WO2021192695A1 - Optical member - Google Patents

Optical member Download PDF

Info

Publication number
WO2021192695A1
WO2021192695A1 PCT/JP2021/005057 JP2021005057W WO2021192695A1 WO 2021192695 A1 WO2021192695 A1 WO 2021192695A1 JP 2021005057 W JP2021005057 W JP 2021005057W WO 2021192695 A1 WO2021192695 A1 WO 2021192695A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
hole
substrate
groove
convex
Prior art date
Application number
PCT/JP2021/005057
Other languages
French (fr)
Japanese (ja)
Inventor
朋一 梅澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180019793.XA priority Critical patent/CN115244430A/en
Priority to JP2022509382A priority patent/JPWO2021192695A1/ja
Publication of WO2021192695A1 publication Critical patent/WO2021192695A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present disclosure relates to an optical member having a plurality of through holes that emit incident light as parallel light.
  • the optical member having a plurality of through holes that emits incident light as parallel light is known.
  • the optical member is a member in which a plurality of through holes penetrating the flat plate-shaped substrate in the thickness direction of the substrate are provided, and is also called a perforated plate or the like.
  • a plurality of through holes are arranged two-dimensionally at equal intervals as an example, and one of the arrangement surfaces on which the through holes are arranged is an incident surface and the other is an exit surface.
  • Japanese Unexamined Patent Publication No. 2004-133308 describes a transfer device having the above optical member and transferring an image displayed on a liquid crystal display to a photosensitive recording medium using light from a light source.
  • the optical member is arranged between the liquid crystal display and the light source in a posture in which the incident surface, which is one of the array surfaces of the through holes, and the image display surface of the liquid crystal display face each other, and the light from the light source. Is incident on the optical member.
  • the optical member emits the incident light as substantially parallel light by collimating the incident light through the through holes.
  • the parallel light emitted from the optical member is incident on the liquid crystal display, photomodulated by the image of the liquid crystal display, irradiated to the photosensitive recording medium, and the photosensitive recording medium is surface-exposed. As a result, the image displayed on the liquid crystal display is transferred to the photosensitive recording medium.
  • the optical member described in JP-A-2004-133308 is produced by laminating a plurality of thin plates having a plurality of holes formed so that the positions of the holes are aligned. By stacking the holes of the thin plates, a through hole is formed through the optical member having a laminated structure in which the thin plates are laminated.
  • the inner wall surface of the through hole of the optical member is painted black, and most of the light incident on the through hole of the optical member that travels diagonally and is incident on the inner wall surface is absorbed, and the depth of the through hole is deep.
  • the straight-ahead component that goes straight in the longitudinal direction (corresponding to the thickness direction of the flat plate-shaped substrate) is emitted through the through hole.
  • Japanese Patent Application Laid-Open No. 2011-85512 discloses a plate-shaped optical member called a microluber that limits the range of the emitted direction of transmitted light with respect to an image display device having a limited viewing angle.
  • the micro louver is a member that emits light from a liquid crystal display device in substantially parallel light, and has the same function as the above optical member.
  • the micro louver includes a plurality of transparent portions and a light absorbing layer provided so as to surround each transparent portion. Of the light incident on the transparent portion, a part of the oblique light component that travels diagonally and is incident on the light absorption layer is absorbed, and the straight-moving component that travels straight in the thickness direction of the transmitting portion is transmitted through the transmitting portion and emitted.
  • the through holes of the optical member described in Japanese Patent Application Laid-Open No. 2004-133308 are formed by laminating a plurality of thin plates in which a plurality of holes are formed by photoetching.
  • a tapered protrusion is formed on the inner wall surface of the holes in each thin plate due to the side etching phenomenon. Therefore, in an optical member having a laminated structure obtained by laminating a plurality of thin plates so that the positions of the holes are matched, tapered protrusions are generated on the inner wall surface of the through holes by the number of each thin plate. Unevenness is formed. This unevenness has an effect of preventing reflection of an oblique light component on the inner wall surface of the through hole.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an optical member capable of emitting parallel light having a higher yield and suppressed oblique light components than before. ..
  • the optical member of the present disclosure includes a single-layer substrate having a plurality of through holes that transmit light, and a single-layer substrate. It is an antireflection structure formed on at least a part of the inner wall surface of the through hole, and is an optical member having an antireflection structure including a plurality of streaky grooves.
  • the groove includes at least a plurality of streaky first grooves along the depth direction of the through hole.
  • the groove includes at least a plurality of streaky second grooves along the direction intersecting the depth direction of the through hole.
  • the groove further includes, in addition to the first groove, a plurality of streaky second grooves along the direction intersecting the depth direction of the through hole.
  • the average period of the plurality of first grooves and the average period of the plurality of second grooves are different.
  • the substrate is preferably an opaque material.
  • the through hole has an aspect ratio larger than 20 which is a ratio of the depth to the size of the opening.
  • the size of the opening of the through hole is larger than the average period of the groove.
  • the size of the opening of the through hole is preferably 5 to 100 ⁇ m.
  • the optical member of the present disclosure is provided with a plurality of through holes, and the arrangement of the plurality of holes is a square arrangement.
  • the difference between the transmittance of the substrate with respect to light and the transmittance of the through hole is 70% or more.
  • the through hole may be filled with a transparent material.
  • the groove is provided at at least one open end of the through hole.
  • the antireflection structure has an irregular structure.
  • a fine concavo-convex structure is formed on at least one of the front and back surfaces of the substrate other than the opening of the through hole.
  • the fine concavo-convex structure has an irregular structure.
  • a protective layer is provided on the surface of the substrate on which the fine concavo-convex structure is formed.
  • the depth of the groove of the antireflection structure is deeper than the depth of the recess of the fine concavo-convex structure.
  • the substrate is silicon
  • an optical member capable of producing a product having a good yield and emitting parallel light in which an oblique light component is suppressed.
  • FIG. 5 is a schematic cross-sectional view taken along line II-II of the optical member shown in FIG. It is an enlarged view of the inner wall surface of an example of a through hole. It is an enlarged view of the inner wall surface of another example of a through hole. It is an enlarged view of the inner wall surface of still another example of a through hole. It is explanatory drawing of an optical member. It is sectional drawing of the optical member of the design change example. It is sectional drawing of the optical member of another design change example. It is a figure for demonstrating the use example of an optical member. It is a figure which shows the process of the manufacturing method of an optical member.
  • the film thickness of each layer and their ratios are appropriately changed and drawn, and do not necessarily reflect the actual film thickness and ratio.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the optical member of the present disclosure is a single-layer substrate having a plurality of through holes that transmit light, and an antireflection structure formed on at least a part of the inner wall surface of the through holes, and includes a plurality of streaky grooves. It has an anti-reflection structure.
  • FIG. 1 is a perspective view of the optical member 1 of one embodiment
  • FIG. 2 is a diagram schematically showing a cross section of the optical member 1 shown in FIG. 1 in line II-II.
  • the optical member 1 has a single-layer substrate 10 having a plurality of through holes 21 that transmit light, and an antireflection structure formed on at least a part of the inner wall surface 21b of the through holes 21, and has a plurality of streaky grooves. It is provided with an antireflection structure 25 including 24.
  • the through hole 21 is provided so as to penetrate from one surface 10a of the substrate 10 to the other surface 10b, and the substrate 10 has an opening of the through hole 21 on the one surface 10a and the other surface 10b.
  • the antireflection structure 25 is composed of a concavo-convex structure including a concave portion which is a plurality of streaky grooves 24 formed on the inner wall surface 21b and a convex portion between the grooves 24.
  • one surface 1a and the other surface 1b of the optical member 1 coincide with the one surface 10a and the other surface 10b of the substrate 10.
  • the “single-layer substrate” means that the substrate 10 on which the through hole 21 is provided is a single layer, and the substrate 10 is not formed by laminating a plurality of layers.
  • the optical member 1 is a single layer. It does not mean that it is a layer. Therefore, it is not intended to exclude that the optical member 1 is composed of a plurality of layers as a whole by providing a protective layer or coating on the surface of the substrate 10. Since the substrate 10 on which the through holes 21 are provided is a single layer in the optical member 1, a thin plate having a plurality of holes formed by photoetching is formed like the optical member described in JP-A-2004-133308. It can be manufactured with a higher yield as compared with the case where it is formed by laminating a plurality of layers.
  • the "streak-shaped groove” is a portion of the inner wall surface 21b that is recessed with respect to the most convex surface on the central axis side of the through hole 21 in one direction (in the example shown in FIG. 2, the depth direction Z).
  • the "most convex surface” on the central axis side of the through hole 21 is, for example, when a streak-shaped groove is formed by processing the inner wall surface 21b immediately after the through hole 21 is formed, the inside On the wall surface 21b, the unprocessed surface remaining adjacent to the streaky groove is the "most convex surface".
  • the groove 24 may be a groove whose width does not change in the length direction, or may be a groove whose width changes in the length direction.
  • the width of the groove 24 used for comparison with the length of the groove 24 is the width at the widest portion.
  • the plurality of streaky grooves 24 constituting the antireflection structure 25 show, as an example, the streak-shaped grooves 24 along the depth direction Z of the through hole 21 in FIG. Examples of the shape of the streaky groove 24 are schematically shown in FIGS. 3 to 5.
  • 3 to 5 are perspective views showing a part of the inner wall surface 21b of the through hole 21, and the vertical direction of the paper surface coincides with the depth direction Z of the through hole 21.
  • FIG. 3 is a schematic view showing an enlarged groove 24 shown in FIG.
  • the grooves shown in FIG. 3 are a plurality of streaky first grooves 24a along the depth direction Z of the through hole 21.
  • the "streak-shaped first groove 24a along the depth direction of the through hole 21" is not limited to the groove extending in the direction parallel to the depth direction as shown in FIG. , Includes a groove extending in a direction having an inclination in the range of ⁇ 30 ° with respect to the depth direction.
  • the plurality of first grooves 24a may be parallel to each other, but may be non-parallel to each other.
  • the width of the first groove 24a may be changed so as to be narrowed or widened as it progresses in the depth direction.
  • the distance P1 between the concave depth d1 of the first groove 24a and the adjacent first groove 24a may or may not be uniform.
  • the average of the distances P1 between adjacent first grooves 24a is called the average period of the first grooves 24a.
  • the plurality of streaky grooves 24 constituting the antireflection structure provided in the optical member 1 are not limited to the first groove 24a along the depth direction Z as described above.
  • the second groove 24b shown in FIG. 4 is a streak-like groove along a direction orthogonal to the depth direction Z, and is a groove extending in a direction parallel to one surface 10a of the substrate 10.
  • the second groove 24b may be in a direction that intersects the depth direction Z, and is not limited to a groove that is orthogonal to the depth direction Z.
  • the plurality of second grooves 24b may be parallel to each other, but may be non-parallel to each other.
  • the width of the second groove 24b may also change in the direction in which the groove 24b extends.
  • the average of the distance P2 between the second grooves 24b adjacent to the concave depth d2 of the second groove 24b is called the average period of the second groove 24b.
  • the plurality of streaky grooves 24 constituting the antireflection structure provided in the optical member 1 as shown in FIG. 5, the plurality of streaky first grooves 24a along the depth direction of the through hole 21 , And a groove in which a plurality of streaky second grooves 24b along the direction intersecting in the depth direction are combined in a grid shape may be included.
  • the average period of the first groove 24a and the average period of the second groove 24b are substantially the same, but the average period of the first groove 24a and the second groove 24b may be different.
  • the distance P1 between the first grooves 24a and the distance P2 between the second grooves 24b may be regular or irregular. However, it is preferable that the distance between the grooves is irregular because the interference of light can be suppressed.
  • the streak-shaped groove 24 is a concept that collectively refers to a groove formed on an inner wall surface including the first groove 24a and the second groove 24b. Both the groove 24a and the second groove 24b are targeted.
  • the substrate 10 is cut at a position where the inner wall surface 21b of the through hole 21 can be observed, and the inner wall surface 21b is observed from the front with a scanning electron microscope (SEM). measure.
  • SEM scanning electron microscope
  • the distances between the grooves 24 at arbitrary 10 points are measured, and the average value of the measured distances is defined as the average period of the grooves 24.
  • the average period of the streaky grooves 24 is, for example, several nm to 1 ⁇ m, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm.
  • the preferable average period differs depending on the wavelength ⁇ of the light to which the present member is applied, and the average period is preferably the wavelength ⁇ or less used, and more preferably half or less ( ⁇ / 2 or less) of the wavelength used.
  • the average period of the streaky groove 24 is preferably the shortest wavelength of 380 nm or less, and further, 190 nm, which is half of the shortest wavelength of 380 mm. The following is more preferable.
  • the concave depth of the groove 24 is, for example, several nm to 1 ⁇ m, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm. Further, from the viewpoint of more effectively obtaining antireflection, the concave depth of the groove 24 is preferably ⁇ / 4 or more, more preferably ⁇ / 2 or more, when the wavelength used is ⁇ .
  • the concave depth of the groove 24 is preferably 195 nm or more, which is ⁇ / 4 with the longest wavelength of 780 nm, and 390 nm or more, which is ⁇ / 2 or more. More preferred.
  • the concave depth of the groove 24 is the distance in the groove depth direction from the most recessed portion of the groove 24 to the position of the convex portion between the grooves 24.
  • the optical member 1 can be used, for example, as a collimator that emits incident light as parallel light.
  • the straight component L1 that is incident on the through hole 21 and travels along the depth direction passes through the through hole 21 as it is and is optical. It is emitted from the other surface 1b of the member 1.
  • the oblique light component L2 obliquely incident on the through hole 21 is incident on the inner wall surface 21b inside the through hole 21. Since the antireflection structure 25 in which a plurality of streaky grooves 24 are formed on the inner wall surface 21b is provided, the oblique light component L2 incident on the inner wall surface 21b is hardly reflected.
  • the inner wall surface 21b of the through hole 21 does not have the antireflection structure 25
  • at least a part of the oblique light component L2 is reflected once or multiple times by the inner wall surface 21b as shown by the broken line in FIG. It is emitted from the through hole 21.
  • the optical member 1 the reflection of the light incident on the inner wall surface 21b can be suppressed, and as a result, the obliquely incident light incident on the inner wall surface 21b of the through hole 21 is emitted from the other surface 1b of the optical member 1. Can be suppressed. Therefore, according to the present optical member 1, it is possible to emit parallel light in which the oblique light component of the incident light is sufficiently suppressed.
  • the difference between the transmittance of the substrate 10 and the transmittance of the through hole 21 with respect to the light to be parallelized is 70% or more.
  • the transmittance of the substrate 10 means the transmittance of light in a portion other than the through hole 21 of the substrate.
  • the difference between the transmittance of the substrate 10 and the transmittance of the through hole 21 is 70% or more, the emitted light that has become parallel light can be efficiently extracted.
  • the substrate 10 is an opaque material. If the substrate 10 is an opaque material, the light incident on one surface 10a and the other surface 10b of the substrate 10 and the light incident on the inner wall surface 21b of the through hole 21 are absorbed, so that the light is mixed between the through holes 21. It can be suppressed and the parallel lightening can be further improved.
  • opaque means that the transmittance for the light of the object to be parallelized is less than 30%. Visible light is mainly assumed as the target light, but infrared light or ultraviolet light may be used. Examples of materials that are opaque to visible light include silicon. A silicon wafer applicable to the substrate 10 is easily available and easy to handle.
  • the through hole 21 of the substrate 10 may be painted black, the light incident on the one surface 10a, the other surface 10b, and the inner wall surface of the through hole 21 of the substrate 10 is absorbed. do. Therefore, even if the unpainted substrate itself is a transparent material, the substrate 10 has substantially the same transmittance as the opaque material by applying the black coating. Further, the through hole 21 may be hollow, but the through hole 21 may be filled with a transparent material.
  • the streak-shaped grooves 24 may be provided over the entire area in the depth direction, but other through holes 24 may be provided. As shown in the through hole 21, it may be provided at least in a part. When the groove 24 is partially provided, it may be provided in the depth direction of the through hole 21, for example, in a region occupying 1% or more and 50% or less with respect to the depth D. Further, when the groove 24 is partially provided, it may be provided anywhere in the depth direction of the through hole 21.
  • the groove 24 may be provided at the opening end of the through hole 21 in the depth direction, or may be provided inside the opening end.
  • the provided portion is not limited to one location, and may be provided at a plurality of discrete locations.
  • the opening end includes the opening of the through hole 21 located on one surface 10a or the other surface 10b of the substrate 10, and means a range of 1% with respect to the depth D from the opening.
  • the average period of the streaky grooves 24 is measured in the region where the grooves 24 are formed.
  • the groove 24 is provided on at least a part of the inner wall surface 21b of each through hole 21, the groove 24 is formed on the inner wall surface 21b of the oblique light component of the light incident into the through hole 21 from one end of each through hole 21. Reflection can be suppressed at least partially.
  • the oblique light component traveling in a direction largely inclined with respect to the depth direction of the through hole 21 is incident on the inner wall surface 21b at the opening end of the through hole 21. Therefore, if the groove 24 is provided at least at the open end, the reflection of the oblique light component that is greatly inclined is suppressed, so that parallel light can be promoted, which is preferable.
  • the through hole 21 preferably has an aspect ratio D / A, which is the ratio of the depth D to the opening size A, to be larger than 20. If the through hole 21 has a tapered shape and the size of the opening on one surface 10a of the substrate 10 is different from the size of the opening on the other surface 10b, the size of the smaller opening is used as the size of the through hole 21. It is defined as the size A of the opening. The size of the opening shall be the diameter equivalent to the circle of the opening. If the aspect ratio of the through hole 21 is larger than 20, most of the oblique light component is incident on the inner wall surface 21b in the through hole 21 and absorbed, so that the parallelization of light can be sufficiently enhanced.
  • the size of the opening of the through hole 21 is preferably larger than the average period of the groove 24.
  • the size of the opening of the through hole 21 is, for example, 5 ⁇ m to 1000 ⁇ m, preferably 5 ⁇ m to 500 ⁇ m, and even more preferably 5 ⁇ m to 100 ⁇ m.
  • a fine concavo-convex structure 30 having an antireflection function is formed in a portion other than the opening of the through hole 21 on one surface 10a, which is one surface of the front and back surfaces of the substrate 10.
  • the fine concavo-convex structure 30 has an antireflection function, in the optical member 1 of this example, it is possible to suppress the reflection of light incident on a portion other than the opening of the through hole 21 on the one surface 10a.
  • the fine concavo-convex structure 30 may include irregularities in a regular arrangement, but is preferably an irregular structure. If the fine concavo-convex structure is an irregular structure, light interference can be suppressed.
  • the term "irregular structure" means that, for example, the size or shape of the convex portions 32 is not uniform, or the arrangement pitch, which is the distance between a plurality of adjacent convex portions 32, is not uniform.
  • At least one of the size, shape and arrangement pitch of the convex portion 32 means a structure in which the protrusions 32 are not regular.
  • the average period of the fine concavo-convex structure 30 is approximately 1 ⁇ m or less.
  • the average period of the fine concavo-convex structure 30 is the average of the distances between the plurality of convex portions 32.
  • the distance between the convex portions 32 is the distance from the convex portion located closest to the convex portion 32 when focusing on one convex portion 32, and is the distance between the vertices of the two convex portions. be.
  • the distances between the convex portions 32 at arbitrary 10 points are measured, and the average value of the measured distances is calculated.
  • the average period of the fine concavo-convex structure 30 is set.
  • the average period of the fine concavo-convex structure 30 is, for example, several nm to 1 ⁇ m, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm.
  • the preferable average period differs depending on the wavelength ⁇ of the light to which the present member is applied, and the average period is preferably the wavelength ⁇ or less used, and more preferably half or less ( ⁇ / 2 or less) of the wavelength used.
  • the average period of the streaky groove 24 is preferably the shortest wavelength of 380 nm or less, and further, 190 nm, which is half of the shortest wavelength of 380 mm. The following is more preferable.
  • the unevenness difference e of the fine uneven structure 30 is, for example, several nm to 1 ⁇ m, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm. Further, from the viewpoint of more effectively obtaining antireflection, the unevenness difference e of the fine uneven structure 30 is preferably ⁇ / 4 or more, and more preferably ⁇ / 2 or more, when the wavelength used is ⁇ .
  • the concave depth of the groove 24 is preferably 195 nm or more, which is ⁇ / 4 with the longest wavelength of 780 nm, and 390 nm or more, which is ⁇ / 2 or more. More preferred.
  • the recess depth d (d1, d2) of the groove 24 of the antireflection structure 25 provided on the inner wall surface 21b of the through hole 21 is the fine concavo-convex structure. It is preferably deeper than the unevenness difference e of 30.
  • the incident angle of the oblique light component incident on the inner wall surface 21b is larger than the incident angle of the light on the fine concavo-convex structure 30 as a whole. For light with a large incident angle, the larger the difference in unevenness, the higher the antireflection effect.
  • the fine concavo-convex structure 30 is not essential, but it is more preferable to provide the fine concavo-convex structure 30 on at least one of the front and back surfaces of the substrate.
  • the fine concavo-convex structure 30 By providing the fine concavo-convex structure 30 on at least one of the front and back surfaces of the substrate, it is possible to suppress the reflection of light incident on a portion other than the through hole as described above.
  • the reflected light on at least one of the front and back surfaces becomes a noise component with respect to the parallel light transmitted through the through hole 21. Therefore, by suppressing the reflected light by the fine concavo-convex structure 30, it is possible to reduce the mixing of noise components into the parallel light transmitted through the through hole 21.
  • FIG. 7 and 8 show schematic cross-sectional views of the optical members 2 and 3 of the other embodiments.
  • the same elements as those of the optical member 1 of FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the optical member 2 has a fine concavo-convex structure 30 formed not only on one surface 10a of the substrate 10 but also on a portion other than the opening of the through hole 21 on the other surface 10b.
  • the optical member of the present disclosure may be further provided with a protective layer 35 on the surface of the fine concavo-convex structure 30, as shown in FIG. 8 as another example of the optical member 3.
  • a protective layer 35 By providing the protective layer 35, it is possible to protect the fine uneven structure and improve the durability.
  • a transparent hard coat film is preferable, and for example, a PET (Polyethylene terephthalate) film or the like can be used.
  • FIG. 9 shows an example of the use of the optical member of the present disclosure.
  • the optical member 3 of the present disclosure can be used in the transfer device 100 that transfers the image displayed on the liquid crystal display 101 to the photosensitive recording medium 102.
  • the optical member 1 shown in FIG. 6 or the optical member 2 shown in FIG. 7 can also be used.
  • the optical member 3 is in a posture in which one surface 10a of the substrate 10 provided with the through hole 21 and the image display surface of the liquid crystal display 101 face each other, and the liquid crystal display 101 and the photosensitive recording medium It is arranged between the 102 and the light from the liquid crystal display 101.
  • the optical member 3 emits light incident on the optical member 3 as substantially parallel light by collimating with each through hole 21.
  • the photosensitive recording medium 102 is surface-exposed by the light emitted from each through hole 21. As a result, the image displayed on the liquid crystal display 101 is transferred to the photosensitive recording medium 102.
  • the size and arrangement pitch of the through holes 21 are preferably formed so as to correspond to the pixel size and pixel pitch of the liquid crystal display 101. Therefore, when the pixels of the liquid crystal display 101 are in a square arrangement, it is preferable that the arrangement of the through holes 21 in the substrate 10 is also in a square arrangement. In particular, if the pixels of the liquid crystal display 101 and the through holes 21 have a 1: 1 correspondence, it is possible to obtain a higher sharp exposure image without causing light mixing between the pixels.
  • the optical member 3 Since the optical member 3 has a fine concavo-convex structure 30 on the surface 10a on which the light from the liquid crystal display 101 is incident, the light incident on the surface 10a other than the through hole 21 is suppressed from being reflected on the surface 10a and is incident. Most of the emitted light is absorbed by the substrate 10.
  • the straight component is emitted from the other surface 10b as it is, passes through the protective layer 35, and is irradiated to the photosensitive recording medium 102.
  • the oblique light component is incident on the inner wall surface 21b inside the through hole 21.
  • the optical member 3 Since the optical member 3 is provided with the antireflection structure 25 on the inner wall surface 21b of the through hole 21, the oblique light component incident on the inner wall surface 21b is not reflected and most of it is absorbed by the substrate 10. Further, a part of the light emitted from the other surface 10b of the substrate 10 and irradiating the photosensitive recording medium 102 may be reflected by the photosensitive recording medium 102 and returned to the optical member 3 side. Since the other surface 10b of the substrate 10 is also provided with the fine concavo-convex structure 30, it is possible to prevent the light incident on the other surface 10b from being reflected, and to prevent the light from being reflected again and heading toward the photosensitive recording medium. Therefore, the optical member 3 can guide only the linear component of the light emitted from the liquid crystal display 101 to the photosensitive recording medium 102, and can obtain an image with less bleeding and high transfer accuracy.
  • the protective layer 35 is provided on the other surface 10b of the substrate 10 facing the photosensitive recording medium 102 to protect the fine concavo-convex structure 30, so that the photosensitive recording medium 102 comes into contact with the optical member 3. It is possible to prevent damage to the fine concavo-convex structure 30 in such a case.
  • the manufacturing process includes a substrate preparation step (ST1), a mask forming step (ST2), a dry etching step (ST3), and a mask removing step (ST4).
  • a substrate 10 having a fine concavo-convex structure 30 having an average period of 1 ⁇ m or less on one surface 10a is prepared.
  • An example of the substrate preparation process is shown in FIG.
  • An example of the substrate preparation step is a step of forming a thin film containing aluminum on one surface of the substrate 9 to be processed (ST12), and the thin film containing aluminum is treated with warm water to change it into a fine concavo-convex layer containing alumina hydrate. It includes a step (ST13), a step of etching one surface of the substrate 9 to be processed from the fine concavo-convex layer side (ST14), and a step of removing the fine concavo-convex layer (ST15).
  • a thin film 50 containing aluminum (hereinafter referred to as an Al-containing thin film 50) is formed on one surface of the substrate 9 to be processed.
  • the Al-containing thin film 50 is, for example, a thin film made of any one of aluminum, aluminum oxide, aluminum nitride, and an aluminum alloy, but is changed to a fine concavo-convex layer containing an alumina hydrate such as boehmite by hot water treatment in a subsequent step. It may be a material.
  • the "aluminum alloy” refers to silicon (Si), iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn), chromium (Cr), titanium (Ti) and nickel. It contains at least one element such as (Ni) and means a compound or a solid solution containing aluminum as a main component. From the viewpoint of forming an uneven structure, the Al-containing thin film 50 preferably has an aluminum component ratio of 80 mol% or more with respect to all metal elements.
  • the thickness of the Al-containing thin film 50 may be set according to the desired thickness of the fine concavo-convex layer obtained in the subsequent step.
  • the thickness of the Al-containing thin film 50 is 0.5 to 60 nm, preferably 2 to 40 nm, and particularly preferably 5 to 20 nm.
  • the method for forming the Al-containing thin film 50 is not particularly limited.
  • general film forming methods such as a resistance heating vapor deposition method, an electron beam vapor deposition method, and a sputtering method can be used.
  • the Al-containing thin film 50 is hot-water treated.
  • the entire substrate 9 on which the Al-containing thin film 50 is formed is immersed in hot water by heating the pure water 56 in the container 55 using the hot plate 58.
  • the Al-containing thin film 50 can be changed into a fine concavo-convex layer 52 containing an alumina hydrate.
  • the fine concavo-convex layer 52 has a plurality of convex portions and a plurality of concave portions formed in an irregular shape and arrangement.
  • the size of the convex portions of the concave-convex structure layer and the average distance between the convex portions can be controlled by the material of the Al-containing thin film 50, the formation thickness, and the hot water treatment conditions. Its average period is approximately 1 ⁇ m or less.
  • hot water treatment means a treatment in which hot water acts on a thin film containing aluminum.
  • the hot water treatment includes, for example, a method of immersing the laminate in which the thin film 50 containing aluminum is formed in water at room temperature and then boiling the water, a method of immersing the laminate in warm water maintained at a high temperature, or a method of immersing the laminate in hot water maintained at a high temperature. It is a method of exposing to.
  • the pure water 56 in the container 55 is heated using the hot plate 58 to make hot water, and the substrate 9 to be processed is immersed in the hot water.
  • the time of immersion in warm water and the temperature of hot water are appropriately set according to the desired uneven structure.
  • the time is 1 minute or more, and 3 minutes or more and 15 minutes or less are particularly suitable.
  • the temperature of the hot water is preferably 60 ° C. or higher, and particularly preferably higher than 90 ° C. The higher the temperature, the shorter the processing time tends to be. For example, when a thin film containing aluminum having a thickness of 10 nm is boiled in warm water at 100 ° C. for 3 minutes, an irregular uneven structure in which the distance between the convex portions is 50 nm to 300 nm and the height of the convex portions is 50 nm to 100 nm is obtained. Be done.
  • the surface of the substrate 9 to be processed on which the fine concavo-convex layer 52 containing alumina hydrate is formed is etched from the fine concavo-convex layer 52 side using the etching gas G2.
  • a substrate 10 having a fine concavo-convex structure 30 on one surface 10a can be obtained.
  • the concavo-convex shape of the surface of the fine concavo-convex layer 52 gradually recedes due to dissolution erosion due to etching, and the unevenness of the fine concavo-convex layer 52 is reflected on the surface of the substrate 9 to be processed.
  • the fine concavo-convex structure 30 that reflects the morphology of the fine concavo-convex layer 52 is formed on the surface of the substrate 9 to be processed.
  • the meaning that the uneven shape of the fine uneven layer 52 is "reflected" means that the convex portion or the concave portion of the concave-convex shape has a convex portion or a concave portion at a position corresponding to one-to-one. It is not necessary and means a state that has some similarity to undulations.
  • etching step it is preferable to use, for example, reactive ion etching, reactive ion beam etching, or the like. It is preferable to perform etching under the condition that the etching rate of the substrate 10 is higher than the etching rate of the fine concavo-convex layer 52.
  • the etching gas G2 having high etching efficiency with respect to the substrate 10 include a fluorine-based gas or a chlorine-based gas similar to the etching gas G1.
  • the fine concavo-convex layer 52 is etched (ST40), and the substrate to be processed is formed in at least a part of the recesses of the fine concavo-convex layer 52.
  • the surface of 9 is exposed (ST41).
  • an etching gas G3 having a high etching efficiency for alumina hydrate is used.
  • etching gas G3 for example, a gas containing argon (Ar) and trifluoromethane (CHF 3 ) is used.
  • etching is performed on the surface of the substrate 9 to be processed using the etching gas G2 from the fine concavo-convex layer 52 side.
  • a substrate 10 having a fine concavo-convex structure 30 on one surface 10a is obtained (ST1).
  • the mask removing step preferably includes a washing step using sulfuric acid superwater which is a mixture of sulfuric acid H 2 SO 4 and hydrogen peroxide H 2 O 2, for example, SH-303 manufactured by Kanto Chemical Co., Inc.
  • sulfuric acid hydrogen peroxide By using sulfuric acid hydrogen peroxide, the fine uneven layer 52 remaining after the etching step can be efficiently removed.
  • a substrate having a fine concavo-convex structure on its surface is not limited to the above.
  • a substrate having a fine concavo-convex structure on the surface may be produced by irregularly adhering fine particles such as Cr to a flat plate-shaped substrate to be processed and etching the substrate surface using the particles as a mask. Further, a resin layer is formed on the surface of the substrate to be processed, and the uneven pattern of the mold having the uneven pattern is pressed against the resin layer to transfer the uneven pattern to the resin layer to form a mask by the resin layer on the surface of the substrate. By etching the surface of the substrate to be processed using this resin layer as a mask, a substrate having a fine concavo-convex structure on the surface may be produced.
  • a mask 42 having an opening pattern 41 is formed on the fine concavo-convex structure 30.
  • the method for forming the mask 42 and the mask material in the mask forming step are not particularly limited, but it is preferable that the mask 42 is made of an organic material. If an organic material is used, a mask 42 having a desired opening pattern can be easily formed. Hereinafter, a method of forming the mask 42 from an organic material will be briefly described.
  • An example mask forming step includes a photoresist coating step, a photoresist exposure step, and a photoresist developing step.
  • a positive photoresist 40 is applied to one surface 10a of the substrate 10.
  • an exposure mask 47 is arranged on the photoresist 40, and the portion 40a forming the opening of the photoresist 40 is exposed by irradiating the laser beam L. After that, by developing the photoresist 40, only the exposed portion 40a of the photoresist 40 can be dissolved to form an opening, and a mask 42 having an opening pattern 41 can be formed (ST2).
  • the mask forming step of another example may include a step of applying the resin layer and a step of transferring the uneven pattern to the resin layer.
  • a resin layer 46 made of, for example, a photocurable resin composition is applied to one surface 10a of the substrate 10.
  • an imprinting die 48 having a concavo-convex pattern corresponding to the opening pattern 41 of the mask 42 to be formed is used, and the concavo-convex pattern surface is pressed against the resin layer 46 to press the resin layer.
  • the uneven pattern is transferred to 46.
  • the resin layer 46 is cured by irradiating the resin layer 46 with ultraviolet light 49, and then the imprinting die 48 is peeled off to form an opening pattern on the substrate 10.
  • a mask 42 having 41 can be obtained (ST2).
  • the mask 42 formed in the mask forming step is used to perform dry etching on one surface 10a of the substrate 10 with the etching gas G1.
  • a through hole 21 corresponding to the opening pattern of the mask 42 is formed on one surface 10a of the substrate 10.
  • the etching gas G1 having high etching efficiency for the substrate 10.
  • a fluorine-based gas for example, trifluoromethane (CFH 3 ) or sulfur hexafluoride (SF 6 ) can be used, and as the chlorine-based gas, for example, chlorine gas (Cl 2 ) can be used.
  • FIG. 15 is a cross-sectional view of a portion of the optical member 1 including one through hole 21.
  • the inner wall surface 21b of the through hole 21 has a width substantially corresponding to the width of the convex portion 32 of the fine concavo-convex structure 30 or the distance between the convex portions 32, and has a streak-like groove along the depth direction of the through hole 21. 24 is formed.
  • FIG. 15 is a cross-sectional view of a portion of the optical member 1 including one through hole 21.
  • the inner wall surface 21b of the through hole 21 has a width substantially corresponding to the width of the convex portion 32 of the fine concavo-convex structure 30 or the distance between the convex portions 32, and has a streak-like groove along the depth direction of the through hole 21. 24 is formed.
  • the gray hatched portion is a groove 24 that is concave with respect to the white portion.
  • the width of the streaky grooves 24 has a width substantially corresponding to the width of the convex portions 32 or the spacing between the convex portions 32 on the surface layer side in the depth direction, but the width gradually narrows on the deep layer side.
  • FIGS. 16 and 17 show a state in which the mask 42 is formed on the fine uneven structure 30 on one surface of the substrate 10 before the dry etching process, and the right figure shows the mask removed after the dry etching process. Indicates the state.
  • the upper view is a plan view of the structure viewed from above the convex portion 32, and the lower view is a side view.
  • the entire plurality of convex portions 32 of the fine concavo-convex structure 30 are masked in the vicinity of the boundary B corresponding to the inner wall surface 42a of the opening portion of the mask 42.
  • the case where it is not covered by 42 is shown. That is, in the left view of FIG. 16, the inner wall surface 42a of the opening portion of the mask 42 is formed so as to bypass the foot portion of the convex portion 32 formed in a substantially conical shape.
  • the portion of the inner wall surface 42a of the mask 42 that bypasses the convex portion 32 is recessed toward the inside of the mask 42 rather than the portion between the adjacent convex portions 32.
  • the portion of the convex portion 32 where the mask 42 is not provided is scraped in the depth direction by etching in the vicinity of the boundary B.
  • the portion protected by the mask 42 is not scraped.
  • the portions corresponding to the plurality of convex portions 32 are etched in the depth direction, and the inner wall surface 21b of the through hole 21 has a width substantially corresponding to the width of the convex portions 32, and A streak-like groove 24 is formed along the depth direction.
  • the inner wall surface 42a of the mask 42 is formed so as to bypass the plurality of convex portions 32, the portion covered by the mask 42 and the convex portion not covered by the mask 42.
  • a groove 24 is formed on the inner wall surface 21b of the through hole 21 due to the difference in erosion rate from the portion where the 32 is located.
  • the portion corresponding to the exposed portion of the convex portion 32 that is not covered by the mask 42 in the vicinity of the boundary B is first eroded from the convex portion 32 and then convex. After the portion 32 is eroded, erosion in the depth direction that contributes to the formation of the through hole 21 is started. On the other hand, the portion where the convex portion 32 is not provided starts erosion in the depth direction, which contributes to the formation of the through hole 21, immediately after the start of etching. As described above, in the vicinity of the boundary B, the portion where the convex portion 32 is not provided is eroded faster by etching as compared with the portion where the convex portion 32 is provided.
  • the portion having a high erosion rate becomes a streak-shaped groove 24 having a width substantially corresponding to the interval of the convex portions 32 on the inner wall surface 21b of the through hole 21 and along the depth direction.
  • a groove is formed in the inner wall surface 21b of the through hole 21 due to the difference in erosion rate between the portion with the convex portion 32 and the portion without the convex portion 32. 24 is formed.
  • the reason why the streaky groove 24 as shown in FIG. 15 is formed on the inner wall surface 21b of the through hole 21 is due to the interaction between the plurality of convex portions 32 of the fine concavo-convex structure 30 and the mask 42. ..
  • the inner wall surface 21b of the through hole 21 is formed along the depth direction by the interaction between the plurality of convex portions 32 of the fine concavo-convex structure 30 and the mask 42. A plurality of streaky grooves 24 will be formed.
  • the width of the streaky groove 24 formed on the inner wall surface 21b and the formation interval of the groove 24 are the width of the convex portion 32 of the fine concavo-convex structure 30 and the interval between the convex portions 32, as described above. It changes according to.
  • etching by a so-called Bosch process in which etching gas and etching protection gas are alternately used, which is a general method for forming recesses having a high aspect ratio with respect to the substrate, may be performed.
  • Bosch process through holes having a high aspect ratio can be efficiently formed.
  • Scallops which is a streak-like groove extending in a direction that intersects substantially perpendicular to the depth direction, repeats in the depth direction on the inner wall surface of the through hole. Is known to be formed.
  • the streaky first groove 24a in the depth direction shown in FIG. 15 described above can be formed.
  • a streak-like second groove 24b that intersects substantially perpendicular to the depth direction can be formed. That is, as shown in FIG. 18, the grid-like unevenness in which the first groove 24a shown by gray hatching and the streak-shaped second groove 24b shown by diagonally downward-sloping hatching are combined is the inner wall surface 21b of the through hole 21. Will be formed in. In this case, in FIG.
  • the portion where the gray hatching and the diagonally downward-sloping hatching overlap is a deeper groove in which the first groove 24a and the second groove 24b overlap and the depths of the respective grooves are added.
  • the average period of the second groove 24b, in which the portion is formed and the unevenness having a complicated shape is formed, can be controlled by adjusting the switching time between the etching gas and the etching protection gas.
  • the mask forming step and the dry etching step are performed, and the etching by the Bosch process is performed in the dry etching step, the streaky first groove 24a along the depth direction is performed. It is possible to form a through hole 21 having only a streak-shaped second groove 24b that intersects substantially perpendicularly to the depth direction as shown in FIG.
  • the stripping liquid 60 is sprayed onto the substrate 10 to remove the mask 42 remaining after the dry etching step.
  • the mask removal preferably includes a dry etching step or a cleaning step using sulfuric acid hydrogen peroxide.
  • the dry etching step for removing the mask is, for example, a step of switching to an etching gas having a high etching property for the mask and performing etching after the above-mentioned dry etching step for forming the recess.
  • Mask removal by dry etching can be switched from the process of etching the substrate to the process of removing the mask only by switching the gas, and the work efficiency is good.
  • the mask 42 remaining after the dry etching step for forming the recess can be efficiently removed with high cleaning power.
  • the optical member 1 shown in ST5 of FIG. 10 can be obtained.
  • a silicon wafer was used as the substrate to be processed, and first, a substrate having a fine concavo-convex structure on the surface was produced. Specifically, first, an aluminum thin film was formed on the surface of the substrate to be processed by a sputtering method. The thickness of the aluminum thin film was 10 nm. Then, as a hot water treatment, the whole substrate was immersed in boiling pure water for 3 minutes to change the aluminum thin film into a fine concavo-convex layer containing alumina hydrate.
  • a breakthrough treatment is performed from the surface of the fine concavo-convex layer using a mixed gas of Ar gas and CHF 3 gas, and reactive ion etching is performed using a mixed gas of SF 6 gas and CHF 3 gas to perform the substrate to be processed.
  • a fine uneven structure was formed on the surface of the. In this way, a substrate having a fine uneven structure on the surface was obtained.
  • the photoresist was applied on the fine uneven structure of the substrate having the fine uneven structure on the surface, and an exposure mask having a predetermined opening was arranged on the photoresist to perform laser exposure of the photoresist. Further, a mask having an opening pattern was formed by performing a developing process. Then, using this mask, reactive ion etching was performed using a mixed gas of SF 6 gas and CHF 3 gas as the etching gas to form recesses on the surface of the substrate.
  • FIG. 19 is an SEM image showing a part of the structure produced as described above. As shown in FIG. 19, the structure has a plurality of recesses on the surface of the substrate. The opening of the recess was a square shape with a side of 20 ⁇ m. Here, a recess having a depth of 10 ⁇ m was formed.
  • FIG. 20 is an enlarged SEM image of the inner wall surface portion of one of the recesses in FIG. 19, and FIG. 21 is a further enlarged SEM image of the upper part of the inner wall surface of FIG. From FIGS. 20 and 21, it can be seen that a fine uneven structure is formed on the surface of the substrate. Further, it can be seen from FIG. 21 that a streak-like groove (a portion observed in a relatively dark color in the image) formed according to the fine uneven structure of the surface is formed on the inner wall surface of the recess.

Abstract

This optical member comprises: a single-layer substrate having a plurality of through holes that transmit light; and an anti-reflection structure that is formed on at least part of the inner wall surfaces of the through holes and includes a plurality of stripe-like grooves.

Description

光学部材Optical member
 本開示は、入射した光を平行光として出射する複数の貫通孔を有する光学部材に関する。 The present disclosure relates to an optical member having a plurality of through holes that emit incident light as parallel light.
 入射した光を平行光として出射する複数の貫通孔を有する光学部材が知られている。光学部材は、平板状の基板に対して、基板の厚み方向に貫通する貫通孔が複数設けられた部材であり、多孔板などとも呼ばれる。光学部材において、複数の貫通孔は一例として等間隔で二次元に配列されており、貫通孔が配列された配列面の一方が入射面となり、他方が出射面となる。 An optical member having a plurality of through holes that emits incident light as parallel light is known. The optical member is a member in which a plurality of through holes penetrating the flat plate-shaped substrate in the thickness direction of the substrate are provided, and is also called a perforated plate or the like. In the optical member, a plurality of through holes are arranged two-dimensionally at equal intervals as an example, and one of the arrangement surfaces on which the through holes are arranged is an incident surface and the other is an exit surface.
 特開2004-133308号公報には、上記光学部材を有しており、液晶表示器で表示された画像を光源からの光を用いて感光性記録媒体に転写する転写装置が記載されている。転写装置において、光学部材は、貫通孔の配列面の一方である入射面と液晶表示器の画像表示面とが対面する姿勢で、液晶表示器と光源との間に配置され、光源からの光が光学部材に入射する。光学部材は、入射した光を、各貫通孔によってコリメートすることによって略平行光として出射する。光学部材から出射された平行光は液晶表示器に入射され、液晶表示器の画像によって光変調され、感光性記録媒体に照射され、感光性記録媒体は、面露光される。これにより、液晶表示器に表示された画像が感光性記録媒体に転写される。 Japanese Unexamined Patent Publication No. 2004-133308 describes a transfer device having the above optical member and transferring an image displayed on a liquid crystal display to a photosensitive recording medium using light from a light source. In the transfer device, the optical member is arranged between the liquid crystal display and the light source in a posture in which the incident surface, which is one of the array surfaces of the through holes, and the image display surface of the liquid crystal display face each other, and the light from the light source. Is incident on the optical member. The optical member emits the incident light as substantially parallel light by collimating the incident light through the through holes. The parallel light emitted from the optical member is incident on the liquid crystal display, photomodulated by the image of the liquid crystal display, irradiated to the photosensitive recording medium, and the photosensitive recording medium is surface-exposed. As a result, the image displayed on the liquid crystal display is transferred to the photosensitive recording medium.
 特開2004-133308号公報に記載の光学部材は、複数の孔が形成された薄板を、孔の位置が合うように複数枚積層して作製される。各薄板の孔が積層されることにより、各薄板が積層された積層構造の光学部材を貫通する貫通孔が形成される。 The optical member described in JP-A-2004-133308 is produced by laminating a plurality of thin plates having a plurality of holes formed so that the positions of the holes are aligned. By stacking the holes of the thin plates, a through hole is formed through the optical member having a laminated structure in which the thin plates are laminated.
 光学部材の貫通孔の内壁面は黒色塗装が施されており、光学部材の貫通孔に入射した光のうち、斜めに進行して内壁面に入射する成分の多くは吸収され、貫通孔の深さ方向(平板状の基板の厚み方向に相当する)に直進する直進成分は貫通孔を透過して出射する。 The inner wall surface of the through hole of the optical member is painted black, and most of the light incident on the through hole of the optical member that travels diagonally and is incident on the inner wall surface is absorbed, and the depth of the through hole is deep. The straight-ahead component that goes straight in the longitudinal direction (corresponding to the thickness direction of the flat plate-shaped substrate) is emitted through the through hole.
 また、特開2011-85612号公報には、視野角を制限した画像表示装置に関し、透過光の出射方向の範囲を制限するマイクロルーバと呼ばれる板状の光学部材が開示されている。マイクロルーバは、液晶表示装置からの光を略平行光化して出射する部材であり、上記光学部材と同様の機能を有する。マイクロルーバは、複数の透明部と、個々の透明部を囲むように設けられた光吸収層とを備える。透明部に入射した光のうち、斜めに進行して光吸収層に入射する斜光成分の一部は吸収され、透過部の厚み方向に直進する直進成分は透過部を透過して出射される。 Further, Japanese Patent Application Laid-Open No. 2011-85512 discloses a plate-shaped optical member called a microluber that limits the range of the emitted direction of transmitted light with respect to an image display device having a limited viewing angle. The micro louver is a member that emits light from a liquid crystal display device in substantially parallel light, and has the same function as the above optical member. The micro louver includes a plurality of transparent portions and a light absorbing layer provided so as to surround each transparent portion. Of the light incident on the transparent portion, a part of the oblique light component that travels diagonally and is incident on the light absorption layer is absorbed, and the straight-moving component that travels straight in the thickness direction of the transmitting portion is transmitted through the transmitting portion and emitted.
 特開2011-85612号公報に記載のマイクロルーバを作製する場合は、まず、薄板状に形成された透明感光性樹脂をパターン露光し、露光したパターンを現像することで間隔を空けて配列された複数の透明部を形成する。そして、各透明部間の隙間に黒色硬化性樹脂を充填することにより光吸収層を形成する。これにより、複数の透明部が間隔を空けて配列されたマイクロルーバが作製される。 When producing the micro louvers described in JP-A-2011-85612, first, a transparent photosensitive resin formed in a thin plate shape was exposed to a pattern, and the exposed patterns were developed to arrange them at intervals. Form a plurality of transparent parts. Then, a light absorption layer is formed by filling the gaps between the transparent portions with a black curable resin. As a result, a micro louver in which a plurality of transparent portions are arranged at intervals is produced.
 特開2011-85612号公報に記載のマイクロルーバにおいて、透明部に入射した光のうち、斜光成分の一部は光吸収層に吸収されるが、透明部と光吸収層との間に反射防止構造は形成されていない。透明部と光吸収層の界面で斜光成分が反射すると、当然ながら光吸収層によって吸収することはできないため、斜光成分が透明部から出射されてしまう。斜光成分は、入射した光の平行光化に対してはマイナス要因であるため、できるだけ低減したいという要望がある。特に、画像の高画素化に伴って画素サイズ及び画素ピッチが小さくなるほど、画質に対する斜光成分の影響は大きくなるため、斜光成分を抑制する必要性が高い。 In the micro louver described in Japanese Patent Application Laid-Open No. 2011-85612, a part of the oblique light component of the light incident on the transparent portion is absorbed by the light absorption layer, but antireflection between the transparent portion and the light absorption layer. No structure has been formed. When the oblique light component is reflected at the interface between the transparent portion and the light absorbing layer, the oblique light component cannot be absorbed by the light absorbing layer as a matter of course, so that the oblique light component is emitted from the transparent portion. Since the oblique light component is a negative factor for parallelizing the incident light, there is a demand to reduce it as much as possible. In particular, as the pixel size and pixel pitch become smaller as the number of pixels in an image increases, the influence of the oblique light component on the image quality increases, so that it is highly necessary to suppress the oblique light component.
 一方、上述したとおり、特開2004-133308号公報に記載の光学部材の貫通孔は、複数の孔がフォトエッチングで形成された薄板を複数積層することにより形成される。各薄板にフォトエッチングで孔を形成する場合、サイドエッチ現象が生じることにより、テーパー状の突起が各薄板の孔の内壁面に形成される。そのため、複数の薄板をそれぞれの孔の位置を一致させて積層することで得られる積層構造の光学部材においては、貫通孔の内壁面に、各薄板の数だけテーパー状の突起が生じることにより、凹凸が形成される。この凹凸は貫通孔の内壁面における斜光成分の反射を防止する効果を有する。 On the other hand, as described above, the through holes of the optical member described in Japanese Patent Application Laid-Open No. 2004-133308 are formed by laminating a plurality of thin plates in which a plurality of holes are formed by photoetching. When holes are formed in each thin plate by photo-etching, a tapered protrusion is formed on the inner wall surface of the holes in each thin plate due to the side etching phenomenon. Therefore, in an optical member having a laminated structure obtained by laminating a plurality of thin plates so that the positions of the holes are matched, tapered protrusions are generated on the inner wall surface of the through holes by the number of each thin plate. Unevenness is formed. This unevenness has an effect of preventing reflection of an oblique light component on the inner wall surface of the through hole.
 しかしながら、特開2004-133308号公報の光学部材のような積層構造では、内壁面に形成される凹凸によって斜光成分の反射を防止する効果が得られる反面、製造過程において各薄板の孔の位置を一致させる必要がある。そのため、画素サイズ及び画素ピッチが小さくなるほど、位置合わせが難しく、歩留まりが低下する懸念があった。 However, in a laminated structure such as the optical member of Japanese Patent Application Laid-Open No. 2004-133308, the effect of preventing the reflection of the oblique light component can be obtained by the unevenness formed on the inner wall surface, but the position of the hole of each thin plate is determined in the manufacturing process. Need to match. Therefore, as the pixel size and pixel pitch become smaller, alignment becomes more difficult and there is a concern that the yield decreases.
 本開示は、上記事情に鑑みてなされたものであって、従来よりも、歩留りがよく、かつ斜光成分が抑制された平行光を出射することが可能な光学部材を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an optical member capable of emitting parallel light having a higher yield and suppressed oblique light components than before. ..
 本開示の光学部材は、光を透過する複数の貫通孔を有する単層の基板と、
前記貫通孔の内壁面の少なくとも一部に形成された反射防止構造であり、筋状の複数の溝を含む反射防止構造とを備えた光学部材である。
The optical member of the present disclosure includes a single-layer substrate having a plurality of through holes that transmit light, and a single-layer substrate.
It is an antireflection structure formed on at least a part of the inner wall surface of the through hole, and is an optical member having an antireflection structure including a plurality of streaky grooves.
 本開示の光学部材においては、溝は、貫通孔の深さ方向に沿った筋状の複数の第1溝を少なくとも含むことが好ましい。 In the optical member of the present disclosure, it is preferable that the groove includes at least a plurality of streaky first grooves along the depth direction of the through hole.
 あるいは、本開示の光学部材においては、溝は貫通孔の深さ方向と交差する方向に沿った筋状の複数の第2溝を少なくとも含むことが好ましい。 Alternatively, in the optical member of the present disclosure, it is preferable that the groove includes at least a plurality of streaky second grooves along the direction intersecting the depth direction of the through hole.
 本開示の光学部材においては、溝は、第1溝に加え、貫通孔の深さ方向と交差する方向に沿った筋状の複数の第2溝を、さらに含むことがさらに好ましい。 In the optical member of the present disclosure, it is more preferable that the groove further includes, in addition to the first groove, a plurality of streaky second grooves along the direction intersecting the depth direction of the through hole.
 本開示の光学部材においては、複数の第1溝の平均周期と複数の第2溝の平均周期とは異なることが好ましい。 In the optical member of the present disclosure, it is preferable that the average period of the plurality of first grooves and the average period of the plurality of second grooves are different.
 本開示の光学部材においては、基板は、不透明材料であることが好ましい。 In the optical member of the present disclosure, the substrate is preferably an opaque material.
 本開示の光学部材においては、貫通孔は、開口の大きさに対する深さの比であるアスペクト比が20より大きいことが好ましい。 In the optical member of the present disclosure, it is preferable that the through hole has an aspect ratio larger than 20 which is a ratio of the depth to the size of the opening.
 本開示の光学部材においては、貫通孔の開口の大きさが溝の平均周期よりも大きいことが好ましい。 In the optical member of the present disclosure, it is preferable that the size of the opening of the through hole is larger than the average period of the groove.
 本開示の光学部材においては、貫通孔の開口の大きさが5~100μmであることが好ましい。 In the optical member of the present disclosure, the size of the opening of the through hole is preferably 5 to 100 μm.
 本開示の光学部材においては、貫通孔を複数備え、複数の孔の配列が正方配列であることが好ましい。 It is preferable that the optical member of the present disclosure is provided with a plurality of through holes, and the arrangement of the plurality of holes is a square arrangement.
 本開示の光学部材においては、光に対する基板の透過率と、貫通孔の透過率との差が70%以上であることが好ましい。 In the optical member of the present disclosure, it is preferable that the difference between the transmittance of the substrate with respect to light and the transmittance of the through hole is 70% or more.
 本開示の光学部材においては貫通孔に、透明材料が充填されていてもよい。 In the optical member of the present disclosure, the through hole may be filled with a transparent material.
 本開示の光学部材においては、溝が、貫通孔における少なくとも一方の開口端に設けられていることが好ましい。 In the optical member of the present disclosure, it is preferable that the groove is provided at at least one open end of the through hole.
 本開示の光学部材においては、反射防止構造が不規則な構造であることが好ましい。 In the optical member of the present disclosure, it is preferable that the antireflection structure has an irregular structure.
 本開示の光学部材においては、基板の表裏面のうち少なくとも一方の面には、貫通孔の開口以外の部分に微細凹凸構造が形成されていることが好ましい。 In the optical member of the present disclosure, it is preferable that a fine concavo-convex structure is formed on at least one of the front and back surfaces of the substrate other than the opening of the through hole.
 本開示の光学部材においては、微細凹凸構造が不規則な構造であることが好ましい。 In the optical member of the present disclosure, it is preferable that the fine concavo-convex structure has an irregular structure.
 本開示の光学部材においては、基板において、微細凹凸構造が形成されている面に保護層が設けられていることが好ましい。 In the optical member of the present disclosure, it is preferable that a protective layer is provided on the surface of the substrate on which the fine concavo-convex structure is formed.
 本開示の光学部材においては、反射防止構造の溝の深さが、微細凹凸構造の凹部深さよりも深いことが好ましい。 In the optical member of the present disclosure, it is preferable that the depth of the groove of the antireflection structure is deeper than the depth of the recess of the fine concavo-convex structure.
 本開示の光学部材においては、基板がシリコンであることが好ましい。 In the optical member of the present disclosure, it is preferable that the substrate is silicon.
 本開示によれば、歩留りがよく製造することができ、かつ斜光成分が抑制された平行光を出射することが可能な光学部材を提供することができる。 According to the present disclosure, it is possible to provide an optical member capable of producing a product having a good yield and emitting parallel light in which an oblique light component is suppressed.
一実施形態の光学部材の斜視図である。It is a perspective view of the optical member of one Embodiment. 図1に示す光学部材のII-II線断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line II-II of the optical member shown in FIG. 貫通孔の一例の内壁面拡大図である。It is an enlarged view of the inner wall surface of an example of a through hole. 貫通孔の他の一例の内壁面拡大図である。It is an enlarged view of the inner wall surface of another example of a through hole. 貫通孔のさらに他の一例の内壁面拡大図である。It is an enlarged view of the inner wall surface of still another example of a through hole. 光学部材の説明図である。It is explanatory drawing of an optical member. 設計変更例の光学部材の断面図である。It is sectional drawing of the optical member of the design change example. 他の設計変更例の光学部材の断面図である。It is sectional drawing of the optical member of another design change example. 光学部材の使用例を説明するための図である。It is a figure for demonstrating the use example of an optical member. 光学部材の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of an optical member. 微細凹凸構造を有する基板の作製工程を示す図である。It is a figure which shows the manufacturing process of the substrate which has a fine concavo-convex structure. アルミナの水和物を含む微細凹凸層に対するブレークスルー処理の工程を示す図である。It is a figure which shows the process of the breakthrough treatment for the fine concavo-convex layer containing the hydrate of alumina. マスク形成工程の一例を示す図である。It is a figure which shows an example of a mask forming process. マスク形成工程の他の一例を示す図である。It is a figure which shows another example of a mask forming process. 凹部の内壁面を示す図である。It is a figure which shows the inner wall surface of a recess. エッチング工程を説明するための図である。It is a figure for demonstrating the etching process. エッチング工程を説明するための図である。It is a figure for demonstrating the etching process. 凹部の内壁面の他の例を示す図である。It is a figure which shows another example of the inner wall surface of a recess. 実証実験で作製した構造体の一部を示す走査型顕微鏡写真である。It is a scanning micrograph which shows a part of the structure produced in the demonstration experiment. 図19に示す構造体の一部を拡大した走査型顕微鏡写真である。It is a scanning micrograph which enlarged a part of the structure shown in FIG. 図20に示す構造体の一部をさらに拡大した走査型顕微鏡写真である。It is a scanning micrograph which further enlarged a part of the structure shown in FIG.
 以下、図面を参照して本開示の実施形態について説明する。なお、視認容易のため、各層の膜厚やそれらの比率は、適宜変更して描いており、必ずしも実際の膜厚や比率を反映したものではない。本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. For easy visibility, the film thickness of each layer and their ratios are appropriately changed and drawn, and do not necessarily reflect the actual film thickness and ratio. In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
 本開示の光学部材は、光を透過する複数の貫通孔を有する単層の基板と、貫通孔の内壁面の少なくとも一部に形成された反射防止構造であり、筋状の複数の溝を含む反射防止構造とを備えている。 The optical member of the present disclosure is a single-layer substrate having a plurality of through holes that transmit light, and an antireflection structure formed on at least a part of the inner wall surface of the through holes, and includes a plurality of streaky grooves. It has an anti-reflection structure.
 図1は、一実施形態の光学部材1の斜視図であり、図2は、図1に示す光学部材1のII-II線断面を模式的に示す図である。光学部材1は、光を透過する複数の貫通孔21を有する単層の基板10と、貫通孔21の内壁面21bの少なくとも一部に形成された反射防止構造であり、複数の筋状の溝24を含む反射防止構造25とを備えている。貫通孔21は基板10の一面10aから他面10bに貫通して設けられており、基板10は貫通孔21の開口を一面10a及び他面10bに有する。反射防止構造25は、内壁面21bに形成されている複数の筋状の溝24である凹部と溝24間の凸部とからなる凹凸構造で構成されている。本光学部材1においては、光学部材1の一面1aと他面1bは基板10の一面10aと他面10bと一致している。 FIG. 1 is a perspective view of the optical member 1 of one embodiment, and FIG. 2 is a diagram schematically showing a cross section of the optical member 1 shown in FIG. 1 in line II-II. The optical member 1 has a single-layer substrate 10 having a plurality of through holes 21 that transmit light, and an antireflection structure formed on at least a part of the inner wall surface 21b of the through holes 21, and has a plurality of streaky grooves. It is provided with an antireflection structure 25 including 24. The through hole 21 is provided so as to penetrate from one surface 10a of the substrate 10 to the other surface 10b, and the substrate 10 has an opening of the through hole 21 on the one surface 10a and the other surface 10b. The antireflection structure 25 is composed of a concavo-convex structure including a concave portion which is a plurality of streaky grooves 24 formed on the inner wall surface 21b and a convex portion between the grooves 24. In the optical member 1, one surface 1a and the other surface 1b of the optical member 1 coincide with the one surface 10a and the other surface 10b of the substrate 10.
 「単層の基板」とは、貫通孔21が設けられる基板10自体が単層であり、基板10が複数の層が積層されてなるものでないことを意味し、当然ながら、光学部材1が単層であることを意味するものではない。従って、基板10の表面に保護層を設けたり、塗装を施したりすることによって、光学部材1が全体として複数の層で構成されることを排除する趣旨ではない。本光学部材1は、貫通孔21が設けられる基板10が単層であるので、特開2004-133308号公報1に記載の光学部材のように、複数の孔がフォトエッチングで形成された薄板を複数積層することにより形成する場合と比較して、高い歩留りで製造することができる。 The “single-layer substrate” means that the substrate 10 on which the through hole 21 is provided is a single layer, and the substrate 10 is not formed by laminating a plurality of layers. Naturally, the optical member 1 is a single layer. It does not mean that it is a layer. Therefore, it is not intended to exclude that the optical member 1 is composed of a plurality of layers as a whole by providing a protective layer or coating on the surface of the substrate 10. Since the substrate 10 on which the through holes 21 are provided is a single layer in the optical member 1, a thin plate having a plurality of holes formed by photoetching is formed like the optical member described in JP-A-2004-133308. It can be manufactured with a higher yield as compared with the case where it is formed by laminating a plurality of layers.
 また、「筋状の溝」とは、内壁面21bのうち貫通孔21の中心軸側に最も凸の面に対して凹んだ部分が一方向(図2に示す例では、深さ方向Z)に連続的に形成された溝であって、一方向に沿った溝の長さが一方向と直交する方向の溝の幅の3倍以上である溝をいう。貫通孔21の中心軸側に「最も凸の面」とは、例えば、貫通孔21が形成された直後の内壁面21bに対して加工を施すことにより筋状の溝を形成した場合は、内壁面21bにおいて、筋状の溝に隣接して残る未加工の面が「最も凸の面」となる。また、溝24は、長さ方向において幅が変化しない溝であってもよいし、長さ方向において幅が変化する溝であってもよい。溝24の幅が変化している場合は、溝24の長さとの比較に使用する溝24の幅は、最も幅広部分での幅とする。 Further, the "streak-shaped groove" is a portion of the inner wall surface 21b that is recessed with respect to the most convex surface on the central axis side of the through hole 21 in one direction (in the example shown in FIG. 2, the depth direction Z). A groove that is continuously formed in a direction in which the length of the groove along one direction is three times or more the width of the groove in the direction orthogonal to one direction. The "most convex surface" on the central axis side of the through hole 21 is, for example, when a streak-shaped groove is formed by processing the inner wall surface 21b immediately after the through hole 21 is formed, the inside On the wall surface 21b, the unprocessed surface remaining adjacent to the streaky groove is the "most convex surface". Further, the groove 24 may be a groove whose width does not change in the length direction, or may be a groove whose width changes in the length direction. When the width of the groove 24 is changed, the width of the groove 24 used for comparison with the length of the groove 24 is the width at the widest portion.
 反射防止構造25を構成する複数の筋状の溝24は、図2には、一例として、貫通孔21の深さ方向Zに沿った筋状の溝24を示している。筋状の溝24の形状の例を図3~5に模式的に示す。なお、図3~5は、貫通孔21の内壁面21bの一部を示す斜視図であり、紙面の上下方向を貫通孔21の深さ方向Zと一致させている。 The plurality of streaky grooves 24 constituting the antireflection structure 25 show, as an example, the streak-shaped grooves 24 along the depth direction Z of the through hole 21 in FIG. Examples of the shape of the streaky groove 24 are schematically shown in FIGS. 3 to 5. 3 to 5 are perspective views showing a part of the inner wall surface 21b of the through hole 21, and the vertical direction of the paper surface coincides with the depth direction Z of the through hole 21.
 図3は図2に示す溝24を拡大して示す模式図である。図3に示す溝は、貫通孔21の深さ方向Zに沿った筋状の複数の第1溝24aである。なお、本明細書においては「貫通孔21の深さ方向に沿った筋状の第1溝24a」は、図3に示すような深さ方向に対して平行な方向に延びた溝に限らず、深さ方向に対して±30°の範囲で傾きを有する方向に延びた溝を含む。また、複数の第1溝24aは互いに平行であってもよいが、互いに非平行であってもよい。また、第1溝24aの幅は深さ方向に進むにつれて狭くなるように変化していてもよいし、あるいは拡がるように変化していてもよい。第1溝24aの凹深さd1と隣接する第1溝24a間の距離P1は、いずれも一様であってもよいし、一様でなくてもよい。隣接する第1溝24a同士の距離P1の平均を第1溝24aの平均周期という。 FIG. 3 is a schematic view showing an enlarged groove 24 shown in FIG. The grooves shown in FIG. 3 are a plurality of streaky first grooves 24a along the depth direction Z of the through hole 21. In the present specification, the "streak-shaped first groove 24a along the depth direction of the through hole 21" is not limited to the groove extending in the direction parallel to the depth direction as shown in FIG. , Includes a groove extending in a direction having an inclination in the range of ± 30 ° with respect to the depth direction. Further, the plurality of first grooves 24a may be parallel to each other, but may be non-parallel to each other. Further, the width of the first groove 24a may be changed so as to be narrowed or widened as it progresses in the depth direction. The distance P1 between the concave depth d1 of the first groove 24a and the adjacent first groove 24a may or may not be uniform. The average of the distances P1 between adjacent first grooves 24a is called the average period of the first grooves 24a.
 また、光学部材1に備えられる反射防止構造を構成する複数の筋状の溝24としては、上記のような深さ方向Zに沿った第1溝24aに限らない。図4に示すように、深さ方向Zと交差する方向に沿った筋状の複数の第2溝24bであってもよい。図4に示す第2溝24bは、深さ方向Zと直交する方向に沿った筋状の溝であり、基板10の一面10aに平行な方向に延びる溝である。しかし、第2溝24bは深さ方向Zと交差する方向であればよく、深さ方向Zと直交する溝に限らない。第1溝24aと同様に、複数の第2溝24bは互いに平行であってもよいが、互いに非平行であってもよい。第2溝24bの幅も溝24bが延びる方向において変化していてもよい。第2溝24bの凹深さd2と隣接する第2溝24b同士の距離P2の平均を第2溝24bの平均周期という。 Further, the plurality of streaky grooves 24 constituting the antireflection structure provided in the optical member 1 are not limited to the first groove 24a along the depth direction Z as described above. As shown in FIG. 4, there may be a plurality of streaky second grooves 24b along the direction intersecting the depth direction Z. The second groove 24b shown in FIG. 4 is a streak-like groove along a direction orthogonal to the depth direction Z, and is a groove extending in a direction parallel to one surface 10a of the substrate 10. However, the second groove 24b may be in a direction that intersects the depth direction Z, and is not limited to a groove that is orthogonal to the depth direction Z. Similar to the first groove 24a, the plurality of second grooves 24b may be parallel to each other, but may be non-parallel to each other. The width of the second groove 24b may also change in the direction in which the groove 24b extends. The average of the distance P2 between the second grooves 24b adjacent to the concave depth d2 of the second groove 24b is called the average period of the second groove 24b.
 さらに、光学部材1に備えられる反射防止構造を構成する複数の筋状の溝24としては、図5に示すように、貫通孔21の深さ方向に沿った筋状の複数の第1溝24a、及び、深さ方向に交差する方向に沿った筋状の複数の第2溝24bをグリッド状に組み合わせた溝を含んでいてもよい。なお、図5においては、第1溝24aの平均周期と、第2溝24bの平均周期は、ほぼ同等としているが、第1溝24aと第2溝24bの平均周期は異なっていてもよい。 Further, as the plurality of streaky grooves 24 constituting the antireflection structure provided in the optical member 1, as shown in FIG. 5, the plurality of streaky first grooves 24a along the depth direction of the through hole 21 , And a groove in which a plurality of streaky second grooves 24b along the direction intersecting in the depth direction are combined in a grid shape may be included. In FIG. 5, the average period of the first groove 24a and the average period of the second groove 24b are substantially the same, but the average period of the first groove 24a and the second groove 24b may be different.
 第1溝24a同士の距離P1、及び第2溝24b同士の距離P2は、規則的であっても、不規則であってもよい。但し、溝同士の距離が不規則である方が、光の干渉を抑制することができるため、好ましい。 The distance P1 between the first grooves 24a and the distance P2 between the second grooves 24b may be regular or irregular. However, it is preferable that the distance between the grooves is irregular because the interference of light can be suppressed.
 なお、筋状の溝24は、第1溝24a及び第2溝24bを含む内壁面に形成される溝を総称する概念であり、本明細書中において、単に溝24という場合には、第1溝24a及び第2溝24bの両者を対象とする。 The streak-shaped groove 24 is a concept that collectively refers to a groove formed on an inner wall surface including the first groove 24a and the second groove 24b. Both the groove 24a and the second groove 24b are targeted.
 筋状の溝24の平均周期は、基板10を貫通孔21の内壁面21bが観察可能な位置で割断し、内壁面21bを正面から走査型電子顕微鏡(Scanning Electron Microscope、SEM)で観察して計測する。SEM画像において、筋状の溝24が観察される領域において、任意の10箇所の溝24間の距離を測定し、測定した距離を平均した値を溝24の平均周期とする。筋状の溝24の平均周期は、例えば、数nm~1μmであるが、10nm~800nmであってもよく、10nm~400nmであってもよく、さらには10nm~200nmであってもよい。なお、本部材を適用する光の波長λによって、好ましい平均周期は異なり、平均周期は使用波長λ以下が好ましく、更には使用波長の半分以下(λ/2以下)がより好ましい。例えば、波長380nm~780nmの可視光の範囲で反射防止効果を得るには、筋状の溝24の平均周期は最短波長380nm以下であることが好ましく、更には、最短波長380mmの半分である190nm以下がより好ましい。溝24の凹深さは、例えば、数nm~1μmであるが、10nm~800nmであってもよく、10nm~400nmであってもよく、さらには10nm~200nmであってもよい。また、反射防止をより効果的に得る観点からは、溝24の凹深さは、使用波長λとした場合、λ/4以上が好ましく、更にはλ/2以上がより好ましい。例えば、波長380nm~780nmの可視光の範囲で反射防止効果を得るには、溝24の凹深さは最長波長780nmのλ/4である195nm以上が好ましく、λ/2以上である390nm以上がより好ましい。ここで、溝24の凹深さは溝24の最も凹んだ箇所から溝24間の凸部の位置までの溝深さ方向の距離である。 For the average period of the streaky grooves 24, the substrate 10 is cut at a position where the inner wall surface 21b of the through hole 21 can be observed, and the inner wall surface 21b is observed from the front with a scanning electron microscope (SEM). measure. In the region where the streaky grooves 24 are observed in the SEM image, the distances between the grooves 24 at arbitrary 10 points are measured, and the average value of the measured distances is defined as the average period of the grooves 24. The average period of the streaky grooves 24 is, for example, several nm to 1 μm, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm. The preferable average period differs depending on the wavelength λ of the light to which the present member is applied, and the average period is preferably the wavelength λ or less used, and more preferably half or less (λ / 2 or less) of the wavelength used. For example, in order to obtain an antireflection effect in the visible light range of a wavelength of 380 nm to 780 nm, the average period of the streaky groove 24 is preferably the shortest wavelength of 380 nm or less, and further, 190 nm, which is half of the shortest wavelength of 380 mm. The following is more preferable. The concave depth of the groove 24 is, for example, several nm to 1 μm, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm. Further, from the viewpoint of more effectively obtaining antireflection, the concave depth of the groove 24 is preferably λ / 4 or more, more preferably λ / 2 or more, when the wavelength used is λ. For example, in order to obtain the antireflection effect in the range of visible light having a wavelength of 380 nm to 780 nm, the concave depth of the groove 24 is preferably 195 nm or more, which is λ / 4 with the longest wavelength of 780 nm, and 390 nm or more, which is λ / 2 or more. More preferred. Here, the concave depth of the groove 24 is the distance in the groove depth direction from the most recessed portion of the groove 24 to the position of the convex portion between the grooves 24.
 本光学部材1は、例えば、入射した光を平行光として出射するコリメータとして用いることができる。図6に模式的に示すように、光学部材1の一面1aから入射した光のうち貫通孔21に入射してその深さ方向に沿って進行する直進成分L1はそのまま貫通孔21を通過し光学部材1の他面1bから出射される。一方、貫通孔21に対して斜めに入射する斜光成分L2は、貫通孔21内部においてその内壁面21bに入射する。内壁面21bに筋状の複数の溝24が形成された反射防止構造25を備えているので、内壁面21bに入射した斜光成分L2はほとんど反射しない。貫通孔21の内壁面21bに反射防止構造25がない場合には、図6中において破線で示すように、斜光成分L2のうちの少なくとも一部が内壁面21bで1回もしくは複数回反射されて貫通孔21から出射される。本光学部材1によれば、内壁面21bに入射した光の反射を抑制できるので、結果として、貫通孔21内壁面21bに入射するような斜め入射した光が光学部材1の他面1bから出射するのを抑制することができる。従って、本光学部材1によれば、入射光のうちの斜光成分を十分抑制した平行光を出射することができる。 The optical member 1 can be used, for example, as a collimator that emits incident light as parallel light. As schematically shown in FIG. 6, of the light incident from one surface 1a of the optical member 1, the straight component L1 that is incident on the through hole 21 and travels along the depth direction passes through the through hole 21 as it is and is optical. It is emitted from the other surface 1b of the member 1. On the other hand, the oblique light component L2 obliquely incident on the through hole 21 is incident on the inner wall surface 21b inside the through hole 21. Since the antireflection structure 25 in which a plurality of streaky grooves 24 are formed on the inner wall surface 21b is provided, the oblique light component L2 incident on the inner wall surface 21b is hardly reflected. When the inner wall surface 21b of the through hole 21 does not have the antireflection structure 25, at least a part of the oblique light component L2 is reflected once or multiple times by the inner wall surface 21b as shown by the broken line in FIG. It is emitted from the through hole 21. According to the optical member 1, the reflection of the light incident on the inner wall surface 21b can be suppressed, and as a result, the obliquely incident light incident on the inner wall surface 21b of the through hole 21 is emitted from the other surface 1b of the optical member 1. Can be suppressed. Therefore, according to the present optical member 1, it is possible to emit parallel light in which the oblique light component of the incident light is sufficiently suppressed.
 平行光化する対象の光に対する基板10の透過率と、貫通孔21の透過率との差が70%以上であることが好ましい。基板10の透過率とは基板の貫通孔21以外の部分における光の透過率を意味する。基板10の透過率と貫通孔21の透過率との差が70%以上であれば、平行光になった出射光を効率的に取り出すことが出来る。 It is preferable that the difference between the transmittance of the substrate 10 and the transmittance of the through hole 21 with respect to the light to be parallelized is 70% or more. The transmittance of the substrate 10 means the transmittance of light in a portion other than the through hole 21 of the substrate. When the difference between the transmittance of the substrate 10 and the transmittance of the through hole 21 is 70% or more, the emitted light that has become parallel light can be efficiently extracted.
 基板10が不透明材料であることが好ましい。基板10が不透明材料であれば、基板10の一面10a、他面10bに入射した光、及び貫通孔21の内壁面21bに入射した光を吸収するため、貫通孔21間での光の混合を抑制することができると共に、平行光化をより向上させることができる。ここで、不透明とは、平行光化する対象の光に対する透過率が30%未満であることを意味する。対象の光としては、主として可視光が想定されるが、赤外光あるいは紫外光であってもよい。可視光に対して不透明な材料としては、例えば、シリコンが挙げられる。基板10に適用可能なシリコンウエハは容易に入手することができ、取扱いが容易ある。 It is preferable that the substrate 10 is an opaque material. If the substrate 10 is an opaque material, the light incident on one surface 10a and the other surface 10b of the substrate 10 and the light incident on the inner wall surface 21b of the through hole 21 are absorbed, so that the light is mixed between the through holes 21. It can be suppressed and the parallel lightening can be further improved. Here, opaque means that the transmittance for the light of the object to be parallelized is less than 30%. Visible light is mainly assumed as the target light, but infrared light or ultraviolet light may be used. Examples of materials that are opaque to visible light include silicon. A silicon wafer applicable to the substrate 10 is easily available and easy to handle.
 なお、基板10の少なくとも一面10a、他面10b及び貫通孔21の内壁面21bが黒色塗装されていれば、基板10の一面10a、他面10b及び貫通孔21の内壁面に入射する光を吸収する。そのため未塗装の基板自体が透明材料であっても、黒色塗装を施すことにより実質的には基板10が不透明材料と同様の透過率を有することになる。また、貫通孔21は空洞であってもよいが、貫通孔21に透明材料が充填されていてもよい。 If at least one surface 10a, the other surface 10b, and the inner wall surface 21b of the through hole 21 of the substrate 10 are painted black, the light incident on the one surface 10a, the other surface 10b, and the inner wall surface of the through hole 21 of the substrate 10 is absorbed. do. Therefore, even if the unpainted substrate itself is a transparent material, the substrate 10 has substantially the same transmittance as the opaque material by applying the black coating. Further, the through hole 21 may be hollow, but the through hole 21 may be filled with a transparent material.
 筋状の溝24は、図2に示す複数の貫通孔21のうちの両端の貫通孔21に示されているように、深さ方向に全域に亘って設けられていてもよいが、他の貫通孔21に示されているように、少なくとも一部に設けられていればよい。溝24が部分的に設けられている場合には、貫通孔21の深さ方向において、例えば、その深さDに対して1%以上50%以下を占める領域に設けられていればよい。また、溝24が部分的に設けられている場合には、貫通孔21の深さ方向においてどこに設けられていてもよい。溝24は貫通孔21の深さ方向における開口端に設けられていてもよいし、開口端よりも内部に設けられていてもよい。また、設けられている部分は一箇所に限らず、離散的に複数箇所に設けられていてもよい。ここで、開口端とは、基板10の一面10a、あるいは他面10bに位置する貫通孔21の開口を含み、その開口から深さDに対して1%の範囲をいうものとする。なお、筋状の溝24の平均周期は、溝24が形成されている領域で測定される。 As shown in the through holes 21 at both ends of the plurality of through holes 21 shown in FIG. 2, the streak-shaped grooves 24 may be provided over the entire area in the depth direction, but other through holes 24 may be provided. As shown in the through hole 21, it may be provided at least in a part. When the groove 24 is partially provided, it may be provided in the depth direction of the through hole 21, for example, in a region occupying 1% or more and 50% or less with respect to the depth D. Further, when the groove 24 is partially provided, it may be provided anywhere in the depth direction of the through hole 21. The groove 24 may be provided at the opening end of the through hole 21 in the depth direction, or may be provided inside the opening end. Further, the provided portion is not limited to one location, and may be provided at a plurality of discrete locations. Here, the opening end includes the opening of the through hole 21 located on one surface 10a or the other surface 10b of the substrate 10, and means a range of 1% with respect to the depth D from the opening. The average period of the streaky grooves 24 is measured in the region where the grooves 24 are formed.
 溝24は、個々の貫通孔21の内壁面21bの少なくとも一部に設けられていれば、それぞれの貫通孔21の一端から貫通孔21内に入射する光のうちの斜光成分の内壁面21bでの反射を少なくとも一部抑制することができる。なお、貫通孔21の深さ方向に対して大きく傾いた方向に進行する斜光成分は、貫通孔21の開口端において内壁面21bに入射する。そのため、溝24が少なくとも開口端に設けられていれば、大きく傾いた斜光成分の反射が抑制されるので、平行光化を促進することができ、好ましい。 If the groove 24 is provided on at least a part of the inner wall surface 21b of each through hole 21, the groove 24 is formed on the inner wall surface 21b of the oblique light component of the light incident into the through hole 21 from one end of each through hole 21. Reflection can be suppressed at least partially. The oblique light component traveling in a direction largely inclined with respect to the depth direction of the through hole 21 is incident on the inner wall surface 21b at the opening end of the through hole 21. Therefore, if the groove 24 is provided at least at the open end, the reflection of the oblique light component that is greatly inclined is suppressed, so that parallel light can be promoted, which is preferable.
 貫通孔21は、開口の大きさAに対する深さDの比であるアスペクト比D/Aが20より大きいことが好ましい。貫通孔21がテーパー形状となっており、基板10の一面10aでの開口の大きさと他面10bでの開口の大きさが異なる場合には、小さい方の開口の大きさをその貫通孔21の開口の大きさAと定義する。なお、開口の大きさは、開口の円相当直径とする。貫通孔21のアスペクト比が20より大きければ、斜光成分の多くが貫通孔21内において内壁面21bに入射して吸収されるため、光の平行光化を十分に高めることができる。 The through hole 21 preferably has an aspect ratio D / A, which is the ratio of the depth D to the opening size A, to be larger than 20. If the through hole 21 has a tapered shape and the size of the opening on one surface 10a of the substrate 10 is different from the size of the opening on the other surface 10b, the size of the smaller opening is used as the size of the through hole 21. It is defined as the size A of the opening. The size of the opening shall be the diameter equivalent to the circle of the opening. If the aspect ratio of the through hole 21 is larger than 20, most of the oblique light component is incident on the inner wall surface 21b in the through hole 21 and absorbed, so that the parallelization of light can be sufficiently enhanced.
 貫通孔21の開口の大きさは溝24の平均周期よりも大きいことが好ましい。貫通孔21の開口の大きさは、例えば、5μm~1000μmであり、5μm~500μmが好ましく、5μm~100μmがさらに好ましい。 The size of the opening of the through hole 21 is preferably larger than the average period of the groove 24. The size of the opening of the through hole 21 is, for example, 5 μm to 1000 μm, preferably 5 μm to 500 μm, and even more preferably 5 μm to 100 μm.
 さらに、光学部材1においては、基板10の表裏面のうちの一方の面である一面10aの貫通孔21の開口以外の部分に反射防止機能を有する微細凹凸構造30が形成されている。 Further, in the optical member 1, a fine concavo-convex structure 30 having an antireflection function is formed in a portion other than the opening of the through hole 21 on one surface 10a, which is one surface of the front and back surfaces of the substrate 10.
 微細凹凸構造30は反射防止機能を有するので、本例の光学部材1においては、一面10aの貫通孔21の開口以外の部分に入射する光の反射も抑制することができる。この微細凹凸構造30は、規則的な配列の凹凸を含むものであってもよいが、不規則な構造であることが好ましい。微細凹凸構造が不規則な構造であれば、光の干渉を抑制することができる。ここで、「不規則な構造」とは、例えば、凸部32の大きさ又は形状が一様ではない、あるいは、隣接する複数の凸部32間の距離である配列ピッチが均一ではないというように、凸部32の大きさ、形状及び配列ピッチの少なくとも一つが規則的でない構造を意味する。微細凹凸構造30の平均周期は概ね1μm以下である。ここで、微細凹凸構造30の平均周期とは、複数の凸部32間の距離の平均とする。凸部32間の距離とは、1つの凸部32に注目した場合、その凸部32に最も近接して位置する凸部との距離であって、その2つの凸部の頂点間の距離である。なお、具体的には、微細凹凸構造30表面の走査型電子顕微鏡(Scanning Electron Microscope、SEM)画像において、任意の10箇所の凸部32間の距離を測定し、測定した距離を平均した値を微細凹凸構造30の平均周期とする。微細凹凸構造30の平均周期は、例えば、数nm~1μmであるが、10nm~800nmであってもよく、10nm~400nmであってもよく、さらには10nm~200nmであってもよい。なお、本部材を適用する光の波長λによって、好ましい平均周期は異なり、平均周期は使用波長λ以下が好ましく、更には使用波長の半分以下(λ/2以下)がより好ましい。例えば、波長380nm~780nmの可視光の範囲で反射防止効果を得るには、筋状の溝24の平均周期は最短波長380nm以下であることが好ましく、更には、最短波長380mmの半分である190nm以下がより好ましい。微細凹凸構造30の凹凸差eは、例えば、数nm~1μmであるが、10nm~800nmであってもよく、10nm~400nmであってもよく、さらには10nm~200nmであってもよい。また、反射防止をより効果的に得る観点からは、微細凹凸構造30の凹凸差eは、使用波長λとした場合、λ/4以上が好ましく、更にはλ/2以上がより好ましい。例えば、波長380nm~780nmの可視光の範囲で反射防止効果を得るには、溝24の凹深さは最長波長780nmのλ/4である195nm以上が好ましく、λ/2以上である390nm以上がより好ましい。 Since the fine concavo-convex structure 30 has an antireflection function, in the optical member 1 of this example, it is possible to suppress the reflection of light incident on a portion other than the opening of the through hole 21 on the one surface 10a. The fine concavo-convex structure 30 may include irregularities in a regular arrangement, but is preferably an irregular structure. If the fine concavo-convex structure is an irregular structure, light interference can be suppressed. Here, the term "irregular structure" means that, for example, the size or shape of the convex portions 32 is not uniform, or the arrangement pitch, which is the distance between a plurality of adjacent convex portions 32, is not uniform. In addition, at least one of the size, shape and arrangement pitch of the convex portion 32 means a structure in which the protrusions 32 are not regular. The average period of the fine concavo-convex structure 30 is approximately 1 μm or less. Here, the average period of the fine concavo-convex structure 30 is the average of the distances between the plurality of convex portions 32. The distance between the convex portions 32 is the distance from the convex portion located closest to the convex portion 32 when focusing on one convex portion 32, and is the distance between the vertices of the two convex portions. be. Specifically, in a scanning electron microscope (SEM) image on the surface of the fine concavo-convex structure 30, the distances between the convex portions 32 at arbitrary 10 points are measured, and the average value of the measured distances is calculated. The average period of the fine concavo-convex structure 30 is set. The average period of the fine concavo-convex structure 30 is, for example, several nm to 1 μm, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm. The preferable average period differs depending on the wavelength λ of the light to which the present member is applied, and the average period is preferably the wavelength λ or less used, and more preferably half or less (λ / 2 or less) of the wavelength used. For example, in order to obtain an antireflection effect in the visible light range of a wavelength of 380 nm to 780 nm, the average period of the streaky groove 24 is preferably the shortest wavelength of 380 nm or less, and further, 190 nm, which is half of the shortest wavelength of 380 mm. The following is more preferable. The unevenness difference e of the fine uneven structure 30 is, for example, several nm to 1 μm, but may be 10 nm to 800 nm, 10 nm to 400 nm, and further 10 nm to 200 nm. Further, from the viewpoint of more effectively obtaining antireflection, the unevenness difference e of the fine uneven structure 30 is preferably λ / 4 or more, and more preferably λ / 2 or more, when the wavelength used is λ. For example, in order to obtain the antireflection effect in the range of visible light having a wavelength of 380 nm to 780 nm, the concave depth of the groove 24 is preferably 195 nm or more, which is λ / 4 with the longest wavelength of 780 nm, and 390 nm or more, which is λ / 2 or more. More preferred.
 なお、本光学部材1のように、微細凹凸構造30を備える場合、貫通孔21の内壁面21bに設けられる反射防止構造25の溝24の凹部深さd(d1、d2)が、微細凹凸構造30の凹凸差eよりも深いことが好ましい。光学部材1の一面10aから入射する光のうち内壁面21bに対して入射する斜光成分の入射角は全体的に微細凹凸構造30への光の入射角よりも大きくなる。入射角が大きい光に対しては、凹凸の凹凸差が大きい方が反射防止の効果が高い。従って、貫通孔21の内壁面21bに形成される筋状の凹部の深さを、微細凹凸構造30の凹凸差よりも深くすることにより大きな入射角で入射する斜光成分に対して十分な反射防止効果が得られる。 When the fine concavo-convex structure 30 is provided as in the optical member 1, the recess depth d (d1, d2) of the groove 24 of the antireflection structure 25 provided on the inner wall surface 21b of the through hole 21 is the fine concavo-convex structure. It is preferably deeper than the unevenness difference e of 30. Of the light incident from one surface 10a of the optical member 1, the incident angle of the oblique light component incident on the inner wall surface 21b is larger than the incident angle of the light on the fine concavo-convex structure 30 as a whole. For light with a large incident angle, the larger the difference in unevenness, the higher the antireflection effect. Therefore, by making the depth of the streak-shaped recesses formed on the inner wall surface 21b of the through hole 21 deeper than the unevenness difference of the fine concave-convex structure 30, sufficient reflection prevention is provided for the oblique light component incident at a large incident angle. The effect is obtained.
 本開示の光学部材においては、微細凹凸構造30は必須ではないが、基板の表裏面のうち少なくとも一方の面に上記の微細凹凸構造30を備えることがより好ましい。基板の表裏面の少なくとも一方の面に微細凹凸構造30を備えることにより、既述の通り、貫通孔以外の部分に入射する光の反射を抑制することができる。表裏面の少なくとも一方における反射光は、貫通孔21を透過する平行光に対してはノイズ成分となる。このため、微細凹凸構造30によって反射光を抑制することで、貫通孔21を透過する平行光へのノイズ成分の混入を低減することができる。 In the optical member of the present disclosure, the fine concavo-convex structure 30 is not essential, but it is more preferable to provide the fine concavo-convex structure 30 on at least one of the front and back surfaces of the substrate. By providing the fine concavo-convex structure 30 on at least one of the front and back surfaces of the substrate, it is possible to suppress the reflection of light incident on a portion other than the through hole as described above. The reflected light on at least one of the front and back surfaces becomes a noise component with respect to the parallel light transmitted through the through hole 21. Therefore, by suppressing the reflected light by the fine concavo-convex structure 30, it is possible to reduce the mixing of noise components into the parallel light transmitted through the through hole 21.
 図7及び図8は他の実施形態の光学部材2及び3の断面模式図を示す。図1の光学部材1と同一の要素には同一の符号を付し詳細な説明は省略する。 7 and 8 show schematic cross-sectional views of the optical members 2 and 3 of the other embodiments. The same elements as those of the optical member 1 of FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
 光学部材2は、基板10の一面10aのみならず、他面10bの貫通孔21の開口以外の部分にも微細凹凸構造30が形成されている。このように基板10の表裏面の両方に反射防止機能を有する微細凹凸構造30を備えることにより、基板10の表裏面の両方において貫通孔21の開口以外の部分に入射する光の反射を抑制することができる。そのため、表裏面の一方に微細凹凸構造30を設ける場合よりもさらに、貫通孔21を透過する平行光へのノイズ成分の混入を低減することができる。 The optical member 2 has a fine concavo-convex structure 30 formed not only on one surface 10a of the substrate 10 but also on a portion other than the opening of the through hole 21 on the other surface 10b. By providing the fine concavo-convex structure 30 having an antireflection function on both the front and back surfaces of the substrate 10 in this way, the reflection of light incident on the portion other than the opening of the through hole 21 is suppressed on both the front and back surfaces of the substrate 10. be able to. Therefore, it is possible to further reduce the mixing of noise components into the parallel light transmitted through the through hole 21 as compared with the case where the fine concavo-convex structure 30 is provided on one of the front and back surfaces.
 なお、本開示の光学部材は、図8に他の一例の光学部材3を示すように、さらに、微細凹凸構造30の表面に保護層35が備えられていてもよい。保護層35を備えることで、微細凹凸構造を保護することができ、耐久性を向上させることができる。保護層35としては、透明なハードコートフィルムが好ましく、例えばPET(Polyethylene terephthalate)フィルムなどを用いることができる。 The optical member of the present disclosure may be further provided with a protective layer 35 on the surface of the fine concavo-convex structure 30, as shown in FIG. 8 as another example of the optical member 3. By providing the protective layer 35, it is possible to protect the fine uneven structure and improve the durability. As the protective layer 35, a transparent hard coat film is preferable, and for example, a PET (Polyethylene terephthalate) film or the like can be used.
 本開示の光学部材の用途の一例を図9に示す。図9に示すように、本開示の光学部材3は、液晶表示器101に表示された画像を感光性記録媒体102に転写する転写装置100において用いることができる。図9においては光学部材3を備えた場合について示しているが、図6に示す光学部材1又は図7に示す光学部材2を用いることもできる。転写装置100において、光学部材3は、貫通孔21が設けられている基板10の一方の面10aと液晶表示器101の画像表示面とが対面する姿勢で、液晶表示器101と感光性記録媒体102との間に配置され、液晶表示器101からの光が入射する。光学部材3は、光学部材3に入射した光を、各貫通孔21によってコリメートすることによって略平行光として出射する。感光性記録媒体102は、各貫通孔21から出射した光によって面露光される。これにより、液晶表示器101に表示された画像が感光性記録媒体102に転写される。 FIG. 9 shows an example of the use of the optical member of the present disclosure. As shown in FIG. 9, the optical member 3 of the present disclosure can be used in the transfer device 100 that transfers the image displayed on the liquid crystal display 101 to the photosensitive recording medium 102. Although the case where the optical member 3 is provided is shown in FIG. 9, the optical member 1 shown in FIG. 6 or the optical member 2 shown in FIG. 7 can also be used. In the transfer device 100, the optical member 3 is in a posture in which one surface 10a of the substrate 10 provided with the through hole 21 and the image display surface of the liquid crystal display 101 face each other, and the liquid crystal display 101 and the photosensitive recording medium It is arranged between the 102 and the light from the liquid crystal display 101. The optical member 3 emits light incident on the optical member 3 as substantially parallel light by collimating with each through hole 21. The photosensitive recording medium 102 is surface-exposed by the light emitted from each through hole 21. As a result, the image displayed on the liquid crystal display 101 is transferred to the photosensitive recording medium 102.
 なお、貫通孔21の大きさ及び配列ピッチは、液晶表示器101の画素の大きさ及び画素ピッチと対応して形成されていることが好ましい。したがって、液晶表示器101の画素が正方配列である場合、基板10における貫通孔21の配列も正方配列であることが好ましい。特に、液晶表示器101の画素と貫通孔21とが1:1で対応していれば、画素間の光のミキシングを生じさせず、より高い鮮鋭な露光画像を得ることができる。 The size and arrangement pitch of the through holes 21 are preferably formed so as to correspond to the pixel size and pixel pitch of the liquid crystal display 101. Therefore, when the pixels of the liquid crystal display 101 are in a square arrangement, it is preferable that the arrangement of the through holes 21 in the substrate 10 is also in a square arrangement. In particular, if the pixels of the liquid crystal display 101 and the through holes 21 have a 1: 1 correspondence, it is possible to obtain a higher sharp exposure image without causing light mixing between the pixels.
 光学部材3は、液晶表示器101からの光が入射する面10aにおいて微細凹凸構造30を備えているので、貫通孔21以外の面10aに入射した光は面10aでの反射が抑制され、入射した光のほとんどが基板10に吸収される。一方、基板10の一方の面10aから貫通孔21に入射した光のうち直進成分はそのまま他面10bから出射され保護層35を透過して感光性記録媒体102に照射される。他方、貫通孔21に入射した光のうち斜光成分は貫通孔21の内部において内壁面21bに入射する。光学部材3は貫通孔21の内壁面21bに反射防止構造25を備えているので、この内壁面21bに入射した斜光成分も反射されずほとんどが基板10に吸収される。また基板10の他面10bから出射され、感光性記録媒体102に照射した光の一部は感光性記録媒体102で反射されて光学部材3側に戻ってくる場合があるが、光学部材3は、基板10の他面10bにも微細凹凸構造30を備えているので他面10bに入射する光の反射を防止し、再度反射されて感光性記録媒体に向かうのを抑制することができる。従って、光学部材3は液晶表示器101から発光される光の直進成分のみを感光性記録媒体102に導くことができ、にじみの少ない、高い転写精度の画像を得ることができる。 Since the optical member 3 has a fine concavo-convex structure 30 on the surface 10a on which the light from the liquid crystal display 101 is incident, the light incident on the surface 10a other than the through hole 21 is suppressed from being reflected on the surface 10a and is incident. Most of the emitted light is absorbed by the substrate 10. On the other hand, of the light incident on the through hole 21 from one surface 10a of the substrate 10, the straight component is emitted from the other surface 10b as it is, passes through the protective layer 35, and is irradiated to the photosensitive recording medium 102. On the other hand, of the light incident on the through hole 21, the oblique light component is incident on the inner wall surface 21b inside the through hole 21. Since the optical member 3 is provided with the antireflection structure 25 on the inner wall surface 21b of the through hole 21, the oblique light component incident on the inner wall surface 21b is not reflected and most of it is absorbed by the substrate 10. Further, a part of the light emitted from the other surface 10b of the substrate 10 and irradiating the photosensitive recording medium 102 may be reflected by the photosensitive recording medium 102 and returned to the optical member 3 side. Since the other surface 10b of the substrate 10 is also provided with the fine concavo-convex structure 30, it is possible to prevent the light incident on the other surface 10b from being reflected, and to prevent the light from being reflected again and heading toward the photosensitive recording medium. Therefore, the optical member 3 can guide only the linear component of the light emitted from the liquid crystal display 101 to the photosensitive recording medium 102, and can obtain an image with less bleeding and high transfer accuracy.
 また、光学部材3においては感光性記録媒体102に対向する基板10の他面10bに保護層35を備え、微細凹凸構造30が保護されているので、感光性記録媒体102が光学部材3に接触した場合における微細凹凸構造30の損傷を防止できる。 Further, in the optical member 3, the protective layer 35 is provided on the other surface 10b of the substrate 10 facing the photosensitive recording medium 102 to protect the fine concavo-convex structure 30, so that the photosensitive recording medium 102 comes into contact with the optical member 3. It is possible to prevent damage to the fine concavo-convex structure 30 in such a case.
 次に、本開示の光学部材の製造方法について説明する。ここでは、光学部材2を製造するための製造方法の一例を、図10-18を参照して説明する。製造工程には、図10に示すように、基板準備工程(ST1)、マスク形成工程(ST2)、ドライエッチング工程(ST3)、及びマスク除去工程(ST4)を備える。 Next, the manufacturing method of the optical member of the present disclosure will be described. Here, an example of a manufacturing method for manufacturing the optical member 2 will be described with reference to FIGS. 10-18. As shown in FIG. 10, the manufacturing process includes a substrate preparation step (ST1), a mask forming step (ST2), a dry etching step (ST3), and a mask removing step (ST4).
<基板準備工程>
 まず、図10のST1に示すように、一面10aに1μm以下の平均周期を有する微細凹凸構造30を備えた基板10を用意する。基板準備工程の一例を図11に示す。一例の基板準備工程は、被加工基板9の一面にアルミニウムを含む薄膜を形成する工程(ST12)と、アルミニウムを含む薄膜を温水処理することによりアルミナの水和物を含む微細凹凸層に変化させる工程(ST13)と、微細凹凸層側から被加工基板9の一面をエッチングする工程(ST14)と、微細凹凸層を除去する工程(ST15)とを含む。
<Board preparation process>
First, as shown in ST1 of FIG. 10, a substrate 10 having a fine concavo-convex structure 30 having an average period of 1 μm or less on one surface 10a is prepared. An example of the substrate preparation process is shown in FIG. An example of the substrate preparation step is a step of forming a thin film containing aluminum on one surface of the substrate 9 to be processed (ST12), and the thin film containing aluminum is treated with warm water to change it into a fine concavo-convex layer containing alumina hydrate. It includes a step (ST13), a step of etching one surface of the substrate 9 to be processed from the fine concavo-convex layer side (ST14), and a step of removing the fine concavo-convex layer (ST15).
 まず、図11のST12に示すように、被加工基板9の一面にアルミニウムを含む薄膜50(以下において、Al含有薄膜50という。)を形成する。 First, as shown in ST12 of FIG. 11, a thin film 50 containing aluminum (hereinafter referred to as an Al-containing thin film 50) is formed on one surface of the substrate 9 to be processed.
 Al含有薄膜50は、例えば、アルミニウム、酸化アルミニウム、窒化アルミニウム及びアルミニウム合金のいずれかからなる薄膜であるが、後工程の温水処理によってベーマイトなどのアルミナの水和物を含む微細凹凸層に変化する材料であればよい。なお、「アルミニウム合金」とは、ケイ素(Si)、鉄(Fe)、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、亜鉛(Zn)、クロム(Cr)、チタン(Ti)及びニッケル(Ni)等の元素の少なくとも1種を含み、アルミニウムを主成分とする化合物又は固溶体を意味する。Al含有薄膜50は、凹凸構造を形成する観点から、すべての金属元素に対するアルミニウムの成分比が80モル%以上であることが好ましい。 The Al-containing thin film 50 is, for example, a thin film made of any one of aluminum, aluminum oxide, aluminum nitride, and an aluminum alloy, but is changed to a fine concavo-convex layer containing an alumina hydrate such as boehmite by hot water treatment in a subsequent step. It may be a material. The "aluminum alloy" refers to silicon (Si), iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn), chromium (Cr), titanium (Ti) and nickel. It contains at least one element such as (Ni) and means a compound or a solid solution containing aluminum as a main component. From the viewpoint of forming an uneven structure, the Al-containing thin film 50 preferably has an aluminum component ratio of 80 mol% or more with respect to all metal elements.
 Al含有薄膜50の厚さは、後工程で得られる微細凹凸層の所望の厚さに応じて設定すればよい。例えば、Al含有薄膜50の厚さは、0.5~60nmであり、2~40nmが好ましく、5~20nmが特に好ましい。 The thickness of the Al-containing thin film 50 may be set according to the desired thickness of the fine concavo-convex layer obtained in the subsequent step. For example, the thickness of the Al-containing thin film 50 is 0.5 to 60 nm, preferably 2 to 40 nm, and particularly preferably 5 to 20 nm.
 Al含有薄膜50を形成する方法は、特に限定されない。例えば、抵抗加熱蒸着法、電子ビーム蒸着法及びスパッタリング法等の一般的な成膜方法を使用することができる。 The method for forming the Al-containing thin film 50 is not particularly limited. For example, general film forming methods such as a resistance heating vapor deposition method, an electron beam vapor deposition method, and a sputtering method can be used.
 次に、図11のST13に示すように、温水処理工程において、Al含有薄膜50を温水処理する。例えば、図11のST13に示すように、ホットプレート58を用いて容器55中の純水56を加熱し温水とした中にAl含有薄膜50が形成された被加工基板9全体を浸漬させる。温水処理することにより、図11のST14に示すように、Al含有薄膜50をアルミナの水和物を含む微細凹凸層52に変化させることができる。この微細凹凸層52は、不規則な形状及び配置で形成された複数の凸部及び複数の凹部を有する。凹凸構造層の凸部の大きさ、凸部間の平均的な距離(すなわち凹凸の平均周期)はAl含有薄膜50の材料、形成厚さ及び温水処理条件によって制御することが可能であるが、その平均周期は概ね1μm以下である。 Next, as shown in ST13 of FIG. 11, in the hot water treatment step, the Al-containing thin film 50 is hot-water treated. For example, as shown in ST13 of FIG. 11, the entire substrate 9 on which the Al-containing thin film 50 is formed is immersed in hot water by heating the pure water 56 in the container 55 using the hot plate 58. By hot water treatment, as shown in ST14 of FIG. 11, the Al-containing thin film 50 can be changed into a fine concavo-convex layer 52 containing an alumina hydrate. The fine concavo-convex layer 52 has a plurality of convex portions and a plurality of concave portions formed in an irregular shape and arrangement. The size of the convex portions of the concave-convex structure layer and the average distance between the convex portions (that is, the average period of the irregularities) can be controlled by the material of the Al-containing thin film 50, the formation thickness, and the hot water treatment conditions. Its average period is approximately 1 μm or less.
 ここで「温水処理」とは、温水を、アルミニウムを含有する薄膜に作用させる処理を意味する。温水処理は、例えば、アルミニウムを含有する薄膜50が形成された積層体を室温の水に浸漬した後に水を煮沸する方法、高温に維持された温水に上記積層体を浸漬する方法、あるいは高温水蒸気に曝す方法等である。既述の通り、本実施形態では、ホットプレート58を用いて容器55中の純水56を加熱し温水とした中に被加工基板9ごと浸漬させている。温水中に浸漬する時間及び温水の温度は、所望の凹凸構造に応じて適宜設定される。目安としての時間は1分以上であり、特には3分以上、15分以下が適する。温水の温度は、60℃以上が好ましく、特には、90℃より高温であることが望ましい。温度が高いほど処理の時間が短くて済む傾向にある。例えば、厚さ10nmのアルミニウムを含有する薄膜を100℃の温水中で3分間煮沸すると、凸部間の距離が50nm~300nm、凸部の高さが50nm~100nmの不規則な凹凸構造が得られる。 Here, "hot water treatment" means a treatment in which hot water acts on a thin film containing aluminum. The hot water treatment includes, for example, a method of immersing the laminate in which the thin film 50 containing aluminum is formed in water at room temperature and then boiling the water, a method of immersing the laminate in warm water maintained at a high temperature, or a method of immersing the laminate in hot water maintained at a high temperature. It is a method of exposing to. As described above, in the present embodiment, the pure water 56 in the container 55 is heated using the hot plate 58 to make hot water, and the substrate 9 to be processed is immersed in the hot water. The time of immersion in warm water and the temperature of hot water are appropriately set according to the desired uneven structure. As a guide, the time is 1 minute or more, and 3 minutes or more and 15 minutes or less are particularly suitable. The temperature of the hot water is preferably 60 ° C. or higher, and particularly preferably higher than 90 ° C. The higher the temperature, the shorter the processing time tends to be. For example, when a thin film containing aluminum having a thickness of 10 nm is boiled in warm water at 100 ° C. for 3 minutes, an irregular uneven structure in which the distance between the convex portions is 50 nm to 300 nm and the height of the convex portions is 50 nm to 100 nm is obtained. Be done.
 さらに、図11のST15に示すように、アルミナの水和物を含む微細凹凸層52が形成された被加工基板9の表面に対して微細凹凸層52側からエッチングガスG2を用いたエッチングを行うことにより、ST1に示すように一面10aに微細凹凸構造30を備えた基板10を得ることができる。微細凹凸層52の表面からエッチングが施されると、微細凹凸層52の表面の凹凸形状がエッチングによる溶解浸食によって徐々に後退し、被加工基板9の表面に対し微細凹凸層52の凹凸を反映した形態で溶解浸食が作用する。これにより、被加工基板9の表面に微細凹凸層52の形態を反映した微細凹凸構造30が形成される。なお、微細凹凸層52の凹凸形状が「反映された」とは、その凹凸形状の凸部又は凹部それぞれに1対1に対応する位置に凸部又は凹部を有する、いわゆる転写ほどの位置精度は必要ではなく、何らかの起伏に類似性を有する程度の状態を意味する。 Further, as shown in ST15 of FIG. 11, the surface of the substrate 9 to be processed on which the fine concavo-convex layer 52 containing alumina hydrate is formed is etched from the fine concavo-convex layer 52 side using the etching gas G2. As a result, as shown in ST1, a substrate 10 having a fine concavo-convex structure 30 on one surface 10a can be obtained. When etching is performed from the surface of the fine concavo-convex layer 52, the concavo-convex shape of the surface of the fine concavo-convex layer 52 gradually recedes due to dissolution erosion due to etching, and the unevenness of the fine concavo-convex layer 52 is reflected on the surface of the substrate 9 to be processed. Dissolved erosion acts in this form. As a result, the fine concavo-convex structure 30 that reflects the morphology of the fine concavo-convex layer 52 is formed on the surface of the substrate 9 to be processed. It should be noted that the meaning that the uneven shape of the fine uneven layer 52 is "reflected" means that the convex portion or the concave portion of the concave-convex shape has a convex portion or a concave portion at a position corresponding to one-to-one. It is not necessary and means a state that has some similarity to undulations.
 このエッチング工程においては、例えば、反応性イオンエッチング、反応性イオンビームエッチングなどを用いることが好ましい。微細凹凸層52のエッチングレートよりも基板10のエッチングレートが大きい条件でエッチングを実施することが好ましい。基板10に対するエッチング効率のよいエッチングガスG2としては、例えば、エッチングガスG1と同様のフッ素系ガス又は塩素系ガスが挙げられる。 In this etching step, it is preferable to use, for example, reactive ion etching, reactive ion beam etching, or the like. It is preferable to perform etching under the condition that the etching rate of the substrate 10 is higher than the etching rate of the fine concavo-convex layer 52. Examples of the etching gas G2 having high etching efficiency with respect to the substrate 10 include a fluorine-based gas or a chlorine-based gas similar to the etching gas G1.
 なお、上記被加工基板9のエッチング工程の前に、被加工基板9の表面の少なくとも一部が露出するまで、微細凹凸層52をエッチングするブレークスルー処理を行うことが好ましい。具体的には、図12に示すように、微細凹凸層52の形成後(ST14)、微細凹凸層52をエッチングして(ST40)、微細凹凸層52の凹部の少なくとも一部において、被加工基板9の表面を露出させる(ST41)。このブレークスルー処理においては、微細凹凸層52を効率よくエッチングするために、アルミナ水和物に対するエッチング効率がよいエッチングガスG3を用いる。エッチングガスG3としては、例えば、アルゴン(Ar)及びトリフルオロメタン(CHF)を含むガスを用いる。その後、被加工基板9の表面に微細凹凸構造30を形成するため、図12のST42に示すように、微細凹凸層52側からエッチングガスG2を用い、被加工基板9の表面に対するエッチングを行うことにより、一面10aに微細凹凸構造30を備えた基板10を得る(ST1)。ブレークスルー処理を行うことで、基板のエッチング工程の時間を大幅に短縮することができるので、製造工程全体としての製造効率を上げることができる。 Before the etching step of the substrate 9 to be processed, it is preferable to perform a breakthrough process of etching the fine concavo-convex layer 52 until at least a part of the surface of the substrate 9 to be processed is exposed. Specifically, as shown in FIG. 12, after the fine concavo-convex layer 52 is formed (ST14), the fine concavo-convex layer 52 is etched (ST40), and the substrate to be processed is formed in at least a part of the recesses of the fine concavo-convex layer 52. The surface of 9 is exposed (ST41). In this breakthrough process, in order to efficiently etch the fine concavo-convex layer 52, an etching gas G3 having a high etching efficiency for alumina hydrate is used. As the etching gas G3, for example, a gas containing argon (Ar) and trifluoromethane (CHF 3 ) is used. After that, in order to form the fine concavo-convex structure 30 on the surface of the substrate 9 to be processed, as shown in ST42 of FIG. 12, etching is performed on the surface of the substrate 9 to be processed using the etching gas G2 from the fine concavo-convex layer 52 side. As a result, a substrate 10 having a fine concavo-convex structure 30 on one surface 10a is obtained (ST1). By performing the breakthrough process, the time required for the etching process of the substrate can be significantly shortened, so that the manufacturing efficiency of the entire manufacturing process can be improved.
 マスク除去工程は、硫酸HSOと過酸化水素Hの混合物である硫酸過水、例えば、関東化学株式会社製SH-303を用いた洗浄工程を含むことが好ましい。硫酸過水を用いれば、エッチング工程の後に残留している微細凹凸層52を効率よく除去することができる。 The mask removing step preferably includes a washing step using sulfuric acid superwater which is a mixture of sulfuric acid H 2 SO 4 and hydrogen peroxide H 2 O 2, for example, SH-303 manufactured by Kanto Chemical Co., Inc. By using sulfuric acid hydrogen peroxide, the fine uneven layer 52 remaining after the etching step can be efficiently removed.
 なお、微細凹凸構造を表面に有する基板の作製方法は、上記に限らない。平板状の被加工基板に対して、Cr等の微粒子を不規則に付着させ、粒子をマスクとして基板表面をエッチングすることにより、微細凹凸構造を表面に有する基板を作製してもよい。また、被加工基板の表面に樹脂層を形成し、凹凸パターンを有するモールドの凹凸パターンを樹脂層に押し付けて樹脂層に凹凸パターンを転写することにより基板の表面に樹脂層によるマスクを形成し、この樹脂層をマスクとして被加工基板の表面をエッチングすることにより、微細凹凸構造を表面に有する基板を作製してもよい。但し、上記のように、アルミナ水和物を含む微細凹凸構造を形成する手法によれば、1μm以下の不規則な微細凹凸を簡単に作製することができるので、微細凹凸構造を有する基板を効率よく作製することができる。 The method for producing a substrate having a fine concavo-convex structure on its surface is not limited to the above. A substrate having a fine concavo-convex structure on the surface may be produced by irregularly adhering fine particles such as Cr to a flat plate-shaped substrate to be processed and etching the substrate surface using the particles as a mask. Further, a resin layer is formed on the surface of the substrate to be processed, and the uneven pattern of the mold having the uneven pattern is pressed against the resin layer to transfer the uneven pattern to the resin layer to form a mask by the resin layer on the surface of the substrate. By etching the surface of the substrate to be processed using this resin layer as a mask, a substrate having a fine concavo-convex structure on the surface may be produced. However, as described above, according to the method of forming a fine concavo-convex structure containing alumina hydrate, irregular fine concavo-convex structure of 1 μm or less can be easily produced, so that a substrate having a fine concavo-convex structure can be efficiently produced. Can be made well.
<マスク形成工程>
 次に、図10のST2に示すように、マスク形成工程において、微細凹凸構造30上に、開口パターン41を有するマスク42を形成する。
<Mask forming process>
Next, as shown in ST2 of FIG. 10, in the mask forming step, a mask 42 having an opening pattern 41 is formed on the fine concavo-convex structure 30.
 マスク形成工程における、マスク42を形成する方法及びマスク材料は特に限定されないが、マスク42が有機材料で構成されていることが好ましい。有機材料を用いれば、容易な方法で所望の開口パターンを有するマスク42を形成することができる。以下、有機材料でマスク42を形成する方法を簡単に説明する。 The method for forming the mask 42 and the mask material in the mask forming step are not particularly limited, but it is preferable that the mask 42 is made of an organic material. If an organic material is used, a mask 42 having a desired opening pattern can be easily formed. Hereinafter, a method of forming the mask 42 from an organic material will be briefly described.
 一例のマスク形成工程では、フォトレジスト塗布工程、フォトレジスト露光工程及びフォトレジスト現像工程を含む。図13のST21に示すように、基板10の一面10aに、ポジ型のフォトレジスト40を塗布する。図13のST22に示すように、フォトレジスト40上に露光マスク47を配置して、フォトレジスト40の開口を形成する部分40aに対してレーザ光Lを照射して露光する。その後、フォトレジスト40を現像することによって、フォトレジスト40の露光された部分40aのみを溶解して開口を形成することができ、開口パターン41を有するマスク42を形成することができる(ST2)。 An example mask forming step includes a photoresist coating step, a photoresist exposure step, and a photoresist developing step. As shown in ST21 of FIG. 13, a positive photoresist 40 is applied to one surface 10a of the substrate 10. As shown in ST22 of FIG. 13, an exposure mask 47 is arranged on the photoresist 40, and the portion 40a forming the opening of the photoresist 40 is exposed by irradiating the laser beam L. After that, by developing the photoresist 40, only the exposed portion 40a of the photoresist 40 can be dissolved to form an opening, and a mask 42 having an opening pattern 41 can be formed (ST2).
 あるいは、他の一例のマスク形成工程では、樹脂層の塗布工程及び樹脂層への凹凸パターンの転写工程を含んでいてもよい。図14のST23に示すように基板10の一面10aに、例えば、光硬化性樹脂組成物からなる樹脂層46を塗布する。そして、図14のST24に示すように、形成すべきマスク42の開口パターン41に応じた凹凸パターンを有するインプリント用金型48を用い、その凹凸パターン面を樹脂層46に押圧し、樹脂層46に凹凸パターンを転写する。その後、図14のST25に示すように、樹脂層46に紫外光49を照射することによって樹脂層46を硬化させ、その後、インプリント用金型48を剥離することによって、基板10上に開口パターン41を有するマスク42を得ることができる(ST2)。 Alternatively, the mask forming step of another example may include a step of applying the resin layer and a step of transferring the uneven pattern to the resin layer. As shown in ST23 of FIG. 14, a resin layer 46 made of, for example, a photocurable resin composition is applied to one surface 10a of the substrate 10. Then, as shown in ST24 of FIG. 14, an imprinting die 48 having a concavo-convex pattern corresponding to the opening pattern 41 of the mask 42 to be formed is used, and the concavo-convex pattern surface is pressed against the resin layer 46 to press the resin layer. The uneven pattern is transferred to 46. Then, as shown in ST25 of FIG. 14, the resin layer 46 is cured by irradiating the resin layer 46 with ultraviolet light 49, and then the imprinting die 48 is peeled off to form an opening pattern on the substrate 10. A mask 42 having 41 can be obtained (ST2).
<ドライエッチング工程>
 その後、図10のST3に示すように、ドライエッチング工程において、マスク形成工程で形成されたマスク42を用いて基板10の一面10aに対してエッチングガスG1を用いたドライエッチングを行う。このドライエッチングにより基板10の一面10aにマスク42の開口パターンに応じた貫通孔21を形成する。
<Dry etching process>
After that, as shown in ST3 of FIG. 10, in the dry etching step, the mask 42 formed in the mask forming step is used to perform dry etching on one surface 10a of the substrate 10 with the etching gas G1. By this dry etching, a through hole 21 corresponding to the opening pattern of the mask 42 is formed on one surface 10a of the substrate 10.
 ドライエッチング工程においては、反応性イオンエッチングが好ましい。マスク42に対するエッチングレートよりも基板10に対するエッチングレートを大きくするために、基板10に対するエッチング効率のよいエッチングガスG1を用いることが好ましい。具体的には、フッ素系ガス又は塩素系ガスが挙げられる。フッ素系ガスとしては、例えばトリフルオロメタン(CFH)あるいは六フッ化硫黄(SF)、塩素系ガスとしては、例えば、塩素ガス(Cl)を用いることができる。 In the dry etching step, reactive ion etching is preferable. In order to make the etching rate for the substrate 10 larger than the etching rate for the mask 42, it is preferable to use the etching gas G1 having high etching efficiency for the substrate 10. Specific examples thereof include a fluorine-based gas or a chlorine-based gas. As the fluorine-based gas, for example, trifluoromethane (CFH 3 ) or sulfur hexafluoride (SF 6 ) can be used, and as the chlorine-based gas, for example, chlorine gas (Cl 2 ) can be used.
 微細凹凸構造30を一面10aに備えた基板10に対して、ドライエッチングで貫通孔21を形成すると、図15に示すように、貫通孔21の内壁面21bには微細凹凸構造30の凹凸に応じた筋状の溝24が形成される。図15は、光学部材1の1つの貫通孔21を含む部分の断面図である。貫通孔21の内壁面21bには、微細凹凸構造30の凸部32の幅又は凸部32の間隔にほぼ対応する幅を持ち、かつ、貫通孔21の深さ方向に沿った筋状の溝24が形成されている。図15中グレーのハッチングで示す部分が白色で示す部分に対して凹となっている溝24である。筋状の溝24の幅は、深さ方向の表層側では凸部32の幅又は凸部32の間隔にほぼ対応する幅を有するが、深層側では徐々に幅が狭くなっている。 When the through hole 21 is formed by dry etching on the substrate 10 provided with the fine uneven structure 30 on one surface 10a, as shown in FIG. 15, the inner wall surface 21b of the through hole 21 corresponds to the unevenness of the fine uneven structure 30. A streaky groove 24 is formed. FIG. 15 is a cross-sectional view of a portion of the optical member 1 including one through hole 21. The inner wall surface 21b of the through hole 21 has a width substantially corresponding to the width of the convex portion 32 of the fine concavo-convex structure 30 or the distance between the convex portions 32, and has a streak-like groove along the depth direction of the through hole 21. 24 is formed. In FIG. 15, the gray hatched portion is a groove 24 that is concave with respect to the white portion. The width of the streaky grooves 24 has a width substantially corresponding to the width of the convex portions 32 or the spacing between the convex portions 32 on the surface layer side in the depth direction, but the width gradually narrows on the deep layer side.
 図15のような筋状の溝24が形成される理由は、概略的に言えば、微細凹凸構造30の複数の凸部32とマスク42との相互作用による。図のような筋状の溝24が形成される原理を図16及び図17を参照して説明する。図16及び図17において、左図は、ドライエッチング工程前の基板10の一面の微細凹凸構造30上にマスク42が形成されている状態を示し、右図はドライエッチング工程後、マスクを除去した状態を示す。各図において、上図が凸部32の上方から構造体を見た平面図であり、下図が側面図である。 The reason why the streaky groove 24 as shown in FIG. 15 is formed is, roughly speaking, the interaction between the plurality of convex portions 32 of the fine concavo-convex structure 30 and the mask 42. The principle of forming the streaky groove 24 as shown in the figure will be described with reference to FIGS. 16 and 17. In FIGS. 16 and 17, the left figure shows a state in which the mask 42 is formed on the fine uneven structure 30 on one surface of the substrate 10 before the dry etching process, and the right figure shows the mask removed after the dry etching process. Indicates the state. In each view, the upper view is a plan view of the structure viewed from above the convex portion 32, and the lower view is a side view.
 まず、図16の例は、基板10にマスク42を形成した際に、マスク42の開口部分の内壁面42aに対応する境界B付近において、微細凹凸構造30の複数の凸部32の全体がマスク42によって覆われない場合を示す。すなわち、図16左図において、マスク42の開口部分の内壁面42aは、略円錐状に形成される凸部32の裾野部分を迂回するように形成されている。 First, in the example of FIG. 16, when the mask 42 is formed on the substrate 10, the entire plurality of convex portions 32 of the fine concavo-convex structure 30 are masked in the vicinity of the boundary B corresponding to the inner wall surface 42a of the opening portion of the mask 42. The case where it is not covered by 42 is shown. That is, in the left view of FIG. 16, the inner wall surface 42a of the opening portion of the mask 42 is formed so as to bypass the foot portion of the convex portion 32 formed in a substantially conical shape.
 図16左図の上図に示すように、マスク42の内壁面42aにおいて、凸部32を迂回する部分は、隣接する凸部32の間の部分よりも、マスク42の内部側に凹む。この状態で貫通孔21を形成するためにエッチングを行うと、境界B付近において、マスク42が設けられていない凸部32の部分はエッチングにより深さ方向に削られる。一方、マスク42によって保護されている部分は削られない。そのため、境界B付近において、複数の凸部32に対応する部分は深さ方向にエッチングが進み、貫通孔21の内壁面21bには、凸部32の幅にほぼ対応する幅を持ち、かつ、深さ方向に沿った筋状の溝24が形成される。このように、図16の例では、マスク42の内壁面42aが複数の凸部32を迂回するように形成されているため、マスク42によって覆われた部分とマスク42によって覆われていない凸部32がある部分との浸食速度の差によって、貫通孔21の内壁面21bに溝24が形成される。 As shown in the upper part of the left figure of FIG. 16, the portion of the inner wall surface 42a of the mask 42 that bypasses the convex portion 32 is recessed toward the inside of the mask 42 rather than the portion between the adjacent convex portions 32. When etching is performed to form the through hole 21 in this state, the portion of the convex portion 32 where the mask 42 is not provided is scraped in the depth direction by etching in the vicinity of the boundary B. On the other hand, the portion protected by the mask 42 is not scraped. Therefore, in the vicinity of the boundary B, the portions corresponding to the plurality of convex portions 32 are etched in the depth direction, and the inner wall surface 21b of the through hole 21 has a width substantially corresponding to the width of the convex portions 32, and A streak-like groove 24 is formed along the depth direction. As described above, in the example of FIG. 16, since the inner wall surface 42a of the mask 42 is formed so as to bypass the plurality of convex portions 32, the portion covered by the mask 42 and the convex portion not covered by the mask 42. A groove 24 is formed on the inner wall surface 21b of the through hole 21 due to the difference in erosion rate from the portion where the 32 is located.
 図17の例は、基板10にマスク42を形成した際に、マスク42の開口部分の内壁面42aに対応する境界B付近において、微細凹凸構造30の複数の凸部32の半分がマスク42によって覆われる場合を示す。すなわち、図17左図の境界Bに示すように、マスク42の開口部分の内壁面42aは、平面視において直線的に形成されている。この場合、円錐状の凸部32の一部、本例では凸部32の半分がマスク42によって覆われる。一方、凸部32の残りの部分はマスク42によって覆われない露出部分となる。この状態で貫通孔21を形成するためにエッチングを行うと、境界B付近において、マスク42によって覆われていない凸部32の露出部分に対応する部分は、まず凸部32から浸食がすすみ、凸部32が浸食された後、貫通孔21の形成に寄与する深さ方向の浸食が開始される。一方、凸部32が設けられていない部分は、エッチング開始直後から、貫通孔21の形成に寄与する深さ方向の浸食が開始される。このように、境界B付近において、凸部32が設けられていない部分は、凸部32が設けられている部分と比較して、エッチングによる浸食が速くすすむ。そのため、浸食速度が速い部分は、貫通孔21の内壁面21bにおいて、凸部32の間隔にほぼ対応する幅を持ち、かつ、深さ方向に沿った筋状の溝24となる。このように、図17の例では、マスク42の内壁面42aに対応する境界B付近において、凸部32がある部分と無い部分との浸食速度の差によって、貫通孔21の内壁面21bに溝24が形成される。 In the example of FIG. 17, when the mask 42 is formed on the substrate 10, half of the plurality of convex portions 32 of the fine concavo-convex structure 30 are formed by the mask 42 in the vicinity of the boundary B corresponding to the inner wall surface 42a of the opening portion of the mask 42. Indicates the case of being covered. That is, as shown at the boundary B in the left figure of FIG. 17, the inner wall surface 42a of the opening portion of the mask 42 is formed linearly in a plan view. In this case, a part of the conical convex portion 32, in this example, half of the convex portion 32 is covered with the mask 42. On the other hand, the remaining portion of the convex portion 32 is an exposed portion that is not covered by the mask 42. When etching is performed to form the through hole 21 in this state, the portion corresponding to the exposed portion of the convex portion 32 that is not covered by the mask 42 in the vicinity of the boundary B is first eroded from the convex portion 32 and then convex. After the portion 32 is eroded, erosion in the depth direction that contributes to the formation of the through hole 21 is started. On the other hand, the portion where the convex portion 32 is not provided starts erosion in the depth direction, which contributes to the formation of the through hole 21, immediately after the start of etching. As described above, in the vicinity of the boundary B, the portion where the convex portion 32 is not provided is eroded faster by etching as compared with the portion where the convex portion 32 is provided. Therefore, the portion having a high erosion rate becomes a streak-shaped groove 24 having a width substantially corresponding to the interval of the convex portions 32 on the inner wall surface 21b of the through hole 21 and along the depth direction. As described above, in the example of FIG. 17, in the vicinity of the boundary B corresponding to the inner wall surface 42a of the mask 42, a groove is formed in the inner wall surface 21b of the through hole 21 due to the difference in erosion rate between the portion with the convex portion 32 and the portion without the convex portion 32. 24 is formed.
 以上に示したとおり、貫通孔21の内壁面21bにおいて、図15のような筋状の溝24が形成される理由は、微細凹凸構造30の複数の凸部32とマスク42との相互作用による。 As shown above, the reason why the streaky groove 24 as shown in FIG. 15 is formed on the inner wall surface 21b of the through hole 21 is due to the interaction between the plurality of convex portions 32 of the fine concavo-convex structure 30 and the mask 42. ..
 実際のマスク42の内壁面42aに対応する境界Bにおいては、図16のように微細凹凸構造30の凸部32にマスク42が形成されていない状態と図17のように凸部32の一部がマスク42で覆われる状態とが混在していると考えられる。図16の例及び図17の例のいずれの場合でも、微細凹凸構造30の複数の凸部32とマスク42との相互作用によって、貫通孔21の内壁面21bには、深さ方向に沿った複数の筋状の溝24が形成されることになる。このため、本製造工程において、内壁面21bに形成される筋状の溝24の幅及び溝24の形成間隔は、上述したとおり、微細凹凸構造30の凸部32の幅及び凸部32の間隔に応じて変化する。 In the boundary B corresponding to the inner wall surface 42a of the actual mask 42, a state in which the mask 42 is not formed on the convex portion 32 of the fine concavo-convex structure 30 as shown in FIG. 16 and a part of the convex portion 32 as shown in FIG. Is considered to be mixed with the state of being covered with the mask 42. In both the example of FIG. 16 and the example of FIG. 17, the inner wall surface 21b of the through hole 21 is formed along the depth direction by the interaction between the plurality of convex portions 32 of the fine concavo-convex structure 30 and the mask 42. A plurality of streaky grooves 24 will be formed. Therefore, in the present manufacturing process, the width of the streaky groove 24 formed on the inner wall surface 21b and the formation interval of the groove 24 are the width of the convex portion 32 of the fine concavo-convex structure 30 and the interval between the convex portions 32, as described above. It changes according to.
 なお、基板に対してアスペクト比の高い凹部を形成する方法として一般的な、エッチングガスとエッチング保護ガスとを交互に使用する、所謂ボッシュプロセスによるエッチングを、上記ドライエッチング工程において行ってもよい。ボッシュプロセスによれば、アスペクト比の高い貫通孔を効率よく形成することができる。なお、ボッシュプロセスを用いて貫通孔を形成すると、貫通孔の内壁面にスキャロップ(Scallops)と呼ばれる、深さ方向に対してほぼ垂直に交わる方向に延びる筋状の溝が深さ方向に繰り返す構造が形成されることが知られている。 In the dry etching step, etching by a so-called Bosch process, in which etching gas and etching protection gas are alternately used, which is a general method for forming recesses having a high aspect ratio with respect to the substrate, may be performed. According to the Bosch process, through holes having a high aspect ratio can be efficiently formed. When a through hole is formed using the Bosch process, a structure called Scallops, which is a streak-like groove extending in a direction that intersects substantially perpendicular to the depth direction, repeats in the depth direction on the inner wall surface of the through hole. Is known to be formed.
 上記のように表面に微細凹凸構造30を備えた面に対してボッシュプロセスを用いて貫通孔21を形成することで、上記説明した図15に示す深さ方向の筋状の第1溝24aに加えて、深さ方向に対してほぼ垂直に交わる筋状の第2溝24bを形成することができる。すなわち、図18に示すように、グレーのハッチングで示す第1溝24aと、右下がり斜線ハッチングで示す筋状の第2溝24bとが組み合わさったグリッド状の凹凸が貫通孔21の内壁面21bに形成されることになる。この場合、図18においてグレーのハッチングと右下がり斜線ハッチングとが重畳した部分は、第1溝24aと第2溝24bとが重なって、それぞれの溝の深さが加算された、より深い溝となる部分が形成され、複雑な形状の凹凸が形成される第2溝24bの平均周期は、エッチングガスとエッチング保護ガスとの切り替え時間を調整することによって制御することができる。 By forming the through hole 21 on the surface having the fine concavo-convex structure 30 as described above by using the Bosch process, the streaky first groove 24a in the depth direction shown in FIG. 15 described above can be formed. In addition, a streak-like second groove 24b that intersects substantially perpendicular to the depth direction can be formed. That is, as shown in FIG. 18, the grid-like unevenness in which the first groove 24a shown by gray hatching and the streak-shaped second groove 24b shown by diagonally downward-sloping hatching are combined is the inner wall surface 21b of the through hole 21. Will be formed in. In this case, in FIG. 18, the portion where the gray hatching and the diagonally downward-sloping hatching overlap is a deeper groove in which the first groove 24a and the second groove 24b overlap and the depths of the respective grooves are added. The average period of the second groove 24b, in which the portion is formed and the unevenness having a complicated shape is formed, can be controlled by adjusting the switching time between the etching gas and the etching protection gas.
 なお、表面に微細凹凸構造を有しない基板を用い、上記マスク形成工程及びドライエッチング工程を行い、ドライエッチング工程においてボッシュプロセスによるエッチングを行えば、深さ方向に沿った筋状の第1溝24aを備えず、図6に示したような深さ方向に対してほぼ垂直に交わる筋状の第2溝24bのみを備えた貫通孔21を形成することができる。 If a substrate having no fine uneven structure on the surface is used, the mask forming step and the dry etching step are performed, and the etching by the Bosch process is performed in the dry etching step, the streaky first groove 24a along the depth direction is performed. It is possible to form a through hole 21 having only a streak-shaped second groove 24b that intersects substantially perpendicularly to the depth direction as shown in FIG.
<マスク除去工程>
 最後に、図10のST4に示すように、マスク除去工程において、剥離液60を基板10に吹き付けることにより、ドライエッチング工程後に残留するマスク42を除去する。マスク除去は、ドライエッチング工程又は硫酸過水を用いた洗浄工程を含むことが好ましい。
<Mask removal process>
Finally, as shown in ST4 of FIG. 10, in the mask removing step, the stripping liquid 60 is sprayed onto the substrate 10 to remove the mask 42 remaining after the dry etching step. The mask removal preferably includes a dry etching step or a cleaning step using sulfuric acid hydrogen peroxide.
 マスク除去ためのドライエッチング工程は、例えば、前述の凹部形成のためのドライエッチング工程の後、マスクに対するエッチング性が高いエッチングガスに切り替えてエッチングを行う工程である。ドライエッチングによるマスク除去は、ガスの切り替えのみで基板をエッチングする工程からマスクの除去工程に切り替えることができ、作業効率がよい。 The dry etching step for removing the mask is, for example, a step of switching to an etching gas having a high etching property for the mask and performing etching after the above-mentioned dry etching step for forming the recess. Mask removal by dry etching can be switched from the process of etching the substrate to the process of removing the mask only by switching the gas, and the work efficiency is good.
 また、硫酸過水を用いた洗浄工程を用いれば、前述の凹部形成のためのドライエッチング工程の後に残留しているマスク42を高い洗浄力で効率よく除去することができる。 Further, if the cleaning step using sulfuric acid hydrogen peroxide is used, the mask 42 remaining after the dry etching step for forming the recess can be efficiently removed with high cleaning power.
 以上の工程を経て、図10のST5に示す光学部材1を得ることができる。 Through the above steps, the optical member 1 shown in ST5 of FIG. 10 can be obtained.
 以下、上記製造方法によって、基板に対して凹部を形成し、凹部の壁面、すなわち貫通孔に筋状の溝が形成されることを実証した実験について説明する。 Hereinafter, an experiment demonstrating that a recess is formed in the substrate by the above manufacturing method and a streak-like groove is formed in the wall surface of the recess, that is, the through hole will be described.
 被加工基板としてシリコンウエハを用い、まず、表面に微細凹凸構造を有する基板を作製した。具体的には、まず、被加工基板の表面にアルミニウム薄膜を、スパッタ法により成膜形成した。アルミニウム薄膜は厚さ10nmとした。その後、温水処理として、沸騰した純水中に3分間、基板ごと浸漬させ、アルミニウム薄膜をアルミナの水和物を含む微細凹凸層に変化させた。その後、微細凹凸層の表面から、ArガスとCHFガスの混合ガスを用いてブレークスルー処理を行い、SFガスとCHFガスの混合ガスを用いて反応性イオンエッチングを行い、被加工基板の表面に微細凹凸構造を形成した。このようにして、表面に微細凹凸構造を有する基板を得た。 A silicon wafer was used as the substrate to be processed, and first, a substrate having a fine concavo-convex structure on the surface was produced. Specifically, first, an aluminum thin film was formed on the surface of the substrate to be processed by a sputtering method. The thickness of the aluminum thin film was 10 nm. Then, as a hot water treatment, the whole substrate was immersed in boiling pure water for 3 minutes to change the aluminum thin film into a fine concavo-convex layer containing alumina hydrate. After that, a breakthrough treatment is performed from the surface of the fine concavo-convex layer using a mixed gas of Ar gas and CHF 3 gas, and reactive ion etching is performed using a mixed gas of SF 6 gas and CHF 3 gas to perform the substrate to be processed. A fine uneven structure was formed on the surface of the. In this way, a substrate having a fine uneven structure on the surface was obtained.
 その後、表面に微細凹凸構造を有する基板の微細凹凸構造上にフォトレジストを塗布し、フォトレジスト上に所定の開口を有する露光マスクを配置してフォトレジストのレーザ露光を行った。さらに、現像処理を行うことによって、開口パターンを有するマスクを形成した。その後、このマスクを用いて、エッチングガスとしてSFガスとCHFガスの混合ガスを用いた反応性イオンエッチングを行い、基板の表面に凹部を形成した。 Then, the photoresist was applied on the fine uneven structure of the substrate having the fine uneven structure on the surface, and an exposure mask having a predetermined opening was arranged on the photoresist to perform laser exposure of the photoresist. Further, a mask having an opening pattern was formed by performing a developing process. Then, using this mask, reactive ion etching was performed using a mixed gas of SF 6 gas and CHF 3 gas as the etching gas to form recesses on the surface of the substrate.
 最後に、硫酸過水洗浄を行い、マスクを除去した。 Finally, the mask was removed by washing with sulfuric acid hydrogen peroxide.
 図19は以上のようにして作製した構造体の一部を示すSEM画像である。図19に示すように、構造体は基板の表面に複数の凹部を有する。凹部の開口は一辺20μmの正方形状とした。ここでは10μmの深さの凹部を形成した。 FIG. 19 is an SEM image showing a part of the structure produced as described above. As shown in FIG. 19, the structure has a plurality of recesses on the surface of the substrate. The opening of the recess was a square shape with a side of 20 μm. Here, a recess having a depth of 10 μm was formed.
 図20は図19のうちの1つの凹部の内壁面部分を拡大したSEM画像であり、図21は図20の内壁面の上部をさらに拡大したSEM画像である。図20及び図21から、基板の表面には微細凹凸構造が形成されていることが分かる。また、図21から凹部の内壁面には表面の微細凹凸構造に応じて形成された筋状の溝(画像中において相対的に濃色で観察される部分)が形成されていることが分かる。 FIG. 20 is an enlarged SEM image of the inner wall surface portion of one of the recesses in FIG. 19, and FIG. 21 is a further enlarged SEM image of the upper part of the inner wall surface of FIG. From FIGS. 20 and 21, it can be seen that a fine uneven structure is formed on the surface of the substrate. Further, it can be seen from FIG. 21 that a streak-like groove (a portion observed in a relatively dark color in the image) formed according to the fine uneven structure of the surface is formed on the inner wall surface of the recess.
 このように、上記製造方法によれば、貫通孔の内壁面に筋状の溝を備えた光学部材を得ることが可能である。 As described above, according to the above manufacturing method, it is possible to obtain an optical member having a streaky groove on the inner wall surface of the through hole.
 2020年3月25日に出願されたに日本国特許出願2020-055018の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2020-055018, filed on March 25, 2020, is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (19)

  1.  光を透過する複数の貫通孔を有する単層の基板と、
    前記貫通孔の内壁面の少なくとも一部に形成された反射防止構造であり、筋状の複数の溝を含む反射防止構造とを備えた光学部材。
    A single-layer substrate with multiple through-holes that transmit light,
    An optical member having an antireflection structure formed on at least a part of the inner wall surface of the through hole, and having an antireflection structure including a plurality of streaky grooves.
  2.  前記溝は、前記貫通孔の深さ方向に沿った筋状の複数の第1溝を少なくとも含む請求項1に記載の光学部材。 The optical member according to claim 1, wherein the groove includes at least a plurality of streaky first grooves along the depth direction of the through hole.
  3.  前記溝は、前記貫通孔の深さ方向と交差する方向に沿った筋状の複数の第2溝を少なくとも含む請求項1に記載の光学部材。 The optical member according to claim 1, wherein the groove includes at least a plurality of streaky second grooves along a direction intersecting the depth direction of the through hole.
  4.  前記溝は、前記貫通孔の深さ方向と交差する方向に沿った筋状の複数の第2溝を、さらに含む請求項2に記載の光学部材。 The optical member according to claim 2, wherein the groove further includes a plurality of streaky second grooves along a direction intersecting the depth direction of the through hole.
  5.  複数の前記第1溝の平均周期と複数の前記第2溝の平均周期とは異なる請求項4に記載の光学部材。 The optical member according to claim 4, wherein the average period of the plurality of first grooves and the average period of the plurality of second grooves are different.
  6.  前記基板は、不透明材料である請求項1から5のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 5, wherein the substrate is an opaque material.
  7.  前記貫通孔は、開口の大きさに対する深さの比であるアスペクト比が20より大きい、請求項1から6のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 6, wherein the through hole has an aspect ratio of more than 20, which is a ratio of a depth to an opening size.
  8.  前記貫通孔の開口の大きさが前記溝の平均周期よりも大きい、請求項1から7のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 7, wherein the size of the opening of the through hole is larger than the average period of the groove.
  9.  前記貫通孔の開口の大きさが5~100μmである、請求項1から8のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 8, wherein the size of the opening of the through hole is 5 to 100 μm.
  10.  前記貫通孔を複数備え、前記複数の孔の配列が正方配列である、請求項1から9のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 9, which has a plurality of the through holes and the arrangement of the plurality of holes is a square array.
  11.  前記光に対する前記基板の透過率と、前記貫通孔の透過率との差が70%以上である、請求項1から10のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 10, wherein the difference between the transmittance of the substrate with respect to the light and the transmittance of the through hole is 70% or more.
  12.  前記貫通孔に、透明材料が充填されている、請求項1から11のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 11, wherein the through hole is filled with a transparent material.
  13.  前記溝が、前記貫通孔における少なくとも一方の開口端に設けられている、請求項1から12のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 12, wherein the groove is provided at at least one open end of the through hole.
  14.  前記反射防止構造が不規則な構造である、請求項1から13のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 13, wherein the antireflection structure is an irregular structure.
  15.  前記基板の表裏面のうち少なくとも一方の面には、前記貫通孔の開口以外の部分に反射防止機能を有する微細凹凸構造が形成されている、請求項1から14のいずれか1項に記載の光学部材。 The method according to any one of claims 1 to 14, wherein a fine concavo-convex structure having an antireflection function is formed on at least one of the front and back surfaces of the substrate other than the opening of the through hole. Optical member.
  16.  前記微細凹凸構造が不規則な構造である、請求項15に記載の光学部材。 The optical member according to claim 15, wherein the fine concavo-convex structure is an irregular structure.
  17.  前記基板において、前記微細凹凸構造が形成されている面に保護層が設けられている請求項15又は16に記載の光学部材。 The optical member according to claim 15 or 16, wherein a protective layer is provided on the surface of the substrate on which the fine concavo-convex structure is formed.
  18.  前記反射防止構造の前記溝の深さが、前記微細凹凸構造の凹部深さよりも深い、請求項15から17のいずれか1項に記載の光学部材。 The optical member according to any one of claims 15 to 17, wherein the depth of the groove of the antireflection structure is deeper than the depth of the recess of the fine concavo-convex structure.
  19.  前記基板がシリコンである、請求項1から18のいずれか1項に記載の光学部材。 The optical member according to any one of claims 1 to 18, wherein the substrate is silicon.
PCT/JP2021/005057 2020-03-25 2021-02-10 Optical member WO2021192695A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180019793.XA CN115244430A (en) 2020-03-25 2021-02-10 Optical component
JP2022509382A JPWO2021192695A1 (en) 2020-03-25 2021-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055018 2020-03-25
JP2020-055018 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192695A1 true WO2021192695A1 (en) 2021-09-30

Family

ID=77891429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005057 WO2021192695A1 (en) 2020-03-25 2021-02-10 Optical member

Country Status (3)

Country Link
JP (1) JPWO2021192695A1 (en)
CN (1) CN115244430A (en)
WO (1) WO2021192695A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133308A (en) * 2002-10-11 2004-04-30 Fuji Photo Film Co Ltd Transfer device
JP2010204635A (en) * 2009-02-06 2010-09-16 Fujifilm Corp Lens array
JP2011043643A (en) * 2009-08-20 2011-03-03 Nippon Sheet Glass Co Ltd Erecting equal-magnification lens array plate, optical scanning unit, and image reader
JP2011085612A (en) * 2009-10-13 2011-04-28 Nec Lcd Technologies Ltd Image forming apparatus
US20110149217A1 (en) * 2009-12-18 2011-06-23 Min-Sung Yoon Color filter using surface plasmon, liquid crystal display device and method for fabricating the same
JP2013037298A (en) * 2011-08-10 2013-02-21 Nippon Sheet Glass Co Ltd Erecting life-size lens array plate
JP2013182015A (en) * 2012-02-29 2013-09-12 Nippon Sheet Glass Co Ltd Lens array unit, erecting equal-magnification lens array, optical scanning unit, image reading device, and image writing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031340A (en) * 2007-07-24 2009-02-12 Sony Corp Optical sheet, its manufacturing method, and display device
JP6029115B2 (en) * 2014-03-26 2016-11-24 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Optical device, optical connector assembly, and optical connection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133308A (en) * 2002-10-11 2004-04-30 Fuji Photo Film Co Ltd Transfer device
JP2010204635A (en) * 2009-02-06 2010-09-16 Fujifilm Corp Lens array
JP2011043643A (en) * 2009-08-20 2011-03-03 Nippon Sheet Glass Co Ltd Erecting equal-magnification lens array plate, optical scanning unit, and image reader
JP2011085612A (en) * 2009-10-13 2011-04-28 Nec Lcd Technologies Ltd Image forming apparatus
US20110149217A1 (en) * 2009-12-18 2011-06-23 Min-Sung Yoon Color filter using surface plasmon, liquid crystal display device and method for fabricating the same
JP2013037298A (en) * 2011-08-10 2013-02-21 Nippon Sheet Glass Co Ltd Erecting life-size lens array plate
JP2013182015A (en) * 2012-02-29 2013-09-12 Nippon Sheet Glass Co Ltd Lens array unit, erecting equal-magnification lens array, optical scanning unit, image reading device, and image writing device

Also Published As

Publication number Publication date
JPWO2021192695A1 (en) 2021-09-30
CN115244430A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
JP4760135B2 (en) Optical device and optical device manufacturing method
KR102438014B1 (en) Directional etch manufacturing method of waveguide couplers
CN101154035B (en) Fine mold and method for regenerating fine mold
US10324372B2 (en) Multi-tone amplitude photomask
TW200303557A (en) Electromagnetic shielding sheet and method of producing the same
US20180143358A1 (en) Color developing structure and method of producing the same
JP2011136559A (en) Flexible device and method for preparing the same
EP3892458A1 (en) Display body and method for producing display body
US20060030152A1 (en) Method of manufacturing substrate having recessed portions for microlenses and transmissive screen
WO2016170727A1 (en) Manufacturing method for structure
WO2021192695A1 (en) Optical member
KR100342250B1 (en) Shadow mask and manufacturing method
JP7074849B2 (en) Method for manufacturing a substrate with an uneven structure
JP2953614B2 (en) High resolution aluminum ablation mask
WO2021192696A1 (en) Method for manufacturing structure, and structure
JP6825238B2 (en) Display and its manufacturing method
JP6113990B2 (en) Manufacturing method of fine structure
JP2018025716A (en) Reflection type exposure mask and manufacturing method thereof
US20220415664A1 (en) Structure manufacturing method
JP2022505873A (en) Controlled hardmask molding to create tapered sloping fins
JP7302277B2 (en) DISPLAY AND METHOD FOR MANUFACTURING DISPLAY
JP6992980B2 (en) Method for manufacturing a laminated structure having a photocatalytic action
JP2012194382A (en) Screen and method for manufacturing mold
JPH0374803B2 (en)
JP2011007837A (en) Diffraction grating and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774617

Country of ref document: EP

Kind code of ref document: A1