WO2021192112A1 - 無人航空機 - Google Patents
無人航空機 Download PDFInfo
- Publication number
- WO2021192112A1 WO2021192112A1 PCT/JP2020/013422 JP2020013422W WO2021192112A1 WO 2021192112 A1 WO2021192112 A1 WO 2021192112A1 JP 2020013422 W JP2020013422 W JP 2020013422W WO 2021192112 A1 WO2021192112 A1 WO 2021192112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- unmanned aerial
- aerial vehicle
- wheel
- screw
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 278
- 230000007246 mechanism Effects 0.000 claims abstract description 49
- 230000001419 dependent effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C37/00—Convertible aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60F—VEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
- B60F5/00—Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
- B60F5/003—Off the road or amphibian vehicles adaptable for air or space transport
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60F—VEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
- B60F5/00—Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
- B60F5/02—Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C35/00—Flying-boats; Seaplanes
- B64C35/005—Flying-boats; Seaplanes with propellers, rudders or brakes acting in the water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/70—Convertible aircraft, e.g. convertible into land vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U60/00—Undercarriages
- B64U60/10—Undercarriages specially adapted for use on water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/32—Alighting gear characterised by elements which contact the ground or similar surface
- B64C25/34—Alighting gear characterised by elements which contact the ground or similar surface wheeled type, e.g. multi-wheeled bogies
- B64C25/36—Arrangements or adaptations of wheels, tyres or axles in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C25/00—Alighting gear
- B64C25/32—Alighting gear characterised by elements which contact the ground or similar surface
- B64C25/54—Floats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/25—UAVs specially adapted for particular uses or applications for manufacturing or servicing
- B64U2101/26—UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/13—Propulsion using external fans or propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U60/00—Undercarriages
- B64U60/50—Undercarriages with landing legs
- B64U60/55—Undercarriages with landing legs the legs being also used as ground propulsion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Definitions
- This disclosure relates to unmanned aerial vehicles.
- Non-Patent Document 1 a method using an autonomous flight type unmanned aerial vehicle is being studied.
- an unmanned aerial vehicle enters the manhole, and the state of the upper floor slab concrete of the skeleton, which is one of the inspection items of the communication manhole, is automatically photographed by the camera mounted on the unmanned aerial vehicle.
- the space inside the manhole is narrow and the aircraft of the unmanned aerial vehicle in flight is not stable. rice field.
- the inside of the manhole may have accumulated water such as groundwater and rainwater, and the conventional unmanned aerial vehicle may land on the surface of the accumulated water.
- the unmanned aerial vehicle after the unmanned aerial vehicle has landed on the floor or the like, it is necessary to be able to move inside the manhole for photography, and it is necessary not to be submerged on the water. For this reason, it has been desired to develop an unmanned aerial vehicle having land movement capability and water mobility capability that does not depend on a flight propeller.
- the purpose of this disclosure made in view of such circumstances is to provide an unmanned aerial vehicle having land movement capability and water mobility capability that does not depend on a flight propeller.
- the unmanned aerial vehicle according to the embodiment is an unmanned aerial vehicle equipped with a flight propeller, and includes a main body portion, a moving portion having a water moving mechanism and a land moving mechanism without depending on the flying propeller, and the main body portion. A connection portion for connecting the moving mechanism is provided.
- an unmanned aerial vehicle having land movement ability and water movement ability that does not depend on a flight propeller.
- FIG. 1 It is a figure which shows the state at the time of land movement of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the state at the time of moving on the water of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a side view which shows an example of the structure of a manhole.
- FIG. It is a figure which shows the connection part for a wheel which enables the direction change of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the connection part for a wheel which enables the direction change of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the connection part for a wheel which enables the direction change of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the connection part for a wheel which enables the direction change of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the state at the time of moving on the water by the water wheel of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the state at the time of moving on the water by the water wheel of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the state at the time of the direction change by the water wheel of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the state at the time of the direction change by the water wheel of the unmanned aerial vehicle which concerns on Embodiment 1.
- FIG. It is a figure which shows the state at the time of land movement of the unmanned aerial vehicle which concerns on Embodiment 2.
- the unmanned aerial vehicle 100 includes a main body unit 1, a flight propeller unit 2, a motor unit 3, an arm unit 4, a control unit (not shown), and a land moving unit. It includes a (moving portion) 5, a wheel connecting portion (connecting portion) 6, a water moving portion (moving portion) 7, a water wheel connecting portion (connecting portion) 8, and a camera 9.
- the land moving unit 5 includes a wheel (land moving mechanism) 10 and a wheel shaft 11.
- the water moving unit 7 includes a water wheel (water moving mechanism) 12 and a water wheel shaft 13.
- the main body 1 has a rectangular shape in a plan view, and is covered with, for example, a plate material made of CFRP (Carbon Fiber Reinforced Plastics) or the like.
- Each of the flight propeller units 2 includes a plurality of blades (not shown).
- the flight propeller section 2 is rotated by the drive of the motor section 3 attached to each of them to generate lift.
- the arm portion 4 is a rod-shaped support member, which extends substantially in the horizontal direction and rotatably supports the flight propeller portion 2.
- the control unit is, for example, a small computer including RaspberryPi (registered trademark) and the like, and controls each part of the unmanned aerial vehicle 100 as described in detail below.
- RaspberryPi registered trademark
- the manhole 200 is a standard product communication manhole.
- the manhole 200 includes a neck portion 210, a skeleton portion 220, an iron lid 230, a pipeline 240, and a duct portion 250.
- the skeleton portion 220 includes an upper floor slab 221, a lower floor slab 222, and a side wall portion 223.
- the inside of the manhole 200 is surrounded by the wall surface of the side wall portion 223, the ceiling surface of the upper floor slab 221 and the floor surface of the lower floor slab 222 (or the water surface of the pool water 300).
- the side wall portion 223 is formed with through holes connected to a plurality of pipelines 240, and a duct portion 250 is provided.
- the iron lid 230 has a substantially cylindrical shape and fits into the manhole hole which is the entrance / exit of the manhole 200.
- the manhole hole is formed at the boundary between the above-ground part and the underground part. Communication cables and the like are laid in the plurality of pipelines 240.
- the camera 9 is provided on the upper surface of the main body 1.
- the unmanned aerial vehicle 100 enters the manhole 200 through the manhole hole and investigates while moving in the manhole 200.
- the camera 9 photographs the ceiling surface of the upper floor slab 221, the wall surface of the side wall portion 223, and the like under the control of the control unit.
- a camera 9 is provided on the side surface or the lower surface of the main body portion 1 to photograph the ceiling surface of the upper floor slab 221, the wall surface of the side wall portion 223, the floor surface of the lower floor slab 222 (or the water surface of accumulated water), and the like.
- the wheel connection portion 6 is a rod-shaped or plate-shaped member. One end of the wheel connecting portion 6 extends downward from the bottom surface of the main body 1 of the unmanned aerial vehicle 100, and the other end is connected to the wheel 10 via the wheel shaft 11.
- the wheel 10 is a rotating body that enables the unmanned aerial vehicle 100 to move on land, and can rotate around the wheel shaft 11.
- the unmanned aerial vehicle 100 may include a total of three wheels 10. For ease of viewing, two wheels 10 are shown in FIG. 1A.
- the number of wheels 10 is not limited to three, and may be two or less as long as the unmanned aerial vehicle 100 can move on land while supporting the main body 1 on land via the wheel connecting portion 6. It may be four or more.
- the wheel 10 is provided below the water turbine 12, and the height of the wheel 10 from the floor surface is set so that the water turbine 12 does not contact the floor surface when the wheel 10 is in contact with the floor surface. ..
- An actuator (not shown) may be provided on the wheel 10 to drive the wheel 10 based on a control signal of the control unit.
- the unmanned aerial vehicle 100 on land, the unmanned aerial vehicle 100 moves in the direction of the arrow (traveling direction) by being driven by the wheels 10.
- the wheels 10 may be driven by an actuator (not shown) based on a control signal of the control unit.
- the land moving unit 5 may be configured so that the direction can be changed.
- the change of direction can be realized by making at least one of the three wheels 10 capable of changing the direction when the unmanned aerial vehicle 100 is provided with three wheels 10. If the unmanned aerial vehicle 100 has four wheels 10, at least two of them may be turnable.
- the wheel connecting portion 6 is bisected at substantially the center thereof, and both portions of the bisected wheel connecting portion 6 are via bearings (not shown). It is rotatably connected. As a result, the wheel 10 connected to the wheel connecting portion 6 via the wheel shaft 11 rotates.
- the rotation of the wheel 10 may be performed by an actuator (not shown) provided in the wheel connecting portion 6 based on the control signal of the control unit. This enables the unmanned aerial vehicle 100 to freely change direction when moving on land.
- the water turbine moving unit 7 includes a water turbine (water turbine moving mechanism) 12 and a water turbine shaft 13.
- the water wheel connecting portion 8 is a rod-shaped or plate-shaped member.
- One end of the water turbine connection 8 extends from the lower part of the main body 1 of the unmanned aerial vehicle 100 in the direction opposite to the direction of the arrow (traveling direction) and diagonally downward, and the other end is water. It is connected to the water turbine 12 via the vehicle shaft 13.
- the water turbine 12 is a rotating body that enables the unmanned aerial vehicle 100 to move on the water, and can rotate around the shaft 13 for the water turbine.
- the water turbine 12 has blades 14 radially.
- one water turbine 12 is connected to one water turbine connection portion 8.
- two water turbines 12 may be provided on the side surface of the main body 1 so as to sandwich the main body 1, one on each side, for a total of two.
- one turbine 12 is shown in FIG. 1B.
- the number of the water turbines 12 is not limited to two, and may be one or less as long as the unmanned aerial vehicle 100 can be moved on the water while supporting the main body 1 on the water via the water turbine connecting portion 8. However, the number may be three or more.
- the water turbine 12 is provided above the wheels 10.
- the water turbine 12 is provided at a position where it is semi-submerged when the unmanned aerial vehicle 100 moves on the water.
- An actuator (not shown) may be provided on the water turbine 12 to drive the water turbine 12 based on a control signal of the control unit.
- 4A and 4B are views of the unmanned aerial vehicle 100 including the water turbine 12 viewed from above in a plan view, and are views showing the movement of the unmanned aerial vehicle 100 in one direction.
- An unmanned aerial vehicle 100 equipped with two water turbines 12 will be described with reference to FIG. 4A.
- the water turbine 12A and the water turbine 12B are provided so as to sandwich the main body 1.
- an actuator (not shown) rotates the turbine 12A and the turbine 12B in the direction of the arrow (traveling direction) based on the control signal of the control unit, water is ejected from the turbine 12A and the turbine 12B in the direction opposite to the direction of the arrow at high pressure.
- NS Due to the ejection pressure of the water, the unmanned aerial vehicle 100 moves on the water in the direction of the arrow, that is, moves forward.
- an actuator moves the turbines 12A and 12B in the direction of the arrow (traveling direction). Rotate in the opposite direction.
- the unmanned aerial vehicle 100 moves on the water, that is, retreats in the direction opposite to the direction of the arrow due to the ejection pressure of the water.
- FIG. 4B shows an unmanned aerial vehicle 100 equipped with four water turbines 12.
- four turbines a turbine 12C, a turbine 12D, a turbine 12E, and a turbine 12F, are provided on each side surface of the main body 1 of the unmanned aerial vehicle 100 in four directions.
- the unmanned aerial vehicle 100 including the four turbines 12 similarly to the above, the unmanned aerial vehicle 100 is caused by rotating the turbines 12C and 12E in which actuators (not shown) sandwich the main body 1 with each other based on the control signal of the control unit. Can move forward and backward.
- the water moving unit 7 may be configured so that the direction can be changed.
- the direction change can be performed by rotating the turbines 12A and 12B in different directions.
- the unmanned aircraft 100 is moved in the direction of the white arrow due to the ejection pressure of water. Rotate on the water (clockwise).
- the unmanned aerial vehicle 100 rotates on the water in the direction opposite to the direction of the white arrow (counterclockwise). This enables the unmanned aerial vehicle 100 to freely change direction when moving on the water.
- FIG. 5B shows a turn of the unmanned aerial vehicle 100 equipped with four turbines 12.
- the unmanned aerial vehicle 100 rotates on the water in the direction of the white arrow (clockwise) due to the ejection pressure of water.
- the unmanned aerial vehicle 100 rotates on the water in the direction opposite to the direction of the white arrow (counterclockwise). This enables the unmanned aerial vehicle 100 to freely change direction when moving on the water.
- the water moving part 7 and the land moving part 5 (moving part) having the water wheel (water moving mechanism) 12 and the wheels (land moving mechanism) 10, the main body 1 and the water moving mechanism, and the water moving part 1
- the water turbine connecting portion 8 and the wheel connecting portion 6 (connecting portion) for connecting to the land moving mechanism
- the unmanned aircraft 100 can freely move on land and on water. Therefore, according to the present disclosure, it is possible to realize an unmanned aerial vehicle having land movement ability and water movement ability that does not depend on a flight propeller.
- the land moving unit 5 and the water moving unit 7 are configured to enable the movement direction of the main body 1 of the unmanned aerial vehicle 100 to be changed, so that the aircraft can fly. It is possible to realize an unmanned aerial vehicle that can move freely back and forth and left and right on land and on water without depending on a propeller.
- the present embodiment is different from the first embodiment in that the water turbine 12 and the water turbine shaft 13 included in the water moving unit (moving unit) 7 are formed by a screw (water moving mechanism) 15.
- the second embodiment will be described with a focus on the differences from the first embodiment.
- the parts having the same functions and configurations as those in the first embodiment are designated by the same reference numerals.
- the land moving unit (moving unit) 5 of the unmanned aerial vehicle 100 includes a wheel (land moving mechanism) 10 and a wheel shaft 11. Further, the unmanned aerial vehicle 100 includes a screw connection portion (connection portion) 16.
- the functions and configurations of the wheel 10 and the wheel shaft 11 are the same as those in the first embodiment.
- the water moving unit 7 includes a screw (water moving mechanism) 15.
- the screw connection portion 16 is a rod-shaped or plate-shaped member. One end of the screw connection 16 extends downward from the bottom surface of the main body 1 of the unmanned aerial vehicle 100, and the other end is connected to the screw 15.
- the screw 15 is a tubular body that allows the unmanned aerial vehicle 100 to move on the water with a propeller 27 that provides underwater propulsion.
- one screw 15 is connected to one screw connecting portion 16.
- the unmanned aerial vehicle 100 may include a total of one screw 15. For clarity, one screw 15 is shown in FIG. 6A.
- the number of screws 15 may be two or more as long as the unmanned aerial vehicle 100 can be moved on the water while supporting the main body 1 on the water via the screw connecting portion 16.
- the screw 15 is provided above the wheel 10.
- the screw 15 is provided at a position where the unmanned aerial vehicle 100 is completely submerged when moving on the water.
- An actuator (not shown) may be provided on the screw 15 to drive the screw 15 based on a control signal of the control unit.
- the propeller 27 of the screw 15 rotates in water, which causes the unmanned aerial vehicle 100 to move (advance) in the direction of the arrow (traveling direction).
- FIG. 7A is a bottom view of the unmanned aerial vehicle 100 including one screw 15A when viewed from below.
- the screw connection portion 16 is rotatably connected in the direction of the white arrow via a bearing (not shown). As a result, the screw connection portion 16 and the screw 15A rotate.
- the rotation of the screw 15A may be performed based on a control signal of the control unit by providing an actuator (not shown) in the screw connection portion 16. Water is ejected from the spout of the rotating screw 15A in the direction of the arrow in a straight line. This enables the unmanned aerial vehicle 100 to freely change direction when moving on the water.
- FIG. 7B shows a turn of the unmanned aerial vehicle 100 equipped with four screws 15.
- the screw 15B, the screw 15C, the screw 15D, and the screw 15E are fixed and driven in different directions, water is ejected from the spout of each screw 15 in the direction of the black arrow. Due to the ejection pressure of the water, the unmanned aerial vehicle 100 rotates on the water in the direction of the white arrow (counterclockwise).
- the fixing directions of the screw 15B, the screw 15C, the screw 15D, and the screw 15E are reversed, the unmanned aerial vehicle 100 rotates on the water in the direction opposite to the direction of the white arrow (clockwise). This enables the unmanned aerial vehicle 100 to freely change direction when moving on the water.
- the water moving part 7 having the screw (water moving mechanism) 15 and the wheels (land moving mechanism) 10 and the land moving part 5 (moving part), and the main body part.
- the unmanned aerial vehicle 100 can freely move on land and on the water by providing the screw connecting portion 16 and the wheel connecting portion 6 (connecting portion) for connecting 1 and the water moving mechanism and the land moving mechanism. can. Therefore, according to the present disclosure, it is possible to realize an unmanned aerial vehicle having land movement ability and water movement ability that does not depend on a flight propeller.
- the land moving unit 5 and the water moving unit (moving unit) 7 are configured to enable the movement direction of the main body 1 of the unmanned aerial vehicle 100 to be changed, so that the aircraft can fly. It is possible to realize an unmanned aerial vehicle that can move freely back and forth and left and right on land and on water without depending on a propeller.
- the third embodiment according to the present disclosure will be described.
- the land moving part (moving part) 5 and the water moving part (moving part) 7 are configured by using a water wheel and a wheel 17 in which a wheel 10 and a water wheel 12 are integrated. It is different from 1.
- the third embodiment will be described with a focus on the differences from the first embodiment.
- the parts having the same functions and configurations as those in the first embodiment are designated by the same reference numerals.
- the water wheel / wheel 17 functions as a wheel when the unmanned aerial vehicle 100 moves on land, and functions as a water wheel when moving on water.
- the function and configuration of the wheel or water turbine are the same as those of the wheel 10 or water turbine 12 according to the first embodiment, except for the points described below.
- the unmanned aerial vehicle 100 includes a water turbine / wheel 17 and a water turbine / wheel shaft 18 as a land moving unit 5 and a water moving unit 7. Further, the unmanned aerial vehicle 100 includes a connecting portion (connecting portion) 19 for a water turbine and wheels.
- the water turbine / wheel connection portion 19 is a rod-shaped or plate-shaped member. One end of the water turbine / wheel connection 19 extends from the lower part of the main body 1 of the unmanned aerial vehicle 100, and the other end is connected to the water turbine / wheel 17 via the water turbine / wheel shaft 18. Will be done.
- the unmanned aerial vehicle 100 may include a total of three turbines and wheels 17. For ease of viewing, two turbines and wheels 17 are shown in FIGS. 8A and 8B.
- the number of water turbines and wheels 17 is not limited to three, and may be two or less, or four or more, as long as the unmanned aerial vehicle 100 can move while supporting the main body 1 on land and water. May be good.
- the water turbine / wheel 17 is provided at a position where the unmanned aerial vehicle 100 is semi-submerged when moving on the water.
- An actuator (not shown) may be provided on the water turbine / wheel 17, and the water turbine / wheel 17 may be driven based on a control signal of the control unit.
- the water turbine / wheel 17 may have a structure in which the water turbine 12 is provided inside the wheel. Specifically, both sides of the water turbine 12 provided with the blade portion 14 are sandwiched from the left and right in the horizontal direction by disks of substantially the same size, and the water turbine / wheel shaft 18 passes through the center thereof. Both ends of the water turbine / wheel shaft 18 are connected to the water turbine / wheel connection portion 19. Further, as shown in FIGS. 9C and 9D, the water turbine / wheel 17 may have a structure in which the water turbine 12 is provided in parallel on the outside of the wheel. Specifically, wheels 10 having substantially the same size are provided inside the water turbine 12 provided with the blade portion 14, and the water turbine / wheel shaft 18 passes through the center thereof. Both ends of the water turbine / wheel shaft 18 are connected to the water turbine / wheel connection portion 19.
- the water turbine / wheel 17 may be configured as a land moving unit 5 and a water moving unit 7 so as to be able to change direction on land and on water.
- the direction change can be realized by making at least one of them capable of changing the direction.
- the unmanned aerial vehicle 100 is provided with four water turbines and wheels 17, at least two of them may be capable of turning.
- the direction change on land may be performed by rotating an arbitrary number of water turbines / wheels 17 as in the first embodiment.
- the direction change on the water may be performed by rotating an arbitrary number of water turbines / wheels 17 as in the first embodiment. This makes it possible to freely change the direction of the unmanned aerial vehicle 100 during water movement and land movement.
- the unmanned aerial vehicle 100 can obtain a large thrust as a water wheel when moving on the water, and is on the ground. When moving, smooth movement is possible. Therefore, according to the present disclosure, it is possible to realize an unmanned aerial vehicle having land movement ability and water movement ability that does not depend on a flight propeller. Further, it is not necessary to switch the power between the land movement and the water movement, and the water turbine / wheel 17 can integrate the two functions of the water turbine and the wheel while preventing the malfunction due to the power switching, so that the load weight of the unmanned aerial vehicle 100 can be suppressed. be able to.
- the land moving unit 5 and the water moving unit (moving unit) 7 are configured to enable the movement direction of the main body 1 of the unmanned aerial vehicle 100 to be changed. Therefore, it is possible to realize an unmanned aerial vehicle that can freely move forward, backward, left and right on land and on the water without depending on a flight propeller.
- the fourth embodiment according to the present disclosure will be described.
- the land moving part (moving part) 5 and the water moving part (moving part) 7 are configured by using the screw / wheel 20 in which the wheel 10 and the screw 15 are integrated. It is different from 1.
- the fourth embodiment will be described with a focus on the differences from the first embodiment.
- the parts having the same functions and configurations as those in the first embodiment are designated by the same reference numerals.
- the screw / wheel 20 functions as a wheel when the unmanned aerial vehicle 100 moves on land, and functions as a screw when moving on water.
- the function and configuration of the wheel or screw are the same as those of the wheel 10 or screw 15 according to the first embodiment, except for the points described below.
- the unmanned aerial vehicle 100 includes a screw / wheel 20 and a screw / wheel shaft 21 as a land moving unit 5 and a water moving unit 7. Further, the unmanned aerial vehicle 100 includes a screw / wheel connection portion (connection portion) 22.
- the screw / wheel connecting portion 22 is a rod-shaped or plate-shaped member. One end of the screw / wheel connection 22 extends from the bottom surface of the main body 1 of the unmanned aerial vehicle 100, and the other end is connected to the screw / wheel 20 via the screw / wheel shaft 21. Will be done.
- the unmanned aerial vehicle 100 may include a total of three screws and wheels 20. For the sake of clarity, two screws and wheels 20 are shown in FIGS. 10A and 10B.
- the number of screws / wheels 20 is not limited to three, and may be two or less, or four or more, as long as the unmanned aerial vehicle 100 can be moved while supporting the main body 1 on land and water. May be good.
- the screw / wheel 20 is provided at a position where the unmanned aerial vehicle 100 is completely submerged when it moves on the water.
- An actuator (not shown) may be provided on the screw / wheel 20 to drive the screw / wheel 20 based on a control signal of the control unit.
- the screw / wheel 20 may have a structure in which the screw 15 capable of securing thrust when moving on water may be provided inside the wheel.
- the propeller 27 of the screw 15 is rotatably provided around the screw / wheel shaft 21 as an axis, and the cylindrical outer portion of the screw 15 rotates as a wheel. Both ends of the screw / wheel shaft 21 are connected to the screw / wheel connecting portion 22.
- the unmanned aerial vehicle 100 moves by changing the direction of the screw / wheel 20.
- the wheel 10 of the screw / wheel 20 rotates in the direction of the arrow (traveling direction).
- the unmanned aerial vehicle 100 moves on land in the direction of the arrow (traveling direction), that is, moves forward by driving the screw / wheel 20.
- FIG. 10A when the unmanned aerial vehicle 100 moves on land (when the screw / wheel 20 functions as a land movement mechanism), the wheel 10 of the screw / wheel 20 rotates in the direction of the arrow (traveling direction).
- the unmanned aerial vehicle 100 moves on land in the direction of the arrow (traveling direction), that is, moves forward by driving the screw / wheel 20.
- traveling direction that is, moves forward by driving the screw / wheel 20.
- the propeller 27 of the screw / wheel 20 is opposite to the direction of the arrow (traveling direction).
- the direction of the screw / wheel 20 is set so as to eject water in the direction.
- the unmanned aerial vehicle 100 moves on the water in the direction of the arrow (traveling direction), that is, moves forward by driving the screw / wheel 20.
- the direction of the screw / wheel 20 may be changed by rotatably connecting the screw / wheel 20 via a bearing (not shown) of the screw / wheel connecting portion 22.
- the rotation of the screw / wheel 20 may be performed based on a control signal of the control unit by providing an actuator (not shown) in the screw / wheel connection portion 22.
- the screw / wheel 20 may be an Archimedes' screw 23 as shown in FIGS. 11A and 11B.
- the Archimedes' screw 23 has one Archimedes' screw 23, and its longitudinal direction is along the direction of the arrow (traveling direction), and the archimedes' screw connecting portion (connecting portion) 24 is provided at the lower part of the main body portion 1. Connected via.
- the archimedian screw 23 By rotating the archimedian screw 23 in the first direction, the unmanned aircraft 100 moves in the direction of the arrow (direction of travel), and by rotating in the second direction opposite to the first direction, the direction of the arrow.
- the unmanned aircraft 100 moves on land and on the water in the opposite direction.
- the Archimedes' screw 23 may be provided one by one with the direction of the spiral changed.
- an Archimedes' screw 23A is provided on the right side
- an Archimedes' screw 23A and an Archimedes' screw 23B in which the direction of the spiral is changed are provided on the left side.
- the rotation of either the Archimedes' screw 23A or the Archimedes' screw 23B causes the unmanned aerial vehicle 100 to move on land and on the water in either direction of the arrow.
- the screw / wheel 20 may be configured as a land moving unit 5 and a water moving unit 7 so that the direction can be changed on land and on water.
- the change of direction can be realized by making at least one of the three screws and wheels 20 capable of changing the direction when the unmanned aerial vehicle 100 is provided with three screws and wheels 20.
- the unmanned aerial vehicle 100 is provided with four screws and wheels 20, at least two of them may be capable of turning.
- the unmanned aerial vehicle 100 includes one Archimedes' screw 23, the movement direction of the unmanned aerial vehicle 100 can be changed by making the archimedes' screw connecting portion 24 rotatable.
- the movement direction of the unmanned aerial vehicle 100 can be changed by making the archimedes' screw connection portion 24 of each archimedes' screw rotatable. can.
- the direction change on land may be performed by rotating an arbitrary number of screws / wheels 20 as in the first embodiment.
- the direction change on the water may be performed by rotating an arbitrary number of screw / wheel connection portions 22 as in the second embodiment.
- the direction change on the water may be performed by driving the screw / wheel 20 which is oriented and fixed in a different direction as in the second embodiment. This makes it possible to change the moving direction of the unmanned aerial vehicle 100 during water movement and land movement.
- the unmanned aerial vehicle 100 has a large thrust as a screw when moving on the water. When moving on the ground, smooth movement is possible. Therefore, according to the present disclosure, it is possible to realize an unmanned aerial vehicle having land movement ability and water movement ability that does not depend on a flight propeller. Further, since it is not necessary to switch the power between land movement and water movement, and the screw / wheel 20 or Archimedes' screw 23 can integrate the two functions of the screw and the wheel while preventing the malfunction due to the power switching, the unmanned aerial vehicle The loading weight of 100 can be suppressed.
- the land moving unit 5 and the water moving unit 7 are configured to enable the movement direction of the main body 1 of the unmanned aerial vehicle 100 to be changed, so that the aircraft can fly. It is possible to realize an unmanned aerial vehicle that can move freely back and forth and left and right on land and on water without depending on a propeller.
- the present embodiment is different from the first embodiment in that the wheel connecting portion 6 is configured by using the extended connecting portion (connecting portion) 25 having a variable height direction distance.
- the fifth embodiment will be described with a focus on the differences from the first embodiment.
- the parts having the same functions and configurations as those in the first embodiment are designated by the same reference numerals.
- an extension connection portion 25 that can be extended in the vertical direction is arranged on the bottom surface of the main body portion 1.
- the extension connection portion 25 is a moving portion side extension connection portion that is housed in a main body side extension connection portion 25a fixed to the bottom surface of the main body portion 1 and a main body portion side extension connection portion 25a so as to be slidable in the axial direction. It includes 25b.
- the moving portion side extension connecting portion 25b is maintained in a state of extending outward from the outer end portion of the main body portion side extending connecting portion 25a and having a length along the longitudinal direction of the extending connecting portion 25.
- the extension connection portion 25 can be extended to a position where at least a part of the camera 9 arranged in the main body portion 1 of the unmanned aerial vehicle 100 is not submerged.
- the extension connection portion 25 when the unmanned aerial vehicle 100 enters the water and the wheels 10 are attached to the bottom of the water, the following enters the water from substantially the center of the camera 9, and the lens (not shown) on the upper surface of the camera 9 is submerged. It can be extended to a position where it does not.
- the extension connection portion 25 can be extended to a position where the entire camera 9 is not submerged when the unmanned aerial vehicle 100 enters the water and the wheels 10 are attached to the bottom of the water.
- the extension connection portion 25 can be driven by a hydraulic or electromagnetic actuator (not shown).
- the moving mechanism moves about the bottom of the unmanned aerial vehicle 100.
- a part of the unmanned aerial vehicle 100 such as the camera 9 or the control unit can be prevented from being submerged in water.
- the camera 9 can take a picture closer to an object such as the ceiling surface of the upper floor slab 221.
- the height of the extension connection portion 25 can be changed in the vertical direction by extending the extension connection portion 25b on the moving portion side. That is, the extension connection portion (connection portion) 25 can be extended to a position where at least a part of the camera arranged in the main body portion 1 of the unmanned aerial vehicle 100 is not submerged.
- an unmanned aerial vehicle having land movement ability and water movement ability that does not depend on a flight propeller can be realized by simpler control.
- the unmanned aerial vehicle 100 according to the present embodiment is different from the first embodiment in that it is provided with a float 26 at the lower part of the main body portion or a moving portion having a specific gravity smaller than that of water so as to have buoyancy at the time of landing.
- the sixth embodiment will be described with a focus on the differences from the first embodiment.
- the parts having the same functions and configurations as those in the first embodiment are designated by the same reference numerals.
- the unmanned aerial vehicle 100 can be provided with a float 26 at the lower part of the main body 1 and inside the moving part. As shown in FIG. 14A, for example, the float 26 can be provided inside the water turbine / wheel 17. The float 26 is provided in contact with the bottom surface of the main body 1.
- the float 26 has a lightweight material having a lower specific density than water.
- the float 26 may have a hollow structure in which all or part of the inside is hollow. The floating function of the float 26 ensures buoyancy so that at least a part of the main body 1 of the unmanned aerial vehicle 100 is maintained on the water.
- the float 26 secures a buoyancy capable of maintaining a state in which when the unmanned aerial vehicle 100 enters the water, the following enters the water from the substantially center of the main body 1 and the upper part of the main body 1 is above the water. Further, for example, the float 26 secures a buoyancy capable of maintaining a state in which the entire main body 1 is on the water when the unmanned aerial vehicle 100 enters the water. Further, the buoyancy of the float 26 can form a semi-submerged state for ensuring the function of the turbine and the turbine of the wheel 17.
- the moving portion itself may have a specific density smaller than that of water.
- the water turbine / wheel 17 and the water turbine / wheel shaft 18 (moving portion for land and moving portion for water) provided in the lower part of the main body portion can have a specific density smaller than that of water.
- the water turbine / wheel 17 and the water turbine / wheel shaft 18 may have a hollow structure in which all or part of the inside thereof is hollow. The floating function of the water turbine / wheel 17 and the water turbine / wheel shaft 18 ensures buoyancy so that at least a part of the main body 1 of the unmanned aerial vehicle 100 is maintained on the water.
- the water turbine / wheel 17 and the water turbine / wheel shaft 18 having a lightweight material having a specific density smaller than that of water
- the following enters the water from substantially the center of the main body 1 and the main body 1 Ensuring buoyancy that can maintain the state above the center of the water.
- the water turbine / wheel 17 and the water turbine / wheel shaft 18 secure buoyancy that can maintain the entire main body 1 on the water when the unmanned aerial vehicle 100 enters the water.
- the buoyancy of the water turbine / wheel 17 and the water turbine / wheel shaft 18 can form a semi-submerged state for ensuring the function of the water turbine / wheel 17.
- the float 26 having a buoyancy for maintaining at least a part of the main body 1 of the unmanned aerial vehicle 100 on the water is further provided, or the turbine / wheel 17 and the turbine / wheel shaft 18 (for land use). Since the moving part and the moving part for water have a specific weight smaller than that of water, it is possible to realize an unmanned aerial vehicle having land movement ability and water movement ability that can be controlled more easily without depending on a flight propeller.
- the unmanned aerial vehicle 100 according to either the first embodiment or the second embodiment may include the extension connecting portion 25 according to the fifth embodiment instead of the wheel connecting portion 6. Further, the unmanned aerial vehicle 100 according to the third embodiment may include an extension connecting portion 25 according to the fifth embodiment instead of the connecting portion 19 for a water turbine and wheels. Further, the unmanned aerial vehicle 100 according to the fourth embodiment may include an extension connecting portion 25 according to the fifth embodiment instead of the screw / wheel connecting portion 22.
- the main body 1 of the unmanned aerial vehicle 100 may further include the float 26 according to the sixth embodiment.
- the moving portion of the unmanned aerial vehicle 100 may be a moving portion having a specific density smaller than that of water according to the sixth embodiment.
- the unmanned aerial vehicle 100 always includes both a land movement mechanism and a water movement mechanism when moving on land or on water, but is not limited to this embodiment.
- one of the land movement mechanism and the water movement mechanism may be configured to be housed in the main body 1.
- the height of the connecting portion is variable, but the present invention is not limited to this mode.
- the main body 1 of the unmanned aerial vehicle 100 itself may be provided with a telescopic mechanism so that the height in the vertical direction can be changed.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Transportation (AREA)
- Toys (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
本開示に係る無人航空機(100)は、飛翔用プロペラ(2)を備える無人航空機であって、本体部(1)と、飛翔用プロペラに依らないで、水上移動機構及び陸上移動機構を有する移動部と、前記本体部と前記移動機構とを接続する接続部と、を備える。
Description
本開示は、無人航空機に関する。
現在通信用マンホールの点検方法として、自律飛行型の無人航空機を用いた方法が検討されている。この方法はマンホール内部に無人航空機が入孔し、通信用マンホールの点検項目の一つである躯体部の上床版コンクリートの様子を無人航空機に搭載されたカメラで自動的に撮影するものである。(例えば、非特許文献1参照)。
内堀大輔、(外4名)、「ドローンによる通信用マンホールの自動点検技術の開発」、第19回建設ロボットシンポジウム論文集、O2-02、2019年10月
しかしながら、従来の無人航空機が飛行するには、マンホール内空間は狭く飛行中の無人航空機の機体が安定しないため、マンホール内部の撮影の際には、無人航空機を床面等に着陸させる必要があった。一方、マンホール内部は地下水や雨水等の溜水が存在する場合があり、従来の無人航空機は溜水の水面に着水する可能性もあった。さらに無人航空機が床面等又は水面に着水陸した後、撮影のためマンホール内部で移動可能であることが必要であり、かつ水上においては水没しないことが必要である。このため、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機の開発が望まれていた。
かかる事情に鑑みてなされた本開示の目的は、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機を提供することにある。
一実施形態に係る無人航空機は、飛翔用プロペラを備える無人航空機であって、本体部と、前記飛翔用プロペラに依らないで、水上移動機構及び陸上移動機構を有する移動部と、前記本体部と前記移動機構とを接続する接続部と、を備える。
本開示によれば、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機を提供することができる。
以下、本開示を実施するための形態について、図面を参照しながら説明する。なお、以下の説明における「上」、「下」、「鉛直」とは、図面に描かれた座標軸表示のZ軸に平行な方向を意味するものとし、「水平」とは、図面に描かれた座標軸表示のXY平面に平行な方向を意味するものとする。なお、明細書中における無人航空機100の水平方向は、無人航空機100の着地時における略水平方向となることを想定しているが、飛行時、着水時までも含めて常に略水平方向となることを意味するものではなく、無人航空機100の動作時の姿勢等により略水平方向から逸脱する場合もあり得ることに留意されたい。
[実施形態1]
次に、本開示の実施形態1に係る無人航空機100の構成について詳細に説明する。
次に、本開示の実施形態1に係る無人航空機100の構成について詳細に説明する。
図1A及び図1Bに示すように、無人航空機100は、本体部1と、飛翔用プロペラ部2と、モータ部3と、腕部4と、制御部(図示せず)と、陸上用移動部(移動部)5と、車輪用接続部(接続部)6と、水上用移動部(移動部)7と、水車用接続部(接続部)8と、カメラ9とを備える。陸上用移動部5は、車輪(陸上移動機構)10と、車輪用シャフト11とを備える。水上用移動部7は、水車(水上移動機構)12と、水車用シャフト13とを備える。
本体部1は、平面視において矩形形状を有しており、例えば、CFRP(Carbon Fiber Reinforced Plastics)製の板材などにより覆われている。飛翔用プロペラ部2は、それぞれ複数枚のブレード(図示せず)を備える。飛翔用プロペラ部2は、それぞれに取り付けられるモータ部3の駆動により回転し、揚力を発生させる。腕部4は、棒状の支持部材であり、略水平方向に延在して飛翔用プロペラ部2を回転可能に支持する。
制御部は、例えば、RaspberryPi(登録商標)などを含む小型コンピュータであり、以下詳細に説明するように、無人航空機100の各部を制御する。
ここで、マンホール200の構成について、簡単に説明する。
図2に示すように、マンホール200は、規格品の通信用マンホールである。マンホール200は、首部210と、躯体部220と、鉄蓋230と、管路240と、ダクト部250と、を備える。躯体部220は、上床版221と、下床版222と、側壁部223と、を備える。マンホール200の内部は、側壁部223の壁面、上床版221の天井面、下床版222の床面(又は溜水300の水面)などで囲まれている。側壁部223には、複数の管路240へと接続される貫通孔が形成され、ダクト部250が設けられている。鉄蓋230は、略円柱形状であり、マンホール200の出入口であるマンホール孔に嵌合する。マンホール孔は、地上部と地下部との境界に形成されている。複数の管路240には、通信ケーブルなどが敷設されている。
図1Aに戻ると、カメラ9が本体部1の上面に設けられる。例えば、無人航空機100はマンホール孔を通ってマンホール200内に入り、マンホール200内を移動しながら調査する。この場合、カメラ9が制御部の制御により上床版221の天井面、側壁部223の壁面等を撮影する。例えばカメラ9が本体部1の側面又は下面に設けられ、上床版221の天井面、側壁部223の壁面の他、下床版222の床面(又は溜水の水面)等を撮影する。
車輪用接続部6は棒状又は板状の部材である。車輪用接続部6は、その一方の端部が無人航空機100の本体部1の底面から下方向に延在し、もう一方の端部が車輪用シャフト11を介して車輪10に接続される。車輪10は、無人航空機100の陸上の移動を可能にする回転体であり、車輪用シャフト11を軸に回転可能である。
本実施形態において、車輪10は1本の車輪用接続部6につき1個接続される。無人航空機100は合計3個の車輪10を備えてもよい。見易さのため、図1Aにおいては2個の車輪10を示す。車輪10の数は3個に制限されず、車輪用接続部6を介して本体部1を陸上で支持しながら無人航空機100の陸上での移動を可能にできれば2個以下であってもよいし、4個以上であってもよい。車輪10は水車12よりも下部に設けられ、車輪10の床面からの高さは、車輪10が床面に接触している場合に水車12が床面に接触しないような高さに設けられる。車輪10には図示しないアクチュエータが設けられ、制御部の制御信号に基づいて車輪10を駆動させてもよい。
実施形態1に係る無人航空機100の陸上における動作について以下詳細に説明する。図1Aに示すように、無人航空機100は陸上においては、車輪10が駆動することにより矢印の方向(進行方向)に移動する。車輪10の駆動は、制御部の制御信号に基づいて図示しないアクチュエータにより行ってもよい。
陸上用移動部5は、方向転換できるように構成されてもよい。方向転換は、無人航空機100が車輪10を3個備える場合にはそのうち少なくとも1個を方向転換可能とすることで実現できる。無人航空機100が車輪10を4個備える場合にはそのうち少なくとも2個を方向転換可能としてもよい。具体的には、図3A、図3B及び図3Cに示すように、車輪用接続部6が、その略中央において二分され、二分された車輪用接続部6の両部が図示しないベアリングを介して回動可能に接続される。これにより、車輪用シャフト11を介して車輪用接続部6に接続された車輪10が回動する。車輪10の回動は、制御部の制御信号に基づいて、車輪用接続部6に設けられた図示しないアクチュエータにより行ってもよい。これにより、陸上移動時の無人航空機100の自由な方向転換を可能となる。
戻って図1Bを参照すると、水上用移動部7は、水車(水上移動機構)12と、水車用シャフト13とを備える。水車用接続部8は棒状又は板状の部材である。水車用接続部8は、その一方の端部が無人航空機100の本体部1の下部から矢印の方向(進行方向)と反対方向かつ斜め下方向に延在し、もう一方の端部が水車用シャフト13を介して水車12に接続される。水車12は、無人航空機100の水上の移動を可能にする回転体であり、水車用シャフト13を軸に回転可能である。水車12は放射状に羽根部14を有する。
本実施形態において、水車12は1本の水車用接続部8につき1個接続される。水車12は、例えば本体部1を挟むように本体部1の側面に左右1個ずつ、合計2個設けられてもよい。見易さのため、図1Bにおいては1個の水車12を示す。水車12の数は2個に制限されず、水車用接続部8を介して本体部1を水上で支持しながら無人航空機100の水上での移動を可能にできれば1個以下であってもよいし、3個以上であってもよい。水車12は車輪10よりも上方に設けられる。水車12は、無人航空機100の水上移動時に半水没する位置に設けられる。水車12には図示しないアクチュエータが設けられ、制御部の制御信号に基づいて水車12を駆動させてもよい。
実施形態1に係る無人航空機100の水上における動作について以下詳細に説明する。図4A及び図4Bは、水車12を備える無人航空機100を上方向から平面視した図であり、無人航空機100の一方向への水上移動を示す図である。
図4Aを参照し、2個の水車12を備える無人航空機100について説明する。水車12Aと水車12Bとは本体部1を挟むように設けられる。制御部の制御信号に基づいて、図示しないアクチュエータが水車12A及び水車12Bを矢印の方向(進行方向)に回転させると、水車12A及び水車12Bから矢印の方向と反対方向に水が高圧で噴出される。当該水の噴出圧力により、矢印の方向に無人航空機100が水上を移動、即ち前進する。
無人航空機100を上述の進行方向と反対の方向に移動させる、即ち後退させる場合は、まず、制御部の制御信号に基づいて、図示しないアクチュエータが水車12A及び水車12Bを矢印の方向(進行方向)と反対の方向に回転させる。水車12A及び水車12Bから矢印の方向に水が高圧で噴出されると、当該水の噴出圧力により、矢印の方向と反対方向に無人航空機100が水上を移動、即ち後退する。
図4Bに、4個の水車12を備える無人航空機100を示す。ここでは水車12C、水車12D、水車12E、水車12Fの4個の水車が、無人航空機100の本体部1の四方向の各側面に1個ずつ設けられる。4個の水車12を備える無人航空機100においては、上述と同様に、制御部の制御信号に基づいて、図示しないアクチュエータが互いに本体部1を挟み込む水車12C及び水車12Eを回転させることにより無人航空機100の前進移動及び後退移動が可能である。特に4個の水車12を備える無人航空機100においては、上述の前後方向の移動の他、水車12D及び水車12Fを回転させることにより、白抜き矢印の方向(左右方向)への移動が可能である。
水上用移動部7は、方向転換できるように構成されてもよい。方向転換は、図5Aに示すように、無人航空機100が水車12を2個備える場合には、水車12Aと水車12Bとを互いに異なる方向に回転させることで実施できる。具体的には、例えば水車12Aと水車12Bとが互いに反対方向に回転するように、それぞれを黒塗り矢印の方向に回転させると、水の噴出圧力により、無人航空機100が白抜き矢印の方向(時計周り)に水上を回転する。水車12Aと水車12Bとの回転方向をそれぞれ反対にすると、無人航空機100は白抜き矢印の方向と反対の方向(反時計周り)に水上を回転する。これにより、水上移動時の無人航空機100の自由な方向転換が可能となる。
図5Bに4個の水車12を備える無人航空機100の方向転換を示す。水車12C、水車12D、水車12E、水車12Fをそれぞれ黒塗りの矢印の方向に回転させると、水の噴出圧力により、無人航空機100が白抜き矢印の方向(時計周り)に水上を回転する。水車12C、水車12D、水車12E、水車12Fの回転方向をそれぞれ反対にすると、無人航空機100は白抜き矢印の方向と反対の方向(反時計周り)に水上を回転する。これにより、水上移動時の無人航空機100の自由な方向転換が可能となる。
実施形態1によれば、水車(水上移動機構)12及び車輪(陸上移動機構)10を有する水上用移動部7及び陸上用移動部5(移動部)と、本体部1と当該水上移動機構及び陸上移動機構とを接続する水車用接続部8及び車輪用接続部6(接続部)とを備えることにより、無人航空機100が、陸上及び水上を自由に移動することができる。したがって、本開示によれば、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機が実現できる。
また、実施形態1によれば、陸上用移動部5及び水上用移動部7(移動部)が無人航空機100の本体部1の移動方向の転換を可能にするよう構成されていることにより、飛翔用プロペラに依らずに陸上及び水上を前後左右自由に移動可能な無人航空機が実現できる。
[実施形態2]
次に、本開示に係る実施形態2を説明する。本実施形態では、水上用移動部(移動部)7が備える水車12及び水車用シャフト13を、スクリュー(水上移動機構)15により構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態2について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
次に、本開示に係る実施形態2を説明する。本実施形態では、水上用移動部(移動部)7が備える水車12及び水車用シャフト13を、スクリュー(水上移動機構)15により構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態2について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
図6Aに示すように、本実施形態に係る無人航空機100の陸上用移動部(移動部)5は、車輪(陸上移動機構)10と、車輪用シャフト11とを備える。さらに無人航空機100は、スクリュー用接続部(接続部)16を備える。車輪10と車輪用シャフト11との機能及び構成は、第1の実施形態と同様である。
図6Bを参照すると、水上用移動部7は、スクリュー(水上移動機構)15を備える。スクリュー用接続部16は棒状又は板状の部材である。スクリュー用接続部16は、その一方の端部が無人航空機100の本体部1の底面から下方に向かって延在し、もう一方の端部がスクリュー15に接続される。スクリュー15は、水中推進力を提供するプロペラ27を備えた、無人航空機100の水上の移動を可能にする筒状体である。
本実施形態において、スクリュー15は1本のスクリュー用接続部16につき1個接続される。無人航空機100は合計1個のスクリュー15を備えてもよい。見易さのため、図6Aにおいては1個のスクリュー15を示す。スクリュー15の数はスクリュー用接続部16を介して本体部1を水上で支持しながら無人航空機100の水上での移動を可能にできれば2個以上であってもよい。スクリュー15は車輪10よりも上方に設けられる。スクリュー15は、無人航空機100の水上移動時に全水没する位置に設けられる。スクリュー15には図示しないアクチュエータが設けられ、制御部の制御信号に基づいてスクリュー15を駆動させてもよい。
図6Bに示すように、水中でスクリュー15のプロペラ27が回転し、これにより無人航空機100が矢印の方向(進行方向)へ移動(前進)する。
本実施形態に係る水上用移動部7は、方向転換できるように構成されてもよい。図7Aは、1個のスクリュー15Aを備える無人航空機100を下方向から見た場合の底面図である。スクリュー用接続部16は、図示しないベアリングを介して白抜き矢印方向に回動可能に接続される。これにより、スクリュー用接続部16とスクリュー15Aとが回動する。スクリュー15Aの回動は、図示しないアクチュエータがスクリュー用接続部16に設けられることにより、制御部の制御信号に基づいて行われてもよい。回動するスクリュー15Aの噴出口から、直線の矢印方向に水が噴出される。これにより、水上移動時の無人航空機100の自由な方向転換が可能となる。
図7Bに4個のスクリュー15を備える無人航空機100の方向転換を示す。スクリュー15B、スクリュー15C、スクリュー15D、スクリュー15Eをそれぞれ異なる向きに方向付けて固定させて駆動させると、各スクリュー15の噴出口から、黒塗り矢印の方向に水が噴出される。当該水の噴出圧力により、無人航空機100が白抜き矢印の方向(反時計周り)に水上を回転する。スクリュー15B、スクリュー15C、スクリュー15D、スクリュー15Eの固定させる方向をそれぞれ反対にすると、無人航空機100は白抜き矢印の方向と反対の方向(時計周り)に水上を回転する。これにより、水上移動時の無人航空機100の自由な方向転換が可能となる。
実施形態2によれば、実施形態1と同様に、スクリュー(水上移動機構)15及び車輪(陸上移動機構)10を有する水上用移動部7及び陸上用移動部5(移動部)と、本体部1と当該水上移動機構及び陸上移動機構とを接続するスクリュー用接続部16及び車輪用接続部6(接続部)とを備えることにより、無人航空機100が、陸上及び水上を自由に移動することができる。したがって、本開示によれば、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機が実現できる。
また、実施形態2によれば、陸上用移動部5及び水上用移動部(移動部)7が無人航空機100の本体部1の移動方向の転換を可能にするよう構成されていることにより、飛翔用プロペラに依らずに陸上及び水上を前後左右自由に移動可能な無人航空機が実現できる。
[実施形態3]
次に、本開示に係る実施形態3を説明する。本実施形態では、陸上用移動部(移動部)5と水上用移動部(移動部)7とを、車輪10及び水車12が一体化された水車兼車輪17を用いて構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態3について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
次に、本開示に係る実施形態3を説明する。本実施形態では、陸上用移動部(移動部)5と水上用移動部(移動部)7とを、車輪10及び水車12が一体化された水車兼車輪17を用いて構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態3について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
水車兼車輪17は、無人航空機100が陸上移動を移動する場合は車輪として機能し、水上を移動する場合は水車として機能する。当該車輪又は水車としての機能及び構成は、以下で述べる点を除き、実施形態1に係る車輪10又は水車12と同様である。
図8A及び図8Bに示すように、本実施形態に係る無人航空機100は、陸上用移動部5及び水上用移動部7として、水車兼車輪17と水車兼車輪用シャフト18とを備える。さらに無人航空機100は、水車兼車輪用接続部(接続部)19を備える。水車兼車輪用接続部19は棒状又は板状の部材である。水車兼車輪用接続部19は、その一方の端部が無人航空機100の本体部1の下部から延在し、もう一方の端部が水車兼車輪用シャフト18を介して水車兼車輪17に接続される。
本実施形態において、水車兼車輪17は1本の水車兼車輪用接続部19につき1個接続される。無人航空機100は合計3個の水車兼車輪17を備えてもよい。見易さのため、図8A及び図8Bにおいては2個の水車兼車輪17を示す。水車兼車輪17の数は3個に制限されず、陸上及び水上で本体部1を支持しながら無人航空機100の移動を可能にできれば2個以下であってもよいし、4個以上であってもよい。水車兼車輪17は、無人航空機100の水上移動時に半水没する位置に設けられる。水車兼車輪17には図示しないアクチュエータが設けられ、制御部の制御信号に基づいて水車兼車輪17を駆動させてもよい。
水車兼車輪17は、図9A及び図9Bに示すように、車輪の内部に水車12を備えた構造としてもよい。具体的には、羽根部14を備える水車12の両側が略同一サイズの円盤で水平方向左右から挟み込まれ、その中心に水車兼車輪用シャフト18が通っている。水車兼車輪用シャフト18はその両端を水車兼車輪用接続部19に接続されている。また、水車兼車輪17は、図9C及び図9Dに示すように、車輪の外側に水車12を並列して備えた構造としてもよい。具体的には、羽根部14を備える水車12の内側に略同一サイズの車輪10が設けられ、その中心に水車兼車輪用シャフト18が通っている。水車兼車輪用シャフト18はその両端を水車兼車輪用接続部19に接続されている。
水車兼車輪17は、陸上用移動部5及び水上用移動部7として、陸上及び水上で方向転換できるように構成されてもよい。方向転換は、無人航空機100が水車兼車輪17を3個備える場合にはそのうち少なくとも1個を方向転換可能とすることで実現できる。無人航空機100が水車兼車輪17を4個備える場合にはそのうち少なくとも2個を方向転換可能としてもよい。陸上における方向転換は、実施形態1と同様に、任意の数の水車兼車輪17を回動させることで行ってもよい。水上における方向転換は、実施形態1と同様に、任意の数の水車兼車輪17を回転させることで行ってもよい。これにより、水上移動時及び陸上移動時の無人航空機100の自由な方向転換が可能となる。
実施形態3によれば、陸上移動機構と水上移動機構とが一体化されている水車兼車輪17を備えることにより、無人航空機100が、水上移動の際には水車として大きな推力を得られ、地上移動時には、滑らかな移動が可能となる。したがって、本開示によれば、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機が実現できる。さらに、陸上移動と水上移動との動力の切り替えが不要になり、動力切り替えによる誤動作を防ぎつつ、水車兼車輪17が水車及び車輪の2つの機能を集約できるため、無人航空機100の積載重量を抑えることができる。
また、実施形態3によれば、実施形態1と同様に、陸上用移動部5及び水上用移動部(移動部)7が無人航空機100の本体部1の移動方向の転換を可能にするよう構成されていることにより、飛翔用プロペラに依らずに陸上及び水上を前後左右自由に移動可能な無人航空機が実現できる。
[実施形態4]
次に、本開示に係る実施形態4を説明する。本実施形態では、陸上用移動部(移動部)5と水上用移動部(移動部)7とを、車輪10及びスクリュー15が一体化されたスクリュー兼車輪20を用いて構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態4について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
次に、本開示に係る実施形態4を説明する。本実施形態では、陸上用移動部(移動部)5と水上用移動部(移動部)7とを、車輪10及びスクリュー15が一体化されたスクリュー兼車輪20を用いて構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態4について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
スクリュー兼車輪20は、無人航空機100が陸上移動を移動する場合は車輪として機能し、水上を移動する場合はスクリューとして機能する。当該車輪又はスクリューとしての機能及び構成は、以下で述べる点を除き、実施形態1に係る車輪10又はスクリュー15と同様である。
図10A及び図10Bに示すように、本実施形態に係る無人航空機100は、陸上用移動部5及び水上用移動部7として、スクリュー兼車輪20とスクリュー兼車輪用シャフト21とを備える。さらに無人航空機100は、スクリュー兼車輪用接続部(接続部)22を備える。スクリュー兼車輪用接続部22は棒状又は板状の部材である。スクリュー兼車輪用接続部22は、その一方の端部が無人航空機100の本体部1の底面から延在し、もう一方の端部がスクリュー兼車輪用シャフト21を介してスクリュー兼車輪20に接続される。
本実施形態において、スクリュー兼車輪20は1本のスクリュー兼車輪用接続部22につき1個接続される。無人航空機100は合計3個のスクリュー兼車輪20を備えてもよい。見易さのため、図10A及び図10Bにおいては2個のスクリュー兼車輪20を示す。スクリュー兼車輪20の数は3個に制限されず、陸上及び水上で本体部1を支持しながら無人航空機100の移動を可能にできれば2個以下であってもよいし、4個以上であってもよい。スクリュー兼車輪20は、無人航空機100の水上移動時に全水没する位置に設けられる。スクリュー兼車輪20には図示しないアクチュエータが設けられ、制御部の制御信号に基づいてスクリュー兼車輪20を駆動させてもよい。
スクリュー兼車輪20は、車輪内部に水上移動時に推力を確保可能なスクリュー15を備えた構造としてもよい。具体的には、スクリュー兼車輪用シャフト21を軸としてスクリュー15のプロペラ27が回動可能に設けられ、スクリュー15の筒状の外側部が車輪として回転する。スクリュー兼車輪用シャフト21はその両端をスクリュー兼車輪用接続部22に接続されている。
陸上又は水上を移動する場合、無人航空機100はスクリュー兼車輪20の向きを変更して移動する。図10Aに示すように、無人航空機100が陸上を移動する場合(スクリュー兼車輪20が陸上移動機構として機能する場合)は、スクリュー兼車輪20の車輪10が矢印の方向(進行方向)に回転するようスクリュー兼車輪20の向きを設定する。これにより、スクリュー兼車輪20が駆動することで無人航空機100が陸上を矢印の方向(進行方向)に移動、即ち前進する。図10Bに示すように、無人航空機100が水上を移動する場合(スクリュー兼車輪20が水上移動機構として機能する場合)は、スクリュー兼車輪20のプロペラ27が矢印の方向(進行方向)と反対の方向に水を噴出するようスクリュー兼車輪20の向きを設定する。これにより、スクリュー兼車輪20が駆動することで無人航空機100が水上を矢印の方向(進行方向)に移動、即ち前進する。
スクリュー兼車輪20の向きの変更は、スクリュー兼車輪用接続部22が図示しないベアリングを介してスクリュー兼車輪20を回動可能に接続されることで実現されてよい。スクリュー兼車輪20の回動は、図示しないアクチュエータがスクリュー兼車輪用接続部22に設けられることにより、制御部の制御信号に基づいて行われてもよい。
スクリュー兼車輪20は、図11A及び図11Bに示すように、アルキメディアンスクリュー23であってもよい。アルキメディアンスクリュー23は、1本のアルキメディアンスクリュー23を、その長手方向が矢印の方向(進行方向)に沿うようにして、本体部1の下部にアルキメディアンスクリュー用接続部(接続部)24を介して接続される。アルキメディアンスクリュー23が第一の方向に回転することにより、矢印の方向(進行方向)に無人航空機100が移動し、第一の方向と反対の第二の方向に回転することにより、矢印の方向と反対の方向に無人航空機100が陸上及び水上を移動する。
アルキメディアンスクリュー23は、図12A及び図12Bに示すように、螺旋の向きを変えたものを1本ずつ設けてもよい。図12A及び図12Bでは右側にアルキメディアンスクリュー23Aを、左側にアルキメディアンスクリュー23Aと螺旋の向きを変えたアルキメディアンスクリュー23Bを設ける。当該アルキメディアンスクリュー23A又はアルキメディアンスクリュー23Bの一方が回転することにより、矢印のいずれかの方向に無人航空機100が陸上及び水上を移動する。
スクリュー兼車輪20は、陸上用移動部5及び水上用移動部7として、陸上及び水上で方向転換できるように構成されてもよい。方向転換は、無人航空機100がスクリュー兼車輪20を3個備える場合にはそのうち少なくとも1個を方向転換可能とすることで実現できる。無人航空機100がスクリュー兼車輪20を4個備える場合にはそのうち少なくとも2個を方向転換可能としてもよい。無人航空機100がアルキメディアンスクリュー23を1個備える場合は、アルキメディアンスクリュー用接続部24を回動可能にすることで無人航空機100の移動方向の転換を可能にすることができる。無人航空機100がアルキメディアンスクリュー23を複数個備える場合は、それぞれのアルキメディアンスクリューのアルキメディアンスクリュー用接続部24を回動可能にすることで無人航空機100の移動方向の転換を可能にすることができる。陸上における方向転換は、実施形態1と同様に、任意の数のスクリュー兼車輪20を回動させることで行ってもよい。水上における方向転換は、実施形態2と同様に、任意の数のスクリュー兼車輪用接続部22を回動させることで行ってもよい。又は、水上における方向転換は、実施形態2と同様に、異なる向きに方向付けて固定させたスクリュー兼車輪20を駆動させることで行ってもよい。これにより、水上移動時及び陸上移動時の無人航空機100の移動方向の転換が可能となる。
実施形態4によれば、陸上移動機構と水上移動機構とが一体化されているスクリュー兼車輪20又はアルキメディアンスクリュー23を備えることにより、無人航空機100が、水上移動の際にはスクリューとして大きな推力を得られ、地上移動時には、滑らかな移動が可能となる。したがって、本開示によれば、飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機が実現できる。さらに、陸上移動と水上移動との動力の切り替えが不要になり、動力切り替えによる誤動作を防ぎつつ、スクリュー兼車輪20又はアルキメディアンスクリュー23が、スクリュー及び車輪の2つの機能を集約できるため、無人航空機100の積載重量を抑えることができる。
また、実施形態4によれば、陸上用移動部5及び水上用移動部7(移動部)が無人航空機100の本体部1の移動方向の転換を可能にするよう構成されていることにより、飛翔用プロペラに依らずに陸上及び水上を前後左右自由に移動可能な無人航空機が実現できる。
[実施形態5]
次に、本開示に係る実施形態5を説明する。本実施形態では、車輪用接続部6を、高さ方向距離が可変な伸長接続部(接続部)25を用いて構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態5について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
次に、本開示に係る実施形態5を説明する。本実施形態では、車輪用接続部6を、高さ方向距離が可変な伸長接続部(接続部)25を用いて構成する点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態5について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
本実施形態においては、図13Aに示すように、上下方向に伸長可能な伸長接続部25が本体部1の底面に配設される。伸長接続部25は本体部1の底面に固定された本体部側伸長接続部25aと、本体部側伸長接続部25a内に軸方向に摺動可能な状態で収納される移動部側伸長接続部25bとを備える。移動部側伸長接続部25bは、図13Bに示すように、本体部側伸長接続部25aの外端部から外側に伸長して伸長接続部25の長手方向に沿う長さを有する状態に維持される。伸長接続部25は、無人航空機100の本体部1に配置されたカメラ9の少なくとも一部が水没しない位置まで伸長可能である。例えば伸長接続部25は、無人航空機100が入水し車輪10が水底に付いている場合に、当該カメラ9の略中央から以下が水中に入り、カメラ9の上面のレンズ(図示せず)が水没しない位置まで伸長可能である。また、例えば伸長接続部25は、無人航空機100が入水し車輪10が水底に付いている場合に、カメラ9の全体が水没しない位置まで伸長可能である。伸長接続部25は、図示を省略する油圧式又は電磁式のアクチュエータによって駆動させることができる。これにより、例えば水深が、移動部側伸長接続部25bが伸長した場合の伸長接続部25の水底からの高さよりも浅い場合には、伸長接続部25が伸長すると移動機構が水底について無人航空機100を下方から支え、カメラ9又は制御部等の無人航空機100の一部が水に浸るのを防止できる。また、カメラ9が上床版221の天井面等の対象物により近づいて撮影できる。
実施形態5によれば、移動部側伸長接続部25bが伸長することで伸長接続部25が上下方向に高さを可変とすることができる。すなわち、伸長接続部(接続部)25が無人航空機100の本体部1に配置されたカメラの少なくとも一部が水没しない位置まで伸長可能となる。これにより、より簡易な制御により飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機が実現できる。
[実施形態6]
次に、本開示に係る実施形態6を説明する。本実施形態に係る無人航空機100は、着水時に浮力を有するよう、本体部下部にフロート26を備えるか、又は水より小さい比重を有する移動部を備える点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態6について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
次に、本開示に係る実施形態6を説明する。本実施形態に係る無人航空機100は、着水時に浮力を有するよう、本体部下部にフロート26を備えるか、又は水より小さい比重を有する移動部を備える点において実施形態1と異なっている。以下に、実施形態1と異なる点を中心に実施形態6について説明する。なお、実施形態1と同じ機能及び構成を有する部位には同じ符号を付す。
無人航空機100は、本体部1の下部であって移動部の内側にフロート26を備えることができる。図14Aに示すように、例えば水車兼車輪17の内側にフロート26を備えることができる。フロート26は、本体部1の底面に接した状態で設けられる。フロート26は水より小さい比重を有する軽量の材料を有する。フロート26はその内部の全て又は一部が空洞である中空構造としてもよい。フロート26の浮き機能により、無人航空機100の本体部1の少なくとも一部が水上で維持されるような浮力が確保される。例えばフロート26は、無人航空機100が入水した場合に、本体部1の略中央から以下が水中に入り、本体部1の略中央より上方が水上にある状態を維持できる浮力を確保する。また、例えばフロート26は、無人航空機100が入水した場合に、本体部1の全体が水上にある状態を維持できる浮力を確保する。また、当該フロート26の浮力により水車兼車輪17の水車の機能を確保するための半水没状態を形成することができる。
本実施形態においては、移動部自体が水より小さい比重を有してもよい。図14Bに示すように、例えば本体部下部に設けられた水車兼車輪17及び水車兼車輪用シャフト18(陸上用移動部及び水上用移動部)が、水より小さい比重を有することができる。水車兼車輪17および水車兼車輪用シャフト18は、その内部の全て又は一部が空洞である中空構造としてもよい。水車兼車輪17および水車兼車輪用シャフト18の浮き機能により、無人航空機100の本体部1の少なくとも一部が水上で維持されるような浮力が確保される。例えば水より小さい比重を有する軽量の材料を有する水車兼車輪17及び水車兼車輪用シャフト18は、無人航空機100が入水した場合に、本体部1の略中央から以下が水中に入り、本体部1の略中央より上方が水上にある状態を維持できる浮力を確保する。また、例えば水車兼車輪17及び水車兼車輪用シャフト18は、無人航空機100が入水した場合に、本体部1の全体が水上にある状態を維持できる浮力を確保する。また、当該水車兼車輪17及び水車兼車輪用シャフト18の浮力により水車兼車輪17の水車の機能を確保するための半水没状態を形成することができる。
実施形態6によれば、無人航空機100の本体部1の少なくとも一部を水上に維持するための浮力を有するフロート26をさらに備えるか、又は水車兼車輪17及び水車兼車輪用シャフト18(陸上用移動部及び水上用移動部)が水より小さい比重を有することにより、より簡易な制御が可能な飛翔用プロペラに依らない陸上移動能力及び水上移動能力を備えた無人航空機が実現できる。
上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換が可能であることは当業者に明らかである。したがって、本開示は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形及び変更が可能である。
実施形態1及び実施形態2のいずれかに係る無人航空機100は、車輪用接続部6に代えて実施形態5に係る伸長接続部25を備えてもよい。また、実施形態3に係る無人航空機100は、水車兼車輪用接続部19に代えて実施形態5に係る伸長接続部25を備えてもよい。また、実施形態4に係る無人航空機100は、スクリュー兼車輪用接続部22に代えて実施形態5に係る伸長接続部25を備えてもよい。
実施形態1~実施形態5のいずれか1つの実施形態に係る無人航空機100の本体部1は、実施形態6に係るフロート26をさらに備えてもよい。
実施形態1~実施形態5のいずれか1つの実施形態に係る無人航空機100の移動部は、実施形態6に係る水よりも小さい比重を有する移動部であってもよい。
例えば、本実施形態では、無人航空機100は陸上及び水上のいずれを移動する場合にも陸上移動機構及び水上移動機構の両方を常に備えているが、この態様には限定されない。例えば無人航空機100の小型化のため、陸上移動機構又は水上移動機構の一方を本体部1内に収納可能な構成としてもよい。
また、本実施形態では、接続部の高さを可変とする構成としたが、この態様には限定されない。例えば無人航空機100の本体部1自体に伸縮機構を設け、上下方向の高さを可変とする構成を備えてもよい。
1 本体部
2 飛翔用プロペラ部
3 モータ部
4 腕部
5 陸上用移動部(移動部)
6 車輪用接続部(接続部)
7 水上用移動部(移動部)
8 水車用接続部(接続部)
9 カメラ
10 車輪(陸上移動機構)
11 車輪用シャフト
12 水車(水上移動機構)
13 水車用シャフト
14 羽根部
15 スクリュー(水上移動機構)
16 スクリュー用接続部(接続部)
17 水車兼車輪(水上移動機構及び陸上移動機構)
18 水車兼車輪用シャフト
19 水車兼車輪用接続部(接続部)
20 スクリュー兼車輪(水上移動機構及び陸上移動機構)
21 スクリュー兼車輪用シャフト
22 スクリュー兼車輪用接続部(接続部)
23,23A,23B アルキメディアンスクリュー(水上移動機構及び陸上移動機構)
24 アルキメディアンスクリュー用接続部(接続部)
25 伸長接続部(接続部)
25a 本体部側伸長接続部
25b 移動部側伸長接続部
26 フロート
27 プロペラ
110 地上部
200 マンホール
210 首部
220 躯体部
230 鉄蓋
240 管路
250 ダクト部
221 上床版
222 下床版
223 側壁部
2 飛翔用プロペラ部
3 モータ部
4 腕部
5 陸上用移動部(移動部)
6 車輪用接続部(接続部)
7 水上用移動部(移動部)
8 水車用接続部(接続部)
9 カメラ
10 車輪(陸上移動機構)
11 車輪用シャフト
12 水車(水上移動機構)
13 水車用シャフト
14 羽根部
15 スクリュー(水上移動機構)
16 スクリュー用接続部(接続部)
17 水車兼車輪(水上移動機構及び陸上移動機構)
18 水車兼車輪用シャフト
19 水車兼車輪用接続部(接続部)
20 スクリュー兼車輪(水上移動機構及び陸上移動機構)
21 スクリュー兼車輪用シャフト
22 スクリュー兼車輪用接続部(接続部)
23,23A,23B アルキメディアンスクリュー(水上移動機構及び陸上移動機構)
24 アルキメディアンスクリュー用接続部(接続部)
25 伸長接続部(接続部)
25a 本体部側伸長接続部
25b 移動部側伸長接続部
26 フロート
27 プロペラ
110 地上部
200 マンホール
210 首部
220 躯体部
230 鉄蓋
240 管路
250 ダクト部
221 上床版
222 下床版
223 側壁部
Claims (8)
- 飛翔用プロペラを備える無人航空機であって、
本体部と、
前記飛翔用プロペラに依らないで、水上移動機構及び陸上移動機構を有する移動部と、
前記本体部と前記移動機構とを接続する接続部と、
を備える、無人航空機。 - 前記水上移動機構は、水上移動時に半水没する位置に配置される水車である、請求項1に記載の無人航空機。
- 前記水上移動機構は、水上移動時に全水没する位置に配置されるスクリューである、請求項1に記載の無人航空機。
- 前記陸上移動機構は、車輪であり、
前記陸上移動機構と前記水上移動機構とは、一体化されている、請求項1から3のいずれか一項に記載の無人航空機。 - 前記移動部は、アルキメディアンスクリューである、請求項1に記載の無人航空機。
- 前記移動部は、前記本体部の移動方向の転換を可能にするよう構成されている、請求項1から5のいずれか一項に記載の無人航空機。
- 前記接続部は、前記本体部に配置されたカメラの少なくとも一部が水没しない位置まで伸長可能である、請求項1から6のいずれか一項に記載の無人航空機。
- 前記本体部の少なくとも一部を水上に維持するための浮力を有するフロートをさらに備えるか、又は、
前記移動部が水よりも小さい比重を有する、請求項1から7のいずれか一項に記載の無人航空機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/913,209 US20230121833A1 (en) | 2020-03-25 | 2020-03-25 | Unmanned aerial vehicle |
JP2022510232A JP7280544B2 (ja) | 2020-03-25 | 2020-03-25 | 無人航空機 |
PCT/JP2020/013422 WO2021192112A1 (ja) | 2020-03-25 | 2020-03-25 | 無人航空機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/013422 WO2021192112A1 (ja) | 2020-03-25 | 2020-03-25 | 無人航空機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192112A1 true WO2021192112A1 (ja) | 2021-09-30 |
Family
ID=77891632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013422 WO2021192112A1 (ja) | 2020-03-25 | 2020-03-25 | 無人航空機 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230121833A1 (ja) |
JP (1) | JP7280544B2 (ja) |
WO (1) | WO2021192112A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7191257B1 (ja) | 2022-02-02 | 2022-12-16 | 昭次 柳沢 | ドローン |
EP4206077A1 (en) * | 2021-12-31 | 2023-07-05 | Shanghai Autoflight Co., Ltd. | Unmanned aerial vehicle |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021186507A1 (ja) * | 2020-03-16 | 2021-09-23 | 日本電信電話株式会社 | 点検装置、点検方法、およびプログラム |
CN114013660A (zh) * | 2021-11-09 | 2022-02-08 | 江苏科技大学 | 水上无人装备回收的水陆两栖飞行装置 |
CN117262267B (zh) * | 2023-11-21 | 2024-02-09 | 山东字节信息科技有限公司 | 两栖无人机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015107794A (ja) * | 2013-10-21 | 2015-06-11 | 泰工技研工業株式会社 | 圧縮空気流体機械及び連続圧縮流体噴出推進装置、これを用いた船舶の推進システム、ならびに気液混合流体機械の推進装置。 |
CN204915162U (zh) * | 2015-08-26 | 2015-12-30 | 吉林大学 | 一种海陆空四轴双体交通工具 |
CN105730173A (zh) * | 2016-05-06 | 2016-07-06 | 吉林大学 | 一种水陆空墙壁四栖机器人 |
JP2016120907A (ja) * | 2014-12-22 | 2016-07-07 | パロット | 水陸両用にするためのアクセサリが設けられた回転翼ドローン |
JP2017530043A (ja) * | 2015-07-02 | 2017-10-12 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 無人機、その制御システムおよび方法、ならびに無人機降着制御方法 |
WO2019021414A1 (ja) * | 2017-07-27 | 2019-01-31 | 株式会社エアロネクスト | 回転翼機 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE20379E (en) * | 1937-05-25 | Airplane | ||
US1421369A (en) * | 1922-07-04 | Submersible flying boat | ||
US1823735A (en) * | 1927-12-17 | 1931-09-15 | Jonathan P Glasby | Airplane |
US2151004A (en) * | 1938-04-05 | 1939-03-21 | William L Barclay | Retractable water propeller for airships |
US2495643A (en) * | 1946-08-30 | 1950-01-24 | Pidgeon Andrew James | Aircraft |
US3010424A (en) * | 1958-12-19 | 1961-11-28 | Curtiss Wright Corp | Vehicle propulsion mechanism |
FR2389533B1 (ja) * | 1977-05-04 | 1980-02-22 | Nal Expl Oceans Centre | |
US4579297A (en) * | 1983-05-11 | 1986-04-01 | Joseph N. Ayoola | Air, land and sea vehicle |
US5803776A (en) * | 1993-07-15 | 1998-09-08 | Slynko; Petr Petrovich | Partially immersible propeller |
US5645250A (en) * | 1993-08-26 | 1997-07-08 | Gevers; David E. | Multi-purpose aircraft |
AU7492898A (en) * | 1997-05-15 | 1998-12-08 | Orange County Water District | Method and system for cleaning a water basin floor |
US9493235B2 (en) * | 2002-10-01 | 2016-11-15 | Dylan T X Zhou | Amphibious vertical takeoff and landing unmanned device |
US8162253B2 (en) * | 2009-08-19 | 2012-04-24 | Seiford Sr Donald S | Convertible vehicle for road, air, and water usage |
US10081424B2 (en) * | 2013-12-31 | 2018-09-25 | Bogdan Radu | Flying car or drone |
US11338634B1 (en) * | 2014-10-30 | 2022-05-24 | Robotic Research Opco, Llc | Vehicle capable of multiple varieties of locomotion |
CN110891859B (zh) * | 2017-07-27 | 2023-03-10 | 株式会社辰巳菱机 | 悬浮型移动装置 |
JP7213104B2 (ja) | 2019-02-27 | 2023-01-26 | 三菱重工業株式会社 | 無人航空機および検査方法 |
JP6913989B1 (ja) * | 2020-03-02 | 2021-08-04 | 株式会社辰巳菱機 | 浮遊型移動装置 |
GB2600955B (en) * | 2020-11-12 | 2023-09-06 | Artemis Tech Limited | Gear box arrangement |
-
2020
- 2020-03-25 US US17/913,209 patent/US20230121833A1/en active Pending
- 2020-03-25 JP JP2022510232A patent/JP7280544B2/ja active Active
- 2020-03-25 WO PCT/JP2020/013422 patent/WO2021192112A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015107794A (ja) * | 2013-10-21 | 2015-06-11 | 泰工技研工業株式会社 | 圧縮空気流体機械及び連続圧縮流体噴出推進装置、これを用いた船舶の推進システム、ならびに気液混合流体機械の推進装置。 |
JP2016120907A (ja) * | 2014-12-22 | 2016-07-07 | パロット | 水陸両用にするためのアクセサリが設けられた回転翼ドローン |
JP2017530043A (ja) * | 2015-07-02 | 2017-10-12 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 無人機、その制御システムおよび方法、ならびに無人機降着制御方法 |
CN204915162U (zh) * | 2015-08-26 | 2015-12-30 | 吉林大学 | 一种海陆空四轴双体交通工具 |
CN105730173A (zh) * | 2016-05-06 | 2016-07-06 | 吉林大学 | 一种水陆空墙壁四栖机器人 |
WO2019021414A1 (ja) * | 2017-07-27 | 2019-01-31 | 株式会社エアロネクスト | 回転翼機 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4206077A1 (en) * | 2021-12-31 | 2023-07-05 | Shanghai Autoflight Co., Ltd. | Unmanned aerial vehicle |
JP7191257B1 (ja) | 2022-02-02 | 2022-12-16 | 昭次 柳沢 | ドローン |
JP2023112709A (ja) * | 2022-02-02 | 2023-08-15 | 昭次 柳沢 | ドローン |
Also Published As
Publication number | Publication date |
---|---|
US20230121833A1 (en) | 2023-04-20 |
JPWO2021192112A1 (ja) | 2021-09-30 |
JP7280544B2 (ja) | 2023-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021192112A1 (ja) | 無人航空機 | |
US9884681B2 (en) | Aerial vehicle with frame assemblies | |
US11292594B2 (en) | System of play platform for multi-mission application spanning any one or combination of domains or environments | |
EP3145735B1 (en) | Unmanned air and underwater vehicle | |
KR20130010513A (ko) | 3절 링크 벡터추진기 및 그 제작방법 | |
Tan et al. | A morphable aerial-aquatic quadrotor with coupled symmetric thrust vectoring | |
US20200338943A1 (en) | Unmanned Undersand Vehicle | |
CN108638773A (zh) | 一种三旋翼轮式水陆空三栖机器人 | |
KR20230165856A (ko) | 다중 모드 전환 가능한 운송 수단 | |
CN108284946A (zh) | 单舵机驱动起落架收放的结构和使用该结构的无人机 | |
CN113165737A (zh) | 飞行体 | |
JP4690080B2 (ja) | 無人潜水機 | |
AU2009100459A4 (en) | Vectored thrust operating system | |
Tan et al. | Underwater stability of a morphable aerial-aquatic quadrotor with variable thruster angles | |
Canelon-Suarez et al. | Omnibot: A small versatile robotic platform capable of air, ground, and underwater operation | |
Qin et al. | An aerial–aquatic robot with tunable tilting motors capable of multimode motion | |
US20240002074A1 (en) | Hybrid exploration and inspection robot | |
FR2796917A1 (fr) | Plate-forme mobile telecommandee apte a evoluer dans un milieu tel que l'eau ou l'air | |
Herng | Design of a morphable aerial-underwater multirotor robot | |
KR102600288B1 (ko) | 공중 및 수중 운용을 위한 추진장치를 구비한 무인기 | |
Zufferey et al. | Synthetic Aerial Aquatic Locomotion | |
CN118544742A (zh) | 一种移动机器人及工作方法 | |
CN118833435A (en) | Portable fixed-pitch double-rotor unmanned aerial vehicle capable of tilting at large angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927904 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022510232 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927904 Country of ref document: EP Kind code of ref document: A1 |