WO2021192453A1 - Negative electrode material for lithium ion secondary batteries - Google Patents

Negative electrode material for lithium ion secondary batteries Download PDF

Info

Publication number
WO2021192453A1
WO2021192453A1 PCT/JP2020/046857 JP2020046857W WO2021192453A1 WO 2021192453 A1 WO2021192453 A1 WO 2021192453A1 JP 2020046857 W JP2020046857 W JP 2020046857W WO 2021192453 A1 WO2021192453 A1 WO 2021192453A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
positive electrode
sei film
ion secondary
Prior art date
Application number
PCT/JP2020/046857
Other languages
French (fr)
Japanese (ja)
Inventor
杉政 昌俊
栄二 關
耕平 本蔵
渉太 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022509267A priority Critical patent/JPWO2021192453A1/ja
Publication of WO2021192453A1 publication Critical patent/WO2021192453A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode material for a lithium ion secondary battery.
  • Lithium-ion secondary batteries are one of the non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and electric vehicles.
  • a carbon material such as lithium metal oxide is generally used as the positive electrode active material and graphite is generally used as the negative electrode active material.
  • the positive electrode and the negative electrode of a lithium ion secondary battery are formed, for example, by adding a binder, a conductive agent, or the like to minute active material particles to form a slurry, and then applying the mixture to a metal foil.
  • the lithium ions released from the positive electrode active material are stored in the negative electrode active material during charging, and the lithium ions stored in the negative electrode active material are released and stored in the positive electrode active material during discharging. As the lithium ions move between the electrodes in this way, a current flows between the electrodes.
  • the capacity is reduced by the electrical isolation of the positive electrode active material, the electrical isolation of the negative electrode active material, and the immobilization of lithium ions passing between the electrodes.
  • the capacity reduction due to the immobilization of lithium ions passing between the electrodes is that lithium ions are taken into the SEI film as the SEI (Solid Electrolyte Interphase) film grows. Has been done.
  • the SEI film is indispensable for stable charging and discharging of the lithium ion secondary battery.
  • Patent Document 1 discloses a method for adding an additive for forming an SEI to an electrolytic solution.
  • Patent Document 2 discloses a method in which at least one storage place for a stabilizing additive capable of stabilizing the SEI layer is provided inside the battery, and when deterioration of SEI is detected, the stabilizing additive is released. There is.
  • Patent Document 1 an organic additive is added to an electrolytic solution and charging / discharging is repeated to form an SEI film, but the growth of the SEI film itself due to charging / discharging cannot be suppressed, so lithium ions are immobilized. In some cases, capacity deterioration due to the discharge could not be suppressed. The same can be said for Patent Document 2.
  • the capacity deterioration due to the immobilization of lithium ions cannot be suppressed, and the resistance tends to increase due to the thickening of the SEI film, so that there is a problem that the characteristics of the battery deteriorate. There is.
  • an object of the present disclosure is to provide a negative electrode material capable of achieving a high capacity retention rate and suppressing an increase in resistance.
  • An example of the embodiment of this embodiment is as follows, for example.
  • a negative electrode material for a lithium ion secondary battery which comprises an active material, a binder, and an SEI film formed around them.
  • the SEI film contains lithium oxide (Li 2 O) and lithium fluoride (Li F).
  • FIG. 1 is a schematic cross-sectional view showing the internal structure of the lithium ion secondary battery according to the present embodiment, but the lithium ion secondary battery is not limited to this structure, and is, for example, a laminated type. You may.
  • the lithium ion secondary battery 1 has a positive electrode 10 and a negative electrode 12 that directly contribute to an electrochemical reaction, and in the lithium ion secondary battery 1, the positive electrode 10 and the negative electrode 12 face each other. It is arranged to do.
  • a separator 11 is provided between the positive electrode 10 and the negative electrode 12.
  • the lithium ion secondary battery 1 contains a non-aqueous electrolytic solution for enabling the movement of Li between the positive electrode 10 and the negative electrode 12.
  • the non-aqueous electrolyte solution contains at least a supporting electrolyte, a non-aqueous solvent, and a boroxine compound of the formula (1), which will be described in detail later.
  • the positive electrode 10, the negative electrode 12, and the separator 11 are impregnated with a non-aqueous electrolytic solution.
  • the lithium ion secondary battery 1 shown in FIG. 1 has a positive electrode 10, a separator 11, a negative electrode 12, a battery container 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, and an internal pressure release valve. It is composed of 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and a shaft center 21.
  • the battery lid 20 is a component composed of an inner lid 16, an internal pressure release valve 17, a gasket 18, and a positive temperature coefficient resistance element 19. Further, a positive electrode 10, a separator 11 and a negative electrode 12 are wound around the axis 21.
  • the axial center 21 is particularly limited as long as it can support the positive electrode 10, the separator 11 and the negative electrode 12. Instead, for example, any known axis can be used.
  • the electrode group is formed in a cylindrical shape.
  • the shape of the battery container 13 is formed in a cylindrical shape according to the shape of the electrode group.
  • the material of the battery container 13 is not particularly limited, and a material having corrosion resistance to the electrolytic solution can be preferably used.
  • a material having corrosion resistance to the electrolytic solution include aluminum, stainless steel, nickel-plated steel and the like.
  • the electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20.
  • the electrolytic solution is injected into the battery container 13 before sealing the battery. Examples of the method for injecting the electrolytic solution include a method of directly adding the electrolytic solution to the electrode group with the battery cover 20 open, a method of adding the electrolytic solution from the injection port installed in the battery cover 20, and the like.
  • the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well.
  • the battery can be sealed by using a known technique such as welding or caulking.
  • a solid electrolyte may be used instead of the non-aqueous electrolyte and the separator.
  • the solid electrolyte is not particularly limited, and examples thereof include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide. When these solid polymer electrolytes are used, the non-aqueous electrolyte solution and the separator can be omitted.
  • the negative electrode material relates to a material used for the negative electrode 12 of a lithium ion secondary battery.
  • the negative electrode is generally configured to include a negative electrode mixture layer containing a negative electrode active material and a binder, and a negative electrode current collector.
  • the form of the negative electrode material according to the present embodiment is not particularly limited as long as it is a material used for the negative electrode, and may be, for example, a negative electrode mixture layer or a negative electrode active material. good.
  • the negative electrode according to the present embodiment includes the negative electrode material according to the present embodiment as the negative electrode mixture layer and the negative electrode current collector.
  • the negative electrode according to the present embodiment is a binder contained in the negative electrode material according to the present embodiment as the negative electrode active material and the negative electrode material according to the present embodiment. It includes a negative electrode mixture layer containing another binder and a negative electrode current collector. That is, the negative electrode material according to the present embodiment is contained in the negative electrode mixture layer as a substance capable of reversibly occluding and releasing lithium ions (that is, a negative electrode active material).
  • the binder contained in the negative electrode material and the additional binder contained in the negative electrode mixture layer may be of the same type or different types.
  • the negative electrode material according to the present embodiment includes a negative electrode active material, a binder, and an SEI film formed around them. Further, in the negative electrode material according to the present embodiment, the SEI film contains lithium oxide (Li 2 O) and lithium fluoride (Li F).
  • the spectrum of the CK end of the SEI film by STEM-EELS has a broad peak from 285 to 310 eV.
  • the negative electrode material according to the present embodiment has a novel structure and is not known in the past. Further, it has been confirmed in this embodiment that a lithium ion secondary battery capable of achieving a high capacity retention rate and suppressing an increase in resistance can be obtained by using the negative electrode material according to the present embodiment.
  • the negative electrode material according to this embodiment can be produced by a novel method described below.
  • the negative electrode material in the form of the negative electrode mixture layer will be given as a main example, but the present embodiment is not limited to this form.
  • FIG. 2 is a schematic cross-sectional view showing an electrode configuration of a cell that can be used in the production of the negative electrode material according to the present embodiment.
  • the SEI film according to the present embodiment can be formed.
  • the first positive electrode 111a and the negative electrode 112 are arranged with the first separator 113a interposed therebetween, and the second positive electrode 111b and the negative electrode 112 are arranged with the second separator 113b interposed therebetween.
  • a non-aqueous electrolyte solution is injected into this cell.
  • the negative electrode material according to the present embodiment uses such a cell to inject lithium ions (first charge) from the first positive electrode 111a to the negative electrode 112, and then from the second positive electrode 111b to the negative electrode. It can be produced by injecting lithium ions into 112 (second charging).
  • the first charge is preferably fully charged.
  • the injection amount of lithium ions in the second charge varies depending on the design of the amount of the negative electrode active material to be produced, but is, for example, 10 to 250 mAh for the negative electrode active material having a capacity of 460 mAh, that is, the entire design value of the active material capacity. It is preferably 2 to 55% of the above.
  • the amount of lithium ions injected in the second charge is preferably 46 mAh or more, that is, 10% or more of the total design value, from the viewpoint of uniformly forming the SEI film.
  • the amount of lithium ions injected in the second charge is preferably 200 mAh or less, that is, 43% or less, from the viewpoint of preventing lithium precipitation due to overcharging.
  • the rate in the second charge is preferably 1/10 C to 1 / 200C from the viewpoint of uniformly forming the SEI film and / or preventing the precipitation of lithium.
  • the first charge and the second charge are each performed at least once, and may be performed a plurality of times.
  • the negative electrode 112 is configured to include a negative electrode mixture layer containing a negative electrode active material capable of reversibly occluding and releasing lithium ions and a binder for binding the negative electrode active material, and a negative electrode current collector.
  • the negative electrode active material is not particularly limited, but is, for example, natural graphite, composite carbonaceous material, artificial graphite, silicon (Si), natural or artificial graphite mixed with silicon, graphitized carbon material, or titanium acid. Examples thereof include lithium Li 4 Ti 5 O 12.
  • Examples of the composite carbonaceous material include those in which a film is formed on natural graphite by a dry CVD method or a wet spray method.
  • Examples of artificial graphite include those produced by firing using a resin material such as epoxy or phenol or a pitch-based material obtained from petroleum or coal as a raw material.
  • the negative electrode active material one type may be used alone, or two or more types may be used in combination.
  • the binder is not particularly limited, and as the binder, for example, either an aqueous binder that dissolves, swells, or disperses in water, or an organic binder that does not dissolve, swell, or disperse in water can be used. ..
  • the aqueous binder include styrene-butadiene rubber, acrylic polymers, polymers having a cyano group, and copolymers thereof.
  • Specific examples of the organic binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, and copolymers thereof.
  • PVDF polyvinylidene fluoride
  • One type of binder may be used alone, or two or more types may be used in combination. Further, a thickening binder such as carboxymethyl cellulose may be used in combination.
  • the negative electrode current collector for example, a material such as a metal foil made of copper or a copper alloy containing copper as a main component, a metal plate, a foamed metal plate, an expanded metal, or a punching metal can be appropriately used.
  • the negative electrode 112 is manufactured, for example, by mixing a negative electrode active material and a binder together with an appropriate solvent to obtain a negative electrode mixture, applying this negative electrode mixture to a negative electrode current collector, and then drying and compression molding. Can be done.
  • a method for applying the negative electrode mixture for example, a doctor blade method, a dipping method, a spray method, or the like can be used.
  • Separators are provided to prevent a short circuit from occurring due to direct contact between the positive electrode (including the first positive electrode and the second positive electrode) and the negative electrode 112.
  • the separator is not particularly limited, but for example, a microporous film such as polyethylene, polypropylene, or aramid resin, or a film in which the surface of such a microporous film is coated with a heat-resistant substance such as alumina particles is used. Can be used.
  • the non-aqueous electrolytic solution to be injected into the cell is not particularly limited, and for example, a general-purpose product used in a commercially available lithium ion secondary battery can be used.
  • the non-aqueous electrolyte solution includes, for example, a non-aqueous solvent and a supporting electrolyte.
  • the non-aqueous solvent include an aprotic organic solvent.
  • the aproton organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl.
  • Examples include carbonate (MPC), ethylpropyl carbonate (EPC), or mixtures thereof.
  • the aprotic organic solvent one type may be used alone, or two or more types may be used in combination.
  • the supporting electrolyte include lithium salts.
  • Examples of the lithium salt include lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium iodide, lithium chloride, lithium bromide, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3]. ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , or a mixture thereof.
  • the supporting electrolyte one type may be used alone, or two or more types may be used in combination.
  • the lithium salt preferably contains a fluorine atom.
  • the positive electrode 10 includes, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive material, and a binder, and a positive electrode current collector in which the positive electrode mixture layer is coated on one or both sides.
  • the positive electrodes 111a and 111b are not particularly limited as long as lithium ions can be injected into the negative electrode 112.
  • the type of positive electrode active material is not particularly limited. From the viewpoint of cost reduction and simplification of the manufacturing process, it is preferable that the structures of the first positive electrode 111a and the second positive electrode 111b are the same, and the positive electrode active material and the binder used are also of the same type. Is preferable.
  • the positive electrode active material for example, lithium cobalt oxide, lithium manganese substituted cobaltate, lithium manganate, lithium nickel acid, transition metal phosphate lithium such as olivine-type lithium iron phosphate, Li w Ni x Co y Mn z O 2 (Here, w, x, y, z are 0 or positive values).
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination.
  • conductive agent for example, carbon particles such as graphite, carbon black, acetylene black, ketjen black, and channel black, carbon fibers, and the like can be used. These conductive agents may be used alone or in combination of two or more.
  • the binder is not particularly limited, but is, for example, polyvinylidene fluoride, styrene / butadiene rubber, carboxyl / methylcellulose, cellulose acetate, ethylcellulose, fluororubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide, or A mixture of these can be mentioned.
  • One type of binder may be used alone, or two or more types may be used in combination. Further, a thickening binder such as carboxymethyl cellulose may be used in combination.
  • the positive electrode current collector for example, an appropriate material such as a metal foil made of aluminum, stainless steel, titanium or the like, a metal plate, a foamed metal plate, an expanded metal, a punching metal or the like can be used.
  • the positive electrode is formed by, for example, mixing a positive electrode active material, a conductive agent, and a binder together with an appropriate solvent to form a positive electrode mixture, applying the positive electrode mixture to a positive electrode current collector, and then drying and compression molding.
  • a method for applying the positive electrode mixture for example, a doctor blade method, a dipping method, a spray method, or the like can be used.
  • a method for compression molding the positive electrode mixture for example, a roll press or the like can be used.
  • the solvent may be any solvent as long as it can dissolve the binder, and for example, 1-methyl-2-pyrrolidone, water, or the like can be used, but the solvent is not limited thereto.
  • the step of forming the SEI film on the negative electrode 112 using the cell configuration of FIG. 2 will be specifically described below.
  • the first positive electrode 111a and the second positive electrode 111b are manufactured so that their capacities are, for example, 300 mAh.
  • the negative electrode 112 is manufactured so that its capacity is, for example, 460 mAh.
  • the first positive electrode 111a and the second positive electrode 111b have the same configuration.
  • the first positive electrode 111a and the negative electrode 112 are connected to a power source, and lithium ions are injected from the first positive electrode 111a into the negative electrode 112.
  • the first positive electrode 111a is disconnected from the power source, and instead, the second positive electrode 111b is connected to the power source. Then, lithium ions are injected from the second positive electrode 111b into the negative electrode 112.
  • the injection amount of lithium ions is preferably 10 to 250 mAh. Further, from the viewpoint of uniformly forming the SEI film, the injection amount of lithium ions is preferably 40 mAh or more. Further, from the viewpoint of suppressing the precipitation of lithium due to overcharging, the injection amount of lithium ions is preferably 200 mAh or less. Further, the injection of lithium ions from the second positive electrode 111b is preferably performed at a low rate of about 1 / 100C.
  • the negative electrode mixture layer may be peeled off from the negative electrode, crushed, and used as the negative electrode active material.
  • the crushing method is not particularly limited, and for example, a conventionally known crushing means can be used.
  • Example 1 [Method for manufacturing negative electrode] Using the cell configuration shown in FIG. 2, a negative electrode was produced by the following steps.
  • the first positive electrode 111a and the second positive electrode 111b were manufactured so that their capacities were 300 mAh, respectively.
  • the first positive electrode 111a and the second positive electrode 111b have the same configuration.
  • LiNi 0.5 Mn 0.2 Co 0.3 was used as the positive electrode active material
  • a carbon material was used as the positive electrode conductive agent
  • PVDF was used as the positive electrode binder.
  • the negative electrode 112 was manufactured so that its capacity was 460 mAh.
  • Graphite was used as the negative electrode active material
  • carbon material was used as the negative electrode conductive agent
  • SBR and CMC were used as the negative electrode binder.
  • the first positive electrode 111a and the negative electrode 112 were connected to a power source, and lithium ions were injected from the first positive electrode 111a into the negative electrode 112 (fully charged, rate: 0.5C).
  • the first positive electrode 111a was disconnected from the power source, and instead, the second positive electrode 111b was connected to the power source.
  • lithium ions were injected from the second positive electrode 111b into the negative electrode 112.
  • the injection amount of lithium ions from the second positive electrode 111b was set to 200 mAh.
  • the injection of lithium ions from the second positive electrode 111b was performed at a low rate of 1 / 100C. After the injection of lithium ions was completed, a discharge treatment was appropriately performed.
  • FIG. 3A shows the XPS spectrum of the obtained negative electrode in the depth direction of the SEI film.
  • the measured elements were fluorine, oxygen, carbon and lithium. From the XPS spectrum, it can be seen that the ratio of oxygen increases from the surface to a depth of about 25 nm to form a peak. Further, from the XPS spectrum, it can be seen that the ratio of lithium increases from the surface to a depth of about 50 nm to form a peak.
  • FIG. 3B shows the measurement spectrum of the SEI film formed by charging and discharging the positive electrode and the negative electrode (the second positive electrode is not used) as a conventional product by XPS. It can be seen that oxygen and lithium are present near the surface of the SEI film. From this analysis result, it can be confirmed that the SEI film according to this example contains lithium and oxygen in the vicinity of the surface.
  • FIG. 4 is an XPS spectrum of oxygen 1s of the obtained negative electrode SEI film.
  • the XPS spectrum was measured at a depth of 0, 24, 48 or 90 nm from the surface.
  • the peak showing Li 2 O exists near 530 eV.
  • the peak showing Li 2 O is also present on the surface, but increases at 24-48 nm. From this, it is considered that a large amount of Li 2 O is present in the vicinity of 24-48 nm. This is also consistent with the results of the oxygen and lithium XPS spectra of FIG. 3A.
  • FIG. 5 is an XPS spectrum of lithium 1s of the obtained negative electrode SEI film.
  • the XPS spectrum was measured at a depth of 0, 24, 48 or 90 nm from the surface.
  • the peak showing LiF decreases sharply from 48 nm.
  • FIG. 6A is a spectrum of the CK end of the obtained negative electrode SEI film by STEM-EELS. There is one broad peak from 285 to 310 eV. On the other hand, as shown in FIG. 6B, there is a sharp edge around 287 to 290 eV, which is considered to exhibit Li 2 CO 3, which is characteristic of the SEI film formed by continuous charging and discharging of a general lithium ion secondary battery. There are no peaks.
  • the SEI film of the obtained negative electrode mixture layer contains lithium oxide (Li 2 O) and lithium fluoride (Li F).
  • a broad peak exists from 285 to 310 eV in the spectrum at the CK end by STEM-EELS in FIG. 6A.
  • Example 2 a lithium ion secondary battery was prototyped using the negative electrode obtained in Example 1 and its performance was evaluated.
  • the positive electrode was prepared using LiNi 0.5 Mn 0.2 Co 0.3 as the positive electrode active material, a carbon material as the positive electrode conductive agent, and PVDF as the positive electrode binder.
  • the capacity of the positive electrode was set to 300 mAh.
  • the produced lithium ion secondary battery was subjected to continuous charging / discharging of 4.2 to 3.0 V and 1 C for 50 cycles in an environment of 50 ° C., and the capacity retention rate and the DC resistance at the time of full charge were evaluated.
  • the negative electrode was produced using graphite as the negative electrode active material, a carbon material as the negative electrode conductive agent, and SBR and CMC as the negative electrode binder.
  • the capacity of the negative electrode was 460 mAh.
  • a lithium ion secondary battery was produced and evaluated in the same manner as in Example 2 except that this negative electrode was used.
  • Example 2 and Comparative Example 1 are shown in Table 1.
  • the lithium ion secondary battery of Example 2 showed a high capacity retention rate as compared with the lithium ion secondary battery of Comparative Example 1.
  • Regarding the DC resistance the lithium ion secondary battery of Comparative Example 1 had an increased resistance after the cycle test, whereas the lithium ion secondary battery of Example 1 had almost no change in resistance even after the cycle test. rice field.
  • the capacity capable of immobilizing lithium decreased due to the growth of the SEI film during the charge / discharge cycle, and the DC resistance also increased due to the thickening of the SEI film. Will be done.
  • the upper limit value and / or the lower limit value of the numerical range described in the present specification can be arbitrarily combined to specify a preferable range.
  • an upper limit value and a lower limit value of the numerical range can be arbitrarily combined to specify a preferable range
  • an upper limit value of the numerical range can be arbitrarily combined to specify a preferable range
  • a lower limit of the numerical range can be specified.
  • a preferable range can be defined by arbitrarily combining the values.

Abstract

The purpose of this disclosure is to provide a negative electrode material that achieves a high capacity retention rate and can suppress resistance increases. The present embodiment pertains to a negative electrode material for lithium ion secondary batteries that comprises an active substance, a binder, and an SEI film formed on the periphery of the active substance and binder, the negative electrode material being characterized in that the SEI film comprises lithium oxide (Li2O) and lithium fluoride (LiF); the XPS spectrum for oxygen 1s measured from the surface of the SEI film to a depth of 100 nm has a peak representing the double bond of C=O in the vicinity of 533 eV, a peak representing lithium oxide (Li2O) in the vicinity of 530 eV, a peak representing lithium fluoride (LiF) in the vicinity of 57 eV, and a peak representing the double bond of C=O in the vicinity of 56 eV; and the C-K edge spectrum of the SEI film by STEM-EELS has a broad peak over 285-310 eV.

Description

リチウムイオン二次電池用の負極材料Negative electrode material for lithium-ion secondary batteries
 本開示は、リチウムイオン二次電池用の負極材料に関する。 The present disclosure relates to a negative electrode material for a lithium ion secondary battery.
 リチウムイオン二次電池は非水電解質二次電池の一つであり、エネルギー密度が高いため、携帯機器のバッテリーや電気自動車のバッテリーとしても用いられている。リチウムイオン二次電池では、正極活物質としてリチウム金属酸化物、負極活物質として黒鉛などの炭素材が一般的に用いられる。リチウムイオン二次電池の正極及び負極は、例えば、微小な活物質粒子にバインダや導電剤等を加えてスラリー化した後、金属箔に塗布して形成される。 Lithium-ion secondary batteries are one of the non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and electric vehicles. In a lithium ion secondary battery, a carbon material such as lithium metal oxide is generally used as the positive electrode active material and graphite is generally used as the negative electrode active material. The positive electrode and the negative electrode of a lithium ion secondary battery are formed, for example, by adding a binder, a conductive agent, or the like to minute active material particles to form a slurry, and then applying the mixture to a metal foil.
 リチウムイオン二次電池において、充電時には正極活物質から放出されたリチウムイオンが負極活物質に吸蔵され、放電時には負極活物質に吸蔵されたリチウムイオンが放出されて正極活物質に吸蔵される。このようにリチウムイオンが電極間を移動することで電極間に電流が流れる。 In a lithium ion secondary battery, the lithium ions released from the positive electrode active material are stored in the negative electrode active material during charging, and the lithium ions stored in the negative electrode active material are released and stored in the positive electrode active material during discharging. As the lithium ions move between the electrodes in this way, a current flows between the electrodes.
 このようなリチウムイオン二次電池では、正極活物質の電気的な孤立、負極活物質の電気的な孤立、電極間を往来するリチウムイオンの固定化によって容量が減少する。これらの要因のうち、電極間を往来するリチウムイオンの固定化による容量減少に関しては、SEI(Solid Electrolyte Interphase)膜の成長に伴ってSEI膜内部にリチウムイオンが取り込まれることが要因の一つと考えられている。一方で、SEI膜はリチウムイオン二次電池の安定な充放電に必要不可欠である。 In such a lithium ion secondary battery, the capacity is reduced by the electrical isolation of the positive electrode active material, the electrical isolation of the negative electrode active material, and the immobilization of lithium ions passing between the electrodes. Among these factors, it is considered that one of the factors regarding the capacity reduction due to the immobilization of lithium ions passing between the electrodes is that lithium ions are taken into the SEI film as the SEI (Solid Electrolyte Interphase) film grows. Has been done. On the other hand, the SEI film is indispensable for stable charging and discharging of the lithium ion secondary battery.
 SEI膜の形成方法として、例えば、特許文献1は、SEI形成用添加剤を電解液に加える方法を開示している。また、特許文献2は、SEI層を安定化することができる少なくとも1つの安定化添加物の貯蔵場所を電池内部に設け、SEIの劣化を検知すると安定化添加物を放出する方法を開示している。 As a method for forming an SEI film, for example, Patent Document 1 discloses a method for adding an additive for forming an SEI to an electrolytic solution. Further, Patent Document 2 discloses a method in which at least one storage place for a stabilizing additive capable of stabilizing the SEI layer is provided inside the battery, and when deterioration of SEI is detected, the stabilizing additive is released. There is.
特開2015-122236号公報Japanese Unexamined Patent Publication No. 2015-122236 特表2014-517996号公報Japanese Patent Publication No. 2014-517996
 特許文献1では、有機物添加剤を電解液に加えて充放電を繰り返すことでSEI膜を形成しているが、充放電に伴うSEI膜の成長自体は抑制できていないため、リチウムイオンが固定化されることによる容量劣化を抑制できない場合があった。また、特許文献2でも、同様のことが言える。一般的に、従来のプロセスではリチウムイオンが固定化されることによる容量劣化を抑制できず、SEI膜が厚くなることにより抵抗が高くなる傾向があるため、電池の特性が劣化する問題が生じる場合がある。 In Patent Document 1, an organic additive is added to an electrolytic solution and charging / discharging is repeated to form an SEI film, but the growth of the SEI film itself due to charging / discharging cannot be suppressed, so lithium ions are immobilized. In some cases, capacity deterioration due to the discharge could not be suppressed. The same can be said for Patent Document 2. Generally, in the conventional process, the capacity deterioration due to the immobilization of lithium ions cannot be suppressed, and the resistance tends to increase due to the thickening of the SEI film, so that there is a problem that the characteristics of the battery deteriorate. There is.
 そこで、本開示は、高い容量維持率を奏し、抵抗の増大を抑制できる負極材料を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a negative electrode material capable of achieving a high capacity retention rate and suppressing an increase in resistance.
 本実施形態の態様例は、例えば以下の通りである。 An example of the embodiment of this embodiment is as follows, for example.
(1) 活物質、バインダ、及びそれらの周囲に形成されたSEI膜を含む、リチウムイオン二次電池用の負極材料であって、
 前記SEI膜が、酸化リチウム(LiO)と、フッ化リチウム(LiF)とを含み、
 前記SEI膜の表面から深さ100nmの間で測定された、酸素1sのXPSスペクトルが、533eV付近にC=Oの二重結合を示すピークを、530eV付近に酸化リチウム(LiO)を示すピークを、57eV付近にフッ化リチウム(LiF)を示すピークを、及び56eV付近にC=Oの二重結合を示すピークを有し、
 前記SEI膜のSTEM-EELSによるC-K端のスペクトルが、285~310eVにかけてブロードなピークを有することを特徴とする負極材料。
(2) 負極合剤層として用いられる、(1)に記載の負極材料。
(3) 負極活物質として用いられる、(1)に記載の負極材料。
(4) 負極合剤層としての(1)~(3)のいずれか1つに記載の負極材料と、負極集電体と、を含むことを特徴とする負極。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-052858号の開示内容を包含する。
(1) A negative electrode material for a lithium ion secondary battery, which comprises an active material, a binder, and an SEI film formed around them.
The SEI film contains lithium oxide (Li 2 O) and lithium fluoride (Li F).
The XPS spectrum of oxygen 1s measured from the surface of the SEI film to a depth of 100 nm shows a peak showing a C = O double bond near 533 eV and lithium oxide (Li 2 O) near 530 eV. The peak has a peak showing lithium fluoride (LiF) near 57 eV and a peak showing a C = O double bond near 56 eV.
A negative electrode material characterized in that the spectrum at the CK end of the SEI film by STEM-EELS has a broad peak from 285 to 310 eV.
(2) The negative electrode material according to (1), which is used as a negative electrode mixture layer.
(3) The negative electrode material according to (1), which is used as a negative electrode active material.
(4) A negative electrode comprising the negative electrode material according to any one of (1) to (3) and a negative electrode current collector as the negative electrode mixture layer.
This specification includes the disclosure of Japanese Patent Application No. 2020-052858, which is the basis of the priority of the present application.
 本開示により、高い容量維持率を奏し、抵抗の増大を抑制できる負極材料を提供することができる。 According to the present disclosure, it is possible to provide a negative electrode material capable of achieving a high capacity retention rate and suppressing an increase in resistance.
リチウムイオン二次電池のセル構造を説明するための模式的断面図である。It is a schematic cross-sectional view for demonstrating the cell structure of a lithium ion secondary battery. 本実施形態に係る負極材料を作製するためのセル構造を説明するための模式的断面図である。It is a schematic cross-sectional view for demonstrating the cell structure for manufacturing the negative electrode material which concerns on this embodiment. 実施例1で得られた負極のSEI膜の深さ方向におけるXPSスペクトルである。It is an XPS spectrum in the depth direction of the SEI film of the negative electrode obtained in Example 1. 従来品としての正極及び負極(第二の正極は使用しない)で充放電を行って形成したSEI膜の深さ方向におけるXPSスペクトルである。It is an XPS spectrum in the depth direction of the SEI film formed by charging and discharging the positive electrode and the negative electrode (the second positive electrode is not used) as a conventional product. 実施例1で得られた負極のSEI膜の酸素1sのXPSスペクトルである。It is an XPS spectrum of oxygen 1s of the SEI film of the negative electrode obtained in Example 1. 実施例1で得られた負極のSEI膜のリチウム1sのXPSスペクトルである。It is an XPS spectrum of lithium 1s of the SEI film of the negative electrode obtained in Example 1. 実施例1で得られた負極のSEI膜のSTEM-EELSによるC-K端のスペクトルである。It is a spectrum of the CK end by STEM-EELS of the SEI film of the negative electrode obtained in Example 1. 従来品としての正極及び負極(第二の正極は使用しない)で充放電を行って形成したSEI膜のSTEM-EELSによるC-K端のスペクトルである。It is a spectrum of the CK end by STEM-EELS of the SEI film formed by charging and discharging the positive electrode and the negative electrode (the second positive electrode is not used) as a conventional product.
 以下、図面を参照して本実施形態について説明する。 Hereinafter, the present embodiment will be described with reference to the drawings.
[リチウムイオン二次電池の構造]
 図1は、本実施形態に係るリチウムイオン二次電池の内部構造を示す模式的断面図であるが、リチウムイオン二次電池であればこの構造に限定されるものではなく、例えばラミネートタイプであっても良い。
[Structure of lithium-ion secondary battery]
FIG. 1 is a schematic cross-sectional view showing the internal structure of the lithium ion secondary battery according to the present embodiment, but the lithium ion secondary battery is not limited to this structure, and is, for example, a laminated type. You may.
 図1に示すように、リチウムイオン二次電池1は、電気化学反応に直接的に寄与する正極10及び負極12を有し、リチウムイオン二次電池1内において、正極10及び負極12はそれぞれ対向するように配置されている。そして、正極10と負極12の間にセパレータ11が設けられている。さらに、リチウムイオン二次電池1は、正極10と負極12の間におけるLiの移動を可能にするための非水電解液を含む。非水電解液は、詳細は後述するが、支持電解質、非水溶媒、及び式(1)のボロキシン化合物を少なくとも含む。図1のリチウムイオン二次電池1では、正極10、負極12及びセパレータ11に非水電解液が含浸されている。 As shown in FIG. 1, the lithium ion secondary battery 1 has a positive electrode 10 and a negative electrode 12 that directly contribute to an electrochemical reaction, and in the lithium ion secondary battery 1, the positive electrode 10 and the negative electrode 12 face each other. It is arranged to do. A separator 11 is provided between the positive electrode 10 and the negative electrode 12. Further, the lithium ion secondary battery 1 contains a non-aqueous electrolytic solution for enabling the movement of Li between the positive electrode 10 and the negative electrode 12. The non-aqueous electrolyte solution contains at least a supporting electrolyte, a non-aqueous solvent, and a boroxine compound of the formula (1), which will be described in detail later. In the lithium ion secondary battery 1 of FIG. 1, the positive electrode 10, the negative electrode 12, and the separator 11 are impregnated with a non-aqueous electrolytic solution.
 具体的な構造について、図1に示すリチウムイオン二次電池1は、正極10、セパレータ11、負極12、電池容器13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive Temperature Coefficient;PTC)抵抗素子19、電池蓋20及び軸心21から構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18及び正温度係数抵抗素子19から構成される部品である。また、軸心21には、正極10、セパレータ11及び負極12が捲回されている。 Regarding the specific structure, the lithium ion secondary battery 1 shown in FIG. 1 has a positive electrode 10, a separator 11, a negative electrode 12, a battery container 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, and an internal pressure release valve. It is composed of 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and a shaft center 21. The battery lid 20 is a component composed of an inner lid 16, an internal pressure release valve 17, a gasket 18, and a positive temperature coefficient resistance element 19. Further, a positive electrode 10, a separator 11 and a negative electrode 12 are wound around the axis 21.
 セパレータ11を正極10及び負極12の間に挿入し、軸心21に捲回した電極群において、軸心21は、正極10、セパレータ11及び負極12を担持できるものであれば特に制限されるものではなく、例えば、公知の任意の軸心を用いることができる。この実施の形態では、電極群は、円筒形状に形成されている。電池容器13の形状は、電極群の形状に合わせて円筒形に形成されている。 In the electrode group in which the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 and wound around the axial center 21, the axial center 21 is particularly limited as long as it can support the positive electrode 10, the separator 11 and the negative electrode 12. Instead, for example, any known axis can be used. In this embodiment, the electrode group is formed in a cylindrical shape. The shape of the battery container 13 is formed in a cylindrical shape according to the shape of the electrode group.
 電池容器13の材質は、特に制限されるものではなく、電解液に対し耐食性を有する材料を好ましく用いることができる。電解液に対し耐食性を有する材料としては、例えば、アルミニウム、ステンレス鋼、又はニッケルメッキ鋼等が挙げられる。 The material of the battery container 13 is not particularly limited, and a material having corrosion resistance to the electrolytic solution can be preferably used. Examples of the material having corrosion resistance to the electrolytic solution include aluminum, stainless steel, nickel-plated steel and the like.
 電池容器13に電極群を収納し、電池容器13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池を密閉する前に電池容器13の内部に注入する。電解液の注入方法としては、電池蓋20を開放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法等が挙げられる。 The electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20. The electrolytic solution is injected into the battery container 13 before sealing the battery. Examples of the method for injecting the electrolytic solution include a method of directly adding the electrolytic solution to the electrode group with the battery cover 20 open, a method of adding the electrolytic solution from the injection port installed in the battery cover 20, and the like.
 その後、電池蓋20を電池容器13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池密閉は、溶接、かしめ等公知の技術を用いて行うことができる。 After that, the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well. The battery can be sealed by using a known technique such as welding or caulking.
 なお、非水電解液及びセパレータの代わりに固体電解質を用いてもよい。固体電解質は、特に制限されないが、例えば、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーが挙げられる。これらの固体高分子電解質を用いた場合、非水電解液及びセパレータを省略できる。 A solid electrolyte may be used instead of the non-aqueous electrolyte and the separator. The solid electrolyte is not particularly limited, and examples thereof include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide. When these solid polymer electrolytes are used, the non-aqueous electrolyte solution and the separator can be omitted.
[負極材料]
 本実施形態に係る負極材料は、リチウムイオン二次電池の負極12に用いられる材料に関する。負極は、一般的に、負極活物質及びバインダを含む負極合剤層と、負極集電体とを備えて構成される。
[Negative electrode material]
The negative electrode material according to the present embodiment relates to a material used for the negative electrode 12 of a lithium ion secondary battery. The negative electrode is generally configured to include a negative electrode mixture layer containing a negative electrode active material and a binder, and a negative electrode current collector.
 ここで、本実施形態に係る負極材料の形態は、負極に用いられる材料であれば特に制限されるものではなく、例えば、負極合剤層であってもよく、又は負極活物質であってもよい。 Here, the form of the negative electrode material according to the present embodiment is not particularly limited as long as it is a material used for the negative electrode, and may be, for example, a negative electrode mixture layer or a negative electrode active material. good.
 本実施形態に係る負極材料の形態が負極合剤層である場合、本実施形態に係る負極は、負極合剤層としての本実施形態に係る負極材料と、負極集電体とを含む。 When the form of the negative electrode material according to the present embodiment is a negative electrode mixture layer, the negative electrode according to the present embodiment includes the negative electrode material according to the present embodiment as the negative electrode mixture layer and the negative electrode current collector.
 本実施形態に係る負極材料の形態が負極活物質である場合、本実施形態に係る負極は、負極活物質としての本実施形態に係る負極材料及び本実施形態に係る負極材料中に含まれるバインダとは別のさらなるバインダを含む負極合剤層と、負極集電体とを含む。すなわち、本実施形態に係る負極材料は、リチウムイオンを可逆的に吸蔵及び放出可能な物質(すなわち負極活物質)として負極合剤層中に含まれる。負極材料中に含まれるバインダと負極合剤層中に含まれるさらなるバインダは、同じ種類のものであっても、異なる種類のものであってもよい。 When the form of the negative electrode material according to the present embodiment is a negative electrode active material, the negative electrode according to the present embodiment is a binder contained in the negative electrode material according to the present embodiment as the negative electrode active material and the negative electrode material according to the present embodiment. It includes a negative electrode mixture layer containing another binder and a negative electrode current collector. That is, the negative electrode material according to the present embodiment is contained in the negative electrode mixture layer as a substance capable of reversibly occluding and releasing lithium ions (that is, a negative electrode active material). The binder contained in the negative electrode material and the additional binder contained in the negative electrode mixture layer may be of the same type or different types.
 本実施形態に係る負極材料は、負極活物質、バインダ、及びそれらの周囲に形成されたSEI膜を含む。また、本実施形態に係る負極材料は、SEI膜が、酸化リチウム(LiO)と、フッ化リチウム(LiF)とを含む。本実施形態に係る負極材料において、SEI膜の表面から深さ100nmの間で測定された、酸素1sのXPSスペクトルが、533eV付近にC=Oの二重結合を示すピークを、530eV付近に酸化リチウム(LiO)を示すピークを、57eV付近にフッ化リチウム(LiF)を示すピークを、及び56eV付近にC=Oの二重結合を示すピークを有する。また、本実施形態に係る負極材料において、SEI膜のSTEM-EELSによるC-K端のスペクトルが、285~310eVにかけてブロードなピークを有する。このような特徴を有する負極材料は、本実施形態に係る負極材料は、新規な構造を有するものであり、従来知られていないものである。また、本実施形態に係る負極材料を用いることにより、高い容量維持率を奏しかつ抵抗の増大を抑制できるリチウムイオン二次電池を得ることができることが本実施例で確認されている。 The negative electrode material according to the present embodiment includes a negative electrode active material, a binder, and an SEI film formed around them. Further, in the negative electrode material according to the present embodiment, the SEI film contains lithium oxide (Li 2 O) and lithium fluoride (Li F). In the negative electrode material according to the present embodiment, the XPS spectrum of oxygen 1s measured from the surface of the SEI film to a depth of 100 nm oxidizes a peak showing a C = O double bond near 533 eV around 530 eV. It has a peak showing lithium (Li 2 O), a peak showing lithium fluoride (LiF) near 57 eV, and a peak showing a double bond of C = O near 56 eV. Further, in the negative electrode material according to the present embodiment, the spectrum of the CK end of the SEI film by STEM-EELS has a broad peak from 285 to 310 eV. As for the negative electrode material having such characteristics, the negative electrode material according to the present embodiment has a novel structure and is not known in the past. Further, it has been confirmed in this embodiment that a lithium ion secondary battery capable of achieving a high capacity retention rate and suppressing an increase in resistance can be obtained by using the negative electrode material according to the present embodiment.
[負極材料の製造方法]
 本実施形態に係る負極材料は、以下に記載する新規な方法により製造することができる。なお、以下の説明では、負極合剤層の形態である負極材料を主な例に挙げるが、本実施形態はこの形態に限定されるものではない。
[Manufacturing method of negative electrode material]
The negative electrode material according to this embodiment can be produced by a novel method described below. In the following description, the negative electrode material in the form of the negative electrode mixture layer will be given as a main example, but the present embodiment is not limited to this form.
 図2は、本実施形態に係る負極材料の製造に用いることができるセルの電極構成を示す模式的断面図である。図2に示すセルを用いることにより、本実施形態におけるSEI膜を形成することができる。 FIG. 2 is a schematic cross-sectional view showing an electrode configuration of a cell that can be used in the production of the negative electrode material according to the present embodiment. By using the cell shown in FIG. 2, the SEI film according to the present embodiment can be formed.
 図2において、第一の正極111aと負極112とが第一のセパレータ113aを挟んで配置されており、また、第二の正極111bと負極112とが第二のセパレータ113bを挟んで配置されている。本セルに非水電解液が注入されている。本実施形態に係る負極材料は、このようなセルを用いて、第一の正極111aから負極112へのリチウムイオンの注入(第一の充電)を行い、次に、第二の正極111bから負極112へのリチウムイオンの注入(第二の充電)を行うことにより作製できる。 In FIG. 2, the first positive electrode 111a and the negative electrode 112 are arranged with the first separator 113a interposed therebetween, and the second positive electrode 111b and the negative electrode 112 are arranged with the second separator 113b interposed therebetween. There is. A non-aqueous electrolyte solution is injected into this cell. The negative electrode material according to the present embodiment uses such a cell to inject lithium ions (first charge) from the first positive electrode 111a to the negative electrode 112, and then from the second positive electrode 111b to the negative electrode. It can be produced by injecting lithium ions into 112 (second charging).
 第一の充電は、満充電させることが好ましい。第二の充電におけるリチウムイオンの注入量は、作製する負極活物質量設計によって異なるが、例えば460mAhの容量の負極活物質に対しては10~250mAhであること、すなわち活物質容量の設計値全体の2~55%であることが好ましい。また、第二の充電におけるリチウムイオンの注入量は、SEI膜を均一に形成する観点から、46mAh以上、すなわち設計値全体の10%以上であることが好ましい。第二の充電におけるリチウムイオンの注入量は、過充電によるリチウムの析出の防止の観点から、200mAh以下、すなわち43%以下であることが好ましい。また、第二の充電におけるレートは、SEI膜を均一に形成する観点及び/又はリチウムの析出の防止の観点から、1/10C~1/200Cであることが好ましい。第一の充電及び第二の充電は、それぞれ少なくとも1回行われ、複数回行われてもよい。 The first charge is preferably fully charged. The injection amount of lithium ions in the second charge varies depending on the design of the amount of the negative electrode active material to be produced, but is, for example, 10 to 250 mAh for the negative electrode active material having a capacity of 460 mAh, that is, the entire design value of the active material capacity. It is preferably 2 to 55% of the above. The amount of lithium ions injected in the second charge is preferably 46 mAh or more, that is, 10% or more of the total design value, from the viewpoint of uniformly forming the SEI film. The amount of lithium ions injected in the second charge is preferably 200 mAh or less, that is, 43% or less, from the viewpoint of preventing lithium precipitation due to overcharging. The rate in the second charge is preferably 1/10 C to 1 / 200C from the viewpoint of uniformly forming the SEI film and / or preventing the precipitation of lithium. The first charge and the second charge are each performed at least once, and may be performed a plurality of times.
 負極112は、リチウムイオンを可逆的に吸蔵及び放出可能な負極活物質及び負極活物質を結着させるバインダを含む負極合剤層と、負極集電体とを備えて構成される。 The negative electrode 112 is configured to include a negative electrode mixture layer containing a negative electrode active material capable of reversibly occluding and releasing lithium ions and a binder for binding the negative electrode active material, and a negative electrode current collector.
 負極活物質としては、特に制限するものではないが、例えば、天然黒鉛、複合炭素質材料、人造黒鉛、シリコン(Si)、シリコンを混合した天然又は人造黒鉛、難黒鉛化炭素材、又はチタン酸リチウムLiTi12等が挙げられる。複合炭素質材料としては、例えば、天然黒鉛に乾式のCVD法又は湿式のスプレー法によって被膜を形成したものが挙げられる。人造黒鉛としては、例えば、エポキシやフェノール等の樹脂材料又は石油や石炭から得られるピッチ系材料を原料として焼成により製造されるものが挙げられる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The negative electrode active material is not particularly limited, but is, for example, natural graphite, composite carbonaceous material, artificial graphite, silicon (Si), natural or artificial graphite mixed with silicon, graphitized carbon material, or titanium acid. Examples thereof include lithium Li 4 Ti 5 O 12. Examples of the composite carbonaceous material include those in which a film is formed on natural graphite by a dry CVD method or a wet spray method. Examples of artificial graphite include those produced by firing using a resin material such as epoxy or phenol or a pitch-based material obtained from petroleum or coal as a raw material. As the negative electrode active material, one type may be used alone, or two or more types may be used in combination.
 バインダは、特に制限されるものではなく、バインダとしては、例えば、水に溶解、膨潤又は分散する水系バインダ、及び、水に溶解、膨潤又は分散しない有機系バインダのいずれを用いることも可能である。水系バインダの具体例としては、スチレン・ブタジエンゴム、アクリル系ポリマー、シアノ基を有するポリマー、これらの共重合体等が挙げられる。有機系バインダの具体例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、これらの共重合体等が挙げられる。バインダは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、カルボキシメチルセルロース等の増粘性のバインダを併用してもよい。 The binder is not particularly limited, and as the binder, for example, either an aqueous binder that dissolves, swells, or disperses in water, or an organic binder that does not dissolve, swell, or disperse in water can be used. .. Specific examples of the aqueous binder include styrene-butadiene rubber, acrylic polymers, polymers having a cyano group, and copolymers thereof. Specific examples of the organic binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, and copolymers thereof. One type of binder may be used alone, or two or more types may be used in combination. Further, a thickening binder such as carboxymethyl cellulose may be used in combination.
 負極集電体としては、例えば、銅、銅を主成分とする銅合金等を材質とする金属箔、金属板、発泡金属板、エキスパンドメタル、パンチングメタル等の材料を適宜用いることができる。 As the negative electrode current collector, for example, a material such as a metal foil made of copper or a copper alloy containing copper as a main component, a metal plate, a foamed metal plate, an expanded metal, or a punching metal can be appropriately used.
 負極112は、例えば、負極活物質と、バインダとを適当な溶媒と共に混合して負極合剤とし、この負極合剤を負極集電体に塗布した後、乾燥、圧縮成形することによって作製することができる。負極合剤を塗布する方法としては、例えば、ドクターブレード法、ディッピング法、スプレー法等を用いることができる。 The negative electrode 112 is manufactured, for example, by mixing a negative electrode active material and a binder together with an appropriate solvent to obtain a negative electrode mixture, applying this negative electrode mixture to a negative electrode current collector, and then drying and compression molding. Can be done. As a method for applying the negative electrode mixture, for example, a doctor blade method, a dipping method, a spray method, or the like can be used.
 セパレータ(第一のセパレータ及び第二のセパレータ)は、正極(第一の正極及び第二の正極を含む)と負極112とが直接接触して短絡が生じるのを防止するために備えられる。セパレータは、特に制限されものではないが、例えば、ポリエチレン、ポリプロピレン、アラミド樹脂等の微多孔質フィルムや、このような微多孔質フィルムの表面にアルミナ粒子等の耐熱性物質を被覆したフィルム等を用いることができる。 Separators (first separator and second separator) are provided to prevent a short circuit from occurring due to direct contact between the positive electrode (including the first positive electrode and the second positive electrode) and the negative electrode 112. The separator is not particularly limited, but for example, a microporous film such as polyethylene, polypropylene, or aramid resin, or a film in which the surface of such a microporous film is coated with a heat-resistant substance such as alumina particles is used. Can be used.
 セルに注入する非水電解液は、特に制限されるものではなく、例えば、市販のリチウムイオン二次電池に使用されている汎用品を用いることができる。非水電解液は、例えば、非水溶媒及び支持電解質を含む。非水溶媒としては、例えば、非プロトン性有機系溶媒が挙げられる。非プロトン性有機系溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、又はこれらの混合物が挙げられる。非プロトン性有機系溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。支持電解質としては、例えば、リチウム塩が挙げられる。リチウム塩としては、例えば、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、ヨウ化リチウム、塩化リチウム、臭化リチウム、LiB[OCOCF、LiB[OCOCFCF、LiPF(CF、LiN(SOCF、LiN(SOCFCF、又はこれらの混合物が挙げられる。支持電解質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。リチウム塩は、フッ素原子を含むことが好ましい。 The non-aqueous electrolytic solution to be injected into the cell is not particularly limited, and for example, a general-purpose product used in a commercially available lithium ion secondary battery can be used. The non-aqueous electrolyte solution includes, for example, a non-aqueous solvent and a supporting electrolyte. Examples of the non-aqueous solvent include an aprotic organic solvent. Examples of the aproton organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl. Examples include carbonate (MPC), ethylpropyl carbonate (EPC), or mixtures thereof. As the aprotic organic solvent, one type may be used alone, or two or more types may be used in combination. Examples of the supporting electrolyte include lithium salts. Examples of the lithium salt include lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium iodide, lithium chloride, lithium bromide, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3]. ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , or a mixture thereof. As the supporting electrolyte, one type may be used alone, or two or more types may be used in combination. The lithium salt preferably contains a fluorine atom.
 正極10は、例えば、正極活物質、導電材及びバインダを含む正極合剤層と、正極合剤層が片面又は両面に塗工された正極集電体とを備えて構成される。正極111a及び111bは、負極112にリチウムイオンを注入できれば特に制限されるものではない。正極活物質の種類も特に制限されるものではない。コスト低減や製造プロセスの簡易化の点から、第一の正極111a及び第二の正極111bの構造は同じであることが好ましく、また、用いられる正極活物質やバインダ等も、それぞれ同じ種類のものであることが好ましい。 The positive electrode 10 includes, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive material, and a binder, and a positive electrode current collector in which the positive electrode mixture layer is coated on one or both sides. The positive electrodes 111a and 111b are not particularly limited as long as lithium ions can be injected into the negative electrode 112. The type of positive electrode active material is not particularly limited. From the viewpoint of cost reduction and simplification of the manufacturing process, it is preferable that the structures of the first positive electrode 111a and the second positive electrode 111b are the same, and the positive electrode active material and the binder used are also of the same type. Is preferable.
 正極活物質としては、例えば、コバルト酸リチウム、マンガン置換コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、オリビン型リン酸鉄リチウムなどのリン酸遷移金属リチウム、LiNiCoMn(ここで、w、x、y、zは0又は正の値)が挙げられる。正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the positive electrode active material, for example, lithium cobalt oxide, lithium manganese substituted cobaltate, lithium manganate, lithium nickel acid, transition metal phosphate lithium such as olivine-type lithium iron phosphate, Li w Ni x Co y Mn z O 2 (Here, w, x, y, z are 0 or positive values). As the positive electrode active material, one type may be used alone, or two or more types may be used in combination.
 導電剤としては、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック等の炭素粒子や、炭素繊維等を用いることができる。これらの導電剤は、1種を単独で用いてもよいし、又は2種以上を組み合わせて用いてもよい。 As the conductive agent, for example, carbon particles such as graphite, carbon black, acetylene black, ketjen black, and channel black, carbon fibers, and the like can be used. These conductive agents may be used alone or in combination of two or more.
 バインダとしては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、スチレン・ブタジエンゴム、カルボキシル・メチルセルロース、酢酸セルロース、エチルセルロース、フッ素ゴム、エチレン・プロピレンゴム、ポリアクリル酸、ポリイミド、ポリアミド、又はこれらの混合物を挙げることができる。バインダは、1種を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。また、カルボキシメチルセルロース等の増粘性のバインダを併用してもよい。 The binder is not particularly limited, but is, for example, polyvinylidene fluoride, styrene / butadiene rubber, carboxyl / methylcellulose, cellulose acetate, ethylcellulose, fluororubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide, or A mixture of these can be mentioned. One type of binder may be used alone, or two or more types may be used in combination. Further, a thickening binder such as carboxymethyl cellulose may be used in combination.
 正極集電体としては、例えば、アルミニウム、ステンレス鋼、チタン等を材質とする金属箔、金属板、発泡金属板、エキスパンドメタル、パンチングメタル等の適宜の材料を用いることができる。 As the positive electrode current collector, for example, an appropriate material such as a metal foil made of aluminum, stainless steel, titanium or the like, a metal plate, a foamed metal plate, an expanded metal, a punching metal or the like can be used.
 正極は、例えば、正極活物質と、導電剤と、バインダとを適当な溶媒と共に混合して正極合剤とし、この正極合剤を正極集電体に塗布した後、乾燥、圧縮成形することによって作製することができる。正極合剤を塗布する方法としては、例えば、ドクターブレード法、ディッピング法、スプレー法等を用いることができる。また、正極合剤を圧縮成形する方法としては、例えば、ロールプレス等を用いることができる。溶媒は、バインダを溶解できるものであればよく、例えば、1-メチル-2-ピロリドンや水等を使用することができるが、これらに限定されない。 The positive electrode is formed by, for example, mixing a positive electrode active material, a conductive agent, and a binder together with an appropriate solvent to form a positive electrode mixture, applying the positive electrode mixture to a positive electrode current collector, and then drying and compression molding. Can be made. As a method for applying the positive electrode mixture, for example, a doctor blade method, a dipping method, a spray method, or the like can be used. Further, as a method for compression molding the positive electrode mixture, for example, a roll press or the like can be used. The solvent may be any solvent as long as it can dissolve the binder, and for example, 1-methyl-2-pyrrolidone, water, or the like can be used, but the solvent is not limited thereto.
 以下に、図2のセル構成を用いて負極112にSEI膜を形成する工程について具体的に説明する。第一の正極111a及び第二の正極111bは、それらの容量がそれぞれ例えば300mAhとなるように作製する。負極112は、その容量が例えば460mAhとなるように作製する。第一の正極111a及び第二の正極111bは、それぞれ同じ構成とする。次に、まず、第一の正極111aと負極112を電源に接続し、第一の正極111aから負極112にリチウムイオンを注入する。第一の正極111aからのリチウムイオンの注入が終了した後、第一の正極111aを電源から切り離し、代わりに、第二の正極111bを電源に接続する。そして、第二の正極111bから負極112にリチウムイオンを注入する。本例では、リチウムイオンの注入量は、10~250mAhとすることが好ましい。また、SEI膜を均一に形成する観点から、リチウムイオンの注入量は40mAh以上であることが好ましい。また、過充電によるリチウムの析出を抑制する観点から、リチウムイオンの注入量は200mAh以下であることが好ましい。また、第二の正極111bからのリチウムイオンの注入は、1/100C程度の低いレートで行うことが好ましい。リチウムイオンの注入が終了した後、適宜放電処理や洗浄処理を行うことができる。また、以上の工程で得られた負極の負極合剤層には、本実施形態の特徴を示すSEI膜が形成されており、この負極を用いることにより、高い容量維持率を奏しかつ抵抗の増大を抑制できるリチウムイオン二次電池を作製することができる。また、負極から負極合剤層を剥がして粉砕し、負極活物質として用いてもよい。粉砕方法は、特に制限されるものではなく、例えば、従来公知の粉砕手段を用いることができる。 The step of forming the SEI film on the negative electrode 112 using the cell configuration of FIG. 2 will be specifically described below. The first positive electrode 111a and the second positive electrode 111b are manufactured so that their capacities are, for example, 300 mAh. The negative electrode 112 is manufactured so that its capacity is, for example, 460 mAh. The first positive electrode 111a and the second positive electrode 111b have the same configuration. Next, first, the first positive electrode 111a and the negative electrode 112 are connected to a power source, and lithium ions are injected from the first positive electrode 111a into the negative electrode 112. After the injection of lithium ions from the first positive electrode 111a is completed, the first positive electrode 111a is disconnected from the power source, and instead, the second positive electrode 111b is connected to the power source. Then, lithium ions are injected from the second positive electrode 111b into the negative electrode 112. In this example, the injection amount of lithium ions is preferably 10 to 250 mAh. Further, from the viewpoint of uniformly forming the SEI film, the injection amount of lithium ions is preferably 40 mAh or more. Further, from the viewpoint of suppressing the precipitation of lithium due to overcharging, the injection amount of lithium ions is preferably 200 mAh or less. Further, the injection of lithium ions from the second positive electrode 111b is preferably performed at a low rate of about 1 / 100C. After the injection of lithium ions is completed, discharge treatment and cleaning treatment can be performed as appropriate. Further, a SEI film showing the characteristics of the present embodiment is formed on the negative electrode mixture layer of the negative electrode obtained in the above steps, and by using this negative electrode, a high capacity retention rate is achieved and the resistance is increased. It is possible to manufacture a lithium ion secondary battery capable of suppressing the above. Alternatively, the negative electrode mixture layer may be peeled off from the negative electrode, crushed, and used as the negative electrode active material. The crushing method is not particularly limited, and for example, a conventionally known crushing means can be used.
 以下、本実施形態について実施例を示して説明するが、本実施形態は以下の実施例に限定されるものではない。 Hereinafter, the present embodiment will be described with reference to examples, but the present embodiment is not limited to the following examples.
(実施例1)
[負極の作製方法]
 図2に示したセル構成を用い、負極を以下の工程により作製した。第一の正極111a及び第二の正極111bは、それらの容量がそれぞれ300mAhとなるように作製した。第一の正極111a及び第二の正極111bは、それぞれ同じ構成とした。正極活物質としてLiNi0.5Mn0.2Co0.3、正極導電剤として炭素材料、及び正極バインダとしてPVDFを用いた。負極112は、その容量が460mAhとなるように作製した。負極活物質として黒鉛、負極導電剤として炭素材料、及び負極バインダとしてSBRとCMCを用いた。
(Example 1)
[Method for manufacturing negative electrode]
Using the cell configuration shown in FIG. 2, a negative electrode was produced by the following steps. The first positive electrode 111a and the second positive electrode 111b were manufactured so that their capacities were 300 mAh, respectively. The first positive electrode 111a and the second positive electrode 111b have the same configuration. LiNi 0.5 Mn 0.2 Co 0.3 was used as the positive electrode active material, a carbon material was used as the positive electrode conductive agent, and PVDF was used as the positive electrode binder. The negative electrode 112 was manufactured so that its capacity was 460 mAh. Graphite was used as the negative electrode active material, carbon material was used as the negative electrode conductive agent, and SBR and CMC were used as the negative electrode binder.
 まず、第一の正極111aと負極112を電源に接続し、第一の正極111aから負極112にリチウムイオンを注入した(満充電、レート:0.5C)。第一の正極111aからのリチウムイオンの注入が終了した後、第一の正極111aを電源から切り離し、代わりに、第二の正極111bを電源に接続した。そして、第二の正極111bから負極112にリチウムイオンを注入した。第二の充電において、第二の正極111bからのリチウムイオンの注入量は、200mAhとした。また、第二の正極111bからのリチウムイオンの注入は、1/100Cの低いレートで行った。リチウムイオンの注入が終了した後、適宜放電処理を行った。 First, the first positive electrode 111a and the negative electrode 112 were connected to a power source, and lithium ions were injected from the first positive electrode 111a into the negative electrode 112 (fully charged, rate: 0.5C). After the injection of lithium ions from the first positive electrode 111a was completed, the first positive electrode 111a was disconnected from the power source, and instead, the second positive electrode 111b was connected to the power source. Then, lithium ions were injected from the second positive electrode 111b into the negative electrode 112. In the second charging, the injection amount of lithium ions from the second positive electrode 111b was set to 200 mAh. In addition, the injection of lithium ions from the second positive electrode 111b was performed at a low rate of 1 / 100C. After the injection of lithium ions was completed, a discharge treatment was appropriately performed.
 以上の工程により、SEI膜が形成された負極合剤層を有する負極を作製した。 Through the above steps, a negative electrode having a negative electrode mixture layer on which an SEI film was formed was produced.
[XPSによる分析]
 図3Aは、得られた負極のSEI膜の深さ方向におけるXPSスペクトルを示す。計測された元素はフッ素、酸素、炭素、リチウムであった。XPSスペクトルから、表面から深さ25nm程度まで酸素の比率が増大し、ピークを形成していることがわかる。また、XPSスペクトルから、表面から深さ50nm程度までリチウムの比率が増大し、ピークを形成していることがわかる。図3Bに、従来品としての正極及び負極(第二の正極は使用しない)で充放電を行って形成したSEI膜のXPSによる計測スペクトルを示した。酸素とリチウムはSEI膜の表面近傍に存在していることがわかる。この分析結果より、本実施例によるSEI膜は、表面近傍にリチウムと酸素を含むことが確認できる。
[Analysis by XPS]
FIG. 3A shows the XPS spectrum of the obtained negative electrode in the depth direction of the SEI film. The measured elements were fluorine, oxygen, carbon and lithium. From the XPS spectrum, it can be seen that the ratio of oxygen increases from the surface to a depth of about 25 nm to form a peak. Further, from the XPS spectrum, it can be seen that the ratio of lithium increases from the surface to a depth of about 50 nm to form a peak. FIG. 3B shows the measurement spectrum of the SEI film formed by charging and discharging the positive electrode and the negative electrode (the second positive electrode is not used) as a conventional product by XPS. It can be seen that oxygen and lithium are present near the surface of the SEI film. From this analysis result, it can be confirmed that the SEI film according to this example contains lithium and oxygen in the vicinity of the surface.
 図4は、得られた負極のSEI膜の酸素1sのXPSスペクトルである。該XPSスペクトルは、表面から0、24、48又は90nmの深さの点で計測した。XPSスペクトルにおいて、C=Oの二重結合を示すピークが533eV付近に、また、LiOを示すピークが530eV付近に存在していることがわかる。C=Oの二重結合を示すピークが深さ48nmから急激に減少している。一方、LiOを示すピークは表面にも存在しているが、24~48nmで増大している。これより、24~48nm付近にLiOが多く存在すると考えられる。これは図3Aの酸素とリチウムのXPSスペクトルの結果とも一致する。 FIG. 4 is an XPS spectrum of oxygen 1s of the obtained negative electrode SEI film. The XPS spectrum was measured at a depth of 0, 24, 48 or 90 nm from the surface. In the XPS spectrum, it can be seen that the peak showing the double bond of C = O exists near 533 eV, and the peak showing Li 2 O exists near 530 eV. The peak showing the double bond of C = O decreases sharply from the depth of 48 nm. On the other hand, the peak showing Li 2 O is also present on the surface, but increases at 24-48 nm. From this, it is considered that a large amount of Li 2 O is present in the vicinity of 24-48 nm. This is also consistent with the results of the oxygen and lithium XPS spectra of FIG. 3A.
 図5は、得られた負極のSEI膜のリチウム1sのXPSスペクトルである。該XPSスペクトルは、表面から0、24、48又は90nmの深さの点で計測した。XPSスペクトルにおいて、LiFを示すピークが57eV付近に、また、C=Oの二重結合を示すピークが56eV付近に存在していることがわかる。LiFを示すピークは48nmから急激に減少している。一方、C=Oの二重結合を示すピークは表面にも存在しているが、24~90nmで増大している。これより、24~90nm付近にC=Oの二重結合が多く存在すると考えられる。 FIG. 5 is an XPS spectrum of lithium 1s of the obtained negative electrode SEI film. The XPS spectrum was measured at a depth of 0, 24, 48 or 90 nm from the surface. In the XPS spectrum, it can be seen that the peak showing LiF exists near 57 eV and the peak showing the double bond of C = O exists near 56 eV. The peak showing LiF decreases sharply from 48 nm. On the other hand, a peak showing a C = O double bond is also present on the surface, but increases at 24-90 nm. From this, it is considered that there are many C = O double bonds in the vicinity of 24 to 90 nm.
[STEM-EELSによる分析]
 図6Aは、得られた負極のSEI膜のSTEM-EELSによるC-K端のスペクトルである。285~310eVにかけてブロードなピークが1つ存在している。一方、図6Bに示されるような、一般的なリチウムイオン二次電池の継続的な充放電により形成されるSEI膜に特徴的な、LiCOを示すと考えられる287~290eV付近の鋭いピークは存在しない。
[Analysis by STEM-EELS]
FIG. 6A is a spectrum of the CK end of the obtained negative electrode SEI film by STEM-EELS. There is one broad peak from 285 to 310 eV. On the other hand, as shown in FIG. 6B, there is a sharp edge around 287 to 290 eV, which is considered to exhibit Li 2 CO 3, which is characteristic of the SEI film formed by continuous charging and discharging of a general lithium ion secondary battery. There are no peaks.
 図4から図6の計測スペクトルから、得られた負極合剤層のSEI膜は、酸化リチウム(LiO)と、フッ化リチウム(LiF)とを含むことがわかる。また、図4及び5のXPSスペクトルから、SEI膜の表面から深さ100nmの間で測定された、酸素1sのXPSスペクトルにおいて、533eV付近にC=Oの二重結合を示すピークが存在し、530eV付近に酸化リチウム(LiO)を示すピークが存在し、リチウム1sのXPSスペクトルにおいて、57eV付近にフッ化リチウム(LiF)を示すピークが存在し、及び56eV付近にC=Oの二重結合を示すピークが存在することがわかる。また、図6AのSTEM-EELSによるC-K端のスペクトルにおいて、285~310eVにかけてブロードなピークが存在していることがわかる。 From the measurement spectra of FIGS. 4 to 6, it can be seen that the SEI film of the obtained negative electrode mixture layer contains lithium oxide (Li 2 O) and lithium fluoride (Li F). Further, from the XPS spectra of FIGS. 4 and 5, in the XPS spectrum of oxygen 1s measured from the surface of the SEI film to a depth of 100 nm, there is a peak showing a double bond of C = O near 533 eV. There is a peak showing lithium oxide (Li 2 O) near 530 eV, a peak showing lithium fluoride (LiF) near 57 eV in the XPS spectrum of lithium 1s, and a double C = O near 56 eV. It can be seen that there is a peak indicating binding. Further, it can be seen that a broad peak exists from 285 to 310 eV in the spectrum at the CK end by STEM-EELS in FIG. 6A.
(実施例2)
 以下、実施例1で得られた負極を用いてリチウムイオン二次電池を試作し、性能を評価した。
(Example 2)
Hereinafter, a lithium ion secondary battery was prototyped using the negative electrode obtained in Example 1 and its performance was evaluated.
 正極は、正極活物質としてLiNi0.5Mn0.2Co0.3、正極導電剤として炭素材料、及び正極バインダとしてPVDFを用いて作製した。正極の容量は300mAhとした。 The positive electrode was prepared using LiNi 0.5 Mn 0.2 Co 0.3 as the positive electrode active material, a carbon material as the positive electrode conductive agent, and PVDF as the positive electrode binder. The capacity of the positive electrode was set to 300 mAh.
 作製したリチウムイオン二次電池について、50℃環境下で4.2~3.0V、1Cの連続充放電を50サイクル行い、容量維持率と満充電時の直流抵抗を評価した。 The produced lithium ion secondary battery was subjected to continuous charging / discharging of 4.2 to 3.0 V and 1 C for 50 cycles in an environment of 50 ° C., and the capacity retention rate and the DC resistance at the time of full charge were evaluated.
(比較例1)
 負極は、負極活物質として黒鉛、負極導電剤として炭素材料、及び負極バインダとしてSBRとCMCを用いて作製した。負極の容量は、460mAhとした。この負極を利用したこと以外は、実施例2と同様に、リチウムイオン二次電池を作製し、評価した。
(Comparative Example 1)
The negative electrode was produced using graphite as the negative electrode active material, a carbon material as the negative electrode conductive agent, and SBR and CMC as the negative electrode binder. The capacity of the negative electrode was 460 mAh. A lithium ion secondary battery was produced and evaluated in the same manner as in Example 2 except that this negative electrode was used.
[結果及び考察]
 実施例2及び比較例1の結果を表1に示す。実施例2のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池と比較して、高い容量維持率を示した。また、直流抵抗については、比較例1のリチウムイオン二次電池では、サイクル試験後に抵抗が増大したのに対し、実施例1のリチウムイオン二次電池ではサイクル試験後でも抵抗がほとんど変化していなかった。比較例1のリチウムイオン二次電池では、充放電サイクルに伴うSEI膜の成長によりリチウムを固定化できる容量が減少し、SEI膜の成長に伴う厚膜化のために直流抵抗も増加したと推測される。一方、実施例2のリチウムイオン二次電池では、既に表面に安定なSEI膜が形成されていたため、充放電サイクルによるSEI膜の成長が生じず、その結果、容量の低下と直流抵抗の増加が抑制されたものと推測される。
[Results and discussion]
The results of Example 2 and Comparative Example 1 are shown in Table 1. The lithium ion secondary battery of Example 2 showed a high capacity retention rate as compared with the lithium ion secondary battery of Comparative Example 1. Regarding the DC resistance, the lithium ion secondary battery of Comparative Example 1 had an increased resistance after the cycle test, whereas the lithium ion secondary battery of Example 1 had almost no change in resistance even after the cycle test. rice field. In the lithium ion secondary battery of Comparative Example 1, it is presumed that the capacity capable of immobilizing lithium decreased due to the growth of the SEI film during the charge / discharge cycle, and the DC resistance also increased due to the thickening of the SEI film. Will be done. On the other hand, in the lithium ion secondary battery of Example 2, since a stable SEI film was already formed on the surface, the SEI film did not grow due to the charge / discharge cycle, and as a result, the capacity decreased and the DC resistance increased. It is presumed that it was suppressed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。 The upper limit value and / or the lower limit value of the numerical range described in the present specification can be arbitrarily combined to specify a preferable range. For example, an upper limit value and a lower limit value of the numerical range can be arbitrarily combined to specify a preferable range, an upper limit value of the numerical range can be arbitrarily combined to specify a preferable range, and a lower limit of the numerical range can be specified. A preferable range can be defined by arbitrarily combining the values.
 この記載した開示に続く特許請求の範囲は、本明細書においてこの記載した開示に明示的に組み込まれ、各請求項は個別の実施形態として独立している。本開示は独立請求項をその従属請求項によって置き換えたもの全てを含む。さらに、独立請求項及びそれに続く従属請求項から誘導される追加的な実施形態も、この記載した明細書に明示的に組み込まれる。 The scope of claims following this stated disclosure is expressly incorporated herein by this stated disclosure, and each claim is independent as a separate embodiment. The present disclosure includes all independent claims replaced by their dependent claims. In addition, additional embodiments derived from the independent claims and subsequent dependent claims are also expressly incorporated herein by this description.
 当業者であれば本開示を最大限に利用するために上記の説明を用いることができる。本明細書に開示した特許請求の範囲及び実施形態は、単に説明的及び例示的なものであり、いかなる意味でも本開示の範囲を限定しないと解釈すべきである。本開示の助けを借りて、本開示の基本原理から逸脱することなく上記の実施形態の詳細に変更を加えることができる。換言すれば、上記の明細書に具体的に開示した実施形態の種々の改変及び改善は、本開示の範囲内である。 Those skilled in the art can use the above description to make the best use of this disclosure. The claims and embodiments disclosed herein are merely explanatory and exemplary and should be construed as not limiting the scope of the present disclosure in any way. With the help of the present disclosure, changes can be made to the details of the above embodiments without departing from the basic principles of the present disclosure. In other words, the various modifications and improvements of the embodiments specifically disclosed herein are within the scope of this disclosure.
  1  リチウムイオン二次電池
 10  正極
 11  セパレータ
 12  負極
 13  電池容器
 14  正極集電タブ
 15  負極集電タブ
 16  内蓋
 17  内圧開放弁
 18  ガスケット
 19  正温度係数抵抗素子
 20  電池蓋
 21  軸心
111a 第一の正極
111b 第二の正極
112  負極
113a 第一のセパレータ
113b 第二のセパレータ
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
1 Lithium ion secondary battery 10 Positive electrode 11 Separator 12 Negative electrode 13 Battery container 14 Positive electrode current collection tab 15 Negative electrode current collection tab 16 Inner lid 17 Internal pressure release valve 18 Gasket 19 Positive temperature coefficient resistance element 20 Battery lid 21 Axis center 111a First Positive electrode 111b Second positive electrode 112 Negative electrode 113a First separator 113b Second separator All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (4)

  1.  活物質、バインダ、及びそれらの周囲に形成されたSEI膜を含む、リチウムイオン二次電池用の負極材料であって、
     前記SEI膜が、酸化リチウム(LiO)と、フッ化リチウム(LiF)とを含み、
     前記SEI膜の表面から深さ100nmの間で測定された、酸素1sのXPSスペクトルが、533eV付近にC=Oの二重結合を示すピークを、530eV付近に酸化リチウム(LiO)を示すピークを、57eV付近にフッ化リチウム(LiF)を示すピークを、及び56eV付近にC=Oの二重結合を示すピークを有し、
     前記SEI膜のSTEM-EELSによるC-K端のスペクトルが、285~310eVにかけてブロードなピークを有することを特徴とする負極材料。
    A negative electrode material for a lithium ion secondary battery, which comprises an active material, a binder, and an SEI film formed around them.
    The SEI film contains lithium oxide (Li 2 O) and lithium fluoride (Li F).
    The XPS spectrum of oxygen 1s measured from the surface of the SEI film to a depth of 100 nm shows a peak showing a C = O double bond near 533 eV and lithium oxide (Li 2 O) near 530 eV. The peak has a peak showing lithium fluoride (LiF) near 57 eV and a peak showing a C = O double bond near 56 eV.
    A negative electrode material characterized in that the spectrum at the CK end of the SEI film by STEM-EELS has a broad peak from 285 to 310 eV.
  2.  負極合剤層として用いられる、請求項1に記載の負極材料。 The negative electrode material according to claim 1, which is used as a negative electrode mixture layer.
  3.  負極活物質として用いられる、請求項1に記載の負極材料。 The negative electrode material according to claim 1, which is used as a negative electrode active material.
  4.  負極合剤層としての請求項1~3のいずれか1項に記載の負極材料と、負極集電体と、を含むことを特徴とする負極。 A negative electrode comprising the negative electrode material according to any one of claims 1 to 3 as a negative electrode mixture layer and a negative electrode current collector.
PCT/JP2020/046857 2020-03-24 2020-12-16 Negative electrode material for lithium ion secondary batteries WO2021192453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509267A JPWO2021192453A1 (en) 2020-03-24 2020-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052858 2020-03-24
JP2020-052858 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021192453A1 true WO2021192453A1 (en) 2021-09-30

Family

ID=77891209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046857 WO2021192453A1 (en) 2020-03-24 2020-12-16 Negative electrode material for lithium ion secondary batteries

Country Status (2)

Country Link
JP (1) JPWO2021192453A1 (en)
WO (1) WO2021192453A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530898A (en) * 2015-10-14 2018-10-18 ノースウェスタン ユニバーシティ Graphene-coated metal oxide spinel cathode
US20200071835A1 (en) * 2018-08-29 2020-03-05 Massachusetts Institute Of Technology Artificial solid electrolyte interphase layers
JP2020061367A (en) * 2018-10-10 2020-04-16 インダストリー−アカデミー コーオペレイション コー オブ スンチョン ナショナル ユニバーシティー Lithium-ion battery electrolyte and lithium-ion battery
WO2020111094A1 (en) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 Electrochemical device negative electrode and electrochemical device, and method for manufacturing electrochemical device negative electrode and method for manufacturing electrochemical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530898A (en) * 2015-10-14 2018-10-18 ノースウェスタン ユニバーシティ Graphene-coated metal oxide spinel cathode
US20200071835A1 (en) * 2018-08-29 2020-03-05 Massachusetts Institute Of Technology Artificial solid electrolyte interphase layers
JP2020061367A (en) * 2018-10-10 2020-04-16 インダストリー−アカデミー コーオペレイション コー オブ スンチョン ナショナル ユニバーシティー Lithium-ion battery electrolyte and lithium-ion battery
WO2020111094A1 (en) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 Electrochemical device negative electrode and electrochemical device, and method for manufacturing electrochemical device negative electrode and method for manufacturing electrochemical device

Also Published As

Publication number Publication date
JPWO2021192453A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN104008893B (en) The preparation method of lithium ion hybrid capacitors and lithium ion hybrid capacitors thereof
CA2851994C (en) Lithium secondary cell with high charge and discharge rate capability
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
WO2013018486A1 (en) Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
RU2631239C2 (en) Method of producing a layer of active material of positive electrode for lithium-ion battery and layer of active material of positive electrode for lithium-ion accumulator
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
WO2008037154A1 (en) A lithium ion secondary battery using foam metal as current collect and a battery assembly using the same
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP3979044B2 (en) Lithium secondary battery
CA2887996A1 (en) Lithium secondary battery
KR20150065078A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2002270245A (en) Nonaqueous secondary cell
JP7064270B2 (en) Non-aqueous electrolyte secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
WO2021192453A1 (en) Negative electrode material for lithium ion secondary batteries
JP2015153535A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN113422027A (en) Positive electrode composite material and preparation method and application thereof
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927422

Country of ref document: EP

Kind code of ref document: A1