WO2021192038A1 - 画像解析装置および画像解析方法 - Google Patents
画像解析装置および画像解析方法 Download PDFInfo
- Publication number
- WO2021192038A1 WO2021192038A1 PCT/JP2020/013032 JP2020013032W WO2021192038A1 WO 2021192038 A1 WO2021192038 A1 WO 2021192038A1 JP 2020013032 W JP2020013032 W JP 2020013032W WO 2021192038 A1 WO2021192038 A1 WO 2021192038A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaluation function
- image
- difference
- phase difference
- pixels
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
- G01S13/9011—SAR image acquisition techniques with frequency domain processing of the SAR signals in azimuth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9023—SAR image post-processing techniques combined with interferometric techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to an image analysis device and an image analysis method for performing image analysis.
- Synthetic Aperture Radar (SAR) technology is a technology that transmits and receives electromagnetic waves while flying objects such as artificial satellites and aircraft move, and obtains observation images equivalent to antennas with large apertures.
- Synthetic aperture radar is used, for example, to process reflected waves from the ground surface and analyze altitude and surface displacement.
- the image analysis apparatus takes a time-series SAR image (SAR data) obtained by the synthetic aperture radar as an input, and analyzes the input SAR image in a time-series manner.
- Interference SAR analysis is an effective method for analyzing altitude and surface displacement.
- the phase difference of the radio wave signals constituting a plurality of (for example, two) SAR images taken at different times is calculated. Then, the change in the distance between the flying object and the ground that occurs during the shooting period is detected.
- Patent Document 1 describes a SAR analysis method having a relatively high resistance to non-linear displacement and the like.
- coherence is calculated using the phase difference between adjacent pixels. Points with valid displacement information are extracted, and the displacement velocity and the like are determined based on the phase above those points.
- Non-Patent Document 1 describes an interference SAR analysis using the multipath method.
- the phase difference between adjacent pixels is calculated, and the displacement speed and elevation difference between adjacent pixels are calculated. Then, each displacement rate is integrated. In addition, each elevation difference is integrated.
- the evaluation function of Eq. (1) evaluation formula for linear regression of phase
- maximized the evaluation function of Eq. (1)
- ⁇ xl Ze indicates the elevation difference between adjacent pixels.
- v indicates the displacement rate.
- ⁇ t k, l indicate the baseline length.
- the baseline length corresponds to the difference in shooting time between the image k and the image l.
- this difference is referred to as a shooting time difference.
- ⁇ xl v ⁇ t k, l indicates the speed difference between adjacent pixels.
- ⁇ xl a k, l indicate a value corresponding to the phase difference.
- ⁇ k and l are values related to the vertical baseline length.
- the vertical baseline length is the distance between the orbits when each of the image k and the image l is photographed.
- this distance is referred to as an inter-orbital distance.
- S is a set of interfering SAR images obtained from the set of (k, l).
- each of the obtained displacement velocities is integrated in the entire image by using, for example, the integrated equation of the equation (2). If the displacement velocities after integration have not converged, optimization using Eq. (1) is performed again. "Converging" means that, for example, the difference between the displacement speed obtained by the optimization using Eq. (1) again and the displacement speed obtained before the re-optimization is less than or equal to a predetermined value (as an example). It is below the predetermined threshold value).
- Equation (2) p corresponds to the image number.
- W (p) is the weight in the p-th interfering SAR image.
- Weight is a parameter that contributes to noise reduction.
- Equation (2) is an integrated equation relating to the displacement velocity, but the elevation difference is also integrated in the same manner.
- FIG. 22 is an explanatory diagram showing an example of converging to an erroneous value.
- an example is a case where there are N SAR images (specifically, interference SAR images).
- the phase difference between the pixel indicated by the black dot and the pixels a to d in the vicinity thereof will be taken as an example.
- FIG. 22 (B) illustrates the changes in the respective phase differences.
- the phase difference between the pixels a to c and the pixel indicated by the black dot changes substantially linearly, but the phase difference between the pixel d and the pixel indicated by the black dot fluctuates rapidly spatially, and the degree of non-linearity is extremely large.
- the displacement velocity v based on the phase difference between the pixels a to c and the pixels indicated by the black dots converges to a similar value X, but the pixels d and the pixels indicated by the black dots.
- an error occurs in the integration result. Elevation is discussed in the same way.
- the present invention provides an image analysis apparatus capable of obtaining highly reliable integrated results when the displacement velocity and elevation of the entire image are obtained by integrating the displacement velocity difference and altitude difference of each pixel based on the phase difference.
- the purpose is to provide an analysis method.
- the image analysis device includes an image-to-image phase difference calculation means for calculating a phase difference image of a pair of images, an inter-pixel phase difference calculation means for calculating a phase difference between adjacent pixels in a phase-difference image, and at least pixels.
- Evaluation function creation means that creates an evaluation function that includes the phase difference between them, optimization means that optimizes the evaluation function for each set of pixels or each set of adjacent pixels, random number generation means that generates random numbers, and evaluation.
- the optimization means optimizes by excluding the threshold setting means that sets the threshold based on the evaluation result of the random number using the function and the variable whose evaluation value using the evaluation function is less than the threshold.
- Includes an integration means that integrates the values of the variables when the image is used to obtain integrated data for the entire image.
- the image analysis method calculates a phase difference image of a pair of images, calculates a phase difference between adjacent pixels in the phase difference image, creates an evaluation function including at least the phase difference between pixels, and evaluates the function. Is optimized for each set of pixels or for each set of adjacent pixels, a random number is generated, a threshold value is set based on the evaluation result of the random number using the evaluation function, and the evaluation value using the evaluation function is determined. Exclude variables that are less than the value, and integrate the values of the variables when the evaluation function is optimized to obtain integrated data for the entire image.
- the image analysis program allows a computer to perform a process of calculating a phase difference image of a pair of images, a process of calculating a phase difference between adjacent pixels in a phase difference image, and an evaluation including at least a phase difference between pixels.
- FIG. 1A take the case where there are N SAR images (specifically, interference SAR images) as an example.
- the phase difference between the pixel indicated by the black dot and the pixels a to d in the vicinity thereof will be taken as an example. Changes in the respective phase differences are illustrated on the upper side of FIG. 1 (B).
- the phase difference between the pixels a to c and the pixel indicated by the black dot changes substantially linearly, but the phase difference between the pixel d and the pixel indicated by the black dot fluctuates rapidly spatially, and the degree of non-linearity is extremely large.
- a predetermined random number is generated, and the evaluation function is optimized (for example, maximized) using the random number as the phase difference.
- An example of the change in phase difference from the pixel indicated by the black dot when a random number is used is shown on the lower side of FIG. 1 (B).
- FIG. 1C exemplifies an evaluation value related to the displacement speed of the pixels a to d (calculated value of the evaluation function) and an evaluation value related to the displacement speed when a random number is used. As illustrated on the upper side of FIG. 1C, the evaluation value for pixel d is small. Further, as illustrated in the lower part of FIG. 1C, the evaluation value when a random number is used is generally small.
- a value obtained by adding a margin to the maximum value (or an average value) of each evaluation value when each random number is used is set as a threshold value. Then, when the displacement speed difference is less than the threshold value, the pair of pixels exhibiting the displacement speed difference is excluded.
- FIG. 1 shows the concept of the threshold value using the displacement velocity as an example, the same concept can be applied to the altitude as an example.
- FIG. 2 is a block diagram showing a configuration example of the image analysis apparatus of the first embodiment.
- the image analysis device 10 shown in FIG. 2 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, an integration unit 170, a random number generation unit 200, a threshold value evaluation value calculation unit 210, and a threshold value generation unit 220 are included.
- an interference SAR image is illustrated as an image, but the image that can be handled in each embodiment is not limited to the interference SAR image, and other types such as a SAR image can be used. You can also handle images.
- the SAR image storage unit 100 stores N (N ⁇ 3) SAR images (specifically, interference SAR images).
- the shooting time / trajectory storage unit 110 stores information (data) indicating the shooting time of the SAR image and information (data) capable of identifying the trajectory of the flying object when the image is captured.
- the inter-image phase difference calculation unit 120 calculates the phase difference ⁇ m, n (m, n ⁇ N) of a pair of SAR images.
- the phase difference of a pair of SAR images means the phase difference of the corresponding pixels in each image.
- the inter-image phase difference calculation unit 120 may calculate the phase difference of all pairs in N SAR images, but may calculate the phase difference of some pairs.
- the inter-pixel phase difference calculation unit 130 calculates the inter-pixel phase difference in one phase difference image. For example, ⁇ k, l ⁇ m, n are calculated as the phase difference between the pixels k, l that are close to each other with respect to the SAR image m and the SAR image n. Similarly, the inter-pixel phase difference calculation unit 130 calculates the phase difference of various adjacent pixel pairs for all the phase difference images calculated by the inter-image phase difference calculation unit 120.
- the evaluation function creation unit 140 generates an evaluation function.
- the evaluation function of Eq. (3) is generated.
- ⁇ indicates all elements.
- " ⁇ , ⁇ " in ⁇ ⁇ , ⁇ means the phase difference of all pairs.
- W m and n are weights for the phase difference of the pair of the SAR image m and the SAR image n.
- t m and n are shooting time differences.
- b m and n are inter-orbital distances. That is, in Eq. (3) , the displacement velocity difference ⁇ v k, l of the pixels k, l using the shooting time difference t m, n , the inter-orbital distance b m, n , and the phase difference ⁇ k, l ⁇ m, n. And the evaluation function for the elevation difference ⁇ h k, l.
- the evaluation function optimization unit 150 calculates the displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l that maximize the evaluation function for each pair of pixels.
- the integration unit 170 integrates the displacement velocity differences ⁇ v k and l to obtain the displacement velocity v k in the entire image.
- the integrated unit 170 obtains the altitude h k in the entire image height difference Delta] h k, a l integrated.
- the integration unit 170 may repeat the calculation of the evaluation function in the integration process until the predetermined integration formula converges to the optimum value.
- the random number generation unit 200 generates a predetermined random number.
- the threshold value evaluation value calculation unit 210 applies the generated random numbers to the displacement speed difference and the altitude difference, and calculates the evaluation value using the evaluation function of the equation (3). Further, the threshold value generation unit 220 determines the threshold value based on the evaluation value.
- the inter-image phase difference calculation unit 120 calculates the phase difference ⁇ m, n of a pair of SAR images in the N SAR images stored in the SAR image storage unit 100 to obtain a phase difference image (step S100).
- the inter-pixel phase difference calculation unit 130 calculates the phase differences ⁇ k, l ⁇ m, n of adjacent pixels k, l in one phase difference image (step S101).
- the adjacent pixels k and l may be a set of pixels adjacent to each other in the vertical and horizontal directions for each of all the pixels in the image, or may be two pixels sandwiching one pixel, or one pixel. It may be a pair with a pixel included within a certain radius with respect to the pixel.
- the inter-pixel phase difference calculation unit 130 may create a set as described above only for a part of the pixels in the image.
- information such as displacement can be finally obtained only for a part of the pixels.
- the evaluation function creation unit 140 generates an evaluation function (Equation (3)) including a shooting time difference t m, n , an inter-orbital distance b m, n , and a phase difference ⁇ k, l ⁇ m, n (step S102). ).
- the random number generation unit 200 generates a predetermined random number (step S110).
- the predetermined random number is, for example, a uniform random number between ⁇ and ⁇ .
- the threshold value generation unit 220 determines the threshold value based on the evaluation value (step S112).
- the threshold value generation unit 220 uses, for example, the evaluation value itself calculated by the threshold value evaluation value calculation unit 210, or a value obtained by adding a margin to the evaluation value as the threshold value.
- the evaluation function optimization unit 150 calculates the displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l that maximize the evaluation function (Equation (3)) for each pair of pixels (step S120).
- the integration unit 170 confirms whether or not there is an evaluation value less than the threshold value among the evaluation function values (evaluation values) calculated by the evaluation function optimization unit 150. When there is an evaluation value less than the threshold value, the integration unit 170 determines that the pixel pair used when the evaluation value is calculated is not used in the integration process (step S122).
- the integration unit 170 executes the integration process (step S123).
- the displacement velocity differences ⁇ v k, l are integrated to obtain the displacement velocity v k in the entire image
- the integration unit 170 integrates the elevation differences ⁇ h k, l to obtain the elevation h k in the entire image. Is.
- the integration unit 170 does not use the pixel pair used when the evaluation value less than the threshold value is calculated in the integration process.
- the threshold value generation unit 220 calculates an evaluation value using a random number and an evaluation function, determines a threshold value based on the calculated evaluation value, and integrates the values.
- the unit 170 excludes the pair of pixels used when the evaluation value less than the threshold value is calculated, and executes the integration process.
- the threshold value is a value similar to the evaluation value corresponding to the displacement velocity difference that fluctuates rapidly in space and has a great degree of non-linearity. Therefore, by excluding the pair of pixels used when the evaluation value less than the threshold value is calculated and executing the integration process, a highly reliable integration result can be obtained.
- FIG. 4 is a block diagram showing a configuration example of the image analysis apparatus of the second embodiment.
- the image analysis device 20 shown in FIG. 4 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, a weight determination unit 160, an integration unit 170, a random number generation unit 200, a threshold evaluation value calculation unit 210, and a threshold generation unit 220 are included.
- the components other than the weight determining unit 160 are the same as the components in the first embodiment. However, the integration unit 170 executes a process different from the process in the first embodiment.
- the weight determination unit 160 calculates the weights Wv k, l , Wh k, l.
- steps S100 to S120 is the same as the processing in the first embodiment (see FIG. 3).
- the weight determination unit 160 calculates the weights Wv k, l , Wh k, l (step S121).
- the weight determining unit 160 uses the second derivative or the like when calculating the weight.
- the weight determining unit 160 gives a weight proportional to the second derivative to the evaluation value (calculated value of the evaluation function).
- the weight determination unit 160 sets the weights Wv k, l , Wh k, l corresponding to the pair of pixels used when the evaluation value is calculated to 0. (Step S124).
- the integration unit 170 integrates the displacement velocity differences ⁇ v k and l in the integration process to obtain the displacement velocity v k in the entire image.
- the integrated unit 170 is an integrated process, obtain the altitude h k in the entire image height difference Delta] h k, a l integrated.
- the integration unit 170 uses, for example, the displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l obtained in the process of Eq. (4), step S120, and the displacement velocity v k and the elevation. Calculate h k. If the calculated displacement velocities and elevations have not converged, Eq. (4) is repeatedly applied to the other pixels until they converge (step S125).
- the threshold value generation unit 220 calculates the evaluation value using the random number and the evaluation function, determines the threshold value based on the calculated evaluation value, and integrates.
- the unit 170 excludes the pair of pixels used when the evaluation value less than the threshold value is calculated, and executes the integration process.
- the threshold value is a value similar to the evaluation value corresponding to the displacement velocity difference that fluctuates rapidly in space and has a great degree of non-linearity. Therefore, by excluding the pair of pixels used when the evaluation value less than the threshold value is calculated and executing the integration process, a highly reliable integration result can be obtained.
- FIG. 6 is a block diagram showing a configuration example of the image analysis device of the third embodiment.
- the image analysis device 30 shown in FIG. 6 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, an integration unit 170, a displacement / elevation evaluation function creation unit 180, a random number generation unit 200, a threshold evaluation value calculation unit 210, and a threshold value generation unit 220 are included.
- the components other than the displacement / elevation evaluation function creation unit 180 are the same as the components in the first embodiment shown in FIG. However, the integration unit 170 executes the processing in the first embodiment and the added processing.
- the integration process is executed in consideration of prior information indicating how much the difference in displacement speed and the difference in altitude between adjacent pixels should be.
- the displacement / elevation evaluation function creation unit 180 creates a conditional expression (evaluation function) for evaluating the degree to which the difference in displacement speed and the difference in elevation of adjacent pixels are similar.
- the displacement / elevation evaluation function creation unit 180 generates, for example, the conditional expression of Eq. (5).
- ⁇ v is a value indicating how similar the displacement velocities v k in the adjacent pixels are.
- ⁇ h is a value indicating how similar the heights (elevations) of adjacent pixels are.
- ⁇ v is a value indicating how close the displacement velocity v k should be to 0.
- ⁇ h is a value indicating how close the altitude h k should be to 0.
- the evaluation function optimization unit 150 may optimize the evaluation function (Equation (3)) created by the evaluation function creation unit 140, but the evaluation function is created. Optimization may be performed on the evaluation function created by the unit 140 minus the equation ((5)) created by the displacement / elevation evaluation function creation unit 180.
- the integration unit 170 performs the integration processing as in the case of the first embodiment while reducing the value of the conditional expression (equation (5)) generated by the displacement / elevation evaluation function creation unit 180. Is executed (step S123A).
- the displacement / elevation evaluation function creation unit 180 generates a conditional expression for evaluating the difference in displacement speed of adjacent pixels and the degree of similarity in elevation, and the integration unit 170 generates a conditional expression. Since the conditional expression is used in the integrated process, even if it is difficult to obtain the optimum displacement velocity v k and altitude h k in the integrated process (for example, the calculated value becomes 0 or it is difficult to converge), it is practical. In addition, the displacement speed and altitude of the virtual pixel between the pixel k and the pixel l are used, and it becomes easy to obtain the converged displacement speed v k and the altitude h k.
- FIG. 8 is a block diagram showing a configuration example of the image analysis apparatus of the fourth embodiment.
- the image analysis device 40 shown in FIG. 8 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, a weight determination unit 160, an integration unit 170, a displacement / elevation evaluation function creation unit 180, a random number generation unit 200, a threshold evaluation value calculation unit 210, and a threshold value generation unit 220 are included.
- the components other than the displacement / elevation evaluation function creation unit 180 are the same as the components in the second embodiment shown in FIG. However, the integration unit 170 executes the processing in the second embodiment and the added processing. Further, the displacement / elevation evaluation function creation unit 180 executes the same processing as the displacement / elevation evaluation function creation unit 180 in the third embodiment. That is, the displacement / elevation evaluation function creation unit 180 creates the conditional expression of the equation (5).
- steps S100 to S124 is the same as the processing in the second embodiment (see FIG. 5).
- the integration unit 170 integrates the displacement velocity differences ⁇ v k and l in the integration process to obtain the displacement velocity v k in the entire image.
- the integrated unit 170 is an integrated process, obtain the altitude h k in the entire image height difference Delta] h k, a l integrated.
- the integration unit 170 uses the displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l obtained in the process of the equation (6), step S120, to provide the displacement velocity v k and the elevation h. Calculate k. If the calculated displacement velocities and elevations have not converged, Eq. (6) is repeatedly applied to the other pixels until they converge (step S125A).
- FIG. 10 is an explanatory diagram for explaining improvement of falling into a local solution and the like.
- FIG. 10A when an initial value of a certain condition is given, an evaluation value that is not the optimum solution may be obtained as a result of optimization.
- the displacement velocity difference ⁇ v k, l of the integrated pixels k, l is recalculated.
- the point e in FIG. 10B is obtained as the displacement velocity difference ⁇ v k, l.
- FIG. 10C if the optimization using the evaluation function is executed again with the displacement velocity difference ⁇ v k, l at the point e as the initial value, there is a possibility that the evaluation value which is the optimum solution can be obtained. Increase.
- FIG. 11 is a block diagram showing a configuration example of the image analysis device according to the fifth embodiment.
- the image analysis device 50 shown in FIG. 11 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, an integration unit 170, a recalculation unit 190, a random number generation unit 200, a threshold evaluation value calculation unit 210, and a threshold value generation unit 220 are included.
- the components other than the recalculation unit 190 are the same as the components in the first embodiment shown in FIG. However, the integration unit 170 executes the processing in the first embodiment and the added processing.
- the recalculation unit 190 recalculates the displacement speed difference ⁇ v k, l and the altitude difference ⁇ h k, l of the pixels k, l from the displacement speed v k and the altitude h k calculated by the integration unit 170.
- steps S100 to S123 is the same as the processing in the first embodiment (see FIG. 3).
- step S130 the integration unit 170 confirms whether or not the end condition is satisfied.
- the end condition is, for example, a condition using the result of the optimization process (displacement velocity difference ⁇ v k, l and elevation difference ⁇ h k, l ) input to the integration unit 170.
- the displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l from the evaluation function optimization unit 150 are previously input from the evaluation function optimization unit 150, and the displacement velocity difference ⁇ v k, l and If there is no change from the altitude difference ⁇ h k, l , it is determined that the end condition is satisfied.
- the displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l from the evaluation function optimization unit 150 were previously input from the evaluation function optimization unit 150, and the displacement velocity difference ⁇ v k, l and the elevation. If the state of no change from the difference ⁇ h k, l continues a predetermined number of times, it may be determined that the end condition is satisfied.
- the recalculation unit 190 recalculates the displacement speed difference ⁇ v k, l and the altitude difference ⁇ h k, from the displacement speed v k and the altitude h k calculated by the integration unit 170 to the pixels k, l.
- Recalculate l step S131. That is, the recalculation unit 190 obtains, for example, the difference in displacement speed v k and the difference in altitude h k of two adjacent pixels, and obtains the displacement speed difference ⁇ v k, l and the altitude difference ⁇ h k, l.
- the recalculation unit 190 gives the calculated displacement velocity difference ⁇ v k, l and the elevation difference ⁇ h k, l to the evaluation function optimization unit 150 as initial values (step S132).
- the evaluation function optimization unit 150 again executes the process of step S120.
- the possibility of obtaining the evaluation value which is the optimum solution is increased, and the integrated result with higher reliability can be obtained.
- FIG. 13 is a block diagram showing a configuration example of the image analysis apparatus of the sixth embodiment.
- the image analysis device 60 shown in FIG. 13 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, a weight determination unit 160, an integration unit 170, a recalculation unit 190, a random number generation unit 200, a threshold evaluation value calculation unit 210, and a threshold value generation unit 220 are included.
- the components other than the recalculation unit 190 are the same as the components in the second embodiment shown in FIG. However, the integration unit 170 executes the processing in the second embodiment and the added processing. The recalculation unit 190 performs the same processing as the processing in the fifth embodiment.
- steps S100 to S125 is the same as the processing in the second embodiment (see FIG. 5).
- steps S130 to S132 is the same as the processing in the fifth embodiment (see FIG. 12).
- the possibility of obtaining the evaluation value which is the optimum solution is increased, and a more reliable integration result can be obtained.
- Embodiment 7 The optimization process using the evaluation function is a process with a large amount of calculation.
- a mechanism for reducing the amount of calculation is added.
- FIG. 15 is an explanatory diagram for explaining a mechanism for reducing the amount of calculation.
- a loose threshold is used. Loose thresholds are less than tight thresholds.
- the loose threshold value is determined based on, for example, an evaluation value calculated using a random number and the evaluation function of Eq. (3).
- the threshold value generation unit 220 uses the average value ⁇ 3 of the evaluation function values calculated using random numbers as the threshold value, the loose threshold value is determined to be the average value ⁇ 2.
- the optimization process (recalculation of the evaluation function) is executed again with the displacement velocity differences ⁇ v k, l recalculated from the integrated displacement velocity v k as initial values.
- the displacement velocity difference ⁇ v k, l corresponding to the evaluation value less than the loose threshold value is set as the initial value, and the optimization process is performed again. Even if the optimization process is performed again, a value closer to the optimum value cannot be obtained. Can not. Therefore, it can be said that the optimization process based on the displacement velocity difference ⁇ v k, l corresponding to the evaluation value less than the loose threshold value should not be executed. If the optimization process is not executed, the displacement velocity differences ⁇ v k and l corresponding to the evaluation values less than the loose threshold value are not reflected in the integration result.
- FIG. 16 is a block diagram showing a configuration example of the image analysis device of the seventh embodiment.
- the image analysis device 70 shown in FIG. 16 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, an integration unit 170, a recalculation unit 190, a random number generation unit 200, a threshold evaluation value calculation unit 210, a threshold generation unit 220, and a second threshold generation unit 221 are included.
- the components other than the second threshold value generation unit 221 are the same as the components in the fifth embodiment shown in FIG. However, the evaluation function optimization unit 150 executes the processing in the fifth embodiment and the added processing.
- steps S100 to S132 is the same as the processing in the fifth embodiment (see FIG. 12).
- the second threshold value generation unit 221 generates the above-mentioned loose threshold value.
- the threshold value generated by the threshold value generation unit 220 corresponds to the above-mentioned severe threshold value.
- the evaluation function optimization unit 150 After generating the evaluation function, the evaluation function optimization unit 150 confirms whether or not the obtained evaluation value is equal to or higher than a loose threshold value (step S133). If the evaluation value is equal to or higher than a loose threshold value, the processes after step S120 are executed. That is, the processing after the optimization processing (step S120) is executed.
- step S120 If the obtained evaluation value is less than a loose threshold value, the process of step S120 is not executed. That is, the optimization process is skipped.
- the seventh embodiment it is optimal when there is a high possibility that the optimum value (maximum value in the present embodiment) cannot be obtained even if the calculation for optimizing the evaluation function (maximization in the present embodiment) is performed. Since the conversion process is not executed, the amount of calculation is reduced.
- FIG. 18 is a block diagram showing a configuration example of the image analysis apparatus of the eighth embodiment.
- the image analysis device 80 shown in FIG. 18 includes a SAR image storage unit 100, a shooting time / trajectory storage unit 110, an image-to-image phase difference calculation unit 120, an inter-pixel phase difference calculation unit 130, an evaluation function creation unit 140, and an evaluation function optimization.
- a unit 150, a weight determination unit 160, an integration unit 170, a recalculation unit 190, a random number generation unit 200, a threshold evaluation value calculation unit 210, a threshold generation unit 220, and a second threshold generation unit 221. include.
- the components other than the second threshold value generation unit 221 are the same as the components in the sixth embodiment shown in FIG. However, the evaluation function optimization unit 150 executes the processing in the sixth embodiment and the added processing.
- steps S100 to S132 is the same as the processing in the sixth embodiment (see FIG. 14).
- the second threshold value generation unit 221 generates a loose threshold value.
- the evaluation function optimization unit 150 confirms whether or not the obtained evaluation value is equal to or higher than a loose threshold value (step S133). If the evaluation value is equal to or higher than a loose threshold value, the processes after step S120 are executed. That is, the optimization process (step S120) transition process is executed.
- step S120 If the obtained evaluation value is less than a loose threshold value, the process of step S120 is not executed. That is, the optimization process is skipped.
- the amount of calculation related to the optimization process is reduced as in the case of the seventh embodiment.
- an image analysis apparatus that handles both the displacement velocity v k and the altitude h k is shown.
- the image analyzer may handle only the displacement velocity v k or only the altitude h k .
- an evaluation function in which the term related to the elevation difference is deleted in the evaluation function exemplified as Eq. (1) is used.
- an evaluation function in the form in which b m, n ⁇ h k, l are deleted is used.
- an evaluation function in which the term related to displacement is deleted in the evaluation function exemplified as Eq. (1) is used.
- an evaluation function in the form in which t m, n ⁇ v k, l are deleted is used.
- the analysis target is the displacement difference (displacement velocity difference) and the altitude difference, but other elements can also be the analysis target.
- the coefficient of thermal expansion of the observation target of the synthetic aperture radar can be analyzed.
- the temperature difference (pair) at different observation points is used instead of the shooting time difference tm and n.
- the temperature difference when each of the constituent images was taken) is used.
- the displacement rate difference ⁇ v k, l the difference in the coefficient of thermal expansion between adjacent pixels is used.
- the coefficient of thermal expansion can be obtained by using the evaluation functions of Eqs. (1) and (3).
- the image analysis device and image analysis method of each of the above embodiments are suitable not only for general displacement analysis of ground surface and above-ground structures, but also for displacement analysis based on underground construction and ground subsidence analysis of reclaimed land. Applicable to.
- Each function (each processing) in the above embodiment can be realized by a computer having a processor such as a CPU (Central Processing Unit) or memory.
- a program for carrying out the method (processing) in the above embodiment may be stored in a storage device (storage medium), and each function may be realized by executing the program stored in the storage device on the CPU. good.
- FIG. 20 is a block diagram showing an example of a computer having a CPU.
- the computer is mounted on the image analyzer.
- the CPU 1000 realizes each function in the above embodiment by executing the process according to the image analysis program (software element: code) stored in the storage device 1001. That is, in the image analysis apparatus shown in FIGS. 2, 4, 6, 6, 8, 11, 13, 13, 16, and 18, the inter-image phase difference calculation unit 120, the inter-pixel phase difference calculation unit 130, Evaluation function creation unit 140, evaluation function optimization unit 150, integration unit 170, displacement / elevation evaluation function creation unit 180, recalculation unit 190, random number generation unit 200, threshold evaluation value calculation unit 210, threshold generation The functions of the unit 220 and the second threshold value generation unit 221 are realized.
- the image analysis program software element: code
- the storage device 1001 is, for example, a non-transitory computer readable medium.
- Non-temporary computer-readable media include various types of tangible storage media (tangible storage medium). Specific examples of non-temporary computer-readable media include magnetic recording media (for example, hard disks), optical magnetic recording media (for example, optical magnetic disks), CD-ROMs (Compact Disc-Read Only Memory), and CD-Rs (Compact). Disc-Recordable), CD-R / W (Compact Disc-ReWritable), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM).
- the storage device 1001 can also be used as the SAR image storage unit 100 and the shooting time / orbit storage unit 110.
- the image analysis program may be stored in various types of temporary computer-readable media (transitory computer readable medium).
- the program is supplied to the temporary computer-readable medium, for example, via a wired or wireless communication path, that is, via an electrical signal, an optical signal, or an electromagnetic wave.
- the memory 1002 is realized by, for example, a RAM (Random Access Memory), and is a storage means for temporarily storing data when the CPU 1000 executes a process.
- a mode in which a program held by the storage device 1001 or a temporary computer-readable medium is transferred to the memory 1002 and the CPU 1000 executes processing based on the program in the memory 1002 can be assumed.
- FIG. 21 is a block diagram showing a main part of the image analysis apparatus.
- the image analysis device 1 shown in FIG. 21 is realized by an inter-image phase difference calculation unit (inter-image phase difference calculation means) 12 (in the embodiment, an inter-image phase difference calculation unit 120) for calculating a phase difference image of a pair of images.
- inter-pixel phase difference calculation unit (inter-pixel phase difference calculation means) 13 in the embodiment, the inter-pixel phase difference calculation unit 130) for calculating the phase difference between adjacent pixels in the phase difference image.
- evaluation function creation unit evaluation function creation means 14 (in the embodiment, realized by the evaluation function creation unit 140) that creates an evaluation function including at least the phase difference between pixels, and the evaluation function are close to each other.
- An optimization unit (optimization means) 15 (in the embodiment, realized by the evaluation function optimization unit 150) that optimizes for each set of pixels to be performed, and a random number generation unit (random number generation means) 21 that generates random numbers. (In the embodiment, it is realized by the random number generation unit 200.)
- the threshold value setting unit (threshold value setting means) 22 (implementation) that sets the threshold value based on the evaluation result of the random number using the evaluation function.
- the evaluation value calculation unit 210 for the threshold value and the threshold value generation unit 220 and the variable in which the evaluation value using the evaluation function is less than the threshold value (in the embodiment, the displacement speed difference).
- the integrated data of the entire image (in the embodiment, displacement velocity v k , elevation). It includes an integration unit (integration means) 17 (in the embodiment, realized by the integration unit 170) for obtaining h k).
- Phase difference calculation means for calculating a phase difference image of a pair of images, and an image-to-image phase difference calculation means.
- Pixel-to-pixel phase difference calculation means for calculating the phase difference between adjacent pixels in a phase difference image
- An evaluation function creation means that creates an evaluation function that includes at least the phase difference between pixels
- An optimization means that optimizes the evaluation function for each set of adjacent pixels
- Random number generation means to generate random numbers
- a threshold value setting means for setting a threshold value based on the evaluation result of the random number using the evaluation function
- An integration means for obtaining integrated data of the entire image by excluding variables whose evaluation value using the evaluation function is less than the threshold value and integrating the values of the variables when the optimization means are optimized. Equipped image analysis device.
- the evaluation function creating means creates an evaluation function in which the difference in displacement speed between adjacent pixels including the difference in shooting time of the pair of images is used as a variable.
- the integration means is the image analysis apparatus of Appendix 1 that integrates the difference in displacement speed to obtain the displacement speed of the pixels of the entire image.
- the evaluation function creating means creates an evaluation function in which the difference in elevation between adjacent pixels including the distance between orbits is used as a variable.
- the integration means is an image analysis apparatus according to Appendix 1 or Appendix 2 that integrates the difference in elevation to obtain the elevation of the pixels of the entire image.
- Appendix 4 From Appendix 1, further provided with a recalculation means for deriving the value of the variable from the integrated data obtained by the integration means and using the derived value of the variable as the initial value when optimizing the evaluation function. Any image analysis device in Appendix 3.
- a second threshold value generating means for generating a second threshold value smaller than the threshold value, and Further provided with a determination means for determining whether or not there is a variable that makes the evaluation value using the evaluation function less than the second threshold value.
- the evaluation function creating means creates an evaluation function in which the difference in the coefficient of thermal expansion between adjacent pixels including the temperature difference is used as a variable.
- the integration means is an image analysis apparatus according to any one of Supplementary note 1 to Supplementary note 5, which integrates the difference in the coefficient of thermal expansion to obtain the coefficient of thermal expansion of the pixels of the entire image.
- Appendix 8 An evaluation function including the shooting time difference of the pair of images and using the difference in displacement speed between adjacent pixels as a variable is created.
- the image analysis method of Appendix 7 for obtaining the displacement speed of the pixels of the entire image by integrating the difference in the displacement speed.
- Appendix 9 Create an evaluation function that includes the distance between orbitals and uses the difference in elevation between adjacent pixels as a variable.
- Appendix 11 To the computer Processing to create an evaluation function that includes the difference in shooting time of the pair of images and uses the difference in displacement speed between adjacent pixels as a variable.
- the image analysis program of Appendix 10 for executing the process of obtaining the displacement speed of the pixels of the entire image by integrating the difference in the displacement speed.
- Appendix 12 To the computer The process of creating an evaluation function that includes the distance between orbits and uses the difference in elevation between adjacent pixels as a variable.
- the image analysis program of Appendix 10 or Appendix 11 for executing the process of obtaining the elevation of the pixels of the entire image by integrating the difference in elevation.
- the image analysis program is applied to a computer.
- the process of optimizing the evaluation function for each set of adjacent pixels, The process of generating random numbers and A process of setting a threshold value based on the evaluation result of the random number using the evaluation function, and A process of excluding variables whose evaluation value using the evaluation function is less than the threshold value and integrating the values of the variables when the evaluation function is optimized to obtain integrated data of the entire image is executed. Recording medium to be made to.
- Appendix 14 The analysis program is applied to a computer. Processing to create an evaluation function that includes the difference in shooting time of the pair of images and uses the difference in displacement speed between adjacent pixels as a variable.
- the recording medium of Appendix 13 for executing the process of integrating the differences in displacement speeds to obtain the displacement speeds of the pixels of the entire image.
- Appendix 15 The analysis program is applied to a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
- Image Analysis (AREA)
Abstract
画像解析装置は、画像のペアの位相差画像を算出する画像間位相差算出部12と、位相差画像における近接する画素間の位相差を算出する画素間位相差算出部13と、少なくとも画素間の位相差を含む評価関数を作成する評価関数作成部14と、評価関数を近接する画素の組毎に最適化する最適化部15と、乱数を生成する乱数生成部21と、評価関数を用いた乱数の評価結果に基づいてしきい値を設定するしきい値設定部22と、評価関数を用いた評価値がしきい値未満になる変数を除外して、最適化部15が最適化したときの変数の値を統合して画像全体の統合データを得る統合部17とを含む。
Description
本発明は、画像解析を行う画像解析装置および画像解析方法に関する。
合成開口レーダ(SAR:Synthetic Aperture Radar)技術は、人工衛星や航空機などの飛翔体が移動しながら電磁波を送受信し、大きな開口を持つアンテナと等価な観測画像が得られる技術である。合成開口レーダは、例えば、地表からの反射波を信号処理して、標高や地表変位を解析するために利用される。SAR技術が用いられる場合、画像解析装置は、合成開口レーダによって得られる時系列のSAR画像(SARデータ)を入力とし、入力されたSAR画像を時系列解析する。
標高や地表変位を解析するための有効な手法として、干渉SAR解析がある。干渉SAR解析では、違う時期に撮影された複数(例えば、2枚)のSAR画像を構成する電波信号の位相差が計算される。そして、撮影時期間で生じた飛翔体と地面間の距離の変化が検出される。
干渉SAR解析を実行する場合、一般に、変位や標高は時間的に線形変化すると仮定される。例えば、ノイズを低減するために複数の(例えば、3枚以上の)SAR画像をスタッキングする手法(Interferometry Stacking )などの多時期SAR解析では、線形な変位が仮定されることが多い。
すると、非線形な変位等が大きいと、正確な解析結果を得ることができないおそれがある。
非線形な変位等に対する耐性が比較的高いSAR解析の手法が特許文献1に記載されている。特許文献1に記載された技術では、近接した画素間での位相差を用いてコヒーレンスが算出される。有効な変位情報を持つ点が抽出され、それらの点の上の位相に基づいて変位速度等が決定される。
非特許文献1には、マルチパス法を用いた干渉SAR解析が記載されている。非特許文献1に記載された干渉SAR解析では、隣接した画素の位相差が算出され、隣接した画素間の変位速度と標高差とが算出される。そして、各々の変位速度が統合される。また、各々の標高差が統合される。具体的には、(1)式の評価関数(位相の線形回帰の評価式)が最適化(この場合には、最大化)される。
(1)式において、Zeは、高さを示す。ΔxlZeは、隣接画素間の標高差を示す。v は、変位速度を示す。Δtk,lは、基線長を示す。基線長は、画像kと画像lとの間の撮影時刻の差に相当する。以下、この差を撮影時刻差という。ΔxlvΔtk,l は、隣接画素間の速度差を示す。Δxlak,lは、位相差に相当する値を示す。βk,l は、垂直基線長に関連する値である。垂直基線長は、画像kと画像lとのそれぞれが撮影された際の軌道間の距離である。以下、この距離を軌道間距離という。なお、S は、(k, l)の組から得られる干渉SAR画像の集合である。
そして、得られた各々の変位速度は、例えば、(2)式の統合式を用いて、画像全体で統合される。統合後の変位速度が収束していない場合には、再度(1)式を用いた最適化が行われる。「収束する」ということは、例えば、再度(1)式を用いた最適化によって得られる変位速度と、再度の最適化の前に得られている変位速度との差が所定以下(一例として、あらかじめ定められているしきい値以下)になることである。
なお、(2)式において、p は、画像の番号に相当する。W(p)は、p番目の干渉SAR画像における重みである。重みは、ノイズ低減に貢献するパラメータである。(2)式は、変位速度に関する統合式であるが、標高差についても同様に統合される。
G. Fornaro, et. al., "Deformation monitoring over large areas with multipass differential SAR interferometry: a new approach based on the use of spatial differences", International Journal of Remote Sensing, Vol. 30, No. 6, 20 March 2009, 1455-1478
非特許文献1に記載された干渉SAR解析によれば、空間的に滑らかであるが時間的に非線形な位相の動きに対してある程度頑健な平均的な線形の変位速度および標高差が求められる。しかし、非特許文献1に記載された干渉SAR解析では、時間的に極端に非線形な位相の動きが含まれる場合には、変位速度や標高差が収束しなかったり、誤った値に収束することがある。
図22は、誤った値に収束する例を示す説明図である。図22(A)に示すように、N枚のSAR画像(具体的には、干渉SAR画像)がある場合を例にする。また、黒点で示される画素とその近傍の画素a~dとのそれぞれの位相差を例にする。図22(B)には、それぞれの位相差の変化が例示されている。画素a~cと黒点で示される画素との位相差はほぼ線形に変化するが、画素dと黒点で示される画素との位相差は、空間的に急激に変動し、非線形の程度が甚だしい。
図22(C)に例示されるように、画素a~cと黒点で示される画素との位相差に基づく変位速度vは同じような値Xに収束するが、画素dと黒点で示される画素との位相差に基づく変位速度vは、値Xとはかけ離れた値Yに収束する。そのような状況下で、画素dと黒点で示される画素との位相差も含めて画像全体で変位速度を統合すると、統合結果に誤りが生ずる。標高についても同様に論じられる。
本発明は、位相差に基づく画素単位の変位速度差や標高差などを統合して画像全体の変位速度や標高などを求める場合に、信頼性が高い統合結果を得ることができる画像解析装置および解析方法を提供することを目的とする。
本発明による画像解析装置は、画像のペアの位相差画像を算出する画像間位相差算出手段と、位相差画像における近接する画素間の位相差を算出する画素間位相差算出手段と、少なくとも画素間の位相差を含む評価関数を作成する評価関数作成手段と、評価関数を画素の組毎または近接する画素の組毎に最適化する最適化手段と、乱数を生成する乱数生成手段と、評価関数を用いた乱数の評価結果に基づいてしきい値を設定するしきい値設定手段と、評価関数を用いた評価値がしきい値未満になる変数を除外して、最適化手段が最適化したときの変数の値を統合して画像全体の統合データを得る統合手段とを含む。
本発明による画像解析方法は、画像のペアの位相差画像を算出し、位相差画像における近接する画素間の位相差を算出し、少なくとも画素間の位相差を含む評価関数を作成し、評価関数を画素の組毎または近接する画素の組毎に最適化し、乱数を生成し、評価関数を用いた乱数の評価結果に基づいてしきい値を設定し、評価関数を用いた評価値がしきい値未満になる変数を除外して、評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る。
本発明による画像解析プログラムは、コンピュータに、画像のペアの位相差画像を算出する処理と、位相差画像における近接する画素間の位相差を算出する処理と、少なくとも画素間の位相差を含む評価関数を作成する処理と、評価関数を画素の組毎または近接する画素の組毎に最適化する処理と、乱数を生成する処理と、評価関数を用いた乱数の評価結果に基づいてしきい値を設定する処理と、評価関数を用いた評価値がしきい値未満になる変数を除外して、評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る処理とを実行させる。
本発明によれば、信頼性が高い統合結果を得ることができる。
以下、本発明の実施形態を図面を参照して説明する。
まず、図1の説明図を参照して、各実施形態の概略的な概念を説明する。
図1(A)に示すように、N枚のSAR画像(具体的には、干渉SAR画像)がある場合を例にする。また、黒点で示される画素とその近傍の画素a~dとのそれぞれの位相差を例にする。図1(B)の上側には、それぞれの位相差の変化が例示されている。画素a~cと黒点で示される画素との位相差はほぼ線形に変化するが、画素dと黒点で示される画素との位相差は、空間的に急激に変動し、非線形の程度が甚だしい。
各実施形態では、所定の乱数が生成され、乱数を位相差として評価関数が最適化(例えば、最大化)される。図1(B)の下側には、乱数を用いた場合の黒点で示される画素との位相差の変化の例が示されている。
図1(C)には、画素a~dの変位速度に関する評価値(評価関数の計算値)と乱数を用いた場合の変位速度に関する評価値とが例示されている。図1(C)の上側に例示されているように、画素dに関する評価値は小さい。また、図1(C)の下側に例示されているように、一般に、乱数を用いた場合の評価値は小さくなる。
よって、各乱数を用いた場合の各評価値を評価指標として、実際の変位速度差(観測された位相差に基づく変位速度差)を用いた場合の評価値が評価指標よりも小さい場合には、その変位速度差を呈する画素のペア(組)は、変位速度の評価対象から除外される。
なお、各実施形態では、例えば、各乱数を用いた場合の各評価値のうちの最大値(平均値でもよい。)に余裕を加味した値をしきい値とする。そして、変位速度差が評価値がしきい値未満である場合に、その変位速度差を呈する画素のペアが除外される。
また、図1には、変位速度を例にしたしきい値に関する考え方が示されているが、標高を例にしても同様の考え方が適用可能である。
実施形態1.
図2は、第1の実施形態の画像解析装置の構成例を示すブロック図である。図2に示す画像解析装置10は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。なお、第1~第8の実施形態において、画像として、干渉SAR画像を例示するが、各実施形態で取り扱うことが可能な画像は、干渉SAR画像に限定されず、SAR画像など他の種類の画像を扱うこともできる。
図2は、第1の実施形態の画像解析装置の構成例を示すブロック図である。図2に示す画像解析装置10は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。なお、第1~第8の実施形態において、画像として、干渉SAR画像を例示するが、各実施形態で取り扱うことが可能な画像は、干渉SAR画像に限定されず、SAR画像など他の種類の画像を扱うこともできる。
SAR画像格納部100には、N(N≧3)枚のSAR画像(具体的には、干渉SAR画像)が格納されている。撮影時刻・軌道記憶部110には、SAR画像の撮影時刻を示す情報(データ)および画像が撮像されたときの飛翔体の軌道を特定可能な情報(データ)が格納されている。
画像間位相差算出部120は、SAR画像のペアの位相差φm,n(m、n≦N)を算出する。SAR画像のペアの位相差(2枚のSAR画像の位相差)は、各々の画像における対応画素の位相差を意味する。なお、画像間位相差算出部120は、N枚のSAR画像における全てのペアの位相差を算出してもよいが、一部のペアについて位相差を算出してもよい。
画素間位相差算出部130は、1枚の位相差画像における画素間の位相差を算出する。例えば、SAR画像mとSAR画像nに対して、近接している画素k,lの位相差としてΔk,lφm,nを算出する。画素間位相差算出部130は、同様に、画像間位相差算出部120が算出した全ての位相差画像に対して、様々な近接した画素のペアの位相差を算出する。
評価関数作成部140は、評価関数を生成する。第1の実施形態では、例えば、(3)式の評価関数を生成する。
(3)式において、「・」は全ての要素を示す。例えば、φ・,・における「・,・」は、全てのペアの位相差を意味する。Wm,nは、SAR画像mとSAR画像nのペアの位相差に対する重みである。tm,nは、撮影時刻差である。bm,nは、軌道間距離である。つまり、(3)式は、撮影時刻差tm,n、軌道間距離bm,n、および位相差Δk,lφm,nを用いた画素k,lの変位速度差Δvk,lおよび標高差Δhk,lに関する評価関数である。
評価関数最適化部150は、評価関数を最大にする変位速度差Δvk,lおよび標高差Δhk,lを各々の画素のペア毎に算出する。
統合部170は、変位速度差Δvk,lを統合して画像全体における変位速度vkを得る。また、統合部170は、標高差Δhk,lを統合して画像全体における標高hkを得る。なお、統合部170は、統合処理で、所定の統合式が最適値に収束するまで、評価関数の計算を繰り返すようにしてもよい。
乱数生成部200は、所定の乱数を生成する。しきい値用評価値算出部210は、生成された乱数を変位速度差および標高差に適用して、(3)式の評価関数を用いて評価値を算出する。また、しきい値生成部220は、評価値に基づいてしきい値を決定する。
次に、図3のフローチャートを参照して、画像解析装置10の動作を説明する。
画像間位相差算出部120は、SAR画像格納部100に格納されているN枚のSAR画像におけるSAR画像のペアの位相差φm,nを算出して位相差画像を得る(ステップS100)。画素間位相差算出部130は、1枚の位相差画像における近接する画素k,lの位相差Δk,lφm,nを算出する(ステップS101)。近接する画素k,lは、画像内の全ての画素の各々について、上下左右に隣りあう画素の組であってもよいし、1つの画素を挟む2つの画素であってもよいし、一の画素に対してある一定の半径のうちに含まれる画素との組であってもよい。また、画素間位相差算出部130は、画像内の一部の画素についてのみ、上述したような組を作成してもよい。画像内の一部の画素についてのみ組を作成する場合には、最終的に一部の画素においてのみ、変位等の情報が得られる。
評価関数作成部140は、撮影時刻差tm,n、軌道間距離bm,n、および位相差Δk,lφm,nを含む評価関数((3)式)を生成する(ステップS102)。
乱数生成部200は、所定の乱数を生成する(ステップS110)。所定の乱数は、一例として、-πからπの間での一様乱数である。
しきい値用評価値算出部210は、(3)式の評価関数において、Δvk,l=0とし、かつ、Δhk,l=0として、生成された乱数を位相差と見なして評価値を算出する(ステップS111)。ただし、詳細には、φm,nに乱数を代入するのではなく、φm,nをが算出される前の位相として乱数を適用する。また、しきい値用評価値算出部210は、例えば、多数の乱数を使用して算出された評価関数の値の平均値に基づく値(例えば、平均値×3)を評価値とする。しきい値用評価値算出部210は、平均値に分散を加味した値を評価値としてもよい。
しきい値生成部220は、評価値に基づいてしきい値を決定する(ステップS112)。しきい値生成部220は、例えば、しきい値用評価値算出部210が算出した評価値そのもの、または評価値に余裕を加味した値をしきい値とする。
評価関数最適化部150は、評価関数((3)式)を最大にする変位速度差Δvk,lおよび標高差Δhk,lを各々の画素のペア毎に算出する(ステップS120)。
統合部170は、評価関数最適化部150が算出した評価関数の値(評価値)のうちにしきい値未満の評価値があるか否か確認する。統合部170は、しきい値未満の評価値がある場合に、その評価値が算出されたときに使用された画素のペアを、統合処理において使用しないことに決定する(ステップS122)。
そして、統合部170は、統合処理を実行する(ステップS123)。統合処理は、変位速度差Δvk,lを統合して画像全体における変位速度vkを得るとともに、統合部170は、標高差Δhk,lを統合して画像全体における標高hkを得る処理である。なお、上述したように、統合部170は、統合処理において、しきい値未満の評価値が算出されたときに使用された画素のペアを使用しない。
以上に説明したように、第1の実施形態では、しきい値生成部220が乱数および評価関数を用いて評価値を算出し、算出された評価値に基づいてしきい値を決定し、統合部170は、しきい値未満の評価値が算出されたときに使用された画素のペアを除外して統合処理を実行する。しきい値は、空間的に急激に変動し非線形の程度が甚だしい変位速度差に対応する評価値と同程度の値である。よって、しきい値未満の評価値が算出されたときに使用された画素のペアを除外して統合処理が実行されることによって、信頼性が高い統合結果を得ることができる。
実施形態2.
図4は、第2の実施形態の画像解析装置の構成例を示すブロック図である。図4に示す画像解析装置20は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
図4は、第2の実施形態の画像解析装置の構成例を示すブロック図である。図4に示す画像解析装置20は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
重み決定部160以外の構成要素は、第1の実施形態における構成要素と同じである。ただし、統合部170は、第1の実施形態における処理とは異なる処理を実行する。重み決定部160は、重みWvk,l,Whk,lを算出する。
次に、図5のフローチャートを参照して、画像解析装置20の動作を説明する。ステップS100~S120の処理は、第1の実施形態における処理(図3参照)と同じである。
第2の実施形態では、重み決定部160は、重みWvk,l,Whk,lを算出する(ステップS121)。重み決定部160は、重みを算出するときに、2階微分などを使用する。重み決定部160は、例えば、2階微分に比例する重みを評価値(評価関数の計算値)に与えるようにする。
また、重み決定部160は、しきい値未満の評価値がある場合に、その評価値が算出されたときに使用された画素のペアに対応する重みWvk,l,Whk,lを0にする(ステップS124)。
統合部170は、統合処理で、変位速度差Δvk,lを統合して画像全体における変位速度vkを得る。また、統合部170は、統合処理で、標高差Δhk,lを統合して画像全体における標高hkを得る。
すなわち、統合部170は、統合処理において、例えば、(4)式、ステップS120の処理で得られた変位速度差Δvk,lおよび標高差Δhk,lを用いて、変位速度vkおよび標高hkを算出する。算出された変位速度および標高が収束していない場合には、収束するまで、(4)式が、他の画素に対して繰り返し適用される(ステップS125)。
vkおよびhkに関する(4)式が収束したと判定されると、図5に示された処理が終了する。
以上に説明したように、第2の実施形態でも、しきい値生成部220が乱数および評価関数を用いて評価値を算出し、算出された評価値に基づいてしきい値を決定し、統合部170は、しきい値未満の評価値が算出されたときに使用された画素のペアを除外して統合処理を実行する。しきい値は、空間的に急激に変動し非線形の程度が甚だしい変位速度差に対応する評価値と同程度の値である。よって、しきい値未満の評価値が算出されたときに使用された画素のペアを除外して統合処理が実行されることによって、信頼性が高い統合結果を得ることができる。
また、第2の実施形態では、統合処理で重みWvk,l,Whk,lが反映されるので、統合処理において収束が達成されやすくなる。
実施形態3.
図6は、第3の実施形態の画像解析装置の構成例を示すブロック図である。図6に示す画像解析装置30は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、変位・標高評価関数作成部180、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
図6は、第3の実施形態の画像解析装置の構成例を示すブロック図である。図6に示す画像解析装置30は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、変位・標高評価関数作成部180、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
変位・標高評価関数作成部180以外の構成要素は、図2に示された第1の実施形態における構成要素と同じである。ただし、統合部170は、第1の実施形態における処理、および追加された処理を実行する。
第3の実施形態では、近接する画素の変位速度の差や標高の差がどの程度であるべきかを表す事前情報を考慮して統合処理が実行される。変位・標高評価関数作成部180は、隣接する画素の変位速度の差や標高の差が似通っている程度を評価するための条件式(評価関数)を作成する。変位・標高評価関数作成部180は、例えば、(5)式の条件式を生成する。
(5)式において、αvは、隣接する画素における変位速度vkがどの程度似通っているかを表す値である。αhは、隣接する画素における高さ(標高)がどの程度似通っているかを表す値である。βvは、変位速度vkがどれくらい0に近い値であるべきかを表す値である。βhは、標高hkがどれくらい0に近い値であるべきかを表す値である。
次に、図7のフローチャートを参照して、画像解析装置30の動作を説明する。ステップS100~S122の処理は、第1の実施形態における処理(図3参照)と同じである。なお、第3の実施形態では、ステップS120の処理において、評価関数最適化部150は、評価関数作成部140が作成した評価関数((3)式)を最適化してもよいが、評価関数作成部140が作成した評価関数から変位・標高評価関数作成部180が作成した式((5)式)を減算したものに対して最適化を行ってもよい。
第3の実施形態では、統合部170は、変位・標高評価関数作成部180が生成した条件式((5)式)の値を小さくしながら、第1の実施形態の場合と同様に統合処理を実行する(ステップS123A)。
第3の実施形態では、変位・標高評価関数作成部180が、隣接する画素の変位速度の差や標高の差が似通っている程度を評価するための条件式を生成し、統合部170が、統合処理で条件式を使用するので、統合処理で最適な変位速度vkや標高hkが得られ難い(例えば、計算値が0になってしまったり収束しずらい。)場合でも、実質的に画素kと画素lとの間の仮想的な画素に関する変位速度や標高が利用されるようになって、収束した変位速度vkや標高hkが得られやすくなる。
実施形態4.
図8は、第4の実施形態の画像解析装置の構成例を示すブロック図である。図8に示す画像解析装置40は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、変位・標高評価関数作成部180、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
図8は、第4の実施形態の画像解析装置の構成例を示すブロック図である。図8に示す画像解析装置40は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、変位・標高評価関数作成部180、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
変位・標高評価関数作成部180以外の構成要素は、図4に示された第2の実施形態における構成要素と同じである。ただし、統合部170は、第2の実施形態における処理、および追加された処理を実行する。また、変位・標高評価関数作成部180は、第3の実施形態における変位・標高評価関数作成部180と同じ処理を実行する。すなわち、変位・標高評価関数作成部180は、(5)式の条件式を作成する。
次に、図9のフローチャートを参照して、画像解析装置20の動作を説明する。ステップS100~S124の処理は、第2の実施形態における処理(図5参照)と同じである。
統合部170は、統合処理で、変位速度差Δvk,lを統合して画像全体における変位速度vkを得る。また、統合部170は、統合処理で、標高差Δhk,lを統合して画像全体における標高hkを得る。
第4の実施形態では、統合部170は、(6)式、ステップS120の処理で得られた変位速度差Δvk,lおよび標高差Δhk,lを用いて、変位速度vkおよび標高hkを算出する。算出された変位速度および標高が収束していない場合には、収束するまで、(6)式が、他の画素に対して繰り返し適用される(ステップS125A)。
vkおよびhkに関する(6)式が収束したと判定されると、図9に示された処理が終了する。
(6)式には、α(αv,αh)およびβ(βv,βh)が含まれるので、第4の実施形態では、第3の実施形態の効果と同様の効果が得られる。
実施形態5.
実施形態5.
評価関数を用いた最適化を実行するときに、局所解に陥ってしまうことがある。図10は、局所解に陥ることの改善等を説明するための説明図である。図10(A)に示すように、ある条件の初期値が与えられると、最適解ではない評価値が最適化の結果として得られることがある。第5の実施形態および第6の実施形態では、統合された画素k,lの変位速度差Δvk,lが再計算される。その結果、例えば、図10(B)における点eが変位速度差Δvk,lとして得られたとする。図10(C)に示すように、点eの変位速度差Δvk,lを初期値として再度評価関数を用いた最適化を実行されると、最適解である評価値が得られる可能性が高まる。
なお、図10では、変位速度差Δvk,lが例示されたが、標高差Δhk,lについても、同様の考え方が適用される。
図11は、第5の実施形態の画像解析装置の構成例を示すブロック図である。図11に示す画像解析装置50は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、再計算部190、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
再計算部190以外の構成要素は、図2に示された第1の実施形態における構成要素と同じである。ただし、統合部170は、第1の実施形態における処理、および追加された処理を実行する。
再計算部190は、統合部170が算出した変位速度vkおよび標高hkから画素k,lの変位速度差Δvk,lおよび標高差Δhk,lを再計算する。
次に、図12のフローチャートを参照して、画像解析装置50の動作を説明する。ステップS100~S123の処理は、第1の実施形態における処理(図3参照)と同じである。
統合部170は、ステップS123の処理を実行した後、終了条件が満たされたか否か確認する(ステップS130)。
終了条件は、例えば、統合部170に入力される最適化処理の結果(変位速度差Δvk,lおよび標高差Δhk,l)を使用した条件である。一例として、統合部170は、評価関数最適化部150からの変位速度差Δvk,lおよび標高差Δhk,lが評価関数最適化部150から前回入力された変位速度差Δvk,lおよび標高差Δhk,lから変化していない場合に、終了条件が満たされたと判定する。
なお、統合部170は、評価関数最適化部150からの変位速度差Δvk,lおよび標高差Δhk,lが評価関数最適化部150から前回入力された変位速度差Δvk,lおよび標高差Δhk,lから変化していない状態があらかじめ定められている複数回継続したら、終了条件が満たされたと判定してもよい。
終了条件が満たされていない場合には、再計算部190は、統合部170が算出した変位速度vkおよび標高hkから画素k,lの変位速度差Δvk,lおよび標高差Δhk,lを再計算する(ステップS131)。すなわち、再計算部190は、例えば隣接する2画素の変位速度vkの差分および標高hkの差分を求めて、変位速度差Δvk,lおよび標高差Δhk,lを得る。再計算部190は、算出した変位速度差Δvk,lおよび標高差Δhk,lを評価関数最適化部150に初期値として与える(ステップS132)。評価関数最適化部150は、再び、ステップS120の処理を実行する。
第5の実施形態では、最適解である評価値が得られる可能性が高められ、信頼性がより高い統合結果を得ることができる。
実施形態6.
図13は、第6の実施形態の画像解析装置の構成例を示すブロック図である。図13に示す画像解析装置60は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、再計算部190、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
図13は、第6の実施形態の画像解析装置の構成例を示すブロック図である。図13に示す画像解析装置60は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、再計算部190、乱数生成部200、しきい値用評価値算出部210、およびしきい値生成部220を含む。
再計算部190以外の構成要素は、図4に示された第2の実施形態における構成要素と同じである。ただし、統合部170は、第2の実施形態における処理、および追加された処理を実行する。再計算部190は、第5の実施形態における処理と同様の処理を行う。
次に、図14のフローチャートを参照して、画像解析装置60の動作を説明する。ステップS100~S125の処理は、第2の実施形態における処理(図5参照)と同じである。ステップS130~S132の処理は、第5の実施形態における処理(図12参照)と同じである。
第6の実施形態では、第5の実施形態の場合と同様、最適解である評価値が得られる可能性が高められ、信頼性がより高い統合結果を得ることができる。
実施形態7.
評価関数を用いた最適化の処理は、計算量が多い処理である。第7の実施形態および第8の実施形態では、計算量を削減するための機構が追加される。図15は、計算量を削減するための機構を説明するための説明図である。図15(A)に示すように、緩いしきい値が使用される。緩いしきい値は、厳しいしきい値よりも小さいな値である。なお、緩いしきい値は、例えば、乱数と(3)式の評価関数とを用いて算出された評価値に基づいて決定される。一例として、しきい値生成部220が乱数を用いて算出した評価関数の値の平均値×3をしきい値とした場合に、緩いしきい値は、平均値×2に決定される。
評価関数を用いた最適化の処理は、計算量が多い処理である。第7の実施形態および第8の実施形態では、計算量を削減するための機構が追加される。図15は、計算量を削減するための機構を説明するための説明図である。図15(A)に示すように、緩いしきい値が使用される。緩いしきい値は、厳しいしきい値よりも小さいな値である。なお、緩いしきい値は、例えば、乱数と(3)式の評価関数とを用いて算出された評価値に基づいて決定される。一例として、しきい値生成部220が乱数を用いて算出した評価関数の値の平均値×3をしきい値とした場合に、緩いしきい値は、平均値×2に決定される。
図15(A)に示すように、ある初期値を用いて実際に評価関数(例えば、(3)式の評価関数)を用いて算出された評価値が緩いしきい値未満である場合には、その初期値を用いた最適化の処理は最適値を出力しない可能性があると考えられる。なお、算出された評価値が厳しいしきい値以上である場合には、その初期値を用いた最適化の処理は最適値を出力する可能性が高い。
図10を参照すると、統合された変位速度vkから再計算された変位速度差Δvk,lを初期値として再度最適化の処理(評価関数の再計算)が実行されることは好ましい。しかし、緩いしきい値未満の評価値に対応する変位速度差Δvk,lを初期値として再度最適化の処理再度最適化の処理が行われても、より最適値に近い値を得ることはできない。そこで、緩いしきい値未満の評価値に対応する変位速度差Δvk,lに基づく最適化の処理は実行されない方がよいといえる。なお、最適化の処理が実行されない場合には、緩いしきい値未満の評価値に対応する変位速度差Δvk,lが統合結果に反映されることはない。
図16は、第7の実施形態の画像解析装置の構成例を示すブロック図である。図16に示す画像解析装置70は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、再計算部190、乱数生成部200、しきい値用評価値算出部210、しきい値生成部220、および第2のしきい値生成部221を含む。
第2のしきい値生成部221以外の構成要素は、図11に示された第5の実施形態における構成要素と同じである。ただし、評価関数最適化部150は、第5の実施形態における処理、および追加された処理を実行する。
次に、図17のフローチャートを参照して、画像解析装置70の動作を説明する。ステップS100~S132の処理は、第5の実施形態における処理(図12参照)と同じである。
第7の実施形態では、第2のしきい値生成部221は、上述した緩いしきい値を生成する。なお、しきい値生成部220が生成するしきい値は上述した厳しいしきい値に相当する。
評価関数最適化部150は、評価関数を生成した後、得られた評価値が緩いしきい値以上であるか否か確認する(ステップS133)。評価値が緩いしきい値以上である場合には、ステップS120以降の処理が実行される。すなわち、最適化の処理(ステップS120)以降の処理が実行される。
得られた評価値が緩いしきい値未満である場合には、ステップS120の処理は実行されない。すなわち、最適化の処理がスキップされる。
第7の実施形態では、評価関数を最適化(本実施形態では、最大化)する計算を行っても最適値(本実施形態では、最大値)が得られない可能性が高い場合には最適化の処理が実行されないので、計算量が削減される。
実施形態8.
図18は、第8の実施形態の画像解析装置の構成例を示すブロック図である。図18に示す画像解析装置80は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、再計算部190、乱数生成部200、しきい値用評価値算出部210、しきい値生成部220、および第2のしきい値生成部221を含む。
図18は、第8の実施形態の画像解析装置の構成例を示すブロック図である。図18に示す画像解析装置80は、SAR画像格納部100、撮影時刻・軌道記憶部110、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、重み決定部160、統合部170、再計算部190、乱数生成部200、しきい値用評価値算出部210、しきい値生成部220、および第2のしきい値生成部221を含む。
第2のしきい値生成部221以外の構成要素は、図13に示された第6の実施形態における構成要素と同じである。ただし、評価関数最適化部150は、第6の実施形態における処理、および追加された処理を実行する。
次に、図19のフローチャートを参照して、画像解析装置80の動作を説明する。ステップS100~S132の処理は、第6の実施形態における処理(図14参照)と同じである。
第8の実施形態では、第2のしきい値生成部221は、緩いしきい値を生成する。評価関数最適化部150は、評価関数を生成した後、得られた評価値が緩いしきい値以上であるか否か確認する(ステップS133)。評価値が緩いしきい値以上である場合には、ステップS120以降の処理が実行される。すなわち、最適化の処理(ステップS120)移行の処理が実行される。
得られた評価値が緩いしきい値未満である場合には、ステップS120の処理は実行されない。すなわち、最適化の処理がスキップされる。
第8の実施形態では、第7の実施形態の場合と同様に、最適化の処理に関する計算量が削減される。
なお、上記の各実施形態では、変位速度vkと標高hkとの双方を扱う画像解析装置が示された。しかし、画像解析装置は、変位速度vkのみを扱ってもよいし、標高hkのみを扱ってもよい。
画像解析装置が変位速度vkのみを扱う場合には、例えば、(1)式として例示された評価関数において標高差に関する項が削除された評価関数が用いられる。また、(3)式として例示された評価関数においてbm、nΔhk,lが削除された形式の評価関数が用いられる。
画像解析装置が標高hkのみを扱う場合には、例えば、(1)式として例示された評価関数において変位に関する項が削除された評価関数が用いられる。また、(3)式として例示された評価関数においてtm、nΔvk,lが削除された形式の評価関数が用いられる。
また、上記の各実施形態では、解析対象は変位差(変位速度差)および標高差であったが、他の要素を解析対象とすることもできる。一例として、合成開口レーダの観測対象の熱膨張率を解析することができる。
熱膨張率を解析するときに、上記の(1)式や(3)式の評価関数を使用する場合には、撮影時刻差tm,nに代えて、異なる観測時点の気温差(ペアを構成する各画像が撮影されたときの気温差)が使用される。また、変位速度差Δvk,lに代えて、近接する画素間の熱膨張率の差が使用される。例えば(1)式や(3)式の評価関数を使用することによって、熱膨張率を得ることができる。
なお、熱膨張率を解析する機能と、上記の各実施形態の解析装置の機能とが組み合わされた装置を作成することもできる。
上記の各実施形態の画像解析装置および画像解析方法は、地表や地上の構造物の一般的な変位の解析だけでなく、地下工事に基づく変位の解析や埋立地の地盤沈下解析などにも好適に適用可能である。
上記の実施形態における各機能(各処理)を、CPU(Central Processing Unit )等のプロセッサやメモリ等を有するコンピュータで実現可能である。例えば、記憶装置(記憶媒体)に上記の実施形態における方法(処理)を実施するためのプログラムを格納し、各機能を、記憶装置に格納されたプログラムをCPUで実行することによって実現してもよい。
図20は、CPUを有するコンピュータの一例を示すブロック図である。コンピュータは、画像解析装置に実装される。CPU1000は、記憶装置1001に格納された画像解析プログラム(ソフトウェア要素:コード)に従って処理を実行することによって、上記の実施形態における各機能を実現する。すなわち、図2,図4,図6,図8,図11,図13,図16,図18に示された画像解析装置における、画像間位相差算出部120、画素間位相差算出部130、評価関数作成部140、評価関数最適化部150、統合部170、変位・標高評価関数作成部180、再計算部190,乱数生成部200、しきい値用評価値算出部210、しきい値生成部220、および第2のしきい値生成部221の機能を実現する。
記憶装置1001は、例えば、非一時的なコンピュータ可読媒体(non-transitory computer readable medium )である。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium )を含む。非一時的なコンピュータ可読媒体の具体例として、磁気記録媒体(例えば、ハードディスク)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Compact Disc-Read Only Memory )、CD-R(Compact Disc-Recordable )、CD-R/W(Compact Disc-ReWritable )、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM )、フラッシュROM)がある。また、記憶装置1001は、SAR画像格納部100および撮影時刻・軌道記憶部110としても使用可能である。
また、画像解析プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium )に格納されてもよい。一時的なコンピュータ可読媒体には、例えば、有線通信路または無線通信路を介して、すなわち、電気信号、光信号または電磁波を介して、プログラムが供給される。
メモリ1002は、例えばRAM(Random Access Memory)で実現され、CPU1000が処理を実行するときに一時的にデータを格納する記憶手段である。メモリ1002に、記憶装置1001または一時的なコンピュータ可読媒体が保持するプログラムが転送され、CPU1000がメモリ1002内のプログラムに基づいて処理を実行するような形態も想定しうる。
図21は、画像解析装置の主要部を示すブロック図である。図21に示す画像解析装置1は、画像のペアの位相差画像を算出する画像間位相差算出部(画像間位相差算出手段)12(実施形態では、画像間位相差算出部120で実現される。)と、位相差画像における近接する画素間の位相差を算出する画素間位相差算出部(画素間位相差算出手段)13(実施形態では、画素間位相差算出部130で実現される。)と、少なくとも画素間の位相差を含む評価関数を作成する評価関数作成部(評価関数作成手段)14(実施形態では、評価関数作成部140で実現される。)と、評価関数を近接する画素の組毎に最適化する最適化部(最適化手段)15(実施形態では、評価関数最適化部150で実現される。)と、乱数を生成する乱数生成部(乱数生成手段)21(実施形態では、乱数生成部200で実現される。)と、評価関数を用いた乱数の評価結果に基づいてしきい値を設定するしきい値設定部(しきい値設定手段)22(実施形態では、しきい値用評価値算出部210およびしきい値生成部220で実現される。)と、評価関数を用いた評価値がしきい値未満になる変数(実施形態では、変位速度差Δvk,l、標高差Δhk,l)を除外して、最適化部15が最適化したときの変数の値を統合して画像全体の統合データ(実施形態では、変位速度vk、標高hk)を得る統合部(統合手段)17(実施形態では、統合部170で実現される。)とを備えている。
上記の実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下に限定されるわけではない。
(付記1)画像のペアの位相差画像を算出する画像間位相差算出手段と、
位相差画像における近接する画素間の位相差を算出する画素間位相差算出手段と、
少なくとも画素間の位相差を含む評価関数を作成する評価関数作成手段と、
前記評価関数を近接する画素の組毎に最適化する最適化手段と、
乱数を生成する乱数生成手段と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定するしきい値設定手段と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記最適化手段が最適化したときの変数の値を統合して画像全体の統合データを得る統合手段と
を備えた画像解析装置。
位相差画像における近接する画素間の位相差を算出する画素間位相差算出手段と、
少なくとも画素間の位相差を含む評価関数を作成する評価関数作成手段と、
前記評価関数を近接する画素の組毎に最適化する最適化手段と、
乱数を生成する乱数生成手段と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定するしきい値設定手段と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記最適化手段が最適化したときの変数の値を統合して画像全体の統合データを得る統合手段と
を備えた画像解析装置。
(付記2)前記評価関数作成手段は、前記画像のペアの撮影時刻差を含み近接する画素間の変位速度の差を変数とする評価関数を作成し、
前記統合手段は、前記変位速度の差を統合して画像全体の画素の変位速度を得る
付記1の画像解析装置。
前記統合手段は、前記変位速度の差を統合して画像全体の画素の変位速度を得る
付記1の画像解析装置。
(付記3)前記評価関数作成手段は、軌道間距離を含み近接する画素間の標高の差を変数とする評価関数を作成し、
前記統合手段は、前記標高の差を統合して画像全体の画素の標高を得る
付記1または付記2の画像解析装置。
前記統合手段は、前記標高の差を統合して画像全体の画素の標高を得る
付記1または付記2の画像解析装置。
(付記4)前記統合手段が得た統合データから変数の値を導出し、導出した変数の値を、前記評価関数を最適化するときの初期値とする再計算手段をさらに備えた
付記1から付記3のうちのいずれの画像解析装置。
付記1から付記3のうちのいずれの画像解析装置。
(付記5)前記しきい値よりも小さい第2のしきい値を生成する第2のしきい値生成手段と、
前記評価関数を用いた評価値を前記第2のしきい値未満にする変数があるか否か判定する判定手段とをさらに備え、
前記最適化手段は、前記判定手段が当該変数があると判定したときには、最適化する処理を実行しない
付記4の画像解析装置。
前記評価関数を用いた評価値を前記第2のしきい値未満にする変数があるか否か判定する判定手段とをさらに備え、
前記最適化手段は、前記判定手段が当該変数があると判定したときには、最適化する処理を実行しない
付記4の画像解析装置。
(付記6)前記評価関数作成手段は、気温差を含み近接する画素間の熱膨張率の差を変数とする評価関数を作成し、
前記統合手段は、前記熱膨張率の差を統合して画像全体の画素の熱膨張率を得る
付記1から付記5のうちのいずれの画像解析装置。
前記統合手段は、前記熱膨張率の差を統合して画像全体の画素の熱膨張率を得る
付記1から付記5のうちのいずれの画像解析装置。
(付記7)画像のペアの位相差画像を算出し、
位相差画像における近接する画素間の位相差を算出し、
少なくとも画素間の位相差を含む評価関数を作成し、
前記評価関数を近接する画素の組毎に最適化し、
乱数を生成し、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定し、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る
画像解析方法。
位相差画像における近接する画素間の位相差を算出し、
少なくとも画素間の位相差を含む評価関数を作成し、
前記評価関数を近接する画素の組毎に最適化し、
乱数を生成し、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定し、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る
画像解析方法。
(付記8)前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成し、
前記変位速度の差を統合して画像全体の画素の変位速度を得る
付記7の画像解析方法。
前記変位速度の差を統合して画像全体の画素の変位速度を得る
付記7の画像解析方法。
(付記9)軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成し、
前記標高の差を統合して画像全体の画素の標高を得る
付記7または付記8の画像解析方法。
前記標高の差を統合して画像全体の画素の標高を得る
付記7または付記8の画像解析方法。
(付記10)コンピュータに、
画像のペアの位相差画像を算出する処理と、
位相差画像における近接する画素間の位相差を算出する処理と、
少なくとも画素間の位相差を含む評価関数を作成する処理と、
前記評価関数を近接する画素の組毎に最適化する処理と、
乱数を生成する処理と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定する処理と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る処理と
を実行させるための画像解析プログラム。
画像のペアの位相差画像を算出する処理と、
位相差画像における近接する画素間の位相差を算出する処理と、
少なくとも画素間の位相差を含む評価関数を作成する処理と、
前記評価関数を近接する画素の組毎に最適化する処理と、
乱数を生成する処理と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定する処理と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る処理と
を実行させるための画像解析プログラム。
(付記11)コンピュータに、
前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成する処理と、
前記変位速度の差を統合して画像全体の画素の変位速度を得る処理と
を実行させる付記10の画像解析プログラム。
前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成する処理と、
前記変位速度の差を統合して画像全体の画素の変位速度を得る処理と
を実行させる付記10の画像解析プログラム。
(付記12)コンピュータに、
軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成する処理と、
前記標高の差を統合して画像全体の画素の標高を得る処理と
を実行させる付記10または付記11の画像解析プログラム。
軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成する処理と、
前記標高の差を統合して画像全体の画素の標高を得る処理と
を実行させる付記10または付記11の画像解析プログラム。
(付記13)画像解析プログラムが格納されたコンピュータ読み取り可能な記録媒体であって、
前記画像解析プログラムは、コンピュータに、
画像のペアの位相差画像を算出する処理と、
位相差画像における近接する画素間の位相差を算出する処理と、
少なくとも画素間の位相差を含む評価関数を作成する処理と、
前記評価関数を近接する画素の組毎に最適化する処理と、
乱数を生成する処理と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定する処理と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る処理と
を実行させる記録媒体。
前記画像解析プログラムは、コンピュータに、
画像のペアの位相差画像を算出する処理と、
位相差画像における近接する画素間の位相差を算出する処理と、
少なくとも画素間の位相差を含む評価関数を作成する処理と、
前記評価関数を近接する画素の組毎に最適化する処理と、
乱数を生成する処理と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定する処理と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る処理と
を実行させる記録媒体。
(付記14)前記解析プログラムは、コンピュータに、
前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成する処理と、
前記変位速度の差を統合して画像全体の画素の変位速度を得る処理と
を実行させる付記13の記録媒体。
前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成する処理と、
前記変位速度の差を統合して画像全体の画素の変位速度を得る処理と
を実行させる付記13の記録媒体。
(付記15)前記解析プログラムは、コンピュータに、
軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成する処理と、
前記標高の差を統合して画像全体の画素の標高を得る処理と
を実行させる付記13または付記14の記録媒体。
軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成する処理と、
前記標高の差を統合して画像全体の画素の標高を得る処理と
を実行させる付記13または付記14の記録媒体。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1 画像解析装置
12 画像間位相差算出部
13 画素間位相差算出部
14 評価関数作成部
15 最適化部
17 統合部
21 乱数生成部
22 しきい値設定部
10,20,30,40,50,60,70,80 画像解析装置
100 SAR画像格納部
110 撮影時刻・軌道記憶部
120 画像間位相差算出部
130 画素間位相差算出部
140 評価関数作成部
150 評価関数最適化部
160 重み決定部
170 統合部
180 変位・標高評価関数作成部
190 再計算部
200 乱数生成部
210 しきい値用評価値算出部
220 しきい値生成部
221 第2のしきい値生成部
1000 CPU
1001 記憶装置
1002 メモリ
12 画像間位相差算出部
13 画素間位相差算出部
14 評価関数作成部
15 最適化部
17 統合部
21 乱数生成部
22 しきい値設定部
10,20,30,40,50,60,70,80 画像解析装置
100 SAR画像格納部
110 撮影時刻・軌道記憶部
120 画像間位相差算出部
130 画素間位相差算出部
140 評価関数作成部
150 評価関数最適化部
160 重み決定部
170 統合部
180 変位・標高評価関数作成部
190 再計算部
200 乱数生成部
210 しきい値用評価値算出部
220 しきい値生成部
221 第2のしきい値生成部
1000 CPU
1001 記憶装置
1002 メモリ
Claims (12)
- 画像のペアの位相差画像を算出する画像間位相差算出手段と、
前記位相差画像における近接する画素間の位相差を算出する画素間位相差算出手段と、
少なくとも画素間の位相差を含む評価関数を作成する評価関数作成手段と、
前記評価関数を画素の組毎または近接する画素の組毎に最適化する最適化手段と、
乱数を生成する乱数生成手段と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定するしきい値設定手段と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記最適化手段が最適化したときの変数の値を統合して画像全体の統合データを得る統合手段と
を備えた画像解析装置。 - 前記評価関数作成手段は、前記画像のペアの撮影時刻差を含み近接する画素間の変位速度の差を変数とする評価関数を作成し、
前記統合手段は、前記変位速度の差を統合して画像全体の画素の変位速度を得る
請求項1記載の画像解析装置。 - 前記評価関数作成手段は、軌道間距離を含み近接する画素間の標高の差を変数とする評価関数を作成し、
前記統合手段は、前記標高の差を統合して画像全体の画素の標高を得る
請求項1または請求項2記載の画像解析装置。 - 前記統合手段が得た統合データから変数の値を導出し、導出した変数の値を、前記評価関数を最適化するときの初期値とする再計算手段をさらに備えた
請求項1から請求項3のうちのいずれか1項に記載の画像解析装置。 - 前記しきい値よりも小さい第2のしきい値を生成する第2のしきい値生成手段と、
前記評価関数を用いた評価値を前記第2のしきい値未満にする変数があるか否か判定する判定手段とをさらに備え、
前記最適化手段は、前記判定手段が当該変数があると判定したときには、最適化する処理を実行しない
請求項4記載の画像解析装置。 - 前記評価関数作成手段は、気温差を含み近接する画素間の熱膨張率の差を変数とする評価関数を作成し、
前記統合手段は、前記熱膨張率の差を統合して画像全体の画素の熱膨張率を得る
請求項1から請求項5のうちのいずれか1項に記載の画像解析装置。 - 画像のペアの位相差画像を算出し、
前記位相差画像における近接する画素間の位相差を算出し、
少なくとも画素間の位相差を含む評価関数を作成し、
前記評価関数を画素の組毎または近接する画素の組毎に最適化し、
乱数を生成し、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定し、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る
画像解析方法。 - 前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成し、
前記変位速度の差を統合して画像全体の画素の変位速度を得る
請求項7記載の画像解析方法。 - 軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成し、
前記標高の差を統合して画像全体の画素の標高を得る
請求項7または請求項8記載の画像解析方法。 - 画像解析プログラムが格納されたコンピュータ読み取り可能な記録媒体であって、
前記画像解析プログラムは、コンピュータに、
画像のペアの位相差画像を算出する処理と、
前記位相差画像における近接する画素間の位相差を算出する処理と、
少なくとも画素間の位相差を含む評価関数を作成する処理と、
前記評価関数を画素の組毎または近接する画素の組毎に最適化する処理と、
乱数を生成する処理と、
前記評価関数を用いた前記乱数の評価結果に基づいてしきい値を設定する処理と、
前記評価関数を用いた評価値が前記しきい値未満になる変数を除外して、前記評価関数が最適化されたときの変数の値を統合して画像全体の統合データを得る処理と
を実行させる記録媒体。 - 前記解析プログラムは、コンピュータに、
前記画像のペアの撮影時刻差を含み、近接する画素間の変位速度の差を変数とする評価関数を作成する処理と、
前記変位速度の差を統合して画像全体の画素の変位速度を得る処理と
を実行させる請求項10記載の記録媒体。 - 前記解析プログラムは、コンピュータに、
軌道間距離を含み、近接する画素間の標高の差を変数とする評価関数を作成する処理と、
前記標高の差を統合して画像全体の画素の標高を得る処理と
を実行させる請求項10または請求項11記載の記録媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022509833A JP7338786B2 (ja) | 2020-03-24 | 2020-03-24 | 画像解析装置および画像解析方法 |
PCT/JP2020/013032 WO2021192038A1 (ja) | 2020-03-24 | 2020-03-24 | 画像解析装置および画像解析方法 |
US17/912,165 US20230133736A1 (en) | 2020-03-24 | 2020-03-24 | Image analyzing device and image analyzing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/013032 WO2021192038A1 (ja) | 2020-03-24 | 2020-03-24 | 画像解析装置および画像解析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192038A1 true WO2021192038A1 (ja) | 2021-09-30 |
Family
ID=77891242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013032 WO2021192038A1 (ja) | 2020-03-24 | 2020-03-24 | 画像解析装置および画像解析方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230133736A1 (ja) |
JP (1) | JP7338786B2 (ja) |
WO (1) | WO2021192038A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024004216A1 (ja) * | 2022-07-01 | 2024-01-04 | 株式会社Synspective | 地盤変動解析装置および地盤変動解析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500658A (ja) * | 1999-05-25 | 2003-01-07 | ポリテクニコ ディ ミラノ | 市街地領域及び地滑り地帯の運動に関するレーダー測定のための手順 |
JP2009162726A (ja) * | 2008-01-10 | 2009-07-23 | Mitsubishi Electric Corp | レーダ画像処理装置 |
JP2012533051A (ja) * | 2009-07-08 | 2012-12-20 | テレ−リレヴァメント エウローパ−ティ.エルレ.エ. エッセ.エルレ.エルレ. | 同一領域上で取得されたsar画像から得られるインターフェログラムのフィルタリング処理方法 |
US20160033639A1 (en) * | 2014-08-04 | 2016-02-04 | University Of Seoul Industry Cooperation Foundation | Method and apparatus for stacking multi-temporal mai interferograms |
CN109886910A (zh) * | 2019-02-25 | 2019-06-14 | 榆林市国土资源局 | 外部数字高程模型dem修正方法及装置 |
-
2020
- 2020-03-24 WO PCT/JP2020/013032 patent/WO2021192038A1/ja active Application Filing
- 2020-03-24 JP JP2022509833A patent/JP7338786B2/ja active Active
- 2020-03-24 US US17/912,165 patent/US20230133736A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003500658A (ja) * | 1999-05-25 | 2003-01-07 | ポリテクニコ ディ ミラノ | 市街地領域及び地滑り地帯の運動に関するレーダー測定のための手順 |
JP2009162726A (ja) * | 2008-01-10 | 2009-07-23 | Mitsubishi Electric Corp | レーダ画像処理装置 |
JP2012533051A (ja) * | 2009-07-08 | 2012-12-20 | テレ−リレヴァメント エウローパ−ティ.エルレ.エ. エッセ.エルレ.エルレ. | 同一領域上で取得されたsar画像から得られるインターフェログラムのフィルタリング処理方法 |
US20160033639A1 (en) * | 2014-08-04 | 2016-02-04 | University Of Seoul Industry Cooperation Foundation | Method and apparatus for stacking multi-temporal mai interferograms |
CN109886910A (zh) * | 2019-02-25 | 2019-06-14 | 榆林市国土资源局 | 外部数字高程模型dem修正方法及装置 |
Non-Patent Citations (2)
Title |
---|
NAKAMURA, SHOHEI ET AL.: "Coherence Estimation for SAR Images Using Adaptive Windows", PROCEEDINGS OF IEICE, vol. J95-B, no. 3, 1 March 2012 (2012-03-01), pages 459 - 470, ISSN: 1344- 4697 * |
SCHMITT, MICHAEL ET AL.: "Adaptive Covariance Matrix Estimation for Multi-Baseline InSAR Data Stacks", IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol. 52, no. 11, 19 February 2014 (2014-02-19), pages 6807 - 6817, XP011549538, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/document/6744585> DOI: 10.1109/TGRS.2014.2303516 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024004216A1 (ja) * | 2022-07-01 | 2024-01-04 | 株式会社Synspective | 地盤変動解析装置および地盤変動解析方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7338786B2 (ja) | 2023-09-05 |
JPWO2021192038A1 (ja) | 2021-09-30 |
US20230133736A1 (en) | 2023-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3435029B1 (en) | Resolution adaptive mesh for performing 3-d metrology of an object | |
CN106908787B (zh) | 一种实波束扫描雷达前视角超分辨成像方法 | |
RU2518903C2 (ru) | Идентификация и анализ устойчивых рассеивателей в последовательности изображений, полученных с помощью sar | |
CN107193003B (zh) | 一种稀疏奇异值分解扫描雷达前视成像方法 | |
CN109470268B (zh) | 一种提高卫星姿态确定精度和效率的方法 | |
RU2503938C2 (ru) | Способ и устройство частотного анализа данных | |
Berntorp | Feedback particle filter: Application and evaluation | |
Tang et al. | Learning a bias correction for lidar-only motion estimation | |
CN105137425A (zh) | 基于卷积反演原理的扫描雷达前视角超分辨方法 | |
CN115963856B (zh) | 一种四旋翼无人机快速目标跟踪方法 | |
WO2021192038A1 (ja) | 画像解析装置および画像解析方法 | |
CN112388628A (zh) | 用于训练高斯过程回归模型的设备和方法 | |
Yang et al. | Assessment of railway performance by monitoring land subsidence | |
Yang et al. | Bridge dynamic displacement monitoring using adaptive data fusion of GNSS and accelerometer measurements | |
CN112949989B (zh) | InSAR微形变文化遗产影响定量刻画方法 | |
CN111915570A (zh) | 基于反向传播神经网络的大气延迟估计方法 | |
WO2021024336A1 (ja) | 位相アンラップ装置及び位相アンラップ方法 | |
Grzonka et al. | Look-ahead proposals for robust grid-based slam with rao-blackwellized particle filters | |
Burks et al. | Optimal continuous state POMDP planning with semantic observations | |
KR102562273B1 (ko) | 조건적 적대적 신경망 딥러닝 기법을 사용한 24시간 후의 전지구적 총 전자수 함유량 예측 장치 및 그 방법 | |
Bagheri et al. | Fusion of TanDEM-X and Cartosat-1 DEMs using TV-norm regularization and ANN-predicted weights | |
Shumilo et al. | Climate-Analog Velocity Estimation using Optical Flow Approach | |
JP7384295B2 (ja) | 画像解析装置および画像解析方法 | |
Smith et al. | Fully adaptive remote sensing observing system simulation experiments | |
Murphy et al. | Particle and matched filtering using admissible regions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20926416 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022509833 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20926416 Country of ref document: EP Kind code of ref document: A1 |