WO2021191996A1 - ガス絶縁開閉装置 - Google Patents

ガス絶縁開閉装置 Download PDF

Info

Publication number
WO2021191996A1
WO2021191996A1 PCT/JP2020/012851 JP2020012851W WO2021191996A1 WO 2021191996 A1 WO2021191996 A1 WO 2021191996A1 JP 2020012851 W JP2020012851 W JP 2020012851W WO 2021191996 A1 WO2021191996 A1 WO 2021191996A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
bus
solid
gas
insulated
Prior art date
Application number
PCT/JP2020/012851
Other languages
English (en)
French (fr)
Inventor
孝幸 福岡
井上 直明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20927656.7A priority Critical patent/EP4131680A4/en
Priority to PCT/JP2020/012851 priority patent/WO2021191996A1/ja
Priority to US17/772,058 priority patent/US11901709B2/en
Priority to JP2020542182A priority patent/JP6811905B1/ja
Priority to CN202080098366.0A priority patent/CN115280617A/zh
Publication of WO2021191996A1 publication Critical patent/WO2021191996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/045Details of casing, e.g. gas tightness
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0356Mounting of monitoring devices, e.g. current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0358Connections to in or out conductors

Definitions

  • This application relates to a gas-insulated switchgear.
  • the present application has been made to solve the above-mentioned problems, and an object of the present application is to provide a gas-insulated switchgear in which the size of the circuit breaker tank is small.
  • the gas-insulated switchgear disclosed in the present application is a gas-insulated switchgear having a circuit breaker tank accommodating a circuit breaker and a bus tank accommodating a bus, and two or more switches in each phase inside the circuit breaker tank. It includes a connecting conductor connected to a power cable, a solid insulated bus installed outside the circuit breaker tank and connected to the connecting conductor via a connecting bushing, and an instrument diversion device attached to the solid insulated bus. ..
  • the gas-insulated switchgear disclosed in the present application includes a solid-insulated bus that is installed outside the circuit breaker tank and is connected to a connecting conductor via a connecting bushing, and an instrument current transformer that is attached to the solid-insulated bus. Since it is provided, the size of the circuit breaker tank can be reduced.
  • FIG. It is a side sectional view which shows the structure of the gas insulation switchgear according to Embodiment 1.
  • FIG. It is sectional drawing of the solid insulation bus adapter according to Embodiment 1.
  • FIG. It is sectional drawing of the solid insulation bus bar according to Embodiment 1.
  • FIG. It is sectional drawing of the solid insulation bus according to Embodiment 1.
  • FIG. It is a side sectional view which shows the structure of the gas insulation switchgear by Embodiment 2.
  • FIG. 1 is a side sectional view showing the configuration of the gas-insulated switchgear 1 according to the first embodiment.
  • the left side of the figure is the front surface
  • the left-right direction of FIG. 1 is the depth direction of the gas-insulated switchgear 1.
  • the gas-insulated switchgear 1 has a circuit breaker tank 2 and a bus tank 3 arranged above the circuit breaker tank 2.
  • the circuit breaker 4 is housed inside the circuit breaker tank 2 filled with the insulating gas, and the disconnector 5 and the bus 6 are housed inside the bus tank 3 also filled with the insulating gas.
  • the circuit breaker tank 2 In front of the circuit breaker tank 2, there is an operation room 7 in which an operation mechanism or the like is housed, and above the operation room 7, there is a control room 8 in which a control device or the like is housed. Below the circuit breaker tank 2, there is a cable chamber 9 in which the power cable 13 is housed.
  • the movable side of the circuit breaker 4 is connected to the bus 6 via a bushing 10 provided in a section between the circuit breaker tank 2 and the bus tank 3 and a disconnector 5 that follows the bushing 10.
  • connecting bushings 11 that penetrate inside and outside the circuit breaker tank 2 are arranged at two places above and below.
  • the upper connecting bushing 11 is connected to the fixed side of the circuit breaker 4 via one connecting conductor 12a in each phase inside the circuit breaker tank 2.
  • the lower connecting bushing 11 is connected to the power cable 13 inside the circuit breaker tank 2 via one connecting conductor 12b for each phase.
  • the connecting conductor 12b of each phase is connected to two or more power cables 13 in each phase.
  • the two connecting bushings 11 are connected by a solid insulating bus 15 outside the circuit breaker tank 2.
  • An instrument transformer 14 is attached to the solid-insulated bus bar 17 constituting the solid-insulated bus 15.
  • FIG. 2 is a cross-sectional view of the solid insulated bus adapter 16 constituting the solid insulated bus 15.
  • the solid insulating bus adapter 16 has a T-shape having a through hole inside, and the outer surface is covered with a grounded surface conductive layer 16a.
  • the inside of the solid insulating bus adapter 16 is an internal insulating layer 16b, and a part of the solid insulating bus adapter 16 is an internal conductive layer 16c.
  • the portion formed in a taper shape from both ends toward the center is the plug-in portion 16d, the straight cylindrical portion at the bottom is the fitting portion 16e, and the fitting portion 16e is connected to the solid insulating bus bar 17. It is a department.
  • FIG. 3 is a cross-sectional view of the solid insulating bus bar 17 constituting the solid insulating bus 15.
  • the solid insulating bus bar 17 is configured by covering the metal conductor 17a with an insulating layer 17b.
  • FIG. 4 is a cross-sectional view showing how the solid insulated bus 15 including the solid insulated bus adapter 16, the solid insulated bus bus bar 17, the insulating plug 18, and the contact 19 is connected to the connecting bushing 11.
  • the connection bushing 11 and the insulating plug 18 are plug-in connected to the solid-insulated bus adapter 16.
  • a solid-insulated bus bar 17 is connected to the fitting portion 16e at the bottom of the solid-insulated bus adapter 16, and the connection bushing 11 and the insulating plug 18 are connected by a contact 19.
  • an instrument current transformer is attached to an uninsulated connection conductor inside the circuit breaker tank, so a large and expensive instrument current transformer for high voltage must be used.
  • a current transformer for high voltage instruments it was necessary to insulate with an epoxy resin having excellent insulating properties.
  • the instrument transformer is installed inside the circuit breaker tank filled with the insulating gas. Therefore, when the instrument transformer is replaced or maintained, the gas in the circuit breaker tank is used. Processing was required and the work took time.
  • the instrument transformer 14 is attached to the solid-insulated bus 15 outside the circuit breaker tank 2 in which the insulating gas is sealed.
  • the size of the circuit breaker tank 2 can be reduced to reduce the manufacturing cost. Further, gas treatment of the circuit breaker tank 2 is not required when the instrument transformer 14 is replaced or maintained, and the maintainability is improved as compared with the conventional gas-insulated switchgear. The time can be shortened.
  • the connecting conductors 12b are connected to two or more power cables 13 in each phase inside the circuit breaker tank 2 in which the insulating gas is sealed, and the connecting conductors 12b are connected. Is connected to the solid insulating bus 15 outside the circuit breaker tank 2 via a connecting bushing 11.
  • the outer surface of the solid-insulated bus adapter 16 constituting the solid-insulated bus 15 is covered with a grounded surface conductive layer 16a, and the solid-insulated bus adapter 16 is covered with the insulating layer 17b. Is connected, and the instrument diversion device 14 is attached to the solid-insulated bus bar 17.
  • an instrument transformer for high voltage for the instrument transformer 14 attached to the solid-insulated bus bar 17, and an instrument transformer for low voltage can be used. Can be used.
  • the instrument transformer for high voltage was large in size and expensive, but since the instrument transformer for low voltage can be used, the size of the instrument transformer is small and the cost is low.
  • connection conductors 12b connected to two or more power cables 13 in each phase are outside the circuit breaker tank 2 via the connection bushing 11. Since the instrument transformer 14 is attached to the solid-insulated bus 15 and is connected to the solid-insulated bus 15, the size of the circuit breaker tank 2 can be reduced.
  • FIG. 5 is a side sectional view showing the configuration of the gas-insulated switchgear 1a according to the second embodiment.
  • the left side of the figure is the front surface
  • the left-right direction of FIG. 5 is the depth direction of the gas-insulated switchgear 1a.
  • the gas-insulated switchgear 1a has a circuit breaker tank 2 and a bus tank 3 arranged below the circuit breaker tank 2.
  • the circuit breaker 4 is housed inside the circuit breaker tank 2 filled with the insulating gas
  • the disconnector 5 and the bus 6 are housed inside the bus tank 3 also filled with the insulating gas.
  • Connection bushings 11 penetrating inside and outside the circuit breaker tank 2 are arranged at both ends of the upper part of the circuit breaker tank 2.
  • the two connecting bushings 11 are connected by a solid insulating bus 15 outside the circuit breaker tank 2.
  • the solid-insulated bus 15 is composed of a solid-insulated bus adapter 16, a solid-insulated bus bar 17, an insulating plug 18, and a contact 19, and an instrument diversion device 14 is attached to the solid-insulated bus bar 17.
  • the bus tank 3 is arranged below the circuit breaker tank 2. Is different. By installing the bus tank 3 below the circuit breaker tank 2, both the power cable 13 and the bus 6 that need to be installed by the customer are concentrated in the lower part of the gas-insulated switchgear 1a, so that the customer can use the bus. The construction time can be shortened and the work safety is improved. Further, since the power cable 13 of the gas-insulated switchgear 1a according to the second embodiment shown in FIG. 5 is installed at a higher position than the power cable 13 of the gas-insulated switchgear 1 according to the first embodiment shown in FIG. Even in the case of single construction of the power cable 13, the working time can be further shortened by expanding the construction space.
  • the construction time at the customer can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

遮断器タンク(2)のサイズが小さなガス絶縁開閉装置である。 遮断器タンク(2)の内部において各相で2本以上の電力ケーブル(13)に接続された接続導体(12b)と、遮断器タンク(2)の外部に設置され接続用ブッシング(11)を介して接続導体(12b)に接続された固体絶縁母線(15)と、固体絶縁母線(15)に取り付けられた計器用変流器(14)とを備える。

Description

ガス絶縁開閉装置
 本願は、ガス絶縁開閉装置に関するものである。
 ガス絶縁開閉装置において2500Aなどの大きな定格電流を実現するためには、電力ケーブルの断面積を大きくする必要があるが、電力ケーブル1本あたりの断面積を大きくするのは限界があるため2本以上の複数本の電力ケーブルを使用する。複数本の電力ケーブルを使用するガス絶縁開閉装置に計器用変流器を取り付けるために、遮断器タンクの内部において複数の電力ケーブルを1本の接続導体に集約し、遮断器タンク内で接続導体に計器用変流器を取り付ける技術が提案されている(例えば、特許文献1参照)。
実用新案登録第3203676号公報
 従来のガス絶縁開閉装置では、計器用変流器が遮断器タンク内で接続導体に取り付けられているため、遮断器タンクが大きくなるという課題があった。
 本願は、上述の課題を解決するためになされたものであり、遮断器タンクのサイズが小さなガス絶縁開閉装置を提供することを目的とする。
 本願に開示されるガス絶縁開閉装置は、遮断器を収容する遮断器タンクと母線を収容する母線タンクとを有するガス絶縁開閉装置であって、遮断器タンクの内部において各相で2本以上の電力ケーブルに接続された接続導体と、遮断器タンクの外部に設置され接続用ブッシングを介して接続導体に接続された固体絶縁母線と、固体絶縁母線に取り付けられた計器用変流器とを備える。
 本願に開示されるガス絶縁開閉装置は、遮断器タンクの外部に設置され接続用ブッシングを介して接続導体に接続された固体絶縁母線と、固体絶縁母線に取り付けられた計器用変流器とを備えるので、遮断器タンクのサイズを小さくすることができる。
実施の形態1によるガス絶縁開閉装置の構成を示す側面断面図である。 実施の形態1による固体絶縁母線アダプタの断面図である。 実施の形態1による固体絶縁母線ブスバーの断面図である。 実施の形態1による固体絶縁母線の断面図である。 実施の形態2によるガス絶縁開閉装置の構成を示す側面断面図である。
 以下、本願を実施するための実施の形態に係るガス絶縁開閉装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
 図1は、実施の形態1によるガス絶縁開閉装置1の構成を示す側面断面図である。図1では図の左側が前面であり、図1の左右方向はガス絶縁開閉装置1の奥行き方向である。
 ガス絶縁開閉装置1は、遮断器タンク2とその上方に配置された母線タンク3を有している。絶縁ガスが封入された遮断器タンク2の内部には遮断器4が収容されており、同じく絶縁ガスが封入された母線タンク3の内部には断路器5と母線6が収容されている。
 遮断器タンク2の前方には操作機構などが収容される操作室7があり、操作室7の上方は制御機器などが収容される制御室8がある。遮断器タンク2の下方には、電力ケーブル13が収容されるケーブル室9がある。遮断器4の可動側は、遮断器タンク2と母線タンク3の区画部に設けられたブッシング10と、それに続く断路器5を経由して母線6に接続されている。
 遮断器タンク2の後方には、上下の2か所において遮断器タンク2の内外に貫通する接続用ブッシング11が配置されている。上方の接続用ブッシング11は、遮断器タンク2の内部において各相で1本ずつの接続導体12aを経由して遮断器4の固定側へ接続されている。下方の接続用ブッシング11は、遮断器タンク2の内部において各相で1本ずつの接続導体12bを経由して電力ケーブル13に接続されている。なお、各相の接続導体12bは、それぞれの相において2本以上の電力ケーブル13に接続されている。2つの接続用ブッシング11は、遮断器タンク2の外部において固体絶縁母線15で接続されている。固体絶縁母線15を構成する固体絶縁母線ブスバー17には、計器用変流器14が取り付けられている。
 図2は、固体絶縁母線15を構成する固体絶縁母線アダプタ16の断面図である。固体絶縁母線アダプタ16は内部に貫通穴を持つT字状であり、外側の表面は接地された表面導電層16aで覆われている。固体絶縁母線アダプタ16の内側は内部絶縁層16bであり、一部が内部導電層16cとなっている。両端部から中央部に向かってテーパ状に形成された部分がプラグイン部16dであり、下部の真っ直ぐな円筒部が嵌合部16eであり、嵌合部16eは固体絶縁母線ブスバー17との接続部である。図3は、固体絶縁母線15を構成する固体絶縁母線ブスバー17の断面図である。固体絶縁母線ブスバー17は、金属導体17aの周りを絶縁層17bによって覆うことによって構成されている。
 図4は、固体絶縁母線アダプタ16、固体絶縁母線ブスバー17、絶縁栓18およびコンタクト19からなる固体絶縁母線15が、接続用ブッシング11に接続されている様子を示す断面図である。図2に示した固体絶縁母線アダプタ16の両端の2か所のプラグイン部16dにおいて、接続用ブッシング11と絶縁栓18が固体絶縁母線アダプタ16にプラグイン接続されている。固体絶縁母線アダプタ16の下部の嵌合部16eには固体絶縁母線ブスバー17が接続されており、コンタクト19によって接続用ブッシング11と絶縁栓18とを接続している。
 従来のガス絶縁開閉装置では、遮断器タンクの内部において絶縁されていない接続導体に計器用変流器を取り付けていたため、サイズが大きく高価な高電圧用の計器用変流器を使わなければならず、高電圧用の計器用変流器を使用するには絶縁性に優れたエポキシ樹脂による絶縁が必要であった。また、従来のガス絶縁開閉装置では、絶縁ガスが封入された遮断器タンクの内部に計器用変流器を取り付けていたため、計器用変流器の交換あるいはメンテナンスを行う時には、遮断器タンクのガス処理が必要となり作業に時間がかかっていた。
 実施の形態1によるガス絶縁開閉装置1では、図1に示すように、絶縁ガスが封入された遮断器タンク2の外部にある固体絶縁母線15に計器用変流器14が取り付けられているため、遮断器タンク2のサイズを小さくし製造コストを低くすることができる。さらに、計器用変流器14の交換あるいはメンテナンスを行う時に遮断器タンク2のガス処理が不要であり、従来のガス絶縁開閉装置と比べてメンテナンス性が向上し、交換あるいはメンテナンスを行う時の作業時間を短くすることができる。
 さらに、実施の形態1によるガス絶縁開閉装置1では、絶縁ガスが封入された遮断器タンク2の内部において接続導体12bが各相で2本以上の電力ケーブル13に接続されており、接続導体12bは接続用ブッシング11を介して遮断器タンク2の外部にある固体絶縁母線15に接続されている。固体絶縁母線15を構成する固体絶縁母線アダプタ16の外側の表面は接地された表面導電層16aで覆われており、固体絶縁母線アダプタ16に絶縁層17bに覆われた構造の固体絶縁母線ブスバー17が接続されており、固体絶縁母線ブスバー17に計器用変流器14が取り付けられている。このような構造にすることにより、固体絶縁母線ブスバー17に取り付けられる計器用変流器14には高電圧用の計器用変流器を用いる必要が無く、低電圧用の計器用変流器を用いることができる。高電圧用の計器用変流器はサイズが大きく高価であったが、低電圧用の計器用変流器を用いることができるので、計器用変流器のサイズが小さくなり安価となる。
 以上のように、実施の形態1によるガス絶縁開閉装置1は、各相で2本以上の電力ケーブル13に接続された接続導体12bが接続用ブッシング11を介して遮断器タンク2の外部にある固体絶縁母線15に接続され、計器用変流器14が固体絶縁母線15に取り付けられているので、遮断器タンク2のサイズを小さくすることができる。
実施の形態2.
 図5は実施の形態2によるガス絶縁開閉装置1aの構成を示す側面断面図である。図5では図の左側が前面であり、図5の左右方向はガス絶縁開閉装置1aの奥行き方向である。ガス絶縁開閉装置1aは、遮断器タンク2とその下方に配置された母線タンク3を有している。絶縁ガスが封入された遮断器タンク2の内部には遮断器4が収容されており、同じく絶縁ガスが封入された母線タンク3の内部には断路器5と母線6が収容されている。
 遮断器タンク2の前方には操作機構などが収容される操作室7があり、操作室7の下方は制御機器などが収容される制御室8がある。母線タンク3の下方には、電力ケーブル13が収容されるケーブル室9がある。遮断器4の可動側は、遮断器タンク2と母線タンク3の区画部に設けられたブッシング10と、それに続く断路器5を経由して母線6に接続されている。
 遮断器タンク2の上部の両端には、遮断器タンク2の内外に貫通する接続用ブッシング11が配置されている。2つの接続用ブッシング11は、遮断器タンク2の外部において固体絶縁母線15で接続されている。固体絶縁母線15は、固体絶縁母線アダプタ16、固体絶縁母線ブスバー17、絶縁栓18およびコンタクト19から構成されており、固体絶縁母線ブスバー17には計器用変流器14が取り付けられている。
 図5に示された実施の形態2によるガス絶縁開閉装置1aを図1に示された実施の形態1によるガス絶縁開閉装置1を比べると、母線タンク3が遮断器タンク2の下方に配置されていることが異なっている。母線タンク3を遮断器タンク2の下方に設置することにより、客先での施工が必要な電力ケーブル13と母線6の両方がガス絶縁開閉装置1aの下部に集約されるため、客先での施工時間をより短くすることができるとともに、作業安全性も向上する。また、図5に示した実施の形態2によるガス絶縁開閉装置1aの電力ケーブル13は図1に示した実施の形態1によるガス絶縁開閉装置1の電力ケーブル13よりも高い位置に設置されるため、電力ケーブル13の単独の施工においても、施工スペースが拡張されたことによって作業時間をより短くすることができる。
 以上のように、実施の形態2によるガス絶縁開閉装置1aは、母線タンク3が遮断器タンク2の下方に配置されているため、客先での施工時間をより短くすることができる。
 本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1、1a ガス絶縁開閉装置、2 遮断器タンク、3 母線タンク、4 遮断器、5 断路器、6 母線、7 操作室、8 制御室、9 ケーブル室、10 ブッシング、11 接続用ブッシング、12a、12b 接続導体、13 電力ケーブル、14 計器用変流器、15 固体絶縁母線、16 固体絶縁母線アダプタ、16a 表面導電層、16b 内部絶縁層、16c 内部導電層、16d プラグイン部、16e 嵌合部、17 固体絶縁母線ブスバー、18 絶縁栓、19 コンタクト

Claims (6)

  1.  遮断器を収容する遮断器タンクと母線を収容する母線タンクとを有するガス絶縁開閉装置であって、
     前記遮断器タンクの内部において各相で2本以上の電力ケーブルに接続された接続導体と、
     前記遮断器タンクの外部に設置され接続用ブッシングを介して前記接続導体に接続された固体絶縁母線と、
     前記固体絶縁母線に取り付けられた計器用変流器とを備えたことを特徴とするガス絶縁開閉装置。
  2.  前記固体絶縁母線は前記接続用ブッシングを介して前記接続導体に接続された固体絶縁母線アダプタと固体絶縁母線ブスバーとを備え、
     前記固体絶縁母線アダプタの外側の表面は接地された表面導電層で覆われており、
     前記計器用変流器は前記固体絶縁母線ブスバーに取り付けられていることを特徴とする請求項1に記載のガス絶縁開閉装置。
  3.  前記固体絶縁母線ブスバーは金属導体が絶縁層によって覆われた構成であることを特徴とする請求項2に記載のガス絶縁開閉装置。
  4.  前記計器用変流器は低電圧用であることを特徴とする請求項1から3のいずれか1項に記載のガス絶縁開閉装置。
  5.  前記母線タンクが前記遮断器タンクの上方に設置されていることを特徴とする請求項1から4のいずれか1項に記載のガス絶縁開閉装置。
  6.  前記母線タンクが前記遮断器タンクの下方に配置されていることを特徴とする請求項1から4のいずれか1項に記載のガス絶縁開閉装置。
PCT/JP2020/012851 2020-03-24 2020-03-24 ガス絶縁開閉装置 WO2021191996A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20927656.7A EP4131680A4 (en) 2020-03-24 2020-03-24 GAS ISOLATED MANUAL TRANSMISSION
PCT/JP2020/012851 WO2021191996A1 (ja) 2020-03-24 2020-03-24 ガス絶縁開閉装置
US17/772,058 US11901709B2 (en) 2020-03-24 2020-03-24 Gas-insulated switchgear
JP2020542182A JP6811905B1 (ja) 2020-03-24 2020-03-24 ガス絶縁開閉装置
CN202080098366.0A CN115280617A (zh) 2020-03-24 2020-03-24 气体绝缘开闭装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012851 WO2021191996A1 (ja) 2020-03-24 2020-03-24 ガス絶縁開閉装置

Publications (1)

Publication Number Publication Date
WO2021191996A1 true WO2021191996A1 (ja) 2021-09-30

Family

ID=74096378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012851 WO2021191996A1 (ja) 2020-03-24 2020-03-24 ガス絶縁開閉装置

Country Status (5)

Country Link
US (1) US11901709B2 (ja)
EP (1) EP4131680A4 (ja)
JP (1) JP6811905B1 (ja)
CN (1) CN115280617A (ja)
WO (1) WO2021191996A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901709B2 (en) * 2020-03-24 2024-02-13 Mitsubishi Electric Corporation Gas-insulated switchgear
JP6987324B1 (ja) * 2021-03-26 2021-12-22 三菱電機株式会社 固体絶縁母線及びこれを備えたガス絶縁開閉装置
CN117060257B (zh) * 2023-10-12 2024-01-26 宁波天仑电气股份有限公司 基于智能调控的环保充气柜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115712U (ja) * 1986-01-13 1987-07-23
JPH0879917A (ja) * 1994-09-07 1996-03-22 Showa Electric Wire & Cable Co Ltd キュービクル引込み線接続構造
JP3203676B2 (ja) 1991-04-25 2001-08-27 株式会社ニコン 投影露光装置
WO2015076029A1 (ja) * 2013-11-19 2015-05-28 三菱電機株式会社 母線接続装置及びそれを用いたスイッチギヤ
JP2016092883A (ja) * 2014-10-30 2016-05-23 三菱電機株式会社 ガス絶縁スイッチギヤ
WO2019123926A1 (ja) * 2017-12-22 2019-06-27 三菱電機株式会社 ガス絶縁開閉装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29501081U1 (de) 1995-01-13 1995-03-23 Siemens Ag Anordnung von Kupplungsfeldern in gekapselten Mittelspannungs-Schaltanlagen
JP2001298816A (ja) 2000-04-13 2001-10-26 Mitsubishi Electric Corp ガス絶縁開閉装置
JP2001352621A (ja) * 2000-06-02 2001-12-21 Mitsubishi Electric Corp ガス絶縁開閉装置
FR2836278B1 (fr) * 2002-02-18 2004-04-23 Alstom Traversee de courant sous enveloppe metallique etanche au gaz
DE10246598A1 (de) * 2002-10-05 2004-04-15 Alstom Sammelschienenkupplung für eine gasisolierte Schaltanlage
DE10314458A1 (de) * 2003-03-28 2004-10-07 Alstom Metallgekapselte gasisolierte Schaltanlage
DE102005029600A1 (de) * 2004-06-28 2006-01-19 Abb Technology Ag Gasisolierte Mittelspannungs-Schaltanlage
US9048637B2 (en) * 2010-09-24 2015-06-02 Mitsubishi Electric Corporation Gas-insulated switchgear
US9425589B2 (en) * 2012-09-18 2016-08-23 Hitachi, Ltd. Gas-insulated switchgear
US10218161B2 (en) * 2014-02-25 2019-02-26 Abb Schweiz Ag Integrated compact bushing structure combining the functionality of primary contact with a current transformer primary conductor and a post insulator
DE102014104541A1 (de) 2014-03-31 2015-10-01 Schneider Electric Industries Sas Schaltfeld
FR3026239B1 (fr) 2014-09-23 2016-10-14 Schneider Electric Ind Sas Appareillage de protection electrique moyenne tension a comptage du courant
US10673212B2 (en) * 2014-12-11 2020-06-02 Mitsubishi Electric Corporation Switchgear
JP3203676U (ja) 2015-12-25 2016-04-14 株式会社東芝 ガス絶縁スイッチギヤ
US10158214B1 (en) * 2017-06-16 2018-12-18 Eaton Intelligent Power Limited Switchgear with modular bus configuration supporting individual and parallel feed arrangements
WO2018232236A1 (en) * 2017-06-16 2018-12-20 Eaton Intelligent Power Limited Isolating gas-insulated bus arrangements for switchgear
US11901709B2 (en) * 2020-03-24 2024-02-13 Mitsubishi Electric Corporation Gas-insulated switchgear

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115712U (ja) * 1986-01-13 1987-07-23
JP3203676B2 (ja) 1991-04-25 2001-08-27 株式会社ニコン 投影露光装置
JPH0879917A (ja) * 1994-09-07 1996-03-22 Showa Electric Wire & Cable Co Ltd キュービクル引込み線接続構造
WO2015076029A1 (ja) * 2013-11-19 2015-05-28 三菱電機株式会社 母線接続装置及びそれを用いたスイッチギヤ
JP2016092883A (ja) * 2014-10-30 2016-05-23 三菱電機株式会社 ガス絶縁スイッチギヤ
WO2019123926A1 (ja) * 2017-12-22 2019-06-27 三菱電機株式会社 ガス絶縁開閉装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131680A4

Also Published As

Publication number Publication date
EP4131680A1 (en) 2023-02-08
US11901709B2 (en) 2024-02-13
US20220368116A1 (en) 2022-11-17
CN115280617A (zh) 2022-11-01
EP4131680A4 (en) 2023-05-17
JPWO2021191996A1 (ja) 2021-09-30
JP6811905B1 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2021191996A1 (ja) ガス絶縁開閉装置
US8462486B2 (en) Gas-insulated medium-voltage switchgear assembly
EP3641082B1 (en) Gas insulated switchgear
EP1107408B1 (en) Gas-insulated switchgear
US20110000771A1 (en) Three-positions disconnector for medium voltage panels
KR100447050B1 (ko) 스위치기어
JP4490486B2 (ja) 高電圧スイッチギア・アセンブリ
JP5602977B1 (ja) ガス絶縁スイッチギヤ
JP4660303B2 (ja) 固体絶縁スイッチギヤ
EP1768149B1 (en) Multi circuit selecting switchgear
JP3982973B2 (ja) 変流器
WO2019123926A1 (ja) ガス絶縁開閉装置
JP3905266B2 (ja) 真空絶縁スイッチギヤ
EP3944276B1 (en) Circuit breaker compartment
JP2009044927A (ja) 金属閉鎖形スイッチギヤ
JP4062847B2 (ja) 固体絶縁母線
JP7221473B1 (ja) ガス絶縁開閉装置
JP2005137147A (ja) スイッチギヤ
KR100397567B1 (ko) 가스 절연 배전반
JPH1080018A (ja) 引出形高圧開閉装置
KR200496464Y1 (ko) 가스절연 개폐장치와 고체절연 개폐장치의 연결부
JP5137788B2 (ja) 母線継手構造、断路器及び開閉装置
US6987438B2 (en) Bushing-type transformer for a switch gear unit
JP2024035138A (ja) 分岐バスバー装置
US20110096468A1 (en) Medium-voltage switchgear

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542182

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020927656

Country of ref document: EP

Effective date: 20221024