WO2021193035A1 - Electrostimulation system - Google Patents

Electrostimulation system Download PDF

Info

Publication number
WO2021193035A1
WO2021193035A1 PCT/JP2021/009364 JP2021009364W WO2021193035A1 WO 2021193035 A1 WO2021193035 A1 WO 2021193035A1 JP 2021009364 W JP2021009364 W JP 2021009364W WO 2021193035 A1 WO2021193035 A1 WO 2021193035A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
electrical stimulation
dominant
fast
fatigue
Prior art date
Application number
PCT/JP2021/009364
Other languages
French (fr)
Japanese (ja)
Inventor
中川 雄司
加央里 榎本
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2022509547A priority Critical patent/JPWO2021193035A1/ja
Publication of WO2021193035A1 publication Critical patent/WO2021193035A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation

Definitions

  • the present invention relates to an electrical stimulation system that applies electrical stimulation to body muscles and motor nerves to contract the muscles.
  • an intermittent pneumatic compression is widely used to prevent deep vein thrombosis (DVT), which is a perioperative complication such as surgery.
  • DVT deep vein thrombosis
  • an intermittent air compression device it is necessary to wrap a sleeve over the entire lower limb of the patient. Therefore, the use of intermittent air compression devices is restricted in patients with lower limb wounds or patients who have undergone lower limb surgery.
  • Patent Document 1 discloses a device that applies electrical stimulation to such muscles.
  • EMS Electric Muscle Stimulation: EMS
  • a relatively small area electrode is attached to a part of the patient's lower limbs. Therefore, the electrical stimulation device can be used even in patients who have wounds in the lower limbs or who have undergone surgery in the lower limbs.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrical stimulation system capable of sustaining a muscle contraction effect for a long period of time.
  • the tasks are an electrical stimulator that applies electrical stimulus to at least one of the muscles and motor nerves of the body to contract the muscle, and a muscle fatigue detection device that detects fatigue of the muscle contracted by the electrical stimulator.
  • a control unit that executes control for changing at least one of the current and frequency of the electrical stimulus according to the degree of fatigue of the muscle detected by the muscle fatigue detection device. This is solved by the electrical stimulation system according to the present invention.
  • the muscle fatigue detection device detects fatigue of muscles contracted by the electrical stimulation device. Then, the control unit changes at least one of the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device. According to this, the control unit can switch the muscle contracted by the electric stimulator from the tired muscle to the non-fatigue muscle. In other words, the control unit can stop the contraction of the tired muscle and start the contraction of the non-fatigue muscle. Therefore, the electrical stimulation system according to the present invention can sustain the muscle contraction effect for a long period of time.
  • the electrical stimulation system according to the present invention enhances the effect of increasing deep venous blood flow, prevents deep venous thrombosis, and prevents venous diseases of the lower limbs.
  • the effect of improving arterial disease can be obtained.
  • the muscle fatigue detection device has a myoelectric detection electrode that detects a muscle action potential generated from a muscle fiber due to the contraction of the muscle, and the control unit is the control unit. It is characterized in that the degree of fatigue of the muscle is determined based on the muscle action potential detected by the myoelectric detection electrode.
  • the muscle fatigue detection device detects the muscle action potential generated from the muscle fiber by the contraction of the muscle by the myoelectric detection electrode, so that the contraction of the muscle fiber of the muscle is more accurate. Can be detected with.
  • the control unit can determine and determine the degree of muscle fatigue with higher accuracy based on the muscle action potential detected by the myoelectric detection electrode.
  • the electrical stimulation system preferably further includes a plurality of electrode pads arranged on the surface of the body, the myoelectric detection electrode is provided on the electrode pad, and the electrical stimulation device is the electrode.
  • the stimulating electrode provided on the pad and supplying electricity to at least one of the muscle and the motor nerve is provided, and the muscle fatigue detection device is provided with the stimulating electrode in which the electricity does not flow among the plurality of electrode pads. It is characterized in that the muscle activity potential is detected by the myoelectricity detecting electrode in the electrode pad.
  • the electrical stimulation system further includes a plurality of electrode pads arranged on the surface of the body.
  • the myoelectric detection electrode is provided on the electrode pad.
  • the electrical stimulator has a stimulating electrode that supplies electricity to at least one of the muscles and motor nerves.
  • the stimulation electrode is provided on the electrode pad.
  • the muscle fatigue detection device detects the muscle action potential by the myoelectric detection electrode in the electrode pad provided with the stimulation electrode through which electricity does not flow among the plurality of electrode pads. As a result, it is possible to prevent the electrical signal of the muscle action potential detected by the myoelectric detection electrode from interfering with the electrical signal of the electrical stimulation flowing through the stimulation electrode.
  • the muscle fatigue detection device can detect the muscle action potential with the myoelectric detection electrode with higher accuracy.
  • the muscle fatigue detection device has a muscle sound sensor that detects minute vibrations of the muscle generated by the contraction of the muscle, and the control unit controls the muscle sound. It is characterized in that the degree of fatigue of the muscle is determined based on the minute vibration detected by the sensor.
  • the muscle fatigue detection device detects minute vibrations of muscles generated by contraction of muscles by a muscle sound sensor. Therefore, it is possible to prevent the electrical signal of the electrical stimulus flowing through the stimulation electrode from being mixed as an artifact (noise) in the electrical signal related to the minute vibration of the muscle detected by the muscle sound sensor. As a result, the muscle fatigue detection device can detect the muscle contraction by detecting the minute vibration of the muscle with the muscle sound sensor with higher accuracy.
  • the muscle is a fast muscle dominant muscle
  • the control unit is a fast muscle dominant muscle by changing at least one of the current and the frequency. It is characterized in that the superiority of the contraction is switched from the fast muscle to the slow muscle.
  • the control unit changes at least one of the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device, thereby predominantly fast muscles.
  • the control unit is superior in exerting instantaneous force and easily fatigued compared to slow muscles, and is superior in exerting endurance and less likely to fatigue compared to fast muscles.
  • the muscles include a muscle predominantly in the first speed muscle and a muscle predominantly in the second speed muscle existing at a position different from the muscle predominantly in the first speed muscle.
  • the control unit is characterized in that the electrical stimulation to the muscle predominantly in the first fast muscle is stopped and the electrical stimulation to the muscle predominantly in the second fast muscle is started.
  • the control unit stops the electrical stimulation of the muscles predominantly in the first speed muscle and the second speed muscle according to the degree of muscle fatigue detected by the muscle fatigue detection device. Initiate electrical stimulation of the dominant muscle. In this way, the control unit switches the electrical stimulation from the muscle predominant in the first speed muscle to the muscle predominant in the second speed muscle existing at a position different from the muscle predominant in the first speed muscle. Therefore, after the fatigue of the muscle predominantly in the first speed muscle occurs, the muscle predominantly in the second speed muscle can continue contraction. Thereby, even when the electric stimulation is applied to the muscle in which the fast muscle is dominant, the electric stimulation system according to the present invention can maintain the contraction effect of the muscle for a long time.
  • the muscle includes a muscle predominantly fast muscle and a muscle predominantly slow muscle
  • the control unit changes at least one of the current and the frequency. This is characterized in that the electrical stimulation to the fast muscle dominant muscle is stopped and the electrical stimulation to the slow muscle dominant muscle is started.
  • the control unit changes at least one of the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device, thereby predominantly fast muscles.
  • the electrical stimulation to the muscles of the slow muscle is stopped and the electrical stimulation to the muscles predominantly slow muscles is started.
  • the control unit switches the electrical stimulation from the muscle predominantly fast muscle to the muscle predominantly slow muscle. Therefore, after fatigue of the fast muscle dominant muscle occurs, the slow muscle dominant muscle can continue contraction for a long time.
  • the electrical stimulation system according to the present invention can more reliably sustain the contraction effect of muscles for a long period of time.
  • the electrical stimulation system preferably further includes a flow meter that detects the flow rate of blood flowing through the body, and the control unit further responds to a change in the flow rate detected by the flow meter. It is characterized by changing at least one of the current and the frequency of the stimulus.
  • the control unit has a current of electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device and the change in the flow rate of blood detected by the flow meter. And change at least one of the frequencies. Therefore, the control unit can switch the muscles to be contracted by the electric stimulator based on the change in the blood flow rate as well as the degree of muscle fatigue.
  • the electrical stimulation system according to the present invention can maintain the contractile effect of muscles for a long period of time, further enhance the effect of increasing deep vein blood flow, prevent deep vein thrombosis, or cause venous disease of the lower limbs. Further improvement effect of arterial disease can be obtained.
  • the electrical stimulation system according to the present invention is preferably further provided with an intermittent air compression device that intermittently compresses the body.
  • the contractile effect of muscles can be maintained for a long period of time, the effect of increasing deep vein blood flow is further enhanced, the prevention of deep vein thrombosis, venous disease of lower limbs or arteries. Further improvement effect of the disease can be obtained.
  • an electrical stimulation system capable of sustaining a muscle contraction effect for a long period of time.
  • FIG. 1 is a schematic view showing an electrical stimulation system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a main configuration of the electrical stimulation system according to the present embodiment.
  • FIG. 3 is an enlarged view showing an enlarged electrode pad of the present embodiment.
  • the electrical stimulation system 2 includes a main body 3, an electrical stimulation device 4, a muscle fatigue detection device 5, and an electrode pad 6.
  • the electrical stimulation system 2 does not necessarily have to include the electrode pad 6.
  • the main body 3 has a control unit 31 and a display unit 32.
  • the control unit 31 is electrically connected to the electrical stimulator 4 and the muscle fatigue detection device 5 via a wire rod 68.
  • the control unit 31 transmits a control signal to the electrical stimulator 4 to control the operation of the electrical stimulator 4.
  • the control unit 31 receives a detection signal from the muscle fatigue detection device 5.
  • the control unit 31 may be electrically connected to the electrical stimulator 4 and the muscle fatigue detection device 5 by wireless rather than by wire.
  • the display unit 32 displays, for example, the muscle action potential detected by the muscle fatigue detection device 5 as an electromyogram, or detects it by the muscle fatigue detection device 5A (see FIG. 4).
  • the minute vibrations that have been made are displayed as an electromyogram.
  • the display unit 32 does not necessarily have to be provided. Further, the display unit 32 does not necessarily have to be integrally provided with the main body 3, and may be, for example, an external display connected to the main body 3.
  • the electrical stimulator 4 has an electrical stimulus signal generation unit 41 and a stimulus electrode 42.
  • the electrical stimulation signal generation unit 41 generates an electrical signal that applies electrical stimulation to at least one of the muscles and motor nerves of the body based on the control signal transmitted from the control unit 31.
  • the signal generated by the electrical stimulation signal generation unit 41 is transmitted to the stimulation electrode 42.
  • electricity is supplied to at least one of the muscles and motor nerves of the body via the stimulation electrode 42.
  • the muscles of the body are stimulated by electricity and contract. That is, the electrical stimulator 4 supplies electricity based on the signal generated by the electrical stimulation signal generation unit 41 to at least one of the muscles and motor nerves of the body via the stimulation electrode 42, and the muscles and motor nerves of the body. Apply electrical stimulation to at least one of the muscles of the body to contract.
  • the stimulation electrode 42 is provided on the electrode pad 6.
  • the electrode pad 6 is arranged, for example, by being attached to the surface of the body.
  • the electrical stimulation system 2 shown in FIG. 1 has four electrode pads 6, that is, a first electrode pad 61, a second electrode pad 62, a third electrode pad 63, and a fourth electrode pad 64.
  • the stimulation electrode 42 is provided on each of the four electrode pads 6.
  • the number of electrode pads 6 is not limited to four, and may be two or three, or five or more.
  • the control unit 31 includes a stimulation electrode 42 of the first electrode pad 61, a stimulation electrode 42 of the second electrode pad 62, a stimulation electrode 42 of the third electrode pad 63, and a stimulation electrode 42 of the fourth electrode pad 64. Electricity is not passed at the same time.
  • the control unit 31 may use the stimulation electrode 42 of the first electrode pad 61, the stimulation electrode 42 of the second electrode pad 62, the stimulation electrode 42 of the third electrode pad 63, and the stimulation electrode of the fourth electrode pad 64.
  • the electrical stimulation system 2 enhances the effect of increasing deep vein blood flow when used on the lower limbs of a patient, prevents deep vein thrombosis, and improves venous disease or arterial disease of the lower limbs. The effect can be enhanced.
  • the muscle fatigue detection device 5 has a myoelectric detection electrode 51.
  • a plurality of myoelectric detection electrodes 51 are provided on the electrode pads 6.
  • the myoelectric detection electrode 51 is provided on each of the four electrode pads 6 (first electrode pad 61, second electrode pad 62, third electrode pad 63, and fourth electrode pad 64).
  • the muscle fatigue detecting device 5 detects the fatigue of the muscle contracted by the electricity supplied from the electrical stimulating device 4. Then, the control unit 31 determines and determines the degree of muscle fatigue detected by the muscle fatigue detection device 5. Specifically, the myoelectric detection electrode 51 detects the muscle action potential generated from the muscle fiber (also referred to as “muscle fiber”) due to the contraction of the muscle and transmits it to the control unit 31. Then, the control unit 31 determines and determines the degree of muscle fatigue based on the muscle action potential detected by the myoelectric detection electrode 51. A specific example in which the control unit 31 determines the degree of muscle fatigue will be described later.
  • the muscle fatigue detection device 5 detects the muscle action potential by the myoelectric detection electrode 51 in the electrode pad 6 provided with the stimulation electrode 42 in which electricity does not flow among the plurality of (four in the present embodiment) electrode pads 6. ..
  • the muscle fatigue detection device 5 uses the stimulation electrode 42 and the fourth electrode of the third electrode pad 63.
  • the muscle activity potential is detected by at least one of the stimulation electrodes 42 of the electrode pad 64.
  • the muscle fatigue detection device 5 uses the stimulation electrode 42 of the second electrode pad 62, the stimulation electrode 42 of the third electrode pad 63, and the fourth electrode.
  • the muscle activity potential is detected by at least one of the stimulation electrodes 42 of the electrode pad 64.
  • the muscle fatigue detection device 5 can detect the muscle action potential with the myoelectric detection electrode 51 with higher accuracy.
  • FIG. 4 is a block diagram showing a main configuration of an electrical stimulation system according to a modified example of the present embodiment.
  • FIG. 5 is an enlarged view showing an enlarged electrode pad of this modified example.
  • the electrical stimulation system 2A according to this modification includes a main body 3 (see FIG. 1), an electrical stimulation device 4, a muscle fatigue detection device 5A, and an electrode pad 6.
  • the main body 3, the electrical stimulator 4, and the electrode pad 6 are as described above with respect to FIGS. 1 to 3.
  • the muscle fatigue detection device 5A has a muscle sound sensor 52. That is, the muscle fatigue detection device 5A of this modified example has a structure in which the myoelectric detection electrode 51 of the muscle fatigue detection device 5 described above with respect to FIGS. 1 to 3 is replaced with the muscle sound sensor 52.
  • the electrical stimulation system 2A according to the present modification is different from the electrical stimulation system 2 according to the present embodiment described above with respect to FIGS. 1 to 3.
  • the muscle sound sensor 52 detects the minute vibration of the muscle generated by the contraction of the muscle as a muscle sound, converts it into an electric signal, and transmits it to the control unit 31.
  • Examples of the muscle sound sensor 52 include an acceleration sensor and a microphone.
  • the microphone is not particularly limited, and may be, for example, a MEMS microphone or an electret condenser microphone (ECM).
  • the control unit 31 of this modified example determines and determines the degree of muscle fatigue based on the electric signal related to the minute vibration detected by the muscle sound sensor 52.
  • the muscle fatigue detection device 5A of this modified example detects the minute vibration of the muscle generated by the contraction of the muscle by the muscle sound sensor 52. Therefore, it is possible to prevent the electrical signal of the electrical stimulus flowing through the stimulation electrode 42 from being mixed as an artifact (noise) in the electrical signal related to the minute vibration of the muscle detected by the muscle sound sensor 52. As a result, the muscle fatigue detection device 5A can detect the muscle contraction by detecting the minute vibration of the muscle with the muscle sound sensor 52 with higher accuracy.
  • an electrical stimulation device that applies electrical stimulation to muscles is used to prevent deep vein thrombosis (DVT), which is a perioperative complication such as surgery
  • electrical stimulation is performed. May cause muscle fatigue. That is, deep vein thrombosis may occur until about 24 hours after surgery. Therefore, in order to prevent deep vein thrombosis, it is desirable that the electrical stimulation device continuously applies electrical stimulation to the patient's muscles and motor nerves until about 24 hours have passed after the operation. However, if the electrical stimulation device continuously applies electrical stimulation to the patient's muscles and motor nerves until about 24 hours after surgery, muscle fatigue may occur. Then, the muscle contraction effect may not be sustained for a long period of time, and the effect of increasing deep venous blood flow may be reduced.
  • the control unit 31 determines the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device 5. Perform control to change at least one. Specifically, in the electrical stimulation system 2 described above with respect to FIGS. 1 to 3, the control unit 31 determines the degree of muscle fatigue based on the muscle action potential detected by the myoelectric detection electrode 51, and determines the degree of muscle fatigue. Change at least one of the electrical stimulation currents and frequencies depending on the degree of fatigue. Further, in the electrical stimulation system 2A described above with respect to FIGS. 4 and 5, the control unit 31 determines the degree of muscle fatigue based on the minute vibration detected by the muscle sound sensor 52, and corresponds to the degree of muscle fatigue. And change at least one of the current and frequency of the electrical stimulation.
  • the control unit 31 can switch the muscle contracted by the electrical stimulation device 4 from the fatigued muscle to the non-fatigue muscle. .. In other words, the control unit 31 can stop the contraction of the tired muscle and start the contraction of the non-fatigue muscle. Therefore, the electrical stimulation systems 2 and 2A can sustain the muscle contraction effect for a long period of time. As a result, even in patients with lower limb wounds or lower limb surgery, the electrical stimulation systems 2 and 2A enhance the effect of increasing deep venous blood flow, prevent deep venous thrombosis, and prevent venous diseases of the lower limbs. The effect of improving arterial disease can be obtained.
  • the muscle fatigue detection device 5 detects the muscle action potential generated from the muscle fiber due to the contraction of the muscle by the myoelectric detection electrode 51, thereby causing the muscle.
  • the contraction of muscle fibers can be detected with higher accuracy.
  • the control unit 31 can determine and determine the degree of muscle fatigue with higher accuracy based on the muscle action potential detected by the myoelectric detection electrode 51.
  • the electrical signal of the electrical stimulation flowing through the stimulation electrode 42 is an artifact (noise) in the electrical signal related to the minute vibration of the muscle detected by the muscle sound sensor 52. It is possible to suppress the mixing as. As a result, the muscle fatigue detection device 5 can detect the muscle contraction by detecting the minute vibration of the muscle with the muscle sound sensor 52 with higher accuracy.
  • FIG. 6 is a schematic diagram illustrating a first specific example of the operation of the electrical stimulation system according to the present embodiment.
  • FIG. 7 is a flowchart illustrating a first specific example of the operation of the electrical stimulation system according to the present embodiment.
  • FIG. 8 is a graph obtained by frequency analysis of the electromyogram before muscle fatigue.
  • FIG. 9 is a graph obtained by frequency analysis of the electromyogram after muscle fatigue.
  • the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle.
  • the gastrocnemius muscle is the muscle 71 in which the fast muscle is dominant.
  • “Fast muscle dominant muscle” includes a relatively high proportion of fast muscles and a relatively low proportion of slow muscles. Compared to slow muscles, fast muscles have a faster contraction speed, are excellent in exerting instantaneous force, and have the property of being easily fatigued when contraction is repeated. Compared to fast muscles, slow muscles have a slower contraction rate, are excellent in exerting endurance, and have the property of being less likely to get tired even after repeated contractions.
  • the "slow muscle dominant muscle” described later includes a relatively high proportion of slow muscles and a relatively low proportion of fast muscles. For example, when the ratio of fast muscles is 55% or more, the muscles are “fast muscle dominant muscles”. Further, for example, when the ratio of slow muscles is 55% or more, the muscles are "slow muscle dominant muscles”.
  • the ratio of fast muscles and slow muscles that define "dominance" is an example, and is not limited to this.
  • step S1 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and the fast muscle in the initial state.
  • the electromyogram of the dominant muscle 71 is measured (time T0).
  • the "initial state” refers to the state before electrical stimulation is applied to the muscles.
  • the graph obtained by frequency analysis of the electromyogram at time T0 is as shown in FIG. 8, for example.
  • the graph obtained by frequency analysis of the electromyogram at time T0 is not limited to the graph shown in FIG.
  • the frequency analysis method is not particularly limited, and may be, for example, a fast Fourier transform (FFT), an autoregressive model (AR), or a maximum entropy method (MEM). You may.
  • FIG. 8 shows an example of performing a fast Fourier transform (FFT) of an electromyogram at time T0.
  • step S2 the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and at least one of the fast muscle dominant muscle 71 and the motor nerve via the stimulation electrode 42. Electricity is supplied to the crab and the electrical stimulation of the muscle 71, which is dominant in the fast muscle, is started.
  • step S3 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation.
  • the graph obtained by frequency analysis of the electromyogram at time Tx is as shown in FIG. 9, for example.
  • the graph obtained by frequency analysis of the electromyogram at time Tx is not limited to the graph shown in FIG. Further, FIG. 9 shows an example in which the fast Fourier transform (FFT) of the electromyogram at time Tx is performed.
  • FFT fast Fourier transform
  • step S4 the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S2).
  • the "predetermined time" in step S4 is, for example, about 24 hours.
  • the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do.
  • step S5 the control unit 31 uses the fast muscle. It is determined whether or not the dominant muscle 71 is fatigued.
  • the electric stimulation current is more likely to flow to the fast muscle than to the slow muscle. Therefore, when electrical stimulation is applied to muscles, first, lactate exercise, which is exercise by fast muscles, is performed, and then aerobic exercise, which is exercise by slow muscles, is performed. In other words, as described above, the fast muscle has the property of being more likely to get tired when the contraction is repeated than the slow muscle. Gradually increase.
  • the frequency band of the muscle action potential generated from the muscle fiber of the fast muscle is, for example, about 20 Hz or more and about 45 Hz or less.
  • the frequency band of the muscle action potential generated from the muscle fiber of the intermediate muscle is, for example, about 46 Hz or more and about 80 Hz or less.
  • the frequency band of the muscle action potential generated from the muscle fiber of the slow muscle is, for example, about 81 Hz or more and 350 Hz or less.
  • the intermediate frequency 81 when the fast muscles begin to fatigue and the fast muscle usage rate gradually decreases and the slow muscle usage rate gradually increases, the intermediate frequency 81 as a representative value becomes Move to the low frequency band.
  • Factors that cause the intermediate frequency 81 to shift to the low frequency band include, for example, various factors such as synchronization of motor units, increase and decrease of motor unit mobilization, changes in muscle fiber conduction velocity, and changes in intramuscular pressure.
  • Another factor that causes the intermediate frequency 81 to shift to the low frequency band is that, as described above, when the fast muscles showing the relatively high frequency band are first mobilized and begin to fatigue due to repeated contractions, the intermediate frequency 81 is relatively low. Increased recruitment of slow muscles in the frequency band.
  • control unit 31 determines that muscle fatigue has occurred when the intermediate frequency 81 is equal to or less than the threshold value 82 or less than the threshold value 82.
  • An average frequency may be used as a representative value instead of the intermediate frequency.
  • control unit 31 may determine the threshold value 82 according to the electromyogram of the fast muscle dominant muscle 71 in the initial state measured by the myoelectric detection electrode 51 in step S1.
  • control unit 31 may perform muscles according to the ratio of the total value of the power spectra of at least one of the fast muscles and the slow muscles to the total value of the power spectra of the fast muscles, the intermediate muscles, and the slow muscles. It may be determined whether or not the fatigue is occurring. For example, when the ratio of the total value of the power spectrum of the fast muscle to the total value of the power spectrum of the fast muscle, the intermediate muscle, and the slow muscle becomes less than or equal to the threshold value, the control unit 31 causes muscle fatigue. May be determined to have occurred.
  • the control unit 31 causes muscle fatigue. It may be determined that it has occurred.
  • the method for determining whether or not muscle fatigue has occurred is not limited to the above-mentioned determination method, and may be another determination method.
  • step S5 determines that the fast muscle dominant muscle 71 is not fatigued
  • step S6 determines the control unit 31 determines the output current amount (that is, the current) of the electrical stimulation. ) Is increased to improve the contractile force of the fast muscles among the muscles 71 in which the fast muscles are dominant.
  • step S7 the control unit 31 determines whether or not the contractile force of the fast muscle among the fast muscle dominant muscle 71 is improved.
  • step S7 the control unit 31 determines whether or not the fatigue of the fast muscle dominant muscle 71 has occurred, that is, whether or not the fatigue of the fast muscle dominant muscle 71 has recovered. to decide.
  • An example of a method for determining whether or not muscle fatigue has occurred is as described above.
  • step S9 the muscle fatigue detection device 5 uses the myoelectric detection electrode 51.
  • the action potential of the fast muscle dominant muscle 71 is detected, and the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx).
  • step S7: NO the control unit 31 changes the frequency of the electrical stimulation and switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71.
  • step S6 the control unit 31 aims to improve the contractile force of the fast muscle among the fast muscle dominant muscle 71 by changing the electric stimulation current. Further, in step S8, the control unit 31 switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71 by changing the frequency of the electrical stimulation.
  • step S9 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation.
  • step S10 the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S2). When a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S10: YES), the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do. On the other hand, if a predetermined time has not elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S10: NO), the muscle fatigue detection device 5 described above with respect to step S9. Make the measurement.
  • the control unit 31 exerts the endurance as compared with the fast muscles from the fast muscles which are excellent in exerting the instantaneous force as compared with the slow muscles and are easily fatigued. Switch the superiority of contraction to slow muscles that are excellent and less likely to fatigue. Therefore, after fatigue of the fast muscles of the fast muscles 71 is generated, the slow muscles of the fast muscles 71 can continue to contract for a long time. Thereby, even when the electrical stimulation is applied to the muscle 71 in which the fast muscle is dominant, the electrical stimulation system 2 can maintain the contraction effect of the muscle for a long time.
  • the graph obtained by frequency analysis of the mechanomyogram before muscle fatigue corresponds to, for example, FIG.
  • a graph obtained by frequency analysis of the mechanomyogram after muscle fatigue corresponds to, for example, FIG.
  • the operation and the like of the other electrical stimulation system 2A are the same as the operation and the like of the electrical stimulation system 2 described above.
  • FIG. 10 is a schematic diagram illustrating a second specific example of the operation of the electrical stimulation system according to the present embodiment.
  • 11 and 12 are flowcharts illustrating a second specific example of the operation of the electrical stimulation system according to the present embodiment.
  • the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle, the fibula muscle, and the tibialis muscle.
  • the gastrocnemius muscle is the muscle 71 in which the first fast muscle is dominant.
  • the peroneal muscle is the muscle 72 in which the second fast muscle is dominant.
  • the tibialis anterior is the muscle 73 in which the third speed muscle is dominant.
  • step S11 the muscle fatigue detection device 5 detects the muscle action potential of the muscle 71 in which the first speed muscle is dominant by the myoelectric detection electrode 51, and the first speed muscle is dominant in the initial state.
  • the electromyogram of the muscle 71 of the muscle 71 is measured (time T0).
  • step S12 the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and the first-speed muscle dominant muscle 71 and the motor nerve are generated via the stimulation electrode 42. Electricity is supplied to at least one of them, and electrical stimulation of the muscle 71 in which the first fast muscle is dominant is started.
  • step S13 the muscle fatigue detection device 5 detects the muscle action potential of the first speed muscle dominant muscle 71 by the myoelectric detection electrode 51, and the muscle 71 of the first speed muscle dominant muscle 71 during electrical stimulation. Measure the electromyogram (time Tx).
  • step S14 the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the muscle 71 in which the first speed muscle is dominant (step S12).
  • a predetermined time has elapsed since the electric stimulator 4 started the electric stimulation of the muscle 71 having the dominant first speed muscle (step S14: YES)
  • the control unit 31 of the muscle 71 having the dominant first speed muscle End the electrical stimulation.
  • step S15 the control unit 31 It is determined whether or not the fatigue of the muscle 71, which is dominant in the first speed muscle, is occurring.
  • An example of a method for determining whether or not muscle fatigue has occurred is as described above with respect to FIGS. 6 to 9.
  • the operations of steps S11 to S15 are the same as the operations of steps S1 to S5 described above with respect to FIG. 7.
  • step S15 NO
  • the muscle fatigue detection device 5 performs the above-mentioned measurement with respect to step S13.
  • the control unit 31 determines that the first-speed muscle-dominant muscle 71 is fatigued (step S15: YES)
  • step S16 the control unit 31 determines that the output current amount of the electrical stimulation is increased. The number is increased to improve the contractile force of the fast muscle among the muscles 71 in which the first fast muscle is dominant.
  • the control unit 31 may change the frequency of the electrical stimulation in order to improve the contractile force of the slow muscle among the muscles 71 in which the first fast muscle is dominant, if necessary.
  • step S17 the control unit 31 determines whether or not the contractile force of the muscle 71, which is dominant in the first fast muscle, is improved. That is, in step S17, as described above with respect to step S15, the control unit 31 has recovered whether or not the fatigue of the first-speed muscle-dominant muscle 71 has occurred, that is, the fatigue of the first-speed muscle-dominant muscle 71 has recovered. Judge whether or not. An example of a method for determining whether or not muscle fatigue has occurred is as described above.
  • step S19 the muscle fatigue detection device 5 uses the myoelectric detection electrode 51 to make the first.
  • the action potential of the fast muscle dominant muscle 71 is detected, and the electromyogram of the first fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx).
  • step S17: NO the contraction force of the first-speed muscle-dominant muscle 71 is not improved due to severe fatigue of the first-speed muscle-dominant muscle 71.
  • the control unit 31 stops the electrical stimulation of the first-speed muscle-dominant muscle 71 and starts the electrical stimulation of the second-speed muscle-dominant muscle 72.
  • the medical worker applies electrical stimulation to the muscle 71 predominantly in the first fast muscle while monitoring the degree of fatigue of the muscle 71 predominantly in the first fast muscle on the display unit 32 (see FIG. 1). It may be stopped, the optimum muscle (muscle 72 in which the second fast muscle is dominant in step S18) is selected, and electrical stimulation may be applied.
  • the control unit 31 improves the contractile force of the muscle 71 predominantly in the first speed muscle by changing the current of the electrical stimulation and changing the frequency of the electrical stimulation as needed. Aim.
  • step S18 the control unit 31 stops the electrical stimulation of the first-speed muscle-dominant muscle 71, and at the same time, the second-speed muscle-dominant muscle 72 existing at a position different from the first-speed muscle-dominant muscle 71. Start electrical stimulation to.
  • step S24 the control unit 31 stops the electrical stimulation of the second-speed muscle-dominant muscle 72 and starts the electrical stimulation of the third-speed muscle-dominant muscle 73.
  • the medical worker applies electrical stimulation to the muscle 72 having the dominant second speed muscle 72 while monitoring the degree of fatigue of the muscle 72 having the dominant second speed muscle 72 with the display unit 32 (see FIG. 1). It may be stopped, the optimum muscle (muscle 73 predominantly in the third speed muscle in step S24) is selected, and electrical stimulation may be applied.
  • step S22 the control unit 31 improves the contractile force of the muscle 72 predominantly in the second speed muscle by changing the current of the electrical stimulation and changing the frequency of the electrical stimulation as needed. Aim. Further, in step S24, the control unit 31 stops the electrical stimulation to the muscle 72 having the dominant second speed muscle, and the muscle 73 having the dominant third speed muscle at a position different from the muscle 72 having the dominant second speed muscle. Start electrical stimulation to.
  • steps S25 and S26 are the same as the operations of steps S13 and S14.
  • the control unit 31 electrically stimulates the muscle 71 in which the first speed muscle is dominant to the muscle 72 in which the second speed muscle is dominant, which exists at a position different from the muscle 71 in which the first speed muscle is dominant. Switch. Therefore, after the fatigue of the first-speed muscle-dominant muscle 71 occurs, the second-speed muscle-dominant muscle 72 can continue to contract. This is also the case where the control unit 31 switches the electrical stimulation from the muscle 72 in which the second speed muscle is dominant to the muscle 73 in which the muscle 72 is dominant in the second speed muscle and exists at a position different from the muscle 72 in which the second speed muscle is dominant. The same is true. As a result, even when the electrical stimulation is applied to the muscles 71, 72, 73 in which the fast muscles are dominant, the electrical stimulation system 2 according to the present embodiment can maintain the contraction effect of the muscles for a long time. ..
  • step S24 the control unit 31 stops the electrical stimulation to the muscle 72 in which the second speed muscle is dominant, and the third speed is present at a position different from the muscle 72 in which the second speed muscle is dominant. Electrical stimulation of muscle-dominant muscle 73 is initiated.
  • the operation of step S24 is not limited to this.
  • the control unit 31 stops the electrical stimulation of the second-speed muscle-dominant muscle 72, and the first-speed muscle-dominant muscle 71 exists at a position different from that of the second-speed muscle-dominant muscle 72.
  • the electrical stimulation to the muscle 71 may be started, and the electrical stimulation to the muscle 71 in which the first fast muscle is dominant may be applied again. Even in this case, the same effect as that of the above-described specific example can be obtained.
  • FIG. 13 is a schematic diagram illustrating a third specific example of the operation of the electrical stimulation system according to the present embodiment.
  • FIG. 14 is a flowchart illustrating a third specific example of the operation of the electrical stimulation system according to the present embodiment.
  • the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle and the soleus muscle.
  • the gastrocnemius muscle is the fast muscle dominant muscle 71.
  • the soleus muscle is the slow muscle dominant muscle 74.
  • the “slow muscle dominant muscle” is as described above with respect to FIGS. 6 to 9.
  • step S31 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and the fast muscle dominant muscle 71 in the initial state.
  • the electromyogram is measured (time T0).
  • step S32 the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and at least one of the fast muscle dominant muscle 71 and the motor nerve via the stimulation electrode 42. Electricity is supplied to the crab and the electrical stimulation of the muscle 71, which is dominant in the fast muscle, is started.
  • step S33 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation. (Time Tx).
  • step S34 the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S32).
  • step S34: YES the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do.
  • step S35 the control unit 31 uses the fast muscle. It is determined whether or not the dominant muscle 71 is fatigued. An example of a method for determining whether or not muscle fatigue has occurred is as described above with respect to FIGS. 6 to 9.
  • the operations of steps S31 to S35 are the same as the operations of steps S1 to S5 described above with respect to FIG. 7.
  • step S35 NO
  • the muscle fatigue detection device 5 performs the above-mentioned measurement with respect to step S33.
  • the control unit 31 determines that the fast muscle dominant muscle 71 is fatigued (step S35: YES)
  • step S36 the control unit 31 increases the output current amount of the electrical stimulation. This is performed to improve the contractile force of the fast muscles among the muscles 71 in which the fast muscles are dominant.
  • the control unit 31 may change the frequency of the electrical stimulation in order to improve the contractile force of the slow muscle among the fast muscle dominant muscle 71, if necessary.
  • step S37 the control unit 31 determines whether or not the contractile force of the fast muscle dominant muscle 71 is improved. That is, in step S37, as described above with respect to step S35, the control unit 31 determines whether or not the fatigue of the fast muscle dominant muscle 71 has occurred, that is, whether or not the fatigue of the fast muscle dominant muscle 71 has recovered. to decide.
  • An example of a method for determining whether or not muscle fatigue has occurred is as described above.
  • step S39 the muscle fatigue detection device 5 is fast muscle dominant due to the myoelectric detection electrode 51.
  • the muscle action potential of the muscle 71 is detected, and the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx).
  • step S37: NO the control unit 31 is in step S38.
  • step S38 the control unit 31 stops the electrical stimulation to the fast muscle dominant muscle 71 and the slow muscle dominant muscle 74 by changing at least one of the current and the frequency of the electrical stimulation. To start.
  • steps S39 and S40 are the same as the operations of steps S33 and S34.
  • the control unit 31 switches the electrical stimulation from the fast muscle dominant muscle 71 to the slow muscle dominant muscle 74. Therefore, after the fatigue of the fast muscle dominant muscle 71 occurs, the slow muscle dominant muscle 74 can continue contraction for a long time. As a result, the electrical stimulation system 2 according to the present embodiment can more reliably maintain the muscle contraction effect for a long period of time.
  • the gastrocnemius muscle was mentioned as an example of the muscle 71 in which the fast muscle was dominant, and the soleus muscle was mentioned as an example of the muscle 74 in which the slow muscle was dominant.
  • the examples of the fast muscle dominant muscle 71 and the slow muscle dominant muscle 74 are not limited to this.
  • other examples of the fast muscle dominant muscle 71 include the tibialis anterior muscle / extensor digitorum longus muscle / extensor hallucis longus muscle.
  • the posterior tibial muscle / flexor digitorum longus / flexor hallucis longus can be mentioned. Even in this case, the same effect as that of the above-described specific example can be obtained.
  • the electrical stimulation system according to the second embodiment of the present invention will be described. If the components of the electrical stimulation system 2B according to the second embodiment are the same as the components of the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3, the overlapping description will be described. It will be omitted as appropriate, and the differences will be mainly described below.
  • FIG. 15 is a block diagram showing a main configuration of an electrical stimulation system according to a second embodiment of the present invention.
  • the electrical stimulation system 2B according to the present embodiment includes a main body 3 (see FIG. 1), an electrical stimulation device 4, a muscle fatigue detection device 5, an electrode pad 6, and a flow meter 35.
  • the main body 3, the electrical stimulator 4, the muscle fatigue detection device 5, and the electrode pad 6 are as described above with respect to FIGS. 1 to 3. That is, the electrical stimulation system 2B according to the present embodiment further includes a flow meter 35 as compared with the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3.
  • the electrical stimulation system 2B according to the present embodiment is different from the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3.
  • the flow meter 35 detects the flow rate of blood flowing through the body by a non-invasive method.
  • the form of the flow meter 35 is not particularly limited, and is, for example, an ultrasonic flow meter.
  • the detection method of the flow meter 35 may be a Doppler type or a transit time type.
  • Examples of the flow meter 35 include a duplex ultrasonic blood flow meter, an ultrasonic color Doppler blood flow meter, and a laser blood flow meter.
  • a laser blood flow meter a laser light emitting / receiving element corresponding to the upstream side of the blood flow is provided, and a light receiving element corresponding to the downstream side of the blood flow is provided.
  • the inner diameter of the blood vessel is calculated based on the signal of the laser emitting / receiving element.
  • the blood flow rate is calculated by the intravascular cross-sectional area calculated based on the inner diameter of the blood vessel and the blood flow velocity calculated by utilizing the Doppler effect.
  • the blood flow velocity is calculated by the Doppler effect based on the light emission signal transmitted from the laser light emitting element corresponding to the upstream side of the blood flow and the received signal transmitted from the light receiving element corresponding to the downstream side of the blood flow.
  • FIG. 16 is a schematic diagram illustrating a specific example of the operation of the electrical stimulation system according to the present embodiment.
  • FIG. 17 is a flowchart illustrating a specific example of the operation of the electrical stimulation system according to the present embodiment.
  • the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle.
  • the gastrocnemius muscle is the muscle 71 in which the fast muscle is dominant.
  • the flow meter 35 is an ultrasonic flow meter.
  • the ultrasonic transmitter / receiver 36 included in the flow meter 35 is attached to the body surface in the vicinity of the popliteal fossa (back of the knee).
  • an ultrasonic element provided on the upstream side of the blood flow is formed by a transmitting / receiving element, and an ultrasonic element provided on the downstream side of the blood flow is formed by a receiving element.
  • the inner diameter of the blood vessel is calculated based on the signal of the transmitting / receiving element of the ultrasonic element provided on the upstream side of the blood flow.
  • the cross-sectional area inside the blood vessel is calculated based on the inner diameter of the blood vessel.
  • step S41 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and the fast muscle dominant muscle 71 in the initial state.
  • the electromyogram is measured (time T0).
  • step S42 the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and at least one of the fast muscle dominant muscle 71 and the motor nerve via the stimulation electrode 42. Electricity is supplied to the crab and the electrical stimulation of the muscle 71, which is dominant in the fast muscle, is started.
  • step S43 the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation. (Time Tx).
  • step S43 the flow meter 35 is superposed by the Doppler effect based on the transmission signal transmitted from the transmission element on the upstream side of the blood flow and the reception signal transmitted from the reception element on the downstream side of the blood flow.
  • the flow velocity of blood flowing in the vicinity of the attachment point of the sound wave transmitter / receiver 36 is calculated.
  • the flow meter 35 detects the blood flow rate by the intravascular cross-sectional area calculated based on the inner diameter of the blood vessel and the blood flow rate calculated by using the Doppler effect, and the blood flow rate during electrical stimulation. (Time Tx).
  • body water, body fat, and the like may be measured as other parameters (time Tx).
  • step S44 the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S42).
  • step S44: YES the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do.
  • step S45 the control unit 31 uses the fast muscle.
  • control unit 31 may determine the degree of fluctuation of other parameters such as body water and body fat.
  • step S45: NO the muscle fatigue detection device 5 may be used. The measurement described above is performed with respect to step S43.
  • step S45: YES the control unit 31 is in step S46. Increases the output current amount of electrical stimulation to improve the contractile force of the fast muscle among the muscles 71 in which the fast muscle is dominant. Then, in step S47, the control unit 31 determines whether or not the contractile force of the fast muscle among the fast muscle dominant muscle 71 is improved.
  • step S47 the control unit 31 determines whether or not the fatigue of the fast muscle dominant muscle 71 has occurred, that is, whether or not the fatigue of the fast muscle dominant muscle 71 has recovered, as described above with respect to step S45. to decide.
  • An example of a method for determining whether or not muscle fatigue has occurred is as described above.
  • step S49 the muscle fatigue detection device 5 uses the myoelectric detection electrode 51.
  • the action potential of the fast muscle dominant muscle 71 is detected, and the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx).
  • step S47: NO the control unit 31 changes the frequency of the electrical stimulation and switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71.
  • step S46 the control unit 31 performs the electric stimulation current according to the degree of muscle fatigue detected by the muscle fatigue detection device 5 and the change in blood flow rate detected by the flow meter 35.
  • the control unit 31 switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71 by changing the frequency of the electrical stimulation.
  • steps S49 and S50 are the same as the operations of steps S9 and S10 described above with respect to FIG. 7.
  • control unit 31 can switch the muscles to be contracted by the electrical stimulator 4 based on not only the degree of muscle fatigue but also the change in blood flow rate.
  • the electrical stimulation system 2B according to the present embodiment can maintain the muscle contraction effect for a long period of time, further enhance the effect of increasing deep vein blood flow, prevent deep vein thrombosis, and prevent veins in the lower limbs. Further improvement effect of disease or arterial disease can be obtained.
  • the case where the electrical stimulation system 2B according to the present embodiment performs the operation of the first specific example described above with respect to FIGS. 6 to 9 is taken as an example.
  • the specific example of the operation of the electrical stimulation system 2B according to the present embodiment is not limited to this, and may be the second specific example described above with respect to FIGS. 10 to 12, and FIGS. 13 and 14 show.
  • the third specific example described above may be used. Also in this case, the same effects as those described above with respect to FIGS. 10 to 12 and the effects described above with respect to FIGS. 13 and 14 can be obtained.
  • the electrical stimulation system according to the third embodiment of the present invention will be described. If the components of the electrical stimulation system 2C according to the third embodiment are the same as the components of the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3, the overlapping description will be described. It will be omitted as appropriate, and the differences will be mainly described below.
  • FIG. 18 is a schematic view showing an electrical stimulation system according to a third embodiment of the present invention.
  • the electrical stimulation system 2C according to the present embodiment intermittently presses the main body 3 (see FIG. 1), the electrical stimulation device 4, the muscle fatigue detection device 5, the electrode pad 6, and the body such as the patient's lower limbs. It is provided with an intermittent air compression device (IPC) 9.
  • the main body 3, the electrical stimulator 4, the muscle fatigue detection device 5, and the electrode pad 6 are as described above with respect to FIGS. 1 to 3. That is, the electrical stimulation system 2C according to the present embodiment further includes an intermittent air compression device 9 as compared with the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3. In this respect, the electrical stimulation system 2C according to the present embodiment is different from the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3.
  • the muscle contraction effect can be maintained for a long period of time, the effect of increasing deep vein blood flow is further enhanced, the prevention of deep vein thrombosis and the venous disease of the lower limbs are further enhanced. Alternatively, a further improvement effect on arterial disease can be obtained.

Abstract

[Problem] To provide an electrostimulation system maintaining a muscle contraction effect over a long period of time. [Solution] An electrostimulation system 2 comprises: an electrostimulation device 4 that applies electrostimulation to a muscle and/or a motor nerve of a body and causes the muscle to contract; a muscle fatigue detection device 5 that detects the fatigue of the muscle made to contract by the electrostimulation device 4; and a control unit 31 that executes control for changing the electric current and/or the frequency of the electrostimulation according to the level of fatigue of the muscle detected by the muscle fatigue detection device 5.

Description

電気刺激システムElectrical stimulation system
 本発明は、身体の筋肉や運動神経に電気刺激を付与し前記筋肉を収縮させる電気刺激システムに関する。 The present invention relates to an electrical stimulation system that applies electrical stimulation to body muscles and motor nerves to contract the muscles.
 一般的に、外科手術などの周術期合併症である深部静脈血栓(Deep Vein Thrombosis:DVT)を予防するために、間欠式空気圧迫装置(Intermittent Pneumatic Compression:IPC)が広く用いられている。しかし、間欠式空気圧迫装置が使用される場合には、患者の下肢全体にスリーブを巻く必要がある。そのため、下肢に創傷がある患者や下肢の手術が行われた患者においては、間欠式空気圧迫装置の使用は制限される。 In general, an intermittent pneumatic compression (IPC) is widely used to prevent deep vein thrombosis (DVT), which is a perioperative complication such as surgery. However, when an intermittent air compression device is used, it is necessary to wrap a sleeve over the entire lower limb of the patient. Therefore, the use of intermittent air compression devices is restricted in patients with lower limb wounds or patients who have undergone lower limb surgery.
 これに対して、最近では、電気刺激デバイス(Electric Muscle Stimulation:EMS)が患者の下肢に用いられることより、深部静脈血流の増加効果を高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患の改善効果を示すことが報告されている。特許文献1には、このような筋肉に電気的刺激を与える装置が開示されている。特許文献1に記載されたような装置が使用される場合には、比較的小さい面積の電極が患者の下肢の一部に装着される。そのため、下肢に創傷がある患者や下肢の手術が行われた患者においても、電気刺激デバイスが使用可能である。 On the other hand, recently, electric stimulation device (Electric Muscle Stimulation: EMS) is used for the lower limbs of patients to enhance the effect of increasing deep venous blood flow, prevent deep venous thrombosis, and prevent venous diseases or arteries in the lower limbs. It has been reported to show an improving effect on diseases. Patent Document 1 discloses a device that applies electrical stimulation to such muscles. When a device as described in Patent Document 1 is used, a relatively small area electrode is attached to a part of the patient's lower limbs. Therefore, the electrical stimulation device can be used even in patients who have wounds in the lower limbs or who have undergone surgery in the lower limbs.
 しかし、特許文献1に記載されたような装置が使用されると、電気刺激による筋疲労が発生することがある。すなわち、深部静脈血栓は、外科手術後約24時間が経過するまで発生するおそれがある。そのため、深部静脈血栓を予防するためには、電気刺激デバイスは、外科手術後約24時間が経過するまで持続的に患者の筋肉や運動神経に電気刺激を付与することが望ましい。しかし、外科手術後約24時間が経過するまで電気刺激デバイスが持続的に患者の筋肉や運動神経に電気刺激を付与すると、筋疲労が発生する。そうすると、長時間にわたる筋肉の収縮効果が持続されないという問題がある。そのため、長時間にわたって筋肉の収縮効果を持続させることができる電気刺激システムが切望されている。 However, when a device as described in Patent Document 1 is used, muscle fatigue due to electrical stimulation may occur. That is, deep vein thrombosis may occur until about 24 hours after surgery. Therefore, in order to prevent deep vein thrombosis, it is desirable that the electrical stimulation device continuously applies electrical stimulation to the patient's muscles and motor nerves until about 24 hours have passed after the operation. However, when the electrical stimulation device continuously applies electrical stimulation to the patient's muscles and motor nerves until about 24 hours have passed after the surgery, muscle fatigue occurs. Then, there is a problem that the contraction effect of the muscle is not maintained for a long time. Therefore, an electrical stimulation system capable of sustaining the contraction effect of muscles for a long period of time is desired.
特表2008-520306号公報Japanese Patent Application Laid-Open No. 2008-520306
 本発明は、前記課題を解決するためになされたものであり、長時間にわたって筋肉の収縮効果を持続させることができる電気刺激システムを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrical stimulation system capable of sustaining a muscle contraction effect for a long period of time.
 前記課題は、身体の筋肉および運動神経の少なくともいずれかに電気刺激を付与して前記筋肉を収縮させる電気刺激装置と、前記電気刺激装置により収縮された前記筋肉の疲労を検出する筋疲労検出装置と、前記筋疲労検出装置により検出された前記筋肉の前記疲労の程度に応じて前記電気刺激の電流および周波数の少なくともいずれかを変更する制御を実行する制御部と、を備えたことを特徴とする本発明に係る電気刺激システムにより解決される。 The tasks are an electrical stimulator that applies electrical stimulus to at least one of the muscles and motor nerves of the body to contract the muscle, and a muscle fatigue detection device that detects fatigue of the muscle contracted by the electrical stimulator. A control unit that executes control for changing at least one of the current and frequency of the electrical stimulus according to the degree of fatigue of the muscle detected by the muscle fatigue detection device. This is solved by the electrical stimulation system according to the present invention.
 前記電気刺激システムによれば、筋疲労検出装置は、電気刺激装置により収縮された筋肉の疲労を検出する。そして、制御部は、筋疲労検出装置により検出された筋肉の疲労の程度に応じて電気刺激の電流および周波数の少なくともいずれかを変更する。これによれば、制御部は、電気刺激装置により収縮させる筋肉を、疲労の生じた筋肉から疲労の生じていない筋肉に切り替えることができる。言い換えれば、制御部は、疲労の生じた筋肉の収縮を停止し、疲労の生じていない筋肉の収縮を開始することができる。そのため、本発明に係る電気刺激システムは、長時間にわたって筋肉の収縮効果を持続させることができる。これにより、下肢に創傷がある患者や下肢の手術が行われた患者においても、本発明に係る電気刺激システムは、深部静脈血流の増加効果を高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患の改善効果を得ることができる。 According to the electrical stimulation system, the muscle fatigue detection device detects fatigue of muscles contracted by the electrical stimulation device. Then, the control unit changes at least one of the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device. According to this, the control unit can switch the muscle contracted by the electric stimulator from the tired muscle to the non-fatigue muscle. In other words, the control unit can stop the contraction of the tired muscle and start the contraction of the non-fatigue muscle. Therefore, the electrical stimulation system according to the present invention can sustain the muscle contraction effect for a long period of time. As a result, even in patients with lower limb wounds or lower limb surgery, the electrical stimulation system according to the present invention enhances the effect of increasing deep venous blood flow, prevents deep venous thrombosis, and prevents venous diseases of the lower limbs. Alternatively, the effect of improving arterial disease can be obtained.
 本発明に係る電気刺激システムにおいて、好ましくは、前記筋疲労検出装置は、前記筋肉の前記収縮により筋繊維から発生する筋活動電位を検出する筋電検出電極を有し、前記制御部は、前記筋電検出電極により検出された前記筋活動電位に基づいて前記筋肉の前記疲労の程度を決定することを特徴とする。 In the electrical stimulation system according to the present invention, preferably, the muscle fatigue detection device has a myoelectric detection electrode that detects a muscle action potential generated from a muscle fiber due to the contraction of the muscle, and the control unit is the control unit. It is characterized in that the degree of fatigue of the muscle is determined based on the muscle action potential detected by the myoelectric detection electrode.
 本発明に係る電気刺激システムによれば、筋疲労検出装置は、筋肉の収縮により筋繊維から発生する筋活動電位を筋電検出電極により検出することで、筋肉の筋繊維の収縮をより高い精度で検出することができる。これにより、制御部は、筋電検出電極により検出された筋活動電位に基づいて、筋肉の疲労の程度をより高い精度で判断し決定することができる。 According to the electrical stimulation system according to the present invention, the muscle fatigue detection device detects the muscle action potential generated from the muscle fiber by the contraction of the muscle by the myoelectric detection electrode, so that the contraction of the muscle fiber of the muscle is more accurate. Can be detected with. Thereby, the control unit can determine and determine the degree of muscle fatigue with higher accuracy based on the muscle action potential detected by the myoelectric detection electrode.
 本発明に係る電気刺激システムは、好ましくは、前記身体の表面に配置される複数の電極パッドをさらに備え、前記筋電検出電極は、前記電極パッドに設けられ、前記電気刺激装置は、前記電極パッドに設けられ前記筋肉および前記運動神経の少なくともいずれかに電気を供給する刺激電極を有し、前記筋疲労検出装置は、前記複数の電極パッドのうち前記電気が流れていない前記刺激電極が設けられた前記電極パッドにおける前記筋電検出電極により前記筋活動電位を検出することを特徴とする。 The electrical stimulation system according to the present invention preferably further includes a plurality of electrode pads arranged on the surface of the body, the myoelectric detection electrode is provided on the electrode pad, and the electrical stimulation device is the electrode. The stimulating electrode provided on the pad and supplying electricity to at least one of the muscle and the motor nerve is provided, and the muscle fatigue detection device is provided with the stimulating electrode in which the electricity does not flow among the plurality of electrode pads. It is characterized in that the muscle activity potential is detected by the myoelectricity detecting electrode in the electrode pad.
 本発明に係る電気刺激システムによれば、電気刺激システムは、身体の表面に配置される複数の電極パッドをさらに備える。筋電検出電極は、電極パッドに設けられている。電気刺激装置は、筋肉および運動神経の少なくともいずれかに電気を供給する刺激電極を有する。刺激電極は、電極パッドに設けられている。そして、筋疲労検出装置は、複数の電極パッドのうち電気が流れていない刺激電極が設けられた電極パッドにおける筋電検出電極により筋活動電位を検出する。これにより、筋電検出電極により検出される筋活動電位の電気信号が、刺激電極に流れる電気刺激の電気信号と干渉することを抑えることができる。そのため、刺激電極に流れる電気刺激の電気信号が、筋電検出電極により検出される筋活動電位の電気信号にアーチファクト(雑音)として混入することを抑えることができる。これにより、筋疲労検出装置は、より高い精度で、筋活動電位を筋電検出電極により検出することができる。 According to the electrical stimulation system according to the present invention, the electrical stimulation system further includes a plurality of electrode pads arranged on the surface of the body. The myoelectric detection electrode is provided on the electrode pad. The electrical stimulator has a stimulating electrode that supplies electricity to at least one of the muscles and motor nerves. The stimulation electrode is provided on the electrode pad. Then, the muscle fatigue detection device detects the muscle action potential by the myoelectric detection electrode in the electrode pad provided with the stimulation electrode through which electricity does not flow among the plurality of electrode pads. As a result, it is possible to prevent the electrical signal of the muscle action potential detected by the myoelectric detection electrode from interfering with the electrical signal of the electrical stimulation flowing through the stimulation electrode. Therefore, it is possible to prevent the electrical signal of the electrical stimulation flowing through the stimulation electrode from being mixed as an artifact (noise) in the electrical signal of the muscle action potential detected by the myoelectric detection electrode. As a result, the muscle fatigue detection device can detect the muscle action potential with the myoelectric detection electrode with higher accuracy.
 本発明に係る電気刺激システムにおいて、好ましくは、前記筋疲労検出装置は、前記筋肉の前記収縮により発生する前記筋肉の微細振動を検出する筋音センサを有し、前記制御部は、前記筋音センサにより検出された前記微細振動に基づいて前記筋肉の前記疲労の程度を決定することを特徴とする。 In the electrical stimulation system according to the present invention, preferably, the muscle fatigue detection device has a muscle sound sensor that detects minute vibrations of the muscle generated by the contraction of the muscle, and the control unit controls the muscle sound. It is characterized in that the degree of fatigue of the muscle is determined based on the minute vibration detected by the sensor.
 本発明に係る電気刺激システムによれば、筋疲労検出装置は、筋肉の収縮により発生する筋肉の微細振動を筋音センサにより検出する。そのため、刺激電極に流れる電気刺激の電気信号が、筋音センサにより検出される筋肉の微細振動に関する電気信号にアーチファクト(雑音)として混入することを抑えることができる。これにより、筋疲労検出装置は、より高い精度で、筋肉の微細振動を筋音センサにより検出して筋肉の収縮を検出することができる。 According to the electrical stimulation system according to the present invention, the muscle fatigue detection device detects minute vibrations of muscles generated by contraction of muscles by a muscle sound sensor. Therefore, it is possible to prevent the electrical signal of the electrical stimulus flowing through the stimulation electrode from being mixed as an artifact (noise) in the electrical signal related to the minute vibration of the muscle detected by the muscle sound sensor. As a result, the muscle fatigue detection device can detect the muscle contraction by detecting the minute vibration of the muscle with the muscle sound sensor with higher accuracy.
 本発明に係る電気刺激システムにおいて、好ましくは、前記筋肉は、速筋優位の筋肉であり、前記制御部は、前記電流および前記周波数の少なくともいずれかを変更することにより前記速筋優位の筋肉のうち速筋から遅筋へ前記収縮の優位性を切り替えることを特徴とする。 In the electrical stimulation system according to the present invention, preferably, the muscle is a fast muscle dominant muscle, and the control unit is a fast muscle dominant muscle by changing at least one of the current and the frequency. It is characterized in that the superiority of the contraction is switched from the fast muscle to the slow muscle.
 本発明に係る電気刺激システムによれば、制御部は、筋疲労検出装置により検出された筋肉の疲労の程度に応じて電気刺激の電流および周波数の少なくともいずれかを変更することにより、速筋優位の筋肉のうち速筋から遅筋へ収縮の優位性を切り替える。このように、制御部は、速筋優位の筋肉のうち、遅筋と比較して瞬発力の発揮に優れ疲労しやすい速筋から、速筋と比較して持久力の発揮に優れ疲労しにくい遅筋へ、収縮の優位性を切り替える。そのため、速筋優位の筋肉のうちの速筋の疲労が生じた後に、速筋優位の筋肉のうちの遅筋が長時間にわたって収縮を持続することができる。これにより、電気刺激が速筋優位の筋肉に付与される場合であっても、本発明に係る電気刺激システムは、長時間にわたって筋肉の収縮効果を持続させることができる。 According to the electrical stimulation system according to the present invention, the control unit changes at least one of the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device, thereby predominantly fast muscles. Switch the predominance of contraction from fast muscle to slow muscle among the muscles of. In this way, among the muscles in which the fast muscles are dominant, the control unit is superior in exerting instantaneous force and easily fatigued compared to slow muscles, and is superior in exerting endurance and less likely to fatigue compared to fast muscles. Switch the predominance of contraction to slow muscle. Therefore, after fatigue of the fast muscles among the fast muscles predominant muscles occurs, the slow muscles among the fast muscle dominant muscles can continue contraction for a long time. Thereby, even when the electric stimulation is applied to the muscle in which the fast muscle is dominant, the electric stimulation system according to the present invention can maintain the contraction effect of the muscle for a long time.
 本発明に係る電気刺激システムにおいて、好ましくは、前記筋肉は、第1速筋優位の筋肉と、前記第1速筋優位の筋肉とは異なる位置に存在する第2速筋優位の筋肉と、を含み、前記制御部は、前記第1速筋優位の筋肉に対する前記電気刺激を停止するとともに前記第2速筋優位の筋肉に対する前記電気刺激を開始することを特徴とする。 In the electrical stimulation system according to the present invention, preferably, the muscles include a muscle predominantly in the first speed muscle and a muscle predominantly in the second speed muscle existing at a position different from the muscle predominantly in the first speed muscle. Including, the control unit is characterized in that the electrical stimulation to the muscle predominantly in the first fast muscle is stopped and the electrical stimulation to the muscle predominantly in the second fast muscle is started.
 本発明に係る電気刺激システムによれば、制御部は、筋疲労検出装置により検出された筋肉の疲労の程度に応じて、第1速筋優位の筋肉に対する電気刺激を停止するとともに第2速筋優位の筋肉に対する電気刺激を開始する。このように、制御部は、第1速筋優位の筋肉から、第1速筋優位の筋肉とは異なる位置に存在する第2速筋優位の筋肉へ、電気刺激を切り替える。そのため、第1速筋優位の筋肉の疲労が生じた後に、第2速筋優位の筋肉が収縮を持続することができる。これにより、電気刺激が速筋優位の筋肉に付与される場合であっても、本発明に係る電気刺激システムは、長時間にわたって筋肉の収縮効果を持続させることができる。 According to the electrical stimulation system according to the present invention, the control unit stops the electrical stimulation of the muscles predominantly in the first speed muscle and the second speed muscle according to the degree of muscle fatigue detected by the muscle fatigue detection device. Initiate electrical stimulation of the dominant muscle. In this way, the control unit switches the electrical stimulation from the muscle predominant in the first speed muscle to the muscle predominant in the second speed muscle existing at a position different from the muscle predominant in the first speed muscle. Therefore, after the fatigue of the muscle predominantly in the first speed muscle occurs, the muscle predominantly in the second speed muscle can continue contraction. Thereby, even when the electric stimulation is applied to the muscle in which the fast muscle is dominant, the electric stimulation system according to the present invention can maintain the contraction effect of the muscle for a long time.
 本発明に係る電気刺激システムにおいて、好ましくは、前記筋肉は、速筋優位の筋肉と、遅筋優位の筋肉と、を含み、前記制御部は、前記電流および前記周波数の少なくともいずれかを変更することにより前記速筋優位の筋肉に対する前記電気刺激を停止するとともに前記遅筋優位の筋肉に対する前記電気刺激を開始することを特徴とする。 In the electrical stimulation system according to the present invention, preferably, the muscle includes a muscle predominantly fast muscle and a muscle predominantly slow muscle, and the control unit changes at least one of the current and the frequency. This is characterized in that the electrical stimulation to the fast muscle dominant muscle is stopped and the electrical stimulation to the slow muscle dominant muscle is started.
 本発明に係る電気刺激システムによれば、制御部は、筋疲労検出装置により検出された筋肉の疲労の程度に応じて電気刺激の電流および周波数の少なくともいずれかを変更することにより、速筋優位の筋肉に対する電気刺激を停止するとともに遅筋優位の筋肉に対する電気刺激を開始する。このように、制御部は、速筋優位の筋肉から遅筋優位の筋肉へ電気刺激を切り替える。そのため、速筋優位の筋肉の疲労が生じた後に、遅筋優位の筋肉が長時間にわたって収縮を持続することができる。これにより、本発明に係る電気刺激システムは、より確実に長時間にわたって筋肉の収縮効果を持続させることができる。 According to the electrical stimulation system according to the present invention, the control unit changes at least one of the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device, thereby predominantly fast muscles. The electrical stimulation to the muscles of the slow muscle is stopped and the electrical stimulation to the muscles predominantly slow muscles is started. In this way, the control unit switches the electrical stimulation from the muscle predominantly fast muscle to the muscle predominantly slow muscle. Therefore, after fatigue of the fast muscle dominant muscle occurs, the slow muscle dominant muscle can continue contraction for a long time. As a result, the electrical stimulation system according to the present invention can more reliably sustain the contraction effect of muscles for a long period of time.
 本発明に係る電気刺激システムは、好ましくは、前記身体を流れる血液の流量を検出する流量計をさらに備え、前記制御部は、前記流量計により検出された前記流量の変化にさらに応じて前記電気刺激の前記電流および前記周波数の少なくともいずれかを変更することを特徴とする。 The electrical stimulation system according to the present invention preferably further includes a flow meter that detects the flow rate of blood flowing through the body, and the control unit further responds to a change in the flow rate detected by the flow meter. It is characterized by changing at least one of the current and the frequency of the stimulus.
 本発明に係る電気刺激システムによれば、制御部は、筋疲労検出装置により検出された筋肉の疲労の程度と、流量計により検出された血液の流量の変化と、に応じて電気刺激の電流および周波数の少なくともいずれかを変更する。そのため、制御部は、筋肉の疲労の程度だけではなく血液の流量の変化に基づいて、電気刺激装置により収縮させる筋肉を切り替えることができる。これにより、本発明に係る電気刺激システムは、長時間にわたって筋肉の収縮効果を持続させることができるとともに、深部静脈血流の増加効果をより一層高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患のより一層の改善効果を得ることができる。 According to the electrical stimulation system according to the present invention, the control unit has a current of electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device and the change in the flow rate of blood detected by the flow meter. And change at least one of the frequencies. Therefore, the control unit can switch the muscles to be contracted by the electric stimulator based on the change in the blood flow rate as well as the degree of muscle fatigue. As a result, the electrical stimulation system according to the present invention can maintain the contractile effect of muscles for a long period of time, further enhance the effect of increasing deep vein blood flow, prevent deep vein thrombosis, or cause venous disease of the lower limbs. Further improvement effect of arterial disease can be obtained.
 本発明に係る電気刺激システムは、好ましくは、前記身体を間欠的に圧迫する間欠式空気圧迫装置をさらに備えたことを特徴とする。 The electrical stimulation system according to the present invention is preferably further provided with an intermittent air compression device that intermittently compresses the body.
 本発明に係る電気刺激システムによれば、長時間にわたって筋肉の収縮効果を持続させることができるとともに、深部静脈血流の増加効果をより一層高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患のより一層の改善効果を得ることができる。 According to the electrical stimulation system according to the present invention, the contractile effect of muscles can be maintained for a long period of time, the effect of increasing deep vein blood flow is further enhanced, the prevention of deep vein thrombosis, venous disease of lower limbs or arteries. Further improvement effect of the disease can be obtained.
 本発明によれば、長時間にわたって筋肉の収縮効果を持続させることができる電気刺激システムを提供することができる。 According to the present invention, it is possible to provide an electrical stimulation system capable of sustaining a muscle contraction effect for a long period of time.
本発明の第1実施形態に係る電気刺激システムを表す模式図である。It is a schematic diagram which shows the electrical stimulation system which concerns on 1st Embodiment of this invention. 本実施形態に係る電気刺激システムの要部構成を表すブロック図である。It is a block diagram which shows the main part structure of the electric stimulation system which concerns on this embodiment. 本実施形態の電極パッドを拡大して表した拡大図である。It is an enlarged view which showed the electrode pad of this embodiment in an enlarged manner. 本実施形態の変形例に係る電気刺激システムの要部構成を表すブロック図である。It is a block diagram which shows the main part structure of the electric stimulation system which concerns on the modification of this embodiment. 本変形例の電極パッドを拡大して表した拡大図である。It is an enlarged view which showed the electrode pad of this modification by enlargement. 本実施形態に係る電気刺激システムの動作の第1具体例を説明する模式図である。It is a schematic diagram explaining the 1st specific example of the operation of the electric stimulation system which concerns on this embodiment. 本実施形態に係る電気刺激システムの動作の第1具体例を説明するフローチャートである。It is a flowchart explaining the 1st specific example of the operation of the electric stimulation system which concerns on this embodiment. 筋肉が疲労する前の筋電図の周波数解析を行ったグラフである。It is a graph which performed the frequency analysis of the electromyogram before muscle fatigue. 筋肉が疲労した後の筋電図の周波数解析を行ったグラフである。It is a graph which performed the frequency analysis of the electromyogram after muscle fatigue. 本実施形態に係る電気刺激システムの動作の第2具体例を説明する模式図である。It is a schematic diagram explaining the 2nd specific example of the operation of the electric stimulation system which concerns on this embodiment. 本実施形態に係る電気刺激システムの動作の第2具体例を説明するフローチャートである。It is a flowchart explaining the 2nd specific example of the operation of the electric stimulation system which concerns on this embodiment. 本実施形態に係る電気刺激システムの動作の第2具体例を説明するフローチャートである。It is a flowchart explaining the 2nd specific example of the operation of the electric stimulation system which concerns on this embodiment. 本実施形態に係る電気刺激システムの動作の第3具体例を説明する模式図である。It is a schematic diagram explaining the 3rd specific example of the operation of the electric stimulation system which concerns on this embodiment. 本実施形態に係る電気刺激システムの動作の第3具体例を説明するフローチャートである。It is a flowchart explaining the 3rd specific example of the operation of the electric stimulation system which concerns on this embodiment. 本発明の第2実施形態に係る電気刺激システムの要部構成を表すブロック図である。It is a block diagram which shows the main part structure of the electric stimulation system which concerns on 2nd Embodiment of this invention. 本実施形態に係る電気刺激システムの動作の具体例を説明する模式図である。It is a schematic diagram explaining the specific example of the operation of the electric stimulation system which concerns on this embodiment. 本実施形態に係る電気刺激システムの動作の具体例を説明するフローチャートである。It is a flowchart explaining the specific example of the operation of the electric stimulation system which concerns on this embodiment. 本発明の第3実施形態に係る電気刺激システムを表す模式図である。It is a schematic diagram which shows the electrical stimulation system which concerns on 3rd Embodiment of this invention.
 以下に、本発明の好ましい実施形態を、図面を参照して詳しく説明する。
 なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
Since the embodiments described below are suitable specific examples of the present invention, various technically preferable limitations are added, but the scope of the present invention particularly limits the present invention in the following description. Unless otherwise stated, the present invention is not limited to these aspects. Further, in each drawing, the same components are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.
 図1は、本発明の第1実施形態に係る電気刺激システムを表す模式図である。
 図2は、本実施形態に係る電気刺激システムの要部構成を表すブロック図である。
 図3は、本実施形態の電極パッドを拡大して表した拡大図である。
FIG. 1 is a schematic view showing an electrical stimulation system according to the first embodiment of the present invention.
FIG. 2 is a block diagram showing a main configuration of the electrical stimulation system according to the present embodiment.
FIG. 3 is an enlarged view showing an enlarged electrode pad of the present embodiment.
 本実施形態に係る電気刺激システム2は、本体3と、電気刺激装置4と、筋疲労検出装置5と、電極パッド6と、を備える。なお、電気刺激システム2は、電極パッド6を必ずしも備えていなくともよい。 The electrical stimulation system 2 according to the present embodiment includes a main body 3, an electrical stimulation device 4, a muscle fatigue detection device 5, and an electrode pad 6. The electrical stimulation system 2 does not necessarily have to include the electrode pad 6.
 本体3は、制御部31と、表示部32と、を有する。制御部31は、電気刺激装置4および筋疲労検出装置5に対して線材68を介して電気的に接続されている。例えば、制御部31は、電気刺激装置4に制御信号を送信し、電気刺激装置4の動作を制御する。また、例えば、制御部31は、筋疲労検出装置5から検出信号を受信する。なお、制御部31は、有線ではなく無線により電気刺激装置4および筋疲労検出装置5と電気的に接続されていてもよい。表示部32は、制御部31の制御信号に基づいて、例えば、筋疲労検出装置5により検出された筋活動電位を筋電図として表示したり、筋疲労検出装置5A(図4参照)により検出された微細振動を筋音図として表示したりする。なお、表示部32は、必ずしも設けられていなくともよい。また、表示部32は、必ずしも本体3に一体的に設けられていなくともよく、例えば本体3に接続された外部ディスプレイであってもよい。 The main body 3 has a control unit 31 and a display unit 32. The control unit 31 is electrically connected to the electrical stimulator 4 and the muscle fatigue detection device 5 via a wire rod 68. For example, the control unit 31 transmits a control signal to the electrical stimulator 4 to control the operation of the electrical stimulator 4. Further, for example, the control unit 31 receives a detection signal from the muscle fatigue detection device 5. The control unit 31 may be electrically connected to the electrical stimulator 4 and the muscle fatigue detection device 5 by wireless rather than by wire. Based on the control signal of the control unit 31, the display unit 32 displays, for example, the muscle action potential detected by the muscle fatigue detection device 5 as an electromyogram, or detects it by the muscle fatigue detection device 5A (see FIG. 4). The minute vibrations that have been made are displayed as an electromyogram. The display unit 32 does not necessarily have to be provided. Further, the display unit 32 does not necessarily have to be integrally provided with the main body 3, and may be, for example, an external display connected to the main body 3.
 図2に表したように、電気刺激装置4は、電気刺激信号生成部41と、刺激電極42と、を有する。電気刺激信号生成部41は、制御部31から送信された制御信号に基づいて、身体の筋肉および運動神経の少なくともいずれかに電気刺激を付与する電気の信号を生成する。電気刺激信号生成部41により生成された信号は、刺激電極42に送信される。そして、電気が刺激電極42を介して身体の筋肉および運動神経の少なくともいずれかに供給される。これにより、身体の筋肉は、電気により刺激を受けて収縮する。つまり、電気刺激装置4は、電気刺激信号生成部41により生成された信号に基づいた電気を刺激電極42を介して身体の筋肉および運動神経の少なくともいずれかに供給し、身体の筋肉および運動神経の少なくともいずれかに電気刺激を付与し、身体の筋肉を収縮させる。 As shown in FIG. 2, the electrical stimulator 4 has an electrical stimulus signal generation unit 41 and a stimulus electrode 42. The electrical stimulation signal generation unit 41 generates an electrical signal that applies electrical stimulation to at least one of the muscles and motor nerves of the body based on the control signal transmitted from the control unit 31. The signal generated by the electrical stimulation signal generation unit 41 is transmitted to the stimulation electrode 42. Then, electricity is supplied to at least one of the muscles and motor nerves of the body via the stimulation electrode 42. As a result, the muscles of the body are stimulated by electricity and contract. That is, the electrical stimulator 4 supplies electricity based on the signal generated by the electrical stimulation signal generation unit 41 to at least one of the muscles and motor nerves of the body via the stimulation electrode 42, and the muscles and motor nerves of the body. Apply electrical stimulation to at least one of the muscles of the body to contract.
 図3に表したように、刺激電極42は、電極パッド6に設けられている。電極パッド6は、身体の表面に例えば貼付されることで配置される。図1に表した電気刺激システム2は、4つの電極パッド6、すなわち第1電極パッド61と、第2電極パッド62と、第3電極パッド63と、第4電極パッド64と、を有する。刺激電極42は、4つの電極パッド6のそれぞれに設けられている。なお、電極パッド6の数は、4つに限定されるわけではなく、2つあるいは3つであってもよく、5つ以上であってもよい。 As shown in FIG. 3, the stimulation electrode 42 is provided on the electrode pad 6. The electrode pad 6 is arranged, for example, by being attached to the surface of the body. The electrical stimulation system 2 shown in FIG. 1 has four electrode pads 6, that is, a first electrode pad 61, a second electrode pad 62, a third electrode pad 63, and a fourth electrode pad 64. The stimulation electrode 42 is provided on each of the four electrode pads 6. The number of electrode pads 6 is not limited to four, and may be two or three, or five or more.
 制御部31は、第1電極パッド61の刺激電極42と、第2電極パッド62の刺激電極42と、第3電極パッド63の刺激電極42と、第4電極パッド64の刺激電極42と、に同時に電気を流すわけではなく、例えば、第1電極パッド61の刺激電極42および第2電極パッド62の刺激電極42と、第3電極パッド63の刺激電極42および第4電極パッド64の刺激電極42と、に交互に電気を流す。あるいは、例えば、制御部31は、第1電極パッド61の刺激電極42と、第2電極パッド62の刺激電極42と、第3電極パッド63の刺激電極42と、第4電極パッド64の刺激電極42と、にこの順序で電気を流す。このような場合には、電気により刺激を受けて収縮する筋肉の場所が異なる。言い換えれば、筋肉が電気により刺激を受けて収縮するタイミングが、場所によって異なる。これによれば、本実施形態に係る電気刺激システム2は、患者の下肢に用いられる場合に、深部静脈血流の増加効果を高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患の改善効果を高めることができる。 The control unit 31 includes a stimulation electrode 42 of the first electrode pad 61, a stimulation electrode 42 of the second electrode pad 62, a stimulation electrode 42 of the third electrode pad 63, and a stimulation electrode 42 of the fourth electrode pad 64. Electricity is not passed at the same time. For example, the stimulation electrode 42 of the first electrode pad 61 and the stimulation electrode 42 of the second electrode pad 62, and the stimulation electrode 42 of the third electrode pad 63 and the stimulation electrode 42 of the fourth electrode pad 64. And, the electricity is passed alternately. Alternatively, for example, the control unit 31 may use the stimulation electrode 42 of the first electrode pad 61, the stimulation electrode 42 of the second electrode pad 62, the stimulation electrode 42 of the third electrode pad 63, and the stimulation electrode of the fourth electrode pad 64. Electricity is passed through 42 and in this order. In such cases, the location of the muscles that are stimulated by electricity and contract is different. In other words, the timing at which muscles are stimulated by electricity and contract is different from place to place. According to this, the electrical stimulation system 2 according to the present embodiment enhances the effect of increasing deep vein blood flow when used on the lower limbs of a patient, prevents deep vein thrombosis, and improves venous disease or arterial disease of the lower limbs. The effect can be enhanced.
 図2に表したように、筋疲労検出装置5は、筋電検出電極51を有する。図3に表したように、本実施形態に係る電気刺激システム2では、複数の筋電検出電極51が電極パッド6に設けられている。筋電検出電極51は、4つの電極パッド6(第1電極パッド61、第2電極パッド62、第3電極パッド63および第4電極パッド64)のそれぞれに設けられている。 As shown in FIG. 2, the muscle fatigue detection device 5 has a myoelectric detection electrode 51. As shown in FIG. 3, in the electrical stimulation system 2 according to the present embodiment, a plurality of myoelectric detection electrodes 51 are provided on the electrode pads 6. The myoelectric detection electrode 51 is provided on each of the four electrode pads 6 (first electrode pad 61, second electrode pad 62, third electrode pad 63, and fourth electrode pad 64).
 筋疲労検出装置5は、電気刺激装置4から供給された電気により収縮された筋肉の疲労を検出する。そして、制御部31は、筋疲労検出装置5により検出された筋肉の疲労の程度を判断し決定する。具体的には、筋電検出電極51は、筋肉の収縮により筋繊維(「筋線維」ともいう。)から発生する筋活動電位を検出し、制御部31に送信する。そして、制御部31は、筋電検出電極51により検出された筋活動電位に基づいて筋肉の疲労の程度を判断し決定する。制御部31が筋肉の疲労の程度を判断する具体例については、後述する。 The muscle fatigue detecting device 5 detects the fatigue of the muscle contracted by the electricity supplied from the electrical stimulating device 4. Then, the control unit 31 determines and determines the degree of muscle fatigue detected by the muscle fatigue detection device 5. Specifically, the myoelectric detection electrode 51 detects the muscle action potential generated from the muscle fiber (also referred to as “muscle fiber”) due to the contraction of the muscle and transmits it to the control unit 31. Then, the control unit 31 determines and determines the degree of muscle fatigue based on the muscle action potential detected by the myoelectric detection electrode 51. A specific example in which the control unit 31 determines the degree of muscle fatigue will be described later.
 筋疲労検出装置5は、複数(本実施形態では4つ)の電極パッド6のうち電気が流れていない刺激電極42が設けられた電極パッド6における筋電検出電極51により筋活動電位を検出する。例えば、電気が第1電極パッド61の刺激電極42および第2電極パッド62の刺激電極42に流れている場合には、筋疲労検出装置5は、第3電極パッド63の刺激電極42および第4電極パッド64の刺激電極42の少なくともいずれかにより筋活動電位を検出する。あるいは、電気が第1電極パッド61の刺激電極42に流れている場合には、筋疲労検出装置5は、第2電極パッド62の刺激電極42、第3電極パッド63の刺激電極42および第4電極パッド64の刺激電極42の少なくともいずれかにより筋活動電位を検出する。 The muscle fatigue detection device 5 detects the muscle action potential by the myoelectric detection electrode 51 in the electrode pad 6 provided with the stimulation electrode 42 in which electricity does not flow among the plurality of (four in the present embodiment) electrode pads 6. .. For example, when electricity is flowing through the stimulation electrode 42 of the first electrode pad 61 and the stimulation electrode 42 of the second electrode pad 62, the muscle fatigue detection device 5 uses the stimulation electrode 42 and the fourth electrode of the third electrode pad 63. The muscle activity potential is detected by at least one of the stimulation electrodes 42 of the electrode pad 64. Alternatively, when electricity is flowing through the stimulation electrode 42 of the first electrode pad 61, the muscle fatigue detection device 5 uses the stimulation electrode 42 of the second electrode pad 62, the stimulation electrode 42 of the third electrode pad 63, and the fourth electrode. The muscle activity potential is detected by at least one of the stimulation electrodes 42 of the electrode pad 64.
 これにより、筋電検出電極51により検出される筋活動電位の電気信号が、刺激電極42に流れる電気刺激の電気信号と干渉することを抑えることができる。そのため、刺激電極42に流れる電気刺激の電気信号が、筋電検出電極51により検出される筋活動電位の電気信号にアーチファクト(雑音)として混入することを抑えることができる。これにより、筋疲労検出装置5は、より高い精度で、筋活動電位を筋電検出電極51により検出することができる。 As a result, it is possible to prevent the electrical signal of the muscle action potential detected by the myoelectric detection electrode 51 from interfering with the electrical signal of the electrical stimulation flowing through the stimulation electrode 42. Therefore, it is possible to prevent the electrical signal of the electrical stimulation flowing through the stimulation electrode 42 from being mixed as an artifact (noise) in the electrical signal of the muscle action potential detected by the myoelectric detection electrode 51. As a result, the muscle fatigue detection device 5 can detect the muscle action potential with the myoelectric detection electrode 51 with higher accuracy.
 次に、本実施形態の変形例に係る電気刺激システムについて説明する。
 なお、本変形例に係る電気刺激システムの構成要素が、図1~図3に関して前述した本実施形態に係る電気刺激システムの構成要素と同様である場合には、重複する説明は適宜省略し、以下、相違点を中心に説明する。
Next, the electrical stimulation system according to the modified example of the present embodiment will be described.
When the components of the electrical stimulation system according to the present modification are the same as the components of the electrical stimulation system according to the present embodiment described above with respect to FIGS. 1 to 3, duplicate description will be omitted as appropriate. Hereinafter, the differences will be mainly described.
 図4は、本実施形態の変形例に係る電気刺激システムの要部構成を表すブロック図である。
 図5は、本変形例の電極パッドを拡大して表した拡大図である。
FIG. 4 is a block diagram showing a main configuration of an electrical stimulation system according to a modified example of the present embodiment.
FIG. 5 is an enlarged view showing an enlarged electrode pad of this modified example.
 本変形例に係る電気刺激システム2Aは、本体3(図1参照)と、電気刺激装置4と、筋疲労検出装置5Aと、電極パッド6と、を備える。本体3、電気刺激装置4および電極パッド6は、図1~図3に関して前述した通りである。図4および図5に表したように、筋疲労検出装置5Aは、筋音センサ52を有する。すなわち、本変形例の筋疲労検出装置5Aは、図1~図3に関して前述した筋疲労検出装置5の筋電検出電極51が筋音センサ52に置換された構造を有する。この点において、本変形例に係る電気刺激システム2Aは、図1~図3に関して前述した本実施形態に係る電気刺激システム2と相違する。 The electrical stimulation system 2A according to this modification includes a main body 3 (see FIG. 1), an electrical stimulation device 4, a muscle fatigue detection device 5A, and an electrode pad 6. The main body 3, the electrical stimulator 4, and the electrode pad 6 are as described above with respect to FIGS. 1 to 3. As shown in FIGS. 4 and 5, the muscle fatigue detection device 5A has a muscle sound sensor 52. That is, the muscle fatigue detection device 5A of this modified example has a structure in which the myoelectric detection electrode 51 of the muscle fatigue detection device 5 described above with respect to FIGS. 1 to 3 is replaced with the muscle sound sensor 52. In this respect, the electrical stimulation system 2A according to the present modification is different from the electrical stimulation system 2 according to the present embodiment described above with respect to FIGS. 1 to 3.
 筋音センサ52は、筋肉の収縮により発生する筋肉の微細振動を筋音として検出し、電気信号に変換して制御部31に送信する。筋音センサ52としては、例えば加速度センサやマイクロフォンなどが挙げられる。マイクロフォンは、特には限定されず、例えば、MEMSマイクロフォンであってもよく、エレクトレットコンデンサマイクロフォン(ECM)であってもよい。 The muscle sound sensor 52 detects the minute vibration of the muscle generated by the contraction of the muscle as a muscle sound, converts it into an electric signal, and transmits it to the control unit 31. Examples of the muscle sound sensor 52 include an acceleration sensor and a microphone. The microphone is not particularly limited, and may be, for example, a MEMS microphone or an electret condenser microphone (ECM).
 本変形例の制御部31は、筋音センサ52により検出された微細振動に関する電気信号に基づいて筋肉の疲労の程度を判断し決定する。 The control unit 31 of this modified example determines and determines the degree of muscle fatigue based on the electric signal related to the minute vibration detected by the muscle sound sensor 52.
 前述したように、本変形例の筋疲労検出装置5Aは、筋肉の収縮により発生する筋肉の微細振動を筋音センサ52により検出する。そのため、刺激電極42に流れる電気刺激の電気信号が、筋音センサ52により検出される筋肉の微細振動に関する電気信号にアーチファクト(雑音)として混入することを抑えることができる。これにより、筋疲労検出装置5Aは、より高い精度で、筋肉の微細振動を筋音センサ52により検出して筋肉の収縮を検出することができる。 As described above, the muscle fatigue detection device 5A of this modified example detects the minute vibration of the muscle generated by the contraction of the muscle by the muscle sound sensor 52. Therefore, it is possible to prevent the electrical signal of the electrical stimulus flowing through the stimulation electrode 42 from being mixed as an artifact (noise) in the electrical signal related to the minute vibration of the muscle detected by the muscle sound sensor 52. As a result, the muscle fatigue detection device 5A can detect the muscle contraction by detecting the minute vibration of the muscle with the muscle sound sensor 52 with higher accuracy.
 ここで、例えば外科手術などの周術期合併症である深部静脈血栓(Deep Vein Thrombosis:DVT)などを予防するために、筋肉に電気刺激を付与する電気刺激デバイスが使用されると、電気刺激による筋疲労が発生することがある。すなわち、深部静脈血栓は、外科手術後約24時間が経過するまで発生するおそれがある。そのため、深部静脈血栓を予防するためには、電気刺激デバイスは、外科手術後約24時間が経過するまで持続的に患者の筋肉や運動神経に電気刺激を付与することが望ましい。しかし、外科手術後約24時間が経過するまで電気刺激デバイスが持続的に患者の筋肉や運動神経に電気刺激を付与すると、筋疲労が発生することがある。そうすると、長時間にわたる筋肉の収縮効果が持続されず、深部静脈血流の増加効果が低減することがある。 Here, when an electrical stimulation device that applies electrical stimulation to muscles is used to prevent deep vein thrombosis (DVT), which is a perioperative complication such as surgery, electrical stimulation is performed. May cause muscle fatigue. That is, deep vein thrombosis may occur until about 24 hours after surgery. Therefore, in order to prevent deep vein thrombosis, it is desirable that the electrical stimulation device continuously applies electrical stimulation to the patient's muscles and motor nerves until about 24 hours have passed after the operation. However, if the electrical stimulation device continuously applies electrical stimulation to the patient's muscles and motor nerves until about 24 hours after surgery, muscle fatigue may occur. Then, the muscle contraction effect may not be sustained for a long period of time, and the effect of increasing deep venous blood flow may be reduced.
 これに対して、図1~図5に関して前述した電気刺激システム2、2Aでは、制御部31は、筋疲労検出装置5により検出された筋肉の疲労の程度に応じて電気刺激の電流および周波数の少なくともいずれかを変更する制御を実行する。具体的には、図1~図3に関して前述した電気刺激システム2では、制御部31は、筋電検出電極51により検出された筋活動電位に基づいて筋肉の疲労の程度を決定し、筋肉の疲労の程度に応じて電気刺激の電流および周波数の少なくともいずれかを変更する。また、図4および図5に関して前述した電気刺激システム2Aでは、制御部31は、筋音センサ52により検出された微細振動に基づいて筋肉の疲労の程度を決定し、筋肉の疲労の程度に応じて電気刺激の電流および周波数の少なくともいずれかを変更する。 On the other hand, in the electrical stimulation systems 2 and 2A described above with respect to FIGS. 1 to 5, the control unit 31 determines the current and frequency of the electrical stimulation according to the degree of muscle fatigue detected by the muscle fatigue detection device 5. Perform control to change at least one. Specifically, in the electrical stimulation system 2 described above with respect to FIGS. 1 to 3, the control unit 31 determines the degree of muscle fatigue based on the muscle action potential detected by the myoelectric detection electrode 51, and determines the degree of muscle fatigue. Change at least one of the electrical stimulation currents and frequencies depending on the degree of fatigue. Further, in the electrical stimulation system 2A described above with respect to FIGS. 4 and 5, the control unit 31 determines the degree of muscle fatigue based on the minute vibration detected by the muscle sound sensor 52, and corresponds to the degree of muscle fatigue. And change at least one of the current and frequency of the electrical stimulation.
 図1~図5に関して前述した電気刺激システム2、2Aによれば、制御部31は、電気刺激装置4により収縮させる筋肉を、疲労の生じた筋肉から疲労の生じていない筋肉に切り替えることができる。言い換えれば、制御部31は、疲労の生じた筋肉の収縮を停止し、疲労の生じていない筋肉の収縮を開始することができる。そのため、電気刺激システム2、2Aは、長時間にわたって筋肉の収縮効果を持続させることができる。これにより、下肢に創傷がある患者や下肢の手術が行われた患者においても、電気刺激システム2、2Aは、深部静脈血流の増加効果を高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患の改善効果を得ることができる。 According to the above-mentioned electrical stimulation systems 2 and 2A with respect to FIGS. 1 to 5, the control unit 31 can switch the muscle contracted by the electrical stimulation device 4 from the fatigued muscle to the non-fatigue muscle. .. In other words, the control unit 31 can stop the contraction of the tired muscle and start the contraction of the non-fatigue muscle. Therefore, the electrical stimulation systems 2 and 2A can sustain the muscle contraction effect for a long period of time. As a result, even in patients with lower limb wounds or lower limb surgery, the electrical stimulation systems 2 and 2A enhance the effect of increasing deep venous blood flow, prevent deep venous thrombosis, and prevent venous diseases of the lower limbs. The effect of improving arterial disease can be obtained.
 また、図1~図3に関して前述した電気刺激システム2によれば、筋疲労検出装置5は、筋肉の収縮により筋繊維から発生する筋活動電位を筋電検出電極51により検出することで、筋肉の筋繊維の収縮をより高い精度で検出することができる。これにより、制御部31は、筋電検出電極51により検出された筋活動電位に基づいて、筋肉の疲労の程度をより高い精度で判断し決定することができる。 Further, according to the electrical stimulation system 2 described above with respect to FIGS. 1 to 3, the muscle fatigue detection device 5 detects the muscle action potential generated from the muscle fiber due to the contraction of the muscle by the myoelectric detection electrode 51, thereby causing the muscle. The contraction of muscle fibers can be detected with higher accuracy. As a result, the control unit 31 can determine and determine the degree of muscle fatigue with higher accuracy based on the muscle action potential detected by the myoelectric detection electrode 51.
 また、図4および図5に関して前述した電気刺激システム2Aによれば、刺激電極42に流れる電気刺激の電気信号が、筋音センサ52により検出される筋肉の微細振動に関する電気信号にアーチファクト(雑音)として混入することを抑えることができる。これにより、筋疲労検出装置5は、より高い精度で、筋肉の微細振動を筋音センサ52により検出して筋肉の収縮を検出することができる。 Further, according to the electrical stimulation system 2A described above with respect to FIGS. 4 and 5, the electrical signal of the electrical stimulation flowing through the stimulation electrode 42 is an artifact (noise) in the electrical signal related to the minute vibration of the muscle detected by the muscle sound sensor 52. It is possible to suppress the mixing as. As a result, the muscle fatigue detection device 5 can detect the muscle contraction by detecting the minute vibration of the muscle with the muscle sound sensor 52 with higher accuracy.
 次に、本実施形態に係る電気刺激システムの動作の具体例を、図面を参照して説明する。なお、図4および図5に関して前述した本変形例に係る電気刺激システム2Aの動作は、図1~図3に関して前述した本実施形態に係る電気刺激システム2の動作と同様である。そのため、以下の説明では、図1~図3に関して前述した本実施形態に係る電気刺激システム2の動作を例に挙げる。 Next, a specific example of the operation of the electrical stimulation system according to the present embodiment will be described with reference to the drawings. The operation of the electrical stimulation system 2A according to the present modification described above with respect to FIGS. 4 and 5 is the same as the operation of the electrical stimulation system 2 according to the present embodiment described above with respect to FIGS. 1 to 3. Therefore, in the following description, the operation of the electrical stimulation system 2 according to the present embodiment described above with respect to FIGS. 1 to 3 will be given as an example.
 図6は、本実施形態に係る電気刺激システムの動作の第1具体例を説明する模式図である。
 図7は、本実施形態に係る電気刺激システムの動作の第1具体例を説明するフローチャートである。
 図8は、筋肉が疲労する前の筋電図の周波数解析を行ったグラフである。
 図9は、筋肉が疲労した後の筋電図の周波数解析を行ったグラフである。
FIG. 6 is a schematic diagram illustrating a first specific example of the operation of the electrical stimulation system according to the present embodiment.
FIG. 7 is a flowchart illustrating a first specific example of the operation of the electrical stimulation system according to the present embodiment.
FIG. 8 is a graph obtained by frequency analysis of the electromyogram before muscle fatigue.
FIG. 9 is a graph obtained by frequency analysis of the electromyogram after muscle fatigue.
 図6に表したように、本具体例では、刺激電極42および筋電検出電極51を含む電極パッド6が、腓腹筋の近傍の身体表面に貼付されている。腓腹筋は、速筋優位の筋肉71である。 As shown in FIG. 6, in this specific example, the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle. The gastrocnemius muscle is the muscle 71 in which the fast muscle is dominant.
 「速筋優位の筋肉」は、相対的に高い割合の速筋と、相対的に低い割合の遅筋と、を含む。速筋は、遅筋と比較して、収縮速度が速く、瞬発力の発揮に優れ、収縮を繰り返すと疲労しやすい性質を有する。遅筋は、速筋と比較して、収縮速度が遅く、持久力の発揮に優れ、収縮を繰り返しても疲労しにくい性質を有する。一方で、後述する「遅筋優位の筋肉」は、相対的に高い割合の遅筋と、相対的に低い割合の速筋と、を含む。例えば、速筋の割合が55%以上である場合には、その筋肉は「速筋優位の筋肉」である。また、例えば、遅筋の割合が55%以上である場合には、その筋肉は「遅筋優位の筋肉」である。なお、「優位」を定義する速筋および遅筋の割合は、一例であり、これだけに限定されるわけではない。 "Fast muscle dominant muscle" includes a relatively high proportion of fast muscles and a relatively low proportion of slow muscles. Compared to slow muscles, fast muscles have a faster contraction speed, are excellent in exerting instantaneous force, and have the property of being easily fatigued when contraction is repeated. Compared to fast muscles, slow muscles have a slower contraction rate, are excellent in exerting endurance, and have the property of being less likely to get tired even after repeated contractions. On the other hand, the "slow muscle dominant muscle" described later includes a relatively high proportion of slow muscles and a relatively low proportion of fast muscles. For example, when the ratio of fast muscles is 55% or more, the muscles are “fast muscle dominant muscles”. Further, for example, when the ratio of slow muscles is 55% or more, the muscles are "slow muscle dominant muscles". The ratio of fast muscles and slow muscles that define "dominance" is an example, and is not limited to this.
 本具体例では、図7に表したように、まずステップS1において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、初期状態の速筋優位の筋肉71の筋電図を測定する(時間T0)。「初期状態」とは、電気刺激が筋肉に付与される前の状態をいう。時間T0における筋電図の周波数解析を行ったグラフは、例えば図8に表した通りである。なお、時間T0における筋電図の周波数解析を行ったグラフは、図8に表したグラフに限定されるわけではない。また、周波数解析の手法は、特に限定されるわけではなく、例えば、高速フーリエ変換(FFT)であってもよく、自己回帰モデル(AR)であってもよく、最大エントロピー法(MEM)であってもよい。図8は、時間T0における筋電図の高速フーリエ変換(FFT)を行った例を表している。 In this specific example, as shown in FIG. 7, first, in step S1, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and the fast muscle in the initial state. The electromyogram of the dominant muscle 71 is measured (time T0). The "initial state" refers to the state before electrical stimulation is applied to the muscles. The graph obtained by frequency analysis of the electromyogram at time T0 is as shown in FIG. 8, for example. The graph obtained by frequency analysis of the electromyogram at time T0 is not limited to the graph shown in FIG. The frequency analysis method is not particularly limited, and may be, for example, a fast Fourier transform (FFT), an autoregressive model (AR), or a maximum entropy method (MEM). You may. FIG. 8 shows an example of performing a fast Fourier transform (FFT) of an electromyogram at time T0.
 続いて、ステップS2において、電気刺激装置4は、電気刺激信号生成部41により電気刺激のための電気の信号を生成し、刺激電極42を介して速筋優位の筋肉71および運動神経の少なくともいずれかに電気を供給し、速筋優位の筋肉71の電気刺激を開始する。続いて、ステップS3において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。時間Txにおける筋電図の周波数解析を行ったグラフは、例えば図9に表した通りである。なお、時間Txにおける筋電図の周波数解析を行ったグラフは、図9に表したグラフに限定されるわけではない。また、図9は、時間Txにおける筋電図の高速フーリエ変換(FFT)を行った例を表している。 Subsequently, in step S2, the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and at least one of the fast muscle dominant muscle 71 and the motor nerve via the stimulation electrode 42. Electricity is supplied to the crab and the electrical stimulation of the muscle 71, which is dominant in the fast muscle, is started. Subsequently, in step S3, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation. (Time Tx). The graph obtained by frequency analysis of the electromyogram at time Tx is as shown in FIG. 9, for example. The graph obtained by frequency analysis of the electromyogram at time Tx is not limited to the graph shown in FIG. Further, FIG. 9 shows an example in which the fast Fourier transform (FFT) of the electromyogram at time Tx is performed.
 続いて、ステップS4において、制御部31は、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始(ステップS2)してから、所定時間が経過したか否かを判断する。ステップS4における「所定時間」は、例えば約24時間程度である。電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過した場合には(ステップS4:YES)、制御部31は、速筋優位の筋肉71の電気刺激を終了する。 Subsequently, in step S4, the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S2). The "predetermined time" in step S4 is, for example, about 24 hours. When a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S4: YES), the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do.
 一方で、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過していない場合には(ステップS4:NO)、ステップS5において、制御部31は、速筋優位の筋肉71の疲労が生じているか否かを判断する。 On the other hand, if a predetermined time has not elapsed since the electrical stimulator 4 started the electrical stimulation of the muscle 71 in which the fast muscle is dominant (step S4: NO), in step S5, the control unit 31 uses the fast muscle. It is determined whether or not the dominant muscle 71 is fatigued.
 ここで、電気刺激の電流は、遅筋よりも速筋に流れやすい。そのため、電気刺激が筋肉に付与されると、まず、速筋による運動である乳酸性運動が行われ、その後に遅筋による運動である有酸素運動が行われる。言い換えれば、前述したように、速筋は遅筋と比較して収縮を繰り返すと疲労しやすい性質を有するため、速筋がまず収縮を繰り返して疲労し始めると、その後に遅筋の使用割合が徐々に増加する。 Here, the electric stimulation current is more likely to flow to the fast muscle than to the slow muscle. Therefore, when electrical stimulation is applied to muscles, first, lactate exercise, which is exercise by fast muscles, is performed, and then aerobic exercise, which is exercise by slow muscles, is performed. In other words, as described above, the fast muscle has the property of being more likely to get tired when the contraction is repeated than the slow muscle. Gradually increase.
 速筋の筋繊維から発生する筋活動電位の周波数帯域は、例えば約20Hz以上、45Hz以下程度である。中間筋の筋繊維から発生する筋活動電位の周波数帯域は、例えば約46Hz以上、80Hz以下程度である。遅筋の筋繊維から発生する筋活動電位の周波数帯域は、例えば約81Hz以上、350Hz以下程度である。 The frequency band of the muscle action potential generated from the muscle fiber of the fast muscle is, for example, about 20 Hz or more and about 45 Hz or less. The frequency band of the muscle action potential generated from the muscle fiber of the intermediate muscle is, for example, about 46 Hz or more and about 80 Hz or less. The frequency band of the muscle action potential generated from the muscle fiber of the slow muscle is, for example, about 81 Hz or more and 350 Hz or less.
 そのため、図8および図9に表したように、速筋が疲労し始めて、速筋の使用割合が徐々に減少するとともに遅筋の使用割合が徐々に増加すると、代表値としての中間周波数81が低周波帯域へ移行する。中間周波数81が低周波帯域へ移行する要因としては、例えば、運動単位の同期化、運動単位動員の増加および減少、筋繊維伝導速度変化、および筋内圧変化などの様々な要因が挙げられる。また、中間周波数81が低周波帯域へ移行する他の要因としては、前述したように、相対的に高周波数帯域を示す速筋がまず動員され収縮の繰り返しにより疲労し始めると、相対的に低周波帯域の遅筋の動員が増加することが挙げられる。 Therefore, as shown in FIGS. 8 and 9, when the fast muscles begin to fatigue and the fast muscle usage rate gradually decreases and the slow muscle usage rate gradually increases, the intermediate frequency 81 as a representative value becomes Move to the low frequency band. Factors that cause the intermediate frequency 81 to shift to the low frequency band include, for example, various factors such as synchronization of motor units, increase and decrease of motor unit mobilization, changes in muscle fiber conduction velocity, and changes in intramuscular pressure. Another factor that causes the intermediate frequency 81 to shift to the low frequency band is that, as described above, when the fast muscles showing the relatively high frequency band are first mobilized and begin to fatigue due to repeated contractions, the intermediate frequency 81 is relatively low. Increased recruitment of slow muscles in the frequency band.
 そして、制御部31は、中間周波数81が閾値82以下あるいは閾値82未満になると、筋肉の疲労が生じていると判断する。なお、代表値として中間周波数の代わりに平均周波数が用いられてもよい。 Then, the control unit 31 determines that muscle fatigue has occurred when the intermediate frequency 81 is equal to or less than the threshold value 82 or less than the threshold value 82. An average frequency may be used as a representative value instead of the intermediate frequency.
 また、速筋および遅筋の割合は、個人によって異なる。そのため、筋電図の周波数解析が行われたときの中間周波数および平均周波数が個人によって異なることがある。そのため、制御部31は、ステップS1において筋電検出電極51により測定された初期状態の速筋優位の筋肉71の筋電図に応じて閾値82を決定してもよい。 Also, the proportions of fast and slow muscles vary from individual to individual. Therefore, the intermediate frequency and the average frequency when the frequency analysis of the electromyogram is performed may differ from person to person. Therefore, the control unit 31 may determine the threshold value 82 according to the electromyogram of the fast muscle dominant muscle 71 in the initial state measured by the myoelectric detection electrode 51 in step S1.
 あるいは、制御部31は、速筋、中間筋および遅筋の周波数帯域のパワースペクトルの合計値に対する速筋および遅筋の少なくともいずれかの周波数帯域のパワースペクトルの合計値の割合に応じて、筋肉の疲労が生じているか否かを判断してもよい。例えば、制御部31は、速筋、中間筋および遅筋の周波数帯域のパワースペクトルの合計値に対する速筋の周波数帯域のパワースペクトルの合計値の割合が閾値以下あるいは閾値未満になると、筋肉の疲労が生じていると判断してもよい。あるいは、例えば、制御部31は、速筋、中間筋および遅筋の周波数帯域のパワースペクトルの合計値に対する遅筋の周波数帯域のパワースペクトルの合計値の割合が閾値以上になると、筋肉の疲労が生じていると判断してもよい。なお、筋肉の疲労が生じているか否かの判断手法は、前述した判断手法に限定されるわけではなく、他の判断手法であってもよい。 Alternatively, the control unit 31 may perform muscles according to the ratio of the total value of the power spectra of at least one of the fast muscles and the slow muscles to the total value of the power spectra of the fast muscles, the intermediate muscles, and the slow muscles. It may be determined whether or not the fatigue is occurring. For example, when the ratio of the total value of the power spectrum of the fast muscle to the total value of the power spectrum of the fast muscle, the intermediate muscle, and the slow muscle becomes less than or equal to the threshold value, the control unit 31 causes muscle fatigue. May be determined to have occurred. Alternatively, for example, when the ratio of the total value of the power spectrum of the slow muscle to the total value of the power spectrum of the fast muscle, the intermediate muscle, and the slow muscle becomes equal to or greater than the threshold value, the control unit 31 causes muscle fatigue. It may be determined that it has occurred. The method for determining whether or not muscle fatigue has occurred is not limited to the above-mentioned determination method, and may be another determination method.
 速筋優位の筋肉71の疲労が生じていないと制御部31が判断した場合には(ステップS5:NO)、筋疲労検出装置5は、ステップS3に関して前述した測定を行う。一方で、速筋優位の筋肉71の疲労が生じていると制御部31が判断した場合には(ステップS5:YES)、ステップS6において、制御部31は、電気刺激の出力電流量(すなわち電流)の増加を行い、速筋優位の筋肉71のうち速筋の収縮力の向上を図る。そして、ステップS7において、制御部31は、速筋優位の筋肉71のうち速筋の収縮力が向上したか否かを判断する。つまり、ステップS7において、制御部31は、ステップS5に関して前述したように、速筋優位の筋肉71の疲労が生じているか否か、すなわち速筋優位の筋肉71の疲労が回復したか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、前述した通りである。 When the control unit 31 determines that the fast muscle dominant muscle 71 is not fatigued (step S5: NO), the muscle fatigue detection device 5 performs the above-mentioned measurement with respect to step S3. On the other hand, when the control unit 31 determines that the fast muscle dominant muscle 71 is fatigued (step S5: YES), in step S6, the control unit 31 determines the output current amount (that is, the current) of the electrical stimulation. ) Is increased to improve the contractile force of the fast muscles among the muscles 71 in which the fast muscles are dominant. Then, in step S7, the control unit 31 determines whether or not the contractile force of the fast muscle among the fast muscle dominant muscle 71 is improved. That is, in step S7, as described above with respect to step S5, the control unit 31 determines whether or not the fatigue of the fast muscle dominant muscle 71 has occurred, that is, whether or not the fatigue of the fast muscle dominant muscle 71 has recovered. to decide. An example of a method for determining whether or not muscle fatigue has occurred is as described above.
 速筋優位の筋肉71のうち速筋の収縮力が向上したと制御部31が判断した場合には(ステップS7:YES)、ステップS9において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。一方で、速筋優位の筋肉71のうち速筋の疲労が激しく、速筋優位の筋肉71のうち速筋の収縮力が向上しないと制御部31が判断した場合には(ステップS7:NO)、ステップS8において、制御部31は、電気刺激の周波数の変更を行い、速筋優位の筋肉71のうち速筋から遅筋へ収縮の優位性を切り替える。このように、制御部31は、ステップS6において、電気刺激の電流を変更することにより速筋優位の筋肉71のうち速筋の収縮力の向上を図る。また、制御部31は、ステップS8において、電気刺激の周波数を変更することにより速筋優位の筋肉71のうち速筋から遅筋へ収縮の優位性を切り替える。 When the control unit 31 determines that the contractile force of the fast muscle is improved among the muscles 71 in which the fast muscle is dominant (step S7: YES), in step S9, the muscle fatigue detection device 5 uses the myoelectric detection electrode 51. The action potential of the fast muscle dominant muscle 71 is detected, and the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx). On the other hand, when the control unit 31 determines that the fast muscles are severely tired among the fast muscle dominant muscles 71 and the contractile force of the fast muscles is not improved among the fast muscle dominant muscles 71 (step S7: NO). In step S8, the control unit 31 changes the frequency of the electrical stimulation and switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71. As described above, in step S6, the control unit 31 aims to improve the contractile force of the fast muscle among the fast muscle dominant muscle 71 by changing the electric stimulation current. Further, in step S8, the control unit 31 switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71 by changing the frequency of the electrical stimulation.
 続いて、ステップS9において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。続いて、ステップS10において、制御部31は、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始(ステップS2)してから、所定時間が経過したか否かを判断する。電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過した場合には(ステップS10:YES)、制御部31は、速筋優位の筋肉71の電気刺激を終了する。一方で、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過していない場合には(ステップS10:NO)、筋疲労検出装置5は、ステップS9に関して前述した測定を行う。 Subsequently, in step S9, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation. (Time Tx). Subsequently, in step S10, the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S2). When a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S10: YES), the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do. On the other hand, if a predetermined time has not elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S10: NO), the muscle fatigue detection device 5 described above with respect to step S9. Make the measurement.
 本具体例によれば、制御部31は、速筋優位の筋肉71のうち、遅筋と比較して瞬発力の発揮に優れ疲労しやすい速筋から、速筋と比較して持久力の発揮に優れ疲労しにくい遅筋へ、収縮の優位性を切り替える。そのため、速筋優位の筋肉71のうちの速筋の疲労が生じた後に、速筋優位の筋肉71のうちの遅筋が長時間にわたって収縮を持続することができる。これにより、電気刺激が速筋優位の筋肉71に付与される場合であっても、電気刺激システム2は、長時間にわたって筋肉の収縮効果を持続させることができる。 According to this specific example, among the muscles 71 in which the fast muscles are dominant, the control unit 31 exerts the endurance as compared with the fast muscles from the fast muscles which are excellent in exerting the instantaneous force as compared with the slow muscles and are easily fatigued. Switch the superiority of contraction to slow muscles that are excellent and less likely to fatigue. Therefore, after fatigue of the fast muscles of the fast muscles 71 is generated, the slow muscles of the fast muscles 71 can continue to contract for a long time. Thereby, even when the electrical stimulation is applied to the muscle 71 in which the fast muscle is dominant, the electrical stimulation system 2 can maintain the contraction effect of the muscle for a long time.
 なお、図4および図5に関して前述した電気刺激システム2Aの場合には、筋肉が疲労する前の筋音図の周波数解析を行ったグラフが、例えば図8に相当する。また、筋肉が疲労した後の筋音図の周波数解析を行ったグラフが、例えば図9に相当する。その他の電気刺激システム2Aの動作等は、前述した電気刺激システム2の動作等と同様である。 In the case of the electrical stimulation system 2A described above with respect to FIGS. 4 and 5, the graph obtained by frequency analysis of the mechanomyogram before muscle fatigue corresponds to, for example, FIG. Further, a graph obtained by frequency analysis of the mechanomyogram after muscle fatigue corresponds to, for example, FIG. The operation and the like of the other electrical stimulation system 2A are the same as the operation and the like of the electrical stimulation system 2 described above.
 図10は、本実施形態に係る電気刺激システムの動作の第2具体例を説明する模式図である。
 図11および図12は、本実施形態に係る電気刺激システムの動作の第2具体例を説明するフローチャートである。
FIG. 10 is a schematic diagram illustrating a second specific example of the operation of the electrical stimulation system according to the present embodiment.
11 and 12 are flowcharts illustrating a second specific example of the operation of the electrical stimulation system according to the present embodiment.
 図10に表したように、本具体例では、刺激電極42および筋電検出電極51を含む電極パッド6が、腓腹筋、腓骨筋および脛骨筋の近傍の身体表面に貼付されている。本具体例では、腓腹筋は、第1速筋優位の筋肉71である。腓骨筋は、第2速筋優位の筋肉72である。脛骨筋は、第3速筋優位の筋肉73である。 As shown in FIG. 10, in this specific example, the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle, the fibula muscle, and the tibialis muscle. In this specific example, the gastrocnemius muscle is the muscle 71 in which the first fast muscle is dominant. The peroneal muscle is the muscle 72 in which the second fast muscle is dominant. The tibialis anterior is the muscle 73 in which the third speed muscle is dominant.
 図11に表したように、まずステップS11において、筋疲労検出装置5は、筋電検出電極51により第1速筋優位の筋肉71の筋活動電位を検出し、初期状態の第1速筋優位の筋肉71の筋電図を測定する(時間T0)。 As shown in FIG. 11, first, in step S11, the muscle fatigue detection device 5 detects the muscle action potential of the muscle 71 in which the first speed muscle is dominant by the myoelectric detection electrode 51, and the first speed muscle is dominant in the initial state. The electromyogram of the muscle 71 of the muscle 71 is measured (time T0).
 続いて、ステップS12において、電気刺激装置4は、電気刺激信号生成部41により電気刺激のための電気の信号を生成し、刺激電極42を介して第1速筋優位の筋肉71および運動神経の少なくともいずれかに電気を供給し、第1速筋優位の筋肉71の電気刺激を開始する。続いて、ステップS13において、筋疲労検出装置5は、筋電検出電極51により第1速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の第1速筋優位の筋肉71の筋電図を測定する(時間Tx)。 Subsequently, in step S12, the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and the first-speed muscle dominant muscle 71 and the motor nerve are generated via the stimulation electrode 42. Electricity is supplied to at least one of them, and electrical stimulation of the muscle 71 in which the first fast muscle is dominant is started. Subsequently, in step S13, the muscle fatigue detection device 5 detects the muscle action potential of the first speed muscle dominant muscle 71 by the myoelectric detection electrode 51, and the muscle 71 of the first speed muscle dominant muscle 71 during electrical stimulation. Measure the electromyogram (time Tx).
 続いて、ステップS14において、制御部31は、電気刺激装置4が第1速筋優位の筋肉71の電気刺激を開始(ステップS12)してから、所定時間が経過したか否かを判断する。電気刺激装置4が第1速筋優位の筋肉71の電気刺激を開始してから所定時間が経過した場合には(ステップS14:YES)、制御部31は、第1速筋優位の筋肉71の電気刺激を終了する。一方で、電気刺激装置4が第1速筋優位の筋肉71の電気刺激を開始してから所定時間が経過していない場合には(ステップS14:NO)、ステップS15において、制御部31は、第1速筋優位の筋肉71の疲労が生じているか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、図6~図9に関して前述した通りである。なお、ステップS11~ステップS15の動作は、図7に関して前述したステップS1~ステップS5の動作と同様である。 Subsequently, in step S14, the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the muscle 71 in which the first speed muscle is dominant (step S12). When a predetermined time has elapsed since the electric stimulator 4 started the electric stimulation of the muscle 71 having the dominant first speed muscle (step S14: YES), the control unit 31 of the muscle 71 having the dominant first speed muscle End the electrical stimulation. On the other hand, if a predetermined time has not elapsed since the electrical stimulator 4 started the electrical stimulation of the muscle 71 in which the first fast muscle is dominant (step S14: NO), in step S15, the control unit 31 It is determined whether or not the fatigue of the muscle 71, which is dominant in the first speed muscle, is occurring. An example of a method for determining whether or not muscle fatigue has occurred is as described above with respect to FIGS. 6 to 9. The operations of steps S11 to S15 are the same as the operations of steps S1 to S5 described above with respect to FIG. 7.
 第1速筋優位の筋肉71の疲労が生じていないと制御部31が判断した場合には(ステップS15:NO)、筋疲労検出装置5は、ステップS13に関して前述した測定を行う。一方で、第1速筋優位の筋肉71の疲労が生じていると制御部31が判断した場合には(ステップS15:YES)、ステップS16において、制御部31は、電気刺激の出力電流量の増加を行い、第1速筋優位の筋肉71のうち速筋の収縮力の向上を図る。このとき、制御部31は、必要に応じて、第1速筋優位の筋肉71のうち遅筋の収縮力の向上を図るため、電気刺激の周波数の変更を行ってもよい。そして、ステップS17において、制御部31は、第1速筋優位の筋肉71の収縮力が向上したか否かを判断する。つまり、ステップS17において、制御部31は、ステップS15に関して前述したように、第1速筋優位の筋肉71の疲労が生じているか否か、すなわち第1速筋優位の筋肉71の疲労が回復したか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、前述した通りである。 When the control unit 31 determines that the first-speed muscle-dominant muscle 71 is not fatigued (step S15: NO), the muscle fatigue detection device 5 performs the above-mentioned measurement with respect to step S13. On the other hand, when the control unit 31 determines that the first-speed muscle-dominant muscle 71 is fatigued (step S15: YES), in step S16, the control unit 31 determines that the output current amount of the electrical stimulation is increased. The number is increased to improve the contractile force of the fast muscle among the muscles 71 in which the first fast muscle is dominant. At this time, the control unit 31 may change the frequency of the electrical stimulation in order to improve the contractile force of the slow muscle among the muscles 71 in which the first fast muscle is dominant, if necessary. Then, in step S17, the control unit 31 determines whether or not the contractile force of the muscle 71, which is dominant in the first fast muscle, is improved. That is, in step S17, as described above with respect to step S15, the control unit 31 has recovered whether or not the fatigue of the first-speed muscle-dominant muscle 71 has occurred, that is, the fatigue of the first-speed muscle-dominant muscle 71 has recovered. Judge whether or not. An example of a method for determining whether or not muscle fatigue has occurred is as described above.
 第1速筋優位の筋肉71の収縮力が向上したと制御部31が判断した場合には(ステップS17:YES)、ステップS19において、筋疲労検出装置5は、筋電検出電極51により第1速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の第1速筋優位の筋肉71の筋電図を測定する(時間Tx)。一方で、第1速筋優位の筋肉71の疲労が激しく、第1速筋優位の筋肉71の収縮力が向上しないと制御部31が判断した場合には(ステップS17:NO)、ステップS18において、制御部31は、第1速筋優位の筋肉71の電気刺激を停止し、第2速筋優位の筋肉72の電気刺激を開始する。例えば、ステップS18において、医療従事者は、第1速筋優位の筋肉71の疲労の程度を表示部32(図1参照)などでモニタリングしながら、第1速筋優位の筋肉71に対する電気刺激を停止し、最適な筋肉(ステップS18では第2速筋優位の筋肉72)を選択し電気刺激を付与してもよい。このように、制御部31は、ステップS16において、電気刺激の電流を変更したり、必要に応じて電気刺激の周波数を変更したりすることにより第1速筋優位の筋肉71の収縮力の向上を図る。また、制御部31は、ステップS18において、第1速筋優位の筋肉71に対する電気刺激を停止するとともに、第1速筋優位の筋肉71とは異なる位置に存在する第2速筋優位の筋肉72に対する電気刺激を開始する。 When the control unit 31 determines that the contractile force of the first-speed muscle-dominant muscle 71 has improved (step S17: YES), in step S19, the muscle fatigue detection device 5 uses the myoelectric detection electrode 51 to make the first. The action potential of the fast muscle dominant muscle 71 is detected, and the electromyogram of the first fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx). On the other hand, when the control unit 31 determines that the contraction force of the first-speed muscle-dominant muscle 71 is not improved due to severe fatigue of the first-speed muscle-dominant muscle 71 (step S17: NO), in step S18. , The control unit 31 stops the electrical stimulation of the first-speed muscle-dominant muscle 71 and starts the electrical stimulation of the second-speed muscle-dominant muscle 72. For example, in step S18, the medical worker applies electrical stimulation to the muscle 71 predominantly in the first fast muscle while monitoring the degree of fatigue of the muscle 71 predominantly in the first fast muscle on the display unit 32 (see FIG. 1). It may be stopped, the optimum muscle (muscle 72 in which the second fast muscle is dominant in step S18) is selected, and electrical stimulation may be applied. As described above, in step S16, the control unit 31 improves the contractile force of the muscle 71 predominantly in the first speed muscle by changing the current of the electrical stimulation and changing the frequency of the electrical stimulation as needed. Aim. Further, in step S18, the control unit 31 stops the electrical stimulation of the first-speed muscle-dominant muscle 71, and at the same time, the second-speed muscle-dominant muscle 72 existing at a position different from the first-speed muscle-dominant muscle 71. Start electrical stimulation to.
 続いて、ステップS19~ステップS23の動作は、ステップS13~ステップS17の動作と同様である。そして、ステップS23に続くステップS24において、制御部31は、第2速筋優位の筋肉72の電気刺激を停止し、第3速筋優位の筋肉73の電気刺激を開始する。例えば、ステップS24において、医療従事者は、第2速筋優位の筋肉72の疲労の程度を表示部32(図1参照)などでモニタリングしながら、第2速筋優位の筋肉72に対する電気刺激を停止し、最適な筋肉(ステップS24では第3速筋優位の筋肉73)を選択し電気刺激を付与してもよい。このように、制御部31は、ステップS22において、電気刺激の電流を変更したり、必要に応じて電気刺激の周波数を変更したりすることにより第2速筋優位の筋肉72の収縮力の向上を図る。また、制御部31は、ステップS24において、第2速筋優位の筋肉72に対する電気刺激を停止するとともに、第2速筋優位の筋肉72とは異なる位置に存在する第3速筋優位の筋肉73に対する電気刺激を開始する。 Subsequently, the operations of steps S19 to S23 are the same as the operations of steps S13 to S17. Then, in step S24 following step S23, the control unit 31 stops the electrical stimulation of the second-speed muscle-dominant muscle 72 and starts the electrical stimulation of the third-speed muscle-dominant muscle 73. For example, in step S24, the medical worker applies electrical stimulation to the muscle 72 having the dominant second speed muscle 72 while monitoring the degree of fatigue of the muscle 72 having the dominant second speed muscle 72 with the display unit 32 (see FIG. 1). It may be stopped, the optimum muscle (muscle 73 predominantly in the third speed muscle in step S24) is selected, and electrical stimulation may be applied. As described above, in step S22, the control unit 31 improves the contractile force of the muscle 72 predominantly in the second speed muscle by changing the current of the electrical stimulation and changing the frequency of the electrical stimulation as needed. Aim. Further, in step S24, the control unit 31 stops the electrical stimulation to the muscle 72 having the dominant second speed muscle, and the muscle 73 having the dominant third speed muscle at a position different from the muscle 72 having the dominant second speed muscle. Start electrical stimulation to.
 続いて、ステップS25およびステップS26の動作は、ステップS13およびステップS14の動作と同様である。 Subsequently, the operations of steps S25 and S26 are the same as the operations of steps S13 and S14.
 本具体例によれば、制御部31は、第1速筋優位の筋肉71から、第1速筋優位の筋肉71とは異なる位置に存在する第2速筋優位の筋肉72へ、電気刺激を切り替える。そのため、第1速筋優位の筋肉71の疲労が生じた後に、第2速筋優位の筋肉72が収縮を持続することができる。これは、制御部31が、第2速筋優位の筋肉72から、第2速筋優位の筋肉72とは異なる位置に存在する第3速筋優位の筋肉73へ、電気刺激を切り替える場合についても同様である。これにより、電気刺激が速筋優位の筋肉71、72、73に付与される場合であっても、本実施形態に係る電気刺激システム2は、長時間にわたって筋肉の収縮効果を持続させることができる。 According to this specific example, the control unit 31 electrically stimulates the muscle 71 in which the first speed muscle is dominant to the muscle 72 in which the second speed muscle is dominant, which exists at a position different from the muscle 71 in which the first speed muscle is dominant. Switch. Therefore, after the fatigue of the first-speed muscle-dominant muscle 71 occurs, the second-speed muscle-dominant muscle 72 can continue to contract. This is also the case where the control unit 31 switches the electrical stimulation from the muscle 72 in which the second speed muscle is dominant to the muscle 73 in which the muscle 72 is dominant in the second speed muscle and exists at a position different from the muscle 72 in which the second speed muscle is dominant. The same is true. As a result, even when the electrical stimulation is applied to the muscles 71, 72, 73 in which the fast muscles are dominant, the electrical stimulation system 2 according to the present embodiment can maintain the contraction effect of the muscles for a long time. ..
 なお、本具体例では、ステップS24において、制御部31は、第2速筋優位の筋肉72に対する電気刺激を停止するとともに、第2速筋優位の筋肉72とは異なる位置に存在する第3速筋優位の筋肉73に対する電気刺激を開始する。但し、ステップS24の動作は、これだけに限定されるわけではない。例えば、ステップS24において、制御部31は、第2速筋優位の筋肉72に対する電気刺激を停止するとともに、第2速筋優位の筋肉72とは異なる位置に存在する第1速筋優位の筋肉71に対する電気刺激を開始し、再び第1速筋優位の筋肉71に電気刺激を付与してもよい。この場合であっても、前述した本具体例の効果と同様の効果が得られる。 In this specific example, in step S24, the control unit 31 stops the electrical stimulation to the muscle 72 in which the second speed muscle is dominant, and the third speed is present at a position different from the muscle 72 in which the second speed muscle is dominant. Electrical stimulation of muscle-dominant muscle 73 is initiated. However, the operation of step S24 is not limited to this. For example, in step S24, the control unit 31 stops the electrical stimulation of the second-speed muscle-dominant muscle 72, and the first-speed muscle-dominant muscle 71 exists at a position different from that of the second-speed muscle-dominant muscle 72. The electrical stimulation to the muscle 71 may be started, and the electrical stimulation to the muscle 71 in which the first fast muscle is dominant may be applied again. Even in this case, the same effect as that of the above-described specific example can be obtained.
 図13は、本実施形態に係る電気刺激システムの動作の第3具体例を説明する模式図である。
 図14は、本実施形態に係る電気刺激システムの動作の第3具体例を説明するフローチャートである。
FIG. 13 is a schematic diagram illustrating a third specific example of the operation of the electrical stimulation system according to the present embodiment.
FIG. 14 is a flowchart illustrating a third specific example of the operation of the electrical stimulation system according to the present embodiment.
 本具体例では、刺激電極42および筋電検出電極51を含む電極パッド6が、腓腹筋およびヒラメ筋の近傍の身体表面に貼付されている。本具体例では、腓腹筋は、速筋優位の筋肉71である。ヒラメ筋は、遅筋優位の筋肉74である。「遅筋優位の筋肉」は、図6~図9に関して前述した通りである。 In this specific example, the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle and the soleus muscle. In this specific example, the gastrocnemius muscle is the fast muscle dominant muscle 71. The soleus muscle is the slow muscle dominant muscle 74. The “slow muscle dominant muscle” is as described above with respect to FIGS. 6 to 9.
 図14に表したように、まずステップS31において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、初期状態の速筋優位の筋肉71の筋電図を測定する(時間T0)。 As shown in FIG. 14, first, in step S31, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and the fast muscle dominant muscle 71 in the initial state. The electromyogram is measured (time T0).
 続いて、ステップS32において、電気刺激装置4は、電気刺激信号生成部41により電気刺激のための電気の信号を生成し、刺激電極42を介して速筋優位の筋肉71および運動神経の少なくともいずれかに電気を供給し、速筋優位の筋肉71の電気刺激を開始する。続いて、ステップS33において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。 Subsequently, in step S32, the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and at least one of the fast muscle dominant muscle 71 and the motor nerve via the stimulation electrode 42. Electricity is supplied to the crab and the electrical stimulation of the muscle 71, which is dominant in the fast muscle, is started. Subsequently, in step S33, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation. (Time Tx).
 続いて、ステップS34において、制御部31は、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始(ステップS32)してから、所定時間が経過したか否かを判断する。電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過した場合には(ステップS34:YES)、制御部31は、速筋優位の筋肉71の電気刺激を終了する。一方で、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過していない場合には(ステップS34:NO)、ステップS35において、制御部31は、速筋優位の筋肉71の疲労が生じているか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、図6~図9に関して前述した通りである。なお、ステップS31~ステップS35の動作は、図7に関して前述したステップS1~ステップS5の動作と同様である。 Subsequently, in step S34, the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S32). When a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S34: YES), the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do. On the other hand, if a predetermined time has not elapsed since the electrical stimulator 4 started the electrical stimulation of the muscle 71 in which the fast muscle is dominant (step S34: NO), in step S35, the control unit 31 uses the fast muscle. It is determined whether or not the dominant muscle 71 is fatigued. An example of a method for determining whether or not muscle fatigue has occurred is as described above with respect to FIGS. 6 to 9. The operations of steps S31 to S35 are the same as the operations of steps S1 to S5 described above with respect to FIG. 7.
 速筋優位の筋肉71の疲労が生じていないと制御部31が判断した場合には(ステップS35:NO)、筋疲労検出装置5は、ステップS33に関して前述した測定を行う。一方で、速筋優位の筋肉71の疲労が生じていると制御部31が判断した場合には(ステップS35:YES)、ステップS36において、制御部31は、電気刺激の出力電流量の増加を行い、速筋優位の筋肉71のうち速筋の収縮力の向上を図る。このとき、制御部31は、必要に応じて、速筋優位の筋肉71のうち遅筋の収縮力の向上を図るため、電気刺激の周波数の変更を行ってもよい。そして、ステップS37において、制御部31は、速筋優位の筋肉71の収縮力が向上したか否かを判断する。つまり、ステップS37において、制御部31は、ステップS35に関して前述したように、速筋優位の筋肉71の疲労が生じているか否か、すなわち速筋優位の筋肉71の疲労が回復したか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、前述した通りである。 When the control unit 31 determines that the fast muscle dominant muscle 71 is not fatigued (step S35: NO), the muscle fatigue detection device 5 performs the above-mentioned measurement with respect to step S33. On the other hand, when the control unit 31 determines that the fast muscle dominant muscle 71 is fatigued (step S35: YES), in step S36, the control unit 31 increases the output current amount of the electrical stimulation. This is performed to improve the contractile force of the fast muscles among the muscles 71 in which the fast muscles are dominant. At this time, the control unit 31 may change the frequency of the electrical stimulation in order to improve the contractile force of the slow muscle among the fast muscle dominant muscle 71, if necessary. Then, in step S37, the control unit 31 determines whether or not the contractile force of the fast muscle dominant muscle 71 is improved. That is, in step S37, as described above with respect to step S35, the control unit 31 determines whether or not the fatigue of the fast muscle dominant muscle 71 has occurred, that is, whether or not the fatigue of the fast muscle dominant muscle 71 has recovered. to decide. An example of a method for determining whether or not muscle fatigue has occurred is as described above.
 速筋優位の筋肉71の収縮力が向上したと制御部31が判断した場合には(ステップS37:YES)、ステップS39において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。一方で、速筋優位の筋肉71の疲労が激しく、速筋優位の筋肉71の収縮力が向上しないと制御部31が判断した場合には(ステップS37:NO)、ステップS38において、制御部31は、電気刺激の低周波数電流を中周波数電流もしくは干渉周波数電流に変更することにより速筋優位の筋肉71の電気刺激を停止し、遅筋優位の筋肉74の電気刺激を開始する。このように、ステップS38において、制御部31は、電気刺激の電流および周波数の少なくともいずれかを変更することにより速筋優位の筋肉71に対する電気刺激を停止するとともに遅筋優位の筋肉74に対する電気刺激を開始する。 When the control unit 31 determines that the contractile force of the fast muscle dominant muscle 71 is improved (step S37: YES), in step S39, the muscle fatigue detection device 5 is fast muscle dominant due to the myoelectric detection electrode 51. The muscle action potential of the muscle 71 is detected, and the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx). On the other hand, when the control unit 31 determines that the contraction force of the fast muscle dominant muscle 71 is not improved due to severe fatigue of the fast muscle dominant muscle 71 (step S37: NO), the control unit 31 is in step S38. Stops the electrical stimulation of the fast muscle dominant muscle 71 and starts the electrical stimulation of the slow muscle dominant muscle 74 by changing the low frequency current of the electrical stimulation to a medium frequency current or an interference frequency current. As described above, in step S38, the control unit 31 stops the electrical stimulation to the fast muscle dominant muscle 71 and the slow muscle dominant muscle 74 by changing at least one of the current and the frequency of the electrical stimulation. To start.
 続いて、ステップS39およびステップS40の動作は、ステップS33およびステップS34の動作と同様である。 Subsequently, the operations of steps S39 and S40 are the same as the operations of steps S33 and S34.
 本具体例によれば、制御部31は、速筋優位の筋肉71から遅筋優位の筋肉74へ電気刺激を切り替える。そのため、速筋優位の筋肉71の疲労が生じた後に、遅筋優位の筋肉74が長時間にわたって収縮を持続することができる。これにより、本実施形態に係る電気刺激システム2は、より確実に長時間にわたって筋肉の収縮効果を持続させることができる。 According to this specific example, the control unit 31 switches the electrical stimulation from the fast muscle dominant muscle 71 to the slow muscle dominant muscle 74. Therefore, after the fatigue of the fast muscle dominant muscle 71 occurs, the slow muscle dominant muscle 74 can continue contraction for a long time. As a result, the electrical stimulation system 2 according to the present embodiment can more reliably maintain the muscle contraction effect for a long period of time.
 なお、本具体例では、速筋優位の筋肉71の例として腓腹筋を挙げ、遅筋優位の筋肉74の例としてヒラメ筋を挙げた。但し、速筋優位の筋肉71および遅筋優位の筋肉74の例は、これだけに限定されるわけではない。例えば、速筋優位の筋肉71の他の例として、前脛骨筋/長趾伸筋/長母趾伸筋などが挙げられる。また、遅筋優位の筋肉74の他の例として、後脛骨筋/長趾屈筋/長母趾屈筋などが挙げられる。この場合であっても、前述した本具体例の効果と同様の効果が得られる。 In this specific example, the gastrocnemius muscle was mentioned as an example of the muscle 71 in which the fast muscle was dominant, and the soleus muscle was mentioned as an example of the muscle 74 in which the slow muscle was dominant. However, the examples of the fast muscle dominant muscle 71 and the slow muscle dominant muscle 74 are not limited to this. For example, other examples of the fast muscle dominant muscle 71 include the tibialis anterior muscle / extensor digitorum longus muscle / extensor hallucis longus muscle. In addition, as another example of the muscle 74 in which the slow muscle is dominant, the posterior tibial muscle / flexor digitorum longus / flexor hallucis longus can be mentioned. Even in this case, the same effect as that of the above-described specific example can be obtained.
 次に、本発明の第2実施形態に係る電気刺激システムについて説明する。
 なお、第2実施形態に係る電気刺激システム2Bの構成要素が、図1~図3に関して前述した第1実施形態に係る電気刺激システム2の構成要素と同様である場合には、重複する説明は適宜省略し、以下、相違点を中心に説明する。
Next, the electrical stimulation system according to the second embodiment of the present invention will be described.
If the components of the electrical stimulation system 2B according to the second embodiment are the same as the components of the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3, the overlapping description will be described. It will be omitted as appropriate, and the differences will be mainly described below.
 図15は、本発明の第2実施形態に係る電気刺激システムの要部構成を表すブロック図である。
 本実施形態に係る電気刺激システム2Bは、本体3(図1参照)と、電気刺激装置4と、筋疲労検出装置5と、電極パッド6と、流量計35と、を備える。本体3、電気刺激装置4、筋疲労検出装置5および電極パッド6は、図1~図3に関して前述した通りである。すなわち、本実施形態に係る電気刺激システム2Bは、図1~図3に関して前述した第1実施形態に係る電気刺激システム2と比較して、流量計35をさらに備える。この点において、本実施形態に係る電気刺激システム2Bは、図1~図3に関して前述した第1実施形態に係る電気刺激システム2と相違する。
FIG. 15 is a block diagram showing a main configuration of an electrical stimulation system according to a second embodiment of the present invention.
The electrical stimulation system 2B according to the present embodiment includes a main body 3 (see FIG. 1), an electrical stimulation device 4, a muscle fatigue detection device 5, an electrode pad 6, and a flow meter 35. The main body 3, the electrical stimulator 4, the muscle fatigue detection device 5, and the electrode pad 6 are as described above with respect to FIGS. 1 to 3. That is, the electrical stimulation system 2B according to the present embodiment further includes a flow meter 35 as compared with the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3. In this respect, the electrical stimulation system 2B according to the present embodiment is different from the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3.
 流量計35は、身体を流れる血液の流量を非侵襲の方式により検出する。流量計35の形態は、特に限定されるわけではなく、例えば超音波流量計などである。流量計35が超音波流量計である場合においては、流量計35の検出方式は、ドップラ式であってもよく、トランジットタイム式であってもよい。流量計35としては、例えばデュプレックス超音波血流量計、超音波カラードップラ血流量計およびレーザ血流量計などが挙げられる。レーザ血流量計の場合には、血流の上流側に対応したレーザ発光・受光素子が設けられ、血流の下流側に対応した受光素子が設けられる。こうすることで、レーザ発光・受光素子の信号に基づいて血管内径が算出される。また、血管内径に基づいて算出される血管内断面積と、ドップラ効果を利用して算出される血液の流速と、により血流量が算出される。血液の流速は、血流の上流側に対応したレーザ発光素子から送信される発光信号と、血流の下流側に対応した受光素子から送信される受信信号と、に基づいてドップラ効果により算出される。 The flow meter 35 detects the flow rate of blood flowing through the body by a non-invasive method. The form of the flow meter 35 is not particularly limited, and is, for example, an ultrasonic flow meter. When the flow meter 35 is an ultrasonic flow meter, the detection method of the flow meter 35 may be a Doppler type or a transit time type. Examples of the flow meter 35 include a duplex ultrasonic blood flow meter, an ultrasonic color Doppler blood flow meter, and a laser blood flow meter. In the case of a laser blood flow meter, a laser light emitting / receiving element corresponding to the upstream side of the blood flow is provided, and a light receiving element corresponding to the downstream side of the blood flow is provided. By doing so, the inner diameter of the blood vessel is calculated based on the signal of the laser emitting / receiving element. Further, the blood flow rate is calculated by the intravascular cross-sectional area calculated based on the inner diameter of the blood vessel and the blood flow velocity calculated by utilizing the Doppler effect. The blood flow velocity is calculated by the Doppler effect based on the light emission signal transmitted from the laser light emitting element corresponding to the upstream side of the blood flow and the received signal transmitted from the light receiving element corresponding to the downstream side of the blood flow. NS.
 図16は、本実施形態に係る電気刺激システムの動作の具体例を説明する模式図である。
 図17は、本実施形態に係る電気刺激システムの動作の具体例を説明するフローチャートである。
FIG. 16 is a schematic diagram illustrating a specific example of the operation of the electrical stimulation system according to the present embodiment.
FIG. 17 is a flowchart illustrating a specific example of the operation of the electrical stimulation system according to the present embodiment.
 図16に表したように、本具体例では、刺激電極42および筋電検出電極51を含む電極パッド6が、腓腹筋の近傍の身体表面に貼付されている。腓腹筋は、速筋優位の筋肉71である。また、本具体例では、流量計35は、超音波流量計である。図16に表したように、流量計35が有する超音波送受信器36が、膝窩(膝裏部)の近傍の身体表面に貼付されている。超音波送受信器36は、血流の上流側に設けられる超音波素子を発信・受信素子で形成し、血流の下流側に設けられる超音波素子を受信素子で形成する。そして、血流の上流側に設けられる超音波素子の発信・受信素子の信号に基づいて血管内径が算出される。また、血管内径に基づいて血管内断面積が算出される。 As shown in FIG. 16, in this specific example, the electrode pad 6 including the stimulation electrode 42 and the myoelectric detection electrode 51 is attached to the body surface in the vicinity of the gastrocnemius muscle. The gastrocnemius muscle is the muscle 71 in which the fast muscle is dominant. Further, in this specific example, the flow meter 35 is an ultrasonic flow meter. As shown in FIG. 16, the ultrasonic transmitter / receiver 36 included in the flow meter 35 is attached to the body surface in the vicinity of the popliteal fossa (back of the knee). In the ultrasonic transmitter / receiver 36, an ultrasonic element provided on the upstream side of the blood flow is formed by a transmitting / receiving element, and an ultrasonic element provided on the downstream side of the blood flow is formed by a receiving element. Then, the inner diameter of the blood vessel is calculated based on the signal of the transmitting / receiving element of the ultrasonic element provided on the upstream side of the blood flow. In addition, the cross-sectional area inside the blood vessel is calculated based on the inner diameter of the blood vessel.
 図17に表したように、まずステップS41において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、初期状態の速筋優位の筋肉71の筋電図を測定する(時間T0)。 As shown in FIG. 17, first, in step S41, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and the fast muscle dominant muscle 71 in the initial state. The electromyogram is measured (time T0).
 続いて、ステップS42において、電気刺激装置4は、電気刺激信号生成部41により電気刺激のための電気の信号を生成し、刺激電極42を介して速筋優位の筋肉71および運動神経の少なくともいずれかに電気を供給し、速筋優位の筋肉71の電気刺激を開始する。続いて、ステップS43において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。また、ステップS43において、流量計35は、血流の上流側の発信素子から送信される発信信号と、血流の下流側の受信素子から送信される受信信号と、に基づいてドップラ効果により超音波送受信器36の貼付箇所の近傍を流れる血液の流速を算出する。また、流量計35は、血管内径に基づいて算出された血管内断面積と、ドップラ効果を利用して算出された血液の流速と、により血液の流量を検出し、電気刺激中の血液の流量を測定する(時間Tx)。なお、ステップS43では、その他のパラメータとして、体水分や体脂肪等が測定されてもよい(時間Tx)。 Subsequently, in step S42, the electrical stimulator 4 generates an electrical signal for electrical stimulation by the electrical stimulation signal generation unit 41, and at least one of the fast muscle dominant muscle 71 and the motor nerve via the stimulation electrode 42. Electricity is supplied to the crab and the electrical stimulation of the muscle 71, which is dominant in the fast muscle, is started. Subsequently, in step S43, the muscle fatigue detection device 5 detects the muscle action potential of the fast muscle dominant muscle 71 by the myoelectric detection electrode 51, and measures the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation. (Time Tx). Further, in step S43, the flow meter 35 is superposed by the Doppler effect based on the transmission signal transmitted from the transmission element on the upstream side of the blood flow and the reception signal transmitted from the reception element on the downstream side of the blood flow. The flow velocity of blood flowing in the vicinity of the attachment point of the sound wave transmitter / receiver 36 is calculated. Further, the flow meter 35 detects the blood flow rate by the intravascular cross-sectional area calculated based on the inner diameter of the blood vessel and the blood flow rate calculated by using the Doppler effect, and the blood flow rate during electrical stimulation. (Time Tx). In step S43, body water, body fat, and the like may be measured as other parameters (time Tx).
 続いて、ステップS44において、制御部31は、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始(ステップS42)してから、所定時間が経過したか否かを判断する。電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過した場合には(ステップS44:YES)、制御部31は、速筋優位の筋肉71の電気刺激を終了する。一方で、電気刺激装置4が速筋優位の筋肉71の電気刺激を開始してから所定時間が経過していない場合には(ステップS44:NO)、ステップS45において、制御部31は、速筋優位の筋肉71の疲労が生じているか否かを判断するとともに、血液の流量の増加幅が減少したか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、図6~図9に関して前述した通りである。なお、ステップS45では、制御部31は、体水分や体脂肪等の他のパラメータの変動の程度を判断してもよい。 Subsequently, in step S44, the control unit 31 determines whether or not a predetermined time has elapsed since the electrical stimulator 4 started electrical stimulation of the fast muscle-dominant muscle 71 (step S42). When a predetermined time has elapsed since the electrical stimulator 4 started the electrical stimulation of the fast muscle dominant muscle 71 (step S44: YES), the control unit 31 ends the electrical stimulation of the fast muscle dominant muscle 71. do. On the other hand, if a predetermined time has not elapsed since the electrical stimulator 4 started the electrical stimulation of the muscle 71 in which the fast muscle is dominant (step S44: NO), in step S45, the control unit 31 uses the fast muscle. It is determined whether or not the dominant muscle 71 is fatigued, and whether or not the increase in blood flow rate is reduced. An example of a method for determining whether or not muscle fatigue has occurred is as described above with respect to FIGS. 6 to 9. In step S45, the control unit 31 may determine the degree of fluctuation of other parameters such as body water and body fat.
 速筋優位の筋肉71の疲労が生じておらず、あるいは血液の流量の増加幅が減少していないと制御部31が判断した場合には(ステップS45:NO)、筋疲労検出装置5は、ステップS43に関して前述した測定を行う。一方で、速筋優位の筋肉71の疲労が生じ、かつ血液の流量の増加幅が減少していると制御部31が判断した場合には(ステップS45:YES)、ステップS46において、制御部31は、電気刺激の出力電流量の増加を行い、速筋優位の筋肉71のうち速筋の収縮力の向上を図る。そして、ステップS47において、制御部31は、速筋優位の筋肉71のうち速筋の収縮力が向上したか否かを判断する。つまり、ステップS47において、制御部31は、ステップS45に関して前述したように、速筋優位の筋肉71の疲労が生じているか否か、すなわち速筋優位の筋肉71の疲労が回復したか否かを判断する。筋肉の疲労が生じているか否かの判断手法の例は、前述した通りである。 When the control unit 31 determines that the fast muscle-dominant muscle 71 has not been fatigued or the increase in blood flow rate has not decreased (step S45: NO), the muscle fatigue detection device 5 may be used. The measurement described above is performed with respect to step S43. On the other hand, when the control unit 31 determines that the fast muscle-dominant muscle 71 is fatigued and the increase in blood flow rate is decreasing (step S45: YES), the control unit 31 is in step S46. Increases the output current amount of electrical stimulation to improve the contractile force of the fast muscle among the muscles 71 in which the fast muscle is dominant. Then, in step S47, the control unit 31 determines whether or not the contractile force of the fast muscle among the fast muscle dominant muscle 71 is improved. That is, in step S47, the control unit 31 determines whether or not the fatigue of the fast muscle dominant muscle 71 has occurred, that is, whether or not the fatigue of the fast muscle dominant muscle 71 has recovered, as described above with respect to step S45. to decide. An example of a method for determining whether or not muscle fatigue has occurred is as described above.
 速筋優位の筋肉71のうち速筋の収縮力が向上したと制御部31が判断した場合には(ステップS47:YES)、ステップS49において、筋疲労検出装置5は、筋電検出電極51により速筋優位の筋肉71の筋活動電位を検出し、電気刺激中の速筋優位の筋肉71の筋電図を測定する(時間Tx)。一方で、速筋優位の筋肉71のうち速筋の疲労が激しく、速筋優位の筋肉71のうち速筋の収縮力が向上しないと制御部31が判断した場合には(ステップS47:NO)、ステップS48において、制御部31は、電気刺激の周波数の変更を行い、速筋優位の筋肉71のうち速筋から遅筋へ収縮の優位性を切り替える。このように、制御部31は、ステップS46において、筋疲労検出装置5により検出された筋肉の疲労の程度と、流量計35により検出された血液の流量の変化と、に応じて電気刺激の電流を変更することにより速筋優位の筋肉71のうち速筋の収縮力の向上を図る。また、制御部31は、ステップS48において、電気刺激の周波数を変更することにより速筋優位の筋肉71のうち速筋から遅筋へ収縮の優位性を切り替える。 When the control unit 31 determines that the contractile force of the fast muscle is improved among the muscles 71 in which the fast muscle is dominant (step S47: YES), in step S49, the muscle fatigue detection device 5 uses the myoelectric detection electrode 51. The action potential of the fast muscle dominant muscle 71 is detected, and the electromyogram of the fast muscle dominant muscle 71 during electrical stimulation is measured (time Tx). On the other hand, when the control unit 31 determines that the fast muscles are severely tired among the fast muscle dominant muscles 71 and the contractile force of the fast muscles is not improved among the fast muscle dominant muscles 71 (step S47: NO). In step S48, the control unit 31 changes the frequency of the electrical stimulation and switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71. As described above, in step S46, the control unit 31 performs the electric stimulation current according to the degree of muscle fatigue detected by the muscle fatigue detection device 5 and the change in blood flow rate detected by the flow meter 35. By changing the above, the contractile force of the fast muscle among the muscles 71 in which the fast muscle is dominant is improved. Further, in step S48, the control unit 31 switches the superiority of contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles 71 by changing the frequency of the electrical stimulation.
 ステップS49およびステップS50の動作は、図7に関して前述したステップS9およびステップS10の動作と同様である。 The operations of steps S49 and S50 are the same as the operations of steps S9 and S10 described above with respect to FIG. 7.
 本具体例によれば、制御部31は、筋肉の疲労の程度だけではなく血液の流量の変化に基づいて、電気刺激装置4により収縮させる筋肉を切り替えることができる。これにより、本実施形態に係る電気刺激システム2Bは、長時間にわたって筋肉の収縮効果を持続させることができるとともに、深部静脈血流の増加効果をより一層高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患のより一層の改善効果を得ることができる。 According to this specific example, the control unit 31 can switch the muscles to be contracted by the electrical stimulator 4 based on not only the degree of muscle fatigue but also the change in blood flow rate. As a result, the electrical stimulation system 2B according to the present embodiment can maintain the muscle contraction effect for a long period of time, further enhance the effect of increasing deep vein blood flow, prevent deep vein thrombosis, and prevent veins in the lower limbs. Further improvement effect of disease or arterial disease can be obtained.
 なお、本具体例では、本実施形態に係る電気刺激システム2Bが図6~図9に関して前述した第1具体例の動作を行う場合を例に挙げた。但し、本実施形態に係る電気刺激システム2Bの動作の具体例は、これだけに限定されるわけではなく、図10~図12に関して前述した第2具体例であってもよく、図13および図14に関して前述した第3具体例であってもよい。この場合においても、図10~図12に関して前述した効果、ならびに図13および図14に関して前述した効果と同様の効果が得られる。 In this specific example, the case where the electrical stimulation system 2B according to the present embodiment performs the operation of the first specific example described above with respect to FIGS. 6 to 9 is taken as an example. However, the specific example of the operation of the electrical stimulation system 2B according to the present embodiment is not limited to this, and may be the second specific example described above with respect to FIGS. 10 to 12, and FIGS. 13 and 14 show. The third specific example described above may be used. Also in this case, the same effects as those described above with respect to FIGS. 10 to 12 and the effects described above with respect to FIGS. 13 and 14 can be obtained.
 次に、本発明の第3実施形態に係る電気刺激システムについて説明する。
 なお、第3実施形態に係る電気刺激システム2Cの構成要素が、図1~図3に関して前述した第1実施形態に係る電気刺激システム2の構成要素と同様である場合には、重複する説明は適宜省略し、以下、相違点を中心に説明する。
Next, the electrical stimulation system according to the third embodiment of the present invention will be described.
If the components of the electrical stimulation system 2C according to the third embodiment are the same as the components of the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3, the overlapping description will be described. It will be omitted as appropriate, and the differences will be mainly described below.
 図18は、本発明の第3実施形態に係る電気刺激システムを表す模式図である。
 本実施形態に係る電気刺激システム2Cは、本体3(図1参照)と、電気刺激装置4と、筋疲労検出装置5と、電極パッド6と、患者の下肢などの身体を間欠的に圧迫する間欠式空気圧迫装置(IPC)9と、を備える。本体3、電気刺激装置4、筋疲労検出装置5および電極パッド6は、図1~図3に関して前述した通りである。すなわち、本実施形態に係る電気刺激システム2Cは、図1~図3に関して前述した第1実施形態に係る電気刺激システム2と比較して、間欠式空気圧迫装置9をさらに備える。この点において、本実施形態に係る電気刺激システム2Cは、図1~図3に関して前述した第1実施形態に係る電気刺激システム2と相違する。
FIG. 18 is a schematic view showing an electrical stimulation system according to a third embodiment of the present invention.
The electrical stimulation system 2C according to the present embodiment intermittently presses the main body 3 (see FIG. 1), the electrical stimulation device 4, the muscle fatigue detection device 5, the electrode pad 6, and the body such as the patient's lower limbs. It is provided with an intermittent air compression device (IPC) 9. The main body 3, the electrical stimulator 4, the muscle fatigue detection device 5, and the electrode pad 6 are as described above with respect to FIGS. 1 to 3. That is, the electrical stimulation system 2C according to the present embodiment further includes an intermittent air compression device 9 as compared with the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3. In this respect, the electrical stimulation system 2C according to the present embodiment is different from the electrical stimulation system 2 according to the first embodiment described above with respect to FIGS. 1 to 3.
 本実施形態に係る電気刺激システム2Cによれば、長時間にわたって筋肉の収縮効果を持続させることができるとともに、深部静脈血流の増加効果をより一層高め、深部静脈血栓の予防や下肢の静脈疾患もしくは動脈疾患のより一層の改善効果を得ることができる。 According to the electrical stimulation system 2C according to the present embodiment, the muscle contraction effect can be maintained for a long period of time, the effect of increasing deep vein blood flow is further enhanced, the prevention of deep vein thrombosis and the venous disease of the lower limbs are further enhanced. Alternatively, a further improvement effect on arterial disease can be obtained.
 以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。 The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of claims. A part of the configuration of the above embodiment may be omitted, or may be arbitrarily combined so as to be different from the above.
 2、2A、2B、2C:電気刺激システム、 3:本体、 4:電気刺激装置、 5、5A:筋疲労検出装置、 6:電極パッド、 9:間欠式空気圧迫装置、 31:制御部、 32:表示部、 35:流量計、 36:超音波送受信器、 41:電気刺激信号生成部、 42:刺激電極、 51:筋電検出電極、 52:筋音センサ、 61:第1電極パッド、 62:第2電極パッド、 63:第3電極パッド、 64:第4電極パッド、 68:線材、 71、72、73、74:速筋優位の筋肉、 81:中間周波数、 82:閾値 2, 2A, 2B, 2C: Electrical stimulation system, 3: Main body, 4: Electrical stimulation device, 5, 5A: Muscle fatigue detection device, 6: Electrode pad, 9: Intermittent air compression device, 31: Control unit, 32 : Display unit, 35: Flow meter, 36: Ultrasonic transmitter / receiver, 41: Electrical stimulation signal generator, 42: Stimulation electrode, 51: Myoelectric detection electrode, 52: Muscle sound sensor, 61: First electrode pad, 62 : 2nd electrode pad, 63: 3rd electrode pad, 64: 4th electrode pad, 68: wire rod, 71, 72, 73, 74: fast muscle dominant muscle, 81: intermediate frequency, 82: threshold

Claims (9)

  1.  身体の筋肉および運動神経の少なくともいずれかに電気刺激を付与して前記筋肉を収縮させる電気刺激装置と、
     前記電気刺激装置により収縮された前記筋肉の疲労を検出する筋疲労検出装置と、
     前記筋疲労検出装置により検出された前記筋肉の前記疲労の程度に応じて前記電気刺激の電流および周波数の少なくともいずれかを変更する制御を実行する制御部と、
     を備えたことを特徴とする電気刺激システム。
    An electrical stimulator that applies electrical stimulation to at least one of the body's muscles and motor nerves to contract the muscles.
    A muscle fatigue detection device that detects fatigue of the muscle contracted by the electrical stimulator, and a muscle fatigue detection device.
    A control unit that executes control for changing at least one of the current and frequency of the electrical stimulation according to the degree of fatigue of the muscle detected by the muscle fatigue detection device.
    An electrical stimulation system characterized by being equipped with.
  2.  前記筋疲労検出装置は、前記筋肉の前記収縮により筋繊維から発生する筋活動電位を検出する筋電検出電極を有し、
     前記制御部は、前記筋電検出電極により検出された前記筋活動電位に基づいて前記筋肉の前記疲労の程度を決定することを特徴とする請求項1に記載の電気刺激システム。
    The muscle fatigue detection device has a myoelectric detection electrode that detects a muscle action potential generated from a muscle fiber by the contraction of the muscle.
    The electrical stimulation system according to claim 1, wherein the control unit determines the degree of fatigue of the muscle based on the muscle action potential detected by the myoelectric detection electrode.
  3.  前記身体の表面に配置される複数の電極パッドをさらに備え、
     前記筋電検出電極は、前記電極パッドに設けられ、
     前記電気刺激装置は、前記電極パッドに設けられ前記筋肉および前記運動神経の少なくともいずれかに電気を供給する刺激電極を有し、
     前記筋疲労検出装置は、前記複数の電極パッドのうち前記電気が流れていない前記刺激電極が設けられた前記電極パッドにおける前記筋電検出電極により前記筋活動電位を検出することを特徴とする請求項2に記載の電気刺激システム。
    Further equipped with a plurality of electrode pads arranged on the surface of the body,
    The myoelectric detection electrode is provided on the electrode pad and is provided on the electrode pad.
    The electrical stimulator has a stimulating electrode provided on the electrode pad to supply electricity to at least one of the muscle and the motor nerve.
    The muscle fatigue detection device is characterized in that the muscle action potential is detected by the myoelectric detection electrode in the electrode pad provided with the stimulation electrode through which electricity does not flow among the plurality of electrode pads. Item 2. The electrical stimulation system according to item 2.
  4.  前記筋疲労検出装置は、前記筋肉の前記収縮により発生する前記筋肉の微細振動を検出する筋音センサを有し、
     前記制御部は、前記筋音センサにより検出された前記微細振動に基づいて前記筋肉の前記疲労の程度を決定することを特徴とする請求項1に記載の電気刺激システム。
    The muscle fatigue detection device has a muscle sound sensor that detects minute vibrations of the muscle generated by the contraction of the muscle.
    The electrical stimulation system according to claim 1, wherein the control unit determines the degree of fatigue of the muscle based on the minute vibration detected by the muscle sound sensor.
  5.  前記筋肉は、速筋優位の筋肉であり、
     前記制御部は、前記電流および前記周波数の少なくともいずれかを変更することにより前記速筋優位の筋肉のうち速筋から遅筋へ前記収縮の優位性を切り替えることを特徴とする請求項1~4のいずれか1項に記載の電気刺激システム。
    The muscle is a muscle in which the fast muscle is dominant, and the muscle is
    Claims 1 to 4, wherein the control unit switches the superiority of the contraction from the fast muscle to the slow muscle among the fast muscle dominant muscles by changing at least one of the current and the frequency. The electrical stimulation system according to any one of the above.
  6.  前記筋肉は、第1速筋優位の筋肉と、前記第1速筋優位の筋肉とは異なる位置に存在する第2速筋優位の筋肉と、を含み、
     前記制御部は、前記第1速筋優位の筋肉に対する前記電気刺激を停止するとともに前記第2速筋優位の筋肉に対する前記電気刺激を開始することを特徴とする請求項1~4のいずれか1項に記載の電気刺激システム。
    The muscle includes a muscle predominant in the first speed muscle and a muscle predominant in the second speed muscle existing at a position different from the muscle predominant in the first speed muscle.
    Any one of claims 1 to 4, wherein the control unit stops the electrical stimulation of the muscle predominantly in the first speed muscle and starts the electrical stimulation of the muscle predominantly in the second speed muscle. The electrical stimulation system described in the section.
  7.  前記筋肉は、速筋優位の筋肉と、遅筋優位の筋肉と、を含み、
     前記制御部は、前記電流および前記周波数の少なくともいずれかを変更することにより前記速筋優位の筋肉に対する前記電気刺激を停止するとともに前記遅筋優位の筋肉に対する前記電気刺激を開始することを特徴とする請求項1~4のいずれか1項に記載の電気刺激システム。
    The muscles include fast muscle dominant muscles and slow muscle dominant muscles.
    The control unit is characterized in that by changing at least one of the current and the frequency, the electrical stimulation to the fast muscle dominant muscle is stopped and the electrical stimulation to the slow muscle dominant muscle is started. The electrical stimulation system according to any one of claims 1 to 4.
  8.  前記身体を流れる血液の流量を検出する流量計をさらに備え、
     前記制御部は、前記流量計により検出された前記流量の変化にさらに応じて前記電気刺激の前記電流および前記周波数の少なくともいずれかを変更することを特徴とする請求項1~7のいずれか1項に記載の電気刺激システム。
    Further equipped with a flow meter for detecting the flow rate of blood flowing through the body,
    Any one of claims 1 to 7, wherein the control unit further changes at least one of the current and the frequency of the electrical stimulation in response to a change in the flow rate detected by the flow meter. The electrical stimulation system described in the section.
  9.  前記身体を間欠的に圧迫する間欠式空気圧迫装置をさらに備えたことを特徴とする請求項1~8のいずれか1項に記載の電気刺激システム。 The electrical stimulation system according to any one of claims 1 to 8, further comprising an intermittent air compression device that intermittently compresses the body.
PCT/JP2021/009364 2020-03-27 2021-03-09 Electrostimulation system WO2021193035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509547A JPWO2021193035A1 (en) 2020-03-27 2021-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058833 2020-03-27
JP2020-058833 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193035A1 true WO2021193035A1 (en) 2021-09-30

Family

ID=77891439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009364 WO2021193035A1 (en) 2020-03-27 2021-03-09 Electrostimulation system

Country Status (2)

Country Link
JP (1) JPWO2021193035A1 (en)
WO (1) WO2021193035A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253560A (en) * 1998-03-10 1999-09-21 Sanyo Electric Co Ltd Low frequency medical treatment apparatus
US20050283205A1 (en) * 2004-06-10 2005-12-22 Samsung Electronics Co., Ltd. Apparatus, method, and medium controlling electrical stimulation and/or health training/monitoring
WO2015099090A1 (en) * 2013-12-26 2015-07-02 国立大学法人名古屋大学 Device for improving vascular endothelial function
JP2017502752A (en) * 2014-01-03 2017-01-26 エムシー10 インコーポレイテッドMc10,Inc. Catheter or guidewire device including flow sensing and use thereof
JP2019054966A (en) * 2017-09-20 2019-04-11 エレコム株式会社 EMS device
JP2019512333A (en) * 2016-03-22 2019-05-16 パワードット,インコーポレイテッド Compact muscle stimulation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253560A (en) * 1998-03-10 1999-09-21 Sanyo Electric Co Ltd Low frequency medical treatment apparatus
US20050283205A1 (en) * 2004-06-10 2005-12-22 Samsung Electronics Co., Ltd. Apparatus, method, and medium controlling electrical stimulation and/or health training/monitoring
WO2015099090A1 (en) * 2013-12-26 2015-07-02 国立大学法人名古屋大学 Device for improving vascular endothelial function
JP2017502752A (en) * 2014-01-03 2017-01-26 エムシー10 インコーポレイテッドMc10,Inc. Catheter or guidewire device including flow sensing and use thereof
JP2019512333A (en) * 2016-03-22 2019-05-16 パワードット,インコーポレイテッド Compact muscle stimulation device
JP2019054966A (en) * 2017-09-20 2019-04-11 エレコム株式会社 EMS device

Also Published As

Publication number Publication date
JPWO2021193035A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US20220143392A1 (en) Nerve stimulation apparatus and method
Stokes Acoustic myography: applications and considerations in measuring muscle performance
US7349739B2 (en) Method and apparatus for neurophysiologic performance
US8027731B2 (en) Method and device for improving blood flow by a series of electrically-induced muscular contractions
Madeleine et al. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode
US20040088025A1 (en) Systems and methods for treating movement disorders
EP2827827B1 (en) Device for vibration stimulation
JP2024047586A (en) Electrical Stimulation Device
JPWO2016147643A1 (en) Spinal cord electrical stimulation device for gait training
TWI747054B (en) Living body stimulation device
WO2021193035A1 (en) Electrostimulation system
JP2015047363A (en) Electrostimulator
Chen et al. The validity of stimulus-evoked EMG for studying muscle fatigue characteristics of paraplegic subjects during dynamic cycling movement
KR20180036371A (en) Portable local vibratory stimulation device and method thereof
CN101862506B (en) Method for obtaining continuous and comfortable electroacupuncture feelings and electroacupuncture apparatus used in same
JPH11253560A (en) Low frequency medical treatment apparatus
AU2020100418A4 (en) Wearable calf stimulator with velocimetric sensor for increasing vascular blood flow
JP2005052223A (en) Peripheral blood circulation improving device
JP2006026138A (en) Low-frequency therapeutic device
WO2002066112A9 (en) Apparatus for treating a living organism to achieve a heart load reduction, and a method of achieving a heart load reduction
Veicsteinas SURFACE MECHANOMYOGRAM REFLECTS MUSCLE FIBRES TVVITCHES SUMMATION
ITBG20010015A1 (en) CLOSED RING NEUROMUSCULAR ELECTROSTIMULATION CONTROLLED BY ELECTRO-MYOGRAPHIC SIGNALS TAKEN WITH SECTION ELECTRODES.
AU2002225310A1 (en) Method of and device for improving blood flow by a series of electrically-induced muscular contractions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774915

Country of ref document: EP

Kind code of ref document: A1