WO2021192763A1 - 石油掘削随伴水の処理方法 - Google Patents
石油掘削随伴水の処理方法 Download PDFInfo
- Publication number
- WO2021192763A1 WO2021192763A1 PCT/JP2021/006349 JP2021006349W WO2021192763A1 WO 2021192763 A1 WO2021192763 A1 WO 2021192763A1 JP 2021006349 W JP2021006349 W JP 2021006349W WO 2021192763 A1 WO2021192763 A1 WO 2021192763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- oil
- concentration
- accompanying
- drilling
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 241
- 238000011282 treatment Methods 0.000 title claims abstract description 91
- 238000005553 drilling Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000003208 petroleum Substances 0.000 title claims abstract description 10
- 238000001704 evaporation Methods 0.000 claims abstract description 42
- 239000012528 membrane Substances 0.000 claims description 33
- 238000005345 coagulation Methods 0.000 claims description 32
- 230000015271 coagulation Effects 0.000 claims description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 238000004062 sedimentation Methods 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 14
- 239000013049 sediment Substances 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 abstract description 39
- 239000002244 precipitate Substances 0.000 abstract description 14
- 238000001556 precipitation Methods 0.000 abstract description 12
- 238000004220 aggregation Methods 0.000 abstract 1
- 230000002776 aggregation Effects 0.000 abstract 1
- 238000009833 condensation Methods 0.000 abstract 1
- 230000005494 condensation Effects 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 126
- 238000001223 reverse osmosis Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 239000000701 coagulant Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000000341 volatile oil Substances 0.000 description 3
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- CMMUKUYEPRGBFB-UHFFFAOYSA-L dichromic acid Chemical compound O[Cr](=O)(=O)O[Cr](O)(=O)=O CMMUKUYEPRGBFB-UHFFFAOYSA-L 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0202—Separation of non-miscible liquids by ab- or adsorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/01—Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
Definitions
- the present invention relates to a method for treating water associated with oil drilling.
- groundwater is pumped up with oil.
- the oil drilling accompanying water (sometimes referred to as "accompanying water” in the present invention) pumped up in this way contains COD components such as oil, soil-derived suspension (mud), and inorganic salts. include.
- COD components such as oil, soil-derived suspension (mud), and inorganic salts.
- the amount of accompanying water generated is large, and it is said that it is several times more than the amount of oil pumped up, making it a difficult waste to treat.
- drilling muddy water is supplied to the drilling drill. This drilling muddy water is also mixed with the accompanying water to form a part of the accompanying water.
- Patent Documents 1 and 2 treat the accompanying water with a reverse osmosis membrane (after performing microfiltration in advance), and then treat the accompanying water with a reverse osmosis membrane.
- a method for evaporating and concentrating the obtained concentrated water is disclosed.
- the method proposed in Patent Documents 1 and 2 for executing the separation treatment using the reverse osmosis membrane for the accompanying water has the following problems.
- the composition of the accompanying water varies greatly, especially with respect to the oil content. That is, when the drilling drill is drilling the water layer, the accompanying water is relatively clean and the oil content is very low.
- the accompanying water contains a large amount of oil. There are also times when the drilling drill is just drilling the soil.
- the accompanying water contains substances derived from soil and components derived from drilling fluid, and is a mixture having a complex composition.
- the reverse osmosis membrane used in the method of Patent Document 1 and the like has excellent separation performance, it is excellent in purification performance of the accompanying water, but since the accompanying water is a mixture having a complicated composition as described above, The load on the membrane is high and the membrane becomes unusable immediately. For this reason, in the actual operation of the water treatment associated with oil drilling, the frequency of membrane replacement is high, and when considering the amount of the accompanying water generated, the treatment cost of the accompanying water becomes enormous. This problem becomes particularly remarkable when there is a large amount of oil and other components in the accompanying water (particularly mud that can block the membrane and protective agents derived from drilling fluid (polymer compounds such as polysaccharides such as guar gum)).
- the present invention has been made under the above circumstances, and the problem to be solved is that even the accompanying water more contaminated with oil or the like can be concentrated and discharged at low cost. It is to provide a treatment method that purifies to a level.
- the present inventors have conducted diligent research, and as a result, if the contaminated accompanying water is subjected to a coagulation-precipitation treatment and the obtained clear water is subjected to an evaporation concentration treatment, the cost is low.
- the present invention has been completed by finding that condensed water purified to a level that can be discharged and concentrated water that can be appropriately treated can be obtained.
- the first invention for solving the problem is It is a treatment method for water accompanying oil drilling.
- This is a method for treating water accompanying oil drilling, which comprises a step of evaporating and concentrating the clear water to obtain condensed water and concentrated water.
- the second invention is The oil drilling companion according to the first invention, wherein the oil concentration in the oil drilling accompanying water is 100 to 5000 ppm, the COD is 10 to 20,000 ppm, and the concentration of inorganic salts is 200 to 35,000 ppm as TDS. It is a method of treating water.
- the third invention is Further, the first or second invention comprising a step of measuring the oil concentration in the condensed water and, if it is found to exceed a predetermined value, performing a step of removing the oil from the condensed water using an oil separation membrane. It is a treatment method of water accompanying oil drilling described in 1.
- the fourth invention is Further, according to any one of the first to third inventions, which comprises a step of measuring the nitrogen content concentration in the condensed water and, if it is found to exceed a predetermined value, performing a nitrogen content removing treatment from the condensed water. It is the treatment method of the water accompanying oil drilling described.
- the fifth invention is The method for treating petroleum drilling concomitant water according to any one of the first to fourth inventions, wherein the oil concentration in the clear water is 5 to 1000 ppm.
- the sixth invention is Accompanied by oil drilling according to any one of the first to fifth inventions, wherein the oil concentration in the condensed water is 5 to 100 ppm, the COD is 5 to 200 ppm, and the concentration of inorganic salts is 10 to 100 ppm as TDS. It is a method of treating water.
- the seventh invention is The first to sixth inventions, wherein the evaporative concentration treatment is carried out by using an evaporative concentrator that can be transported by a vehicle or an evaporative concentrator that can be separated into 2 to 4 units that can be transported by a vehicle.
- the eighth invention is The method for treating petroleum drilling concomitant water according to any one of the first to seventh inventions, wherein the organic component removal treatment in the petroleum drilling concomitant water is performed before the coagulation sedimentation treatment.
- the present invention pumps groundwater together with oil, and contains oil, COD components, soil-derived suspension (mud), and inorganic salts. It is a treatment method that purifies the accompanying water (including drilling mud), which is contained, to a level that can be concentrated and discharged at low cost.
- the method for treating the accompanying water for oil drilling according to the present invention includes a coagulation-sedimentation treatment step in which the accompanying water is subjected to a coagulation-precipitation treatment and separated into clear water and a precipitate, and the clear water is subjected to an evaporation-concentration treatment to condense water and concentrated water. It has an evaporative concentration treatment step to obtain the above.
- an oil removal step for removing oil from the condensed water is provided if desired, and a denitrification treatment step for removing nitrogen from the condensed water is provided if desired.
- an organic component removing step may be provided before the coagulation / precipitation treatment step.
- FIG. 1 shows an operation flow of the processing method according to the present invention and an example of the processing apparatus.
- the present invention accepts the accompanying water (10) from which the organic component has been removed by the organic component removing step [1'] as necessary, coagulates and precipitates the accompanying water (10), and causes clear water (clear water (10).
- the condensed water (21) is returned to the environment by, for example, being discharged into a river or the sea, and the concentrated water (22) is transported to a disposal site to be solidified.
- the accompanying water received in the organic component removing step [1'] is indicated as "accompanying water (10)".
- the organic component removal step [1'] is carried out on the accompanying water (10) as necessary, and then the coagulation / precipitation treatment step [1] is carried out.
- the accompanying water (10) received in this step is a mixture having a complex composition as described above, and is typically black to brown.
- the oil concentration usually has a wide range of about 100 to 5000 ppm. This is because, as described above, the composition of the accompanying water (10) changes significantly depending on whether the drilling drill is excavating the vicinity of the oil layer, the vicinity of the water layer, or neither. be. Specifically, the oil content when the drilling drill is drilling near the oil reservoir shows a high value.
- the COD of the accompanying water is usually about 10 to 20000 ppm, and the concentration of inorganic salts is usually about 200 to 35000 ppm as TDS.
- the present invention can be treated without any problem even if the oil content in the accompanying water (10) is high, and is preferably applicable to the accompanying water (10) having an oil concentration of 120 to 5000 ppm, and the oil concentration is high. It is more preferably applicable to the accompanying water (10) of 150 to 5000 ppm.
- the oil concentration is so high that it exceeds 5000 ppm, the oil is floating on the surface of the accompanying water, so it is possible to scoop it up and keep it within the above concentration range before performing the coagulation precipitation treatment step [1]. preferable.
- the suspension (mud) derived from the soil in the accompanying water (10) is removed by the coagulation treatment using the coagulation tank (15) and the subsequent sedimentation treatment, and the clear water (11).
- the purpose is to obtain. It is preferable that the COD and a part of the oil content in the accompanying water (10) can be removed by the coagulation sedimentation treatment in many cases.
- a coagulant is first added to the coagulation tank (15) containing the accompanying water (10), and substances that can be captured by the coagulant (such as the suspension mentioned above) are coagulated.
- the flocculant include an inorganic flocculant (13) and a polymer flocculant (14).
- the inorganic flocculant (13) for example, polyiron sulfate, polyiron chloride, polyaluminum chloride, polyaluminum sulfate and the like can be preferably mentioned.
- the polymer flocculant (14) for example, an anionic flocculant, a cationic flocculant, and a nonionic flocculant can be preferably mentioned.
- polyiron sulfate has an excellent oil removing function, can form and remove a precipitate with a component that causes scale such as calcium, and when the pH fluctuates in a series of treatments of accompanying water (10). Even (especially when the pH reaches about 10), the precipitate does not redissolve, which is an excellent feature.
- solid-liquid separation using a solid-liquid separator (16) is performed on the accompanying water (10) in which agglomerates are generated due to the coagulation described above (as a specific example, a centrifuge is used. It is separated into clear water (11) and sediment (12) by centrifugation, sedimentation with a thickener, filtration with a hollow fiber membrane, decant from an agglutinating tank, etc.). Then, if necessary, the clarified water (11) is temporarily stored in the evaporation-concentrated raw water tank (20).
- the oil concentration in the clear water (11) obtained in the coagulation sedimentation treatment step [1] is usually about 5 to 1000 ppm, and the COD is usually about 10 to 5000 ppm, which may be reduced as compared with the start accompanying water (10). many.
- the concentration of inorganic salts is usually about 200 to 35,000 ppm as TDS. Further, in the clear water (11), the suspension (mud) contained in the accompanying water (10) was remarkably removed, and the color was colorless and transparent to white and translucent, or derived from the chemical used in this step. It is the color of.
- Evaporation Concentration Treatment Step In the evaporation concentration treatment step [2], the evaporative concentration treatment is performed on the clear water (11) obtained in the coagulation sedimentation treatment step [1] using the evaporation concentration device (23). conduct. By the evaporation concentration treatment, condensed water (21) and concentrated water (22) are obtained. If the object to be evaporated and concentrated contains a coarse substance such as mud, this will be transferred to the concentrated water (22), but it causes problems such as blocking the piping of the evaporation and concentration device, and continuous operation is performed. become unable. That is, it leads to an increase in operating costs.
- the accompanying water (10) is first subjected to a coagulation-precipitation treatment to substantially remove the coarse substance, the above-mentioned problems do not occur, continuous operation is possible, and the operation cost is reduced. It can be kept low.
- the evaporation concentration device (23) used in the evaporation concentration processing step [2] is not particularly limited.
- a steam compression type salt water distiller described in JP-A-59-26184 (a steam compression type salt water distiller provided with a horizontal heat transfer tube and a steam compressor), and a self described in JP-A-10-57702.
- An evaporation-compression type concentrator (a concentrator capable of two-stage compression by two compression means), a vacuum evaporator described in Japanese Patent Application Laid-Open No. 2011-185192 (a vacuum evaporator equipped with a roots blower), and the like are used in the step. It can be used as an evaporation concentrator.
- constructing an evaporation concentrator on-site from scratch requires a long construction period and high construction costs.
- the present inventors may transport the finished product or the evaporation concentrator (23), which is separated into a plurality of units, to an oil drilling site for installation, or final assembly, installation, and operation.
- Such an evaporation concentrator (23) is of a size that can be transported by a vehicle such as a truck, or can be separated into 2 to 4 units, and each of the separated units can be transported by a vehicle. Size.
- the present inventors have separated the device into two storage containers (the first storage container and the second storage container in claim 1 of the relevant publication) in the evaporative concentration device disclosed in Japanese Patent Application Laid-Open No. 2018-126680. Since it is possible and each can be transported by a vehicle such as a truck, it was also conceived that it is particularly suitable as an apparatus used in the evaporation concentration processing step [2] in the present invention.
- the evaporation conditions in the evaporation concentration treatment step [2] it is possible to reduce the operating cost by setting the liquid temperature in the evaporation can of the evaporation concentration device (23) to 60 to 80 ° C. and the pressure in the evaporation can to 5 to 50 kPa abs. It is preferable from the viewpoint of.
- the concentration ratio of the concentrated water (22) obtained in the step should be 2 to 20 times by volume to concentrate and operate the accompanying water (10). It is preferable from the viewpoint of cost reduction.
- the oil concentration is usually about 5 to 100 ppm
- the COD is usually about 5 to 200 ppm
- the content of inorganic salts is usually 10 as TDS. It is about 100 ppm. Since the condensed water (21) is composed of the volatile components in the clear water (11), the oil content (excluding the volatile oil) and other components are significantly reduced. If the oil content, COD, inorganic salt content, etc. of the condensed water (21) are low enough to meet environmental standards, they can be discharged directly into rivers, etc., recycled as water for oil drilling sites, or underground. Can be returned to.
- the accompanying water (10) becomes condensed water (21) that can be reduced to the environment, and the precipitate to be treated by an appropriate method.
- the product (12) and the concentrated water (22) are obtained.
- the concentration ratio (accompanying water / (precipitate + concentrated water)) from the accompanying water (10) to the total of the precipitate (12) and the concentrated water (22) is preferably 3 to 15 times by volume. Can be achieved.
- both the coagulation-sedimentation treatment step [1] and the evaporation concentration treatment step [2] do not require the use of expensive chemicals or equipment and can be continuously operated, the water accompanying oil drilling of the present invention can be operated continuously.
- the treatment method can be implemented at a very low cost.
- Oil removal step [3] Oil removal step In the oil removal step [3], when the oil content in the condensed water (21) exceeds a predetermined value as a result of the quality check (measurement of the oil concentration) of the condensed water (21) described above. Is a step of obtaining treated water (31) and oil (34) by, for example, performing specific gravity separation on condensed water (21) using an oil separation membrane (33) installed in an oil separation device (32). Is. The method for measuring the oil concentration will be described later in Examples. Further, the predetermined value is a value determined by the standards for wastewater such as environmental standards of each country, and this will be collectively described in the section of the denitrification step [4] described later.
- the accompanying water (10) targeted by the method for treating oil drilling accompanying water of the present invention described in the "coagulation sedimentation treatment step [1]" generally has a very high oil content. Therefore, if an attempt is made to separate the oil from the accompanying water (10) by a method using a reverse osmosis membrane or the like according to the prior art represented by Patent Document 1, the load on the reverse osmosis membrane or the like is high and frequent. Replacement is required, and the processing cost is high.
- the suspension (mud) contained in the accompanying water (10) also occludes the reverse osmosis membrane (or the microfiltration membrane used in front of the reverse osmosis membrane), increasing the need for frequent replacement.
- Such removal of oil (34) does not require an ultrafine reverse osmosis membrane having a pore size of less than 1 nm, and oil removal using a cheaper oil separation membrane (33) is possible. .. Further, since the condensed water (21) is substantially composed of water and volatile oil (34), the load on the oil separation membrane (33) is light, so that the oil separation membrane (33) Frequent replacement is not required, and the processing cost is low.
- the oil separation membrane (33) does not have to be expensive, such as a reverse osmosis membrane, in which the pore size is on the order of single nano-order or less.
- a corelesser type membrane can be preferably used as the oil separation membrane (33).
- the oil separation membrane (33) of this type is a membrane composed of fibers having a thickness (diameter if the cross section is circular) of about 0.1 to 10 ⁇ m, and water is first flowed through the fibers to moisten the fibers. Keep it.
- the concentration of the oil contained in the treated water (31) is less than a predetermined value, it is discharged to a river or the like, recycled or recycled. It can be returned to the basement.
- the nitrogen concentration in the condensed water (21) or the treated water (31) obtained in the oil removal step [3] is measured, and the nitrogen concentration is a predetermined value. If it exceeds, it is a step of treating with a known denitrification method. This is because if the condensed water (21) (or the treated water (31)) contains a large amount of nitrogen, it may cause an environmental load.
- the known denitrification method the chloramine denitrification method, which has a low operating cost, is preferable. The method for measuring the nitrogen concentration will be described later in Examples.
- the predetermined value is a value determined by standards related to wastewater such as environmental standards of each country, and an example is shown in Table 1 below together with the predetermined value related to the wastewater standard of oil content in the oil content removal step [3] described above.
- a value of 5% or more and less than 100% of the wastewater standard value may be set as a predetermined value by multiplying the wastewater standard value by a safety factor.
- the nitrogen concentration contained in the obtained treated water (31) is less than a predetermined value, it is discharged to a river or the like. , Recycled or returned to the basement.
- the oil concentration was determined by adjusting the pH of the sample to 4 and then extracting it into normal hexane, heating it to 80 ° C. to evaporate the normal hexane, and measuring the weight of the residue.
- the concentration of inorganic salts was set as TDS, and the total soluble solid was measured with an Orion TM Versa Star Pro TM pH / conductivity desktop multi-parameter meter.
- the nitrogen concentration was measured as the concentration of ammoniacal nitrogen (NH 3- N) by the ion electrode method (Orion TM Versa Star Pro TM , manufactured by Thermo Fisher).
- HORIBA's pH meter F-16 is used to measure the pH value, and if the sample temperature at the time of measurement is 25 ° C, the actual measured value is adopted. Find the pH value of COD was measured by the dichromic acid method (COD Cr ) according to JIS K 0102: 2013.
- Example 1 Using the accompanying water produced at a certain oil drilling site as raw water, the method for treating the accompanying water for oil drilling according to the present invention was carried out. Below, 1. Coagulation sedimentation process, 2. Evaporation concentration treatment step, 3. The oil removal step will be described in this order.
- Coagulation sedimentation treatment step The produced accompanying water is introduced into a coagulation tank as raw water, and polyiron sulfate (registered trademark: manufactured by Polytetsu Nittetsu Mining Co., Ltd.) is added to the coagulation tank at a ratio of 2 g per 1 L of companion water. bottom.
- the accompanying water contained a suspension (mud) and was brown.
- the mixture was stirred and mixed at 250 rpm for 0.1 hours.
- the obtained slurry was centrifuged at 4500 rpm using a centrifuge device which is a solid-liquid separator, and separated into clear water which is a supernatant and a precipitate.
- the clear water was pale orange.
- the amount of sediment was about 1 to 5% by volume of the accompanying water.
- the evaporative concentration device can be separated into two units (the first storage container and the second storage container disclosed in claim 1 of Japanese Patent Application Laid-Open No. 2018-126680), and each can be transported by truck or the like. It is a device that is.
- the operating conditions of the evaporation concentrator were such that the degree of vacuum in the evaporation can was 20 kPa abs and the temperature of the holding liquid was 65 ° C. or higher and 70 ° C. or lower. While controlling the boiling point elevation due to the concentration of the components contained in the holding liquid within 8 ° C., the volatile components were evaporated and condensed from the holding liquid to generate condensed water, which was taken out from the evaporation concentrator. On the other hand, the specific gravity of the retained liquid in the evaporation can is monitored, and when the specific gravity reaches 1.1 kg / L, it is determined that the water has become concentrated water, and the water is discharged from the evaporation concentrator to continuously evaporate and concentrate. rice field. The enrichment rate was about 3.7 times by volume.
- Oil removal step Since the oil content in the condensed water obtained in the evaporation concentration treatment step described above was as high as 52 ppm, an oil separator equipped with an oil separation membrane (registered trademark: U-Tech TH-80 Asahi Kasei) An oil removal step was carried out using the above to obtain treated water.
- This oil content separating device is a corelesser type device, and the oil content was removed from the condensed water by specific gravity separation to obtain treated water.
- Table 2 below shows the pH values of accompanying water, clarified water, condensed water, concentrated water and treated water, inorganic salt concentration (as TDS), ammonia nitrogen concentration, COD value, and oil concentration in the above operations.
- the oil concentration of the obtained treated water can be further reduced by further treating it with activated carbon, for example. Further, although it was not carried out in this example, if the denitrification step is carried out on the treated water, the ammonia nitrogen concentration can be easily reduced to 1 ppm or less.
- Example 2 The accompanying water produced at an oil drilling site different from that of Example 1 was used as raw water. Then, as in the first embodiment, 1. Coagulation sedimentation process and 2. The evaporation concentration treatment step was carried out. Table 3 shows the pH values, ammonia nitrogen concentration, COD value, and oil concentration of the accompanying water, condensed water, and concentrated water in the above operation.
- the piping of the evaporative concentration device will be blocked and the device will soon break down.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Geology (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
石油掘削随伴水に凝集沈殿処理を行い、清澄水及び沈殿物に分離する工程と、前記清澄水に蒸発濃縮処理を行い、放流可能な凝縮水及び油分等が濃縮された濃縮水を得る工程とを有する、石油掘削随伴水の処理方法を提供する。
Description
本発明は石油掘削随伴水の処理方法に関する。
石油掘削サイトにおける石油の掘削では、地下水が石油と共に汲み上げられる。このように汲み上げられた石油掘削随伴水(本発明において「随伴水」と記載する場合がある。)には油分をはじめとするCOD成分や、土壌由来の懸濁物(泥)や無機塩類が含まれている。その上、随伴水の発生量は多量であり、汲み上げられる石油の数倍以上ともいわれており、処理の困難な廃棄物である。なお掘削ドリルの保護などの目的のため、掘削しているドリルに対しては掘削泥水が供給されている。この掘削泥水も随伴水に混入して随伴水の一部を構成することになる。
現在石油掘削サイトの多くはインフラの整備されていない僻地に存在するが、随伴水を適切に処理する方法として、随伴水を適切な廃水処理設備を有する工場に輸送してそこで処理する方法や、そのような廃水処理設備をオンサイトに設け、その場で処理する方法が考えられる。しかし、前者は輸送コストの観点から現実的でない。
また、処理され清浄となった水は河川へ放流されるなどするが、処理の結果生まれる残留物については、固形化、埋め立てなど更なる処理プロセスが必要である。そのためいかに残留物の発生量を少なくする(濃縮する)かも、随伴水の処理における重要な要素である。
なお、上記のオンサイトで随伴水を処理する(し得る)方法について、特許文献1および2は、随伴水に対して(事前の精密膜ろ過をしたうえで)逆浸透膜処理し、続いて得られた濃縮水を蒸発濃縮する方法について開示している。
しかし本発明者らの検討によると、特許文献1および2にて提案された、随伴水に対して逆浸透膜を用いて分離処理を実行する方法には、以下の問題がある。まず、随伴水は特に油分について組成変動が大きい。すなわち、掘削ドリルが水層を掘削しているときには、随伴水は比較的清浄であり油分は非常に少ない。一方掘削ドリルが油層に近づいたときには、随伴水は多量の油分を含んでいる。また、そのいずれでもなく掘削ドリルがただ土壌を掘削しているときもある。更に随伴水は、土壌由来の物質や掘削泥水由来の成分も含んでおり、複雑な組成の混合物である。
特許文献1等の方法で使用される逆浸透膜は分離性能が非常に優れている為、随伴水の浄化性能には優れるものの、随伴水は前記の通り複雑な組成の混合物であることから、膜にかかる負荷が高くすぐに当該膜が使用不能になる。この為、石油掘削随伴水処理の実操業においては膜の交換頻度が高く、随伴水の発生量を考えたとき、随伴水の処理コストが膨大になる。随伴水中の油分やその他の成分(特に膜を閉塞させうる泥や掘削泥水由来の保護剤(グアーガム等の多糖類などの高分子化合物))が多い場合にはこの問題が特に顕著になる。
本発明は当該状況の下で為されたものであり、その解決しようとする課題は、油分等でより汚染された随伴水であっても、低コストで、油分等を濃縮しかつ放流可能なレベルにまで浄化する処理方法を提供することである。
上述の課題を解決する為、本発明者らは鋭意研究を行った結果、汚染された随伴水へ凝集沈殿処理を行い、得られた清澄水に対して蒸発濃縮処理を行えば、低コストで、放流可能なレベルまで浄化された凝縮水と、適宜処理可能な濃縮水とが得られることを見出し、本発明を完成した。
即ち、課題を解決するための第1の発明は、
石油掘削随伴水の処理方法であって、
前記石油掘削随伴水に凝集沈殿処理を行い、清澄水及び沈殿物に分離する工程と、
前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る工程とを有する、石油掘削随伴水の処理方法である。
第2の発明は、
前記石油掘削随伴水中の油分濃度が100~5000ppmであり、CODが10~20,000ppmであり、無機塩類の濃度がTDSとして200~35,000ppmである、第1の発明に記載の石油掘削随伴水の処理方法である。
第3の発明は、
さらに、前記凝縮水中の油分濃度を測定し、所定値を超えることが判明した場合は、油分分離膜を用いて前記凝縮水から油分の除去処理を行う工程を有する、第1または第2の発明に記載の石油掘削随伴水の処理方法である。
第4の発明は、
さらに、前記凝縮水中の窒素分濃度を測定し、所定値を超えることが判明した場合は、前記凝縮水から窒素分の除去処理を行う工程を有する、第1~第3の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第5の発明は、
前記清澄水中の油分濃度が5~1000ppmである、第1~第4の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第6の発明は、
前記凝縮水中の油分濃度が5~100ppmであり、CODが5~200ppmであり、無機塩類の濃度がTDSとして10~100ppmである、第1~第5の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第7の発明は、
前記蒸発濃縮処理を、車両にて運搬可能な蒸発濃縮装置、又は、車両にて運搬可能な2~4のユニットに分離可能な蒸発濃縮装置を用いて実施する、第1~第6の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第8の発明は、
前記凝集沈殿処理の前に、前記石油掘削随伴水中の有機成分の除去処理を行う、第1~第7の発明のいずれかに記載の石油掘削随伴水の処理方法である。
石油掘削随伴水の処理方法であって、
前記石油掘削随伴水に凝集沈殿処理を行い、清澄水及び沈殿物に分離する工程と、
前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る工程とを有する、石油掘削随伴水の処理方法である。
第2の発明は、
前記石油掘削随伴水中の油分濃度が100~5000ppmであり、CODが10~20,000ppmであり、無機塩類の濃度がTDSとして200~35,000ppmである、第1の発明に記載の石油掘削随伴水の処理方法である。
第3の発明は、
さらに、前記凝縮水中の油分濃度を測定し、所定値を超えることが判明した場合は、油分分離膜を用いて前記凝縮水から油分の除去処理を行う工程を有する、第1または第2の発明に記載の石油掘削随伴水の処理方法である。
第4の発明は、
さらに、前記凝縮水中の窒素分濃度を測定し、所定値を超えることが判明した場合は、前記凝縮水から窒素分の除去処理を行う工程を有する、第1~第3の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第5の発明は、
前記清澄水中の油分濃度が5~1000ppmである、第1~第4の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第6の発明は、
前記凝縮水中の油分濃度が5~100ppmであり、CODが5~200ppmであり、無機塩類の濃度がTDSとして10~100ppmである、第1~第5の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第7の発明は、
前記蒸発濃縮処理を、車両にて運搬可能な蒸発濃縮装置、又は、車両にて運搬可能な2~4のユニットに分離可能な蒸発濃縮装置を用いて実施する、第1~第6の発明のいずれかに記載の石油掘削随伴水の処理方法である。
第8の発明は、
前記凝集沈殿処理の前に、前記石油掘削随伴水中の有機成分の除去処理を行う、第1~第7の発明のいずれかに記載の石油掘削随伴水の処理方法である。
本発明によれば、より汚染された随伴水であっても、低コストで、油分等を濃縮しかつ放流可能なレベルにまで浄化することが出来る。
上述したように本発明は、石油掘削サイトにおける石油の掘削において、地下水が石油と共に汲み上げられたものであって、油分をはじめとして、COD成分や土壌由来の懸濁物(泥)や無機塩類を含む随伴水(掘削泥水も混入している)を、低コストで、濃縮しかつ放流可能なレベルにまで浄化する処理方法である。
本発明に係る石油掘削随伴水の処理方法は、随伴水に凝集沈殿処理を行い、清澄水と沈殿に分離する凝集沈殿処理工程と、前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る蒸発濃縮処理工程とを有する。また、本発明に係る石油掘削随伴水の処理方法においては、所望により前記凝縮水から油分を除去処理する油分除去工程や、所望により前記凝縮水から窒素分を除去処理する脱窒処理工程を設ける場合がある。さらに所望により、前記凝集沈殿処理工程の前に有機成分除去工程を設ける場合がある。
以下、本発明に係る処理方法の操作フロー及び処理装置の例を示す図1を参照しながら、本発明について説明する。
図1に示すように本発明は、必要に応じて有機成分除去工程[1´]により有機成分を除去した随伴水(10)を受け入れ、随伴水(10)を凝集沈殿させて、清澄水(11)及び沈殿物(12)を得る凝集沈殿処理工程[1]と、清澄水(11)を受け入れ、これに蒸発濃縮処理を行い、凝縮水(21)及び濃縮水(22)を得る蒸発濃縮処理工程[2]を有するものである。なお、凝縮水(21)は例えば河川や海へ放流するなどして環境へ還元し、濃縮水(22)については処分場へ輸送して固形化するなど、適宜な処理を行う。なお図1では便宜上、有機成分除去工程[1’]に受け入れる随伴水を「随伴水(10)」と表示している。
尤も、凝縮水(21)に油分や窒素分が所定の基準以上に含まれていた場合、凝縮水(21)から油分を除去する油分除去工程[3]、および/または、凝縮水(21)から窒素分を除去する脱窒工程[4]を設けることが好ましい。
以下、[1´]有機成分除去工程、[1]凝集沈殿処理工程、[2]蒸発濃縮処理工程、[3]油分除去工程、[4]脱窒工程、[5]沈殿物および濃縮水の処理、の順で本発明について説明する。
[1´]有機成分除去工程
随伴水(10)に有機成分が多く含有されている場合、凝集沈殿処理工程[1]を実施する前に、有機成分を除去する工程[1´]を実施してもよい。この場合、凝集沈殿処理工程[1]を実施する凝集槽(15)の前に生物処理槽(17)を設けることが好ましい。好気性処理/嫌気性処理により有機成分を分解するものである。生物処理槽(17)の好ましい具体例としては、好気と嫌気の条件選択が可能であることと高い固液分離安定性よりSBR槽を挙げることが出来る。
随伴水(10)に有機成分が多く含有されている場合、凝集沈殿処理工程[1]を実施する前に、有機成分を除去する工程[1´]を実施してもよい。この場合、凝集沈殿処理工程[1]を実施する凝集槽(15)の前に生物処理槽(17)を設けることが好ましい。好気性処理/嫌気性処理により有機成分を分解するものである。生物処理槽(17)の好ましい具体例としては、好気と嫌気の条件選択が可能であることと高い固液分離安定性よりSBR槽を挙げることが出来る。
[1]凝集沈殿処理工程
本発明においては、必要に応じて随伴水(10)に対して有機成分除去工程[1´]を実施した後、凝集沈殿処理工程[1]を実施する。この工程にて受け入れる随伴水(10)は、上述した通り複雑な組成の混合物であり、典型的には黒~茶褐色である。その油分濃度は、通常100~5000ppm程度と大きな幅がある。これは上述した通り、随伴水(10)の組成が、掘削ドリルが油層付近を掘削している時と、水層付近を掘削している時や、そのいずれでもない時などで大きく変わる為である。具体的には、掘削ドリルが油層付近を掘削している時の油分含有量は高い値を示す。随伴水のCODは、通常10~20000ppm程度であり、無機塩類の濃度はTDSとして通常200~35000ppm程度である。本発明は随伴水(10)中の油分が高濃度であっても問題なく処理することができ、油分濃度が120~5000ppmの随伴水(10)に対して好ましく適用可能であり、油分濃度が150~5000ppmの随伴水(10)に対してより好ましく適用可能である。
本発明においては、必要に応じて随伴水(10)に対して有機成分除去工程[1´]を実施した後、凝集沈殿処理工程[1]を実施する。この工程にて受け入れる随伴水(10)は、上述した通り複雑な組成の混合物であり、典型的には黒~茶褐色である。その油分濃度は、通常100~5000ppm程度と大きな幅がある。これは上述した通り、随伴水(10)の組成が、掘削ドリルが油層付近を掘削している時と、水層付近を掘削している時や、そのいずれでもない時などで大きく変わる為である。具体的には、掘削ドリルが油層付近を掘削している時の油分含有量は高い値を示す。随伴水のCODは、通常10~20000ppm程度であり、無機塩類の濃度はTDSとして通常200~35000ppm程度である。本発明は随伴水(10)中の油分が高濃度であっても問題なく処理することができ、油分濃度が120~5000ppmの随伴水(10)に対して好ましく適用可能であり、油分濃度が150~5000ppmの随伴水(10)に対してより好ましく適用可能である。
なお、油分濃度が5000ppmを超えるほど濃厚な場合は、随伴水表面に油分が浮いているので、それを掬い取ることで上記濃度範囲におさめてから凝集沈殿処理工程[1]を実施することが好ましい。
凝集沈殿処理工程[1]は、凝集槽(15)を用いた凝集処理と続く沈殿処理により、随伴水(10)中における土壌由来の懸濁物(泥)を除去して清澄水(11)を得ることを目的とする。当該凝集沈殿処理に拠って、随伴水(10)中におけるCODおよび油分の一部も除去できる場合が多く好ましい。
凝集沈殿処理工程[1]では、随伴水(10)を収容した凝集槽(15)へまず凝集剤を添加し、凝集剤で捕獲可能な物質(前記の懸濁物等)を凝集させる。当該凝集剤としては、無機凝集剤(13)及び高分子凝集剤(14)が挙げられる。無機凝集剤(13)として、例えばポリ硫酸鉄、ポリ塩化鉄、ポリアルミニウムクロライド、ポリ硫酸アルミニウム等を好ましく挙げることが出来る。高分子凝集剤(14)として、例えばアニオン系凝集剤、カチオン系凝集剤、ノニオン系凝集剤を好ましく挙げることが出来る。
これら凝集剤の中でもポリ硫酸鉄は、油分除去機能に優れている、カルシウムなどスケールの要因となる成分と沈殿物を形成し除去出来る、随伴水(10)の一連の処理においてpHが変動した場合であっても(特にpHが10程度になった場合でも)、沈殿物が再溶解しない、といった優れた特徴がある。これらの特徴は、後工程である蒸発濃縮処理工程[2]の安定操業を維持する観点から好ましい。
凝集沈殿処理工程[1]では、以上説明した凝集により凝集物が生じた随伴水(10)に対して、固液分離装置(16)を使用した固液分離(具体例として、遠心分離装置による遠心分離、シックナー等による沈降分離、中空糸膜によるろ過、凝集槽からデカント等がある。)によって、清澄水(11)と沈殿物(12)とに分離する。そして必要に応じて、清澄水(11)は蒸発濃縮原水槽(20)にて、一旦貯蔵する。
凝集沈殿処理工程[1]で得られる清澄水(11)における油分濃度は通常5~1000ppm程度、CODは通常10~5000ppm程度であり、スタートの随伴水(10)に比べて低減される場合が多い。無機塩類の濃度はTDSとして通常200~35000ppm程度である。また、清澄水(11)においては随伴水(10)に含まれていた懸濁物(泥)が顕著に除去されており、無色透明ないし白い半透明の色、あるいは本工程で使用した薬剤由来の色となっている。
[2]蒸発濃縮処理工程
蒸発濃縮処理工程[2]においては、蒸発濃縮装置(23)を用いて、凝集沈殿処理工程[1]で得られた清澄水(11)に対して蒸発濃縮処理を行う。当該蒸発濃縮処理により、凝縮水(21)と濃縮水(22)とが得られる。蒸発濃縮する対象が泥などの粗大な物質を含んでいると、これが濃縮水(22)に移行することとなるが、蒸発濃縮装置の配管等を閉塞させるなどの問題を引き起こして、連続操業ができなくなる。すなわち、操業コスト上昇につながる。しかし本発明では、随伴水(10)に対してまず凝集沈殿処理を施し、粗大な物質を実質的に除去しているので、前記の問題は起こらず、連続操業が可能であり、操業コストを低くおさえることができる。
蒸発濃縮処理工程[2]においては、蒸発濃縮装置(23)を用いて、凝集沈殿処理工程[1]で得られた清澄水(11)に対して蒸発濃縮処理を行う。当該蒸発濃縮処理により、凝縮水(21)と濃縮水(22)とが得られる。蒸発濃縮する対象が泥などの粗大な物質を含んでいると、これが濃縮水(22)に移行することとなるが、蒸発濃縮装置の配管等を閉塞させるなどの問題を引き起こして、連続操業ができなくなる。すなわち、操業コスト上昇につながる。しかし本発明では、随伴水(10)に対してまず凝集沈殿処理を施し、粗大な物質を実質的に除去しているので、前記の問題は起こらず、連続操業が可能であり、操業コストを低くおさえることができる。
蒸発濃縮処理工程[2]において使用する蒸発濃縮装置(23)は、特に限定されるものではない。例えば、特開昭59-26184号公報に記載の水蒸気圧縮式塩水蒸留器(水平伝熱管と水蒸気圧縮機とを備えた水蒸気圧縮式塩水蒸留器)、特開平10-57702号公報に記載の自己蒸発圧縮式濃縮装置(2つの圧縮手段により2段圧縮が可能な濃縮装置)、特開2011-185192号公報に記載の真空蒸発装置(ルーツブロワを備えた真空蒸発装置)、等を、当該工程における蒸発濃縮装置として使用することができる。尤も、石油掘削サイトの多くが僻地に設けられていることを考慮すると、蒸発濃縮装置をオンサイトで一から建設するのでは、長い工期が必要となり建設コストも高額なものとなる。
ここで本発明者らは、完成品または分離して複数のユニットとなった蒸発濃縮装置(23)を石油掘削サイトに輸送して設置、または、最終組み立てを行って設置し、運転することが好ましいことに想到した。このような蒸発濃縮装置(23)は、それ自体トラック等の車両にて運搬可能なサイズであるか、2~4程度のユニットに分離可能で、分離されたユニットの各々が車両にて運搬可能なサイズである。さらに本発明者らは、特開2018-126680号公報に開示された蒸発濃縮装置は、装置を二つの収納容器(当該公報の請求項1における、第1収納容器と第2収納容器)に分離可能であり、各々をトラック等の車両で輸送可能であることから、本発明における蒸発濃縮処理工程[2]に使用する装置として特に好適であることにも想到した。
蒸発濃縮処理工程[2]における蒸発条件については、蒸発濃縮装置(23)の蒸発缶内の液温は60~80℃、蒸発缶内圧力は5~50kPa absに設定することが操業コスト低廉化の観点から好ましい。当該工程で得られる濃縮水(22)の濃縮倍率(清澄水(11)の濃縮水(22)に対する体積倍率)は、2~20体積倍とすることが、随伴水(10)の濃縮及び操業コスト低廉化の観点から好ましい。
蒸発濃縮処理で得られる凝縮水(21)の品質チェックを実施した場合、油分濃度は通常5~100ppm程度であり、CODは通常5~200ppm程度であり、無機塩類の含有量はTDSとして通常10~100ppm程度である。凝縮水(21)は清澄水(11)中の揮発性成分で構成されるので、油分(揮発性油を除く)その他の成分が顕著に低減されている。当該凝縮水(21)の油分含有量、CODおよび無機塩類の含有量等の値が環境基準に適合するほどに低い場合は、そのまま河川等へ放流、石油掘削サイトでの用水としてのリサイクルまたは地下へ返送することができる。
以上説明した凝集沈殿処理工程[1]及び蒸発濃縮処理工程[2]の実施により、随伴水(10)から、環境へ還元等し得る凝縮水(21)と、適宜な方法により処理すべき沈殿物(12)及び濃縮水(22)とが得られる。本発明によれば、随伴水(10)から沈殿物(12)及び濃縮水(22)の合計への濃縮倍率(随伴水/(沈殿物+濃縮水))として、好ましくは3~15体積倍という倍率を達成することができる。しかも、凝集沈殿処理工程[1]及び蒸発濃縮処理工程[2]のいずれも、高価な薬剤や装置を使う必要がなく、しかも連続操業が可能であることから、本発明の石油掘削随伴水の処理方法は非常に低コストで実施することができる。
[3]油分除去工程
油分除去工程[3]は、上述した凝縮水(21)についての品質チェック(油分濃度の測定)の結果、凝縮水(21)に含有される油分が所定値を超える場合は、油分分離装置(32)に設置された油分分離膜(33)を用い、例えば凝縮水(21)に対して比重分離を実施して処理水(31)と油分(34)とを得る工程である。なお、油分濃度の測定方法については、実施例にて後述する。また前記所定値とは、各国の、環境基準等の排水に関する基準により定まる値で、これについては、後述する脱窒工程[4]の項にてまとめて説明する。
油分除去工程[3]は、上述した凝縮水(21)についての品質チェック(油分濃度の測定)の結果、凝縮水(21)に含有される油分が所定値を超える場合は、油分分離装置(32)に設置された油分分離膜(33)を用い、例えば凝縮水(21)に対して比重分離を実施して処理水(31)と油分(34)とを得る工程である。なお、油分濃度の測定方法については、実施例にて後述する。また前記所定値とは、各国の、環境基準等の排水に関する基準により定まる値で、これについては、後述する脱窒工程[4]の項にてまとめて説明する。
「凝集沈殿処理工程[1]」にて説明した本発明の石油掘削随伴水の処理方法が対象とする随伴水(10)は、一般に油分の含有量が非常に高い。この為、当該随伴水(10)に対して特許文献1に代表される従来技術に係る、逆浸透膜等を用いる方法にて油分を分離しようとすると、逆浸透膜等への負荷が高く頻繁な交換が必要で、処理コストが高くなる。随伴水(10)に含まれる懸濁物(泥)も逆浸透膜(あるいは逆浸透膜の前に使用される精密ろ過膜)を閉塞させ、頻繁な交換の必要性を高くする。
なお、従来技術において逆浸透膜を使用しているのは、その前の精密膜ろ過では無機塩類等のシングルナノオーダー又はそれ以下の超微細サイズの物質を除去することができないためである。これに対して本発明の場合は、蒸発濃縮処理により無機塩類等の超微細サイズの物質は実質的に除去され(サイズではなく沸点に着目した除去)、実質的に水と揮発性の油分(34)とで構成された、その他の夾雑物が非常に少ない凝縮水(21)が得られる。凝縮水(21)中で油分(34)はミクロンレベルの液滴として存在する。このような油分(34)の除去には、孔のサイズが1nm未満と超微細な逆浸透膜は不要であり、これよりも安価な油分分離膜(33)を用いた油分除去が可能である。さらに、当該凝縮水(21)は、実質的に水と揮発性の油分(34)とで構成されていることから油分分離膜(33)への負荷も軽い為、当該油分分離膜(33)の頻繁な交換は不要であり、処理コストは低廉なものとなる。
油分分離膜(33)は、上記の通り逆浸透膜のような孔のサイズがシングルナノオーダー又はそれ以下のレベルといった高価なものである必要はない。本発明においては、油分分離膜(33)として、コアレッサー方式の膜を好適に使用することができる。この方式の油分分離膜(33)は、太さ(断面が円形であれば直径)が0.1~10μm程度の繊維で構成される膜であり、これにまず水を流して繊維を湿らせておく。続けて(所定値以上の油分を含んだ)凝縮水(21)を膜に流すと、水は膜を透過するが、油分(34)は湿った繊維に対して反発し、膜を透過しない。凝縮水(21)を流し続けると、油分が繊維のところに蓄積して合体して大きくなり、水の比重との大小に従って分離される(比重分離)。このようにして、簡易で安価な方法により、凝縮水(21)から油分を除去することができる。なお、油分に関して厳しい基準に対応する場合は、必要に応じて、更に活性炭による油分の除去処理など、高次の処理を施してもよい。このような処理もまた安価に実施可能である。
油分除去工程[3]を経て得られた処理水(31)の品質チェックの結果、処理水(31)に含有される油分の濃度が所定値以下の場合は、河川等への放流、リサイクルまたは地下へ返送することができる。
[4]脱窒工程
脱窒工程[4]は、凝縮水(21)又は油分除去工程[3]で得られた処理水(31)中の窒素分濃度を測定し、窒素分濃度が所定値を超える場合は、公知の脱窒素法で処理する工程である。凝縮水(21)(又は処理水(31))に含有される窒素分が多いと、環境負荷の原因ともなるからである。公知の脱窒素法としては、操業コストの安価なクロラミン脱窒素法が好ましい。なお、窒素分濃度の測定方法については、実施例にて後述する。また前記所定値とは、各国の環境基準等の排水に関する基準により定まる値で、前述した油分除去工程[3]における油分の排水基準に関する所定値とあわせて下記表1に例を示す。なお油分及び窒素分のいずれについても、所定値として、排水基準値に安全率をかけて、排水基準値の5%以上100%未満の値を設定する場合もある。
脱窒工程[4]は、凝縮水(21)又は油分除去工程[3]で得られた処理水(31)中の窒素分濃度を測定し、窒素分濃度が所定値を超える場合は、公知の脱窒素法で処理する工程である。凝縮水(21)(又は処理水(31))に含有される窒素分が多いと、環境負荷の原因ともなるからである。公知の脱窒素法としては、操業コストの安価なクロラミン脱窒素法が好ましい。なお、窒素分濃度の測定方法については、実施例にて後述する。また前記所定値とは、各国の環境基準等の排水に関する基準により定まる値で、前述した油分除去工程[3]における油分の排水基準に関する所定値とあわせて下記表1に例を示す。なお油分及び窒素分のいずれについても、所定値として、排水基準値に安全率をかけて、排水基準値の5%以上100%未満の値を設定する場合もある。
脱窒工程[4]を経て得られた処理水(31)の品質チェックの結果、得られた処理水(31)に含有される窒素分濃度が所定値以下の場合は、河川等への放流、リサイクルまたは地下へ返送等することができる。なお、凝縮水(21)について油分除去と脱窒の両方が必要となった場合は、油分除去を先に実施することが好ましい。脱窒の代表的手法であるクロラミン脱窒素法を先に行うと、凝縮水(21)中の油分が酸化されて水溶性となり、油分除去が困難となるからである。
[5]沈殿物および濃縮水の処理
「凝集沈殿処理工程[1]」にて説明した沈殿物(12)および「蒸発濃縮処理工程[2]」にて説明した濃縮水(22)は、適切な処分場へ輸送して処分することが好ましい。ここで、石油掘削サイトの多くが僻地に設けられていることを考慮すると、沈殿物(12)および濃縮水(22)の、処分場への輸送コストは高価である。従って、これらの輸送量が少ないこと、即ち、随伴水(10)からの濃縮率が大きいことが重要である。当該観点から、本発明に係る石油掘削随伴水の処理方法を検討してみると、上述の通り、沈殿物(12)および濃縮水(22)は合計で、随伴水(10)に対して3~15体積倍程度に濃縮され、減容している。当該濃縮による減容は、輸送コスト低減の観点から十分な効果を発揮していると考えられる。
「凝集沈殿処理工程[1]」にて説明した沈殿物(12)および「蒸発濃縮処理工程[2]」にて説明した濃縮水(22)は、適切な処分場へ輸送して処分することが好ましい。ここで、石油掘削サイトの多くが僻地に設けられていることを考慮すると、沈殿物(12)および濃縮水(22)の、処分場への輸送コストは高価である。従って、これらの輸送量が少ないこと、即ち、随伴水(10)からの濃縮率が大きいことが重要である。当該観点から、本発明に係る石油掘削随伴水の処理方法を検討してみると、上述の通り、沈殿物(12)および濃縮水(22)は合計で、随伴水(10)に対して3~15体積倍程度に濃縮され、減容している。当該濃縮による減容は、輸送コスト低減の観点から十分な効果を発揮していると考えられる。
以下、実施例を参照しながら、本発明についてより具体的に説明する。
尚、実施例において、
油分濃度は、試料をpH4にした後、ノルマルヘキサンに抽出した後、80℃に加熱してノルマルヘキサンを蒸発させ、残留物の重量を測定することで求め、
無機塩類濃度はTDSとして、OrionTM Versa Star ProTM pH/導電率デスクトップ型マルチパラメーターメーターにより、全溶存性固体を測定し、
窒素分濃度はアンモニア態窒素(NH3-N)の濃度として、イオン電極法(OrionTM Versa Star ProTM,Thermo fisher製)で測定し、
pH値の測定にはHORIBA製pH meter F-16を使用し、測定時の試料温度が25℃の場合は実測定値を採用し、25℃でない場合はpH測定装置内蔵の校正機能により25℃でのpH値を求め、
CODはJIS K 0102:2013に準拠し、二クロム酸法(CODCr)により測定した。
尚、実施例において、
油分濃度は、試料をpH4にした後、ノルマルヘキサンに抽出した後、80℃に加熱してノルマルヘキサンを蒸発させ、残留物の重量を測定することで求め、
無機塩類濃度はTDSとして、OrionTM Versa Star ProTM pH/導電率デスクトップ型マルチパラメーターメーターにより、全溶存性固体を測定し、
窒素分濃度はアンモニア態窒素(NH3-N)の濃度として、イオン電極法(OrionTM Versa Star ProTM,Thermo fisher製)で測定し、
pH値の測定にはHORIBA製pH meter F-16を使用し、測定時の試料温度が25℃の場合は実測定値を採用し、25℃でない場合はpH測定装置内蔵の校正機能により25℃でのpH値を求め、
CODはJIS K 0102:2013に準拠し、二クロム酸法(CODCr)により測定した。
(参考例)
ある石油掘削サイトで異なる時点で産出された石油掘削随伴水(随伴水1及び2)について油分濃度を測定したところ、随伴水1の油分濃度は3010ppmであり、随伴水2の油分濃度は198ppmであった。この結果より、石油掘削随伴水の油分濃度の変動が大きいことがわかる。なお、いずれの随伴水にも保護剤としての高分子化合物が含まれていた。以下の実施例においても同様である。
ある石油掘削サイトで異なる時点で産出された石油掘削随伴水(随伴水1及び2)について油分濃度を測定したところ、随伴水1の油分濃度は3010ppmであり、随伴水2の油分濃度は198ppmであった。この結果より、石油掘削随伴水の油分濃度の変動が大きいことがわかる。なお、いずれの随伴水にも保護剤としての高分子化合物が含まれていた。以下の実施例においても同様である。
(実施例1)
ある石油掘削サイトで産出された随伴水を原水として、本発明に係る石油掘削随伴水の処理方法を実施した。
以下、1.凝集沈殿処理工程、2.蒸発濃縮処理工程、3.油分除去工程、の順に説明する。
ある石油掘削サイトで産出された随伴水を原水として、本発明に係る石油掘削随伴水の処理方法を実施した。
以下、1.凝集沈殿処理工程、2.蒸発濃縮処理工程、3.油分除去工程、の順に説明する。
1.凝集沈殿処理工程
産出された随伴水を原水として凝集槽へ導入し、そこへ凝集剤としてポリ硫酸鉄(登録商標:ポリテツ 日鉄鉱業株式会社製)を、随伴水1Lに対し2gの割合で添加した。なお、随伴水は懸濁物(泥)を含んでおり、茶褐色であった。
産出された随伴水を原水として凝集槽へ導入し、そこへ凝集剤としてポリ硫酸鉄(登録商標:ポリテツ 日鉄鉱業株式会社製)を、随伴水1Lに対し2gの割合で添加した。なお、随伴水は懸濁物(泥)を含んでおり、茶褐色であった。
そして凝集槽に付属の攪拌機を用いて0.1時間、250rpmで撹拌して混合した。得られたスラリーを、固液分離装置である遠心分離装置を用いて4500rpmで遠心分離し、上澄みである清澄水と、沈殿物とに分離した。清澄水は淡橙色であった。沈殿物の量は随伴水の1~5体積%程度であった。
2.蒸発濃縮処理工程
分離された清澄水を、一旦、蒸発濃縮原水槽に貯蔵した後、株式会社ササクラ製の蒸発濃縮装置(登録商標:モバイルエバポレーター VVCC-40)に導入して、蒸発濃縮処理を行った。尚、当該蒸発濃縮装置は二つのユニット(特開2018-126680号公報の請求項1にて開示された第1収納容器と第2収納容器)に分離可能であり、各々をトラック等で輸送可能である装置である。
分離された清澄水を、一旦、蒸発濃縮原水槽に貯蔵した後、株式会社ササクラ製の蒸発濃縮装置(登録商標:モバイルエバポレーター VVCC-40)に導入して、蒸発濃縮処理を行った。尚、当該蒸発濃縮装置は二つのユニット(特開2018-126680号公報の請求項1にて開示された第1収納容器と第2収納容器)に分離可能であり、各々をトラック等で輸送可能である装置である。
蒸発濃縮装置の運転条件は、蒸発缶内の真空度は20kPa absとし、保有液の温度は65℃以上70℃以下とした。保有液の含有成分が濃縮されることによる沸点上昇は8℃以内で管理しながら、保有液から揮発成分を蒸発・凝縮させて凝縮水を生成し、蒸発濃縮装置から取り出した。一方、蒸発缶内の保有液の比重を監視し、比重1.1kg/Lとなった時点で濃縮水となったと判断して蒸発濃縮装置から排出させることで、連続的に蒸発濃縮処理を行なった。濃縮率は約3.7体積倍だった。
3.油分除去工程
上述した蒸発濃縮処理工程で得られた凝縮水に含有される油分の含有量が52ppmと高かった為、油分分離膜を備えた油分分離装置(登録商標:ユーテックTH-80 旭化成製)を用いて油分除去工程を実施し、処理水を得た。なおこの油分分離装置は、コアレッサー方式の装置であり、比重分離により凝縮水から油分を除去して処理水を得た。
上述した蒸発濃縮処理工程で得られた凝縮水に含有される油分の含有量が52ppmと高かった為、油分分離膜を備えた油分分離装置(登録商標:ユーテックTH-80 旭化成製)を用いて油分除去工程を実施し、処理水を得た。なおこの油分分離装置は、コアレッサー方式の装置であり、比重分離により凝縮水から油分を除去して処理水を得た。
以上の操作における、随伴水、清澄水、凝縮水、濃縮水及び処理水のpH値、無機塩類濃度(TDSとして)、アンモニア態窒素濃度、COD値、油分濃度の値を下記表2に示す。
得られた処理水について、更にこれを、例えば活性炭で処理することで、油分濃度を更に低減することができる。また今回の実施例では実施しなかったが、処理水に対して脱窒工程を実施すれば、アンモニア態窒素濃度を容易に1ppm以下に低減することができる。
(実施例2)
実施例1とは異なる石油掘削サイトで産出された随伴水を原水とした。そして、実施例1と同様に、1.凝集沈殿処理工程、及び2.蒸発濃縮処理工程、を実施した。
以上の操作における係る随伴水、凝縮水および濃縮水のpH値、アンモニア態窒素濃度、COD値、油分濃度の値を表3に示す。
実施例1とは異なる石油掘削サイトで産出された随伴水を原水とした。そして、実施例1と同様に、1.凝集沈殿処理工程、及び2.蒸発濃縮処理工程、を実施した。
以上の操作における係る随伴水、凝縮水および濃縮水のpH値、アンモニア態窒素濃度、COD値、油分濃度の値を表3に示す。
なお、随伴水に対して凝集沈殿処理工程は実施せずに、蒸発濃縮処理工程を実施すると、蒸発濃縮装置の配管等が閉塞するなどし、すぐに装置が故障してしまう。
1´:有機成分除去工程
1:凝集沈殿処理工程
2:蒸発濃縮処理工程
3:油分除去工程
4:脱窒工程
10:随伴水
11:清澄水
12:沈殿物
13:無機凝集剤
14:高分子凝集剤
15:凝集槽
16:固液分離装置
17:生物処理槽(SBR槽)
20:蒸発濃縮原水槽
21:凝縮水
22:濃縮水
23:蒸発濃縮装置
31:処理水
32:油分分離装置
33:油分分離膜
34:油分
1:凝集沈殿処理工程
2:蒸発濃縮処理工程
3:油分除去工程
4:脱窒工程
10:随伴水
11:清澄水
12:沈殿物
13:無機凝集剤
14:高分子凝集剤
15:凝集槽
16:固液分離装置
17:生物処理槽(SBR槽)
20:蒸発濃縮原水槽
21:凝縮水
22:濃縮水
23:蒸発濃縮装置
31:処理水
32:油分分離装置
33:油分分離膜
34:油分
Claims (8)
- 石油掘削随伴水の処理方法であって、
前記石油掘削随伴水に凝集沈殿処理を行い、清澄水及び沈殿物に分離する工程と、
前記清澄水に蒸発濃縮処理を行い、凝縮水及び濃縮水を得る工程とを有する、石油掘削随伴水の処理方法。 - 前記石油掘削随伴水中の油分濃度が100~5000ppmであり、CODが10~20,000ppmであり、無機塩類の濃度がTDSとして200~35,000ppmである、請求項1に記載の石油掘削随伴水の処理方法。
- さらに、前記凝縮水中の油分濃度を測定し、所定値を超えることが判明した場合は、油分分離膜を用いて前記凝縮水から油分の除去処理を行う工程を有する、請求項1または2に記載の石油掘削随伴水の処理方法。
- さらに、前記凝縮水中の窒素分濃度を測定し、所定値を超えることが判明した場合は、前記凝縮水から窒素分の除去処理を行う工程を有する、請求項1から3のいずれかに記載の石油掘削随伴水の処理方法。
- 前記清澄水中の油分濃度が5~1000ppmである、請求項1から4のいずれかに記載の石油掘削随伴水の処理方法。
- 前記凝縮水中の油分濃度が5~100ppmであり、CODが5~200ppmであり、無機塩類の濃度がTDSとして10~100ppmである、請求項1から5のいずれかに記載の石油掘削随伴水の処理方法。
- 前記蒸発濃縮処理を、車両にて運搬可能な蒸発濃縮装置、又は、車両にて運搬可能な2~4のユニットに分離可能な蒸発濃縮装置を用いて実施する、請求項1から6のいずれかに記載の石油掘削随伴水の処理方法。
- 前記凝集沈殿処理の前に、前記石油掘削随伴水中の有機成分の除去処理を行う、請求項1から7のいずれかに記載の石油掘削随伴水の処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180023277.4A CN115298142A (zh) | 2020-03-24 | 2021-02-19 | 石油开采采出水的处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020052549A JP7450215B2 (ja) | 2020-03-24 | 2020-03-24 | 石油掘削随伴水の処理方法 |
JP2020-052549 | 2020-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192763A1 true WO2021192763A1 (ja) | 2021-09-30 |
Family
ID=77887323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006349 WO2021192763A1 (ja) | 2020-03-24 | 2021-02-19 | 石油掘削随伴水の処理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7450215B2 (ja) |
CN (1) | CN115298142A (ja) |
WO (1) | WO2021192763A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329380A (ja) * | 2004-05-17 | 2005-12-02 | Takahashi Kinzoku Kk | 水系廃液の蒸発濃縮装置及びこれを利用した水系洗浄装置 |
CN201151689Y (zh) * | 2007-12-28 | 2008-11-19 | 福建师范大学 | 移动式油田废水电化学处理系统成套装置 |
WO2009001676A1 (ja) * | 2007-06-22 | 2008-12-31 | Hitachi, Ltd. | 油濁水再利用システム |
JP2013071057A (ja) * | 2011-09-28 | 2013-04-22 | Toshiba Corp | 水処理装置 |
JP2015039664A (ja) * | 2013-08-22 | 2015-03-02 | 株式会社日立製作所 | 水処理方法及び有機物の凝集剤 |
WO2017183236A1 (ja) * | 2016-04-21 | 2017-10-26 | 水ing株式会社 | 含油廃液の処理方法及びその装置 |
JP2018126680A (ja) * | 2017-02-07 | 2018-08-16 | 株式会社ササクラ | 蒸発濃縮装置 |
US20180272246A1 (en) * | 2017-03-24 | 2018-09-27 | Fred Polnisch | Production Water Desalinization Via a Reciprocal Heat Transfer and Recovery |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201963229U (zh) | 2011-03-14 | 2011-09-07 | 廊坊富邦德石油机械制造有限公司 | 低温移动式泥浆净化系统 |
-
2020
- 2020-03-24 JP JP2020052549A patent/JP7450215B2/ja active Active
-
2021
- 2021-02-19 WO PCT/JP2021/006349 patent/WO2021192763A1/ja active Application Filing
- 2021-02-19 CN CN202180023277.4A patent/CN115298142A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005329380A (ja) * | 2004-05-17 | 2005-12-02 | Takahashi Kinzoku Kk | 水系廃液の蒸発濃縮装置及びこれを利用した水系洗浄装置 |
WO2009001676A1 (ja) * | 2007-06-22 | 2008-12-31 | Hitachi, Ltd. | 油濁水再利用システム |
CN201151689Y (zh) * | 2007-12-28 | 2008-11-19 | 福建师范大学 | 移动式油田废水电化学处理系统成套装置 |
JP2013071057A (ja) * | 2011-09-28 | 2013-04-22 | Toshiba Corp | 水処理装置 |
JP2015039664A (ja) * | 2013-08-22 | 2015-03-02 | 株式会社日立製作所 | 水処理方法及び有機物の凝集剤 |
WO2017183236A1 (ja) * | 2016-04-21 | 2017-10-26 | 水ing株式会社 | 含油廃液の処理方法及びその装置 |
JP2018126680A (ja) * | 2017-02-07 | 2018-08-16 | 株式会社ササクラ | 蒸発濃縮装置 |
US20180272246A1 (en) * | 2017-03-24 | 2018-09-27 | Fred Polnisch | Production Water Desalinization Via a Reciprocal Heat Transfer and Recovery |
Also Published As
Publication number | Publication date |
---|---|
JP7450215B2 (ja) | 2024-03-15 |
JP2021152257A (ja) | 2021-09-30 |
CN115298142A (zh) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Samaei et al. | Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: Case study of Costerfield mining operations, Victoria, Australia | |
US8734650B2 (en) | Method for recovering gas from shale reservoirs and purifying resulting produced water to allow the produced water to be used as drilling or frac water, or discharged to the environment | |
Farahani et al. | Recovery of cooling tower blowdown water for reuse: The investigation of different types of pretreatment prior nanofiltration and reverse osmosis | |
Pi et al. | Pretreatment of municipal landfill leachate by a combined process | |
US20110042320A1 (en) | Treatment of contaminated water from gas wells | |
CN109250855B (zh) | 一种危险废物填埋场渗滤液的处理方法 | |
WO2017207527A1 (en) | Process for the treatment of production waters associated with crude oil extraction | |
Slater et al. | Treatment of landfill leachates by reverse osmosis | |
Anqi et al. | Review on landfill leachate treatment methods | |
Azmi et al. | The Effect of Operating Parameters on Ultrafiltration and Reverse Osmosis of Palm Oil Mill Effluent for Reclamation and Reuse of Water. | |
US12084369B2 (en) | Wastewater treatment equipment and treatment method thereof | |
WO2021192763A1 (ja) | 石油掘削随伴水の処理方法 | |
US20220306495A1 (en) | Reduction of industrial oily waste water and elimination of evaporation ponds | |
CN105246835A (zh) | 水处理装置的操作方法 | |
CN107381850A (zh) | 一种处理页岩炼油废水的系统和方法 | |
Wills et al. | Treating car wash wastewater by ceramic ultrafiltration membranes for reuse purposes | |
JP5106182B2 (ja) | 水処理方法および水処理装置 | |
CN213112931U (zh) | 油气废水和油泥的综合处理系统 | |
Melita et al. | Porous polymer membranes used for wastewater treatment | |
CN106045200A (zh) | 焦化废水处理工艺 | |
CN114835281B (zh) | 页岩气返排液的处理方法和页岩气返排液的处理装置 | |
Hoang et al. | Evaluation of treatment technology to improve the quality of underground wastewater at vinacomin Ha Lam coal joint stock company, Quang Ninh by ultra filtration | |
CN115477420B (zh) | 一种含聚合物的油田废水处理方法和处理装置 | |
Moayedi et al. | Surface water treatment process; A review on various methods | |
KR20220006868A (ko) | 폐수 처리방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21777147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21777147 Country of ref document: EP Kind code of ref document: A1 |