WO2021190549A1 - 支架装配系统及支架装配方法 - Google Patents

支架装配系统及支架装配方法 Download PDF

Info

Publication number
WO2021190549A1
WO2021190549A1 PCT/CN2021/082678 CN2021082678W WO2021190549A1 WO 2021190549 A1 WO2021190549 A1 WO 2021190549A1 CN 2021082678 W CN2021082678 W CN 2021082678W WO 2021190549 A1 WO2021190549 A1 WO 2021190549A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
assembly
core tube
sheath
tube
Prior art date
Application number
PCT/CN2021/082678
Other languages
English (en)
French (fr)
Inventor
浦文俊
肖本好
刘强
凌正青
Original Assignee
深圳市先健畅通医疗有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市先健畅通医疗有限公司 filed Critical 深圳市先健畅通医疗有限公司
Priority to US17/914,124 priority Critical patent/US20230218417A1/en
Priority to EP21776279.8A priority patent/EP4129243A4/en
Publication of WO2021190549A1 publication Critical patent/WO2021190549A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/97Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/823Stents, different from stent-grafts, adapted to cover an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2002/9665Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod with additional retaining means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Definitions

  • the invention relates to the field of medical equipment, and in particular to a stent assembly system and a stent assembly method.
  • Interventional therapy has the characteristics of less trauma and fewer complications.
  • the treatment of cardiovascular disease through interventional therapy has become a common treatment method.
  • interventional treatment technology has improved day by day, and the advantages of using interventional technology to treat cardiovascular diseases such as aneurysms, arterial dissection diseases, and vascular stenosis have become increasingly prominent.
  • the stent is a common device. According to the structure classification, stents are mainly divided into two categories, one is the stent graft, which is mainly composed of a membrane and a metal stent supporting the membrane.
  • the covering film is generally made of materials with good biocompatibility such as polyester and expanded polytetrafluoroethylene (e-PTFE) film
  • the metal stent is generally made of materials such as nickel-titanium alloy or stainless steel.
  • the other type is a bare stent.
  • the bare stent does not contain a membrane, and is generally composed of a metal stent, such as a stainless steel stent or a nickel-titanium alloy stent.
  • the metal stents in the covered stents and bare stents are classified according to the preparation method. They can be divided into two types: braided metal stents and cut metal stents.
  • the raw material of braided metal stents is generally metal wire, which is formed by braiding and heat setting.
  • Metal bracket The raw material for cutting the metal bracket is generally a pipe, which is made into a cutting metal bracket through cutting and heat setting.
  • interventional therapy usually pre-assembles the stent in the sheath of the delivery system.
  • the delivery system delivers the stent to the diseased site and releases the stent.
  • the stent expands and expands and closes against the vessel wall for isolation. Blood flow and aneurysm and arterial dissection, or reopen narrowed vascular channels, so as to re-establish normal blood circulation channels, and realize interventional treatment of aneurysm, arterial dissection or vascular stenosis.
  • Stacking caused by assembly generally includes the following three situations: 1) Stacking at or near the proximal end.
  • the stent and the sheath core tube slide relatively, causing the corresponding sheath core tube to not be completely pushed into the sheath when the stent is pushed into the sheath, and it has been assembled at this time
  • the stent part and the sheath core tube part of the sheath tube did not move relative to each other. With the continuous axial pushing force, the middle part of the stent stacking phenomenon occurred. 3) Stacked at or near the distal end.
  • the uniformity of the stent compression can be artificially controlled and adjusted.
  • the tendency of the stent to return to its circumferential uneven distribution is unavoidable.
  • the waveform is shifted from the phase before being pushed into the sheath, that is, torsion occurs.
  • the stent and the sheath core tube are pushed into the sheath tube, the stent may also be twisted due to the circumferential displacement of the stent relative to the sheath core tube, which will cause the stent to appear twisted after being assembled into the sheath tube. Therefore, the stent will be distorted when it is implanted and released. When the distortion is severe, the bracket may even be damaged.
  • Another stent assembly method is to press and hold the stent radially on the sheath core tube to keep the stent and sheath core tube still, and then give the sheath a pushing force to move the sheath toward the stent and sheath core tube to move the stent And the sheath core tube are assembled into the inner cavity of the sheath tube.
  • the risk of this assembly method is similar to the aforementioned method, and will not be repeated.
  • a stent assembly system includes a stent and an assembly device, the assembly device is used to assemble and transport the stent, the assembly device includes a sheath core tube, an outer sheath tube and an assembly part, the outer sheath tube is slidable in the axial direction
  • the ground is sheathed on the sheath core tube, and an accommodation cavity for accommodating the stent is formed between the inner wall of the outer sheath tube and the outer wall of the sheath core tube
  • the assembly has a fixed end and The free end opposite to the fixed end, the fixed end is connected to the sheath core tube, and when the stent is radially pressed on the sheath core tube, the free end and the stent hook Hook to limit the bracket.
  • the sheath core tube of the assembling instrument is provided with an assembling part with a free end.
  • the free end of the assembling part is hooked with the stent to limit the position of the stent. Therefore, during the assembly process, the relative sliding of the stent and the sheath core tube can be avoided to cause the stent stacking phenomenon. Therefore, the stent assembly system can improve the assembly accuracy.
  • Fig. 1 is a schematic structural diagram of a bracket assembly system according to an embodiment
  • FIG. 2 is a schematic diagram of the structure of an assembling device according to an embodiment
  • FIG. 3 is a partial schematic diagram of the bracket assembly system of an embodiment in an assembled state
  • Fig. 4 is a partial schematic diagram of a bracket assembly system in another embodiment in an assembled state
  • 5a to 5d are schematic diagrams of the assembly process of the bracket assembly system according to an embodiment
  • FIG. 6 is a partial schematic diagram of the bracket assembly system of another embodiment in an assembled state
  • Fig. 7 is a partial structural diagram of an assembly device according to another embodiment.
  • FIG. 8 is a schematic diagram of the structure of an assembling part according to an embodiment
  • FIG. 9 is a schematic diagram of a bending state of the assembly device according to an embodiment.
  • FIG. 10 is a schematic diagram of the structure of an assembly according to another embodiment.
  • FIG. 11 is a schematic structural diagram of an assembly part of another embodiment
  • Figure 12 is a schematic structural diagram of another embodiment of the assembly.
  • FIG. 13 is a schematic structural diagram of an assembly part of another embodiment
  • Figure 14 is a schematic structural view of another embodiment of the assembly.
  • 15 is a schematic diagram of the structure of another embodiment of the assembly.
  • 16 is a partial schematic diagram of the bracket assembly system of another embodiment in an assembled state
  • FIG. 17 is a schematic structural diagram of a stent according to an embodiment
  • Fig. 18 is a schematic diagram of the bracket shown in Fig. 17 in an assembled state
  • Figure 19 is a schematic diagram of the size of the fitting and the outer sheath of an embodiment
  • Figure 20 is a schematic diagram of another embodiment of the assembly.
  • Fig. 21 is a schematic structural diagram of a stent according to another embodiment.
  • FIG. 22 is a schematic diagram of a screenshot taken along the II-II line of FIG. 21;
  • Figures 23 and 24 are schematic diagrams of cross-sections of a stent according to an embodiment in a compressed state
  • Figure 25 is a schematic diagram of a braided form of a stent according to an embodiment
  • FIG. 26 is a schematic diagram of the structure of the membrane of the stent according to an embodiment
  • FIG. 27 is a schematic diagram of the structure of the membrane of the stent according to an embodiment
  • FIG. 28 is a schematic diagram of the structure of the membrane of the stent according to an embodiment
  • Fig. 29 is a schematic structural diagram of a stent according to another embodiment.
  • 30a-30e are schematic diagrams of the release process of the stent assembly system according to an embodiment
  • FIG. 31 is a schematic diagram of the structure of an assembly assembly according to an embodiment
  • FIG. 32 is a schematic structural diagram of an assembly assembly according to another embodiment.
  • FIG. 33 is a schematic structural diagram of an assembly assembly according to another embodiment.
  • distal end is defined as the end far away from the operator during the operation
  • proximal end is defined as the end close to the operator during the operation.
  • Axial refers to the direction parallel to the line connecting the center of the distal end and the center of the proximal end of the medical device
  • radial refers to the direction perpendicular to the above-mentioned axis.
  • a stent assembly system 100 includes an assembly instrument 110 and a stent 120.
  • the assembling instrument 110 is used to assemble the stent 120 and deliver the stent 120 to the diseased part.
  • the assembly instrument 110 includes a guide head 111, a sheath core tube 112, an outer sheath tube 113, a fixed handle 114 and a movable handle 115.
  • the guide head 111 is a hollow cavity structure with open ends and a tapered distal end.
  • the sheath core tube 112 is a hollow tube.
  • the distal end of the sheath core tube 20 extends from the proximal open end of the guide head 111 into the guide head 111 and is fixedly connected to the guide head 111, and the cavity of the sheath core tube 112 communicates with the cavity of the guide head 111 to form a guide wire Channel to ensure that the assembly instrument 110 can smoothly reach the diseased part under the guidance of the guide wire.
  • Both the sheath core tube 112 and the outer sheath tube 113 are hollow tubular members.
  • the outer sheath tube 113 is sleeved on the sheath core tube 112 and the outer sheath tube 113 and the sheath core tube 112 are coaxial.
  • the outer sheath tube 113 is axially slidable relative to the sheath core tube 112. As shown in Figure 3, when the outer sheath tube 113 slides in the axial direction until the distal end of the outer sheath tube 113 resists or approaches the guide head 111, the outer sheath tube 113 and the sheath core tube 112 form a ring-shaped container. In the accommodating cavity 116, the bracket 120 is received in the accommodating cavity 116.
  • the fixed handle 114 and the sheath core tube 112 are kept relatively fixed, and the movable handle 115 is fixedly connected with the outer sheath tube 113.
  • the fixed handle 114 is held with one hand and the movable handle 115 is operated with the other hand.
  • the outer sheath 113 is moved axially to the proximal end, thereby releasing the stent 120.
  • the assembly instrument 110 further includes a support tube 117, and the support tube 117 is sleeved on the proximal end of the sheath core tube 112.
  • the support tube 117 is coaxial with the sheath core tube 112 and is fixedly connected.
  • the outer sheath tube 113 is sleeved on the support tube 117 and can slide axially along the support tube 117 to the sheath core tube 112 or axially slide along the sheath core tube 112 to the support tube 117.
  • the support tube 117 is provided. On the one hand, the distal end of the support tube 117 can abut against the stent 120 to play a limiting role; Good support to prevent the outer sheath 113 from bending.
  • the assembling device 110 also includes an assembling part 118.
  • the assembly part 118 is used to assist the assembly of the bracket 120 to improve assembly accuracy.
  • the fitting 118 is arranged on the outer wall of the sheath core tube 112 and is fixedly connected to the sheath core tube 112.
  • the fitting 118 has a fixed end and a free end.
  • One end connected to the sheath core tube 112 is a fixed end, and the other end opposite to the fixed end is a free end.
  • the fitting 118 is a protrusion provided on the outer wall of the sheath core tube 112, and an end of the fitting 118 away from the outer wall of the sheath core tube 112 is a free end.
  • the fitting 118 is a cylindrical protrusion fixed on the outer wall of the sheath core tube 112, one bottom surface of the cylindrical protrusion is a fixed end surface, and the other bottom surface is a free end surface.
  • the shape of the assembling member 118 is not limited, for example, it may be an elliptical column, a square column, or the like.
  • the stent 120 is a lumen structure.
  • the stent 120 is a stent graft.
  • the bracket 120 includes a supporting frame 121 and a covering film 122 covering the supporting frame 121.
  • the support frame 121 is a hollow lumen structure that is braided by metal wires or cut from a metal pipe, and the covering film 122 covers the circumference of the support frame 121 to form a circumferentially closed lumen structure.
  • the metal wires form a closed-loop grid, for example, a diamond grid, a square grid, a triangular grid, a circular grid, and so on.
  • the stent 120 When assembling the stent 120 in the assembling instrument 110, first, fix the fixed handle 114 with one hand, and operate the movable handle 115 with the other hand to make the outer sheath tube 113 slide proximally in the axial direction, that is, move the axial direction away from the sheath core tube 112. Shift to expose the sheath core tube 112. Next, the stent 120 is sleeved on the sheath core tube 112 from the end where the guide head 111 is located. Further, the stent 120 is pressed and held radially, so that the stent 120 is radially compressed and fits on the outer surface of the sheath core tube 112.
  • the diamond grid of the supporting skeleton 121 when the stent 120 is radially compressed, the diamond grid of the supporting skeleton 121 remains a closed-loop grid with 4 endpoints.
  • the free end extends into the corresponding grid and hooks with the bracket 120 (the end surface of the free end of the assembly 118 protrudes from the support frame 121; or, it is flush with the end surface of the wire of the support frame 121; or, lower than the support
  • the end surface of the wire of the skeleton 121 is still hooked to the stent 120)
  • the fitting 118 can restrict the stent 120 from moving in the axial and circumferential directions, so that the stent 120 and the sheath core tube 112 remain relatively fixed, avoiding both Relative sliding.
  • the diamond grid has four endpoints A, B, C, and D (point D is not shown in Figure 1).
  • the assembly 118 When the bracket 120 slides in the direction of the guide head 111 relative to the sheath core tube 112, the assembly 118 It will collide with the point B on the diamond grid, that is, the tendency of the stent 120 to slide in the direction of the guide head 111 relative to the sheath core tube 112 is restricted by the fitting 118. In the same way, the assembly 118 can limit the tendency of the bracket 120 to slide away from the guide head 111. When the bracket 120 has a tendency to twist, it will touch the intersection point C or D. Therefore, the fitting 118 can limit the tendency of the bracket 120 to twist.
  • the stent 120 when the stent 120 is radially compressed and pressed on the sheath core tube 112, the relative sliding between the stent 120 and the sheath core tube 112 is restricted due to the limiting effect of the fitting 118. With the stent 120 and the fitting 118 in a hooked state, the stent 120 and the sheath core tube 112 are housed in the outer sheath tube 113 to complete the assembly.
  • the step of accommodating the stent 120 and the sheath core tube 112 in the outer sheath tube 113 includes: keeping the outer sheath tube 113 motionless, and pushing the sheath core tube 112 and the stent 120 to the outside along the axial direction. In the inner cavity of sheath 113.
  • the step of accommodating the stent 120 and the sheath core tube 112 in the outer sheath tube 113 includes: keeping the sheath core tube 112 and the stent 120 in place, along an area close to the sheath core tube 112 and the stent 120 The outer sheath tube 113 is pushed in the direction so that the sheath core tube 112 and the stent 120 are contained in the outer sheath tube 113.
  • the stent 120 and The sheath core tube 112 are always kept relatively fixed, which is beneficial to avoid stacking. At the same time, it is beneficial to avoid twisting of the bracket 120.
  • bracket assembly system 100 to assemble the bracket 120 can avoid stacking and twisting, thereby improving the assembly accuracy.
  • assembly efficiency and assembly yield are improved.
  • the assembly process does not require additional auxiliary tooling, and the assembly method is simple.
  • the fitting 118 still penetrates the diamond-shaped mesh of the stent 120, so that the position limiting effect on the stent 120 can still be maintained. That is, when the stent 120 is subjected to a force along the axial or circumferential direction of the sheath core tube 112, the fitting 118 can well restrict the shape of the stent 120 and avoid its axial movement and circumferential rotation.
  • the bracket 120 has a certain length.
  • the number of the assembly parts 118 is set reasonably according to the length of the bracket 120.
  • the stent 120 has a lumen structure, and also in order to ensure a better limiting effect, the orientation of the free ends of the multiple assembly parts 118 can also be rationally arranged.
  • the number of the fittings 118 is two, and the two fittings 118 are arranged at intervals.
  • one fitting 118 is located at the distal end of the stent 120, and the other fitting 118 is located at the proximal end of the stent 120.
  • the free ends of the two fittings 118 extend in opposite directions in the radial direction.
  • the two fittings 118 can better limit the position of the stent 120, and because the two fittings 118 are located at the distal and proximal ends of the stent 120, and are arranged at intervals, the fittings 118 do not significantly increase the rigidity of the sheath core tube 112. , So that the assembly device 110 can maintain the ability to pass through the curved lumen path.
  • extension directions of the free ends of the two assembly parts 118 can be the same, so that the limit effect on the bracket 120 can also be ensured.
  • the extending direction of the free end of the fitting 118 is not parallel to the sheath core tube 112.
  • the fitting 118 is perpendicular to the longitudinal center axis I-I of the sheath core tube 112, that is, the extension direction of the free end of the fitting 118 is perpendicular to the longitudinal center axis I-I, as shown in FIG. 3.
  • the fitting 118 forms an acute angle with the longitudinal center axis II of the sheath core tube 112, that is, the extending direction of the free end of the fitting 118 forms an acute angle with the longitudinal central axis II, and the fitting 118 is inclined with respect to the longitudinal central axis II, As shown in Figure 4.
  • the arrangement of the plurality of fittings 118 on the sheath core tube 112 is not limited.
  • multiple fittings 118 may all be located on the same side of the longitudinal center axis I-I; or, some of the fittings 118 are located on the same side of the longitudinal center axis I-I, and another part of the fittings 118 are located on the other side of the longitudinal center axis I-I.
  • the multiple fittings 118 located on both sides of the longitudinal center axis I-I may be opposite in the radial direction or not, that is, they may be arranged symmetrically along the longitudinal center axis I-I, or may be arranged asymmetrically. Alternatively, the free ends of the plurality of fittings 118 are alternately located on both sides of the longitudinal center axis I-I of the sheath core tube 112.
  • the plurality of fittings 118 are all at an acute angle to the longitudinal center axis II of the sheath core tube 112, and the plurality of fittings 118 are set in pairs.
  • the group takes the longitudinal center axis II of the sheath core tube 112 as the axis of symmetry, and is symmetrically arranged on both sides of the longitudinal center axis II, and the multiple assembly parts 118 are arranged at intervals along the sheath core tube 112 axially.
  • the multi-assembly fittings 118 some are inclined to the distal end (the free end of the finger fitting 118 is closer to the distal end than the fixed end), and some are inclined to the proximal end (the free end of the finger fitting 118 is closer to the fixed end than the fixed end). Near end).
  • the multi-assembly fitting 118 inclined to the distal end is closer to the distal end than the multi-assembly fitting 118 inclined to the proximal end.
  • the multiple assembly fittings 118 inclined to the distal end are arranged at intervals in the axial direction, and the multiple assembly fittings 118 inclined to the proximal end are arranged at intervals in the axial direction.
  • a set of distally inclined fittings 118 of the uppermost guide head 111 is located at the distal end of all proximally inclined fittings 118.
  • the multiple assembly parts 118 inclined to the distal end may be arranged at equal intervals or may be arranged at unequal intervals.
  • the multiple assembly parts 118 inclined to the proximal end may be arranged at equal intervals or may be arranged at unequal intervals.
  • the thrust applied to the stent 120 and the sheath core tube 112 needs to be able to change the assembly 118 from the state of Fig. 5b to Fig. 5c, that is, the assembly
  • the wire of the stent 120 can continue to press the fitting 118 in Fig. 5c, causing a gap between the fitting 118 and the inner wall of the outer sheath tube 113, causing the fitting 118 to slip out of the gap.
  • the inner cavity of the tube 113 cannot produce a limiting effect, which causes the stent 120 to shift or twist.
  • the mounting member 118 in this orientation will not slip off until it receives a greater force. Therefore, the mounting member 118 inclined in the direction away from the guide head 111 can effectively prevent the bracket 120 from approaching The guide head 111 slips in the direction, causing the assembly 118 to slip off.
  • the stent 120 and the sheath core tube 112 have been kept relatively fixed at the proximal end, and continue to push the outer sheath tube 113 toward the direction of the guide head 111, and a plurality of assembly parts inclined to the distal end
  • the 118 can follow the outer sheath 113 and become more inclined, so as to enter the outer sheath 113 more conveniently.
  • the multiple assembly fittings 118 inclined towards the distal end and the multiple assembly fittings 118 inclined towards the proximal end are arranged at unequal intervals, and the distance between the multiple assembly fittings 118 inclined towards the distal end is smaller near the distal direction. , Close to the proximal direction, the interval of the multiple assembly fittings 118 inclined to the proximal end is smaller. At the beginning of the assembly, the stent 120 and the sheath core tube 112 are most likely to slide relatively. Therefore, the distance between the multiple assembly fittings 118 inclined to the proximal end is smaller, and the number of the multiple assembly fittings 118 inclined to the proximal end is larger.
  • the stent 120 In order to avoid the situation that the stent 120 is stacked at or near the proximal end at the beginning of assembly, and the part of the stent 120 that enters the outer sheath 113 is anchored, it is also beneficial to maintain the stent 120 and the sheath as a whole.
  • the relative fixation of the core tube 112 is beneficial to alleviate or avoid the central stacking or remote stacking that may occur later.
  • the plurality of fittings 118 form a group two by two, and each group is symmetrically arranged on the longitudinal center axis II of the sheath core tube 112 as the symmetry axis.
  • the multiple assembly fittings 118 are arranged at intervals along the axial direction of the sheath core tube 112.
  • some are inclined to the distal end, some are inclined to the proximal end, and some are perpendicular to the longitudinal center axis I-I of the sheath core tube 112.
  • distally inclined fittings 118 are located at the distal end
  • proximally inclined fittings 118 are located at the proximal end, and are aligned with the longitudinal center axis II of the sheath core tube 112.
  • the vertical fitting 118 is located in the middle. Such a setting can also improve assembly accuracy.
  • the assembly 118 includes a base 1181 and a protrusion 1182 provided on the base 1181, and the base 1181 and the protrusion 1182 are an integral structure.
  • the base 1181 and the protrusion 1182 are fixedly connected by welding, gluing, or the like.
  • the material of the base 1181 and the protrusion 1182 may be the same or different.
  • the base 1181 is fixedly disposed on the outer wall of the sheath core tube 112, and the base 1181 is the fixed end of the fitting 118.
  • the protrusion 1182 extends from the connection part with the base 1181, and the end of the protrusion 1182 away from the base 1181 is a free end.
  • the base 1181 has a hollow structure, the middle of the base 1181 has an inner cavity, and the base 1181 is sleeved on the sheath core tube 112 through the inner cavity.
  • the protrusion 1182 is fixed on the outer wall of the base 1181.
  • the fixing method of the fitting 118 including the base 1181 to the sheath core tube 112 is easier and more reliable.
  • the base 1181 can reduce the difficulty of the preparation process. For the fitting 118 that does not include the base 1181, since the size of the fitting 118 is relatively small, very precise operations are required to complete the fixing of the fitting 118 and the sheath core tube 112.
  • the sheath core tube 112 and the assembly part 118 are integrally formed by mold forming, the number of the assembly parts 118 and the arrangement of the assembly parts 118 on the sheath core tube 112 may be different for different specifications or different types of stents 120. Therefore, For different products, it may be necessary to re-open the mold multiple times, which will inevitably increase the cost and difficulty of control.
  • the assembly 118 including the base 1181 and the protrusion 1182 reduces the difficulty of the manufacturing process, and is beneficial to reduce the manufacturing cost.
  • the spacing of the multiple assembly parts 118 can be flexibly set as required. Even if the base 1181 is added, the plurality of fittings 118 are still arranged on the sheath core tube 112 at intervals, and the rigidity of the sheath core tube 112 is not significantly increased. Under the premise of satisfying reliable fixation and not significantly increasing the process difficulty, the axial length of the base 1181 should be as small as possible, so as to minimize the impact on the rigidity of the sheath core tube 112.
  • the radial dimension of the outer sheath 113 be as small as possible.
  • the base 1181 has sufficient strength to make On the premise that the fitting 118 and the sheath core tube 112 are reliably connected, the thickness of the base 1181 should be as small as possible.
  • the ratio of the axial length of the base 1181 to the axial length of the protrusion 1182 is 1:1 to 1:25, and the outer diameter of the sheath core tube 112 Is d3, the outer diameter of the base 1181 is d4, d3+0.2mm ⁇ d4 ⁇ d3+4mm.
  • each fitting 118 includes only one protrusion 1182.
  • the orientation of the protrusions 1182 may be the same or different. For example, as shown in FIG. 7, in the plurality of fittings 118, the orientation of the protrusion 1182 is different. Since the stent 120 is a lumen structure, the stent 120 is sleeved on the sheath core tube 112, and the protrusions 1182 have different orientations, which can be restricted in multiple positions from the circumferential direction, which is beneficial to avoid the stent 120 from twisting relative to the sheath core tube 112.
  • the plurality of fittings 118 may be arranged regularly or irregularly.
  • a plurality of fittings 118 are regularly arranged on the sheath core tube 112 according to the regularity of staggering one phase. Staggered by one phase means that in the cross-sectional view of the sheath core tube 112, the protrusions 1181 of the plurality of fittings 118 are distributed in the circumferential direction, and any two adjacent protrusions 1182 are spaced in the circumferential direction. equal.
  • each fitting 118 includes only one protrusion 1182, and the protrusions 1182 of the plurality of fittings 118
  • the orientations are the same, that is, the protrusions 1182 of the plurality of fittings 118 are all located on the same side of the longitudinal center axis II (not shown in FIG. 9).
  • the protrusion 1182 faces the large bend side E1 of the outer sheath tube 113.
  • the outer sheath tube 113 and the stent 120 located therein will be correspondingly bent to form a major curve side E1 and a minor curve side E2, which are on the minor curve side.
  • E2 the metal wires of the stent 120 will gather, and on the big bend side E1, the metal wires become sparse, and the risk of displacement increases.
  • Orienting the protrusion 1182 of the assembling part 118 toward the big bend side E1 can better limit the metal wire of the bracket 120 on the big bend side E1 and prevent the bracket 120 from shifting.
  • positioning the protrusion 1182 toward the large bend side E1 facilitates the stent assembly system 100 to pass through the curved lumen path.
  • each assembly 118 includes a plurality of protrusions 1182, and the plurality of protrusions 1182 are arranged at intervals along the circumference of the base 1181.
  • the plurality of protrusions 1182 are divided into two groups, the two groups of protrusions 1182 are arranged at intervals in the axial direction, and each group of protrusions 1182 is arranged at intervals in the circumferential direction.
  • a plurality of protrusions 1182 are arranged at intervals along the circumferential direction of the base 1181 to maintain a more balanced limiting performance in the circumferential direction.
  • the base 1181 of the fitting 118 is a hollow cylindrical shape.
  • the processing is relatively convenient; on the other hand, the connection between the fitting 118 and the sheath core tube 112 is relatively reliable.
  • the shape of the base 1181 is not limited to a hollow cylindrical shape, and any shape that can fix the fitting 118 on the sheath core tube 112 is acceptable.
  • the base 1181 is an arc-shaped shell, and the shape of the surface of the arc-shaped shell away from the protrusion 1182 matches the arc-shaped surface of the sheath core tube 112, and the arc-shaped shell fits on The outer wall of the sheath core tube 112 facilitates the reliable fixing of the fitting 118 on the surface of the sheath core tube 112.
  • the base 1181 does not completely cover the sheath core tube 112 in the circumferential direction, it is beneficial to avoid significantly increasing the rigidity of the sheath core tube 112, so that the sheath core tube 112 maintains a certain degree of flexibility to facilitate the passage through the curved lumen path.
  • the ratio of the axial length of the arc-shaped shell to the axial length of the protrusion 1182 is 1:1 to 1:25, and the thickness of the arc-shaped shell is 0.1 to 4 mm.
  • the base 1181 is a hollow truncated cone shape, the outer contour is a truncated cone shape, and the inner cavity is a cylindrical shape. It should be noted that no matter how the shape of the base 1181 changes, the number of protrusions 1182 of each assembly 118 is not limited, and it can be one or more.
  • the orientation of the base 1181 is not limited. As shown in Fig. 16, in one embodiment, the large end of a part of the base 1181 is located at the proximal end, and the large end of a part of the base 1181 is located at the distal end, and the corresponding protrusions 1182 have different orientations.
  • the assembly 118 includes only a cylindrical protrusion structure or a structure including a base 1181 and a protrusion 1182, in one embodiment, the end surface of the free end of the assembly 118 is spherical, which is beneficial to reduce the assembly 118. Scratching the inner wall of the outer sheath 113 avoids damaging the inner wall of the outer sheath 113.
  • An assembly part 118 is fixed on the outer wall of the sheath core tube 112 of the assembly instrument 110. During the assembly process, the free end of the assembly part 118 extends into the metal grid of the stent 120 and hooks with the stent 120, thereby generating a limit. Function to prevent relative sliding of the stent 120 and the sheath core tube 112, and keep the stent 120 and the sheath core tube 112 relatively fixed, so that when the stent 120 and the sheath core tube 112 are pushed into the outer sheath tube 113, the stent 120 and the sheath core tube 112 The axial displacement of the core tube 112 can be kept consistent, which is beneficial to avoid stacking.
  • the assembly 118 still retains the limiting function of the stent 120 to prevent the stent 120 from twisting in the inner cavity of the outer sheath tube 113. Therefore, the assembling accuracy of the assembling instrument 110 is relatively high.
  • the metal wire of the bracket 120 in the above-mentioned embodiment forms a closed-loop grid, and the position limiting effect is achieved by passing the fitting 118 through the closed-loop grid.
  • the metal wires of the support frame 121 do not form a closed-loop grid.
  • the support frame 121 has a Z-wave structure or a sine wave structure.
  • FIG. 18 is a schematic diagram of a state in which the stent 120 of the Z-wave structure is assembled in the outer sheath 113, and the fitting 118 and the wire of the stent 120 are kept hooked. Specifically, the assembly part 118 is hooked to the small curved side of the peak or trough of the Z wave, so that the stent 120 can be limited in the axial and circumferential directions, thereby avoiding stacking and the stent 120 in the outer sheath during the assembly process.
  • the phenomenon of twisting inside the tube 113 is a schematic diagram of a state in which the stent 120 of the Z-wave structure is assembled in the outer sheath 113, and the fitting 118 and the wire of the stent 120 are kept hooked. Specifically, the assembly part 118 is hooked to the small curved side of the peak or trough of the Z wave, so that the stent 120 can be limited in the axial and circumferential directions, thereby avoiding stacking and the stent 120 in the outer sheath
  • the stent 120 does not include the film 122 , That is, the stent 120 is a bare stent.
  • the position limiting effect of the fitting 118 is better.
  • the stent including the membrane 122, the fitting 118, the outer sheath 113 and the membrane 112 can be matched reasonably, which can also achieve the effect of improving the assembly accuracy.
  • the fitting 118 should be able to hook with the stent 120 and be able to be fitted into the outer sheath 113 without damaging the stent 120 and the outer sheath 113.
  • the assembly part 118 extends into the diamond grid of the bracket 120, or the assembly part 118 is hooked on the wave crest or trough of the bracket 120.
  • the fitting 118 still remains in the state of extending into the diamond grid, or protruding from the crest or trough of the wave, so as to ensure the limiting effect and keep the stent 120 in the outer sheath 113.
  • the fitting 118 should have a certain height h1 (as shown in FIG.
  • the height is defined as the distance from the free end of the fitting 118 to the longitudinal center axis I-I of the sheath core tube 112).
  • the size of h1 can be appropriately increased, so that the fitting 118 can be reliably hooked to the bracket 120 This effectively prevents the relative sliding of the stent 120 and the sheath core tube 112, and when the stent 120 is assembled into the outer sheath tube 113, the fitting 118 can elastically abut against the inner wall of the outer sheath tube 113, effectively preventing the stent 120 from moving Bit.
  • the stent 120 includes the covering film 122
  • the fitting 118 has a certain elasticity or the hardness of the fitting 118 is small, it is beneficial to avoid damage to the covering film 122.
  • the inner diameter of the outer sheath tube 113 is d1, and when the hardness of the fitting 118 is 25D to 85D, 0.5d1 ⁇ h1 ⁇ 0.8d1, so as to ensure that the free end of the fitting 118 can extend to the stent 120 It can be reliably hooked to the bracket 120 without causing damage to the covering film 122.
  • the fitting 118 will resist the covering film 122 after protruding from the diamond grid of the stand 120.
  • the height h1 of the fitting 118 is too large, the free end of the fitting 118 is easy to The covering film 122 is damaged.
  • the height h1 of the fitting 118 should be a combination of the inner diameter d1 of the outer sheath tube 113, the wire diameter d2 of the wire of the stent 120 (when the support frame 121 is formed by cutting, d2 is the wall thickness of the support frame 121) and the coating
  • the thickness t of 122 is reasonably selected to ensure a reliable limiting function, to prevent the stent 120 from twisting in the outer sheath 113, and to avoid damage to the membrane 122. In one embodiment, 0.35 ⁇ d1-2 ⁇ d2-t ⁇ h1 ⁇ 0.85 ⁇ d1 to combine the above three effects.
  • the stent 120 including the membrane 122 0.35 ⁇ d1-2 ⁇ d2-t ⁇ h1 ⁇ 0.7 ⁇ d1.
  • h1 can be appropriately increased to improve the effect of limiting the stent 200.
  • the braided wire is relatively smooth, so it is more prone to displacement during the assembly process. Therefore, the size of h1 should be appropriately increased, but it should not be too large to resist the outer sheath tube 113. At the same time, if h1 is too small, the assembling part 118 will easily slip off the metal wire and it is difficult to play a limiting role.
  • 0.4 ⁇ d1-2 ⁇ d2 ⁇ h1 ⁇ 0.85 ⁇ d1 is used to better balance the effect of limiting the position and avoiding damage to the outer sheath 113.
  • 0.45 ⁇ d1-0.5mm ⁇ h1 ⁇ 0.55 ⁇ d1+0.5mm is used to better take into account the effect of limiting the position and avoiding damage to the outer sheath 113.
  • the size of the closed-loop grid and the non-closed-loop Z should all be within a certain range, and when the bracket 120 is compressed, the size of the grid and the dimensions of the crests or troughs will be reduced accordingly.
  • the cross-sectional area of the contacting part of the grid, wave crest or trough should be reasonable.
  • the cross-sectional area should not be too large, so that the assembly 118 can hook with the bracket 120 to provide a limit effect; on the other hand, , The cross-sectional area should not be too small to ensure that the assembly 118 has sufficient strength, to ensure a limiting effect, and at the same time, to prevent the assembly 118 from breaking from the root.
  • the cross-sectional area of the fitting 118 (the area of the cross section parallel to the longitudinal center axis II of the sheath core tube 112) is S1 (when the fitting 118 is a columnar structure, S1 is the cross-sectional area of the columnar structure;
  • S1 is the cross-sectional area of the protrusion 1182
  • the wire of the bracket 120 forms a closed-loop mesh, and in the natural unfolded state, the mesh area of the bracket 120 is S2, then 0.001 ⁇ S2 ⁇ S1 ⁇ 0.2 ⁇ S2, in order to take into account the strength of the assembly 118 and the limiting effect of the assembly 118 on the bracket 120.
  • the outer diameter of the outer sheath tube 113 when the outer diameter of the outer sheath tube 113 is less than or equal to 14F, 0.03 mm 2 ⁇ S1 ⁇ 1.8 mm 2 . In another embodiment, 0.07mm 2 ⁇ S1 ⁇ 0.8mm 2 .
  • the support frame 121 includes a plurality of wave-shaped ring structures containing wave crests and troughs.
  • the assembly 118 should be able to form a wave crest or trough of the stent 120. Hooking, that is, the fitting 118 should be able to penetrate the bent part of the wire.
  • the radius of the bent portion of the metal wire is R1. In one embodiment, 0.05 ⁇ R1 ⁇ R1 ⁇ S1 ⁇ R1 ⁇ R1 ⁇ , so as to take into account the strength of the assembly 118 and the limiting effect of the assembly 118 on the bracket 120.
  • the assembly 118 in order to take into account the strength of the assembly 118 and avoid damage to the outer sheath 113, when the assembly 118 has a cylindrical structure, as shown in FIG. 20, the assembly 118 includes a rigid part 1183 and a flexible part 1184, wherein the rigid part 1183 is a fixed end, which is fixedly connected to the sheath core tube 112, one end of the flexible part 1184 is connected to the end of the rigid part 1183 away from the sheath core tube 112, and the other end is a free end.
  • the fitting 118 and the stent 120 are hooked, and the free end of the flexible portion 1184 is against the covering film 122, which is beneficial to avoid damage to the covering film 122.
  • the rigidity ratio of the rigid part 1183 and the flexible part 1184 is 0.3-0.9, and the length ratio is 1:5-5:1.
  • the fitting 118 when the fitting 118 includes a base 1181 and a protrusion 1182, the protrusion 1182 includes a rigid part and a flexible part, the rigid part and the flexible part have a hardness ratio of 0.3 to 0.9, and a length ratio of 1: 5 ⁇ 5:1.
  • friction elements are usually arranged on the surface of the sheath core tube 112 to prevent the stent 120 and the sheath core tube 112 from sliding relative to each other through surface friction.
  • Increasing the surface friction force can keep the stent 120 and the sheath core tube 112 relatively fixed to a certain extent, but this method has limited limiting effect, and it is difficult to achieve a reliable limiting effect.
  • the stent 120 and the sheath core tube 112 will still slide relative to a certain degree, which may cause stacking.
  • the method of limiting the position by surface friction often requires increasing the surface area of the friction element, that is, the larger the area of the friction element covering the surface of the sheath core tube 112, the better. This will increase the rigidity of the sheath core tube 112 and reduce the assembly.
  • the flexibility of the instrument 110 increases the difficulty of assembling the instrument 110 through the curved lumen path.
  • the assembly device 110 of the present disclosure is provided with discontinuously distributed fittings 118 on the sheath core tube 112, which does not significantly increase the rigidity of the sheath core tube 112, and thus does not significantly reduce the flexibility of the assembly device 110.
  • the fitting 118 is hooked with the bracket 120 to provide a limiting effect, which is more reliable than friction.
  • the stent 120 including the covering film 122 due to the possibility that the protruding assembly 118 may burst and damage the covering film 122, no one has set up the assembly 118 to limit the position of the stent 120 during the assembly process. .
  • the present disclosure by reasonably setting the size of the assembly 118 and the performance of the covering film 122, while ensuring the limiting effect, damage to the covering film 122 can be avoided.
  • the material of the covering film 122 may be plastic, polyester or polyester.
  • the plastic may be polytetrafluoroethylene (PTFE)
  • the polyester may be polyethylene terephthalate (PET) or polyurethane (PU), and so on.
  • PTFE polytetrafluoroethylene
  • PET polyethylene terephthalate
  • PU polyurethane
  • the reason why the covering film 122 is burst is due to the radially outward force of the fitting 118, and reducing the risk of the covering film 122 being broken by the fitting 118 can be considered in a comprehensive manner.
  • it is the performance and size of the assembly 118 itself, such as the hardness, height h1 and cross-sectional area S1, etc.; on the other hand, it is the performance of the covering film 122 itself.
  • the height h1 needs to be as small as possible on the premise that the mounting part 118 can be reliably hooked to the bracket 120, and the cross-sectional area S1 needs to be as small as possible on the premise that the mounting part 118 can be reliably hooked to the bracket 120
  • the bottom is as large as possible.
  • the covering film 122 should allow a certain extension without breaking when the covering film 122 is subjected to the force of the larger fitting 118. Therefore, the elongation of the coating 122 should meet certain requirements. If the elongation rate of the covering film 122 is too small, the free end of the assembly 118 may abut on the covering film 122, especially for the stent 120 with a small metal mesh, which is more likely to be formed during compression. The wrinkles of the covering film 122 cannot ensure that the assembly part 118 extends into the mesh of the wire, and the surface of the covering film 122 is relatively smooth. When the bracket 120 is subjected to external force, it is easy to cause the assembly part 118 and the covering film 122 to move.
  • the breaking strength of the coating film 122 will also have a certain impact.
  • the breaking strength of the covering film 122 is too small, the assembly 118 can easily break the covering film 122 and cause the stent 120 to fail.
  • the covering film 122 with higher fracture strength generally has a smaller porosity or a larger thickness. The decrease in porosity will affect the effect of endothelial crawling, and the increase in the thickness of the covering film 122 will reduce the flexibility of the stent 120. .
  • 0.5N/mm ⁇ breaking strength ⁇ 15.0N/mm.
  • 1.0 N/mm ⁇ breaking strength ⁇ 9.5N/mm.
  • the thickness t of the coating film 122 and the height h1 of the assembly part 118 should satisfy a certain relationship.
  • t is large and h1 is small, it is difficult for the assembly 118 to push up the covering film 122, and it is impossible to ensure that the assembly 118 and the metal wire of the bracket 120 are reliably hooked.
  • t is small and the coating film 122 is thinner, and when h1 is large, the risk of the coating film 122 being burst is higher. Therefore, in one embodiment, 0.010 ⁇ t/h1 ⁇ 0.500. In another embodiment, 0.013 ⁇ t/h1 ⁇ 0.250.
  • the shape of the covering film 122 also has a certain influence on avoiding damage caused by the assembly 118. Please refer to Figures 21 and 22 together.
  • the cross-sectional shape of the stent 120 is roughly circular, and when the stent 120 is radially compressed onto the sheath core tube 112, as shown in Figures 23 and 24, the adjacent metal
  • the covering film 122 between the filaments is basically in an arc-shaped expanded state, forming a plurality of folds 1222.
  • the folds 1222 provide a certain space for the assembly 118.
  • the free end of the assembly 118 extends into the folds 1222, which is beneficial to avoid assembly
  • the covering film 122 is broken by the fitting 118.
  • the stent 120 is compressed due to the radial compression force.
  • the radial compression force actually acts on the support frame 121 of the stent 120.
  • the support frame 121 will be pressed against the sheath core tube 112.
  • the direction of the surface is squeezed.
  • the covering film 122 between the metal wires of the support frame 121 is in a tight state, the covering film 122 is more likely to be broken by the radially protruding fitting 118. high. Therefore, in the compressed state, the covering film 122 forms appropriate folds 1222 to reduce the risk of the covering film 122 being broken by the assembly 118.
  • a suitable compression rate can ensure that the covering film 122 located between adjacent metal wires is in a wrinkled state.
  • the distance between adjacent metal wires is shortened, and the covering film 122 forms wrinkles 1222 along with the compression process.
  • the compression rate of the stent 120 is defined as (D1-d1)/D1. The larger the compression rate, the more compressed the stent 120 is. Big.
  • the support skeleton 121 is composed of a plurality of diamond-shaped grids, and any diamond-shaped grid has four intersection points, a, b, c, and d. Among them, point b and point d are spaced apart in the axial direction, and point a and point c are spaced apart in the radial direction.
  • the degree of wrinkle of the covering film 122 closer to the intersection is smaller, and the degree of wrinkle of the covering film 122 farther from the intersection is greater, and the degree of wrinkle at the center of the mesh maximum. Therefore, the film 122 closer to the intersection is more likely to be broken by the assembly 118. Therefore, if the compression rate is too small, the risk that the part of the covering film 120 in the stent grid near the intersection point will be broken by the fitting 118 significantly increases.
  • the assembly 118 should protrude in the center of the diamond grid, but due to the accuracy of the production process and the axial pushing force received during assembly, the assembly 118 may be biased closer to At the location of the intersection, the actual damage of the coating 122 often occurs near the intersection, especially near the points b and d.
  • the mesh has four intersection points a , B, c, and d, when the assembly 118 is located near the intersection a, b, c, and d and is subjected to a force in the direction of the intersection, the crossed metal wires are at risk of sliding against each other, and the wires are affected near the intersection. The force and mutual movement will cause the inner membrane and the outer membrane to separate, and even cause the stent 120 to fail in severe cases.
  • the braiding method of the support frame 121 of the bracket 120 is a cross-hung method.
  • This kind of cross-hung design can well prevent the separation of the inner and outer films of the covering film 122 due to the mutual sliding of the metal wires near the crossing point due to the action of the assembly 118.
  • each intersection is designed with an inter-hanging design.
  • FIG. 25 in the metal mesh of the support frame 121, only the axial points b and d are intertwined, and the points a and c are generally intersected, that is, they are just overlapped. There is no mutual linking.
  • the bracket 120 does not receive extra circumferential force during the assembly process, the risk of circumferential displacement is smaller than that of the axial direction. Therefore, only the inter-hanging intersection points are formed in the axial direction, which can give priority to ensuring the axial movement The coating film 122 will not be damaged at the intersection. In addition, the intersection of the bracket 120 can be reduced as a whole, so that the bracket 120 has a certain degree of flexibility.
  • the metal wires are fixedly connected at the intersection, which can limit the displacement of the metal wire at the intersection to a certain extent.
  • the covering film 122 has a single-layer structure
  • the covering film 122 has a monolithic structure.
  • the covering film 122 has a two-layer structure including an inner layer film and an outer layer film
  • the inner layer film and the outer layer film have a monolithic structure respectively.
  • the metal wire at the inter-hanging position can rotate around the hinged joint within a certain range, which may also cause the risk of separation or damage of the covering film 122. Therefore, in one embodiment, the metal wires of the stent 120 are intertwined only at the intersection of the axial direction. And, as shown in FIG.
  • the covering film 122 includes an inner layer film 1223 and an outer layer film 1224, wherein the inner layer film 1223 is a cylindrical monolithic structure, and the inner layer film 1223 is wrapped by a support frame 121 in the circumferential direction to thereby Form a circumferentially closed lumen structure.
  • the outer film 1224 has a strip-shaped structure, and the strip-shaped outer film 1224 is wound on the outer surface of the metal wire and the inner film 1223, and the metal wire at the intersection point of each other is not covered by the outer film 1224, that is, There is no outer film 1224 at the intersection.
  • the outer film 1224 is spirally wound on the outer surface of the metal wire and the inner film 1223 to avoid covering the intersection. It can be understood that the arrangement of the outer film 1224 is not limited to spirally wound on the outer surface of the metal wire and the inner film 1223, and any arrangement that can prevent the outer film 1224 from covering the hook of the metal wire can be used. .
  • the outer film 1224 includes two parts, namely, a plurality of first strip-shaped films 1224A and a plurality of second strip-shaped films 1224B, wherein the plurality of first strip-shaped films 1224A are parallel ,
  • the outer surface of the metal wire and the inner film 1223 is covered at intervals (the inner film 1223 is omitted in FIG. 27), and a plurality of second strip-shaped films 1224B cover the outer surface of the metal wire and the inner film 1223 in parallel and at intervals superior.
  • first strip-shaped film 1224A and the second strip-shaped film 1224B intersect, and neither the first strip-shaped film 1224A nor the second strip-shaped film 1224B covers the intersecting points of the metal wires. In this way, the bonding between the metal wire and the outer film 1224 is more reliable.
  • first strip-shaped film 1224A and the second strip-shaped film 1224B can be The width can be set reasonably.
  • the outer layer film 1224 includes a first strip-shaped film 1224A and a second strip-shaped film 1224B, the first strip-shaped film 1224A and the second strip-shaped film 1124B are both continuous structures, and It is arranged by winding, and the first strip-shaped film 1224A and the second strip-shaped film 1224B cross, and neither the first strip-shaped film 1224A nor the second strip-shaped film 1224B covers the intersecting points of the metal wires.
  • the covering film 122 and the assembly parts 118 it is beneficial to improve the assembly accuracy of the stent assembly system 100.
  • the stent 120 with the covering film 122 can also be applied to the stent 120 with the covering film 122 if the assembly parts 118 are provided to improve the assembly accuracy.
  • the assembly device 110 is not only suitable for single-layer stents, but also suitable for double-layer stents. Please refer to FIG. 29.
  • a part of the bracket 120 has a double-layer structure.
  • the stent 120 includes a first tube body 120A and a second tube body 120B.
  • the first tube body 120A is a lumen structure with open ends
  • the second tube body 120B is sleeved on the first tube body 120A
  • the second tube body 120B At least one end of is fixedly connected to the outer peripheral surface of the first tube body 120A.
  • the outer peripheral surface of the first pipe body 120A is partially covered by the second pipe body 120B.
  • Both the first tube 120A and the second tube 120B may be a stent graft or a bare stent.
  • a plurality of fittings 118 are arranged at intervals on the sheath core tube 112, and the height h1 of the fittings 118 opposite to the first tube body 120A and the second tube body 120B in the radial direction is smaller than that of only the first tube in the radial direction.
  • the body 120A is opposite to the mounting part 118, but it is still necessary to ensure that the mounting part 118 has a sufficient height h1 to be hooked with the bracket 120 to produce a limit effect.
  • the inner cavity of the outer sheath tube 113 is an equal-diameter inner cavity, and when the stent 120 is assembled in the outer sheath tube 113, since the stent 120 has a partial double-layer structure, the second tube body 120B must occupy the outer sheath tube. In a certain space of the inner cavity of 113, when the height h1 of the fitting 118 opposite to the first tube body 120A and the second tube body 120B in the radial direction is too large, there is a risk of damaging the stent 120 and/or the outer sheath tube 113 .
  • the height h1 of the fitting 118 opposite to the first tube body 120A and the second tube body 120B simultaneously in the radial direction satisfies : 0.4 ⁇ d1-2 ⁇ d2-t ⁇ h1 ⁇ 0.8 ⁇ d1, so that the free end of the assembly 118 protrudes from the wire of the first tube body 120A, but the coating film is not damaged.
  • the height h1 of the fitting 118 opposite to the first tube body 120A and the second tube body 120B simultaneously in the radial direction satisfies: 0.35 ⁇ d1-2 ⁇ d2-t ⁇ h1 ⁇ 0.75 ⁇ d1, so that the free end of the fitting 118 protrudes from the wire of the first tube body 120A, but the inner wall of the outer sheath tube 113 is not damaged.
  • the second tube body 120B does not cover both ends of the first tube body 120A, as shown in the embodiment shown in FIG.
  • the opposite fittings 118 can be omitted, and the fittings 118 are arranged at the proximal end and the distal end of the first tube body 120 to limit the position of the stent 120.
  • the stent assembly system 100 improves the assembly accuracy from the source, which is beneficial to avoid affecting the intraoperative release accuracy due to poor assembly accuracy.
  • the release process of the stent 120 will be described below with reference to FIGS. 30a-30d.
  • the stent 120 is still located in the inner cavity of the outer sheath 113.
  • the assembly 118 remains hooked and connected to the stent 120.
  • Keep the sheath core tube 112 still, move the outer sheath tube 113 axially away from the guide head 111, the stent 120 contacts the inner wall of the outer sheath tube 113, and the friction force of the outer sheath tube 113 causes the stent 120 to follow
  • the outer sheath tube 113 tends to move in the direction away from the guide head 111 together.
  • the stent 120 If the stent 120 is significantly displaced in the direction away from the guide head 111, the stent 120 will be squeezed in the inner cavity of the outer sheath tube 113. In severe cases, Accumulation will occur and the release accuracy will be reduced, for example, the position of the bracket 120 may be shifted or the shape of the bracket 120 may be twisted. And, the position shift will be released. As shown in Fig. 30b, because the fitting 118 is provided, the fitting 118 remains hooked and connected with the stent 120. During the movement of the outer sheath 113, the stent 120 can resist the friction of the outer sheath 113, so the stent 120 and The sheath core tube 112 remains relatively fixed. Please refer to FIGS. 30a to 30e together.
  • the stent 120 Since the plurality of fittings 118 are arranged at intervals along the axial direction of the sheath core tube 112, as the outer sheath tube 113 gradually moves away from the guide head 111, the stent 120 is gradually released, but At least part of the part located in the inner cavity of the outer sheath tube 113 is hooked with the fitting 118, which can effectively avoid the displacement of the stent 120, thereby improving the release accuracy. Due to the restoring force of the stent 120, when the stent 120 is restrained by the outer sheath tube 113 and disappears, the stent 120 automatically bounces and fits the inner wall of the tissue, thereby completing the release.
  • the stent 120 is always restricted by the assembly 118 and remains relatively fixed to the sheath core tube 112 throughout the entire process.
  • the assembly 118 and the stent farthest from the guide head 111 in the axial direction The metal grid hook or the wave crest or trough hook of the 120 which is farthest from the guide head 111 in the axial direction, that is, at least one fitting 118 is located at the nearest end of the bracket 120.
  • the stent 120 Since the stent 120 is gradually released, during the release process, when the ratio of the axial length of the released part of the stent 120 to the axial length of the part of the stent 120 in the outer sheath 113 is large, the stent 120 It will bounce off automatically, and the most distal end of the stent 120 (that is, the part that is released first) at least contacts the inner wall of the tissue to produce a certain limit effect. Therefore, even if the fitting 118 farthest from the guide head 111 in the axial direction is far away from the nearest end of the stent 120 to a certain extent, it can be ensured that the stent 120 and the sheath core tube 112 are prevented from sliding relative to each other during the entire release process.
  • the axis of the proximal end of the fitting 118 and the stent 120 is The ratio of the axial distance to the axial length of the stent 120 is not more than 1/3.
  • the plurality of fittings 118 near the distal end have a smaller interval, which is beneficial for release. This is because during the release process, the release force is the largest at the beginning of the release, which is most likely to cause the distal end of the stent 120 to move and cause stacking, so that it cannot be released. Therefore, more fittings 118 can be installed closer to the distal end. It is better to limit the movement of the bracket 120 to avoid being unable to be released or to reduce the difficulty of release.
  • the fitting 118 and the distal end surface of the stent 120 are located at the most distal end.
  • the ratio of the axial distance of ⁇ to the axial length of the stent 120 is not more than 1/3, which is beneficial to avoid the occurrence of proximal stacking during the assembly process.
  • bracket assembly system 100 of the present disclosure can realize recycling, thereby avoiding the above-mentioned problems.
  • the order in which the stent 120 is recovered is opposite to the order in which it is released.
  • the sheath core tube 112 is kept still, and the outer sheath tube 113 is moved toward the direction of the guide head 111.
  • the inner wall of the outer sheath tube 113 and the outer wall of the stent 120 will rub, so a thrust is applied to the stent 120 in the direction of the guide head 111.
  • the stent 120 has a tendency to move along with the outer sheath tube 113, that is, a tendency to move relative to the sheath core tube 112.
  • the fitting 118 will give the stent 120 a force against movement, thereby preventing the movement of the stent 120. Therefore, the stent 120 can be recovered by pushing the outer sheath tube 113 in a direction close to the guide head 111.
  • the state changes of the recovery process are shown in Figure 30e, Figure 30d, Figure 30c, Figure 30b, Figure 30a.
  • the outer sheath tube 113 When the outer sheath tube 113 is advancing in the direction of the guide head 111, the part located outside the outer sheath tube 113, the mesh of the stent 120 The grid gradually approaches the fitting 118 until the fitting 118 penetrates the grid. The outer sheath tube 113 continues to advance toward the direction of the guide head 111, and the fitting 118 and the stent 120 are put into the outer sheath tube 113 together to realize the recovery of the stent 120.
  • the conventional stent conveyor has no fittings. If a part of the stent 120 is released and then recovered, the stent 120 will move with the outer sheath 113 during the operation, which makes it difficult to recover.
  • the assembly parts 118 can provide the bracket 200 with a certain and reliable anti-displacement force during the assembly process without being pulled off, so as to realize the recovery of the bracket 120.
  • the assembly part 118 will not break the covering film 122 or cause damage to the covering film 122 during the recovery process. Therefore, the stent can be recovered through After 120, adjust the position and continue to release the bracket 120.
  • the assembly parts 118 are set reasonably, and the stent assembly system 100 not only improves the accuracy from the source of the assembly, but also improves the accuracy during the release process, which is beneficial to the smooth progress of the interventional operation and ensures the curative effect. Moreover, it can be recycled when unexpected situations occur, which is safe and reliable.
  • the assembly 118 can be reliably hooked with the stent 120, and the assembly 118 does not damage the membrane 122 and/or the outer sheath 113, the assembly 118 is not limited to the specific structure described above. , Can be other structures.
  • a plurality of assembly parts 118 are connected by a connecting member 119 to form an assembly assembly 130.
  • the assembly assembly 130 is directly installed on the sheath core tube 112.
  • the connecting member 119 is generally rod-shaped, and can be a flat rod or an arc-shaped rod. Any two adjacent assembly parts 118 can be connected by at least one connecting member 119. The two ends of each connecting member 119 are respectively connected to the bases 1182 of two adjacent assembly parts 118.
  • the number of the assembly parts 118 of each assembly assembly 130 can be set reasonably according to the length of the bracket 120.
  • the number of assembly components 130 on each stent conveyor 110 can be reasonably set based on the length of the stent 120 and the number of assembly components 118 of each assembly component 130.
  • the assembly assembly 130 formed by connecting a plurality of assembly parts 118 by the connecting member 119 is more convenient to prepare. Since the size of each assembly 118 is small, the preparation of a single assembly 118 requires a higher mold to meet the accuracy requirements. The size of the assembly component 130 is relatively large, and the requirements on the mold are relatively low, and it can be injection molded at one time.
  • the number and setting positions of the connecting members 119 between two adjacent assembly parts 118 may be the same or different.
  • two adjacent fittings 118 are connected by two connecting members 119 arranged at intervals along the circumference of the sheath core tube 112.
  • the plane formed by the two connecting pieces 119 at the distal end is perpendicular to the plane formed by the two connecting pieces 119 at the proximal end.
  • the arrangement of the connecting member 119 in this way is beneficial to ensure that the flexibility of the stent conveyor 110 in any angular direction is consistent, and is beneficial to passing through a complicated curved path.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Prostheses (AREA)

Abstract

一种支架装配系统(100)及支架装配方法,该支架装配系统(100)包括支架(120)和装配器械(110),装配器械(110)用于装配并输送支架(120),装配器械(110)包括鞘芯管(112)、外鞘管(113)和装配件(118),外鞘管(113)沿轴向可滑动地套设于鞘芯管(112)上,且外鞘管(113)的内壁和鞘芯管(112)的外壁之间形成用于容置支架(120)的容置腔(116),装配件(118)具有固定端及与固定端相对的自由端,固定端与鞘芯管(112)连接,当支架(120)被径向压握于鞘芯管(112)上时,自由端与支架(120)发生钩挂而对支架(120)进行限位。

Description

支架装配系统及支架装配方法 技术领域
本发明涉及医疗器械领域,特别是涉及一种支架装配系统及支架装配方法。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
介入治疗具有创伤小、并发症少的特点。目前,通过介入治疗方式治疗心血管疾病已成为一种常用的治疗方法。随着介入技术的不断发展,介入治疗技术日趋进步,采用介入技术治疗动脉瘤、动脉夹层疾病、血管狭窄等心血管病变的优势日显突出。介入技术中,支架是一种常见的器械。按结构分类,支架主要分为两类,一类为覆膜支架,主要由覆膜和支撑覆膜的金属支架组成。覆膜一般是由涤纶、膨体聚四氟乙烯(e-PTFE)膜等生物相容性好的材料制成,金属支架一般由镍钛合金或不锈钢等材料制成。另一类为裸支架,裸支架不含覆膜,一般由金属支架组成,例如不锈钢支架或镍钛合金支架。其中,覆膜支架和裸支架中的金属支架部分,按制备方法分类,可以分为编织金属支架和切割金属支架两种,编织金属支架的原材料一般为金属丝材,通过编织及热定型形成编织金属支架;切割金属支架的原材料一般为管材,通过切割及热定型制成切割金属支架。
无论是覆膜支架还是裸支架,介入治疗术一般预先将支架装配在输送系统的鞘管中,手术时,输送系统将支架输送到病变部位后释放支架,支架膨胀展开并紧贴血管壁以隔离血流和动脉瘤及动脉夹层,或重新打开狭窄的血管通道,从而重新建立血液正常循环的通道,实现对动脉瘤、动脉夹层或血管狭窄等病变的介入治疗。
随着支架介入技术的广泛应用,临床上出现的越来越多的问题有待于优化。其中,支架无法释放、支架释放形态扭曲、支架受损等问题较为常见。支架无法释放导致无法实现介入治疗,支架释放后形态扭曲可能会导致支架定位不佳、支架受损可能导致径向支撑不足等问题,从而影响疗效。为了解决这些问题,目前,很多研究把重心放在了释放机构上,而忽视了装配精度对支架能否精确释放的影响。释放机构的优化有利于提高释放精度,装配精度亦对释放精度起着至关重要的作用。在将支架装配至鞘管的过程中,支架堆叠或者扭转对支架释放精度会产生的不利影响,严重时可能造成支架无法释放的严重后果。
目前,支架的装配方式主要包括两种,一种是对支架施加的径向力使支架被压握在鞘芯管上,随后将支架与鞘芯管一同推送进鞘管中。这种装配方式中,支架在受到径向压缩力的同时还受到轴向推送力,轴向力推送力将支架和鞘芯管一起推送入鞘管中,如果在推送过程中支架和鞘芯管之间出现相对滑动,会导致堆叠的现象发生,堆叠则会影响支架的装配精度。装配导致的堆叠一般包括以下三种情况:1)堆叠在近端或近端附近,这是因为在装配的初期,当支架与鞘芯管之间发生相对滑动,使得支架与鞘芯管的轴向位移不完全同步,当支架的轴向位移量大于鞘芯管的轴向位移量时,就会造成支架的近端部分已进入鞘 管中,而相应的鞘芯管部分仍位于鞘管外部,随着持续的轴向推送力作用,已装入鞘管的支架部分开始往近端方向移动,最终在近端或近端附近发生波圈堆叠。2)堆叠在支架中部,在装配的中期,支架和鞘芯管发生相对滑动,导致支架推送入鞘管中时,相应的鞘芯管没有完全被推送至鞘管中,并且此时已经装配入鞘管中的支架部分和鞘芯管部分没有发生相对移动,随着持续的轴向推送力作用,发生支架中部堆叠现象。3)堆叠在远端或远端附近,这是因为开始的装配过程中,支架和鞘芯管发生相对滑动,使支架的向靠近鞘管方向轴向位移的位移量小于鞘芯的相应轴向位移量,从而导致鞘芯管部分被推送至鞘管中后,而对应的支架部分仍位于鞘管外部,导致在装鞘末期时候,未装入鞘管的部分相对较多,如此继续装配就会造成支架堆叠在远端或远端附近。
此外,由于不同植入部位对支架的性能要求不同,在设计上,很多支架的沿周向的波形高度、波角和/或金属量等不同,因此当支架受到径向压缩力作用时,支架的沿周向的各个部分产生的与该径向压缩力相反的反作用力不同,沿周向分布的各个部分所产生的反作用力并不一定沿着周向均匀分布。有的波形产生的反作用力小,有的反作用力大,反作用力小的波形的压缩量明显大于反作用力大的波形,反作用力大的波形将反作用力小的波形挤在一侧。在装配过程中,在进入鞘管之前,支架被压缩的均匀性可以人为地控制和调整,但是进入鞘管后,支架回到其周向不均匀分布的趋势难以避免,因而,装鞘后的波形相对于推送入鞘管前的相位发生了偏移,即发生扭转。此外,在支架连同鞘芯管被推送进鞘管的过程中,也可能因为支架相对于鞘心管的周向移位使得支架扭转,这会造成支架在装配进鞘管后呈现扭曲的形态,因而支架植入释放时候也会呈现扭曲。当扭曲严重时,甚至导致支架损坏。
另一种支架的装配方式是将支架径向压握在鞘芯管上,保持支架和鞘芯管不动,随后给鞘管一个推送力使鞘管向支架和鞘芯管移动,以将支架和鞘芯管装配入鞘管的内腔中。这种装配方式的风险与前述方式是类似的,不再赘述。
发明内容
基于此,有必要提供一种能够提高装配精度的支架装配系统及支架装配方法。
一种支架装配系统,包括支架和装配器械,所述装配器械用于装配并输送所述支架,所述装配器械包括鞘芯管、外鞘管和装配件,所述外鞘管沿轴向可滑动地套设于所述鞘芯管上,且所述外鞘管的内壁和所述鞘芯管的外壁之间形成用于容置所述支架的容置腔,所述装配件具有固定端及与所述固定端相对的自由端,所述固定端与所述鞘芯管连接,当所述支架被径向压握于所述鞘芯管上时,所述自由端与所述支架发生钩挂而对所述支架进行限位。
装配器械的鞘芯管上设有具有自由端的装配件,当支架被径向压握于鞘芯管上时,装配件的自由端与支架发生钩挂而对支架进行限位。从而,在装配过程中,能够避免支架与鞘芯管发生相对滑动而产生支架堆叠现象,因而,该支架装配系统能够提高装配精度。
附图说明
图1为一实施方式的支架装配系统的结构示意图;
图2为一实施方式的装配器械的结构示意图;
图3为一实施方式的支架装配系统的处于装配状态的局部示意图;
图4为另一实施方式的支架装配系统的处于装配状态的局部示意图;
图5a~图5d为一实施方式的支架装配系统的装配过程示意图;
图6为另一实施方式的支架装配系统的处于装配完成状态的局部示意图;
图7为另一实施方式的装配器械的局部结构示意图;
图8为一实施方式的装配件的结构示意图;
图9为一实施方式的装配器械的弯曲状态示意图;
图10为另一实施方式的装配件的结构示意图;
图11为另一实施方式的装配件的结构示意图;
图12为另一实施方式的装配件的结构示意图;
图13为另一实施方式的装配件的结构示意图;
图14为另一实施方式的装配件的结构示意图;
图15为另一实施方式的装配件的结构示意图;
图16为另一实施方式的支架装配系统的处于装配完成状态的局部示意图;
图17为一实施方式的支架的结构示意图;
图18为图17所示的支架处于装配完成状态的示意图;
图19为一实施方式的装配件与外鞘管的尺寸示意图;
图20为另一实施方式装配件的结构示意图;
图21为另一实施方式的支架的结构示意图;
图22为沿图21的II-II线的截图示意图;
图23和图24为一实施方式的支架在压缩状态的横截面的示意图;
图25为一实施方式的支架的编织形态示意图;
图26为一实施方式的支架的覆膜的结构示意图;
图27为一实施方式的支架的覆膜的结构示意图;
图28为一实施方式的支架的覆膜的结构示意图;
图29为另一实施方式的支架的结构示意图;
图30a~图30e为一实施方式的支架装配系统的释放过程示意图;
图31为一实施方式的装配组件的结构示意图;
图32为另一实施方式的装配组件的结构示意图;
图33为另一实施方式的装配组件的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
在介入医疗器械领域,定义“远端”为手术过程中远离操作者的一端,定义“近端”为手术过程中靠近操作者的一端。“轴向”指平行于医疗器械远端中心和近端中心连线的方向,“径向”指垂直于上述轴向的方向。
请参阅图1,一实施方式的支架装配系统100,包括装配器械110和支架120。装配器械110用于装配支架120,并将支架120输送至病变部位。
请参阅图2,装配器械110包括导向头111、鞘芯管112、外鞘管113、固定手柄114和活动手柄115。
导向头111为两端开口且远端呈锥形的中空腔体结构。鞘芯管112为中空管件。鞘芯管20的远端从导向头111的近端开口端伸入导向头111中并与导向头111固定连接,且鞘芯管112的空腔与导向头111的腔体连通而形成导丝通道,以确保装配器械110在导丝的引导下可以顺利地到达病变部位。
鞘芯管112和外鞘管113均为中空的管状构件。外鞘管113套设于鞘芯管112上且外鞘管113和鞘芯管112同轴。并且,外鞘管113相对鞘芯管112可轴向滑动。如图3所示,当外鞘管113沿轴向滑动至外鞘管113的远端与导向头111抵持或靠近导向头111时,外鞘管113和鞘芯管112围成环形的容置腔116,支架120收容于容置腔116中。请对照图2和图3,固定手柄114与鞘芯管112保持相对固定,活动手柄115与外鞘管113固定连接,在手术过程中,一手握住固定手柄114,另一手操作活动手柄115,使外鞘管113沿轴向向近端移动,从而释放支架120。
在一实施方式中,如图2,装配器械110还包括支撑管117,支撑管117套设于鞘芯管112的近端。支撑管117与鞘芯管112同轴,并固定连接。外鞘管113套设在支撑管117上,并沿支撑管117至鞘芯管112可轴向滑动或沿鞘芯管112至支撑管117可轴向滑动。设置支撑管117,一方面,支撑管117远端能够与支架120抵接,起限位作用;另一方面,支撑管117在外鞘管113的未覆盖支架120的区域能够对外鞘管113形成较好的支撑,以防止外鞘管113弯折。
请回到图1和图2,装配器械110还包括装配件118。装配件118用于辅助支架120的装配,以提高装配精度。装配件118设置于鞘芯管112的外壁上,并与鞘芯管112固定连接。装配件118具有固定端和自由端,与鞘芯管112相连的一端为固定端,与固定端相对的另一端为自由端。在一实施方式中,装配件118为设置于鞘芯管112外壁上的凸起,装配件118的远离鞘芯管112的外壁的一端为自由端。在一实施方式中,装配件118为固定于鞘芯管112外壁上的圆柱状凸起,该圆柱状凸起的一个底面为固定端端面,另一个底面为自由端端面。可以理解,装配件118的形状不限,例如,可以为椭圆柱、方形柱等等。
支架120为管腔结构。在一实施方式中,支架120为覆膜支架。如图1,支架120包括支撑骨架121及覆盖在支撑骨架121上的覆膜122。支撑骨架121为由金属丝编织或由金属管件切割形成的镂空管腔结构,覆膜122覆盖在支撑骨架121的周向上形成周向封闭的管腔结构。金属丝形成闭环的网格,例如,菱 形网格、方形网格、三角形网格、圆形网格等等。
将支架120装配于装配器械110中时,首先,一手固定固手柄114,另一手操作活动手柄115使外鞘管113沿轴向向近端滑动,即向远离鞘芯管112的方向作轴向位移,以露出鞘芯管112。接着,将支架120从导向头111所在的一端套设在鞘芯管112上。进一步,径向压握支架120,使支架120被径向压缩并贴合在鞘芯管112的外表面上。以支撑骨架121的金属丝形成闭环的菱形网格为例,当支架120被径向压缩时,支撑骨架121的菱形网格仍然保持为闭环的、具有4个端点的网格,装配件118的自由端伸入对应的网格中并与支架120发生钩挂(装配件118的自由端的端面凸出于支撑骨架121;或,与支撑骨架121的金属丝的端面平齐;或,低于支撑骨架121的金属丝的端面,但仍与支架120保持钩挂),装配件118可以限制支架120沿着轴向和周向运动,从而使支架120和鞘芯管112保持相对固定,避免两者相对滑动。如图1所示,菱形网格具有四个端点A、B、C和D(图1未示出D点),当支架120相对于鞘芯管112向导向头111方向滑动时,装配件118会与菱形网格上的B点相碰,即支架120相对于鞘芯管112向导向头111方向滑动的趋势被装配件118限制。同理,装配件118可以限制支架120向着远离导向头111方向滑动的趋势。当支架120有扭转的趋势时,会与交点C或者D触碰,因此,装配件118能够限制支架120扭转的趋势。因此,当将支架120径向压缩并压握在鞘芯管112上时,由于装配件118的限位作用,使得支架120和鞘芯管112之间的相对滑动被限制。在使支架120和装配件118保持钩挂的状态下,将支架120和鞘芯管112一起收容于外鞘管113中,完成装配。
在一实施方式中,使支架120和鞘芯管112一起收容于外鞘管113中的步骤包括:使外鞘管113保持不动,将鞘芯管112和支架120一起沿轴向推送至外鞘管113的内腔中。
在另一实施方式中,使支架120和鞘芯管112一起收容于外鞘管113中的步骤包括:使鞘芯管112和支架120保持不动,沿着靠近鞘芯管112和支架120的方向推送外鞘管113,使鞘芯管112和支架120收容于外鞘管113中。
无论是将鞘芯管112和支架120一起沿轴向推送至外鞘管113的内腔中还是向着靠近鞘芯管112和支架120的方向推送外鞘管113,在推送过程中,支架120和鞘芯管112始终保持相对固定,有利于避免堆叠的现象。同时,有利于避免支架120扭转。
因此,使用支架装配系统100装配支架120,能够避免堆叠和扭转,从而提高了装配精度。并且,提高了装配效率和装配良率。同时,装配过程无需额外的辅助工装,装配方法简单。
如图3,当支架120进入外鞘管113中后,装配件118仍然穿设支架120的菱形网格,因而仍然能够保持对支架120的限位作用。即,当支架120受到沿着鞘芯管112的轴向或者周向的力时,装配件118可以很好地对支架120的形态进行限制,避免其轴向移动和周向转动。
可以理解,支架120具有一定的长度,为了保证较好的限位作用,装配件118的数量根据支架120的长度合理设置。同时,支架120为管腔结构,同样为 了保证较好的限位作用,多个装配件118的自由端朝向亦可合理布局。在图1所示的实施方式中,装配件118的数量为二,两个装配件118间隔设置。并且,当将支架120压握在鞘芯管112上时,一个装配件118位于支架120的远端,另一个装配件118位于支架120的近端。两个装配件118的自由端的径向延伸方向相反。两个装配件118能够较好地对支架120进行限位,并且由于两个装配件118分别位于支架120的远端和近端,间隔设置,使得装配件118不显著增加鞘芯管112的刚性,以使装配器械110能够保持通过弯曲管腔路径的能力。
在另外的实施方式中,两个装配件118的自由端的延伸方向可以相同,如此亦可保证对支架120的限位作用。
装配件118的自由端的延伸方向与鞘芯管112不平行。在一实施方式中,装配件118与鞘芯管112的纵向中心轴线I-I垂直,即装配件118的自由端的延伸方向与纵向中心轴线I-I垂直,如图3所示。
在一实施方式中,装配件118与鞘芯管112的纵向中心轴线I-I成锐角,即装配件118的自由端的延伸方向与纵向中心轴线I-I成锐角,装配件118相对于纵向中心轴线I-I倾斜,如图4所示。
需要说明的是,无论装配件118与纵向中心轴线I-I垂直设置还是装配件118相对于纵向中心轴线I-I倾斜,当装配件118的数量为多个时,在保证限位作用,使得支架120和鞘芯管112保持相对固定的前提下,多个装配件118在鞘芯管112上的设置方式不限。例如,多个装配件118可以均位于纵向中心轴线I-I的同一侧;或者,有部分装配件118位于纵向中心轴线I-I的同一侧,另一部分装配件118位于纵向中心轴线I-I的另一侧。位于纵向中心轴线I-I两侧的多个装配件118可以在径向上相对,也可以不相对,即可以沿纵向中心轴线I-I对称设置,也可以不对称设置。或者,多个装配件118的自由端交替地位于鞘芯管112的纵向中心轴线I-I的两侧。
请参阅图5a,在一实施方式中,装配件118为多个,且多个装配件118均与鞘芯管112的纵向中心轴线I-I成锐角,多个装配件118两两为一组,每组以鞘芯管112的纵向中心轴线I-I为对称轴,对称地设置在纵向中心轴线I-I的两侧,多组装配件118沿鞘芯管112轴向间隔排列。并且,多组装配件118中,有部分向远端倾斜(指装配件118的自由端比固定端更靠近远端),有部分向近端倾斜(指装配件118的自由端比固定端更靠近近端)。向远端倾斜的多组装配件118较向近端倾斜的多组装配件118更靠近远端。即,从鞘芯管112的远端至近端,向远端倾斜的多组装配件118间隔地沿轴向排列,向近端倾斜的多组装配件118间隔地沿轴向排列,且在轴向上最远离的导向头111的一组向远端倾斜的装配件118位于所有向近端倾斜的装配件118的远端。向远端倾斜的多组装配件118可以等间距排列,也可以不等间距排列。向近端倾斜的多组装配件118可以等间距排列,也可以不等间距排列。当倾斜方向不同的装配件118均为等间距排列时,向远端倾斜的多组装配件118的间隔与向近端倾斜的多组装配件118的间隔可以相等,也可以不等。
当要使支架120和鞘芯管112一起向外鞘管113轴向移动时,施加在支架120和鞘芯管112的推力需要能够将装配件118从图5b变为图5c的状态,即装 配件118的朝向发生改变,支架120的金属丝才能够继续压迫图5c中装配件118,使得装配件118与外鞘管113内壁之间产生间隙,从而导致装配件118从间隙中滑脱,在外鞘管113的内腔中不能产生限位作用,从而造成支架120移位或扭转。相对于垂直设置的装配件118,这种朝向的装配件118要受到较大作用力才会滑脱,因此,这种朝着远离导向头111方向倾斜的的装配件118可以有效防止支架120向靠近导向头111方向滑移而导致装配件118滑脱。
当支架120部分装入外鞘管113后,支架120和鞘芯管112已在近端保持相对固定,继续往靠近导向头111的方向推动外鞘管113,向远端倾斜的多个装配件118可以顺应外鞘管113而变得更加倾斜,从而更方便地进入外鞘管113中。
通过设置不同朝向的装配件118,并在鞘芯管112上合理分布,使得在对支架120提供限位作用的同时,方便装配。
在一实施方式中,向远端倾斜的多组装配件118和向近端倾斜的多组装配件118均为不等间隔设置,靠近远端方向,向远端倾斜的多组装配件118的间隔较小,靠近近端方向,向近端倾斜的多组装配件118的间隔较小。在开始装配时,最容易出现支架120和鞘芯管112相对滑动的情况,因此,向近端倾斜的多组装配件118的间隔较小,设置向近端倾斜的多组装配件118的数量多一些,以在刚开始装配时,避免出现支架120堆叠在近端或近端附近的情况,并使支架120的进入外鞘管113的部分被锚定住,也从整体上有利于保持支架120和鞘芯管112的相对固定,从而有利于减缓或避免后续可能出现的中部堆叠或远端堆叠的现象发生。
如图6所示,在一实施方式中,装配件118为多个,多个装配件118两两为一组,每组以鞘芯管112的纵向中心轴线I-I为对称轴,对称地设置在纵向中心轴线I-I的两侧,多组装配件118沿鞘芯管112轴向间隔排列。并且,多组装配件118中,有部分向远端倾斜,有部分向近端倾斜,有部分与鞘芯管112的纵向中心轴线I-I垂直。并且,向远端倾斜的装配件118(一组或多组)位于远端,向近端倾斜的装配件118(一组或多组)位于近端,与鞘芯管112的纵向中心轴线I-I垂直的装配件118(一组或多组)位于中部。如此设置,亦能提高装配精度。
请一并参阅图7和图8,在另一实施方式中,装配件118包括基座1181和设于基座1181上的凸起1182,基座1181和凸起1182为一体式结构。或者,通过焊接、胶粘等方式将基座1181和凸起1182固定相连。基座1181和凸起1182的材料可以相同,也可以不同。基座1181固定地设置于鞘芯管112的外壁上,基座1181为装配件118的固定端。凸起1182自与基座1181的连接部位延伸,且凸起1182的远离基座1181的一端为自由端。
在一实施方式中,如图8,基座1181为中空结构,基座1181的中部具有内腔,基座1181通过该内腔套设于鞘芯管112上。凸起1182固定于基座1181的外壁上。包括基座1181的装配件118的与鞘芯管112的固定方式更容易,更可靠。基座1181能够降低制备工艺难度。对于不包括基座1181的装配件118,由于装配件118的尺寸比较小,需要非常精密的操作才能完成装配件118与鞘芯 管112的固定。如果采用模具成型的方式使鞘芯管112和装配件118一体成型,则针对不同规格或不同类型的支架120,装配件118数量和装配件118在鞘芯管112上的布置排列方式可能不同,因此,针对不同的产品可能需要重新、多次开模,这必然增加成本和管控难度。
因此,包括基座1181和凸起1182的装配件118降低了制备的工艺难度,且有利于降低制备成本。多个装配件118的间距可根据需要灵活设置。即便增加了基座1181,多个装配件118仍然间隔地排列在鞘芯管112上,并不显著增加鞘芯管112的刚性。在满足可靠固定、且不显著增加工艺难度的前提下,基座1181的轴向长度应可能小,以将对鞘芯管112刚性的影响降至最小。并且,对于外鞘管113而言,在临床上,一般希望外鞘管113的径向尺寸尽可能小,为了不显著占用外鞘管113的内部空间,在满足基座1181具有足够强度以使装配件118与鞘芯管112可靠连接的前提下,基座1181的厚度应该尽可能小。在一实施方式中,当基座1181为中空的圆柱状时,基座1181的轴向长度与凸起1182的轴向长度之比为1:1~1:25,鞘芯管112的外径为d3,基座1181的外径为d4,d3+0.2mm≤d4≤d3+4mm。
在一实施方式中,每个装配件118仅包括一个凸起1182。并且,在鞘芯管112上设置多个装配件118时,凸起1182的朝向可以相同,也可以不同。例如,如图7所示,多个装配件118中,凸起1182的朝向不同。由于支架120为管腔结构,支架120套设在鞘芯管112上,凸起1182的朝向不同,能够从周向上进行多处限位,有利于避免支架120相对于鞘芯管112扭转。多个装配件118可以是规则地排列,也可以是不规则地排列。例如,多个装配件118按错开一个相位的规律规则地排列在鞘芯管112上。错开一个相位是指,在鞘芯管112的沿横截面的示图中,多个装配件118的凸起1181沿周向分布,并且任意两个相邻的两个凸起1182在周向上间距相等。
在另一实施方式中,如图9所示,多个装配件118间隔地设置于鞘芯管112上,每个装配件118仅包括一个凸起1182,多个装配件118的凸起1182的朝向一致,即多个装配件118的凸起1182均位于纵向中心轴线I-I(图9未示)的同一侧。并且,凸起1182朝向外鞘管113的大弯侧E1。当支架装配系统100经过弯曲的管腔路径(例如,弯曲的血管)时,外鞘管113及位于其中的支架120会相应地弯曲,形成大弯侧E1和小弯侧E2,在小弯侧E2,支架120的金属丝会发生聚集,而在大弯侧E1,金属丝变得稀疏,移位的风险增加。将装配件118的凸起1182的朝向大弯侧E1,能够较好地对支架120的位于大弯侧E1的金属丝进行限位,避免支架120移位。并且,将凸起1182朝向大弯侧E1设置,有利于支架装配系统100经过弯曲的管腔路径。
请参阅图10、图11和图12,在另外的实施方式中,每个装配件118包括多个凸起1182,多个凸起1182沿基座1181的周向间隔设置。或着,多个凸起1182分成两组,两组凸起1182在轴向上间隔设置,且每组凸起1182沿周向间隔设置。沿基座1181的周向间隔设置多个凸起1182,以在周向上保持较为均衡的限位性能。
在一实施方式中,装配件118的基座1181为中空的圆柱状,一方面,加工 较为方便;另一方面,装配件118与鞘芯管112的连接较为可靠。可以理解,在其他实施方式中,基座1181的形状不限于中空圆柱状,任何能够将装配件118固定于鞘芯管112上的形状均可。
例如,如图13所示,基座1181为弧形壳体,该弧形壳体的远离凸起1182的表面的形状与鞘芯管112的弧形表面相适配,弧形壳体贴合在鞘芯管112的外壁上,有利于装配件118可靠地固定于鞘芯管112的表面。并且,由于基座1181在周向不完全包覆鞘芯管112,有利于避免显著增加鞘芯管112的刚性,使得鞘芯管112保持一定的柔顺性,以方便经过弯曲的管腔路径。在一实施方式中,弧形壳体的轴向长度与凸起1182的轴向长度之比为1:1~1:25,弧形壳体的厚度为0.1~4mm。
在另一实施方式中,请参阅图14和图15,基座1181为中空的圆台状,外部轮廓呈圆台状,内腔呈圆柱状。需要说明的是,无论基座1181的形状如何变化,每个装配件118的凸起1182的数量不限,可以一个,也可以为多个。
当基座1181为中空的圆台状时,基座1181的朝向不限。如图16,在一实施方式中,有部分基座1181的大端位于近端,有部分基座1181的大端位于远端,相应的凸起1182的朝向亦不同。
无论装配件118为何种结构,如仅包括柱状凸起结构或为包括基座1181和凸起1182的结构,在一实施方式中,装配件118的自由端的端面为球面,有利于减少装配件118对外鞘管113内壁的剐蹭,避免损伤外鞘管113内壁。
上述装配器械110的鞘芯管112外壁上固定有装配件118,在装配过程中,装配件118的自由端伸入支架120的金属网格中,并与支架120发生钩挂,从而产生限位作用,避免支架120和鞘芯管112发生相对滑动,使支架120和鞘芯管112保持相对固定,从而在将支架120和鞘芯管112一起推送至外鞘管113中时,支架120和鞘芯管112的轴向位移能够保持一致,有利于避免堆叠的现象发生。并且,当支架120和鞘芯管112被装配于外鞘管113中后,装配件118仍然保持对支架120的限位作用,避免支架120在外鞘管113内腔中发生扭转。因此,该装配器械110的装配精度较高。
需要说明的是,上述实施方式中的支架120的金属丝形成闭环的网格,通过使装配件118穿过该闭环的网格而实现限位作用。在另一实施方式中,无论是编织或切割制备支撑骨架121,支撑骨架121的金属丝不形成闭环的网格,如图17所示,支撑骨架121为Z型波结构或正弦波形结构。
对于金属丝不形成闭环的网格的支架120,上述装配器械110同样能够提高装配精度。图18为Z型波结构的支架120装配于外鞘管113中的状态示意图,装配件118与支架120的金属丝保持钩挂。具体地,装配件118与Z型波的波峰或波谷的小弯侧发生钩挂,从而能够在轴向和周向对支架120进行限位,因而能够避免在装配过程中堆叠及支架120在外鞘管113内部的扭转的现象。
在一实施方式中,无论采用编织或切割的方法制备支撑骨架121,亦无论支撑骨架121的金属呈闭环的网格还是非闭环的Z型波、正弦波等结构,支架120不包括覆膜122,即支架120为裸支架。对于不包括覆膜122的支架120,装配件118的限位效果较好。而对于包括覆膜122的支架,通过装配件118、外鞘管 113和覆膜112三者合理地匹配,同样能够起到提高装配精度的效果。
装配件118应该能够与支架120发生钩挂,并且能够装配入外鞘管113中,同时,不损伤支架120和外鞘管113。
在装配过程中,当支架120被压握在鞘芯管112上后,装配件118伸入支架120的菱形网格中,或装配件118与支架120的波峰或波谷钩挂。并且,在支架120进入外鞘管113中后,装配件118仍然保持伸入菱形网格中的状态,或从波峰或波谷处伸出,以保证限位作用和保持在支架120在外鞘管113中的形态。因此,装配件118应具有一定的高度h1(如图19所示,该高度定义为装配件118的自由端至鞘芯管112的纵向中心轴线I-I的距离)。当h1过小至装配件118难以钩挂支架120时,难以形成限位作用;当大h1过大时,在支架120和鞘芯管112一起进入外鞘管113的过程中,凸出的装配件118可能会剐蹭外鞘管113的内壁,一方面,会导致装配困难,另一方面,凸出的装配件118可能会损伤鞘管内壁。
在一实施方式中,当装配件118具有一定的弹性,使得装配件118能够在径向上被适当挤压时,h1的大小可以适当提高,如此,使装配件118能够与支架120可靠地钩挂,有效地避免支架120和鞘芯管112发生相对滑动,并且,当支架120装配入外鞘管113中后,装配件118能够适当地弹性抵接外鞘管113的内壁,有效防止支架120移位。同时,当支架120包括覆膜122时,装配件118具有一定的弹性或装配件118的硬度较小时,有利于避免损伤覆膜122。因此,在一实施方式中,外鞘管113的内径为d1,装配件118的硬度为25D~85D时,0.5d1<h1<0.8d1,以保证装配件118的自由端能够伸出至支架120的外部,以和支架120可靠钩挂,且不会对覆膜122造成损伤。
对于包含覆膜122的支架120而言,装配件118从支架120的菱形网格中伸出后会抵住覆膜122,当装配件118的高度h1过大时,装配件118的自由端容易损伤覆膜122。因此,装配件118的高度h1应综合外鞘管113的内径d1、支架120的金属丝的丝径d2(当为切割形成的支撑骨架121时,d2为支撑骨架121的壁厚)及覆膜122的厚度t合理地选择,以保证可靠当限位作用、避免支架120在外鞘管113内扭转以及避免损伤覆膜122。在一实施方式中,0.35×d1-2×d2-t≤h1≤0.85×d1,以综合上述三个效果。
在一实施方式中,针对包含覆膜122的支架120,0.35×d1-2×d2-t≤h1≤0.7×d1。
在一实施方式中,针对不含有覆膜122的支架120,h1的可以适当增大,以提高对支架200限位的效果。特别是对于编织形成的裸支架,编织丝比较顺滑,所以在装配的过程中更加容易发生位移,因此h1的大小应适当提高,但不能过大而抵持外鞘管113。同时,h1过小时,装配件118容易从金属丝滑脱而难以起到限位作用。因此,在一实施方式中,0.4×d1-2×d2≤h1≤0.85×d1,以较好地兼顾限位和避免损伤外鞘管113的效果。在一实施方式中,0.45×d1-0.5mm≤h1≤0.55×d1+0.5mm,以较好地兼顾限位和避免损伤外鞘管113的效果。
无论金属丝编织形成闭环的网格还是形成非闭环的Z型波、正弦波等结构,亦或是金属管切割形成闭环的网格还是非闭环结构,闭环的网格的大小及非闭环的Z型波、正弦波等的波峰或波谷对应半径均应在一定范围内,并且在将支 架120压缩时,网格的大小及波峰或波谷处的尺寸会相应地减小,因此装配件118的与网格、波峰或波谷接触的部分的横截面积的大小应合理,一方面,横截面积不应过大,以使装配件118能够与支架120发生钩挂而提供限位作用;另一方面,横截面积不应过小,以保证装配件118具有足够的强度,保证提供限位作用,同时,并避免装配件118从根部断裂。
在一实施方式中,装配件118的横截面积(与鞘芯管112的纵向中心轴线I-I平行的截面的面积)为S1(当装配件118为柱状结构时,S1为柱状结构的截面积;当装配件118包括基台1181和凸起1182时,S1为凸起1182的截面积),当支架120的金属丝形成闭环的网格时,且在自然展开状态,支架120的网格面积为S2,则0.001×S2≤S1≤0.2×S2,以兼顾装配件118的强度和装配件118对支架120的限位作用。
在一实施方式中,0.002×S2≤S1≤0.08×S2。
在一实施方式中,当外鞘管113的外径小于或等于14F时,0.03mm 2≤S1≤1.8mm 2。在另一实施方式中,0.07mm 2≤S1≤0.8mm 2
当支架120的金属丝形成非闭环结构时,例如,支撑骨架121包括多个含有波峰和波谷的波形环状结构,为了实现限位作用,装配件118应能与支架120的波峰或波谷处形成钩挂,即装配件118应能穿入金属丝的弯曲部。金属丝的弯曲部的半径为R1,在一实施方式中,0.05×R1×R1×π≤S1≤R1×R1×π,以兼顾装配件118的强度和装配件118对支架120的限位作用。
在一实施方式中,为了兼顾装配件118的强度和避免对外鞘管113造成损伤,当装配件118为柱状结构时,如图20,装配件118包括刚性部分1183及柔性部分1184,其中刚性部分1183为固定端,与鞘芯管112固定连接,柔性部分1184的一端与刚性部分1183的远离鞘芯管112的一端连接,另一端为自由端。当将支架120压握在鞘芯管112上时,装配件118与支架120发生钩挂,且柔性部分1184的自由端与覆膜122抵持,有利于避免对覆膜122造成损伤。为了保证装配件118整体具有足够的强度,以实现在装配过程中的限位作用,刚性部分1183和柔性部分1184的硬度之比为0.3~0.9,长度之比为1:5~5:1。
在一实施方式中,当装配件118包括基座1181和凸起1182时,凸起1182包括刚性部分和柔性部分,刚性部分和柔性部分的硬度之比为0.3~0.9,长度之比为1:5~5:1。
在现有的研究中,为了保持支架120和鞘芯管112相对固定,通常在鞘芯管112的表面设置摩擦元件,通过表面摩擦力避免支架120和鞘芯管112相对滑动。增加表面摩擦力能够在一定程度上使支架120和鞘芯管112保持相对固定,但这种方式的限位作用有限,难以实现可靠的限位作用,在向外鞘管113的内腔推送的过程中,支架120和鞘芯管112还是会发生一定程度的相对滑动而导致堆叠的现象发生。并且,通过表面摩擦力进行限位的方式,往往需要通过增加摩擦元件的表面积,即摩擦元件覆盖鞘芯管112表面的面积越大越好,如此,会增加鞘芯管112的刚性,从而降低装配器械110的柔顺性,增加了装配器械110经过弯曲的管腔路径的难度。本公开的装配器械110通过在鞘芯管112上设置不连续分布的装配件118,不会显著地增加鞘芯管112的刚性,因而 不会显著降低装配器械110的柔顺性。并且,装配件118通过与支架120发生钩挂而提供限位作用,这种限位作用比摩擦作用更为可靠。然而,对于包含覆膜122的支架120而言,由于存在凸出的装配件118顶破、损伤覆膜122的可能,因而尚未有人通过设置装配件118以在装配过程中对支架120进行限位。但本公开通过合理设置装配件118的尺寸及覆膜122的性能,在保证限位作用的同时,能够避免对覆膜122的损伤。
覆膜122的材料可以为塑料、涤纶或聚酯等。例如,塑料可以为聚四氟乙烯(PTFE),聚酯可以为聚对苯二甲酸乙二醇酯(PET)或聚氨基甲酸乙酯(PU)等等。覆膜122被顶破的原因是受到了装配件118的径向朝外的力,而降低覆膜122被装配件118顶破的风险可以综合两个方面来考虑。一方面是装配件118自身的性能和尺寸,如硬度、高度h1和截面积S1等;另一方面是覆膜122自身的性能。
对于装配件118自身的尺寸,高度h1需要在使装配件118能够可靠地钩挂住支架120的前提下尽量小,而截面积S1需要在使装配件118能够可靠地钩挂住支架120的前提下尽可能地大。
对于覆膜122自身的性能而言,应使覆膜122在受到较大的装配件118的作用力时,其本身可以允许一定的延伸而不会破裂。因此,覆膜122的延伸率应满足一定的要求。如果覆膜122的延伸率过小,则装配件118的自由端可能顶在覆膜122上,尤其是对于金属网格较小的支架120,这种可能性更高,完全靠压缩时形成的覆膜122的褶皱不能保证装配件118伸入金属丝的网格中,而覆膜122的表面又比较光滑,当支架120受到外力作用时,很容易导致装配件118与覆膜122间的移位,而起不到良好的限位效果。然而,当覆膜122的延伸率过大时,则在装配件118的作用下,很容易造成覆膜122出现拱包,从而使得覆膜122的局部厚度降低,形成薄弱部位,这会增加在支架120释放后,由于血压作用,薄弱部位破裂或血液渗透薄弱部位的风险。
因此,在一实施方式中,95%≤延伸率≤300%。
延伸率的测试方法:将覆膜材料裁剪成长度大于90mm、宽度等于15mm的试样,将试样固定在拉力机的夹具上,两夹具间距50mm,将覆膜缓慢拉伸直到样品断裂,记录这个过程中最大的力F及最大力时覆膜的拉伸的长度L1,则延伸率=(L1-50)/50*100%。
同时,覆膜122的断裂强度也会产生一定的影响。当覆膜122的断裂强度过小,则装配件118很容易顶破覆膜122而造成支架120失效。然而,但断裂强度较大的覆膜122,其孔隙率一般较小或厚度一般较大,孔隙率的降低会影响内皮爬附的效果,而覆膜122厚度的增加会降低支架120的柔顺性。
因此,在一实施方式中,0.5N/mm≤断裂强度≤15.0N/mm。在另一实施方式中,1.0N/mm≤断裂强度≤9.5N/mm。
其中,覆膜材料的断裂强度按上文延伸率的测试方法得到,断裂强度=F/15mm。
并且,覆膜122的厚度t应与装配件118的高度h1应满足一定的关系。当t较大,而h1较小时,则装配件118难以将覆膜122顶起,不能保证装配件118 与支架120的金属丝可靠钩挂。当t较小,覆膜122较薄时,而h1较大时,覆膜122被顶破的风险较高。因此,在一实施方式中,0.010≤t/h1≤0.500。在另一实施方式中,0.013≤t/h1≤0.250。
覆膜122自身的形态对避免装配件118造成的损伤亦存在一定影响。请一并参阅图21和图22,在自然状态下,支架120的截面形态大致呈圆形,而支架120被径向压缩至鞘芯管112上时,如图23和图24,相邻金属丝之间的覆膜122基本上呈弧状张开状态,形成多个褶皱1222,褶皱1222为装配件118提供了一定的空间,装配件118的自由端伸入褶皱1222中,有利于避免在装配过程中及当支架120处于外鞘管113内部时覆膜122被装配件118顶破。支架120因受到径向压缩力而被压缩,径向压缩力实际是作用在支架120的支撑骨架121上,在径向压缩力的作用下,支撑骨架121会被往贴紧鞘芯管112外表面的方向挤压,在这种状态下,如果位于支撑骨架121的金属丝之间的覆膜122处于紧绷的状态,则覆膜122被径向凸出的装配件118顶破的风险较高。因而在压缩状态,覆膜122形成适当的褶皱1222有利于降低覆膜122被装配件118顶破的风险。
适合的压缩率可以保证位于相邻的金属丝之间的覆膜122处于褶皱状态。当支架120被压缩时,相邻金属丝的距离缩短,覆膜122伴随着压缩过程形成褶皱1222。设支架120在自然状态下的的直径为D1、外鞘管113的内径为d1,定义支架120的压缩率为(D1-d1)/D1,压缩率越大,表示支架120被压缩的程度越大。压缩率越小,从自然状态到装配时的压缩状态,支架120的任意网格中相邻的金属丝的间距变化就越小,则覆膜120形成的褶皱度就越小,越容易被装配件118顶破。在一实施方式中,请回到图21,支撑骨架121由多个菱形网格组成,其任意菱形网格有四个交叉点,a、b、c和d。其中,b点和d点沿轴向间隔分布,a点和c点沿径向间隔分布。可以理解的是,当支架120处于压缩状态时,越靠近交叉点处的覆膜122褶皱的程度越小,越远离交叉点的覆膜122的褶皱的程度越大,网格中央处褶皱的程度最大。因此,越靠近交叉点的覆膜122越容易被装配件118顶破。因此,如果压缩率过小,支架网格中的覆膜120靠近交叉点的部分被装配件118顶破的风险显著增加。可以理解的是,虽然从设计角度,装配件118应该凸出在菱形网格的中央,但是受制于生产工艺精度以及在装配时候受到的轴向推送力的作用,装配件118是可能会偏向靠近交叉点的位置,覆膜122的实际破损也往往发生在靠近交叉点的附近,尤其是b点和d点的附近。
然而,如果压缩率过大,则当将支架120和鞘芯管112推送至外鞘管113中时,没有足够的空隙容置装配件118,强行推送,即便装鞘成功也会造成外鞘管113的局部释放力大,给释放支架120带来困难。
因此,在一实施方式中,40%≤压缩率≤85%。在该压缩率范围内,兼顾了装配过程的安全性、输送的便利性及释放的便利性。
当覆膜122为双层结构,包括内层膜和外层膜,且支撑骨架121位于内层膜和外层膜之间时,对于编织形成的支撑骨架121,网格具有四个交叉点a、b、c和d,当装配件118位于交叉点a、b、c和d附近且受到向着交叉点方向的作 用力时,交叉的金属丝有相互滑动的风险,金属丝在交叉点附近受力而相互移动,则会造成内层膜和外层膜分离,严重时甚至造成支架120失效。
在一实施方式中,如图21所示,支架120的支撑骨架121的编织方式交叉互挂方式。这种交叉互挂设计,能够很好的防止交叉点附近金属丝因装配件118的作用发生相互滑移而导致覆膜122的内层膜和外层膜分离的现象。图21的实施方式中,每个交叉点处都是互挂设计。在另一实施方式中,如图25所示,支撑骨架121的金属网格中,仅有轴向的b点和d点互挂,a点和c点是普通交叉,即仅仅是搭接,没有发生互挂。因为在装配过程中,支架120没有受到额外的周向外力,因此周向移位的风险比轴向的小,因此,仅在轴向上形成互挂的交叉点,可以优先保障轴向的移动不会造成覆膜122在交叉点处破损。并且,能够整体上减少支架120的交叉点,以使支架120具有一定的柔顺性。
交叉互挂的设计,金属丝在交叉点处固定相连,能在一定程度上限制金属丝在交叉点处的位移。然而,一般情况下,当覆膜122为单层结构时,覆膜122为整片结构。当覆膜122为包括内层膜和外层膜的两层结构时,内层膜和外层膜分别为整片结构。互挂处金属丝可以在一定范围内绕铰接处转动,这亦会存在导致覆膜122分离或破损的风险。因此,在一实施方式中,支架120的金属丝仅在轴向的交叉点处发生互挂。并且,如图26所示,覆膜122包括内层膜1223和外层膜1224,其中,内层膜1223为呈筒状的整片结构,内层膜1223在周向上被支撑骨架121包裹从而形成周向密闭的管腔结构。外层膜1224为条状结构,条状的外层膜1224缠绕在金属丝和内层膜1223的外表面上,且位于互挂的交叉点的金属丝不被外层膜1224所覆盖,即交叉点处不设有外层膜1224。如此,当装配件118顶住覆膜122的交叉点或靠近交叉点的位置时,仅仅作用于内层膜1223,而不会对外层膜1224产生作用力,因而能够避免内层膜1223和外层膜1224分离的现象。
通过内层膜1223和外层膜1224上述配合的方式,不仅可以使支撑骨架121和覆膜122可靠贴合,且有利于避免在装配件118的作用下内层膜1223和外层膜1224移位。
在一实施方式中,外层膜1224呈螺旋状地缠绕在金属丝和内层膜1223的外表面上,以避免覆盖交叉点。可以理解,外层膜1224的设置方式不限于呈螺旋状地缠绕在金属丝和内层膜1223的外表面上,任何能够避免外层膜1224覆盖在金属丝的钩挂处的设置方式均可。
请参阅图27,在一实施方式中,外层膜1224包括两部分,即包括多个第一条状膜1224A和多个第二条状膜1224B,其中,多个第一条状膜1224A平行、间隔地覆盖在金属丝和内层膜1223(图27省略内层膜1223)的外表面上,多个第二条状膜1224B平行、间隔地覆盖在金属丝和内层膜1223的外表面上。并且,第一条状膜1224A和第二条状膜1224B交叉,第一条状膜1224A和第二条状膜1224B均不覆盖金属丝的互挂交叉点。如此,使得金属丝与外层膜1224的贴合更可靠。
请一并参阅图27和图28,可以理解,在保证金属丝与外层膜1224可靠贴合且避免覆盖金属的互挂交叉点前提下,第一条状膜1224A和第二条状膜1224B 的宽度可以合理设置。
需要说明的是,在其他实施方式中,外层膜1224包括第一条状膜1224A和第二条状膜1224B,第一条状膜1224A和第二条状膜1124B均为连续的结构,并通过缠绕的方式设置,并且第一条状膜1224A和第二条状膜1224B交叉,第一条状膜1224A和第二条状膜1224B均不覆盖金属丝的互挂交叉点。通过合理设置覆膜122的性能及装配件118,有利于提高支架装配系统100的装配精度。同时,使设置装配件118以提高装配精度亦能适用于含有覆膜122的支架120。
装配器械110不仅仅适用于单层的支架,亦适用于双层支架。请参阅图29,在一实施方式中,支架120的局部为双层结构。支架120包括第一管体120A和第二管体120B,第一管体120A为两端开口的管腔结构,第二管体120B套设于第一管体120A上,且第二管体120B的至少一端与第一管体120A的外周面固定连接。并且,第一管体120A的外周面部分被第二管体120B覆盖。第一管体120A和第二管体120B均可以为覆膜支架或裸支架。在鞘芯管112上间隔地设置多个装配件118,并且,在径向上同时与第一管体120A和第二管体120B相对的装配件118的高度h1小于在径向上仅与第一管体120A相对的装配件118,但仍需保证装配件118具有足够的高度h1以和支架120发生钩挂而产生限位作用。这是因为,外鞘管113的内腔为等径的内腔,而当支架120装配于外鞘管113中时,由于支架120局部为双层结构,第二管体120B必然占据外鞘管113内腔的一定的空间,当在径向上同时与第一管体120A和第二管体120B相对的装配件118的高度h1过大时,存在损伤支架120和/或外鞘管113的风险。
在一实施方式中,当第一管体120A和第二管体120B均为覆膜支架时,在径向上同时与第一管体120A和第二管体120B相对的装配件118的高度h1满足:0.4×d1-2×d2-t≤h1≤0.8×d1,以使装配件118的自由端凸出于第一管体120A的金属丝,但不损伤覆膜。
在一实施方式中,当第一管体120A和第二管体120B均为裸支架时,在径向上同时与第一管体120A和第二管体120B相对的装配件118的高度h1满足:0.35×d1-2×d2-t≤h1≤0.75×d1,以使装配件118的自由端凸出于第一管体120A的金属丝,但不损伤外鞘管113的内壁。
在一实施方式中,当第二管体120B不覆盖第一管体120A的两端时,如图29所示的实施方式中,在径向上同时与第一管体120A和第二管体120B相对的装配件118可以省略,将装配件118设置在第一管体120的近端和远端,亦能实现对支架120的限位。
支架装配系统100从源头上提高了装配精度,有利于避免因装配精度不佳而影响术中释放精度。以下结合图30a~图30d阐述支架120的释放过程。
当通过装配器械110将支架120输送至病变部位后,支架120仍然位于外鞘管113的内腔中,如图30a所示,装配件118保持与支架120钩挂连接。保持鞘芯管112不动,将外鞘管113向远离导向头111的方向轴向移动,支架120与外鞘管113的内壁接触,受外鞘管113的摩擦力作用,支架120有随着外鞘管113一起朝着远离导向头111的方向移动的趋势,如果支架120向远离导向头111的方向发生了明显位移,则支架120在外鞘管113内腔的部分会发生挤压, 严重时就会产生堆积,会降低释放精度,例如,使支架120的位置偏移或使支架120形态扭转。并且,会释放位置偏移。如图30b所示,但由于设置了装配件118,装配件118保持与支架120钩挂连接,在外鞘管113的移动过程中,支架120能够抵抗外鞘管113的摩擦作用,因而支架120与鞘芯管112保持相对固定。请一起对照图30a~图30e,由于多个装配件118沿鞘芯管112的轴向间隔设置,随着外鞘管113的向远离导向头111的方向逐渐移动,支架120逐渐得到释放,但位于外鞘管113内腔的部分至少有部分与装配件118发生钩挂,能够有效避免支架120移位,从而提高释放精度。由于支架120自身的回复力,当支架120受到外鞘管113的束缚消失时,支架120自动弹开并贴合组织内壁,从而完成释放。
为了保证在释放的整个过程中,支架120始终被装配件118限位而全程保持与鞘芯管112相对固定,在一实施方式中,在轴向上最远离导向头111的装配件118与支架120的在轴向上最远离导向头111的金属网格钩挂或波峰或波谷钩挂,即至少有一个装配件118位于支架120的最近端。
由于支架120是逐渐被释放的,在释放过程中,当支架120的被释放部分的轴向长度与支架120的位于外鞘管113中的部分的轴向长度的比值较大时,由于支架120会自动弹开,支架120最远端(即最先被释放的部分)至少与组织内壁接触而产生一定的限位作用。因此,即便在轴向上最远离导向头111的装配件118有一定程度地远离支架120的最近端,也能保证在释放的整个过程中,避免支架120与鞘芯管112发生相对滑动。
在一实施方式中,当支架120被径向压握于鞘芯管112上时(支架120与所有装配件118钩挂的状态),位于最近端的装配件118与支架120的近端端面的轴向距离与支架120的轴向长度的比值不大于1/3。
在一实施方式中,靠近远端的多个装配件118的间隔较小,有利于释放。这是因为在释放过程中,最开始释放的时候释放力最大,最容易导致支架120的远端移动而产生堆叠,从而无法释放,所以在靠近远端方向设置较多的装配件118,可以更好的限制支架120移动,避免无法释放或降低释放难度。
在一实施方式中,当支架120被径向压握于鞘芯管112上时(支架120与所有装配件118钩挂的状态),位于最远端的装配件118与支架120的远端端面的轴向距离与支架120的轴向长度的比值不大于1/3,有利于避免装配过程中发生近端堆叠。
传统的支架输送器往往不能在支架部分释放后对支架回收。因此,一旦支架出现释放后扭曲或者释放一部分后无法继续释放等问题时,无法补救,这种情况只能通过外科手术将移植物取出,这可能会给患者带来危险。或者,当出现释放位置不准确时,也难以通过回收而调整释放位置,会影响治疗效果。本公开的支架装配系统100能够实现回收,从而避免出现上述问题。
可以理解,支架120回收的顺序与释放的顺序相反。首先,请参阅图30e,当支架120的一部分被释放后发现异常而需要回收时,保持鞘芯管112不动,使外鞘管113向着靠近导向头111方向移动。在外鞘管113向着导向头111移动的过程中,外鞘管113的内壁与支架120的外壁会发生摩擦,因此给支架120 施加了一个向着导向头111方向的推力。因此,支架120有随外鞘管113一起移动的趋势,即相对于鞘芯管112移动的趋势。但由于支架120位于外鞘管113的内腔的部分仍然与装配件118保持钩挂连接,装配件118会给支架120一个抵抗移动的作用力,从而阻止支架120的移动。因此,可通过向靠近导向头111的方向推送外鞘管113的方式实现支架120的回收。回收过程的状态变化依次为图30e、图30d、图30c、图30b、图30a,外鞘管113向着导向头111的方向前进的过程中,位于外鞘管113外部的部分,支架120的网格逐渐靠近装配件118,直到装配件118穿入网格中。外鞘管113向着导向头111方向继续推进,装配件118与支架120一起被收入外鞘管113中,实现支架120的回收。传统的支架输送器,因为没有设置装配件,如果在释放了支架120的一部分后尝试回收,在操作过程中,支架120会随着外鞘管113发生移动,难以实现回收。
通过合理的设计装配件118的结构和数量,使得在装配过程中,装配件118可以给支架200提供一定的、可靠地抗移位力,而不会被拉扯断,以实现支架120的回收。并且,如上文所述,通过合理设置装配件118与支架120的覆膜,使得在回收过程中,装配件118不会顶破覆膜122或对覆膜122造成损伤,因此,可以通过回收支架120后,调整位置,继续释放支架120。
因此,合理地设置了装配件118,支架装配系统100不仅仅从装配的源头提高精度,并且在释放过程中亦可提高精度,有利于介入手术顺利进行,保证疗效。并且,当出现意外情况时还可实现回收,安全可靠。
需要说明的是,在满足装配件118能够与支架120可靠钩挂,且装配件118不损伤覆膜122和/或外鞘管113的前提下,装配件118不限于上文所描述的具体结构,可以为其他结构。例如,请参阅图31,多个装配件118通过连接件119相连形成装配组件130。组装时,直接将装配组件130安装在鞘芯管112上。
请一并参阅图32和图33,连接件119大致为杆状,可以平杆或弧形杆,任意相邻的两个装配件118可以通过至少一个连接件119连接。每个连接件119的两端分别与相邻的两个装配件118的基座1182连接。每个装配组件130的装配件118的数量可以根据支架120的长度合理设置。每个支架输送器110上的装配组件130的数量可以综合支架120的长度和每个装配组件130的装配件118的数量合理设置。由连接件119连接多个装配件118形成的装配组件130,制备较为方便。由于每个装配件118的尺寸很小,制备单个装配件118对模具的要求较高,以达到精度要求。装配组件130的尺寸相对较大,对模具的要求相对较低,可以一次注塑成型。
相邻的两个装配件118之间的连接件119的数量和设置位置可以相同,也可以不同。如图31所示,在一实施方式中,相邻两个装配件118件之间通过两个沿鞘芯管112的周向间隔设置的连接件119相连。结合图32和图33,对于非端部的装配件118,其远端的两个连接件119所形成的平面与其近端的两个连接件119所形成的平面垂直。如此设置连接件119,有利于保证支架输送器110在任何角度方向上的柔顺性都是一致的,有利于通过复杂的弯曲的路径。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技 术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种支架装配系统,包括支架和装配器械,所述装配器械用于装配并输送所述支架,其特征在于,所述装配器械包括鞘芯管、外鞘管和装配件,所述外鞘管沿轴向可滑动地套设于所述鞘芯管上,且所述外鞘管的内壁和所述鞘芯管的外壁之间形成用于容置所述支架的容置腔,所述装配件具有固定端及与所述固定端相对的自由端,所述固定端与所述鞘芯管连接,当所述支架被径向压握于所述鞘芯管上时,所述自由端与所述支架发生钩挂而对所述支架进行限位。
  2. 根据权利要求1所述的支架装配系统,其特征在于,所述装配件为多个,多个所述装配件间隔设置于所述鞘心管上,当所述支架被径向压握于所述鞘芯管上时,位于最近端的装配件与所述支架的近端端面的轴向距离与所述支架的轴向长度的比值不大于1/3。
  3. 根据权利要求1所述的支架装配系统,其特征在于,所述装配件的自由端为球面结构。
  4. 根据权利要求1所述的支架装配系统,其特征在于,所述外鞘管的内径为d1,所述装配件的高度为h1,当所述装配件的硬度为25D~85D时,0.5d1<h1<0.8d1。
  5. 根据权利要求1所述的支架装配系统,其特征在于,所述支架包括支撑骨架及包覆在所述支撑骨架上的覆膜,所述支撑骨架为由金属丝编织形成的网格结构,至少有部分金属丝交叉互挂连接形成多个交叉点,所述覆膜包括内层膜和外层膜,所述内层膜设置于所述支撑骨架内,所述外层膜贴合于所述支撑骨架的外表面和所述内层膜的外表面上,且所述多个交叉点不被所述外层膜所覆盖。
  6. 根据权利要求5所述的支架装配系统,其特征在于,至少有部分金属丝交叉互挂连接形成多个沿轴向间隔的交叉点。
  7. 一种支架装配方法,其特征在于,包括如下步骤:
    使外鞘管沿轴向向近端滑动至露出鞘芯管;
    将支架套设在鞘芯管上;
    径向压握所述支架,使所述支架被径向压缩并贴合在所述鞘芯管的外表面上,且所述装配件与所述支架发生钩挂;及
    在所述装配件与所述支架发生钩挂的状态下,使所述鞘芯管和所述支架一起收容于所述外鞘管中。
  8. 根据权利要求7所述的支架装配方法,其特征在于,所述在所述装配件与所述支架发生钩挂的状态下,使所述鞘芯管和所述支架一起收容于所述外鞘管中的步骤包括:使所述外鞘管保持不动,将所述鞘芯管和所述支架一起沿轴向推送至所述外鞘管中。
  9. 根据权利要求7所述的支架装配方法,其特征在于,所述在所述装配件与所述支架发生钩挂的状态下,使所述鞘芯管和所述支架一起收容于所述外鞘管中的步骤包括:使所述鞘芯管和所述支架保持不动,沿着靠近所述鞘芯管和所述支架的方向推送所述外鞘管,使所述鞘芯管和所述支架收容于所述外鞘管中。
  10. 根据权利要求7所述的支架装配方法,其特征在于,所述支架包括支 撑骨架及包覆在所述支撑骨架上的覆膜,在径向压缩的状态下,所述覆膜形成多个褶皱,所述装配件的自由端伸入所述褶皱。
PCT/CN2021/082678 2020-03-26 2021-03-24 支架装配系统及支架装配方法 WO2021190549A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/914,124 US20230218417A1 (en) 2020-03-26 2021-03-24 Stent Assembly System and Stent Assembly Method
EP21776279.8A EP4129243A4 (en) 2020-03-26 2021-03-24 STENT PLACEMENT SYSTEM AND STENT PLACEMENT METHODS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010225221.4 2020-03-26
CN202010225221.4A CN113440323B (zh) 2020-03-26 2020-03-26 支架装配系统及支架装配方法

Publications (1)

Publication Number Publication Date
WO2021190549A1 true WO2021190549A1 (zh) 2021-09-30

Family

ID=77807327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082678 WO2021190549A1 (zh) 2020-03-26 2021-03-24 支架装配系统及支架装配方法

Country Status (4)

Country Link
US (1) US20230218417A1 (zh)
EP (1) EP4129243A4 (zh)
CN (1) CN113440323B (zh)
WO (1) WO2021190549A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114886606A (zh) * 2022-05-23 2022-08-12 深圳市创心医疗科技有限公司 覆膜支架及输送系统
CN115737102A (zh) * 2023-01-10 2023-03-07 杭州糖吉医疗科技有限公司 激光切割装配式胃转流支架及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116407746A (zh) * 2021-12-31 2023-07-11 先健科技(深圳)有限公司 粒子支架和粒子支架回收系统
CN116269651B (zh) * 2022-12-06 2023-10-10 杭州亿科医疗科技有限公司 一种防止取栓网提前释放的取栓装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113926A (zh) * 2009-12-30 2011-07-06 微创医疗器械(上海)有限公司 一种医用导丝
WO2011102653A2 (ko) * 2010-02-19 2011-08-25 (주) 태웅메디칼 마이크로카데터를 이용한 스텐트 전달장치
CN102300521A (zh) * 2009-01-29 2011-12-28 安吉美德医疗技术两合有限公司 用于输送支架装置的输送装置
CN103561807A (zh) * 2011-03-01 2014-02-05 恩朵罗杰克斯股份有限公司 导管系统及其使用方法
CN104042380A (zh) * 2013-03-13 2014-09-17 德普伊新特斯产品有限责任公司 用于可膨胀支架的递送系统
CN104042376A (zh) * 2013-03-13 2014-09-17 德普伊新特斯产品有限责任公司 具有膨胀环的编织支架和递送方法
CN104055609A (zh) * 2013-03-11 2014-09-24 德普伊新特斯产品有限责任公司 支架递送系统和方法
US20160193061A1 (en) * 2013-01-17 2016-07-07 Covidien Lp Methods and apparatus for luminal stenting
WO2017176678A1 (en) * 2016-04-05 2017-10-12 Bolton Medical, Inc. Delivery device with filler tubes
CN108186176A (zh) * 2016-12-08 2018-06-22 先健科技(深圳)有限公司 植入物的输送系统
CN109069283A (zh) * 2016-04-21 2018-12-21 美敦力瓦斯科尔勒公司 具有为支架保持而在远侧部段上带有装载垫或覆盖件的内轴部件的支架移植物递送系统
CN109700572A (zh) * 2018-12-29 2019-05-03 先健科技(深圳)有限公司 用于输送器的止缩装置及其输送器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2371780C (en) * 1999-05-20 2009-10-06 Boston Scientific Limited Stent delivery system with nested stabilizer and method of loading and using same
US6468298B1 (en) * 2000-12-28 2002-10-22 Advanced Cardiovascular Systems, Inc. Gripping delivery system for self-expanding stents and method of using the same
US9125765B2 (en) * 2010-12-13 2015-09-08 Cook Medical Technologies Llc Implant deployment restraint device
CN107427377B (zh) * 2015-01-12 2019-09-03 微仙美国有限公司 支架
US10376396B2 (en) * 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
CN109419568B (zh) * 2017-08-28 2023-09-19 先健科技(深圳)有限公司 覆膜支架

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300521A (zh) * 2009-01-29 2011-12-28 安吉美德医疗技术两合有限公司 用于输送支架装置的输送装置
CN102113926A (zh) * 2009-12-30 2011-07-06 微创医疗器械(上海)有限公司 一种医用导丝
WO2011102653A2 (ko) * 2010-02-19 2011-08-25 (주) 태웅메디칼 마이크로카데터를 이용한 스텐트 전달장치
CN103561807A (zh) * 2011-03-01 2014-02-05 恩朵罗杰克斯股份有限公司 导管系统及其使用方法
US20160193061A1 (en) * 2013-01-17 2016-07-07 Covidien Lp Methods and apparatus for luminal stenting
CN104055609A (zh) * 2013-03-11 2014-09-24 德普伊新特斯产品有限责任公司 支架递送系统和方法
CN104042380A (zh) * 2013-03-13 2014-09-17 德普伊新特斯产品有限责任公司 用于可膨胀支架的递送系统
CN104042376A (zh) * 2013-03-13 2014-09-17 德普伊新特斯产品有限责任公司 具有膨胀环的编织支架和递送方法
WO2017176678A1 (en) * 2016-04-05 2017-10-12 Bolton Medical, Inc. Delivery device with filler tubes
CN109069283A (zh) * 2016-04-21 2018-12-21 美敦力瓦斯科尔勒公司 具有为支架保持而在远侧部段上带有装载垫或覆盖件的内轴部件的支架移植物递送系统
CN108186176A (zh) * 2016-12-08 2018-06-22 先健科技(深圳)有限公司 植入物的输送系统
CN109700572A (zh) * 2018-12-29 2019-05-03 先健科技(深圳)有限公司 用于输送器的止缩装置及其输送器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129243A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114886606A (zh) * 2022-05-23 2022-08-12 深圳市创心医疗科技有限公司 覆膜支架及输送系统
CN115737102A (zh) * 2023-01-10 2023-03-07 杭州糖吉医疗科技有限公司 激光切割装配式胃转流支架及其制备方法

Also Published As

Publication number Publication date
CN113440323A (zh) 2021-09-28
EP4129243A4 (en) 2024-05-01
EP4129243A1 (en) 2023-02-08
CN113440323B (zh) 2023-05-02
US20230218417A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2021190549A1 (zh) 支架装配系统及支架装配方法
US20210220158A1 (en) Releasable Delivery System
CN110742709B (zh) 一种主动脉裸支架及主动脉夹层支架
EP3064171B1 (en) Coated stent graft
EP2918251A1 (en) Braided self-expanding endoluminal stent and manufacturing method thereof
US20120277788A1 (en) Medical device for insertion into a hollow organ and method for producing such a device
US20150080999A1 (en) Self-expanding stent
CN102309370A (zh) 可挠支架
WO1996041589A1 (en) A device for implantation in a vessel or hollow organ lumen
US20190053887A1 (en) Lumen Woven Support
JP7461306B2 (ja) 医療デバイス送達システム用のコアアセンブリ
EP3476369A1 (en) Membrane-coated stent and manufacturing method thereof
CN101449986B (zh) 主动脉导管未闭的阻塞器
WO2021190542A1 (zh) 支架输送器及支架输送系统
CN113440325B (zh) 支架输送器及支架输送系统
CN113440324B (zh) 支架输送系统
US20200060689A1 (en) Aneurysm treatment coils and associated systems and methods of use
US20200060688A1 (en) Aneurysm treatment coils and associated systems and methods of use
JP2024514343A (ja) Z型編組ステント
CN114469469A (zh) 支架本体及覆膜支架
WO2023124901A1 (zh) 管腔支架
CN219306815U (zh) 一种双层支架
US20240024137A1 (en) Luminal Stent
CN221266379U (zh) 切割管、鞘管以及输送系统
CN112891017B (zh) 管腔支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217060215

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776279

Country of ref document: EP

Effective date: 20221026