether acetate 40 wt% solution (117.3 g) of acrylic polymer (C-1), dipentaerythritol hexaacrylate as a polyfunctional monomer (Nippon Kayaku) Propylene glycol monomethyl ether acetate 50% by weight solution (92.7 g) of DPHA Co., Ltd., ADEKA Co., Ltd. "Adecacruise" NCI-831 (11.6 g) as a photopolymerization initiator, Shinetsu as an adhesion improver A solution prepared by dissolving KBM-585 (7.5 g) manufactured by Kagaku Co., Ltd. and a 10 wt% solution (4.0 g) of propylene glycol monomethyl ether acetate, a silicone-based surfactant, in propylene glycol monomethyl ether acetate (218.5 g). Was added to obtain a colored resin composition 2.
 (着色樹脂組成物3~7)
 着色樹脂組成物2と同様の方法で、表3記載の組成の着色樹脂組成物3~7を得た。
(Colored resin compositions 3 to 7)
Colored resin compositions 3 to 7 having the compositions shown in Table 3 were obtained in the same manner as in the colored resin composition 2.
 <保存安定性評価>
 上記の着色樹脂組成物1~7については、着色樹脂組成物の調製直後の粘度および着色樹脂組成物を室温(30℃)で1週間放置した後の粘度を粘度計(東機産業製RE105L)で25.0±0.2℃に温度設定し、回転数50rpmにて測定し、その粘度変化率を算出した。粘度変化率が15%以上のものは保存安定性が不良と判断した。
<Evaluation of storage stability>
For the above colored resin compositions 1 to 7, the viscosity immediately after the preparation of the colored resin composition and the viscosity after the colored resin composition was left at room temperature (30 ° C.) for 1 week were measured by a viscometer (RE105L manufactured by Toki Sangyo Co., Ltd.). The temperature was set to 25.0 ± 0.2 ° C. and the measurement was performed at a rotation speed of 50 rpm, and the rate of change in viscosity was calculated. Those with a viscosity change rate of 15% or more were judged to have poor storage stability.
 <密着性評価>
 着色樹脂組成物1を(S-2)上に、スピンコーター(ミカサ(株)製「1H-DS(商品名)」)を用いてスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で10分間プリベークし、プリベーク膜を得た。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、厚み1.5μmの着色樹脂組成物1からなるベタ膜を得た。
<Adhesion evaluation>
The colored resin composition 1 is spin-coated on (S-2) using a spin coater (“1H-DS (trade name)” manufactured by Mikasa Co., Ltd.), and the substrate is hot-plate (Dainippon Screen Mfg. Co., Ltd.). )), Prebaked at 100 ° C. for 10 minutes to obtain a prebaked film. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking is performed at 230 ° C. for 30 minutes (in air) to obtain a solid film composed of the colored resin composition 1 having a thickness of 1.5 μm. Got
 着色樹脂組成物2~7については別途、(S-2)上に、スピンコーター(ミカサ(株)製「1H-DS(商品名)」)を用いてスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で10分間プリベークし、プリベーク膜を得た。プリベーク膜をマスクアライナー(ユニオン光学(株)製)を用いて超高圧水銀灯を光源とし、マスクを介さずに露光した。この後、自動現像装置(滝沢産業(株)製「AD-1200(商品名)」)を用いて、0.045質量%KOH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。その後、オーブン(「IHPS-222」;エスペック(株)製)を用いて、230℃で30分(空気中)ポストベークを施すことで、着色樹脂組成物2~7それぞれの樹脂組成物からなる厚み1.5μmのベタ膜を得た。 The colored resin compositions 2 to 7 are separately spin-coated on (S-2) using a spin coater (“1H-DS (trade name)” manufactured by Mikasa Co., Ltd.), and the substrate is hot-plate (large). A prebaked film was obtained by prebaking at 100 ° C. for 10 minutes using "SCW-636 (trade name)" manufactured by Nippon Screen Mfg. Co., Ltd. The prebake film was exposed using a mask aligner (manufactured by Union Optical Co., Ltd.) using an ultra-high pressure mercury lamp as a light source and without using a mask. Then, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.045 mass% KOH aqueous solution for 60 seconds, and then rinse with water for 30 seconds. Then, using an oven (“IHPS-222”; manufactured by ESPEC CORPORATION), post-baking is performed at 230 ° C. for 30 minutes (in the air), whereby the colored resin compositions 2 to 7 are composed of the respective resin compositions. A solid film having a thickness of 1.5 μm was obtained.
 得られたベタ膜について、基材との密着性を評価した。具体的には、JIS K5600-5-6(1999年)に準拠して、5B~0Bの6段階評価(数字が大きい程、密着性が高い)によるクロスカット試験を行った。なお、密着性が2B以下であると、硬化物の剥離によるタッチパネルの動作不良等を引き起こしかねないため、密着性は3B以上であることが好ましく、4B以上であることがより好ましい。 The obtained solid film was evaluated for its adhesion to the substrate. Specifically, a cross-cut test was conducted in accordance with JIS K5600-5-6 (1999) by a 6-grade evaluation of 5B to 0B (the larger the number, the higher the adhesion). If the adhesion is 2B or less, the touch panel may malfunction due to peeling of the cured product. Therefore, the adhesion is preferably 3B or more, and more preferably 4B or more.
 <パターニング性評価>
 着色樹脂組成物2~7を、(S-2)上に、スピンコーター(ミカサ(株)製「1H-DS(商品名)」)を用いてスピンコートし、基板をホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で10分間プリベークし、プリベーク膜を得た。プリベーク膜をマスクアライナー(ユニオン光学(株)製)を用いて超高圧水銀灯を光源とし、所望のマスクを介して露光した。この後、自動現像装置(滝沢産業(株)製「AD-1200(商品名)」)を用いて、0.045質量%KOH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。露光、現像後、5μmのラインアンドスペースパターンを1対1の幅に形成する露光量における現像後の最小パターン寸法を測定し、解像度とした。露光量はI線照度計で測定した。
<Evaluation of patterning property>
The colored resin compositions 2 to 7 are spin-coated on (S-2) using a spin coater (“1H-DS (trade name)” manufactured by Mikasa Co., Ltd.), and the substrate is hot-plate (Dainippon Screen). A prebaked film was obtained by prebaking at 100 ° C. for 10 minutes using “SCW-636 (trade name)” manufactured by Mfg. Co., Ltd. The prebake film was exposed using a mask aligner (manufactured by Union Optical Co., Ltd.) using an ultra-high pressure mercury lamp as a light source and through a desired mask. After that, using an automatic developing device (“AD-1200 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower-develop with 0.045 mass% KOH aqueous solution for 60 seconds, then rinse with water for 30 seconds, and pattern. Processed. After exposure and development, the minimum pattern size after development at the exposure amount for forming a line-and-space pattern of 5 μm in a width of 1: 1 was measured and used as the resolution. The amount of exposure was measured with an I-line illuminometer.
 各評価の結果を、表3に示す。 The results of each evaluation are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明の樹脂組成物は、タッチパネル、ディスプレイ、イメージセンサー、有機エレクトロルミネッセンス照明又は太陽電池等に用いられる導電性パターンおよび着色パターンの形成に、好適に利用できる。 The resin composition of the present invention can be suitably used for forming conductive patterns and coloring patterns used in touch panels, displays, image sensors, organic electroluminescence lighting, solar cells and the like.

Claims (20)

  1.  微粒子、一般式(1)で表される構造及び熱によりアミノ基を生じる官能基を有する化合物(B)、並びにバインダー樹脂(C)を含有し、
    前記微粒子が、有機顔料(F)、または、炭素を含む被覆層を有する無機粒子(G)である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、XはSi、Ti又はZr原子を示す。R~Rはそれぞれ独立に、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基又は炭素数1~6の炭化水素基を示す。R~Rはそれぞれ同じであっても異なっていてもよいが、少なくとも一つはヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基又はイソブトキシ基である。)
    It contains fine particles, a compound (B) having a structure represented by the general formula (1) and a functional group that produces an amino group by heat, and a binder resin (C).
    A resin composition in which the fine particles are an organic pigment (F) or inorganic particles (G) having a coating layer containing carbon.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), X represents a Si, Ti or Zr atom. R 1 to R 3 are independently hydroxy groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups and isobutoxy groups, respectively. Alternatively, it indicates a hydrocarbon group having 1 to 6 carbon atoms. R 1 to R 3 may be the same or different, but at least one is a hydroxy group, a methoxy group, an ethoxy group, a propoxy group, or an isopropoxy. Group, butoxy group or isobutoxy group.)
  2.  前記微粒子が、炭素を含む被覆層を有する無機粒子(G)であり、前記無機粒子(G)が導電性粒子(A)である、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the fine particles are inorganic particles (G) having a coating layer containing carbon, and the inorganic particles (G) are conductive particles (A).
  3.  前記導電性粒子(A)の、濃度1質量%の水の懸濁液のpHが4.0~10.0である、請求項2記載の樹脂組成物。 The resin composition according to claim 2, wherein the pH of the suspension of the conductive particles (A) in water having a concentration of 1% by mass is 4.0 to 10.0.
  4.  前記微粒子の平均1次粒子径が1~700nmである、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the average primary particle size of the fine particles is 1 to 700 nm.
  5.  前記微粒子100質量部に対し、前記化合物(B)を0.1~2.5質量部含有する、請求項1記載の樹脂組成物。 The resin composition according to claim 1, which contains 0.1 to 2.5 parts by mass of the compound (B) with respect to 100 parts by mass of the fine particles.
  6.  前記微粒子が、炭素を含む被覆層を有する無機粒子(G)であり、前記無機粒子(G)が無機顔料である、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the fine particles are inorganic particles (G) having a coating layer containing carbon, and the inorganic particles (G) are inorganic pigments.
  7.  前記微粒子が、有機顔料(F)である、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the fine particles are an organic pigment (F).
  8.  前記有機顔料(F)の表面が酸性である、請求項7記載の樹脂組成物。 The resin composition according to claim 7, wherein the surface of the organic pigment (F) is acidic.
  9.  前記熱によりアミノ基を生じる官能基が、アミド基、イミン基、ウレイド基およびイソシアネート基からなる群から選ばれる少なくとも一種である、請求項1~8のいずれか一項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the functional group that produces an amino group by the heat is at least one selected from the group consisting of an amide group, an imine group, a ureido group and an isocyanate group.
  10.  前記熱によりアミノ基を生じる官能基が、ウレイド基である、請求項9記載の樹脂組成物。 The resin composition according to claim 9, wherein the functional group that produces an amino group by the heat is a ureido group.
  11.  前記バインダー樹脂(C)が酸解離性基を有する、請求項1~10のいずれか一項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the binder resin (C) has an acid dissociative group.
  12.  さらに感光剤(D)を有し、前記バインダー樹脂(C)がアルカリ可溶性基を有する、請求項1~11のいずれか一項記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, further comprising a photosensitizer (D) and the binder resin (C) having an alkali-soluble group.
  13.  請求項1~3のいずれか一項記載の樹脂組成物の硬化物からなる導電性パターンを具備する配線基板。 A wiring board provided with a conductive pattern made of a cured product of the resin composition according to any one of claims 1 to 3.
  14.  さらに黒色層を有する、請求項13記載の配線基板。 The wiring board according to claim 13, further having a black layer.
  15.  前記導電性パターンの幅が1~6μmである、請求項13または14記載の配線基板。 The wiring board according to claim 13 or 14, wherein the width of the conductive pattern is 1 to 6 μm.
  16.  請求項13~15のいずれか一項記載の配線基板を有する、タッチパネル。 A touch panel having the wiring board according to any one of claims 13 to 15.
  17.  請求項1~3のいずれか一項記載の樹脂組成物を、基板上に所望のパターン形状となるように塗布して塗布膜を得る塗布工程と、
     前記塗布膜を乾燥して乾燥膜を得る乾燥工程と、
     前記乾燥膜を加熱して導電膜を得る加熱工程と、
    を備える導電性パターンの製造方法。
    A coating step of applying the resin composition according to any one of claims 1 to 3 on a substrate so as to have a desired pattern shape to obtain a coating film.
    A drying step of drying the coating film to obtain a drying film, and
    A heating step of heating the dry film to obtain a conductive film, and
    A method of manufacturing a conductive pattern comprising.
  18.  請求項1~3のいずれか一項記載の樹脂組成物を、基板上に塗布して塗布膜を得る塗布工程と、
     前記塗布膜を乾燥して乾燥膜を得る乾燥工程と、
     前記乾燥膜を露光して露光膜を得る露光工程と、
     前記露光膜を現像してパターンを形成する現像工程と、
     前記パターンを加熱して導電膜を得る加熱工程と、
    を備える導電性パターンの製造方法。
    A coating step of applying the resin composition according to any one of claims 1 to 3 onto a substrate to obtain a coating film, and a coating step.
    A drying step of drying the coating film to obtain a drying film, and
    An exposure step of exposing the dry film to obtain an exposure film, and
    A developing step of developing the exposure film to form a pattern, and
    A heating step of heating the pattern to obtain a conductive film,
    A method of manufacturing a conductive pattern comprising.
  19.  前記パターンを加熱して導電膜を得る加熱工程が150~270℃である、請求項17または18記載の導電性パターンの製造方法。 The method for producing a conductive pattern according to claim 17 or 18, wherein the heating step of heating the pattern to obtain a conductive film is 150 to 270 ° C.
  20.  炭素を含む被覆層を有する導電性粒子(A)、一般式(2)で表される構造及びアミノ基を有する化合物(E)、並びにバインダー樹脂(C)を含有し、
    前記バインダー樹脂(C)がアルカリ可溶性基を有する、導電性パターン。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、YはSi、Ti又はZr原子を示す。R~Rはそれぞれ独立に、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、炭素数1~6の炭化水素基又は架橋酸素を示す。R~Rはそれぞれ同じであっても異なっていてもよいが、少なくとも一つは架橋酸素である。)
    It contains conductive particles (A) having a coating layer containing carbon, a compound (E) having a structure represented by the general formula (2) and an amino group, and a binder resin (C).
    A conductive pattern in which the binder resin (C) has an alkali-soluble group.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), Y represents a Si, Ti or Zr atom. R 4 to R 6 are independently hydroxy groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups and isobutoxy groups, respectively. , A hydrocarbon group having 1 to 6 carbon atoms or cross-linked oxygen. R 4 to R 6 may be the same or different, but at least one is cross-linked oxygen.)
PCT/JP2021/011087 2020-03-27 2021-03-18 Resin composition, wiring board and method for producing conductive pattern WO2021193354A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180018245.5A CN115210322B (en) 2020-03-27 2021-03-18 Resin composition, wiring board, and method for producing conductive pattern
JP2021516506A JP7095803B2 (en) 2020-03-27 2021-03-18 Method for manufacturing resin composition, wiring board and conductive pattern
KR1020227021240A KR20220158678A (en) 2020-03-27 2021-03-18 Manufacturing method of resin composition, wiring board and conductive pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057218 2020-03-27
JP2020057218 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193354A1 true WO2021193354A1 (en) 2021-09-30

Family

ID=77890277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011087 WO2021193354A1 (en) 2020-03-27 2021-03-18 Resin composition, wiring board and method for producing conductive pattern

Country Status (5)

Country Link
JP (1) JP7095803B2 (en)
KR (1) KR20220158678A (en)
CN (1) CN115210322B (en)
TW (1) TW202204501A (en)
WO (1) WO2021193354A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478436A (en) * 2022-09-30 2022-12-16 建滔(清远)电子材料有限公司 Electronic grade glass fiber cloth produced by ultralow-twist glass fiber yarn

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102086A (en) * 2008-10-23 2010-05-06 Nippon Steel Chem Co Ltd Photosensitive resin composition for black resist and color filter light shielding film
JP2013195997A (en) * 2012-03-23 2013-09-30 Fujifilm Corp Multilayered film and optical sheet
JP2016050231A (en) * 2014-08-29 2016-04-11 日立化成株式会社 Photocurable composition and photocurable light-shielding coating material, liquid crystal display panel and liquid crystal display device using the same
JP2019191549A (en) * 2018-08-06 2019-10-31 東洋インキScホールディングス株式会社 Black composition, black coated film, and laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062805B2 (en) 1999-01-06 2008-03-19 東レ株式会社 Photosensitive conductive paste for firing and method for forming fine electrode pattern
JP2007091825A (en) * 2005-09-27 2007-04-12 Mitsubishi Rayon Co Ltd Curable composition
JP2013196997A (en) * 2012-03-22 2013-09-30 Toray Ind Inc Conductive composition
JP2015193758A (en) * 2014-03-31 2015-11-05 東洋インキScホールディングス株式会社 Photosensitive resin composition for overcoat and coating film using the same
KR102399714B1 (en) * 2016-09-30 2022-05-19 도레이 카부시키가이샤 Photosensitive resin composition, manufacturing method of conductive pattern, substrate, touch panel and display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102086A (en) * 2008-10-23 2010-05-06 Nippon Steel Chem Co Ltd Photosensitive resin composition for black resist and color filter light shielding film
JP2013195997A (en) * 2012-03-23 2013-09-30 Fujifilm Corp Multilayered film and optical sheet
JP2016050231A (en) * 2014-08-29 2016-04-11 日立化成株式会社 Photocurable composition and photocurable light-shielding coating material, liquid crystal display panel and liquid crystal display device using the same
JP2019191549A (en) * 2018-08-06 2019-10-31 東洋インキScホールディングス株式会社 Black composition, black coated film, and laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478436A (en) * 2022-09-30 2022-12-16 建滔(清远)电子材料有限公司 Electronic grade glass fiber cloth produced by ultralow-twist glass fiber yarn
CN115478436B (en) * 2022-09-30 2023-05-30 建滔(清远)电子材料有限公司 Electronic grade glass fiber cloth produced by ultra-low twist glass fiber yarn

Also Published As

Publication number Publication date
JP7095803B2 (en) 2022-07-05
KR20220158678A (en) 2022-12-01
JPWO2021193354A1 (en) 2021-09-30
CN115210322B (en) 2023-10-20
CN115210322A (en) 2022-10-18
TW202204501A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6841233B2 (en) Photosensitive resin composition, method for manufacturing conductive patterns, substrates, touch panels and displays
JP2021167949A (en) Colored resin composition, colored film, color filter, and liquid crystal display device
KR102074712B1 (en) Photosensitive resin composition, method for manufacturing conductive pattern, substrate, element, and touchscreen
TWI648595B (en) Photosensitive resin composition, method for producing a conductive pattern, Substrate, method of manufacturing touch panel, method of manufacturing organic electroluminescence, and method of manufacturing solar cell
KR101926411B1 (en) Resin black matrix substrate and touch panel
JP2017187765A (en) Blue photosensitive resin composition, and blue color filter and display element comprising the same
JP6330412B2 (en) Shielding film forming substrate and touch panel
JP7095803B2 (en) Method for manufacturing resin composition, wiring board and conductive pattern
KR102558671B1 (en) A blue photosensitive resin composition, blue color filter and display device comprising the same
JP7060166B1 (en) A method for manufacturing a photosensitive resin composition, a substrate with a conductive pattern, an antenna element, an image display device, and a touch panel.
JP6604251B2 (en) Photosensitive resin composition, method for producing conductive pattern, substrate, touch panel and display
KR20160063616A (en) A color photosensitive resin composition
TWI797437B (en) Substrate with conductive layer and touch panel
KR20160064393A (en) A color photosensitive resin composition
KR20210059352A (en) Black photosensitive composition for low temperature curing, black light shielding film and display device
WO2018029747A1 (en) Photosensitive resin composition, conductive pattern production method, substrate, touch panel, and display

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516506

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776657

Country of ref document: EP

Kind code of ref document: A1