WO2021192967A1 - 導波管用閉止部材及び閉止部材付き導波管 - Google Patents

導波管用閉止部材及び閉止部材付き導波管 Download PDF

Info

Publication number
WO2021192967A1
WO2021192967A1 PCT/JP2021/009070 JP2021009070W WO2021192967A1 WO 2021192967 A1 WO2021192967 A1 WO 2021192967A1 JP 2021009070 W JP2021009070 W JP 2021009070W WO 2021192967 A1 WO2021192967 A1 WO 2021192967A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
closing member
cavity
attached
protrusion
Prior art date
Application number
PCT/JP2021/009070
Other languages
English (en)
French (fr)
Inventor
翔 熊谷
森本 康夫
加賀谷 修
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022509508A priority Critical patent/JPWO2021192967A1/ja
Publication of WO2021192967A1 publication Critical patent/WO2021192967A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/127Hollow waveguides with a circular, elliptic, or parabolic cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/14Hollow waveguides flexible

Definitions

  • the present disclosure relates to a waveguide closing member and a waveguide with a closing member.
  • the next-generation 5G (5th Generation) system which is wireless wideband communication, uses radio waves in the millimeter-wave band.
  • a waveguide is used as a means for transmitting radio waves in the millimeter wave band (Patent Document 1 and Patent Document 2).
  • the present disclosure provides a technique for terminating a waveguide without impairing the performance of the waveguide.
  • the present disclosure is a conductive waveguide closing member that closes an end portion of a waveguide including a dielectric layer having a hollow inside and a metal layer covering the outside of the dielectric layer, and is a flat plate.
  • a waveguide having a shaped base portion and a projecting portion provided so as to project from the main surface of the base portion, and the projecting portion is inserted into the inside of the cavity from the end portion and attached to the waveguide. It is a closing member.
  • the closing member 10 of the first embodiment is a waveguide closing member that short-circuits the end of the waveguide 20.
  • FIG. 1 is a perspective view showing a state in which the closing member 10 of the first embodiment is attached to the waveguide 20.
  • FIG. 2 is a perspective view showing a state before the closing member 10 of the first embodiment is attached to the waveguide 20.
  • the waveguide 20 in which the closing member 10 is attached may be referred to as a waveguide with a closing member.
  • the XYZ Cartesian coordinate system is set in the figure for convenience of explanation.
  • the cross mark in the circle of the coordinate axis indicates that the back side is positive with respect to the paper surface
  • the black circle mark in the circle indicates that the front side is positive with respect to the paper surface. ..
  • the coordinate system is defined for the sake of explanation, and does not limit the posture of the closing member or the waveguide.
  • the Z-axis is the extending direction of the waveguide 20
  • the X-axis and the Y-axis are the directions perpendicular to the extending direction of the waveguide 20.
  • the closing member 10 and the waveguide 20 of the first embodiment are used, for example, when transmitting radio waves in the millimeter wave band used in the next-generation 5G system.
  • the waveguide 20 connects from the base station to the antenna installed in the space where the user is.
  • the antenna may be, for example, a patch antenna or a dipole antenna formed of a flexible substrate.
  • a microstrip line or a coplanar line may be used as the line, or SIW (substrate integrated waveguide) may be used.
  • the thickness of the flexible substrate is preferably 0.8 mm or less. By making the flexible substrate thinner, the flexibility of the flexible substrate can be increased.
  • the dielectric of the flexible substrate is formed of a fluororesin, a liquid crystal display, polyimide, or the like.
  • the fluororesin for example, perfluoroalkoxy alkane (PFA (Perfluoroalkoxy alkane)
  • PFA Perfluoroalkoxy alkane
  • an amplifier may be provided on the flexible board.
  • the antenna may be, for example, a slot antenna having a slot in the waveguide.
  • another waveguide may be connected to the tip of the waveguide 20.
  • another waveguide may be connected via a flexible substrate.
  • the band of the radio wave transmitted by the waveguide 20 of the first embodiment is, for example, 27.5 GHz to 29 GHz.
  • the center frequency is 28 GHz.
  • the band is divided and used every 400 MHz for each operator.
  • the frequency band is not limited to 27.5 GHz to 29 GHz, and may be, for example, a frequency band centered on 26 GHz or 39 GHz. Further, the frequency band is not limited to the millimeter wave band and may be another frequency band.
  • the closing member 10 of the first embodiment is fixed to the + Z side end of the waveguide 20.
  • the closing member 10 is mechanically and electrically connected to the waveguide 20 by, for example, soldering, brazing, applying a conductive paste, or the like.
  • the closing member 110 of the second embodiment, the closing member 210 of the third embodiment, and the closing member 310 of the fourth embodiment, which will be described later, are also fixed to the + Z side end of the waveguide 20 in the same manner as the closing member 10. Be done.
  • FIG. 3 is a partial perspective view of the waveguide 20 to which the closing member 10 of the first embodiment is attached.
  • the waveguide 20 is a waveguide that serves as a waveguide for propagating radio waves in the millimeter wave band.
  • the waveguide 20 is a cylindrical tube extending in the direction in which radio waves propagate. In FIG. 3, the direction in which the radio wave propagates is the Z direction.
  • the inside of the waveguide 20 is a cavity 20h.
  • the waveguide 20 has an outer surface 20s1 and an inner surface 20s2.
  • the + Z side of the waveguide 20 has an end face 20e.
  • a closing member 10 is attached to the end face 20e and is covered with the closing member 10.
  • the waveguide 20 includes a dielectric tube 21 having a hollow inside and a metal coating 22 covering the outside of the dielectric tube 21.
  • the cavity of the dielectric tube 21 becomes the cavity 20h of the waveguide 20. Radio waves propagate in the cavity 20h of the waveguide 20 and the dielectric tube 21. Further, the outer surface of the metal coating 22 becomes the outer surface 20s1 of the waveguide 20. The inner surface of the dielectric tube 21 becomes the inner surface 20s2 of the waveguide 20.
  • the dielectric tube 21 is a member that functions as a transmission path through which radio waves propagate. In the waveguide 20, radio waves propagate in the cavity 20h and the dielectric tube 21.
  • the dielectric tube 21 is made of a dielectric, for example, a fluororesin.
  • a fluororesin polytetrafluoroethylene (PTFE (Polytetrafluoroethylene)) or perfluoroalkoxy alkane (PFA) can be used.
  • PTFE Polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • the outer diameter of the dielectric tube 21 is 5 mm to 9 mm.
  • the inner diameter of the dielectric tube 21 is preferably 1 mm to 2 mm smaller than the outer diameter.
  • the dimensions of the dielectric tube 21 differ depending on the frequency band propagating in the waveguide 20 and the material of the dielectric.
  • the metal coating 22 is a member that defines a transmission line.
  • the metal coating 22 is formed of a conductive member, for example, copper.
  • the metal coating 22 is formed, for example, by plating.
  • the metal coating 22 is not limited to being formed by plating.
  • a copper foil or a metal net may be wound around the metal coating 22 to form the metal coating 22.
  • a coating with an insulating material may be further provided on the outside of the metal coating 22 of the waveguide 20.
  • the waveguide 20 is formed of the dielectric tube 21 and the metal coating 22, it has a flexibility of about R1000.
  • the dielectric tube 21 is an example of a dielectric layer
  • the metal coating 22 is an example of a metal layer.
  • FIG. 4 is a perspective view of the closing member 10 of the first embodiment.
  • FIG. 5 is a cross-sectional view of the closing member 10 of the first embodiment attached to the waveguide 20. Specifically, FIG. 5 is a cross-sectional view taken along a plane perpendicular to the X axis passing through the center of the waveguide 20 with the closing member 10 attached to the waveguide 20.
  • the closing member 10 of the first embodiment is a member that closes the end portion of the waveguide 20.
  • the closing member 10 is made of a conductive member, for example, copper.
  • the closing member 10 includes a base portion 10a and a protruding portion 10b.
  • the closing member 10 may have a conductive material such as copper plating formed on the resin so that only the surface thereof has conductivity. That is, the closing member 10 may be formed of a resin having a conductive material formed on its surface.
  • the base portion 10a is a disk-shaped (flat plate-shaped) member.
  • the surface 10s1 (main surface) of the base portion 10a is a surface that covers the end surface 20e of the waveguide 20 when the closing member 10 is attached to the waveguide 20. That is, the base portion 10a covers the end face 20e of the waveguide 20 when the closing member 10 is attached to the waveguide 20.
  • the protruding portion 10b is provided so as to protrude from the base portion 10a.
  • the protrusion 10b is provided inside the cavity 20h of the waveguide 20 when the closing member 10 is attached to the waveguide 20.
  • the protruding portion 10b has a shape that follows the shape of the cavity 20h of the waveguide 20.
  • the surface 10s2 of the protruding portion 10b is a reflecting surface that reflects radio waves propagating in the + Z direction through the cavity 20h of the waveguide 20 in the ⁇ Z direction.
  • the waveguide 20 is formed of the dielectric tube 21, it has shape followability due to the deformation of the dielectric tube 21. Therefore, when the closing member 10 having the protruding portion 10b is inserted into the dielectric tube 21 of the waveguide 20, the dielectric tube 21 made of resin has a followability to deformation. Therefore, even if the tolerance of the protruding portion 10b becomes large, it can be absorbed by the deformation of the dielectric tube 21.
  • the closing member 10 and the waveguide 20 can be electrically connected by soldering, brazing, bonding with a conductive paste, or the like.
  • the shape of the base portion 10a is not limited to the disk shape.
  • the base portion 10a may have a rectangular shape or another shape as long as it can cover the end face 20e of the waveguide 20.
  • the shape of the base portion is the same in the embodiments described later.
  • the closing member 110 of the second embodiment is a member that short-circuits the end portion of the waveguide 20.
  • FIG. 6 is a perspective view of the closing member 110 of the second embodiment.
  • FIG. 7 is a cross-sectional view of the closing member 110 of the second embodiment attached to the waveguide 20. Specifically, FIG. 7 is a cross-sectional view taken along a plane perpendicular to the X-axis at the center of the waveguide 20 with the closing member 110 attached to the waveguide 20.
  • the closing member 110 of the second embodiment is a member that closes the end portion of the waveguide 20.
  • the closing member 110 is made of a conductive member, for example, copper.
  • the closing member 110 includes a base portion 110a, a protruding portion 110b, and an eaves portion 110c.
  • the base portion 110a is a disk-shaped (flat plate-shaped) member.
  • the surface 110s1 of the base portion 110a is a surface that covers the end surface 20e of the waveguide 20 when the closing member 110 is attached to the waveguide 20. That is, the base portion 110a covers the end face 20e of the waveguide 20 when the closing member 110 is attached to the waveguide 20.
  • the protruding portion 110b is provided so as to protrude from the base portion 110a.
  • the protrusion 110b is provided inside the cavity 20h of the waveguide 20 when the closing member 110 is attached to the waveguide 20.
  • the protruding portion 110b has a shape that follows the shape of the cavity 20h of the waveguide 20.
  • the surface 110s2 of the protrusion 110b is a reflecting surface that reflects radio waves propagating in the + Z direction through the cavity 20h of the waveguide 20 in the ⁇ Z direction.
  • the eaves portion 110c is provided so as to project from the base portion 110a.
  • the eaves portion 110c is provided so as to be located outside the waveguide 20 when the closing member 110 is attached to the waveguide 20.
  • the eaves portion 110c has a surface 110cs3 at the end in the ⁇ Z direction.
  • the closing member 110 and the waveguide 20 can be electrically connected by soldering, brazing, bonding with a conductive paste, or the like. Further, by providing the eaves portion 110c, for example, the closing member 110 can be electrically connected by crimping the closing member 110 from the outside of the eaves portion 110c.
  • the closing member 210 of the third embodiment is a member that short-circuits the end portion of the waveguide 20.
  • FIG. 8 is a perspective view of the closing member 210 of the third embodiment.
  • FIG. 9 is a cross-sectional view of the closing member 210 of the third embodiment attached to the waveguide 20. Specifically, FIG. 9 is a cross-sectional view taken along a plane perpendicular to the X-axis at the center of the waveguide 20 with the closing member 210 attached to the waveguide 20.
  • the closing member 210 of the third embodiment is a member that closes the end portion of the waveguide 20.
  • the closing member 210 is made of a conductive member, for example, copper.
  • the closing member 210 includes a base portion 210a and a protruding portion 210b.
  • the base portion 210a is a disk-shaped (flat plate-shaped) member.
  • the surface 210s1 of the base portion 210a is a surface that covers the end surface 20e of the waveguide 20 when the closing member 210 is attached to the waveguide 20. That is, the base portion 210a covers the end face 20e of the waveguide 20 when the closing member 210 is attached to the waveguide 20.
  • the protruding portion 210b is provided so as to protrude from the base portion 210a.
  • the protrusion 210b is provided inside the cavity 20h of the waveguide 20 when the closing member 210 is attached to the waveguide 20.
  • the protruding portion 210b has a shape that follows the shape of the cavity 20h of the waveguide 20.
  • the protruding portion 210b has a truncated cone shape in which the base portion 210a side (+ Z side) is thick and the opposite side ( ⁇ Z side) of the base portion 210a is thin.
  • the surface 210s2 of the projecting portion 210b is a reflecting surface that reflects radio waves propagating in the + Z direction through the cavity 20h of the waveguide 20 in the ⁇ Z direction.
  • the connection reliability between the closing member 210 and the waveguide 20 is physically and electrically. Can also be improved.
  • the diameter of the protruding portion 210b may be made larger than the cavity 20h of the waveguide 20 and press-fitted.
  • the closing member 210 and the waveguide 20 can be electrically connected by soldering, brazing, or bonding with a conductive paste.
  • the closing member 310 of the fourth embodiment is a member that short-circuits the end portion of the waveguide 20.
  • FIG. 10 is a perspective view of the closing member 310 of the fourth embodiment.
  • FIG. 11 is a cross-sectional view of the closing member 310 of the fourth embodiment attached to the waveguide 20. Specifically, FIG. 11 is a cross-sectional view taken along a plane perpendicular to the X-axis at the center of the waveguide 20 with the closing member 310 attached to the waveguide 20.
  • the closing member 310 of the fourth embodiment is a member that closes the end portion of the waveguide 20.
  • the closing member 310 is made of a conductive member, for example, copper.
  • the closing member 310 includes a base portion 310a, a protruding portion 310b, and an eaves portion 310c.
  • the base portion 310a is a disk-shaped (flat plate-shaped) member.
  • the surface 310s1 of the base portion 310a is a surface that covers the end surface 20e of the waveguide 20 when the closing member 310 is attached to the waveguide 20. That is, the base portion 310a covers the end face 20e of the waveguide 20 when the closing member 310 is attached to the waveguide 20.
  • the protruding portion 310b is provided so as to protrude from the base portion 310a.
  • the protrusion 310b is provided inside the cavity 20h of the waveguide 20 when the closing member 310 is attached to the waveguide 20.
  • the protruding portion 10b has a shape that follows the shape of the cavity 20h of the waveguide 20.
  • the surface 310s2 of the protrusion 310b is a reflecting surface that reflects radio waves propagating in the + Z direction through the cavity 20h of the waveguide 20 in the ⁇ Z direction.
  • the protruding portion 31b may be shaped like a truncated cone. Since the dielectric tube 21 has a property of being bent or crushed by forming the protruding portion 310b into a truncated cone shape, the connection reliability between the closing member 210 and the waveguide 20 is physically and electrically. Can also be improved.
  • the diameter of the protruding portion 310b may be made larger than the cavity 20h of the waveguide 20 for press fitting.
  • the eaves portion 310c is provided so as to project from the base portion 310a.
  • the eaves portion 310c is provided so as to be located outside the waveguide 20 when the closing member 110 is attached to the waveguide 20.
  • the eaves portion 310c has a surface 310cs3 at the end in the ⁇ Z direction.
  • the eaves portion 310c is thicker on the base portion 310a side (+ Z side) and thinner on the opposite side ( ⁇ Z side) of the base portion 310a. That is, the tip of the eaves 310c is thin. Further, the inner surface (waveguide 20 side) of the eaves portion 310c is inclined outward toward the ⁇ Z side.
  • the dielectric tube 21 has a property of being bent or crushed by inclining the inner surface of the eaves portion 310c, the connection reliability between the closing member 310 and the waveguide 20 is physically reduced. Can also be improved.
  • the inner diameter of the eaves 310c may be smaller than the outer diameter of the waveguide 20 for press fitting.
  • the closing member 310 and the waveguide 20 can be electrically connected by soldering, brazing, bonding with a conductive paste, or the like. Further, by providing the eaves portion 310c, for example, the closing member 310 can be electrically connected by crimping the closing member 310 from the outside of the eaves portion 310c.
  • the distance from the surface 10s1 of the closing member 10 to the surface 10s2 is defined as the distance L1.
  • the distance L1 is the same for the first embodiment, the third embodiment, and the fourth embodiment.
  • the distance from the surface 110s1 of the closing member 110 to the surface 112s3 is defined as the distance L2.
  • the distance L2 is the same as in the fourth embodiment.
  • the radio waves propagating from the ⁇ Z side of the waveguide 20 in the + Z direction are reflected by the surface 110s2 and propagate in the ⁇ Z direction.
  • some radio waves propagate from the outside of the surface 110s2 through the dielectric tube 21 to the surface 110s1, and are reflected by the surface 110s1 and returned. It is desirable that the reflected and returned radio waves do not affect the radio waves reflected on the surface 110s2. That is, the radio waves reflected by the surface 110s2 and the radio waves that pass through the outside of the surface 110s2 and are reflected by the surface 110s1 and returned are aligned in phase.
  • the distance L1 satisfies the following equation 1.
  • the phase of the radio wave reflected by the surface 110s2 and the radio wave that passes through the outside of the surface 110s2 and is reflected by the surface 110s1 and returned can be aligned.
  • ⁇ g is the wavelength of the electromagnetic wave propagating in the dielectric tube 21 of the waveguide 20, and n1 is an integer of 0 or more, that is, a non-negative integer. Then, for example, ⁇ 1 is 0.35 and ⁇ 2 is 0.65, preferably ⁇ 1 is 0.4 and ⁇ 2 is 0.6, and more preferably ⁇ 1 is 0.45 and ⁇ 2 is 0.55. .. It should be noted that the smaller n1 is preferable.
  • the distance L2 is considered to be soldered to the metal coating 22 on the surface 110s3.
  • the phases of the radio waves reflected by the surface 110s1 and the radio waves leaking from the surface 110s1 and reflected by the solder can be aligned.
  • ⁇ 0 is the wavelength of the electromagnetic wave propagating in the air
  • n2 is an integer of 0 or more, that is, a non-negative integer.
  • ⁇ 3 is 0.35 and ⁇ 4 is 0.65
  • ⁇ 3 is 0.4 and ⁇ 4 is 0.6
  • n2 is preferable. Since the cavity 20h of the waveguide 20 can be regarded as air, ⁇ 0 can be regarded as equal to the wavelength of the electromagnetic wave propagating in the cavity 20h of the waveguide 20.
  • FIG. 12 is a diagram illustrating the reflection characteristics of the closing member according to the embodiment of the present disclosure.
  • FIG. 13 is a diagram for explaining the reflection characteristics of the closing member of the reference example.
  • the horizontal axis of the graph of reflection intensity and reflection phase in FIGS. 12 and 13 is frequency.
  • the vertical axis of the graph of the reflection intensity of FIGS. 12 and 13 represents the ratio of the intensity of the electromagnetic wave reflected by the closing member to the electromagnetic wave incident on the waveguide. Ideally, the reflection intensity is 0 dB.
  • the vertical axis of the graph of the reflection phase of FIGS. 12 and 13 represents the phase change of the electromagnetic wave reflected by the closing member and returned with respect to the electromagnetic wave incident on the waveguide.
  • the phase reference is the surface 110s2 of the closing member 110, and the reflection phase in this case is ideally 180 deg.
  • ⁇ 1 and ⁇ 2 were calculated assuming that the frequency of the electromagnetic wave was 28 GHz.
  • the inner diameter of the dielectric tube 21 was 6 mm, and the outer diameter was 7 mm.
  • a simulation was performed for a frequency between 25 GHz and 31 GHz including the frequency 28 GHz.
  • the electromagnetic wave propagation mode was the basic mode.
  • ⁇ 1 and ⁇ 2 are set to 0.5 for the distance L1 and the distance L2. Specifically, the distance L1 was 3.7 mm, and the distance L2 was 5 mm. In the closing member of FIG.
  • ⁇ 1 was set to 0.67 for the distance L1 and ⁇ 2 was set to 0.5 for the distance L2. Specifically, the distance L1 was set to 5.6 mm, and the distance L2 was set to 5 mm. Further, in the simulation, the simulation was performed for the case where the surface 110s1 and the end surface 20e are in close contact with each other and the case where the surface 110s1 and the end surface 20e are separated by 0.2 mm. It should be noted that the solid lines in FIGS. 12 and 13 indicate the cases where they are in close contact with each other, and the dotted lines indicate cases where they are separated from each other.
  • both the reflection intensity and the reflection phase are substantially constant at a wide frequency.
  • the damping at the closing member could be suppressed. Further, there was no significant difference regardless of whether the surface 110s1 and the end surface 20e were in close contact with each other.
  • both the reflection intensity and the reflection phase became smaller at a specific frequency. Further, the characteristics differed greatly depending on whether the surface 110s1 and the end surface 20e were in close contact with each other.
  • the waveguide can be easily terminated. It can be attached to the waveguide 20 by inserting the protruding portion of the waveguide closing member of the present disclosure into the cavity of the waveguide. Further, the waveguide closing member of the present disclosure can be short-circuited by electrically connecting to the metal coating of the waveguide. Further, according to the waveguide closing member of the present disclosure, the radio wave propagating in the waveguide can be reflected with suppressed attenuation.
  • the shape of the waveguide is not limited to a cylindrical shape.
  • the waveguide may be in the shape of a square cylinder.
  • the shape of the protruding portion of the closing member is preferably a shape that follows the cavity of the waveguide according to the shape of the waveguide.

Landscapes

  • Waveguide Aerials (AREA)
  • Waveguides (AREA)

Abstract

内部が空洞である誘電体層と、前記誘電体層の外側を覆う金属層と、を備える導波管の端部を閉止する導電性の導波管用閉止部材であって、平板状のベース部と、前記ベース部の主面から突出して設けられる突出部と、を有し、前記突出部が前記端部から前記空洞の内部に挿入され前記導波管に取り付けられる導波管用閉止部材。

Description

導波管用閉止部材及び閉止部材付き導波管
 本開示は、導波管用閉止部材及び閉止部材付き導波管に関する。
 無線広帯域通信である次世代5G(5th Generation)システムでは、ミリ波帯の帯域の電波を使用する。
 ミリ波帯の帯域の電波を伝送する手段として、例えば、導波管が用いられている(特許文献1、特許文献2)。
特開平08-195605号公報 特開2017-228839号公報
 導波管を設置する際に、導波管の設置にあわせて、導波管の長さを調整する必要がある。導波管を切断して長さを調整する場合には、導波管の終端の処理を行う必要がある。導波管の終端処理を行う際には、端部からの電波の漏洩を防止するとともに、端部からの反射特性を保証して行う必要がある。
 本開示は、導波管の性能を損なうことなく導波管の終端処理を行う技術を提供する。
 本開示は、内部が空洞である誘電体層と、前記誘電体層の外側を覆う金属層と、を備える導波管の端部を閉止する導電性の導波管用閉止部材であって、平板状のベース部と、前記ベース部の主面から突出して設けられる突出部と、を有し、前記突出部が前記端部から前記空洞の内部に挿入され前記導波管に取り付けられる導波管用閉止部材である。
 本開示によれば、導波管の性能を損なうことなく導波管の終端処理を行う技術を提供できる。
第1実施形態の閉止部材を導波管に取り付けた状態を示す斜視図である。 第1実施形態の閉止部材を導波管に取り付ける前の状態を示す斜視図である。 第1実施形態の閉止部材が取り付けられる導波管の部分斜視図である。 第1実施形態の閉止部材の斜視図である。 第1実施形態の閉止部材を導波管に取り付けた状態での断面図である。 第2実施形態の閉止部材の斜視図である。 第2実施形態の閉止部材を導波管に取り付けた状態での断面図である。 第3実施形態の閉止部材の斜視図である。 第3実施形態の閉止部材を導波管に取り付けた状態での断面図である。 第4実施形態の閉止部材の斜視図である。 第4実施形態の閉止部材を導波管に取り付けた状態での断面図である。 本開示の実施形態の閉止部材の反射特性を説明する図である。 参考例の閉止部材の反射特性を説明する図である。
 以下、図面を参照して本発明を実施するための形態について説明する。下記、各図面において、同一又は対応する構成部分には同一又は対応する符号を付し、重複した説明を省略する場合がある。なお、理解の容易のため、図面における各部の縮尺は、実際とは異なる場合がある。平行、直角、直交、水平、垂直、上下、左右などの方向には、実施形態の効果を損なわない程度のずれが許容される。角部の形状は、直角に限られず、弓状に丸みを帯びてもよい。平行、直角、直交、水平、垂直には、略平行、略直角、略直交、略水平、略垂直が含まれてもよい。
 《第1実施形態》
 <閉止部材10>
 第1実施形態の閉止部材10は、導波管20の端部を短絡する導波管用閉止部材である。図1は、第1実施形態の閉止部材10を導波管20に取り付けた状態を示す斜視図である。図2は、第1実施形態の閉止部材10を導波管20に取り付ける前の状態を示す斜視図である。閉止部材10を取り付けた状態の導波管20を閉止部材付き導波管と呼ぶ場合がある。
 なお、図には、説明の便宜のためXYZ直交座標系が設定されている。図面の紙面に対して垂直な座標軸については、座標軸の丸の中にバツ印は紙面に対して奥側が正、丸の中に黒丸印は紙面に対して手前側が正であることを表している。ただし、当該座標系は、説明のために定めるものであって、閉止部材や導波管の姿勢について限定するものではない。なお、本開示では、特に説明しない限り、Z軸は導波管20の延在方向、X軸とY軸は導波管20の延在方向に垂直な方向となっている。
 第1実施形態の閉止部材10と導波管20は、例えば、次世代5Gシステムに用いられるミリ波帯の帯域の電波を伝送する際に用いられる。例えば、導波管20は、基地局からユーザのいる空間に設置されたアンテナまで接続する。
 アンテナは、例えば、フレキシブル基板で形成されたパッチアンテナやダイポールアンテナでもよい。フレキシブル基板を用いる場合には、線路として、マイクロストリップラインやコプレーナーラインを用いてよいし、SIW(substrate integrated waveguide)を用いてもよい。フレキシブル基板の厚さは0.8mm以下であることが好ましい。フレキシブル基板を薄くすることにより、フレキシブル基板の可撓性をあげることができる。また、フレキシブル基板の誘電体は、フッ素系樹脂や液晶、ポリイミド等により形成される。フッ素系樹脂としては、例えば、ペルフルオロアルコキシアルカン(PFA(Perfluoroalkoxy alkane))を用いることができる。
 フレキシブル基板を用いる場合には、フレキシブル基板上にアンプを備えてもよい。アンテナは、例えば、導波管にスロットを開けたスロットアンテナでもよい。また、導波管20の先には、別の導波管がつながっていてもよい。例えば、フレキシブル基板を介して別の導波管がつながっていてもよい。
 第1実施形態の導波管20で伝送される電波の帯域は、例えば、27.5GHz~29GHzである。例えば、中心周波数は、28GHzである。当該帯域は、事業者ごとに400MHz毎に分割されて使用される。なお、周波数帯域は、27.5GHz~29GHzに限らず、例えば、26GHzや39GHzを中心とする周波数帯域でもよい。また、周波数帯域は、ミリ波帯に限らず他の周波数帯でもよい。
 第1実施形態の閉止部材10は、導波管20の+Z側の端部に固定される。閉止部材10は、例えば、はんだ付け、ロウ付け、導電性ペーストの塗布等により、導波管20に機械的、電気的に接続される。なお、後述する第2実施形態の閉止部材110、第3実施形態の閉止部材210、第4実施形態の閉止部材310についても、閉止部材10と同様に導波管20の+Z側端部に固定される。
 <導波管20>
 最初に、閉止部材10が取り付けられる導波管20について説明する。図3は、第1実施形態の閉止部材10が取り付けられる導波管20の部分斜視図である。
 導波管20は、ミリ波帯の帯域の電波が伝搬する導波路となる導波管である。導波管20は、電波が伝搬する方向に延在する円筒状の管である。なお、図3では、電波が伝搬する方向は、Z方向である。導波管20の内部は空洞20hとなっている。導波管20は、外面20s1と、内面20s2と、を有する。導波管20の+Z側には、端面20eを有する。端面20eには、閉止部材10が取り付けられ、閉止部材10により覆われる。
 導波管20は、内部が空洞である誘電体チューブ21と、誘電体チューブ21の外側を覆う金属被覆22と、を備える。誘電体チューブ21の空洞が導波管20の空洞20hとなる。導波管20の空洞20hと誘電体チューブ21で電波が伝搬する。また、金属被覆22の外面が、導波管20の外面20s1となる。誘電体チューブ21の内面が、導波管20の内面20s2となる。
  [誘電体チューブ21]
 誘電体チューブ21は、電波が伝搬する伝送路として機能する部材である。導波管20において、空洞20hと誘電体チューブ21で電波が伝搬する。
 誘電体チューブ21は、誘電体、例えば、フッ素系樹脂で形成される。フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE(Polytetrafluoroethylene))やペルフルオロアルコキシアルカン(PFA)を用いることができる。
 なお、例えば、周波数帯域が28GHzの場合では、誘電体チューブ21の外径は、5mm~9mmである。誘電体チューブ21の内径は、外径より1mm~2mm細いことが好ましい。誘電体チューブ21の寸法は、導波管20を伝搬する周波数帯域や誘電体の材質により異なる。
  [金属被覆22]
 金属被覆22は、伝送路を画定する部材である。金属被覆22は、導電性部材、例えば、銅、により形成される。金属被覆22は、例えば、メッキにより形成される。なお、メッキにより金属被覆22を形成するのに限らず、例えば、金属被覆22を形成するのに、銅箔又は金属網を巻き付けて形成してもよい。なお、導波管20の金属被覆22の外側に、更に、絶縁物による被覆を設けてもよい。
 導波管20は、誘電体チューブ21と金属被覆22とにより形成されていることから、R1000程度の可撓性を有する。
 なお、誘電体チューブ21は誘電体層、金属被覆22は金属層の一例である。
 <閉止部材10>
 次に、第1実施形態の閉止部材10について説明する。図4は、第1実施形態の閉止部材10の斜視図である。図5は、第1実施形態の閉止部材10を導波管20に取り付けた状態での断面図である。図5は、具体的には、閉止部材10を導波管20に取り付けた状態で、導波管20の中心を通るX軸に垂直な平面で切断した断面図である。
 第1実施形態の閉止部材10は、導波管20の端部を閉止する部材である。閉止部材10は、導電性部材、例えば、銅、により形成されている。閉止部材10は、ベース部10aと、突出部10bと、を備える。なお、閉止部材10は表面のみ導電性を有するよう、樹脂に銅メッキなどの導電材料を成膜したものであってもよい。すなわち、閉止部材10は、表面に導電材料が成膜された樹脂で形成されてもよい。なお、後述する第2実施形態の閉止部材110、第3実施形態の閉止部材210、第4実施形態の閉止部材310についても同様である。
 ベース部10aは、円盤状(平板状)の部材である。ベース部10aの面10s1(主面)は、閉止部材10が導波管20に取り付けられたときに、導波管20の端面20eを覆う面である。すなわち、ベース部10aは、閉止部材10が導波管20に取り付けられたときに、導波管20の端面20eを覆う。
 突出部10bは、ベース部10aから突出して設けられる。突出部10bは、閉止部材10が導波管20に取り付けられたときに、導波管20の空洞20hの内側に設けられる。突出部10bは、導波管20の空洞20hの形状に倣った形状となっている。突出部10bの面10s2は、導波管20の空洞20hを+Z方向に伝播する電波を-Z方向に反射する反射面である。
 導波管20は、誘電体チューブ21で形成されていることから、誘電体チューブ21が変形することにより、形状追従性がある。したがって、突出部10bがある閉止部材10を導波管20の誘電体チューブ21に挿入すると、樹脂でできた誘電体チューブ21は、変形にたいして追従性を持つ。したがって、突出部10bの公差が大きくなっても、誘電体チューブ21の変形で吸収できる。
 閉止部材10と導波管20とは、はんだ付けやロウ付け、導電性ペーストによる接着等になどで電気的に接続できる。
 なお、ベース部10aの形状は、円盤状に限らない。例えば、ベース部10aは、導波管20の端面20eを覆うことができれば、矩形状でもよいし、他の形状でもよい。ベース部の形状については、後述する実施形態においても同様である。
 《第2実施形態》
 <閉止部材110>
 第2実施形態の閉止部材110について説明する。第2実施形態の閉止部材110は、導波管20の端部を短絡する部材である。図6は、第2実施形態の閉止部材110の斜視図である。図7は、第2実施形態の閉止部材110を導波管20に取り付けた状態での断面図である。図7は、具体的には、閉止部材110を導波管20に取り付けた状態で、導波管20の中心でX軸に垂直な平面で切断した断面図である。
 第2実施形態の閉止部材110は、導波管20の端部を閉止する部材である。閉止部材110は、導電性部材、例えば、銅、により形成されている。閉止部材110は、ベース部110aと、突出部110bと、庇部110cと、を備える。
 ベース部110aは、円盤状(平板状)の部材である。ベース部110aの面110s1は、閉止部材110が導波管20に取り付けられたときに、導波管20の端面20eを覆う面である。すなわち、ベース部110aは、閉止部材110が導波管20に取り付けられたときに、導波管20の端面20eを覆う。
 突出部110bは、ベース部110aから突出して設けられる。突出部110bは、閉止部材110が導波管20に取り付けられたときに、導波管20の空洞20hの内側に設けられる。突出部110bは、導波管20の空洞20hの形状に倣った形状となっている。突出部110bの面110s2は、導波管20の空洞20hを+Z方向に伝播する電波を-Z方向に反射する反射面である。
 庇部110cは、ベース部110aから突出して設けられる。庇部110cは、閉止部材110が導波管20に取り付けられたときに、導波管20の外側に位置するように設けられる。庇部110cは、-Z方向に端部に、面110cs3を有する。
 閉止部材110と導波管20とは、はんだ付けやロウ付け、導電性ペーストによる接着等になどで電気的に接続できる。また、庇部110cを備えることにより、例えば、庇部110cの外側から閉止部材110をかしめることにより電気的に接続できる。
 《第3実施形態》
 <閉止部材210>
 第3実施形態の閉止部材210について説明する。第3実施形態の閉止部材210は、導波管20の端部を短絡する部材である。図8は、第3実施形態の閉止部材210の斜視図である。図9は、第3実施形態の閉止部材210を導波管20に取り付けた状態での断面図である。図9は、具体的には、閉止部材210を導波管20に取り付けた状態で、導波管20の中心でX軸に垂直な平面で切断した断面図である。
 第3実施形態の閉止部材210は、導波管20の端部を閉止する部材である。閉止部材210は、導電性部材、例えば、銅、により形成されている。閉止部材210は、ベース部210aと、突出部210bと、を備える。
 ベース部210aは、円盤状(平板状)の部材である。ベース部210aの面210s1は、閉止部材210が導波管20に取り付けられたときに、導波管20の端面20eを覆う面である。すなわち、ベース部210aは、閉止部材210が導波管20に取り付けられたときに、導波管20の端面20eを覆う。
 突出部210bは、ベース部210aから突出して設けられる。突出部210bは、閉止部材210が導波管20に取り付けられたときに、導波管20の空洞20hの内側に設けられる。突出部210bは、導波管20の空洞20hの形状に倣った形状となっている。突出部210bは、ベース部210a側(+Z側)が太く、ベース部210aの反対側(-Z側)が細い、円錐台状である。突出部210bの面210s2は、導波管20の空洞20hを+Z方向に伝播する電波を-Z方向に反射する反射面である。
 突出部210bを円錐台状にすることによって、誘電体チューブ21は曲がったり、潰れたりする性質を持っているため、閉止部材210と導波管20との接続信頼性を物理的にも電気的にも向上させることができる。なお、突出部210bの径を、導波管20の空洞20hより大きくして圧入するようにしてもよい。
 閉止部材210と導波管20とは、はんだ付けやロウ付け、導電性ペーストによる接着などで電気的に接続できる。
 《第4実施形態》
 <閉止部材310>
 第4実施形態の閉止部材310について説明する。第4実施形態の閉止部材310は、導波管20の端部を短絡する部材である。図10は、第4実施形態の閉止部材310の斜視図である。図11は、第4実施形態の閉止部材310を導波管20に取り付けた状態での断面図である。図11は、具体的には、閉止部材310を導波管20に取り付けた状態で、導波管20の中心でX軸に垂直な平面で切断した断面図である。
 第4実施形態の閉止部材310は、導波管20の端部を閉止する部材である。閉止部材310は、導電性部材、例えば、銅、により形成されている。閉止部材310は、ベース部310aと、突出部310bと、庇部310cと、を備える。
 ベース部310aは、円盤状(平板状)の部材である。ベース部310aの面310s1は、閉止部材310が導波管20に取り付けられたときに、導波管20の端面20eを覆う面である。すなわち、ベース部310aは、閉止部材310が導波管20に取り付けられたときに、導波管20の端面20eを覆う。
 突出部310bは、ベース部310aから突出して設けられる。突出部310bは、閉止部材310が導波管20に取り付けられたときに、導波管20の空洞20hの内側に設けられる。突出部10bは、導波管20の空洞20hの形状に倣った形状となっている。突出部310bの面310s2は、導波管20の空洞20hを+Z方向に伝播する電波を-Z方向に反射する反射面である。
 なお、突出部31bを円錐台状にしてもよい。突出部310bを円錐台状にすることによって、誘電体チューブ21は曲がったり、潰れたりする性質を持っているため、閉止部材210と導波管20との接続信頼性を物理的にも電気的にも向上させることができる。なお、突出部310bの径を、導波管20の空洞20hより大きくして圧入するようにしてもよい。
 庇部310cは、ベース部310aから突出して設けられる。庇部310cは、閉止部材110が導波管20に取り付けられたときに、導波管20の外側に位置するように設けられる。庇部310cは、-Z方向に端部に、面310cs3を有する。庇部310cは、ベース部310a側(+Z側)が太く、ベース部310aの反対側(-Z側)が細くなっている。すなわち、庇部310cの先端は細くなっている。また、庇部310cの内側(導波管20側)の面は、-Z側に向かって外側に傾斜している。
 庇部310cの内側の面を傾斜させることによって、誘電体チューブ21は曲がったり、潰れたりする性質を持っているため、閉止部材310と導波管20との接続信頼性を物理的にも電気的にも向上させることができる。なお、庇部310cの内側の径を、導波管20の外径より小さくして圧入するようにしてもよい。
 閉止部材310と導波管20とは、はんだ付けやロウ付け、導電性ペーストによる接着等になどで電気的に接続できる。また、庇部310cを備えることにより、例えば、庇部310cの外側から閉止部材310をかしめることにより電気的に接続できる。
 ≪本開示の実施形態の閉止部材の反射特性≫
 上述した第1実施形態から第4実施形態の閉止部材について、反射特性の観点から寸法について検討を行った。なお、本検討においては、図7の第2実施形態の閉止部材110について検討を行う。
 閉止部材10の面10s1から面10s2までの距離を距離L1とする。なお、距離L1については、第1実施形態、第3実施形態、第4実施形態についても同様である。閉止部材110の面110s1から面112s3までの距離を距離L2とする。なお、距離L2については、第4実施形態についても同様である。
 導波管20の-Z側から+Z方向に伝搬してきた電波は、大部分は面110s2により反射されて-Z方向に伝搬する。一方、一部の電波は、面110s2の外側から、誘電体チューブ21を通って面110s1まで伝搬し、面110s1で反射されて戻る。当該反射して戻った電波が、面110s2で反射される電波に影響がないようすることが望ましい。すなわち、面110s2で反射する電波と、面110s2の外側と通過して面110s1で反射して戻ってきた電波とが、位相をそろえるようにする。具体的には、距離L1が下記の式1を満たすようにする。距離L1が下記の式1を満たすことにより、面110s2で反射する電波と、面110s2の外側と通過して面110s1で反射して戻ってきた電波との位相をそろえることができる。
Figure JPOXMLDOC01-appb-M000003
 ただし、λは導波管20の誘電体チューブ21を伝搬する電磁波の波長、n1は0以上の整数、すなわち、非負の整数、である。そして、例えば、α1は0.35及びα2は0.65であり、好ましくはα1は0.4及びα2は0.6であり、より好ましくはα1は0.45及びα2は0.55である。なお、n1については小さいほうが好ましい。
 次に、距離L2について検討する。距離L2については、面110s3において金属被覆22にはんだ付けされているとして検討する。その場合には、面110s1で反射されて面110s3の方向に漏れる電波が、更にはんだで反射して戻るときに、面110s1で反射される電波に影響がないようすることが望ましい。すなわち、面110s1で反射する電波と、面110s1から漏れてはんだで反射した電波とが、位相をそろえるようにする。具体的には、下記の式2を満たすことにより、面110s1で反射する電波と、面110s1から漏れてはんだで反射した電波との位相をそろえることができる。
Figure JPOXMLDOC01-appb-M000004
 ただし、λは、空気中を伝搬する電磁波の波長、n2は0以上の整数、すなわち、非負の整数、である。そして、α3は0.35及びα4は0.65であり、好ましくは、α3は0.4及びα4は0.6であり、より好ましくは、α3は0.45及びα4は0.55である。なお、n2については小さいほうが好ましい。なお、導波管20の空洞20hは、空気と見なせることから、λは導波管20の空洞20hを伝搬する電磁波の波長と等しいと見なせる。
 ここで、効果について確認した結果を示す。図12は、本開示の実施形態の閉止部材の反射特性を説明する図である。図13は、参考例の閉止部材の反射特性を説明する図である。図12、図13の反射強度、反射位相のグラフの横軸は、周波数である。図12、図13の反射強度のグラフの縦軸は、導波管に入射した電磁波に対して、閉止部材により反射されて戻ってきた電磁波の強度の比を表す。反射強度は0dBとなるのが理想である。図12、図13の反射位相のグラフの縦軸は、導波管に入射した電磁波に対して、閉止部材により反射されて戻ってきた電磁波の位相の変化を表す。ここで位相基準は閉止部材110の面110s2としており、この場合の反射位相は180degとなるのが理想である。
 シミュレーションにより確認を行った。寸法については、電磁波の周波数を28GHzとしてα1、α2を計算した。誘電体チューブ21の内径を6mm、外径を7mmとした。シミュレーションでは、当該周波数28GHzを含む周波数25GHzから31GHzの間の周波数についてシミュレーションを行った。電磁波の伝搬モードは基本モードで行った。図12の閉止部材では、距離L1、距離L2について、α1及びα2を0.5とした。具体的には、距離L1は3.7mm、距離L2は5mmとした。比較例である図13の閉止部材では、距離L1について、α1を0.67、距離L2について、α2を0.5とした。具体的には、距離L1は5.6mm、距離L2は5mmとした。更に、シミュレーションでは、面110s1と端面20eが密着している場合と、面110s1と端面20eが0.2mm離れている場合とについてシミュレーションを行った。なお、図12、図13の実線は密着している場合、点線は離れている場合を示す。
 図12の本開示の実施形態においては、反射強度、反射位相ともに、広い周波数でほぼ一定となっていた。また、閉止部材での減衰を抑えることができた。さらに、面110s1と端面20eとが密着している/していないにかかわらず顕著な差がなかった。
 一方、図13の参考例については、反射強度、反射位相ともに、特定の周波数で反射強度が小さくなった。また、面110s1と端面20eとが密着している/していないによって、大きく特性が異なった。
 <作用・効果>
 本開示の導波管用閉止部材によれば、簡便に導波管の終端処理ができる。本開示の導波管用閉止部材の突出部を導波管の空洞に挿入することにより、導波管20に取り付けることができる。また、本開示の導波管用閉止部材を導波管の金属被膜に電気的に接続することにより短絡させることができる。さらに、本開示の導波管用閉止部材によれば、導波管を伝搬する電波を、減衰を抑えて反射させることができる。
 <変形例>
 導波管の形状については、円筒状に限らない。例えば、導波管は角筒状でもよい。閉止部材の突出部の形状は、導波管の形状にあわせて導波管の空洞に倣った形状にすることが好ましい。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 本願は、日本特許庁に2020年3月27日に出願された基礎特許出願2020-058877号の優先権を主張するものであり、その全内容を参照によりここに援用する。
   10 閉止部材
   10a ベース部
   10b 突出部
   20 導波管
   20e 端面
   20h 空洞
   21 誘電体チューブ
   22 金属被覆
  110 閉止部材
  210 閉止部材
  310 閉止部材

Claims (10)

  1.  内部が空洞である誘電体層と、前記誘電体層の外側を覆う金属層と、を備える導波管の端部を閉止する導電性を有する導波管用閉止部材であって、
     平板状のベース部と、
     前記ベース部の主面から突出して設けられる突出部と、を有し、
     前記突出部が前記端部から前記空洞の内部に挿入され前記導波管に取り付けられる、
    導波管用閉止部材。
  2.  前記突出部は、前記空洞の形状に倣って形成される、
    請求項1に記載の導波管用閉止部材。
  3.  前記突出部は、円筒状である、
    請求項1又は請求項2に記載の導波管用閉止部材。
  4.  前記突出部は、円錐台状である、
    請求項1に記載の導波管用閉止部材。
  5.  前記主面から前記突出部の端面までの距離をL1、前記誘電体層を伝搬する電磁波の波長をλg、n1を非負の整数とした場合に、
    Figure JPOXMLDOC01-appb-M000001
    を満たす、
    請求項1から請求項4のいずれか一項に記載の導波管用閉止部材。
  6.  前記主面から突出して設けられ、前記突出部の外側に位置する庇部、を備え、
     前記庇部は、前記導波管に取り付けられた場合に、前記金属層の外側に設けられる、
    請求項1から請求項5のいずれか一項に記載の導波管用閉止部材。
  7.  前記庇部は、先端が細い、
    請求項6に記載の導波管用閉止部材。
  8.  前記主面から庇部の端面までの距離をL2、前記空洞を伝搬する電磁波の周波数をλo、n2を非負の整数、とした場合に、
    Figure JPOXMLDOC01-appb-M000002
    を満たす、
    請求項6又は請求項7に記載の導波管用閉止部材。
  9.  表面に導電材料が成膜された樹脂で形成された
    請求項1から請求項8のいずれか一項に記載の導波管用閉止部材。
  10.  内部が空洞である誘電体層と、前記誘電体層の外側を覆う金属層と、を備える導波管と、
     前記導波管の端部を閉止する導電性の導波管用閉止部材と、を備える閉止部材付き導波管であって、
     前記導波管用閉止部材は、
      平板状のベース部と、
      前記ベース部の主面から突出して設けられる突出部と、を有し、
      前記突出部が前記端部から前記空洞の内部に挿入され前記導波管に取り付けられる、
    閉止部材付き導波管。
PCT/JP2021/009070 2020-03-27 2021-03-08 導波管用閉止部材及び閉止部材付き導波管 WO2021192967A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509508A JPWO2021192967A1 (ja) 2020-03-27 2021-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058877 2020-03-27
JP2020-058877 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021192967A1 true WO2021192967A1 (ja) 2021-09-30

Family

ID=77891855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009070 WO2021192967A1 (ja) 2020-03-27 2021-03-08 導波管用閉止部材及び閉止部材付き導波管

Country Status (3)

Country Link
JP (1) JPWO2021192967A1 (ja)
TW (1) TW202147680A (ja)
WO (1) WO2021192967A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172205U (ja) * 1982-05-11 1983-11-17 富士通株式会社 空胴共振器
JPH02249302A (ja) * 1989-03-22 1990-10-05 Hitachi Chem Co Ltd 平面アレイアンテナ
JPH10107507A (ja) * 1996-09-26 1998-04-24 Hitachi Cable Ltd 楕円導波管用無反射終端器
WO2016129619A1 (ja) * 2015-02-12 2016-08-18 古野電気株式会社 導波管、無線電力伝送システム、および無線通信システム
JP2017147548A (ja) * 2016-02-16 2017-08-24 古野電気株式会社 可撓導波管、コネクタ、および電磁波伝送システム
US20180301820A1 (en) * 2015-10-07 2018-10-18 Israel Aerospace Industries Ltd. Waveguide elements, fabrication techniques and arrangements thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172205U (ja) * 1982-05-11 1983-11-17 富士通株式会社 空胴共振器
JPH02249302A (ja) * 1989-03-22 1990-10-05 Hitachi Chem Co Ltd 平面アレイアンテナ
JPH10107507A (ja) * 1996-09-26 1998-04-24 Hitachi Cable Ltd 楕円導波管用無反射終端器
WO2016129619A1 (ja) * 2015-02-12 2016-08-18 古野電気株式会社 導波管、無線電力伝送システム、および無線通信システム
US20180301820A1 (en) * 2015-10-07 2018-10-18 Israel Aerospace Industries Ltd. Waveguide elements, fabrication techniques and arrangements thereof
JP2017147548A (ja) * 2016-02-16 2017-08-24 古野電気株式会社 可撓導波管、コネクタ、および電磁波伝送システム

Also Published As

Publication number Publication date
TW202147680A (zh) 2021-12-16
JPWO2021192967A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
KR930008832B1 (ko) 넓은 입사각에 대한 레이돔 및 렌즈용 2층 정합 유전체
US6359588B1 (en) Patch antenna
US8362608B2 (en) Ultra wideband hermetically sealed surface mount technology for microwave monolithic integrated circuit package
US20100182212A1 (en) Coplanar waveguide fed planar log-periodic antenna
JP2002500840A (ja) マイクロ波伝送装置
KR100704796B1 (ko) 편평 광대역 안테나
US20230036066A1 (en) An antenna arrangement with a low-ripple radiation pattern
CA3096346C (en) Array antenna apparatus and communication device
JP2012235351A (ja) アンテナ装置
WO2019208453A1 (ja) 車両用アンテナ、車両用アンテナ付き窓ガラス及びアンテナシステム
JP7370829B2 (ja) ミリ波電波センサ及びこれを備えた車両
CN112397898A (zh) 天线阵列组件及电子设备
EP2779311A1 (en) Antenna module and method for manufacturing the same
KR101081330B1 (ko) 로트만 렌즈를 이용한 빔 성형 안테나
US20160226148A1 (en) Laminated waveguide, wireless module, and wireless system
WO2021192967A1 (ja) 導波管用閉止部材及び閉止部材付き導波管
GB2236625A (en) Monopole antenna.
JP2007235236A (ja) パッチアンテナおよび高周波デバイス
US11394100B2 (en) High-frequency connection structure for connecting a coaxial line to a planar line using adhesion layers
US11909133B2 (en) Dielectrically loaded printed dipole antenna
US20210242602A1 (en) Antenna device, antenna module, communication device, and radar device
US20210242641A1 (en) Coaxial connector and substrate with coaxial connector
JP4416673B2 (ja) 誘電体共振器アンテナおよび配線基板ならびに電子装置
Khan et al. Aperture coupled stacked patch thin film antenna for automotive radar at 77 GHz
JP4439423B2 (ja) アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775980

Country of ref document: EP

Kind code of ref document: A1