WO2021192107A1 - 給電システム、及び電力管理装置 - Google Patents

給電システム、及び電力管理装置 Download PDF

Info

Publication number
WO2021192107A1
WO2021192107A1 PCT/JP2020/013410 JP2020013410W WO2021192107A1 WO 2021192107 A1 WO2021192107 A1 WO 2021192107A1 JP 2020013410 W JP2020013410 W JP 2020013410W WO 2021192107 A1 WO2021192107 A1 WO 2021192107A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
bus
voltage
management device
Prior art date
Application number
PCT/JP2020/013410
Other languages
English (en)
French (fr)
Inventor
琢真 光永
克夫 直井
鈴木 真吾
久和 宇都
雅雄 一
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US17/640,493 priority Critical patent/US12009669B2/en
Priority to JP2022510227A priority patent/JP7414122B2/ja
Priority to PCT/JP2020/013410 priority patent/WO2021192107A1/ja
Publication of WO2021192107A1 publication Critical patent/WO2021192107A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This disclosure relates to a power supply system and a power management device.
  • Patent Document 1 describes a power supply system including a photovoltaic power generation device and a rechargeable storage battery.
  • this power supply system electric power is supplied from the photovoltaic power generation device to the load device, and the storage battery is charged and discharged according to the difference between the amount of power generated by the photovoltaic power generation device and the load power.
  • the photovoltaic power generation device is connected to a DC bus via a DC / DC converter, and is controlled by the DC / DC converter to output appropriate power.
  • the storage battery is connected to the DC bus via a DC / DC converter. Since two DC / DC converters are interposed between the photovoltaic power generation device and the storage battery, the conversion efficiency may decrease when power is supplied from the photovoltaic power generation device to the storage battery.
  • This disclosure describes a power supply system and a power management device capable of improving conversion efficiency while controlling the power generation of a renewable energy power generation device.
  • the power supply system comprises a DC bus for supplying DC power, a renewable energy power generator connected to the DC bus, and a bus voltage connected to the DC bus and supplied to the DC bus.
  • a first converter that converts to the load voltage supplied to the load device, a second converter that is provided between the storage battery and the DC bus and can convert the bus voltage and the battery voltage of the storage battery in both directions.
  • It includes a power management device that charges and discharges a storage battery by controlling a second converter.
  • the power management device calculates the bus voltage based on the differential power obtained by subtracting the load power supplied to the load equipment from the power supply supplied to the DC bus including the generated power generated by the renewable energy power generation device.
  • the second converter is controlled to change.
  • the renewable energy power generation device is connected to the DC bus, and the storage battery is connected to the DC bus via the second converter.
  • the conversion efficiency is improved as compared with the configuration in which the renewable energy power generation device is connected to the DC bus via the converter. It becomes possible.
  • the bus voltage is changed based on the differential power obtained by subtracting the load power from the supply power including the generated power generated by the renewable energy generator. When the bus voltage is changed, the generated power of the renewable energy power generation device is changed, so that the power generation of the renewable energy power generation device can be controlled. As a result, it is possible to improve the conversion efficiency while controlling the power generation of the renewable energy power generation device.
  • the power management device may cause the second converter to change the bus voltage according to the magnitude relationship between the differential power and the maximum power that the second converter can receive. For example, when the differential power is smaller than the maximum power, the second converter can change the bus voltage so that the generated power increases. On the other hand, when the differential power is larger than the maximum power, the second converter can change the bus voltage so that the generated power decreases. This configuration makes it possible to optimize the generated power of the renewable energy power generation device.
  • the power management device may have the second converter change the bus voltage so that the generated power increases when the differential power is smaller than the maximum power. In this case, more generated power can be obtained. Therefore, it is possible to improve the power generation efficiency of the renewable energy power generation device.
  • the power management device may have the second converter change the bus voltage so that the generated power decreases when the differential power is larger than the maximum power. In this case, the differential power can be suppressed to the maximum power or less. Therefore, it is possible to prevent excessive power from being supplied to the second converter, and it is possible to reduce the possibility that the second converter will fail.
  • the power management device is a DC bus from the supplied power supplied to the DC bus including the generated power generated by the renewable energy power generation device connected to the DC bus via the first converter.
  • the first acquisition unit that acquires the differential power obtained by subtracting the load power supplied to the load equipment connected to the DC bus, and the DC bus so as to change the bus voltage supplied to the DC bus based on the differential power. It is provided with a control unit for controlling a second converter provided between the storage battery and the storage battery. The second converter can convert the bus voltage and the battery voltage of the storage battery in both directions.
  • the renewable energy power generation device is connected to the DC bus, and the storage battery is connected to the DC bus via the second converter.
  • the bus is based on the differential power obtained by subtracting the load power from the supply power including the generated power generated by the renewable energy power generation device connected to the DC bus. The voltage is changed. When the bus voltage is changed, the generated power of the renewable energy power generation device is changed, so that the power generation of the renewable energy power generation device can be controlled. As a result, it becomes possible to improve the conversion efficiency and control the power generation of the renewable energy power generation device.
  • the power management device may further include a second acquisition unit that acquires the maximum power that the second converter can receive.
  • the control unit may cause the second converter to change the bus voltage according to the magnitude relationship between the differential power and the maximum power. For example, when the differential power is smaller than the maximum power, the second converter can change the bus voltage so that the generated power increases. On the other hand, when the differential power is larger than the maximum power, the second converter can change the bus voltage so that the generated power decreases. This configuration makes it possible to optimize the generated power of the renewable energy power generation device.
  • the control unit may have the second converter change the bus voltage so that the generated power increases when the differential power is smaller than the maximum power. In this case, more generated power can be obtained. Therefore, it is possible to improve the power generation efficiency of the renewable energy power generation device.
  • the control unit may have the second converter change the bus voltage so that the generated power decreases when the differential power is larger than the maximum power. In this case, the differential power can be suppressed to the maximum power or less. Therefore, it is possible to prevent excessive power from being supplied to the second converter, and it is possible to reduce the possibility that the second converter will fail.
  • FIG. 1 is a configuration diagram schematically showing a power supply system according to an embodiment.
  • FIG. 2 is a diagram showing power generation characteristics of the renewable energy power generation device shown in FIG.
  • FIG. 3 is a hardware configuration diagram of the power management device shown in FIG.
  • FIG. 4 is a functional block diagram of the power management device shown in FIG.
  • FIG. 5 is a flowchart showing a series of processes of the power management method performed by the power management device shown in FIG.
  • FIG. 1 is a configuration diagram schematically showing a power supply system according to an embodiment.
  • the power supply system 1 shown in FIG. 1 is a system that supplies load power WL (load voltage VL) to load device L.
  • the power supply system 1 is a DC power supply system.
  • the load device L may be a DC load device that operates at a DC voltage, or may be an AC load device that operates at an AC voltage.
  • Examples of direct current load devices include LED (Light Emission Diode) illuminators, DC (Direct Current) fans, and personal computers.
  • Examples of AC load equipment include washing machines, refrigerators, and air conditioners.
  • the power supply system 1 includes a DC bus 2, one or more power supply devices 3, one or more auxiliary power supply devices 4, an auxiliary power supply device 5, one or more converters 6 (first converter), and one or more.
  • a plurality of power storage devices 7 and a power management device 10 are provided.
  • the DC bus 2 is a bus that functions as a bus for supplying DC power to supply DC power.
  • the DC bus 2 is laid over the installation locations of the power supply device 3, the auxiliary power supply device 4, the auxiliary power supply device 5, the power storage device 7, and the load device L.
  • the bus voltage Vbus is supplied to the DC bus 2.
  • the bus voltage Vbus is a high voltage DC voltage.
  • the bus voltage Vbus is changed within a predetermined voltage range by the bidirectional DC / DC converter 73 (second converter) described later.
  • the voltage range of the bus voltage Vbus is set to be included in the range of the input voltage of the converter 6.
  • the bus voltage Vbus is changed within a voltage range of, for example, DC250V or more and DC450V or less.
  • the power supply device 3 is a device that supplies electric power to the DC bus 2.
  • the power supply system 1 includes one power supply device 3.
  • the number of power supply devices 3 is not limited to one, and may be changed as needed.
  • the power supply device 3 includes a renewable energy power generation device 31.
  • the renewable energy power generation device 31 is a device that generates DC power generation Wre. Examples of the renewable energy power generation device 31 include a solar power generation device, a wind power generation device, and a fuel cell. The renewable energy power generation device 31 is directly connected to the DC bus 2 without going through a power conditioner. The renewable energy power generation device 31 generates a generated power Wre having a power value corresponding to the bus voltage Vbus, and supplies the generated power Wre to the DC bus 2.
  • FIG. 2 is a diagram showing the power generation characteristics of the renewable energy power generation device shown in FIG.
  • a photovoltaic power generation device is used as the renewable energy power generation device 31.
  • the characteristics C1 to C5 show the relationship between the generated power Wre and the bus voltage Vbus at different irradiances.
  • the irradiance decreases in the order of characteristic C1, characteristic C2, characteristic C3, characteristic C4, and characteristic C5.
  • the power value of the generated power Wre can be changed according to the voltage value of the bus voltage Vbus.
  • the auxiliary power supply device 4 is a device that supplies electric power to the DC bus 2.
  • the power supply system 1 includes one auxiliary power supply device 4.
  • the number of auxiliary power supply devices 4 is not limited to one, and may be changed as needed.
  • the auxiliary power supply device 4 includes a power generation device 41 and an AC (Alternating Current) / DC converter 42.
  • the power generation device 41 is a device that generates AC generated power Wg.
  • An example of the power generation device 41 is a diesel generator.
  • the power generation device 41 is connected to the DC bus 2 via an AC / DC converter 42.
  • the power generation device 41 is started and stopped by an operation (manual) by the operator.
  • the power management device 10 may control the start and stop of the power generation device 41.
  • the power generation device 41 is activated when a large amount of electric power is temporarily required to charge the storage battery 71 described later.
  • the power generation device 41 is configured to be able to generate electric power that can sufficiently charge the storage battery 71 while supplying the load electric power WL to the load device L.
  • the power generation device 41 generates a power generation voltage Vg having a predetermined voltage value in an operating state, and outputs a power generation power Wg corresponding to the power generation voltage Vg.
  • the generated voltage Vg is an AC voltage.
  • the AC / DC converter 42 is connected to the DC bus 2 and is a device that converts the generated voltage Vg into the bus voltage Vbus.
  • the AC / DC converter 42 operates with a DC voltage generated internally based on, for example, the generated voltage Vg.
  • the AC / DC converter 42 controls the generated power Wg by controlling the power generation operation of the power generation device 41 based on the command from the power management device 10.
  • the AC / DC converter 42 converts the generated voltage Vg into the bus voltage Vbus and supplies the bus voltage Vbus to the DC bus 2 based on the command from the power management device 10.
  • the AC / DC converter 42 has a power measurement function for measuring the generated power Wg supplied from the power generation device 41 to the DC bus 2.
  • the AC / DC converter 42 for example, periodically measures the generated power Wg.
  • the AC / DC converter 42 transmits the measured value of the generated power Wg to the power management device 10.
  • the auxiliary power supply device 5 is a device that supplies electric power to the DC bus 2.
  • the auxiliary power supply device 5 includes a commercial power supply 51 and an AC / DC converter 52.
  • the commercial power supply 51 supplies system power Ws including system voltage Vs having a predetermined voltage value.
  • the system voltage Vs is an AC voltage.
  • the commercial power supply 51 is connected to the DC bus 2 via an AC / DC converter 52.
  • the AC / DC converter 52 is a device that is connected to the DC bus 2 and converts the system voltage Vs into the bus voltage Vbus.
  • the system voltage Vs is an AC voltage.
  • the AC / DC converter 52 operates, for example, with a DC voltage generated internally based on the system voltage Vs.
  • the AC / DC converter 52 converts the system voltage Vs into the bus voltage Vbus and supplies the bus voltage Vbus to the DC bus 2 based on the command from the power management device 10.
  • the AC / DC converter 52 has a power measurement function for measuring the system power Ws supplied from the commercial power supply 51 to the DC bus 2.
  • the AC / DC converter 52 periodically measures the system power Ws, for example.
  • the AC / DC converter 52 transmits the measured value of the system power Ws to the power management device 10.
  • auxiliary power supply device 4 and the auxiliary power supply device 5 can stably supply electric power, they are controlled to supply electric power when the electric power of the entire power supply system 1 is insufficient.
  • the converter 6 is connected to the DC bus 2 and is a device that converts the bus voltage Vbus into the load voltage VL.
  • the load voltage VL is a voltage supplied to the load device L.
  • the load device L is connected to the DC bus 2 via the converter 6.
  • the converter 6 operates with a DC voltage generated internally based on, for example, the bus voltage Vbus.
  • the power supply system 1 includes four converters 6.
  • the number of converters 6 is not limited to four, and may be changed according to the number of load devices L.
  • the converter 6 When the converter 6 receives the start command from the power management device 10, the converter 6 converts the bus voltage Vbus into the load voltage VL and supplies the load voltage VL (load power WL) to the load device L.
  • the load device L When the load device L is a DC load device, the load voltage VL is a DC voltage, and the converter 6 is a DC / DC converter.
  • the load device L When the load device L is an AC load device, the load voltage VL is an AC voltage, and the converter 6 is a DC / AC converter.
  • the converter 6 receives the stop command from the power management device 10, the converter 6 stops the supply of the load voltage VL.
  • the converter 6 has a current limiting function that limits the load current supplied from the DC bus 2 to the load device L by an upper limit current value.
  • the upper limit current value is set by the power management device 10.
  • the converter 6 has a power measurement function for measuring the load power WL supplied from the DC bus 2 to the load device L based on the load voltage VL and the load current. The converter 6 periodically measures the load power WL, for example. The converter 6 transmits the measured value of the load power WL to the power management device 10.
  • the power storage device 7 is a device for accumulating the surplus power generated in the power supply system 1 and supplying the insufficient power generated in the power supply system 1.
  • surplus power equal to the magnitude (power value) of the differential power is generated.
  • the supplied electric power is the electric power supplied to the DC bus 2.
  • the supplied powers are the generated power Wre, the generated power Wg, and the grid power Ws.
  • Power Wc obtained by evenly dividing the surplus power by the number of power storage devices 7 is supplied to each power storage device 7 from the DC bus 2.
  • the differential power is smaller than 0, a shortage power equal to the magnitude of the differential power occurs. From each power storage device 7, the power Wc obtained by evenly dividing the insufficient power by the number of power storage devices 7 is discharged to the DC bus 2.
  • Each power storage device 7 includes a storage battery 71, a BMU (Battery Management Unit) 72, and a bidirectional DC / DC converter 73.
  • BMU Battery Management Unit
  • the storage battery 71 is a device that can be charged and discharged.
  • the storage battery 71 is connected to the DC bus 2 via a bidirectional DC / DC converter 73.
  • Examples of the storage battery 71 include a lithium ion battery, a NAS (sodium-sulfur) battery, a redox flow battery, a lead storage battery, and a nickel hydrogen battery.
  • the storage batteries 71 included in the plurality of power storage devices 7 are of the same type and have the same storage capacity.
  • the storage capacity is the maximum storage capacity that can be stored.
  • the storage batteries 71 included in the plurality of power storage devices 7 may be different types of storage batteries, or may have different storage capacities.
  • the storage battery 71 includes, for example, a plurality of battery cells.
  • the BMU72 is a device that manages the storage battery 71.
  • the BMU 72 has a function of measuring the battery voltage Vbat of the storage battery 71 and a function of measuring the current value of the charge / discharge current of the storage battery 71 and calculating the SOC (State of charge).
  • the BMU 72 transmits the battery information of the storage battery 71 to the power management device 10.
  • the battery information includes the measured value of the battery voltage Vbat, the current value of the charge / discharge current, and the SOC.
  • the battery information may include the temperature of the storage battery 71.
  • the BMU 72 periodically transmits battery information to the power management device 10.
  • the bidirectional DC / DC converter 73 is connected to the DC bus 2 and is a device capable of bidirectionally converting the bus voltage Vbus and the battery voltage Vbat.
  • the bidirectional DC / DC converter 73 is provided between the storage battery 71 and the DC bus 2.
  • the battery voltage Vbat is the voltage of the storage battery 71.
  • a known bidirectional DC / DC converter can be used as the bidirectional DC / DC converter 73.
  • the bidirectional DC / DC converter 73 operates with an internally generated DC voltage based on, for example, the bus voltage Vbus.
  • the bidirectional DC / DC converter 73 is controlled by the power management device 10. Specifically, when the bidirectional DC / DC converter 73 receives a charging command from the power management device 10, the bidirectional DC / DC converter 73 converts the bus voltage Vbus into the battery voltage Vbat and causes the charging current to flow from the DC bus 2 to the storage battery 71. As a result, the storage battery 71 is charged. When the bidirectional DC / DC converter 73 receives the discharge command from the power management device 10, the bidirectional DC / DC converter 73 converts the battery voltage Vbat into the bus voltage Vbus and causes the discharge current to flow from the storage battery 71 to the DC bus 2. As a result, the storage battery 71 is discharged.
  • the bidirectional DC / DC converter 73 may charge or discharge the storage battery 71 by a constant current method, or may charge or discharge the storage battery 71 by a constant voltage method.
  • the bidirectional DC / DC converter 73 When the bidirectional DC / DC converter 73 receives a stop command from the power management device 10, the bidirectional DC / DC converter 73 stops its operation and shifts to a sleep state for reducing power consumption. When the bidirectional DC / DC converter 73 receives the charge command or the discharge command in the sleep state, the bidirectional DC / DC converter 73 wakes up from the sleep state and executes the charge process or the discharge process.
  • the bidirectional DC / DC converter 73 has a current limiting function that limits each current value of the charging current supplied to the storage battery 71 and the discharging current discharged from the storage battery 71 to the maximum current value (for example, 45A) or less of the storage battery 71. doing.
  • the bidirectional DC / DC converter 73 has a power measurement function for measuring power Wc.
  • the bidirectional DC / DC converter 73 for example, periodically measures the power Wc.
  • the bidirectional DC / DC converter 73 transmits the measured value of the power Wc to the power management device 10.
  • the bidirectional DC / DC converter 73 When the bidirectional DC / DC converter 73 receives the voltage adjustment command from the power management device 10, the bidirectional DC / DC converter 73 adjusts the voltage value of the bus voltage Vbus to the target voltage value included in the voltage adjustment command.
  • the maximum power that the bidirectional DC / DC converter 73 can receive is predetermined.
  • the bidirectional DC / DC converter 73 transmits device information including a power value (maximum power value) of the maximum power to the power management device 10.
  • the power management device 10 is a device (controller) that manages the entire power supply system 1.
  • the power management device 10 is also referred to as an EMS (Energy Management System).
  • the power management device 10 is communicably connected to the auxiliary power supply device 4, the auxiliary power supply device 5, the converter 6, and the power storage device 7 via a communication line.
  • the communication line may be configured by either wire or wireless.
  • the power management device 10 may perform communication conforming to standards such as RS-232C, RS-485, CAN (Controller Area Network), and Ethernet (registered trademark).
  • the power management device 10 performs a voltage measurement process for measuring the bus voltage Vbus.
  • the power management device 10 may directly measure the bus voltage Vbus.
  • the bidirectional DC / DC converter 73 may measure the bus voltage Vbus and transmit the measured value to the power management device 10, so that the power management device 10 may indirectly measure the bus voltage Vbus.
  • the power management device 10 transmits a start command and a stop command to each of the AC / DC converter 42, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73.
  • the power management device 10 transmits a start command to the converter 6 to supply the converter 6 with a load voltage VL.
  • the power management device 10 stops the supply of the load voltage VL to the converter 6 by transmitting a stop command to the converter 6. The same applies to other converters.
  • the power management device 10 performs charge / discharge processing for charging / discharging the storage battery 71 by controlling the bidirectional DC / DC converter 73.
  • the power management device 10 performs charge / discharge processing according to the differential power.
  • the power management device 10 transmits a charging command to the bidirectional DC / DC converter 73, which is the differential power.
  • the surplus electric power is stored in the storage battery 71. That is, each storage battery 71 stores the power obtained by evenly dividing the surplus power according to the number of storage batteries 71.
  • the power management device 10 transmits a discharge command to the bidirectional DC / DC converter 73 to store the insufficient power in the storage battery 71. Release from. The power obtained by evenly dividing the insufficient power according to the number of storage batteries 71 is discharged from each storage battery 71.
  • the power management device 10 controls the bidirectional DC / DC converter 73 so as to change the bus voltage Vbus based on the differential power.
  • the power management device 10 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus by transmitting a voltage adjustment command including a target voltage value of the bus voltage Vbus to the bidirectional DC / DC converter 73.
  • MPPT Maximum Power Point Tracking
  • FIG. 3 is a hardware configuration diagram of the power management device shown in FIG.
  • the power management device 10 can be physically configured as a computer including hardware such as one or more processors 101, memory 102, and communication interface 103.
  • An example of the processor 101 is a CPU (Central Processing Unit).
  • the memory 102 may include a main storage device and an auxiliary storage device.
  • the main storage device is composed of RAM (Random Access Memory), ROM (Read Only Memory), and the like.
  • Examples of the auxiliary storage device include a semiconductor memory and a hard disk device.
  • the communication interface 103 is a device that transmits / receives data to / from another device.
  • the communication interface 103 is composed of, for example, a communication module conforming to communication standards such as RS-232C, RS-485, and CAN, a network interface card (NIC), or a wireless communication module.
  • NIC network interface card
  • each hardware When the processor 101 reads and executes the program stored in the memory 102, each hardware operates under the control of the processor 101, and the data in the memory 102 is read and written. As a result, each functional unit shown in FIG. 4 of the power management device 10 is realized.
  • FIG. 4 is a functional block diagram of the power management device shown in FIG. As shown in FIG. 4, the power management device 10 functionally includes an acquisition unit 11 (first acquisition unit), an acquisition unit 12 (second acquisition unit), and a control unit 13.
  • the power management device 10 functionally includes an acquisition unit 11 (first acquisition unit), an acquisition unit 12 (second acquisition unit), and a control unit 13.
  • the acquisition unit 11 is a functional unit that acquires the power value (differential power value) of the differential power.
  • the acquisition unit 11 acquires, for example, the measured value of the power Wc between the DC bus 2 and the bidirectional DC / DC converter 73 from each bidirectional DC / DC converter 73, and the sum of the measured values of the power Wc is the differential power. Let it be a value.
  • the measured values of the power Wc are acquired from each of the three bidirectional DC / DC converters 73.
  • the acquisition unit 11 may acquire the value obtained by subtracting the sum of the measured values of the load power WL from the sum of the measured values of the supplied power as the differential power value. In this case, the acquisition unit 11 acquires the measured value of the generated power Wg from the AC / DC converter 42, acquires the measured value of the system power Ws from the AC / DC converter 52, and the measured value of the load power WL from each converter 6. To get. The acquisition unit 11 generates power by multiplying the current value measured by a current sensor (not shown) provided between the renewable energy power generation device 31 and the DC bus 2 with the voltage value of the bus voltage Vbus. Calculate the power value of Wre.
  • the acquisition unit 12 is a functional unit that acquires the power value (maximum power value) of the maximum power that the bidirectional DC / DC converter 73 in the power supply system 1 can receive.
  • the acquisition unit 12 acquires device information including the maximum power value from each bidirectional DC / DC converter 73, and calculates the sum of the maximum power values of each bidirectional DC / DC converter 73 as the bidirectional DC / DC in the power supply system 1.
  • the maximum power value that the DC converter 73 can receive is set.
  • the maximum power value obtained from one bidirectional DC / DC converter 73 is multiplied by the number of bidirectional DC / DC converters 73.
  • the value obtained by the above may be used as the maximum power value that the bidirectional DC / DC converter 73 in the power feeding system 1 can receive.
  • the control unit 13 is a functional unit that controls the bidirectional DC / DC converter 73 so as to change the bus voltage Vbus based on the differential power.
  • the control unit 13 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus according to the magnitude relationship between the differential power and the maximum power of the bidirectional DC / DC converter 73.
  • the control unit 13 performs MPPT control when the differential power is smaller than the maximum power.
  • MPPT control is a control that maximizes the generated power Wre.
  • the control unit 13 changes the bus voltage Vbus so that the generated power Wre increases.
  • the control unit 13 performs MPPT control using, for example, a hill climbing method.
  • the control unit 13 performs peak-off control when the differential power is larger than the above maximum power.
  • the peak-off control is a control that suppresses the generated power Wre so that the generated power Wre does not become larger than the maximum power of the bidirectional DC / DC converter 73.
  • the control unit 13 changes the bus voltage Vbus so that the generated power Wre decreases.
  • FIG. 5 is a flowchart showing a series of processes of the power management method performed by the power management device shown in FIG.
  • the series of processes shown in FIG. 5 is repeated every time a predetermined time (for example, 10 seconds) elapses.
  • the acquisition unit 11 acquires the differential power value (step S11).
  • the acquisition unit 11 receives, for example, the measured values of the power Wc from each bidirectional DC / DC converter 73, and acquires the sum of those measured values as the differential power value. Then, the acquisition unit 11 outputs the differential power value to the control unit 13.
  • the acquisition unit 12 acquires the maximum power value that can be received by all the bidirectional DC / DC converters 73 in the power supply system 1 (step S12). For example, the acquisition unit 12 acquires the maximum power value from each bidirectional DC / DC converter 73, and sets the sum of these maximum power values as the maximum power value that the bidirectional DC / DC converter 73 in the power supply system 1 can receive. do. Then, the acquisition unit 12 outputs the maximum power value to the control unit 13.
  • step S13 the control unit 13 compares the differential power value with the maximum power value. , It is determined whether the differential power is larger or smaller than the maximum power of the bidirectional DC / DC converter 73 (step S13). When it is determined in step S13 that the differential power is smaller than the maximum power (step S13; YES), the control unit 13 executes MPPT control (step S14).
  • control unit 13 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus so that the differential power increases.
  • the control unit 13 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus so that the generated power Wre increases.
  • the MPPT control is performed not only during the charging process but also during the discharging process.
  • the control unit 13 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus, for example, by using a mountain climbing method.
  • the control unit 13 transmits, for example, a voltage adjustment command including a target voltage value obtained by adding a predetermined value to the voltage value of the bus voltage Vbus to each bidirectional DC / DC converter 73.
  • the control unit 13 adjusts the voltage including the target voltage value obtained by further adding the predetermined value to the voltage value of the bus voltage Vbus without changing the sign of the predetermined value.
  • the command is transmitted to the bidirectional DC / DC converter 73.
  • the control unit 13 Inverts the sign of the predetermined value and then issues both voltage adjustment commands including the target voltage value obtained by adding the predetermined value to the voltage value of the bus voltage Vbus. It is transmitted to the DC / DC converter 73. As a result, a series of processes of the power management method is completed.
  • step S13 when it is determined in step S13 that the differential power is larger than the maximum power of the bidirectional DC / DC converter 73 (step S14; NO), the control unit 13 executes peak cut control (step S15). Specifically, the control unit 13 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus so that the differential power is reduced. When the differential power is reduced by changing the bus voltage Vbus, it is considered that the generated power Wre is reduced. Therefore, it can be said that the control unit 13 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus so that the generated power Wre is reduced.
  • the control unit 13 transmits, for example, a voltage adjustment command including a target voltage value obtained by reducing the voltage value of the bus voltage Vbus by a predetermined value to each bidirectional DC / DC converter 73. Then, when the differential power is larger than the maximum power, the control unit 13 transmits a voltage adjustment command including a target voltage value obtained by further reducing the voltage value of the bus voltage Vbus by a predetermined value to the bidirectional DC / DC converter 73. do. The control unit 13 repeats the above process until the differential power falls below the maximum power. As a result, a series of processes of the power management method is completed.
  • the renewable energy power generation device 31 is connected to the DC bus 2, and the storage battery 71 is connected to the DC bus 2 via the bidirectional DC / DC converter 73. In this way, since the renewable energy power generation device 31 is directly connected to the DC bus 2 without going through the converter, the renewable energy power generation device 31 is connected to the DC bus 2 via the converter, as compared with the configuration in which the renewable energy power generation device 31 is connected to the DC bus 2 via the converter. It is possible to improve the conversion efficiency.
  • the power conversion efficiency per converter is 90%
  • the renewable energy power generation device 31 supplies the power to the storage battery 71.
  • the conversion efficiency of the generated power is 81%.
  • the conversion efficiency of the electric power supplied from the renewable energy power generation device 31 to the storage battery 71 is 90%. Therefore, the conversion efficiency can be improved by 9%.
  • the bus voltage Vbus is changed based on the differential power obtained by subtracting the load power WL from the supply power including the generated power Wre.
  • the generated power Wre of the renewable energy power generation device 31 is changed, so that the power generation control of the renewable energy power generation device 31 can be performed. As a result, it is possible to improve the conversion efficiency while controlling the power generation of the renewable energy power generation device 31.
  • the power management device 10 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus according to the magnitude relationship between the differential power and the maximum power of the bidirectional DC / DC converter 73.
  • the power management device 10 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus so that the generated power Wre increases when the differential power is smaller than the maximum power. As a result, more generated power Wre can be obtained. Therefore, it is possible to improve the power generation efficiency of the renewable energy power generation device 31.
  • the power management device 10 causes the bidirectional DC / DC converter 73 to change the bus voltage Vbus so that the generated power Wre decreases when the differential power is larger than the maximum power.
  • the differential power can be suppressed to the maximum power or less. Therefore, it is possible to prevent excessive power from being supplied to the bidirectional DC / DC converter 73, and it is possible to reduce the possibility that the bidirectional DC / DC converter 73 will fail. As described above, it is possible to optimize the generated power Wre.
  • the power supply system and the power management device according to the present disclosure are not limited to the above embodiments.
  • the power supply system 1 does not have to include the auxiliary power supply device 5.
  • the power supply system 1 is also referred to as a stand-alone DC power supply system.
  • the power management device 10 may be composed of one device that is physically or logically coupled, or may be composed of a plurality of devices that are physically or logically separated from each other.
  • the power management device 10 may be realized by a plurality of computers distributed on a network as in cloud computing.
  • At least one of the AC / DC converter 42, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73 does not have to have a power measurement function.
  • the power management device 10 may acquire the measured value of each power from the measured value of the voltage measured by the voltage sensor and the measured value of the current measured by the current sensor.
  • each of the AC / DC converter 42, the AC / DC converter 52, the converter 6, and the bidirectional DC / DC converter 73 operates with a DC voltage generated inside the apparatus.
  • the power supply system 1 includes a power supply unit, and the power supply unit generates a DC voltage having a constant voltage value from the bus voltage Vbus of the DC bus 2 and supplies the DC voltage (power) to each device. You may.
  • the control unit 13 increases the power Wc when the measured value of the power Wc acquired from one bidirectional DC / DC converter 73 is smaller than the maximum power value of the bidirectional DC / DC converter 73. As such, the bidirectional DC / DC converter 73 may be made to change the bus voltage Vbus. Similarly, as peak cut control, the control unit 13 determines that the measured value of the power Wc acquired from one bidirectional DC / DC converter 73 is larger than the maximum power value of the bidirectional DC / DC converter 73. The bus voltage Vbus may be changed by the bidirectional DC / DC converter 73 so that the power Wc is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

給電システムは、直流電力を供給するための直流バスと、直流バスに接続される再生可能エネルギー発電装置と、直流バスに接続され、直流バスに供給されるバス電圧を負荷機器に供給される負荷電圧に変換する第1コンバータと、蓄電池と、蓄電池と直流バスとの間に設けられ、バス電圧と蓄電池の電池電圧とを双方向に変換可能な第2コンバータと、第2コンバータを制御することによって蓄電池を充放電する電力管理装置と、を備え、電力管理装置は、再生可能エネルギー発電装置によって生成される発電電力を含む直流バスに供給される供給電力から負荷機器に供給される負荷電力を引くことによって得られる差分電力に基づいて、バス電圧を変更するように第2コンバータを制御する。

Description

給電システム、及び電力管理装置
 本開示は、給電システム、及び電力管理装置に関する。
 近年、風力及び太陽光といった再生可能エネルギーを利用した発電設備の導入が進んでいる。特に、隔離地及び過疎地のような電力系統インフラが整備されていない地域では、経済性向上を図るとともに低炭素社会の実現にも貢献可能な給電システムに対するニーズは高い。電力系統インフラが既に整備されている地域においても、自然災害等で電力系統が停止した場合に負荷機器に対して安定的かつ継続的に電力を供給する給電システムへの期待が高まっている。
 例えば、特許文献1には、太陽光発電装置と充放電可能な蓄電池とを備える給電システムが記載されている。この給電システムでは、太陽光発電装置から負荷機器に電力が供給され、太陽光発電装置の発電量と負荷電力との差分に応じて、蓄電池が充放電される。
国際公開第2012/057032号
 特許文献1に記載の給電システムでは、太陽光発電装置は、DC/DCコンバータを介して直流バスに接続され、DC/DCコンバータによって適切な電力を出力するように制御される。この給電システムでは、蓄電池は、DC/DCコンバータを介して直流バスに接続されている。太陽光発電装置と蓄電池との間には2つのDC/DCコンバータが介在するので、太陽光発電装置から蓄電池に電力が供給される場合、変換効率が低下するおそれがある。
 本開示は、再生可能エネルギー発電装置の発電制御を行いながら、変換効率を向上可能な給電システム、及び電力管理装置を説明する。
 本開示の一側面に係る給電システムは、直流電力を供給するための直流バスと、直流バスに接続される再生可能エネルギー発電装置と、直流バスに接続され、直流バスに供給されるバス電圧を負荷機器に供給される負荷電圧に変換する第1コンバータと、蓄電池と、蓄電池と直流バスとの間に設けられ、バス電圧と蓄電池の電池電圧とを双方向に変換可能な第2コンバータと、第2コンバータを制御することによって蓄電池を充放電する電力管理装置と、を備える。電力管理装置は、再生可能エネルギー発電装置によって生成される発電電力を含む直流バスに供給される供給電力から負荷機器に供給される負荷電力を引くことによって得られる差分電力に基づいて、バス電圧を変更するように第2コンバータを制御する。
 この給電システムでは、再生可能エネルギー発電装置が直流バスに接続され、蓄電池が第2コンバータを介して直流バスに接続されている。このように、再生可能エネルギー発電装置はコンバータを介することなく直流バスに接続されるので、再生可能エネルギー発電装置がコンバータを介して直流バスに接続される構成と比較して、変換効率を向上させることが可能となる。再生可能エネルギー発電装置によって生成される発電電力を含む供給電力から負荷電力を引くことによって得られる差分電力に基づいて、バス電圧が変更される。バス電圧が変更されると、再生可能エネルギー発電装置の発電電力が変更されるので、再生可能エネルギー発電装置の発電制御を行うことができる。その結果、再生可能エネルギー発電装置の発電制御を行いながら、変換効率を向上させることが可能となる。
 電力管理装置は、差分電力と第2コンバータが受電可能な最大電力との大小関係に応じて、第2コンバータにバス電圧を変更させてもよい。例えば、差分電力が最大電力よりも小さい場合には、発電電力が増加するように、第2コンバータにバス電圧を変更させることができる。一方、差分電力が最大電力よりも大きい場合には、発電電力が減少するように、第2コンバータにバス電圧を変更させることができる。この構成によって、再生可能エネルギー発電装置の発電電力を最適化することが可能となる。
 電力管理装置は、差分電力が最大電力よりも小さい場合には、発電電力が増加するように、第2コンバータにバス電圧を変更させてもよい。この場合、より多くの発電電力を得ることができる。したがって、再生可能エネルギー発電装置の発電効率を向上させることが可能となる。
 電力管理装置は、差分電力が最大電力よりも大きい場合には、発電電力が減少するように、第2コンバータにバス電圧を変更させてもよい。この場合、差分電力が最大電力以下に抑えられ得る。したがって、過大な電力が第2コンバータに供給されることを防止することができ、第2コンバータが故障する可能性を低減することが可能となる。
 本開示の別の側面に係る電力管理装置は、直流バスに接続された再生可能エネルギー発電装置によって生成された発電電力を含む直流バスに供給される供給電力から、第1コンバータを介して直流バスに接続された負荷機器に供給される負荷電力を引くことによって得られる差分電力を取得する第1取得部と、差分電力に基づいて、直流バスに供給されるバス電圧を変更するように直流バスと蓄電池との間に設けられた第2コンバータを制御する制御部と、を備える。第2コンバータは、バス電圧と蓄電池の電池電圧とを双方向に変換可能である。
 この電力管理装置が適用される給電システムでは、再生可能エネルギー発電装置が直流バスに接続され、蓄電池が第2コンバータを介して直流バスに接続されている。このように、再生可能エネルギー発電装置はコンバータを介することなく直流バスに接続されるので、再生可能エネルギー発電装置がコンバータを介して直流バスに接続される構成と比較して、変換効率を向上させることが可能となる。このような給電システムにおいて、電力管理装置では、直流バスに接続された再生可能エネルギー発電装置によって生成された発電電力を含む供給電力から、負荷電力を引くことによって得られる差分電力に基づいて、バス電圧が変更される。バス電圧が変更されると、再生可能エネルギー発電装置の発電電力が変更されるので、再生可能エネルギー発電装置の発電制御を行うことができる。その結果、変換効率を向上させるとともに、再生可能エネルギー発電装置の発電制御を行うことが可能となる。
 上記電力管理装置は、第2コンバータが受電可能な最大電力を取得する第2取得部をさらに備えてもよい。制御部は、差分電力と最大電力との大小関係に応じて、第2コンバータにバス電圧を変更させてもよい。例えば、差分電力が最大電力よりも小さい場合には、発電電力が増加するように、第2コンバータにバス電圧を変更させることができる。一方、差分電力が最大電力よりも大きい場合には、発電電力が減少するように、第2コンバータにバス電圧を変更させることができる。この構成によって、再生可能エネルギー発電装置の発電電力を最適化することが可能となる。
 制御部は、差分電力が最大電力よりも小さい場合には、発電電力が増加するように、第2コンバータにバス電圧を変更させてもよい。この場合、より多くの発電電力を得ることができる。したがって、再生可能エネルギー発電装置の発電効率を向上させることが可能となる。
 制御部は、差分電力が最大電力よりも大きい場合には、発電電力が減少するように、第2コンバータにバス電圧を変更させてもよい。この場合、差分電力が最大電力以下に抑えられ得る。したがって、過大な電力が第2コンバータに供給されることを防止することができ、第2コンバータが故障する可能性を低減することが可能となる。
 本開示の各側面及び各実施形態によれば、再生可能エネルギー発電装置の発電制御を行いながら、変換効率を向上させることができる。
図1は、一実施形態に係る給電システムを概略的に示す構成図である。 図2は、図1に示される再生可能エネルギー発電装置の発電特性を示す図である。 図3は、図1に示される電力管理装置のハードウェア構成図である。 図4は、図1に示される電力管理装置の機能ブロック図である。 図5は、図1に示される電力管理装置が行う電力管理方法の一連の処理を示すフローチャートである。
 以下、図面を参照しながら本開示の実施形態が詳細に説明される。なお、図面の説明において同一要素には同一符号が付され、重複する説明は省略される。
 図1は、一実施形態に係る給電システムを概略的に示す構成図である。図1に示される給電システム1は、負荷機器Lに負荷電力WL(負荷電圧VL)を供給するシステムである。本実施形態では、給電システム1は、直流給電システムである。負荷機器Lは、直流電圧で動作する直流負荷機器であってもよく、交流電圧で動作する交流負荷機器であってもよい。直流負荷機器の例としては、LED(Light Emission Diode)照明器、DC(Direct Current)ファン、及びパーソナルコンピュータが挙げられる。交流負荷機器の例としては、洗濯機、冷蔵庫、及びエアーコンディショナが挙げられる。給電システム1は、直流バス2と、1又は複数の電源装置3と、1又は複数の補助電源装置4と、補助電源装置5と、1又は複数のコンバータ6(第1コンバータ)と、1又は複数の蓄電装置7と、電力管理装置10と、を備える。
 直流バス2は、直流電力を供給する直流給電を行うための母線として機能するバスである。直流バス2は、電源装置3、補助電源装置4、補助電源装置5、蓄電装置7、及び負荷機器Lの設置場所に亘って敷設されている。直流バス2にはバス電圧Vbusが供給される。バス電圧Vbusは、高圧の直流電圧である。バス電圧Vbusは、後述する双方向DC/DCコンバータ73(第2コンバータ)によって、所定の電圧範囲内において変更される。バス電圧Vbusの電圧範囲は、コンバータ6の入力電圧の範囲に含まれるように設定される。バス電圧Vbusは、例えば、DC250V以上DC450V以下の電圧範囲内で変更される。
 電源装置3は、直流バス2に電力を供給する装置である。本実施形態では、給電システム1は、1つの電源装置3を備えている。電源装置3の数は、1つに限られず、必要に応じて適宜変更され得る。電源装置3は、再生可能エネルギー発電装置31を含む。
 再生可能エネルギー発電装置31は、直流の発電電力Wreを生成する装置である。再生可能エネルギー発電装置31の例としては、太陽光発電装置、風力発電装置、及び燃料電池が挙げられる。再生可能エネルギー発電装置31は、パワーコンディショナーを介することなく、直流バス2に直接接続されている。再生可能エネルギー発電装置31は、バス電圧Vbusに応じた電力値の発電電力Wreを生成し、発電電力Wreを直流バス2に供給する。
 図2は、図1に示される再生可能エネルギー発電装置の発電特性を示す図である。再生可能エネルギー発電装置31として太陽光発電装置が用いられる。特性C1~C5は、互いに異なる放射照度での発電電力Wreとバス電圧Vbusとの関係を示している。特性C1、特性C2、特性C3、特性C4、及び特性C5の順に、放射照度が低くなる。図2に示されるように、バス電圧Vbusの電圧値に応じて、発電電力Wreの電力値が変更され得る。
 補助電源装置4は、直流バス2に電力を供給する装置である。本実施形態では、給電システム1は、1つの補助電源装置4を備えている。補助電源装置4の数は、1つに限られず、必要に応じて適宜変更され得る。補助電源装置4は、発電装置41と、AC(Alternating Current)/DCコンバータ42と、を含む。
 発電装置41は、交流の発電電力Wgを生成する装置である。発電装置41の例としては、ディーゼル発電機が挙げられる。発電装置41は、AC/DCコンバータ42を介して直流バス2に接続されている。例えば、オペレータによる操作(手動)によって、発電装置41の起動及び停止が行われる。電力管理装置10によって、発電装置41の起動及び停止が制御されてもよい。例えば、発電装置41は、後述の蓄電池71を充電するために、多くの電力が一時的に必要なときに起動される。この場合、発電装置41は、負荷機器Lに負荷電力WLを供給しつつ、蓄電池71を十分に充電可能な電力を発電可能に構成されている。発電装置41は、動作状態において、所定の電圧値の発電電圧Vgを生成し、発電電圧Vgに応じた発電電力Wgを出力する。発電電圧Vgは交流電圧である。
 AC/DCコンバータ42は、直流バス2に接続されており、発電電圧Vgをバス電圧Vbusに変換する装置である。AC/DCコンバータ42は、例えば、発電電圧Vgに基づいて内部で生成した直流電圧で動作する。AC/DCコンバータ42は、電力管理装置10からの指令に基づき、発電装置41の発電動作を制御することで、発電電力Wgを制御する。AC/DCコンバータ42は、電力管理装置10からの指令に基づき、発電電圧Vgをバス電圧Vbusに変換し、バス電圧Vbusを直流バス2に供給する。
 AC/DCコンバータ42は、発電装置41から直流バス2に供給されている発電電力Wgを計測する電力計測機能を有している。AC/DCコンバータ42は、例えば、周期的に発電電力Wgを計測する。AC/DCコンバータ42は、発電電力Wgの計測値を電力管理装置10に送信する。
 補助電源装置5は、直流バス2に電力を供給する装置である。補助電源装置5は、商用電源51と、AC/DCコンバータ52と、を含む。商用電源51は、所定の電圧値の系統電圧Vsを含む系統電力Wsを供給する。系統電圧Vsは交流電圧である。商用電源51は、AC/DCコンバータ52を介して直流バス2に接続されている。
 AC/DCコンバータ52は、直流バス2に接続されており、系統電圧Vsをバス電圧Vbusに変換する装置である。系統電圧Vsは、交流電圧である。AC/DCコンバータ52は、例えば、系統電圧Vsに基づいて内部で生成した直流電圧で動作する。AC/DCコンバータ52は、電力管理装置10からの指令に基づき、系統電圧Vsをバス電圧Vbusに変換し、バス電圧Vbusを直流バス2に供給する。AC/DCコンバータ52は、商用電源51から直流バス2に供給されている系統電力Wsを計測する電力計測機能を有している。AC/DCコンバータ52は、例えば、周期的に系統電力Wsを計測する。AC/DCコンバータ52は、系統電力Wsの計測値を電力管理装置10に送信する。
 補助電源装置4及び補助電源装置5は、安定的に電力を供給することが可能であるので、給電システム1全体の電力が不足している場合に電力を供給するよう制御される。
 コンバータ6は、直流バス2に接続されており、バス電圧Vbusを負荷電圧VLに変換する装置である。負荷電圧VLは、負荷機器Lに供給される電圧である。負荷機器Lは、コンバータ6を介して直流バス2に接続されている。コンバータ6は、例えば、バス電圧Vbusに基づいて内部で生成した直流電圧で動作する。本実施形態では、給電システム1は、4つのコンバータ6を備えている。コンバータ6の数は、4つに限られず、負荷機器Lの数に応じて変更され得る。
 コンバータ6は、電力管理装置10から起動指令を受信した場合、バス電圧Vbusを負荷電圧VLに変換し、負荷電圧VL(負荷電力WL)を負荷機器Lに供給する。負荷機器Lが直流負荷機器である場合、負荷電圧VLは直流電圧であり、コンバータ6はDC/DCコンバータである。負荷機器Lが交流負荷機器である場合、負荷電圧VLは交流電圧であり、コンバータ6はDC/ACコンバータである。コンバータ6は、電力管理装置10から停止指令を受信した場合、負荷電圧VLの供給を停止する。
 コンバータ6は、直流バス2から負荷機器Lに供給される負荷電流を上限電流値で制限する電流制限機能を有している。上限電流値は、電力管理装置10によって設定される。コンバータ6は、負荷電圧VL及び負荷電流に基づき、直流バス2から負荷機器Lに供給されている負荷電力WLを計測する電力計測機能を有している。コンバータ6は、例えば、周期的に負荷電力WLを計測する。コンバータ6は、負荷電力WLの計測値を電力管理装置10に送信する。
 蓄電装置7は、給電システム1で生じた余剰電力を蓄積し、給電システム1で生じた不足電力を供給するための装置である。供給電力の総和から負荷電力WLの総和を引くことによって得られる差分電力が0より大きい場合には、差分電力の大きさ(電力値)に等しい余剰電力が生じる。供給電力は、直流バス2に供給される電力である。本実施形態では、供給電力は、発電電力Wre、発電電力Wg、及び系統電力Wsである。各蓄電装置7には、蓄電装置7の数で余剰電力を均等に分割することによって得られる電力Wcが直流バス2から供給される。差分電力が0より小さい場合には、差分電力の大きさに等しい不足電力が生じる。各蓄電装置7からは、蓄電装置7の数で不足電力を均等に分割することによって得られる電力Wcが直流バス2に放出される。
 蓄電装置7の数は、3つに限られず、必要に応じて適宜変更され得る。各蓄電装置7は、蓄電池71と、BMU(Battery Management Unit:電池管理装置)72と、双方向DC/DCコンバータ73と、を含む。
 蓄電池71は、充放電可能な装置である。蓄電池71は、双方向DC/DCコンバータ73を介して直流バス2に接続されている。蓄電池71の例としては、リチウムイオン電池、NAS(ナトリウム硫黄)電池、レドックスフロー電池、鉛蓄電池、及びニッケル水素電池が挙げられる。本実施形態では、複数の蓄電装置7に含まれる蓄電池71は、互いに同種で、かつ同じ蓄電容量を有している。蓄電容量は、蓄電可能な最大の蓄電量である。複数の蓄電装置7に含まれる蓄電池71は、互いに異なる種類の蓄電池でもよく、互いに異なる蓄電容量を有してもよい。蓄電池71は、例えば、複数の電池セルを含む。
 BMU72は、蓄電池71を管理する装置である。BMU72は、蓄電池71の電池電圧Vbatを計測する機能と、蓄電池71の充放電電流の電流値を計測してSOC(State of charge:残容量)を演算する機能と、を有する。BMU72は、蓄電池71の電池情報を電力管理装置10に送信する。電池情報は、電池電圧Vbatの計測値、充放電電流の電流値、及びSOCを含む。電池情報は、蓄電池71の温度を含んでもよい。BMU72は、周期的に電池情報を電力管理装置10に送信する。
 双方向DC/DCコンバータ73は、直流バス2に接続されており、バス電圧Vbusと電池電圧Vbatとを双方向に変換可能な装置である。双方向DC/DCコンバータ73は、蓄電池71と直流バス2との間に設けられている。電池電圧Vbatは、蓄電池71の電圧である。双方向DC/DCコンバータ73としては、公知の双方向DC/DCコンバータが用いられ得る。双方向DC/DCコンバータ73は、例えば、バス電圧Vbusに基づいて内部で生成した直流電圧で動作する。
 双方向DC/DCコンバータ73は、電力管理装置10によって制御される。具体的には、双方向DC/DCコンバータ73は、電力管理装置10から充電指令を受信した場合、バス電圧Vbusを電池電圧Vbatに変換するとともに、充電電流を直流バス2から蓄電池71に流す。これにより、蓄電池71が充電される。双方向DC/DCコンバータ73は、電力管理装置10から放電指令を受信した場合、電池電圧Vbatをバス電圧Vbusに変換するとともに、放電電流を蓄電池71から直流バス2に流す。これにより、蓄電池71が放電される。双方向DC/DCコンバータ73は、定電流方式で蓄電池71を充電又は放電してもよく、定電圧方式で蓄電池71を充電又は放電してもよい。
 双方向DC/DCコンバータ73は、電力管理装置10から停止指令を受信した場合、動作を停止させて消費電力を低減させるスリープ状態に移行する。双方向DC/DCコンバータ73は、スリープ状態において充電指令又は放電指令を受信した場合には、スリープ状態から脱して、充電処理又は放電処理を実行する。双方向DC/DCコンバータ73は、蓄電池71に供給する充電電流及び蓄電池71から放出される放電電流の各電流値を蓄電池71の最大電流値(例えば、45A)以下に制限する電流制限機能を有している。
 双方向DC/DCコンバータ73は、電力Wcを計測する電力計測機能を有している。双方向DC/DCコンバータ73は、例えば、周期的に電力Wcを計測する。双方向DC/DCコンバータ73は、電力Wcの計測値を電力管理装置10に送信する。
 双方向DC/DCコンバータ73は、電力管理装置10から電圧調整指令を受信した場合、電圧調整指令に含まれる目標電圧値にバス電圧Vbusの電圧値を合わせる。なお、双方向DC/DCコンバータ73が受電可能な最大電力は、予め定められている。双方向DC/DCコンバータ73は、最大電力の電力値(最大電力値)を含む機器情報を電力管理装置10に送信する。
 電力管理装置10は、給電システム1全体を管理する装置(コントローラ)である。電力管理装置10は、EMS(Energy Management System)とも称される。電力管理装置10は、補助電源装置4、補助電源装置5、コンバータ6、及び蓄電装置7と通信線を介して互いに通信可能に接続されている。通信線は、有線及び無線のいずれで構成されてもよい。電力管理装置10は、RS-232C、RS-485、CAN(Controller Area Network)、及びイーサネット(登録商標)等の規格に準拠した通信を行ってもよい。
 電力管理装置10は、バス電圧Vbusを計測する電圧計測処理を行う。電力管理装置10は、バス電圧Vbusを直接的に計測してもよい。双方向DC/DCコンバータ73がバス電圧Vbusを計測して計測値を電力管理装置10に送信することによって、電力管理装置10がバス電圧Vbusを間接的に計測してもよい。
 電力管理装置10は、AC/DCコンバータ42、AC/DCコンバータ52、コンバータ6、及び双方向DC/DCコンバータ73のそれぞれに、起動指令、及び停止指令を送信する。例えば、電力管理装置10は、コンバータ6に起動指令を送信することで、コンバータ6に負荷電圧VLを供給させる。電力管理装置10は、コンバータ6に停止指令を送信することで、コンバータ6に負荷電圧VLの供給を停止させる。他のコンバータについても同様である。
 電力管理装置10は、双方向DC/DCコンバータ73を制御することによって蓄電池71を充放電する充放電処理を行う。電力管理装置10は、差分電力に応じて充放電処理を行う。電力管理装置10は、供給電力の総和が負荷電力WLの総和よりも大きい場合(差分電力が0よりも大きい場合)、双方向DC/DCコンバータ73に充電指令を送信し、その差分電力である余剰電力を蓄電池71に蓄積させる。つまり、各蓄電池71には、蓄電池71の台数で余剰電力を均等に分割することによって得られる電力が蓄積される。電力管理装置10は、供給電力の総和が負荷電力WLの総和よりも小さい場合(差分電力が0よりも小さい場合)、双方向DC/DCコンバータ73に放電指令を送信し、不足電力を蓄電池71から放出させる。蓄電池71の台数で不足電力を均等に分割することによって得られる電力が各蓄電池71から放出される。
 電力管理装置10は、差分電力に基づいて、バス電圧Vbusを変更するように双方向DC/DCコンバータ73を制御する。電力管理装置10は、バス電圧Vbusの目標電圧値を含む電圧調整指令を双方向DC/DCコンバータ73に送信することで、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。これにより、MPPT(Maximum Power Point Tracking)制御及びピークカット制御が行われる。MPPT制御及びピークカット制御の詳細は後述する。
 図3は、図1に示される電力管理装置のハードウェア構成図である。図3に示されるように、電力管理装置10は、物理的には、1又は複数のプロセッサ101、メモリ102、及び通信インターフェース103等のハードウェアを備えるコンピュータとして構成され得る。プロセッサ101の例としては、CPU(Central Processing Unit)が挙げられる。メモリ102は、主記憶装置と補助記憶装置とを含み得る。主記憶装置は、RAM(Random Access Memory)及びROM(Read Only Memory)等で構成される。補助記憶装置の例としては、半導体メモリ、及びハードディスク装置が挙げられる。通信インターフェース103は、他の装置とデータの送受信を行う装置である。通信インターフェース103は、例えば、RS-232C、RS-485、及びCANといった通信規格に準拠した通信モジュール、ネットワークインタフェースカード(NIC)又は無線通信モジュールで構成される。
 プロセッサ101が、メモリ102に格納されているプログラムを読み出して実行することにより、プロセッサ101の制御のもとで各ハードウェアが動作し、メモリ102におけるデータの読み出し及び書き込みが行われる。これにより、電力管理装置10の図4に示される各機能部が実現される。
 図4は、図1に示される電力管理装置の機能ブロック図である。図4に示されるように、電力管理装置10は、機能的には、取得部11(第1取得部)と、取得部12(第2取得部)と、制御部13と、を備える。
 取得部11は、差分電力の電力値(差分電力値)を取得する機能部である。取得部11は、例えば、直流バス2と双方向DC/DCコンバータ73との間の電力Wcの計測値を各双方向DC/DCコンバータ73から取得し、電力Wcの計測値の総和を差分電力値とする。本実施形態では、3つの双方向DC/DCコンバータ73からそれぞれ電力Wcの計測値を取得する。
 取得部11は、供給電力の計測値の総和から負荷電力WLの計測値の総和を減算することによって得られた値を差分電力値として取得してもよい。この場合、取得部11は、AC/DCコンバータ42から発電電力Wgの計測値を取得し、AC/DCコンバータ52から系統電力Wsの計測値を取得し、各コンバータ6から負荷電力WLの計測値を取得する。取得部11は、再生可能エネルギー発電装置31と直流バス2との間に設けられた不図示の電流センサによって計測された電流値と、バス電圧Vbusの電圧値とを乗算することによって、発電電力Wreの電力値を算出する。
 取得部12は、給電システム1における双方向DC/DCコンバータ73が受電可能な最大電力の電力値(最大電力値)を取得する機能部である。取得部12は、例えば、各双方向DC/DCコンバータ73から最大電力値を含む機器情報を取得し、各双方向DC/DCコンバータ73の最大電力値の総和を給電システム1における双方向DC/DCコンバータ73が受電可能な最大電力値とする。
 複数の双方向DC/DCコンバータ73が互いに同一の最大電力を有する場合には、1つの双方向DC/DCコンバータ73から取得した最大電力値と、双方向DC/DCコンバータ73の数とを乗算することによって得られる値が、給電システム1における双方向DC/DCコンバータ73が受電可能な最大電力値として用いられてもよい。
 制御部13は、差分電力に基づいて、バス電圧Vbusを変更するように双方向DC/DCコンバータ73を制御する機能部である。制御部13は、差分電力と双方向DC/DCコンバータ73の最大電力との大小関係に応じて、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。例えば、制御部13は、差分電力が上記最大電力よりも小さい場合には、MPPT制御を実施する。MPPT制御は、発電電力Wreを最大化する制御である。言い換えると、制御部13は、差分電力が上記最大電力よりも小さい場合には、発電電力Wreが増加するようにバス電圧Vbusを変更させる。制御部13は、例えば山登り法(Hill Climbing Method)を用いてMPPT制御を実施する。
 制御部13は、差分電力が上記最大電力よりも大きい場合には、ピークオフ制御を実施する。ピークオフ制御は、発電電力Wreが双方向DC/DCコンバータ73の最大電力よりも大きくならないように、発電電力Wreを抑える制御である。言い換えると、制御部13は、差分電力が上記最大電力よりも大きい場合には、発電電力Wreが減少するようにバス電圧Vbusを変更させる。
 次に、図5をさらに参照して、電力管理装置10が行う電力管理方法を説明する。図5は、図1に示される電力管理装置が行う電力管理方法の一連の処理を示すフローチャートである。図5の一連の処理は、所定の時間(例えば、10秒)が経過するごとに繰り返し行われる。
 まず、取得部11が、差分電力値を取得する(ステップS11)。取得部11は、例えば、各双方向DC/DCコンバータ73から電力Wcの計測値を受信し、それらの計測値の総和を差分電力値として取得する。そして、取得部11は、差分電力値を制御部13に出力する。
 続いて、取得部12は、給電システム1におけるすべての双方向DC/DCコンバータ73によって受電可能な最大電力値を取得する(ステップS12)。取得部12は、例えば、各双方向DC/DCコンバータ73から最大電力値を取得し、これらの最大電力値の総和を給電システム1における双方向DC/DCコンバータ73が受電可能な最大電力値とする。そして、取得部12は、最大電力値を制御部13に出力する。
 続いて、制御部13は、取得部11から差分電力値を受け取り、取得部12から双方向DC/DCコンバータ73の最大電力値を受け取ると、差分電力値と最大電力値とを比較することによって、差分電力が双方向DC/DCコンバータ73の最大電力よりも大きいか小さいかを判定する(ステップS13)。ステップS13において、差分電力が最大電力よりも小さいと判定された場合(ステップS13;YES)、制御部13は、MPPT制御を実施する(ステップS14)。
 具体的には、制御部13は、差分電力が増加するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。バス電圧Vbusを変更することによって差分電力が増加した場合、発電電力Wreが増加したと考えられる。したがって、制御部13は、発電電力Wreが増加するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させているともいえる。なお、MPPT制御は、充電処理時に限られず、放電処理時においても実施される。
 制御部13は、例えば、山登り法を用いて、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。この場合、制御部13は、例えば、バス電圧Vbusの電圧値に所定値を加算することで得られる目標電圧値を含む電圧調整指令を各双方向DC/DCコンバータ73に送信する。そして、差分電力が増加した場合には、制御部13は、所定値の符号を変更することなく、バス電圧Vbusの電圧値にさらに所定値を加算することで得られる目標電圧値を含む電圧調整指令を双方向DC/DCコンバータ73に送信する。差分電力が減少した場合には、制御部13は、所定値の符号を反転した上で、バス電圧Vbusの電圧値に所定値を加算することで得られる目標電圧値を含む電圧調整指令を双方向DC/DCコンバータ73に送信する。以上により、電力管理方法の一連の処理が終了する。
 一方、ステップS13において、差分電力が双方向DC/DCコンバータ73の最大電力よりも大きいと判定された場合(ステップS14;NO)、制御部13は、ピークカット制御を実施する(ステップS15)。具体的には、制御部13は、差分電力が減少するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。バス電圧Vbusを変更することによって差分電力が減少した場合、発電電力Wreが減少したと考えられる。したがって、制御部13は、発電電力Wreが減少するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させているともいえる。
 制御部13は、例えば、バス電圧Vbusの電圧値を所定値だけ減少した目標電圧値を含む電圧調整指令を各双方向DC/DCコンバータ73に送信する。そして、差分電力が最大電力よりも大きい場合には、制御部13は、バス電圧Vbusの電圧値をさらに所定値だけ減少した目標電圧値を含む電圧調整指令を双方向DC/DCコンバータ73に送信する。制御部13は、差分電力が最大電力を下回るまで上記処理を繰り返し行う。以上により、電力管理方法の一連の処理が終了する。
 以上説明した給電システム1では、再生可能エネルギー発電装置31が直流バス2に接続され、蓄電池71が双方向DC/DCコンバータ73を介して直流バス2に接続されている。このように、再生可能エネルギー発電装置31はコンバータを介することなく直流バス2に直接接続されるので、再生可能エネルギー発電装置31がコンバータを介して直流バス2に接続される構成と比較して、変換効率を向上させることが可能となる。
 例えば、1つのコンバータ当たりの電力変換効率が90%であるとすると、再生可能エネルギー発電装置31がコンバータを介して直流バス2に接続される構成では、再生可能エネルギー発電装置31から蓄電池71に供給される電力の変換効率は、81%である。一方、給電システム1では、再生可能エネルギー発電装置31から蓄電池71に供給される電力の変換効率は、90%である。したがって、変換効率を9%向上させることができる。
 この給電システム1に適用される電力管理装置10では、発電電力Wreを含む供給電力から負荷電力WLを引くことによって得られる差分電力に基づいて、バス電圧Vbusが変更される。バス電圧Vbusが変更されると、再生可能エネルギー発電装置31の発電電力Wreが変更されるので、再生可能エネルギー発電装置31の発電制御を行うことができる。その結果、再生可能エネルギー発電装置31の発電制御を行いながら、変換効率を向上させることが可能となる。
 電力管理装置10(制御部13)は、差分電力と双方向DC/DCコンバータ73の最大電力との大小関係に応じて、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。例えば、電力管理装置10は、差分電力が上記最大電力よりも小さい場合には、発電電力Wreが増加するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。これにより、より多くの発電電力Wreを得ることができる。したがって、再生可能エネルギー発電装置31の発電効率を向上させることが可能となる。一方、電力管理装置10は、差分電力が上記最大電力よりも大きい場合には、発電電力Wreが減少するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させる。これにより、差分電力が最大電力以下に抑えられ得る。したがって、過大な電力が双方向DC/DCコンバータ73に供給されることを防止することができ、双方向DC/DCコンバータ73が故障する可能性を低減することが可能となる。以上のように、発電電力Wreを最適化することが可能となる。
 なお、本開示に係る給電システム、及び電力管理装置は上記実施形態に限定されない。
 例えば、給電システム1は、補助電源装置5を備えていなくてもよい。この場合、給電システム1は、独立型の直流電源システムとも称される。
 電力管理装置10は、物理的又は論理的に結合した1つの装置によって構成されていてもよく、互いに物理的又は論理的に分離している複数の装置によって構成されてもよい。例えば、電力管理装置10は、クラウドコンピューティングのようにネットワーク上に分散された複数のコンピュータによって実現されてもよい。
 AC/DCコンバータ42、AC/DCコンバータ52、コンバータ6、及び双方向DC/DCコンバータ73の少なくともいずれかは、電力計測機能を有していなくてもよい。この場合、電力管理装置10は、電圧センサによって計測された電圧の計測値と、電流センサによって計測された電流の計測値と、から各電力の計測値を取得してもよい。
 上記実施形態では、AC/DCコンバータ42、AC/DCコンバータ52、コンバータ6、及び双方向DC/DCコンバータ73のそれぞれは、装置内部で生成した直流電圧で動作している。この構成に代えて、給電システム1が電源ユニットを備え、電源ユニットが、直流バス2のバス電圧Vbusから一定の電圧値を有する直流電圧を生成し、各装置に直流電圧(電力)を供給してもよい。
 制御部13は、MPPT制御として、1つの双方向DC/DCコンバータ73から取得した電力Wcの計測値が、当該双方向DC/DCコンバータ73の最大電力値よりも小さい場合に、電力Wcが増加するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させてもよい。同様に、制御部13は、ピークカット制御として、1つの双方向DC/DCコンバータ73から取得した電力Wcの計測値が、当該双方向DC/DCコンバータ73の最大電力値よりも大きい場合に、電力Wcが減少するように、双方向DC/DCコンバータ73にバス電圧Vbusを変更させてもよい。
 1…給電システム、2…直流バス、6…コンバータ(第1コンバータ)、10…電力管理装置、11…取得部(第1取得部)、12…取得部(第2取得部)、13…制御部、31…再生可能エネルギー発電装置、71…蓄電池、73…双方向DC/DCコンバータ(第2コンバータ)、L…負荷機器、Vbat…電池電圧、Vbus…バス電圧、VL…負荷電圧、Wg…発電電力(供給電力)、Wre…発電電力(供給電力)、Ws…系統電力(供給電力)、WL…負荷電力。

Claims (8)

  1.  直流電力を供給するための直流バスと、
     前記直流バスに接続される再生可能エネルギー発電装置と、
     前記直流バスに接続され、前記直流バスに供給されるバス電圧を負荷機器に供給される負荷電圧に変換する第1コンバータと、
     蓄電池と、
     前記蓄電池と前記直流バスとの間に設けられ、前記バス電圧と前記蓄電池の電池電圧とを双方向に変換可能な第2コンバータと、
     前記第2コンバータを制御することによって前記蓄電池を充放電する電力管理装置と、
    を備え、
     前記電力管理装置は、前記再生可能エネルギー発電装置によって生成される発電電力を含む前記直流バスに供給される供給電力から前記負荷機器に供給される負荷電力を引くことによって得られる差分電力に基づいて、前記バス電圧を変更するように前記第2コンバータを制御する、給電システム。
  2.  前記電力管理装置は、前記差分電力と前記第2コンバータが受電可能な最大電力との大小関係に応じて、前記第2コンバータに前記バス電圧を変更させる、請求項1に記載の給電システム。
  3.  前記電力管理装置は、前記差分電力が前記最大電力よりも小さい場合には、前記発電電力が増加するように、前記第2コンバータに前記バス電圧を変更させる、請求項2に記載の給電システム。
  4.  前記電力管理装置は、前記差分電力が前記最大電力よりも大きい場合には、前記発電電力が減少するように、前記第2コンバータに前記バス電圧を変更させる、請求項2又は請求項3に記載の給電システム。
  5.  直流バスに接続された再生可能エネルギー発電装置によって生成された発電電力を含む前記直流バスに供給される供給電力から、第1コンバータを介して前記直流バスに接続された負荷機器に供給される負荷電力を引くことによって得られる差分電力を取得する第1取得部と、
     前記差分電力に基づいて、前記直流バスに供給されるバス電圧を変更するように前記直流バスと蓄電池との間に設けられた第2コンバータを制御する制御部と、
    を備え、
     前記第2コンバータは、前記バス電圧と前記蓄電池の電池電圧とを双方向に変換可能である、電力管理装置。
  6.  前記第2コンバータの最大電力を取得する第2取得部をさらに備え、
     前記制御部は、前記差分電力と前記最大電力との大小関係に応じて、前記第2コンバータに前記バス電圧を変更させる、請求項5に記載の電力管理装置。
  7.  前記制御部は、前記差分電力が前記最大電力よりも小さい場合には、前記発電電力が増加するように、前記第2コンバータに前記バス電圧を変更させる、請求項6に記載の電力管理装置。
  8.  前記制御部は、前記差分電力が前記最大電力よりも大きい場合には、前記発電電力が減少するように、前記第2コンバータに前記バス電圧を変更させる、請求項6又は請求項7に記載の電力管理装置。
PCT/JP2020/013410 2020-03-25 2020-03-25 給電システム、及び電力管理装置 WO2021192107A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/640,493 US12009669B2 (en) 2020-03-25 2020-03-25 Power feeding system and power management device
JP2022510227A JP7414122B2 (ja) 2020-03-25 2020-03-25 給電システム、及び電力管理装置
PCT/JP2020/013410 WO2021192107A1 (ja) 2020-03-25 2020-03-25 給電システム、及び電力管理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013410 WO2021192107A1 (ja) 2020-03-25 2020-03-25 給電システム、及び電力管理装置

Publications (1)

Publication Number Publication Date
WO2021192107A1 true WO2021192107A1 (ja) 2021-09-30

Family

ID=77891089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013410 WO2021192107A1 (ja) 2020-03-25 2020-03-25 給電システム、及び電力管理装置

Country Status (3)

Country Link
US (1) US12009669B2 (ja)
JP (1) JP7414122B2 (ja)
WO (1) WO2021192107A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266458A (ja) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The バッテリ併用型太陽光発電設備
WO2018066044A1 (ja) * 2016-10-03 2018-04-12 株式会社アイケイエス 電力制御装置およびその制御方法
WO2019145997A1 (ja) * 2018-01-23 2019-08-01 Tdk株式会社 直流給電システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028517B2 (ja) 2010-10-26 2012-09-19 シャープ株式会社 直流給電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266458A (ja) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The バッテリ併用型太陽光発電設備
WO2018066044A1 (ja) * 2016-10-03 2018-04-12 株式会社アイケイエス 電力制御装置およびその制御方法
WO2019145997A1 (ja) * 2018-01-23 2019-08-01 Tdk株式会社 直流給電システム

Also Published As

Publication number Publication date
US20230155391A1 (en) 2023-05-18
JP7414122B2 (ja) 2024-01-16
JPWO2021192107A1 (ja) 2021-09-30
US12009669B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
US10464441B2 (en) Charging facility and energy management method for charging facility
US10756544B2 (en) Energy storage system and management method thereof
US9851409B2 (en) Energy storage device controlling method and power management system
JP6430775B2 (ja) 蓄電池装置
CN110176788B (zh) 蓄电系统以及蓄电装置
WO2011122681A1 (ja) 系統安定化システム、電力供給システム、集中管理装置の制御方法および集中管理装置のプログラム
KR20130104771A (ko) 에너지 저장 시스템 및 그의 제어 방법
KR101863141B1 (ko) 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지관리시스템
CN112751357B (zh) 一种光伏储能系统及其控制方法
CN106099965A (zh) 交流微电网并网状态下复杂混合储能系统的协调控制方法
KR101337576B1 (ko) Soc 관리를 위한 방법 및 시스템
JP2015192566A (ja) 電力システム及び直流送電方法
JP7242563B2 (ja) エネルギー貯蔵システム
KR20190062812A (ko) 에너지 저장 시스템
CN106786803A (zh) 独立运行光伏发电系统供大于需时的一种无损功率平衡法
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
KR101863138B1 (ko) 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지저장장치
KR20180066438A (ko) 배터리 충전상태에 기반한 전력수용가 에너지 관리 방법 및 시스템.
WO2021192107A1 (ja) 給電システム、及び電力管理装置
WO2022172457A1 (ja) 電力管理装置、及び給電システム
WO2013046509A1 (ja) 給電システム及び給電方法
KR20220165977A (ko) 마이크로그리드 ems 운전 장치 및 방법
CN109599898B (zh) 提高分布式电源消纳的控制方法及装置
Benavides et al. Analysis of Different Energy Storage Technologies for Microgrids Energy Management
KR20210010753A (ko) 직류 공통 방식을 이용한 하이브리드 신재생 에너지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926834

Country of ref document: EP

Kind code of ref document: A1