WO2021193242A1 - Robot and method for attaching cooling device to robot - Google Patents

Robot and method for attaching cooling device to robot Download PDF

Info

Publication number
WO2021193242A1
WO2021193242A1 PCT/JP2021/010631 JP2021010631W WO2021193242A1 WO 2021193242 A1 WO2021193242 A1 WO 2021193242A1 JP 2021010631 W JP2021010631 W JP 2021010631W WO 2021193242 A1 WO2021193242 A1 WO 2021193242A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cooling medium
robot
link
radiator
Prior art date
Application number
PCT/JP2021/010631
Other languages
French (fr)
Japanese (ja)
Inventor
宏昭 納土
竜馬 是竹
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2021193242A1 publication Critical patent/WO2021193242A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D9/00Devices not associated with refrigerating machinery and not covered by groups F25D1/00 - F25D7/00; Combinations of devices covered by two or more of the groups F25D1/00 - F25D7/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a method of attaching a robot and a cooling device to a robot.
  • the present invention solves the above-mentioned conventional problems, and provides a robot and a method for attaching a cooling device to a robot, which can reduce the burden on an operator and improve the efficiency of the attachment work of the cooling device.
  • the purpose is.
  • the robot according to the present invention includes an Nth link, an N + 1 link, a joint portion formed between the Nth link and the N + 1 link, and the joint.
  • the motor is arranged on the first wall surface, which is the wall surface on the Nth link side of the first partition wall that includes the cooling device arranged in the section and constitutes the Nth link.
  • a speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the partition wall, and the cooling device is formed in an annular shape or a tubular shape, and a cooling medium through which the cooling medium passes through the cooling medium.
  • It has a cooling medium flow path body in which a flow path is formed, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, and a fan, and includes the radiator and the fan.
  • the transmitter is provided in the middle of the cooling medium circulation flow path
  • the fan is configured to air-cool the radiator
  • the cooling medium flow path body surrounds the motor. 1 It is arranged on the wall surface.
  • the cooling medium flow path body can be easily attached to the existing robot, the burden on the operator is reduced, and the efficiency of the installation work of the cooling device (cooling medium flow path body) is improved. Can be done.
  • the cooling medium flow path body is arranged so as to cover the outer peripheral surface of the motor, the motor can be cooled efficiently. Further, since the speed reducer is arranged on the N + 1 link side of the first partition wall, the speed reducer can be efficiently cooled by heat transfer from the first partition wall. Therefore, since both the motor and the speed reducer can be cooled, the manufacturing cost can be reduced as compared with the articulated robot disclosed in Patent Document 1.
  • the joint portion of the robot has a first partition wall forming the Nth link and a second partition wall forming the N + 1 link, and the first partition wall is formed.
  • a tubular protruding portion is formed on the first wall surface, which is the wall surface on the Nth link side of the above, and the motor is arranged so as to be located inside the protruding portion.
  • a speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the partition wall, and the cooling device is formed in an annular shape or a tubular shape, and a cooling medium flows through the cooling device.
  • a cooling medium flow path body in which a medium flow path is formed, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, a fan, and a base are provided.
  • the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, and the fan is configured to air-cool the radiator.
  • the cooling device can be easily attached to the existing robot, the burden on the operator can be reduced, and the efficiency of the cooling device installation work can be improved.
  • the cooling medium flow path body is arranged so as to cover the outer peripheral surface of the motor, the motor can be cooled efficiently. Further, since the speed reducer is arranged on the N + 1 link side of the first partition wall, the speed reducer can be efficiently cooled by heat transfer from the first partition wall. Therefore, since both the motor and the speed reducer can be cooled, the manufacturing cost can be reduced as compared with the articulated robot disclosed in Patent Document 1.
  • the joint portion of the robot has a first partition wall forming the Nth link and a second partition wall forming the N + 1 link, and the first partition wall is formed.
  • a tubular protruding portion is formed on the first wall surface, which is the wall surface on the Nth link side of the above, and the motor is arranged so as to be located inside the protruding portion.
  • a speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the partition wall, and the cooling device is formed in an annular shape or a tubular shape, and a cooling medium flows through the cooling device.
  • a cooling medium flow path body in which a medium flow path is formed, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, a fan, and a base are provided.
  • the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, the fan is configured to air-cool the radiator, and the internal space of the cooling medium flow path body is the said.
  • the cooling device can be easily attached to the existing robot, the burden on the operator can be reduced, and the efficiency of the cooling device installation work can be improved.
  • the cooling medium flow path body is arranged so as to cover the outer peripheral surface of the motor, the motor can be cooled efficiently. Further, since the reduction gear is arranged on the N + 1 link side of the first partition wall, the reduction gear can be efficiently cooled by the heat transfer from the first partition wall. Therefore, since both the motor and the speed reducer can be cooled, the manufacturing cost can be reduced as compared with the articulated robot disclosed in Patent Document 1.
  • the burden on the operator can be reduced, the efficiency of the mounting work of the cooling device can be improved, and / or the manufacturing cost can be reduced. Can be reduced.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a robot according to the first embodiment.
  • FIG. 2 is a schematic view showing a schematic configuration of a joint portion (second joint) of the robot shown in FIG.
  • FIG. 3 is a schematic view showing a schematic configuration of a cooling medium flow path body of the cooling device shown in FIG.
  • FIG. 4 is a flowchart showing an example of a method of attaching the cooling device according to the first embodiment.
  • FIG. 5 is a schematic diagram showing a schematic configuration of the robot of the modified example 1 in the first embodiment.
  • FIG. 6 is a flowchart showing an example of a method of attaching the cooling device according to the second embodiment.
  • the robot according to the first embodiment includes an N-link, an N + 1 link, a joint formed between the N-link and the N + 1 link, a cooling device arranged at the joint, and a cooling device.
  • a second wall surface which is a wall surface on the N + 1 link side of the first partition wall, is provided with a motor and is arranged on the first wall surface, which is the wall surface on the Nth link side of the first partition wall forming the Nth link.
  • a cooling medium flow path body in which a speed reducer is arranged, the cooling device is formed in an annular shape or a tubular shape, and a cooling medium flow path through which the cooling medium passes is formed therein.
  • It has a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, and a fan, and the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path.
  • the fan is configured to air-cool the radiator, and the cooling medium flow path body is arranged on the first wall surface so as to surround the motor.
  • N is a natural number excluding 0.
  • a protrusion is provided on the first wall surface of the first partition wall.
  • the cooling medium flow path body may be configured such that the outer peripheral surface is located inward of the inner peripheral surface of the protruding portion and the inner peripheral surface is located outside of the outer peripheral surface of the motor.
  • the protruding portion may be formed in a cylindrical shape.
  • the cooling device is the robot. It may be arranged on at least one of the first to third axes.
  • a heat transfer agent may be arranged between the cooling medium flow path body and the first wall surface.
  • the cooling medium circulation flow path may be arranged in the Nth link.
  • the method of attaching the cooling device to the robot according to the first embodiment is the method of attaching the cooling device used for the joint portion of the robot, and the joint portion of the robot is the first partition wall constituting the Nth link.
  • the first wall surface which is the wall surface on the N link side of the first partition wall, has a second partition wall forming the N + 1 link, and a tubular protrusion is formed on the first wall surface, and the motor is a protrusion.
  • a speed reducer is arranged on the second wall surface, which is arranged so as to be located inward and is the wall surface on the N + 1 link side of the first partition wall, and the cooling device is formed in an annular shape or a tubular shape.
  • the fan and the base are provided, the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, and the fan is configured to air-cool the radiator, and the radiator and the transmitter are provided on the base.
  • the internal space of the cooling medium flow path body allows the motor to pass through, and the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall (B).
  • the base to which the radiator, the transmitter, and the fan are attached is attached to the main body and / or the motor (C)
  • the cooling medium flow path body, the radiator, and the transmitter are connected by the cooling medium circulation flow path ( D) and.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a robot according to the first embodiment.
  • the vertical direction in the robot is represented as the vertical direction in the figure.
  • the robot 101 includes an articulated body of a plurality of links (here, the first link 11a to the sixth link 11f) and a plurality of joint portions (here, the first link). It is a vertical articulated robot arm including joints JT1 to 6), a base 15 for supporting them, and a control device 111.
  • a 6-axis vertical articulated robot is adopted as the robot 101, but the robot is not limited to this, and if it is a vertical articulated robot, a 7-axis vertical articulated robot is used. It may be.
  • the base 15 and the base end portion of the first link 11a are rotatably connected around an axis extending in the vertical direction.
  • the tip end portion of the first link 11a and the base end portion of the second link 11b are rotatably connected around an axis extending in the horizontal direction.
  • the tip end portion of the second link 11b and the base end portion of the third link 11c are rotatably connected around an axis extending in the horizontal direction.
  • the tip end portion of the third link 11c and the base end portion of the fourth link 11d are rotatably connected around an axis extending in the longitudinal direction of the fourth link 11d.
  • the tip end portion of the fourth link 11d and the base end portion of the fifth link 11e are rotatably connected around an axis orthogonal to the longitudinal direction of the fourth link 11d.
  • the tip end portion of the fifth link 11e and the base end portion of the sixth link 11f are rotatably connected to each other.
  • a mechanical interface is provided at the tip of the 6th link 11f.
  • An end effector 20 corresponding to the work content is detachably attached to this mechanical interface.
  • each of the first joint JT1 to the sixth joint JT6 is provided with a motor as an example of an actuator that relatively rotates two members to which each joint is connected (see FIG. 2).
  • the motor may be, for example, a servomotor that is servo-controlled by the control device 111.
  • each of the first joint JT1 to the sixth joint JT6 is provided with a rotation sensor for detecting the rotation position of the drive motor and a current sensor for detecting the current for controlling the rotation of the drive motor (each of them). , Not shown).
  • the rotation sensor may be, for example, an encoder.
  • the control device 111 is arranged outside the base 15 (robot 101).
  • the control device 111 may be arranged in the base 15 (robot 101).
  • the control device 111 includes an arithmetic processor 111a such as a microprocessor and a CPU, and a storage device 111b such as a ROM and RAM. Information such as a basic program and various fixed data is stored in the storage device 111b.
  • the arithmetic processing unit 111a is configured to execute various operations of the robot 101 by reading and executing software such as a basic program stored in the storage unit 111b.
  • control device 111 may be configured to control the transmitter 75 and / or the fan 76 of the cooling device 70 described later. In this case, the control device 111 may control the transmitter 75 and / or the fan 76 so as to increase or decrease the current flowing through the motors arranged at each joint.
  • control device 111 may be controlled to increase the transmission amount of the transmitter 75 when increasing the current flowing through the motor, and / or the operation amount (rotation) of the fan 76. It may be controlled to increase the speed). Further, when the current flowing through the motor is reduced, the control device 111 may be controlled so as to reduce the transmission amount of the transmitter 75 and / or the operation amount (rotational speed) of the fan 76. It may be controlled to decrease.
  • the control device 111 may be configured by a single control device that centrally controls, or may be configured by a plurality of control devices that cooperate with each other to perform distributed control. Further, the control device 111 may be composed of a microcomputer, an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
  • a microcomputer an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a joint portion (second joint JT2) of the robot shown in FIG.
  • the first link 11a and the second link 11b are connected.
  • the first link 11a has a main body 31.
  • a plate-shaped first partition wall 31a is formed on the main body 31.
  • the second link 11b has a second partition wall 42.
  • the first partition wall 31a is provided with a through hole 31b.
  • the main body 31 is arranged so that the through hole 31b communicates with the recess 40 provided in the second link 11b.
  • the wall surface of the first partition wall 31a on the second link 11b side is referred to as the second wall surface 2
  • the wall surface on the opposite side of the second wall surface 2 (first link 11a side) is referred to as the first wall surface 1.
  • a cylindrical protrusion 31c is provided on the first wall surface 1 of the first partition wall 31a. Further, a motor 50 is arranged on the first wall surface 1 so as to be located inside the protruding portion 31c and so that the output shaft 51 inserts the through hole 31b.
  • a speed reducing device 60 arranged in the recess 40 is connected to the output shaft 51 of the motor 50. The speed reducer 60 is connected to the second link 11b. As the speed reducer 60, various known speed reducers can be used.
  • the cooling medium flow path body 71 is arranged so as to surround the outer peripheral surface 5 of the motor 50.
  • the heat transfer agent 72 may be arranged between the first wall surface 1 and the cooling medium flow path body 71.
  • the heat transfer agent 72 may be, for example, thermal paste (heat conductive grease) or silicon for heat dissipation.
  • FIG. 3 is a schematic view showing a schematic configuration of a cooling medium flow path body of the cooling device shown in FIG.
  • the vertical direction in the cooling medium flow path body is represented as the vertical direction in the figure.
  • the cooling medium flow path body 71 is formed in an annular shape or a cylindrical shape.
  • the outer peripheral surface 7a of the cooling medium flow path body 71 is located inward of the inner peripheral surface 3 of the protruding portion 31c, and the inner peripheral surface 7b is located outside of the outer peripheral surface 5 of the motor 50. ,It is configured.
  • the operator can easily insert the cooling medium flow path body 71 into the cylindrical space between the protrusion 31c and the motor 50.
  • a cooling medium flow path 71a is formed inside the cooling medium flow path body 71.
  • the cooling medium flow path 71a is formed in a substantially C shape (circling) when viewed from the axial direction of the output shaft 51 of the motor 50. Further, the cooling medium flow path 71a is formed so as to meander in the region between the outer peripheral surface 7a and the inner peripheral surface 7b.
  • cooling medium flow path 71a (lower end in FIG. 3) constitutes the inlet (supply port) 71b of the cooling medium, and the other end (upper end in FIG. 3). Section) constitutes the outlet (discharge port) 71c of the cooling medium. Further, the inlet 71b and the outlet 71c are connected by a cooling medium circulation flow path 73.
  • the cooling medium passing through the cooling medium flow path 71a and the cooling medium circulation flow path 73 may be, for example, water, an aqueous solution, or an antifreeze solution (ethylene glycol, glycerin, long life coolant (LLC)).
  • an antifreeze solution ethylene glycol, glycerin, long life coolant (LLC)
  • a radiator 74 and a transmitter (pump) 75 are provided in the middle of the cooling medium circulation flow path 73. Further, the radiator 74 is provided with a fan 76 for cooling the radiator 74. The radiator 74 may be provided with a tank 78 via the first flow path 77.
  • the transmitter 75 may be provided on the downstream side of the radiator 74. Further, from the viewpoint of improving the cooling efficiency of the cooling device 70, the transmitter 75 may be arranged on the upstream side of the radiator 74.
  • radiator 74, the transmitter 75, and the tank 78 are attached to a substantially L-shaped base 79.
  • the base 79 is connected (fixed) to a flange 80 provided on the motor 50.
  • FIG. 4 is a flowchart showing an example of a method of attaching the cooling device according to the first embodiment.
  • cooling device 70 according to the first embodiment is not attached to the robot arranged in the existing equipment or the like, and the work of attaching the cooling device 70 to the robot will be described below.
  • the operator attaches the radiator 74, the transmitter 75, and the tank 78 to the base 79 (step S101).
  • the operator attaches the cooling medium flow path body 71 to the first wall surface 1 of the first partition wall 31a (step S102). Specifically, the operator moves the cooling medium flow path body 71 so that the internal space of the cooling medium flow path body 71 inserts the motor 50, and moves the cooling medium flow path body 71 of the first partition wall 31a. It is brought into contact with the first wall surface 1. Then, the operator attaches (fixes) the cooling medium flow path body 71 to the first wall surface 1 with an appropriate member (for example, a bolt or the like). At this time, the operator arranges the heat transfer agent 72 on the contact surface of the cooling medium flow path body 71 with the first wall surface 1 and / or on the contact surface of the first wall surface 1 with the cooling medium flow path body 71. You may.
  • step S101 and the operation of step S102 are in no particular order.
  • step S101 step S103
  • step S104 the operator connects the tank 78 and the radiator 74 by the pipes constituting the first flow path 77.
  • the operator supplies the cooling medium to the tank 78 and the like, and finishes the work of attaching the cooling device 70 to the robot 101.
  • the cooling medium flow path body 71 according to the first embodiment, which is configured in this way, is formed in a cylindrical shape or an annular shape.
  • the motor 50 can be attached to the first wall surface 1 of the first partition wall 31a simply by inserting the motor 50 into the internal space.
  • the cooling medium flow path body 71 (cooling device 70) according to the first embodiment, can be attached to the joint portion only by removing the cover member 32. .. That is, it is not necessary to remove (disassemble) the Nth link (main body 31 of the first link 11a) and the N + 1 link in order to attach the cooling medium flow path body 71 (cooling device 70) to the joint portion.
  • the worker can easily execute the work of attaching the cooling medium flow path body 71 (cooling device 70) to the existing robot (for example, a robot installed in a factory or the like).
  • the cooling medium flow path body 71 since the cooling medium flow path body 71 according to the first embodiment is arranged outside the motor 50, the motor 50 can be cooled. Further, since the speed reducing device 60 is arranged so as to come into contact with the second wall surface 2 of the first partition wall 31a, the cooling medium flow path body 71 also cools the speed reducing device 60 by heat transfer from the first partition wall 31a. can do.
  • the cooling medium flow path body 71 (cooling device 70) according to the first embodiment needs to be provided with cooling members for cooling each of the motor 50 and the speed reducing device 60, which is disclosed in Patent Document 1.
  • the manufacturing cost can be reduced as compared with the articulated robots that have been used.
  • the cooling device 70 includes a radiator 74 for cooling the heated cooling medium, and a flow path (cooling medium flow path 71a and cooling medium circulation) in the joint portion of the robot 101.
  • the flow path 73) is configured to circulate.
  • the robot 101 can be made compact, and the cooling device 70 can be compared with the existing robot. The installation work can be facilitated.
  • the cooling device 70 can be installed on the robot 101 as factory equipment without installing a storage tank for piping and / or a cooling medium. Therefore, the cost for attaching the cooling device 70 to the robot 101 can be reduced.
  • the robot 101 provided with the cooling medium flow path body 71 (cooling device 70) according to the first embodiment has better cooling efficiency and higher cooling efficiency than the articulated robot disclosed in Patent Document 1. , The manufacturing cost can be reduced.
  • the robot 101 according to the first embodiment may have a cover member that covers the cooling device 70.
  • a motor is arranged on the first partition wall constituting the Nth link, and a base is attached to the Nth link.
  • FIG. 5 is a schematic diagram showing a schematic configuration of the robot of the modified example 1 in the first embodiment.
  • the robot 101 of the present modification 1 has the same basic configuration as the robot system 100 according to the first embodiment, but the base 79 and the flange 80 have the first link 11a (here, the first link 11a). , The difference is that it is attached to the protruding portion 31c).
  • the method of attaching the cooling device to the robot according to the second embodiment is a method of attaching the cooling device used for the joint portion of the robot, and the joint portion of the robot includes the first partition wall and the first partition wall constituting the Nth link.
  • the first wall surface which has the second partition wall forming the N + 1 link and is the wall surface on the N link side of the first partition wall, has a tubular protrusion formed and the motor is inside the protrusion.
  • a speed reducing device is arranged on the second wall surface, which is a wall surface on the N + 1 link side of the first partition wall, and the cooling device is formed in an annular shape or a tubular shape.
  • a cooling medium flow path body through which a cooling medium flows is formed inside, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, and a fan.
  • the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, and the fan is configured to air-cool the radiator, and the internal space of the cooling medium flow path body is provided.
  • the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall (E)
  • the base is attached to the main body and / or the motor (F). It includes (G) attaching a radiator, a transmitter, and a fan to the table, and (H) connecting the cooling medium flow path body, the radiator, and the transmitter with a cooling medium circulation flow path.
  • the cooling medium flow path body, the cooling device, and the robot used in the method of attaching the cooling device according to the second embodiment to the robot are the same as the robot according to the first embodiment or the robot of the modified example 1. Since it is configured in, detailed description thereof will be omitted.
  • FIG. 6 is a flowchart showing an example of a method of attaching the cooling device according to the second embodiment.
  • cooling device 70 according to the second embodiment is not attached to the robot arranged in the existing equipment or the like, and the work of attaching the cooling device 70 to the robot will be described below.
  • step S201 the operator attaches the base 79 to the flange 80 (step S201). Then, the operator attaches the cooling medium flow path body 71 to the first wall surface 1 of the first partition wall 31a (step S202).
  • step S201 and the operation of step S202 are in no particular order.
  • the operator attaches the radiator 74, the transmitter 75, and the tank 78 to the base 79 (step S203).
  • the operator connects the cooling medium flow path body 71 (inlet 71b and outlet 71c of the cooling medium flow path 71a), the radiator 74, and the transmitter 75 by the piping constituting the cooling medium circulation flow path 73 (step).
  • the operator connects the tank 78 and the radiator 74 by the pipes constituting the first flow path 77.
  • the operator supplies the cooling medium to the tank 78 and the like, and finishes the work of attaching the cooling device 70 to the robot 101.
  • the robot 101 (cooling device 70) according to the second embodiment which is configured in this way, has the same effect as the robot 101 (cooling device 70) according to the first embodiment.
  • the method of attaching the robot and the cooling device to the robot of the present invention it is possible to reduce the burden on the operator, improve the efficiency of the attaching work of the cooling device, and / or reduce the manufacturing cost. Because it can be done, it is useful in the field of robots.

Abstract

The robot according to the present invention comprises: an N link; an N+1 link; a joint part formed between the N link and the N+1 link; and a cooling device (70) placed on the joint part. The cooling device (70) has: a cooling medium flow path body (71) formed annularly or cylindrically and having a cooling medium flow path (71a) formed therein through which a cooling medium flows; a cooling medium circulation flow path (73) connected to the cooling medium flow path body (71); a radiator (74); a delivery device (75); and a fan (76). The radiator (74) and the delivery device (75) are provided along the cooling medium circulation flow path (73). The fan (76) is configured to air-cool the radiator (74). The cooling medium flow path body (71) is disposed on a first wall surface (1) so as to surround a motor (50).

Description

ロボット及び冷却装置のロボットへの取り付け方法How to attach the robot and cooling device to the robot
 本発明は、ロボット及び冷却装置のロボットへの取り付け方法に関する。 The present invention relates to a method of attaching a robot and a cooling device to a robot.
 効果的に減速装置を冷却することを目的とした多関節型ロボットが知られている(例えば、特許文献1参照)。特許文献1に開示されている多関節型ロボットでは、内部に冷却水の流路を有する冷却用部材を減速装置に一体に組付けることにより、減速装置を効果的に冷却することができるとしている。 An articulated robot aimed at effectively cooling a speed reducer is known (see, for example, Patent Document 1). In the articulated robot disclosed in Patent Document 1, it is stated that the deceleration device can be effectively cooled by integrally assembling the cooling member having a flow path of cooling water inside to the deceleration device. ..
特開2009-233824号公報Japanese Unexamined Patent Publication No. 2009-233824
 しかしながら、上記特許文献1に開示されている多関節型ロボットでは、既存のロボット(例えば、工場等に設置されているロボット)の減速装置を冷却する場合には、作業者が、減速装置をロボットから取り外す必要があり、作業効率の向上の観点から未だ改善の余地があった。 However, in the articulated robot disclosed in Patent Document 1, when cooling the deceleration device of an existing robot (for example, a robot installed in a factory or the like), an operator uses the deceleration device as a robot. There was still room for improvement from the viewpoint of improving work efficiency.
 本発明は、上記従来の課題を解決するもので、作業者の負担を軽減して、冷却装置の取り付け作業の効率を向上させることができる、ロボット及び冷却装置のロボットへの取り付け方法を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and provides a robot and a method for attaching a cooling device to a robot, which can reduce the burden on an operator and improve the efficiency of the attachment work of the cooling device. The purpose is.
 上記従来の課題を解決するために、本発明に係るロボットは、第Nリンクと、第N+1リンクと、前記第Nリンクと前記第N+1リンクとの間に形成されている関節部と、前記関節部に配置されている冷却装置と、を備え、前記第Nリンクを構成する第1隔壁の当該第Nリンク側の壁面である第1壁面には、前記モータが配置されていて、前記第1隔壁の前記第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、前記冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、前記冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、を有し、前記ラジエータ及び前記送出器は、前記冷却媒体循環流路の途中に設けられていて、前記ファンは、前記ラジエータを空冷するように構成され、前記冷却媒体流路体は、前記モータを囲むように、前記第1壁面に配設されている。 In order to solve the above-mentioned conventional problems, the robot according to the present invention includes an Nth link, an N + 1 link, a joint portion formed between the Nth link and the N + 1 link, and the joint. The motor is arranged on the first wall surface, which is the wall surface on the Nth link side of the first partition wall that includes the cooling device arranged in the section and constitutes the Nth link. A speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the partition wall, and the cooling device is formed in an annular shape or a tubular shape, and a cooling medium through which the cooling medium passes through the cooling medium. It has a cooling medium flow path body in which a flow path is formed, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, and a fan, and includes the radiator and the fan. The transmitter is provided in the middle of the cooling medium circulation flow path, the fan is configured to air-cool the radiator, and the cooling medium flow path body surrounds the motor. 1 It is arranged on the wall surface.
 これにより、既存のロボットに対して、冷却媒体流路体を簡易に取り付けることができ、作業者の負担を軽減して、冷却装置(冷却媒体流路体)の取り付け作業の効率を向上させることができる。 As a result, the cooling medium flow path body can be easily attached to the existing robot, the burden on the operator is reduced, and the efficiency of the installation work of the cooling device (cooling medium flow path body) is improved. Can be done.
 また、冷却媒体流路体が、モータの外周面を覆うように配置されているので、モータを効率的に冷却することができる。さらに、第1隔壁の第N+1リンク側に、減速装置が配置されているので、第1隔壁からの伝熱により減速装置を効率的に冷却することができる。このため、モータと減速装置の両方を冷却することができるため、上記特許文献1に開示されている多関節型ロボットに比して、製造コストを低減することができる。 Further, since the cooling medium flow path body is arranged so as to cover the outer peripheral surface of the motor, the motor can be cooled efficiently. Further, since the speed reducer is arranged on the N + 1 link side of the first partition wall, the speed reducer can be efficiently cooled by heat transfer from the first partition wall. Therefore, since both the motor and the speed reducer can be cooled, the manufacturing cost can be reduced as compared with the articulated robot disclosed in Patent Document 1.
 また、本発明に係る冷却装置のロボットへの取り付け方法は、前記ロボットの関節部が、第Nリンクを構成する第1隔壁と第N+1リンクを構成する第2隔壁を有し、前記第1隔壁の前記第Nリンク側の壁面である第1壁面には、筒状の突出部が形成されていて、かつ、前記モータが前記突出部の内方に位置するように配置されていて、前記第1隔壁の前記第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、前記冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、前記冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、基台と、を備え、前記ラジエータ及び前記送出器は、前記冷却媒体循環流路の途中に設けられていて、前記ファンは、前記ラジエータを空冷するように構成されていて、前記基台に前記ラジエータ、前記送出器、及び前記ファンを取り付ける(A)と、前記冷却媒体流路体の内部空間が前記モータを挿通するように、かつ、当該冷却媒体流路体を前記第1隔壁の前記第1壁面に当接させる(B)と、前記ラジエータ、前記送出器、及び前記ファンが取り付けられた前記基台を前記本体部及び/又は前記モータに取り付ける(C)と、前記冷却媒体流路体、前記ラジエータ、及び前記送出器を前記冷却媒体循環流路で接続する(D)と、を備える。 Further, in the method of attaching the cooling device to the robot according to the present invention, the joint portion of the robot has a first partition wall forming the Nth link and a second partition wall forming the N + 1 link, and the first partition wall is formed. A tubular protruding portion is formed on the first wall surface, which is the wall surface on the Nth link side of the above, and the motor is arranged so as to be located inside the protruding portion. A speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the partition wall, and the cooling device is formed in an annular shape or a tubular shape, and a cooling medium flows through the cooling device. A cooling medium flow path body in which a medium flow path is formed, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, a fan, and a base are provided. The radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, and the fan is configured to air-cool the radiator. When the fan is attached (A), the internal space of the cooling medium flow path body allows the motor to pass through, and the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall. (B) and the base to which the radiator, the transmitter, and the fan are attached are attached to the main body and / or the motor (C), the cooling medium flow path body, the radiator, and the said. (D), in which the transmitter is connected by the cooling medium circulation flow path, is provided.
 これにより、既存のロボットに対して、冷却装置を簡易に取り付けることができ、作業者の負担を軽減して、冷却装置の取り付け作業の効率を向上させることができる。 As a result, the cooling device can be easily attached to the existing robot, the burden on the operator can be reduced, and the efficiency of the cooling device installation work can be improved.
 また、冷却媒体流路体が、モータの外周面を覆うように配置されているので、モータを効率的に冷却することができる。さらに、第1隔壁の第N+1リンク側に、減速装置が配置されているので、第1隔壁からの伝熱により減速装置を効率的に冷却することができる。このため、モータと減速装置の両方を冷却することができるため、上記特許文献1に開示されている多関節型ロボットに比して、製造コストを低減することができる。 Further, since the cooling medium flow path body is arranged so as to cover the outer peripheral surface of the motor, the motor can be cooled efficiently. Further, since the speed reducer is arranged on the N + 1 link side of the first partition wall, the speed reducer can be efficiently cooled by heat transfer from the first partition wall. Therefore, since both the motor and the speed reducer can be cooled, the manufacturing cost can be reduced as compared with the articulated robot disclosed in Patent Document 1.
 また、本発明に係る冷却装置のロボットへの取り付け方法は、前記ロボットの関節部が、第Nリンクを構成する第1隔壁と第N+1リンクを構成する第2隔壁を有し、前記第1隔壁の前記第Nリンク側の壁面である第1壁面には、筒状の突出部が形成されていて、かつ、前記モータが前記突出部の内方に位置するように配置されていて、前記第1隔壁の前記第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、前記冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、前記冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、基台と、を備え、前記ラジエータ及び前記送出器は、前記冷却媒体循環流路の途中に設けられていて、前記ファンは、前記ラジエータを空冷するように構成されていて、前記冷却媒体流路体の内部空間が前記モータを挿通するように、かつ、当該冷却媒体流路体を前記第1隔壁の前記第1壁面に当接させる(E)と、前記基台を前記本体部及び/又は前記モータに取り付ける(F)と、前記基台に前記ラジエータ、前記送出器、及び前記ファンを取り付ける(G)と、前記冷却媒体流路体、前記ラジエータ、及び前記送出器を前記冷却媒体循環流路で接続する(H)と、を備える。 Further, in the method of attaching the cooling device to the robot according to the present invention, the joint portion of the robot has a first partition wall forming the Nth link and a second partition wall forming the N + 1 link, and the first partition wall is formed. A tubular protruding portion is formed on the first wall surface, which is the wall surface on the Nth link side of the above, and the motor is arranged so as to be located inside the protruding portion. A speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the partition wall, and the cooling device is formed in an annular shape or a tubular shape, and a cooling medium flows through the cooling device. A cooling medium flow path body in which a medium flow path is formed, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, a fan, and a base are provided. The radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, the fan is configured to air-cool the radiator, and the internal space of the cooling medium flow path body is the said. When the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall so as to insert the motor (E), the base is attached to the main body and / or the motor (F). ), The radiator, the transmitter, and the fan are attached to the base (G), and the cooling medium flow path body, the radiator, and the transmitter are connected by the cooling medium circulation flow path (H). ) And.
 これにより、既存のロボットに対して、冷却装置を簡易に取り付けることができ、作業者の負担を軽減して、冷却装置の取り付け作業の効率を向上させることができる。 As a result, the cooling device can be easily attached to the existing robot, the burden on the operator can be reduced, and the efficiency of the cooling device installation work can be improved.
 また、冷却媒体流路体が、モータの外周面を覆うように配置されているので、モータを効率的に冷却することができる。さらに、第1隔壁の第N+1リンク側に、減速装置が配置されているので、第1隔壁からの伝熱により、減速装置を効率的に冷却することができる。このため、モータと減速装置の両方を冷却することができるため、上記特許文献1に開示されている多関節型ロボットに比して、製造コストを低減することができる。 Further, since the cooling medium flow path body is arranged so as to cover the outer peripheral surface of the motor, the motor can be cooled efficiently. Further, since the reduction gear is arranged on the N + 1 link side of the first partition wall, the reduction gear can be efficiently cooled by the heat transfer from the first partition wall. Therefore, since both the motor and the speed reducer can be cooled, the manufacturing cost can be reduced as compared with the articulated robot disclosed in Patent Document 1.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施形態の詳細な説明から明らかにされる。 The above-mentioned object, other object, feature, and advantage of the present invention will be clarified from the detailed description of the following preferred embodiments with reference to the accompanying drawings.
 本発明の冷却装置、ロボット、及び冷却装置のロボットへの取り付け方法によれば、作業者の負担を軽減して、冷却装置の取り付け作業の効率を向上させることができる、及び/又は製造コストを低減することができる。 According to the cooling device, the robot, and the method of attaching the cooling device to the robot of the present invention, the burden on the operator can be reduced, the efficiency of the mounting work of the cooling device can be improved, and / or the manufacturing cost can be reduced. Can be reduced.
図1は、本実施の形態1に係るロボットの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a robot according to the first embodiment. 図2は、図1に示すロボットの関節部(第2関節)の概略構成を示す模式図である。FIG. 2 is a schematic view showing a schematic configuration of a joint portion (second joint) of the robot shown in FIG. 図3は、図2に示す冷却装置の冷却媒体流路体の概略構成を示す模式図である。FIG. 3 is a schematic view showing a schematic configuration of a cooling medium flow path body of the cooling device shown in FIG. 図4は、本実施の形態1に係る冷却装置の取り付け方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a method of attaching the cooling device according to the first embodiment. 図5は、本実施の形態1における変形例1のロボットの概略構成を示す模式図である。FIG. 5 is a schematic diagram showing a schematic configuration of the robot of the modified example 1 in the first embodiment. 図6は、本実施の形態2に係る冷却装置の取り付け方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a method of attaching the cooling device according to the second embodiment.
 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、全ての図面において、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するための構成要素を抜粋して図示しており、その他の構成要素については図示を省略している場合がある。さらに、本発明は以下の実施の形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be omitted. Further, in all the drawings, the components for explaining the present invention are excerpted and shown, and the other components may be omitted. Furthermore, the present invention is not limited to the following embodiments.
 (実施の形態1)
 本実施の形態1に係るロボットは、第Nリンクと、第N+1リンクと、第Nリンクと第N+1リンクとの間に形成されている関節部と、関節部に配置されている冷却装置と、を備え、第Nリンクを構成する第1隔壁の当該第Nリンク側の壁面である第1壁面には、モータが配置されていて、第1隔壁の第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、を有し、ラジエータ及び送出器は、冷却媒体循環流路の途中に設けられていて、ファンは、ラジエータを空冷するように構成され、冷却媒体流路体は、モータを囲むように、第1壁面に配設されている。なお、Nは、0を除く、自然数である。
(Embodiment 1)
The robot according to the first embodiment includes an N-link, an N + 1 link, a joint formed between the N-link and the N + 1 link, a cooling device arranged at the joint, and a cooling device. A second wall surface, which is a wall surface on the N + 1 link side of the first partition wall, is provided with a motor and is arranged on the first wall surface, which is the wall surface on the Nth link side of the first partition wall forming the Nth link. A cooling medium flow path body in which a speed reducer is arranged, the cooling device is formed in an annular shape or a tubular shape, and a cooling medium flow path through which the cooling medium passes is formed therein. It has a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, and a fan, and the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path. The fan is configured to air-cool the radiator, and the cooling medium flow path body is arranged on the first wall surface so as to surround the motor. N is a natural number excluding 0.
 また、本実施の形態1に係るロボットでは、第1隔壁の第1壁面には、突出部が設けられていて、
 冷却媒体流路体は、外周面が突出部の内周面よりも内方に位置し、かつ、内周面がモータの外周面よりも外方に位置するように構成されていてもよい。
Further, in the robot according to the first embodiment, a protrusion is provided on the first wall surface of the first partition wall.
The cooling medium flow path body may be configured such that the outer peripheral surface is located inward of the inner peripheral surface of the protruding portion and the inner peripheral surface is located outside of the outer peripheral surface of the motor.
 また、本実施の形態1に係るロボットでは、突出部は、筒状に形成されていてもよい。 Further, in the robot according to the first embodiment, the protruding portion may be formed in a cylindrical shape.
 また、本実施の形態1に係るロボットでは、ロボットが、多軸垂直多関節ロボットであり、ロボットの基端側の関節部の軸を第1軸と定義した場合に、冷却装置は、ロボットの第1軸~第3軸のうち、少なくとも1つの軸に配置されていてもよい。 Further, in the robot according to the first embodiment, when the robot is a multi-axis vertical articulated robot and the axis of the joint portion on the base end side of the robot is defined as the first axis, the cooling device is the robot. It may be arranged on at least one of the first to third axes.
 また、本実施の形態1に係るロボットでは、冷却媒体流路体と第1壁面との間には、伝熱剤が配置されていてもよい。 Further, in the robot according to the first embodiment, a heat transfer agent may be arranged between the cooling medium flow path body and the first wall surface.
 また、本実施の形態1に係るロボットでは、冷却媒体循環流路が、第Nリンク内に配置されていてもよい。 Further, in the robot according to the first embodiment, the cooling medium circulation flow path may be arranged in the Nth link.
 さらに、本実施の形態1に係る冷却装置のロボットへの取り付け方法は、ロボットの関節部に用いられる冷却装置の取り付け方法であって、ロボットの関節部は、第Nリンクを構成する第1隔壁と第N+1リンクを構成する第2隔壁を有し、第1隔壁の第Nリンク側の壁面である第1壁面には、筒状の突出部が形成されていて、かつ、モータが突出部の内方に位置するように配置されていて、第1隔壁の第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、基台と、を備え、ラジエータ及び送出器は、冷却媒体循環流路の途中に設けられていて、ファンは、ラジエータを空冷するように構成されていて、基台にラジエータ、送出器、及びファンを取り付ける(A)と、冷却媒体流路体の内部空間がモータを挿通するように、かつ、当該冷却媒体流路体を第1隔壁の第1壁面に当接させる(B)と、ラジエータ、送出器、及びファンが取り付けられた基台を本体部及び/又はモータに取り付ける(C)と、冷却媒体流路体、ラジエータ、及び送出器を冷却媒体循環流路で接続する(D)と、を備える。 Further, the method of attaching the cooling device to the robot according to the first embodiment is the method of attaching the cooling device used for the joint portion of the robot, and the joint portion of the robot is the first partition wall constituting the Nth link. The first wall surface, which is the wall surface on the N link side of the first partition wall, has a second partition wall forming the N + 1 link, and a tubular protrusion is formed on the first wall surface, and the motor is a protrusion. A speed reducer is arranged on the second wall surface, which is arranged so as to be located inward and is the wall surface on the N + 1 link side of the first partition wall, and the cooling device is formed in an annular shape or a tubular shape. , A cooling medium flow path through which the cooling medium passes, a cooling medium flow path connected to the cooling medium flow path, a radiator, and a transmitter. The fan and the base are provided, the radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, and the fan is configured to air-cool the radiator, and the radiator and the transmitter are provided on the base. When the device and the fan are attached (A), the internal space of the cooling medium flow path body allows the motor to pass through, and the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall (B). And, when the base to which the radiator, the transmitter, and the fan are attached is attached to the main body and / or the motor (C), the cooling medium flow path body, the radiator, and the transmitter are connected by the cooling medium circulation flow path ( D) and.
 以下、本実施の形態1に係るロボットの一例について、図1~図4を参照しながら説明する。 Hereinafter, an example of the robot according to the first embodiment will be described with reference to FIGS. 1 to 4.
 [ロボットの構成]
 図1は、本実施の形態1に係るロボットの概略構成を示す模式図である。なお、図1においては、ロボットにおける上下方向を図における上下方向として表している。
[Robot configuration]
FIG. 1 is a schematic diagram showing a schematic configuration of a robot according to the first embodiment. In FIG. 1, the vertical direction in the robot is represented as the vertical direction in the figure.
 図1に示すように、本実施の形態1に係るロボット101は、複数のリンク(ここでは、第1リンク11a~第6リンク11f)の連接体と、複数の関節部(ここでは、第1関節JT1~第6関節JT6)と、これらを支持する基台15と、制御装置111と、を備える、垂直多関節ロボットアームである。 As shown in FIG. 1, the robot 101 according to the first embodiment includes an articulated body of a plurality of links (here, the first link 11a to the sixth link 11f) and a plurality of joint portions (here, the first link). It is a vertical articulated robot arm including joints JT1 to 6), a base 15 for supporting them, and a control device 111.
 なお、本実施の形態1においては、ロボット101として、6軸の垂直多関節型ロボットを採用したが、これに限定されず、垂直多関節型ロボットであれば、7軸の垂直多関節型ロボットであってもよい。 In the first embodiment, a 6-axis vertical articulated robot is adopted as the robot 101, but the robot is not limited to this, and if it is a vertical articulated robot, a 7-axis vertical articulated robot is used. It may be.
 第1関節JT1では、基台15と、第1リンク11aの基端部とが、鉛直方向に延びる軸回りに回転可能に連結されている。第2関節JT2では、第1リンク11aの先端部と、第2リンク11bの基端部とが、水平方向に延びる軸回りに回転可能に連結されている。第3関節JT3では、第2リンク11bの先端部と、第3リンク11cの基端部とが、水平方向に延びる軸回りに回転可能に連結されている。 In the first joint JT1, the base 15 and the base end portion of the first link 11a are rotatably connected around an axis extending in the vertical direction. In the second joint JT2, the tip end portion of the first link 11a and the base end portion of the second link 11b are rotatably connected around an axis extending in the horizontal direction. In the third joint JT3, the tip end portion of the second link 11b and the base end portion of the third link 11c are rotatably connected around an axis extending in the horizontal direction.
 また、第4関節JT4では、第3リンク11cの先端部と、第4リンク11dの基端部とが、第4リンク11dの長手方向に延びる軸回りに回転可能に連結されている。第5関節JT5では、第4リンク11dの先端部と、第5リンク11eの基端部とが、第4リンク11dの長手方向と直交する軸回りに回転可能に連結されている。第6関節JT6では、第5リンク11eの先端部と第6リンク11fの基端部とが、捻れ回転可能に連結されている。 Further, in the fourth joint JT4, the tip end portion of the third link 11c and the base end portion of the fourth link 11d are rotatably connected around an axis extending in the longitudinal direction of the fourth link 11d. In the fifth joint JT5, the tip end portion of the fourth link 11d and the base end portion of the fifth link 11e are rotatably connected around an axis orthogonal to the longitudinal direction of the fourth link 11d. In the sixth joint JT6, the tip end portion of the fifth link 11e and the base end portion of the sixth link 11f are rotatably connected to each other.
 そして、第6リンク11fの先端部には、メカニカルインターフェースが設けられている。このメカニカルインターフェースには、作業内容に対応したエンドエフェクタ20が着脱可能に装着される。 A mechanical interface is provided at the tip of the 6th link 11f. An end effector 20 corresponding to the work content is detachably attached to this mechanical interface.
 また、第1関節JT1~第6関節JT6には、それぞれ、各関節が連結する2つの部材を相対的に回転させるアクチュエータの一例としてのモータが設けられている(図2参照)。モータは、例えば、制御装置111によってサーボ制御されるサーボモータであってもよい。また、第1関節JT1~第6関節JT6には、それぞれ、駆動モータの回転位置を検出する回転センサと、駆動モータの回転を制御する電流を検出する電流センサと、が設けられている(それぞれ、図示せず)。回転センサは、例えば、エンコーダであってもよい。 Further, each of the first joint JT1 to the sixth joint JT6 is provided with a motor as an example of an actuator that relatively rotates two members to which each joint is connected (see FIG. 2). The motor may be, for example, a servomotor that is servo-controlled by the control device 111. Further, each of the first joint JT1 to the sixth joint JT6 is provided with a rotation sensor for detecting the rotation position of the drive motor and a current sensor for detecting the current for controlling the rotation of the drive motor (each of them). , Not shown). The rotation sensor may be, for example, an encoder.
 制御装置111は、基台15(ロボット101)外に配置されている。なお、制御装置111は、基台15(ロボット101)内に配置されていてもよい。また、制御装置111は、マイクロプロセッサ、CPU等の演算処理器111aと、ROM、RAM等の記憶器111bと、を備えている。記憶器111bには、基本プログラム、各種固定データ等の情報が記憶されている。 The control device 111 is arranged outside the base 15 (robot 101). The control device 111 may be arranged in the base 15 (robot 101). Further, the control device 111 includes an arithmetic processor 111a such as a microprocessor and a CPU, and a storage device 111b such as a ROM and RAM. Information such as a basic program and various fixed data is stored in the storage device 111b.
 演算処理器111aは、記憶器111bに記憶された基本プログラム等のソフトウェアを読み出して実行することにより、ロボット101の各種の動作を実行するように構成されている。 The arithmetic processing unit 111a is configured to execute various operations of the robot 101 by reading and executing software such as a basic program stored in the storage unit 111b.
 また、制御装置111は、後述する冷却装置70の送出器75及び/又はファン76を制御するように構成されていてもよい。この場合、制御装置111は、各関節部に配置されているモータに通流する電流の増減に伴うように、送出器75及び/又はファン76を制御してもよい。 Further, the control device 111 may be configured to control the transmitter 75 and / or the fan 76 of the cooling device 70 described later. In this case, the control device 111 may control the transmitter 75 and / or the fan 76 so as to increase or decrease the current flowing through the motors arranged at each joint.
 具体的には、制御装置111は、モータに通流する電流を増加させる場合には、送出器75の送出量を増加させるように制御してもよく、及び/又はファン76の操作量(回転速度)を増加させるように制御してもよい。また、制御装置111は、モータに通流する電流を減少させる場合には、送出器75の送出量を減少させるように制御してもよく、及び/又はファン76の操作量(回転速度)を減少させるように制御してもよい。 Specifically, the control device 111 may be controlled to increase the transmission amount of the transmitter 75 when increasing the current flowing through the motor, and / or the operation amount (rotation) of the fan 76. It may be controlled to increase the speed). Further, when the current flowing through the motor is reduced, the control device 111 may be controlled so as to reduce the transmission amount of the transmitter 75 and / or the operation amount (rotational speed) of the fan 76. It may be controlled to decrease.
 なお、制御装置111は、集中制御する単独の制御装置によって構成されていてもよいし、互いに協働して分散制御する複数の制御装置によって構成されていてもよい。また、制御装置111は、マイクロコンピュータで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。 The control device 111 may be configured by a single control device that centrally controls, or may be configured by a plurality of control devices that cooperate with each other to perform distributed control. Further, the control device 111 may be composed of a microcomputer, an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
 [冷却装置の構造]
 次に、本実施の形態1に係るロボット101の関節部に用いられる冷却装置について、図2及び図3を参照しながら、説明する。
[Cooling device structure]
Next, the cooling device used for the joint portion of the robot 101 according to the first embodiment will be described with reference to FIGS. 2 and 3.
 図2は、図1に示すロボットの関節部(第2関節JT2)の概略構成を示す模式図である。 FIG. 2 is a schematic diagram showing a schematic configuration of a joint portion (second joint JT2) of the robot shown in FIG.
 図2に示すように、第2関節JT2では、第1リンク11aと第2リンク11bが連結されている。第1リンク11aは、本体部31を有する。本体部31には、板状の第1隔壁31aが形成されている。また、第2リンク11bは、第2隔壁42を有する。 As shown in FIG. 2, in the second joint JT2, the first link 11a and the second link 11b are connected. The first link 11a has a main body 31. A plate-shaped first partition wall 31a is formed on the main body 31. Further, the second link 11b has a second partition wall 42.
 第1隔壁31aには、貫通孔31bが設けられている。本体部31は、貫通孔31bが、第2リンク11bに設けられている凹部40と連通するように配置されている。なお、以下においては、第1隔壁31aの第2リンク11b側の壁面を第2壁面2と称し、第2壁面2の反対側(第1リンク11a側)の壁面を第1壁面1と称する。 The first partition wall 31a is provided with a through hole 31b. The main body 31 is arranged so that the through hole 31b communicates with the recess 40 provided in the second link 11b. In the following, the wall surface of the first partition wall 31a on the second link 11b side is referred to as the second wall surface 2, and the wall surface on the opposite side of the second wall surface 2 (first link 11a side) is referred to as the first wall surface 1.
 第1隔壁31aの第1壁面1には、筒状の突出部31cが設けられている。また、第1壁面1には、突出部31cの内方に位置し、かつ、出力軸51が貫通孔31bを挿通するように、モータ50が配置されている。モータ50の出力軸51には、凹部40内に配置されている減速装置60が接続されている。減速装置60は、第2リンク11bに接続されている。なお、減速装置60は、公知の種々の減速装置を用いることができる。 A cylindrical protrusion 31c is provided on the first wall surface 1 of the first partition wall 31a. Further, a motor 50 is arranged on the first wall surface 1 so as to be located inside the protruding portion 31c and so that the output shaft 51 inserts the through hole 31b. A speed reducing device 60 arranged in the recess 40 is connected to the output shaft 51 of the motor 50. The speed reducer 60 is connected to the second link 11b. As the speed reducer 60, various known speed reducers can be used.
 これにより、モータ50が回転駆動すると、第2リンク11bが、第1リンク11aに対して揺動することができる。 As a result, when the motor 50 is rotationally driven, the second link 11b can swing with respect to the first link 11a.
 さらに、第1壁面1には、モータ50の外周面5を囲むように、本実施の形態1に係る冷却媒体流路体71が配置されている。なお、第1壁面1と冷却媒体流路体71との間には、伝熱剤72が配置されていてもよい。伝熱剤72としては、例えば、放熱グリス(熱伝導グリス)であってもよく、放熱用シリコンであってもよい。 Further, on the first wall surface 1, the cooling medium flow path body 71 according to the first embodiment is arranged so as to surround the outer peripheral surface 5 of the motor 50. The heat transfer agent 72 may be arranged between the first wall surface 1 and the cooling medium flow path body 71. The heat transfer agent 72 may be, for example, thermal paste (heat conductive grease) or silicon for heat dissipation.
 ここで、図2及び図3を参照しながら、冷却媒体流路体71の構成について、説明する。 Here, the configuration of the cooling medium flow path body 71 will be described with reference to FIGS. 2 and 3.
 図3は、図2に示す冷却装置の冷却媒体流路体の概略構成を示す模式図である。なお、図3において、冷却媒体流路体における上下方向を図における上下方向としてあらわしている。 FIG. 3 is a schematic view showing a schematic configuration of a cooling medium flow path body of the cooling device shown in FIG. In addition, in FIG. 3, the vertical direction in the cooling medium flow path body is represented as the vertical direction in the figure.
 図2及び図3に示すように、冷却媒体流路体71は、環状又は筒状に形成されている。冷却媒体流路体71は、外周面7aが突出部31cの内周面3よりも内方に位置し、かつ、内周面7bがモータ50の外周面5よりも外方に位置するように、構成されている。 As shown in FIGS. 2 and 3, the cooling medium flow path body 71 is formed in an annular shape or a cylindrical shape. The outer peripheral surface 7a of the cooling medium flow path body 71 is located inward of the inner peripheral surface 3 of the protruding portion 31c, and the inner peripheral surface 7b is located outside of the outer peripheral surface 5 of the motor 50. ,It is configured.
 これにより、作業者は、冷却媒体流路体71を突出部31cとモータ50の間の筒状空間に容易に挿通させることができる。 As a result, the operator can easily insert the cooling medium flow path body 71 into the cylindrical space between the protrusion 31c and the motor 50.
 また、冷却媒体流路体71の内部には、冷却媒体流路71aが形成されている。冷却媒体流路71aは、モータ50の出力軸51の軸心方向から見て、略C字状に(周回するように)形成されている。また、冷却媒体流路71aは、外周面7aと内周面7bの間の領域を蛇行するように形成されている。 Further, a cooling medium flow path 71a is formed inside the cooling medium flow path body 71. The cooling medium flow path 71a is formed in a substantially C shape (circling) when viewed from the axial direction of the output shaft 51 of the motor 50. Further, the cooling medium flow path 71a is formed so as to meander in the region between the outer peripheral surface 7a and the inner peripheral surface 7b.
 冷却媒体流路71aの一方の端部(図3においては、下側の端部)が、冷却媒体の入口(供給口)71bを構成し、他方の端部(図3においては、上側の端部)が、冷却媒体の出口(排出口)71cを構成する。また、入口71bと出口71cは、冷却媒体循環流路73により接続されている。 One end of the cooling medium flow path 71a (lower end in FIG. 3) constitutes the inlet (supply port) 71b of the cooling medium, and the other end (upper end in FIG. 3). Section) constitutes the outlet (discharge port) 71c of the cooling medium. Further, the inlet 71b and the outlet 71c are connected by a cooling medium circulation flow path 73.
 なお、冷却媒体流路71a及び冷却媒体循環流路73内を通流する冷却媒体としては、例えば、水、水溶液、不凍液(エチレングリコール、グリセリン、ロングライフクーラント(LLC))であってもよい。 The cooling medium passing through the cooling medium flow path 71a and the cooling medium circulation flow path 73 may be, for example, water, an aqueous solution, or an antifreeze solution (ethylene glycol, glycerin, long life coolant (LLC)).
 冷却媒体循環流路73の途中には、ラジエータ74及び送出器(ポンプ)75が設けられている。また、ラジエータ74には、当該ラジエータ74を冷却するためのファン76が設けられている。なお、ラジエータ74には、第1流路77を介して、タンク78が設けられていてもよい。 A radiator 74 and a transmitter (pump) 75 are provided in the middle of the cooling medium circulation flow path 73. Further, the radiator 74 is provided with a fan 76 for cooling the radiator 74. The radiator 74 may be provided with a tank 78 via the first flow path 77.
 冷却装置70をコンパクト化する観点から、送出器75は、ラジエータ74の下流側に設けられていてもよい。また、冷却装置70の冷却効率を向上させる観点から、送出器75は、ラジエータ74の上流側に配置されていてもよい。 From the viewpoint of making the cooling device 70 compact, the transmitter 75 may be provided on the downstream side of the radiator 74. Further, from the viewpoint of improving the cooling efficiency of the cooling device 70, the transmitter 75 may be arranged on the upstream side of the radiator 74.
 また、ラジエータ74、送出器75、及びタンク78は、略L字状の基台79に取り付けられている。基台79は、モータ50に設けられているフランジ80に接続(固定)されている。 Further, the radiator 74, the transmitter 75, and the tank 78 are attached to a substantially L-shaped base 79. The base 79 is connected (fixed) to a flange 80 provided on the motor 50.
 [冷却装置の取り付け方法]
 次に、本実施の形態1に係る冷却装置70の取り付け方法について、図1~図4を参照しながら、詳細に説明する。なお、以下の動作は、作業者が実行するが、作業者が、冷却装置70を取り付けるロボット101以外のロボットを操作することで実行してもよい。
[How to install the cooling device]
Next, the method of attaching the cooling device 70 according to the first embodiment will be described in detail with reference to FIGS. 1 to 4. Although the following operations are executed by the operator, the operator may execute the following operations by operating a robot other than the robot 101 to which the cooling device 70 is attached.
 図4は、本実施の形態1に係る冷却装置の取り付け方法の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of a method of attaching the cooling device according to the first embodiment.
 なお、既存の設備等に配置されているロボットには、本実施の形態1に係る冷却装置70が取り付けられていないものとし、当該ロボットに冷却装置70を取り付ける作業を以下に説明する。 It is assumed that the cooling device 70 according to the first embodiment is not attached to the robot arranged in the existing equipment or the like, and the work of attaching the cooling device 70 to the robot will be described below.
 図4に示すように、作業者は、基台79にラジエータ74、送出器75、及びタンク78を取り付ける(ステップS101)。 As shown in FIG. 4, the operator attaches the radiator 74, the transmitter 75, and the tank 78 to the base 79 (step S101).
 次に、作業者は、冷却媒体流路体71を第1隔壁31aの第1壁面1に取り付ける(ステップS102)。具体的には、作業者は、冷却媒体流路体71の内部空間がモータ50を挿通するように、冷却媒体流路体71を移動させ、当該冷却媒体流路体71を第1隔壁31aの第1壁面1に当接させる。そして、作業者は、適宜な部材(例えば、ボルト等)により、冷却媒体流路体71を第1壁面1に取り付ける(固定する)。このとき、作業者は、冷却媒体流路体71における第1壁面1との当接面、及び/又は第1壁面1における冷却媒体流路体71との当接面に伝熱剤72を配置してもよい。 Next, the operator attaches the cooling medium flow path body 71 to the first wall surface 1 of the first partition wall 31a (step S102). Specifically, the operator moves the cooling medium flow path body 71 so that the internal space of the cooling medium flow path body 71 inserts the motor 50, and moves the cooling medium flow path body 71 of the first partition wall 31a. It is brought into contact with the first wall surface 1. Then, the operator attaches (fixes) the cooling medium flow path body 71 to the first wall surface 1 with an appropriate member (for example, a bolt or the like). At this time, the operator arranges the heat transfer agent 72 on the contact surface of the cooling medium flow path body 71 with the first wall surface 1 and / or on the contact surface of the first wall surface 1 with the cooling medium flow path body 71. You may.
 なお、ステップS101の動作とステップS102の動作は、順不同である。 The operation of step S101 and the operation of step S102 are in no particular order.
 次に、作業者は、ステップS101でラジエータ74、送出器75、及びタンク78を取り付けた基台79をフランジ80に取り付ける(ステップS103)。ついで、作業者は、冷却媒体循環流路73を構成する配管により、冷却媒体流路体71(冷却媒体流路71aの入口71b及び出口71c)、ラジエータ74、及び送出器75を接続する(ステップS104)。また、作業者は、第1流路77を構成する配管により、タンク78とラジエータ74を接続する。さらに、作業者は、タンク78等に冷却媒体を供給して、冷却装置70のロボット101への取り付け作業を終了する。 Next, the operator attaches the base 79 to which the radiator 74, the transmitter 75, and the tank 78 are attached to the flange 80 in step S101 (step S103). Next, the operator connects the cooling medium flow path body 71 (inlet 71b and outlet 71c of the cooling medium flow path 71a), the radiator 74, and the transmitter 75 by the piping constituting the cooling medium circulation flow path 73 (step). S104). Further, the operator connects the tank 78 and the radiator 74 by the pipes constituting the first flow path 77. Further, the operator supplies the cooling medium to the tank 78 and the like, and finishes the work of attaching the cooling device 70 to the robot 101.
 このように構成された、本実施の形態1に係る冷却媒体流路体71では、筒状又は環状に形成されている。これにより、その内部空間にモータ50を挿通させるだけで、第1隔壁31aの第1壁面1に取り付けることができる。 The cooling medium flow path body 71 according to the first embodiment, which is configured in this way, is formed in a cylindrical shape or an annular shape. As a result, the motor 50 can be attached to the first wall surface 1 of the first partition wall 31a simply by inserting the motor 50 into the internal space.
 また、本実施の形態1に係る冷却媒体流路体71(冷却装置70)では、カバー部材32を取り外すだけで、当該冷却媒体流路体71(冷却装置70)を関節部に取り付けることができる。すなわち、冷却媒体流路体71(冷却装置70)を関節部に取り付けるために、第Nリンク(第1リンク11aの本体部31)及び第N+1リンクを取り外す(解体する)必要がない。 Further, in the cooling medium flow path body 71 (cooling device 70) according to the first embodiment, the cooling medium flow path body 71 (cooling device 70) can be attached to the joint portion only by removing the cover member 32. .. That is, it is not necessary to remove (disassemble) the Nth link (main body 31 of the first link 11a) and the N + 1 link in order to attach the cooling medium flow path body 71 (cooling device 70) to the joint portion.
 このため、作業者が、既存のロボット(例えば、工場等に設置されているロボット)に対する、冷却媒体流路体71(冷却装置70)の取り付け作業を容易に実行することができる。 Therefore, the worker can easily execute the work of attaching the cooling medium flow path body 71 (cooling device 70) to the existing robot (for example, a robot installed in a factory or the like).
 また、本実施の形態1に係る冷却媒体流路体71は、モータ50の外方に配置されているため、モータ50を冷却することができる。また、第1隔壁31aの第2壁面2に当接するように、減速装置60が配置されているため、冷却媒体流路体71は、第1隔壁31aからの伝熱により、減速装置60も冷却することができる。 Further, since the cooling medium flow path body 71 according to the first embodiment is arranged outside the motor 50, the motor 50 can be cooled. Further, since the speed reducing device 60 is arranged so as to come into contact with the second wall surface 2 of the first partition wall 31a, the cooling medium flow path body 71 also cools the speed reducing device 60 by heat transfer from the first partition wall 31a. can do.
 このため、本実施の形態1に係る冷却媒体流路体71(冷却装置70)は、モータ50と減速装置60のそれぞれを冷却する冷却用部材を配置する必要がある、上記特許文献1に開示されている多関節型ロボットに比して、製造コストを低減することができる。 Therefore, the cooling medium flow path body 71 (cooling device 70) according to the first embodiment needs to be provided with cooling members for cooling each of the motor 50 and the speed reducing device 60, which is disclosed in Patent Document 1. The manufacturing cost can be reduced as compared with the articulated robots that have been used.
 さらに、本実施の形態1に係る冷却装置70では、加熱された冷却媒体を冷却するためのラジエータ74を備えていて、ロボット101の関節部内で、流路(冷却媒体流路71a及び冷却媒体循環流路73)が循環するように構成されている。 Further, the cooling device 70 according to the first embodiment includes a radiator 74 for cooling the heated cooling medium, and a flow path (cooling medium flow path 71a and cooling medium circulation) in the joint portion of the robot 101. The flow path 73) is configured to circulate.
 これにより、ロボット101の外部にまで、冷却媒体が通流する流路(配管)を設ける必要がなく、ロボット101のコンパクト化を図ることができるとともに、既存のロボットに対して、冷却装置70の取り付け作業を容易にすることができる。 As a result, it is not necessary to provide a flow path (piping) through which the cooling medium flows to the outside of the robot 101, the robot 101 can be made compact, and the cooling device 70 can be compared with the existing robot. The installation work can be facilitated.
 すなわち、工場設備として、配管及び/又は冷却媒体の貯留槽を設置することなく、冷却装置70をロボット101に設置することができる。このため、冷却装置70のロボット101への取り付けるためのコストを低減することができる。 That is, the cooling device 70 can be installed on the robot 101 as factory equipment without installing a storage tank for piping and / or a cooling medium. Therefore, the cost for attaching the cooling device 70 to the robot 101 can be reduced.
 したがって、本実施の形態1に係る冷却媒体流路体71(冷却装置70)を備えるロボット101は、上記特許文献1に開示されている多関節型ロボットに比して、冷却効率がよく、また、製造コストを低減することができる。 Therefore, the robot 101 provided with the cooling medium flow path body 71 (cooling device 70) according to the first embodiment has better cooling efficiency and higher cooling efficiency than the articulated robot disclosed in Patent Document 1. , The manufacturing cost can be reduced.
 なお、本実施の形態1に係るロボット101は、冷却装置70を覆うカバー部材を有していてもよい。 The robot 101 according to the first embodiment may have a cover member that covers the cooling device 70.
 [変形例1]
 本実施の形態1における変形例1の冷却装置は、第Nリンクを構成する第1隔壁には、モータが配置されていて、基台が、第Nリンクに取り付けられている。
[Modification 1]
In the cooling device of the first modification of the first embodiment, a motor is arranged on the first partition wall constituting the Nth link, and a base is attached to the Nth link.
 以下、本実施の形態1における変形例1のロボットの一例について、図5を参照しながら説明する。 Hereinafter, an example of the robot of the modified example 1 in the first embodiment will be described with reference to FIG.
 図5は、本実施の形態1における変形例1のロボットの概略構成を示す模式図である。 FIG. 5 is a schematic diagram showing a schematic configuration of the robot of the modified example 1 in the first embodiment.
 図5に示すように、本変形例1のロボット101は、実施の形態1に係るロボットシステム100と基本的構成は同じであるが、基台79及びフランジ80が、第1リンク11a(ここでは、突出部31c)に取り付けられている点が異なる。 As shown in FIG. 5, the robot 101 of the present modification 1 has the same basic configuration as the robot system 100 according to the first embodiment, but the base 79 and the flange 80 have the first link 11a (here, the first link 11a). , The difference is that it is attached to the protruding portion 31c).
 このように構成された、本変形例1のロボット101であっても、実施の形態1に係るロボット101と同様の作用効果を奏する。 Even the robot 101 of the present modification 1 configured in this way has the same action and effect as the robot 101 according to the first embodiment.
 (実施の形態2)
 本実施の形態2に係る冷却装置のロボットへの取り付け方法は、ロボットの関節部に用いられる冷却装置の取り付け方法であって、ロボットの関節部は、第Nリンクを構成する第1隔壁と第N+1リンクを構成する第2隔壁を有し、第1隔壁の第Nリンク側の壁面である第1壁面には、筒状の突出部が形成されていて、かつ、モータが突出部の内方に位置するように配置されていて、第1隔壁の第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、基台と、を備え、ラジエータ及び送出器は、冷却媒体循環流路の途中に設けられていて、ファンは、ラジエータを空冷するように構成されていて、冷却媒体流路体の内部空間がモータを挿通するように、かつ、当該冷却媒体流路体を第1隔壁の第1壁面に当接させる(E)と、基台を本体部及び/又はモータに取り付ける(F)と、基台にラジエータ、送出器、及びファンを取り付ける(G)と、冷却媒体流路体、ラジエータ、及び送出器を冷却媒体循環流路で接続する(H)と、を備える。
(Embodiment 2)
The method of attaching the cooling device to the robot according to the second embodiment is a method of attaching the cooling device used for the joint portion of the robot, and the joint portion of the robot includes the first partition wall and the first partition wall constituting the Nth link. The first wall surface, which has the second partition wall forming the N + 1 link and is the wall surface on the N link side of the first partition wall, has a tubular protrusion formed and the motor is inside the protrusion. A speed reducing device is arranged on the second wall surface, which is a wall surface on the N + 1 link side of the first partition wall, and the cooling device is formed in an annular shape or a tubular shape. A cooling medium flow path body through which a cooling medium flows is formed inside, a cooling medium circulation flow path connected to the cooling medium flow path body, a radiator, a transmitter, and a fan. The radiator and the transmitter are provided in the middle of the cooling medium circulation flow path, and the fan is configured to air-cool the radiator, and the internal space of the cooling medium flow path body is provided. When the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall (E), the base is attached to the main body and / or the motor (F). It includes (G) attaching a radiator, a transmitter, and a fan to the table, and (H) connecting the cooling medium flow path body, the radiator, and the transmitter with a cooling medium circulation flow path.
 以下、本実施の形態2に係る冷却装置のロボットへの取り付け方法の一例について、図6を参照しながら説明する。なお、本実施の形態2に係る冷却装置のロボットへの取り付け方法に用いられる、冷却媒体流路体、冷却装置、及びロボットは、実施の形態1に係るロボット、又は変形例1のロボットと同様に構成されているので、その詳細な説明は省略する。 Hereinafter, an example of a method of attaching the cooling device according to the second embodiment to the robot will be described with reference to FIG. The cooling medium flow path body, the cooling device, and the robot used in the method of attaching the cooling device according to the second embodiment to the robot are the same as the robot according to the first embodiment or the robot of the modified example 1. Since it is configured in, detailed description thereof will be omitted.
 図6は、本実施の形態2に係る冷却装置の取り付け方法の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of a method of attaching the cooling device according to the second embodiment.
 なお、既存の設備等に配置されているロボットには、本実施の形態2に係る冷却装置70が取り付けられていないものとし、当該ロボットに冷却装置70を取り付ける作業を以下に説明する。 It is assumed that the cooling device 70 according to the second embodiment is not attached to the robot arranged in the existing equipment or the like, and the work of attaching the cooling device 70 to the robot will be described below.
 図6に示すように、作業者は、基台79をフランジ80に取り付ける(ステップS201)。ついで、作業者は、冷却媒体流路体71を第1隔壁31aの第1壁面1に取り付ける(ステップS202)。なお、ステップS201の動作とステップS202の動作は、順不同である。 As shown in FIG. 6, the operator attaches the base 79 to the flange 80 (step S201). Then, the operator attaches the cooling medium flow path body 71 to the first wall surface 1 of the first partition wall 31a (step S202). The operation of step S201 and the operation of step S202 are in no particular order.
 次に、作業者は、基台79にラジエータ74、送出器75、及びタンク78を取り付ける(ステップS203)。ついで、作業者は、冷却媒体循環流路73を構成する配管により、冷却媒体流路体71(冷却媒体流路71aの入口71b及び出口71c)、ラジエータ74、及び送出器75を接続する(ステップS204)。また、作業者は、第1流路77を構成する配管により、タンク78とラジエータ74を接続する。さらに、作業者は、タンク78等に冷却媒体を供給して、冷却装置70のロボット101への取り付け作業を終了する。 Next, the operator attaches the radiator 74, the transmitter 75, and the tank 78 to the base 79 (step S203). Next, the operator connects the cooling medium flow path body 71 (inlet 71b and outlet 71c of the cooling medium flow path 71a), the radiator 74, and the transmitter 75 by the piping constituting the cooling medium circulation flow path 73 (step). S204). Further, the operator connects the tank 78 and the radiator 74 by the pipes constituting the first flow path 77. Further, the operator supplies the cooling medium to the tank 78 and the like, and finishes the work of attaching the cooling device 70 to the robot 101.
 このように構成された、本実施の形態2に係るロボット101(冷却装置70)であっても、実施の形態1に係るロボット101(冷却装置70)と同様の作用効果を奏する。 Even the robot 101 (cooling device 70) according to the second embodiment, which is configured in this way, has the same effect as the robot 101 (cooling device 70) according to the first embodiment.
 上記説明から、当業者にとっては、本発明の多くの改良又は他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many improvements or other embodiments of the present invention will be apparent to those skilled in the art. Therefore, the above description should be construed as an example only and is provided for the purpose of teaching those skilled in the art the best aspects of carrying out the present invention. The details of its structure and / or function can be substantially changed without departing from the present invention.
 本発明のロボット及び冷却装置のロボットへの取り付け方法によれば、作業者の負担を軽減して、冷却装置の取り付け作業の効率を向上させることができる、及び/又は製造コストを低減することができるため、ロボットの分野において有用である。 According to the method of attaching the robot and the cooling device to the robot of the present invention, it is possible to reduce the burden on the operator, improve the efficiency of the attaching work of the cooling device, and / or reduce the manufacturing cost. Because it can be done, it is useful in the field of robots.
 1 第1壁面
 2 第2壁面
 3 内周面
 5 外周面
 7a 外周面
 7b 内周面
 11a 第1リンク
 11b 第2リンク
 11c 第3リンク
 11d 第4リンク
 11e 第5リンク
 11f 第6リンク
 15 基台
 20 エンドエフェクタ
 31a 第1隔壁
 31b 貫通孔
 31c 突出部
 31 本体部
 40 凹部
 42 第2隔壁
 50 モータ
 51 出力軸
 60 減速装置
 70 冷却装置
 71 冷却媒体流路体
 71a 冷却媒体流路
 71b 入口
 71c 出口
 72 伝熱剤
 73 冷却媒体循環流路
 74 ラジエータ
 75 送出器
 76 ファン
 77 第1流路
 78 タンク
 79 基台
 80 フランジ
 101 ロボット
 111 制御装置
 111a 演算処理器
 111b 記憶器
 JT1 第1関節
 JT2 第2関節
 JT3 第3関節
 JT4 第4関節
 JT5 第5関節
 JT6 第6関節
1 1st wall surface 2 2nd wall surface 3 Inner peripheral surface 5 Outer peripheral surface 7a Outer peripheral surface 7b Inner peripheral surface 11a 1st link 11b 2nd link 11c 3rd link 11d 4th link 11e 5th link 11f 6th link 15 base 20 End effector 31a 1st partition 31b Through hole 31c Protrusion 31 Main body 40 Recess 42 2nd partition 50 Motor 51 Output shaft 60 Deceleration device 70 Cooling device 71 Cooling medium flow path body 71a Cooling medium flow path 71b Inlet 71c Outlet 72 Heat transfer Agent 73 Cooling medium Circulation flow path 74 Radiator 75 Transmitter 76 Fan 77 First flow path 78 Tank 79 Base 80 Flange 101 Robot 111 Control device 111a Arithmetic processor 111b Storage device JT1 1st joint JT2 2nd joint JT3 3rd joint JT4 4th joint JT5 5th joint JT6 6th joint

Claims (8)

  1.  第Nリンクと、
     第N+1リンクと、
     前記第Nリンクと前記第N+1リンクとの間に形成されている関節部と、
     前記関節部に配置されている冷却装置と、を備え、
     前記第Nリンクを構成する第1隔壁の当該第Nリンク側の壁面である第1壁面には、前記モータが配置されていて、
     前記第1隔壁の前記第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、
     前記冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、前記冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、を有し、
     前記ラジエータ及び前記送出器は、前記冷却媒体循環流路の途中に設けられていて、
     前記ファンは、前記ラジエータを空冷するように構成され、
     前記冷却媒体流路体は、前記モータを囲むように、前記第1壁面に配設されている、ロボット。
    Nth link and
    N + 1 link and
    A joint formed between the Nth link and the N + 1 link,
    A cooling device arranged at the joint portion is provided.
    The motor is arranged on the first wall surface, which is the wall surface on the Nth link side of the first partition wall constituting the Nth link.
    A speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the first partition wall.
    The cooling device is connected to a cooling medium flow path body in which a cooling medium flow path through which a cooling medium passes is formed, which is formed in an annular shape or a tubular shape, and the cooling medium flow path body. It has a cooling medium circulation flow path, a radiator, a transmitter, and a fan.
    The radiator and the transmitter are provided in the middle of the cooling medium circulation flow path.
    The fan is configured to air cool the radiator.
    A robot in which the cooling medium flow path body is arranged on the first wall surface so as to surround the motor.
  2.  前記第1隔壁の第1壁面には、突出部が設けられていて、
     前記冷却媒体流路体は、外周面が前記突出部の内周面よりも内方に位置し、かつ、内周面が前記モータの外周面よりも外方に位置するように構成されている、請求項1に記載のロボット。
    A protrusion is provided on the first wall surface of the first partition wall.
    The cooling medium flow path body is configured such that the outer peripheral surface is located inward of the inner peripheral surface of the protruding portion and the inner peripheral surface is located outward of the outer peripheral surface of the motor. , The robot according to claim 1.
  3.  前記突出部は、筒状に形成されている、請求項2に記載のロボット。 The robot according to claim 2, wherein the protruding portion is formed in a cylindrical shape.
  4.  前記ロボットは、多軸垂直多関節ロボットであり、
     前記ロボットの基端側の関節軸を1軸と定義した場合に、
     前記冷却装置は、前記ロボットの1軸~3軸のうち、少なくとも1つの関節軸に配置されている、請求項1~3のいずれか1項に記載のロボット。
    The robot is a multi-axis vertical articulated robot.
    When the joint axis on the base end side of the robot is defined as one axis,
    The robot according to any one of claims 1 to 3, wherein the cooling device is arranged on at least one joint axis among the 1st to 3rd axes of the robot.
  5.  前記冷却媒体流路体と前記第1壁面との間には、伝熱剤が配置されている、請求項1~4のいずれか1項に記載のロボット。 The robot according to any one of claims 1 to 4, wherein a heat transfer agent is arranged between the cooling medium flow path body and the first wall surface.
  6.  前記冷却媒体循環流路は、前記第Nリンク内に配置されている、請求項1~5のいずれか1項に記載のロボット。 The robot according to any one of claims 1 to 5, wherein the cooling medium circulation flow path is arranged in the Nth link.
  7.  ロボットの関節部に用いられる冷却装置の取り付け方法であって、
     前記ロボットの関節部は、第Nリンクを構成する第1隔壁と第N+1リンクを構成する第2隔壁を有し、
     前記第1隔壁の前記第Nリンク側の壁面である第1壁面には、筒状の突出部が形成されていて、かつ、前記モータが前記突出部の内方に位置するように配置されていて、
     前記第1隔壁の前記第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、
     前記冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、前記冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、基台と、を備え、
     前記ラジエータ及び前記送出器は、前記冷却媒体循環流路の途中に設けられていて、
     前記ファンは、前記ラジエータを空冷するように構成されていて、
     前記基台に前記ラジエータ、前記送出器、及び前記ファンを取り付ける(A)と、
     前記冷却媒体流路体の内部空間が前記モータを挿通するように、かつ、当該冷却媒体流路体を前記第1隔壁の前記第1壁面に当接させる(B)と、
     前記ラジエータ、前記送出器、及び前記ファンが取り付けられた前記基台を前記本体部及び/又は前記モータに取り付ける(C)と、
     前記冷却媒体流路体、前記ラジエータ、及び前記送出器を前記冷却媒体循環流路で接続する(D)と、を備える、ロボットの関節部に用いられる冷却装置の取り付け方法。
    It is a method of attaching a cooling device used for the joints of a robot.
    The joint portion of the robot has a first partition wall forming the Nth link and a second partition wall forming the N + 1 link.
    A cylindrical protrusion is formed on the first wall surface of the first partition wall on the N-link side, and the motor is arranged so as to be located inside the protrusion. hand,
    A speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the first partition wall.
    The cooling device is connected to a cooling medium flow path body in which a cooling medium flow path through which a cooling medium passes is formed, which is formed in an annular shape or a tubular shape, and the cooling medium flow path body. It is equipped with a cooling medium circulation flow path, a radiator, a transmitter, a fan, and a base.
    The radiator and the transmitter are provided in the middle of the cooling medium circulation flow path.
    The fan is configured to air cool the radiator.
    When the radiator, the transmitter, and the fan are attached to the base (A),
    When the internal space of the cooling medium flow path body is inserted into the motor and the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall (B),
    When the radiator, the transmitter, and the base to which the fan is attached are attached to the main body and / or the motor (C),
    A method of attaching a cooling device used for a joint portion of a robot, comprising: (D) connecting the cooling medium flow path body, the radiator, and the transmitter by the cooling medium circulation flow path.
  8.  ロボットの関節部に用いられる冷却装置の取り付け方法であって、
     前記ロボットの関節部は、第Nリンクを構成する第1隔壁と第N+1リンクを構成する第2隔壁を有し、
     前記第1隔壁の前記第Nリンク側の壁面である第1壁面には、筒状の突出部が形成されていて、かつ、前記モータが前記突出部の内方に位置するように配置されていて、
     前記第1隔壁の前記第N+1リンク側の壁面である第2壁面には、減速装置が配置されていて、
     前記冷却装置は、環状、又は筒状に形成され、その内部に冷却媒体が通流する冷却媒体流路が形成されている、冷却媒体流路体と、前記冷却媒体流路体に接続されている冷却媒体循環流路と、ラジエータと、送出器と、ファンと、基台と、を備え、
     前記ラジエータ及び前記送出器は、前記冷却媒体循環流路の途中に設けられていて、
     前記ファンは、前記ラジエータを空冷するように構成されていて、
     前記冷却媒体流路体の内部空間が前記モータを挿通するように、かつ、当該冷却媒体流路体を前記第1隔壁の前記第1壁面に当接させる(E)と、
     前記基台を前記本体部及び/又は前記モータに取り付ける(F)と、
     前記基台に前記ラジエータ、前記送出器、及び前記ファンを取り付ける(G)と、
     前記冷却媒体流路体、前記ラジエータ、及び前記送出器を前記冷却媒体循環流路で接続する(H)と、を備える、ロボットの関節部に用いられる冷却装置の取り付け方法。
    It is a method of attaching a cooling device used for the joints of a robot.
    The joint portion of the robot has a first partition wall forming the Nth link and a second partition wall forming the N + 1 link.
    A cylindrical protrusion is formed on the first wall surface of the first partition wall on the N-link side, and the motor is arranged so as to be located inside the protrusion. hand,
    A speed reducing device is arranged on the second wall surface, which is the wall surface on the N + 1 link side of the first partition wall.
    The cooling device is connected to a cooling medium flow path body in which a cooling medium flow path through which a cooling medium passes is formed, which is formed in an annular shape or a tubular shape, and the cooling medium flow path body. It is equipped with a cooling medium circulation flow path, a radiator, a transmitter, a fan, and a base.
    The radiator and the transmitter are provided in the middle of the cooling medium circulation flow path.
    The fan is configured to air cool the radiator.
    When the internal space of the cooling medium flow path body is inserted into the motor and the cooling medium flow path body is brought into contact with the first wall surface of the first partition wall (E),
    When the base is attached to the main body and / or the motor (F),
    When the radiator, the transmitter, and the fan are attached to the base (G),
    A method of attaching a cooling device used for a joint portion of a robot, comprising: (H) connecting the cooling medium flow path body, the radiator, and the transmitter by the cooling medium circulation flow path.
PCT/JP2021/010631 2020-03-23 2021-03-16 Robot and method for attaching cooling device to robot WO2021193242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020051299A JP2021146481A (en) 2020-03-23 2020-03-23 Robot and method for attaching cooling device to robot
JP2020-051299 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193242A1 true WO2021193242A1 (en) 2021-09-30

Family

ID=77850495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010631 WO2021193242A1 (en) 2020-03-23 2021-03-16 Robot and method for attaching cooling device to robot

Country Status (2)

Country Link
JP (1) JP2021146481A (en)
WO (1) WO2021193242A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323286A (en) * 1996-05-31 1997-12-16 Yaskawa Electric Corp Cooling method of motor for drive in industrial robot
JP2011182480A (en) * 2010-02-26 2011-09-15 Hitachi Automotive Systems Ltd Rotary electric machine system
JP2013106366A (en) * 2011-11-10 2013-05-30 Yaskawa Electric Corp Rotary electric machine
JP2014046398A (en) * 2012-08-31 2014-03-17 Fanuc Ltd Multi-joint robot having cooling structure for cooling motor
JP2014181767A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Driving mechanism and robot
JP2015006711A (en) * 2013-06-25 2015-01-15 株式会社安川電機 Driving mechanism and robot
WO2016185575A1 (en) * 2015-05-20 2016-11-24 日産自動車株式会社 In-vehicle drive device
JP2017099281A (en) * 2017-01-25 2017-06-01 株式会社Schaft Water-cooled motor structure and housing for water cooling
CN206536501U (en) * 2017-02-16 2017-10-03 遨博(江苏)机器人有限公司 A kind of joint heat abstractor for six-joint robot
JP2017226042A (en) * 2016-06-23 2017-12-28 ファナック株式会社 robot
JP2018126840A (en) * 2017-02-10 2018-08-16 川崎重工業株式会社 Articulated robot

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09323286A (en) * 1996-05-31 1997-12-16 Yaskawa Electric Corp Cooling method of motor for drive in industrial robot
JP2011182480A (en) * 2010-02-26 2011-09-15 Hitachi Automotive Systems Ltd Rotary electric machine system
JP2013106366A (en) * 2011-11-10 2013-05-30 Yaskawa Electric Corp Rotary electric machine
JP2014046398A (en) * 2012-08-31 2014-03-17 Fanuc Ltd Multi-joint robot having cooling structure for cooling motor
JP2014181767A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Driving mechanism and robot
JP2015006711A (en) * 2013-06-25 2015-01-15 株式会社安川電機 Driving mechanism and robot
WO2016185575A1 (en) * 2015-05-20 2016-11-24 日産自動車株式会社 In-vehicle drive device
JP2017226042A (en) * 2016-06-23 2017-12-28 ファナック株式会社 robot
JP2017099281A (en) * 2017-01-25 2017-06-01 株式会社Schaft Water-cooled motor structure and housing for water cooling
JP2018126840A (en) * 2017-02-10 2018-08-16 川崎重工業株式会社 Articulated robot
CN206536501U (en) * 2017-02-16 2017-10-03 遨博(江苏)机器人有限公司 A kind of joint heat abstractor for six-joint robot

Also Published As

Publication number Publication date
JP2021146481A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP2012228733A (en) Scara type robot
US10177692B2 (en) Variable electric motor system and electrically powered device
TWI399271B (en) Industrial robot
EP2756930B1 (en) Robot
JP6670455B2 (en) Robots and robot systems
US20140020498A1 (en) Umbilical member arrangement structure of industrial robot having hollow member
CN110202611B (en) Robot
US10099364B2 (en) Robot
JP2008238320A (en) Robot having working tool
CN103495971B (en) A kind of five degree of freedom Combined robot platform
US20220410412A1 (en) Arm module, robot arm and industrial robot
JP6853686B2 (en) Articulated robot
JP5203009B2 (en) Articulated robot
CN107453533A (en) The linear actuator system of linear actuators, cooling means and modularization cooling
WO2021193242A1 (en) Robot and method for attaching cooling device to robot
WO2021193241A1 (en) Cooling device, robot, and method of mounting cooling device to robot
WO2021193240A1 (en) Cooling medium passage body, cooling device, robot, and method for installing cooling device on robot
US20220105587A1 (en) Cooling device
CN115362051A (en) Vacuum environment robot with distributed actuators
JP2017216863A (en) Motor unit and robot
CN110978061A (en) Joint heat abstractor and cooperation robot
JPH11170184A (en) Structure of robot arm
EP0510205A1 (en) Industrial robot with means for cooling ball screw shaft
KR20170142568A (en) heat resistant vertical multi-articulated robot with wrist joint module cooling function
US11759946B2 (en) Vertical articulated robot and two-axis robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774841

Country of ref document: EP

Kind code of ref document: A1